xref: /freebsd/sys/netinet/ip_input.c (revision 81d1ffee089aab2652954909acbe6aadd8a1a72c)
1 /*
2  * Copyright (c) 1982, 1986, 1988, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
34  * $FreeBSD$
35  */
36 
37 #include "opt_bootp.h"
38 #include "opt_ipfw.h"
39 #include "opt_ipdn.h"
40 #include "opt_ipdivert.h"
41 #include "opt_ipfilter.h"
42 #include "opt_ipstealth.h"
43 #include "opt_ipsec.h"
44 #include "opt_mac.h"
45 #include "opt_pfil_hooks.h"
46 #include "opt_random_ip_id.h"
47 
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/mac.h>
51 #include <sys/mbuf.h>
52 #include <sys/malloc.h>
53 #include <sys/domain.h>
54 #include <sys/protosw.h>
55 #include <sys/socket.h>
56 #include <sys/time.h>
57 #include <sys/kernel.h>
58 #include <sys/syslog.h>
59 #include <sys/sysctl.h>
60 
61 #include <net/pfil.h>
62 #include <net/if.h>
63 #include <net/if_types.h>
64 #include <net/if_var.h>
65 #include <net/if_dl.h>
66 #include <net/route.h>
67 #include <net/netisr.h>
68 
69 #include <netinet/in.h>
70 #include <netinet/in_systm.h>
71 #include <netinet/in_var.h>
72 #include <netinet/ip.h>
73 #include <netinet/in_pcb.h>
74 #include <netinet/ip_var.h>
75 #include <netinet/ip_icmp.h>
76 #include <machine/in_cksum.h>
77 
78 #include <sys/socketvar.h>
79 
80 #include <netinet/ip_fw.h>
81 #include <netinet/ip_dummynet.h>
82 
83 #ifdef IPSEC
84 #include <netinet6/ipsec.h>
85 #include <netkey/key.h>
86 #endif
87 
88 #ifdef FAST_IPSEC
89 #include <netipsec/ipsec.h>
90 #include <netipsec/key.h>
91 #endif
92 
93 int rsvp_on = 0;
94 
95 int	ipforwarding = 0;
96 SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
97     &ipforwarding, 0, "Enable IP forwarding between interfaces");
98 
99 static int	ipsendredirects = 1; /* XXX */
100 SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
101     &ipsendredirects, 0, "Enable sending IP redirects");
102 
103 int	ip_defttl = IPDEFTTL;
104 SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
105     &ip_defttl, 0, "Maximum TTL on IP packets");
106 
107 static int	ip_dosourceroute = 0;
108 SYSCTL_INT(_net_inet_ip, IPCTL_SOURCEROUTE, sourceroute, CTLFLAG_RW,
109     &ip_dosourceroute, 0, "Enable forwarding source routed IP packets");
110 
111 static int	ip_acceptsourceroute = 0;
112 SYSCTL_INT(_net_inet_ip, IPCTL_ACCEPTSOURCEROUTE, accept_sourceroute,
113     CTLFLAG_RW, &ip_acceptsourceroute, 0,
114     "Enable accepting source routed IP packets");
115 
116 static int	ip_keepfaith = 0;
117 SYSCTL_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
118 	&ip_keepfaith,	0,
119 	"Enable packet capture for FAITH IPv4->IPv6 translater daemon");
120 
121 static int    nipq = 0;         /* total # of reass queues */
122 static int    maxnipq;
123 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragpackets, CTLFLAG_RW,
124 	&maxnipq, 0,
125 	"Maximum number of IPv4 fragment reassembly queue entries");
126 
127 static int    maxfragsperpacket;
128 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_RW,
129 	&maxfragsperpacket, 0,
130 	"Maximum number of IPv4 fragments allowed per packet");
131 
132 static int	ip_sendsourcequench = 0;
133 SYSCTL_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW,
134 	&ip_sendsourcequench, 0,
135 	"Enable the transmission of source quench packets");
136 
137 /*
138  * XXX - Setting ip_checkinterface mostly implements the receive side of
139  * the Strong ES model described in RFC 1122, but since the routing table
140  * and transmit implementation do not implement the Strong ES model,
141  * setting this to 1 results in an odd hybrid.
142  *
143  * XXX - ip_checkinterface currently must be disabled if you use ipnat
144  * to translate the destination address to another local interface.
145  *
146  * XXX - ip_checkinterface must be disabled if you add IP aliases
147  * to the loopback interface instead of the interface where the
148  * packets for those addresses are received.
149  */
150 static int	ip_checkinterface = 1;
151 SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
152     &ip_checkinterface, 0, "Verify packet arrives on correct interface");
153 
154 #ifdef DIAGNOSTIC
155 static int	ipprintfs = 0;
156 #endif
157 
158 static struct	ifqueue ipintrq;
159 static int	ipqmaxlen = IFQ_MAXLEN;
160 
161 extern	struct domain inetdomain;
162 extern	struct protosw inetsw[];
163 u_char	ip_protox[IPPROTO_MAX];
164 struct	in_ifaddrhead in_ifaddrhead; 		/* first inet address */
165 struct	in_ifaddrhashhead *in_ifaddrhashtbl;	/* inet addr hash table  */
166 u_long 	in_ifaddrhmask;				/* mask for hash table */
167 
168 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen, CTLFLAG_RW,
169     &ipintrq.ifq_maxlen, 0, "Maximum size of the IP input queue");
170 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops, CTLFLAG_RD,
171     &ipintrq.ifq_drops, 0, "Number of packets dropped from the IP input queue");
172 
173 struct ipstat ipstat;
174 SYSCTL_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RW,
175     &ipstat, ipstat, "IP statistics (struct ipstat, netinet/ip_var.h)");
176 
177 /* Packet reassembly stuff */
178 #define IPREASS_NHASH_LOG2      6
179 #define IPREASS_NHASH           (1 << IPREASS_NHASH_LOG2)
180 #define IPREASS_HMASK           (IPREASS_NHASH - 1)
181 #define IPREASS_HASH(x,y) \
182 	(((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
183 
184 static TAILQ_HEAD(ipqhead, ipq) ipq[IPREASS_NHASH];
185 
186 #ifdef IPCTL_DEFMTU
187 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
188     &ip_mtu, 0, "Default MTU");
189 #endif
190 
191 #ifdef IPSTEALTH
192 static int	ipstealth = 0;
193 SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW,
194     &ipstealth, 0, "");
195 #endif
196 
197 
198 /* Firewall hooks */
199 ip_fw_chk_t *ip_fw_chk_ptr;
200 int fw_enable = 1 ;
201 int fw_one_pass = 1;
202 
203 /* Dummynet hooks */
204 ip_dn_io_t *ip_dn_io_ptr;
205 
206 
207 /*
208  * XXX this is ugly -- the following two global variables are
209  * used to store packet state while it travels through the stack.
210  * Note that the code even makes assumptions on the size and
211  * alignment of fields inside struct ip_srcrt so e.g. adding some
212  * fields will break the code. This needs to be fixed.
213  *
214  * We need to save the IP options in case a protocol wants to respond
215  * to an incoming packet over the same route if the packet got here
216  * using IP source routing.  This allows connection establishment and
217  * maintenance when the remote end is on a network that is not known
218  * to us.
219  */
220 static int	ip_nhops = 0;
221 static	struct ip_srcrt {
222 	struct	in_addr dst;			/* final destination */
223 	char	nop;				/* one NOP to align */
224 	char	srcopt[IPOPT_OFFSET + 1];	/* OPTVAL, OLEN and OFFSET */
225 	struct	in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
226 } ip_srcrt;
227 
228 static void	save_rte(u_char *, struct in_addr);
229 static int	ip_dooptions(struct mbuf *m, int,
230 			struct sockaddr_in *next_hop);
231 static void	ip_forward(struct mbuf *m, int srcrt,
232 			struct sockaddr_in *next_hop);
233 static void	ip_freef(struct ipqhead *, struct ipq *);
234 static struct	mbuf *ip_reass(struct mbuf *, struct ipqhead *,
235 		struct ipq *, u_int32_t *, u_int16_t *);
236 
237 /*
238  * IP initialization: fill in IP protocol switch table.
239  * All protocols not implemented in kernel go to raw IP protocol handler.
240  */
241 void
242 ip_init()
243 {
244 	register struct protosw *pr;
245 	register int i;
246 
247 	TAILQ_INIT(&in_ifaddrhead);
248 	in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &in_ifaddrhmask);
249 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
250 	if (pr == 0)
251 		panic("ip_init");
252 	for (i = 0; i < IPPROTO_MAX; i++)
253 		ip_protox[i] = pr - inetsw;
254 	for (pr = inetdomain.dom_protosw;
255 	    pr < inetdomain.dom_protoswNPROTOSW; pr++)
256 		if (pr->pr_domain->dom_family == PF_INET &&
257 		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
258 			ip_protox[pr->pr_protocol] = pr - inetsw;
259 
260 	for (i = 0; i < IPREASS_NHASH; i++)
261 	    TAILQ_INIT(&ipq[i]);
262 
263 	maxnipq = nmbclusters / 32;
264 	maxfragsperpacket = 16;
265 
266 #ifndef RANDOM_IP_ID
267 	ip_id = time_second & 0xffff;
268 #endif
269 	ipintrq.ifq_maxlen = ipqmaxlen;
270 	mtx_init(&ipintrq.ifq_mtx, "ip_inq", NULL, MTX_DEF);
271 	netisr_register(NETISR_IP, ip_input, &ipintrq);
272 }
273 
274 /*
275  * XXX watch out this one. It is perhaps used as a cache for
276  * the most recently used route ? it is cleared in in_addroute()
277  * when a new route is successfully created.
278  */
279 struct	route ipforward_rt;
280 
281 /*
282  * Ip input routine.  Checksum and byte swap header.  If fragmented
283  * try to reassemble.  Process options.  Pass to next level.
284  */
285 void
286 ip_input(struct mbuf *m)
287 {
288 	struct ip *ip;
289 	struct ipq *fp;
290 	struct in_ifaddr *ia = NULL;
291 	struct ifaddr *ifa;
292 	int    i, hlen, checkif;
293 	u_short sum;
294 	struct in_addr pkt_dst;
295 	u_int32_t divert_info = 0;		/* packet divert/tee info */
296 	struct ip_fw_args args;
297 #ifdef PFIL_HOOKS
298 	struct packet_filter_hook *pfh;
299 	struct mbuf *m0;
300 	int rv;
301 #endif /* PFIL_HOOKS */
302 #ifdef FAST_IPSEC
303 	struct m_tag *mtag;
304 	struct tdb_ident *tdbi;
305 	struct secpolicy *sp;
306 	int s, error;
307 #endif /* FAST_IPSEC */
308 
309 	args.eh = NULL;
310 	args.oif = NULL;
311 	args.rule = NULL;
312 	args.divert_rule = 0;			/* divert cookie */
313 	args.next_hop = NULL;
314 
315 	/* Grab info from MT_TAG mbufs prepended to the chain.	*/
316 	for (; m && m->m_type == MT_TAG; m = m->m_next) {
317 		switch(m->_m_tag_id) {
318 		default:
319 			printf("ip_input: unrecognised MT_TAG tag %d\n",
320 			    m->_m_tag_id);
321 			break;
322 
323 		case PACKET_TAG_DUMMYNET:
324 			args.rule = ((struct dn_pkt *)m)->rule;
325 			break;
326 
327 		case PACKET_TAG_DIVERT:
328 			args.divert_rule = (intptr_t)m->m_hdr.mh_data & 0xffff;
329 			break;
330 
331 		case PACKET_TAG_IPFORWARD:
332 			args.next_hop = (struct sockaddr_in *)m->m_hdr.mh_data;
333 			break;
334 		}
335 	}
336 
337 	KASSERT(m != NULL && (m->m_flags & M_PKTHDR) != 0,
338 	    ("ip_input: no HDR"));
339 
340 	if (args.rule) {	/* dummynet already filtered us */
341 		ip = mtod(m, struct ip *);
342 		hlen = ip->ip_hl << 2;
343 		goto iphack ;
344 	}
345 
346 	ipstat.ips_total++;
347 
348 	if (m->m_pkthdr.len < sizeof(struct ip))
349 		goto tooshort;
350 
351 	if (m->m_len < sizeof (struct ip) &&
352 	    (m = m_pullup(m, sizeof (struct ip))) == 0) {
353 		ipstat.ips_toosmall++;
354 		return;
355 	}
356 	ip = mtod(m, struct ip *);
357 
358 	if (ip->ip_v != IPVERSION) {
359 		ipstat.ips_badvers++;
360 		goto bad;
361 	}
362 
363 	hlen = ip->ip_hl << 2;
364 	if (hlen < sizeof(struct ip)) {	/* minimum header length */
365 		ipstat.ips_badhlen++;
366 		goto bad;
367 	}
368 	if (hlen > m->m_len) {
369 		if ((m = m_pullup(m, hlen)) == 0) {
370 			ipstat.ips_badhlen++;
371 			return;
372 		}
373 		ip = mtod(m, struct ip *);
374 	}
375 
376 	/* 127/8 must not appear on wire - RFC1122 */
377 	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
378 	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
379 		if ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) {
380 			ipstat.ips_badaddr++;
381 			goto bad;
382 		}
383 	}
384 
385 	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
386 		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
387 	} else {
388 		if (hlen == sizeof(struct ip)) {
389 			sum = in_cksum_hdr(ip);
390 		} else {
391 			sum = in_cksum(m, hlen);
392 		}
393 	}
394 	if (sum) {
395 		ipstat.ips_badsum++;
396 		goto bad;
397 	}
398 
399 	/*
400 	 * Convert fields to host representation.
401 	 */
402 	ip->ip_len = ntohs(ip->ip_len);
403 	if (ip->ip_len < hlen) {
404 		ipstat.ips_badlen++;
405 		goto bad;
406 	}
407 	ip->ip_off = ntohs(ip->ip_off);
408 
409 	/*
410 	 * Check that the amount of data in the buffers
411 	 * is as at least much as the IP header would have us expect.
412 	 * Trim mbufs if longer than we expect.
413 	 * Drop packet if shorter than we expect.
414 	 */
415 	if (m->m_pkthdr.len < ip->ip_len) {
416 tooshort:
417 		ipstat.ips_tooshort++;
418 		goto bad;
419 	}
420 	if (m->m_pkthdr.len > ip->ip_len) {
421 		if (m->m_len == m->m_pkthdr.len) {
422 			m->m_len = ip->ip_len;
423 			m->m_pkthdr.len = ip->ip_len;
424 		} else
425 			m_adj(m, ip->ip_len - m->m_pkthdr.len);
426 	}
427 #if defined(IPSEC) && !defined(IPSEC_FILTERGIF)
428 	/*
429 	 * Bypass packet filtering for packets from a tunnel (gif).
430 	 */
431 	if (ipsec_gethist(m, NULL))
432 		goto pass;
433 #endif
434 
435 	/*
436 	 * IpHack's section.
437 	 * Right now when no processing on packet has done
438 	 * and it is still fresh out of network we do our black
439 	 * deals with it.
440 	 * - Firewall: deny/allow/divert
441 	 * - Xlate: translate packet's addr/port (NAT).
442 	 * - Pipe: pass pkt through dummynet.
443 	 * - Wrap: fake packet's addr/port <unimpl.>
444 	 * - Encapsulate: put it in another IP and send out. <unimp.>
445  	 */
446 
447 iphack:
448 
449 #ifdef PFIL_HOOKS
450 	/*
451 	 * Run through list of hooks for input packets.  If there are any
452 	 * filters which require that additional packets in the flow are
453 	 * not fast-forwarded, they must clear the M_CANFASTFWD flag.
454 	 * Note that filters must _never_ set this flag, as another filter
455 	 * in the list may have previously cleared it.
456 	 */
457 	m0 = m;
458 	pfh = pfil_hook_get(PFIL_IN, &inetsw[ip_protox[IPPROTO_IP]].pr_pfh);
459 	for (; pfh; pfh = TAILQ_NEXT(pfh, pfil_link))
460 		if (pfh->pfil_func) {
461 			rv = pfh->pfil_func(ip, hlen,
462 					    m->m_pkthdr.rcvif, 0, &m0);
463 			if (rv)
464 				return;
465 			m = m0;
466 			if (m == NULL)
467 				return;
468 			ip = mtod(m, struct ip *);
469 		}
470 #endif /* PFIL_HOOKS */
471 
472 	if (fw_enable && IPFW_LOADED) {
473 		/*
474 		 * If we've been forwarded from the output side, then
475 		 * skip the firewall a second time
476 		 */
477 		if (args.next_hop)
478 			goto ours;
479 
480 		args.m = m;
481 		i = ip_fw_chk_ptr(&args);
482 		m = args.m;
483 
484 		if ( (i & IP_FW_PORT_DENY_FLAG) || m == NULL) { /* drop */
485 			if (m)
486 				m_freem(m);
487 			return;
488 		}
489 		ip = mtod(m, struct ip *); /* just in case m changed */
490 		if (i == 0 && args.next_hop == NULL)	/* common case */
491 			goto pass;
492                 if (DUMMYNET_LOADED && (i & IP_FW_PORT_DYNT_FLAG) != 0) {
493 			/* Send packet to the appropriate pipe */
494 			ip_dn_io_ptr(m, i&0xffff, DN_TO_IP_IN, &args);
495 			return;
496 		}
497 #ifdef IPDIVERT
498 		if (i != 0 && (i & IP_FW_PORT_DYNT_FLAG) == 0) {
499 			/* Divert or tee packet */
500 			divert_info = i;
501 			goto ours;
502 		}
503 #endif
504 		if (i == 0 && args.next_hop != NULL)
505 			goto pass;
506 		/*
507 		 * if we get here, the packet must be dropped
508 		 */
509 		m_freem(m);
510 		return;
511 	}
512 pass:
513 
514 	/*
515 	 * Process options and, if not destined for us,
516 	 * ship it on.  ip_dooptions returns 1 when an
517 	 * error was detected (causing an icmp message
518 	 * to be sent and the original packet to be freed).
519 	 */
520 	ip_nhops = 0;		/* for source routed packets */
521 	if (hlen > sizeof (struct ip) && ip_dooptions(m, 0, args.next_hop))
522 		return;
523 
524         /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
525          * matter if it is destined to another node, or whether it is
526          * a multicast one, RSVP wants it! and prevents it from being forwarded
527          * anywhere else. Also checks if the rsvp daemon is running before
528 	 * grabbing the packet.
529          */
530 	if (rsvp_on && ip->ip_p==IPPROTO_RSVP)
531 		goto ours;
532 
533 	/*
534 	 * Check our list of addresses, to see if the packet is for us.
535 	 * If we don't have any addresses, assume any unicast packet
536 	 * we receive might be for us (and let the upper layers deal
537 	 * with it).
538 	 */
539 	if (TAILQ_EMPTY(&in_ifaddrhead) &&
540 	    (m->m_flags & (M_MCAST|M_BCAST)) == 0)
541 		goto ours;
542 
543 	/*
544 	 * Cache the destination address of the packet; this may be
545 	 * changed by use of 'ipfw fwd'.
546 	 */
547 	pkt_dst = args.next_hop ? args.next_hop->sin_addr : ip->ip_dst;
548 
549 	/*
550 	 * Enable a consistency check between the destination address
551 	 * and the arrival interface for a unicast packet (the RFC 1122
552 	 * strong ES model) if IP forwarding is disabled and the packet
553 	 * is not locally generated and the packet is not subject to
554 	 * 'ipfw fwd'.
555 	 *
556 	 * XXX - Checking also should be disabled if the destination
557 	 * address is ipnat'ed to a different interface.
558 	 *
559 	 * XXX - Checking is incompatible with IP aliases added
560 	 * to the loopback interface instead of the interface where
561 	 * the packets are received.
562 	 */
563 	checkif = ip_checkinterface && (ipforwarding == 0) &&
564 	    m->m_pkthdr.rcvif != NULL &&
565 	    ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) &&
566 	    (args.next_hop == NULL);
567 
568 	/*
569 	 * Check for exact addresses in the hash bucket.
570 	 */
571 	LIST_FOREACH(ia, INADDR_HASH(pkt_dst.s_addr), ia_hash) {
572 		/*
573 		 * If the address matches, verify that the packet
574 		 * arrived via the correct interface if checking is
575 		 * enabled.
576 		 */
577 		if (IA_SIN(ia)->sin_addr.s_addr == pkt_dst.s_addr &&
578 		    (!checkif || ia->ia_ifp == m->m_pkthdr.rcvif))
579 			goto ours;
580 	}
581 	/*
582 	 * Check for broadcast addresses.
583 	 *
584 	 * Only accept broadcast packets that arrive via the matching
585 	 * interface.  Reception of forwarded directed broadcasts would
586 	 * be handled via ip_forward() and ether_output() with the loopback
587 	 * into the stack for SIMPLEX interfaces handled by ether_output().
588 	 */
589 	if (m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
590 	        TAILQ_FOREACH(ifa, &m->m_pkthdr.rcvif->if_addrhead, ifa_link) {
591 			if (ifa->ifa_addr->sa_family != AF_INET)
592 				continue;
593 			ia = ifatoia(ifa);
594 			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
595 			    pkt_dst.s_addr)
596 				goto ours;
597 			if (ia->ia_netbroadcast.s_addr == pkt_dst.s_addr)
598 				goto ours;
599 #ifdef BOOTP_COMPAT
600 			if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY)
601 				goto ours;
602 #endif
603 		}
604 	}
605 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
606 		struct in_multi *inm;
607 		if (ip_mrouter) {
608 			/*
609 			 * If we are acting as a multicast router, all
610 			 * incoming multicast packets are passed to the
611 			 * kernel-level multicast forwarding function.
612 			 * The packet is returned (relatively) intact; if
613 			 * ip_mforward() returns a non-zero value, the packet
614 			 * must be discarded, else it may be accepted below.
615 			 */
616 			if (ip_mforward &&
617 			    ip_mforward(ip, m->m_pkthdr.rcvif, m, 0) != 0) {
618 				ipstat.ips_cantforward++;
619 				m_freem(m);
620 				return;
621 			}
622 
623 			/*
624 			 * The process-level routing daemon needs to receive
625 			 * all multicast IGMP packets, whether or not this
626 			 * host belongs to their destination groups.
627 			 */
628 			if (ip->ip_p == IPPROTO_IGMP)
629 				goto ours;
630 			ipstat.ips_forward++;
631 		}
632 		/*
633 		 * See if we belong to the destination multicast group on the
634 		 * arrival interface.
635 		 */
636 		IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
637 		if (inm == NULL) {
638 			ipstat.ips_notmember++;
639 			m_freem(m);
640 			return;
641 		}
642 		goto ours;
643 	}
644 	if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
645 		goto ours;
646 	if (ip->ip_dst.s_addr == INADDR_ANY)
647 		goto ours;
648 
649 	/*
650 	 * FAITH(Firewall Aided Internet Translator)
651 	 */
652 	if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
653 		if (ip_keepfaith) {
654 			if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
655 				goto ours;
656 		}
657 		m_freem(m);
658 		return;
659 	}
660 
661 	/*
662 	 * Not for us; forward if possible and desirable.
663 	 */
664 	if (ipforwarding == 0) {
665 		ipstat.ips_cantforward++;
666 		m_freem(m);
667 	} else {
668 #ifdef IPSEC
669 		/*
670 		 * Enforce inbound IPsec SPD.
671 		 */
672 		if (ipsec4_in_reject(m, NULL)) {
673 			ipsecstat.in_polvio++;
674 			goto bad;
675 		}
676 #endif /* IPSEC */
677 #ifdef FAST_IPSEC
678 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
679 		s = splnet();
680 		if (mtag != NULL) {
681 			tdbi = (struct tdb_ident *)(mtag + 1);
682 			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
683 		} else {
684 			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
685 						   IP_FORWARDING, &error);
686 		}
687 		if (sp == NULL) {	/* NB: can happen if error */
688 			splx(s);
689 			/*XXX error stat???*/
690 			DPRINTF(("ip_input: no SP for forwarding\n"));	/*XXX*/
691 			goto bad;
692 		}
693 
694 		/*
695 		 * Check security policy against packet attributes.
696 		 */
697 		error = ipsec_in_reject(sp, m);
698 		KEY_FREESP(&sp);
699 		splx(s);
700 		if (error) {
701 			ipstat.ips_cantforward++;
702 			goto bad;
703 		}
704 #endif /* FAST_IPSEC */
705 		ip_forward(m, 0, args.next_hop);
706 	}
707 	return;
708 
709 ours:
710 #ifdef IPSTEALTH
711 	/*
712 	 * IPSTEALTH: Process non-routing options only
713 	 * if the packet is destined for us.
714 	 */
715 	if (ipstealth && hlen > sizeof (struct ip) &&
716 	    ip_dooptions(m, 1, args.next_hop))
717 		return;
718 #endif /* IPSTEALTH */
719 
720 	/* Count the packet in the ip address stats */
721 	if (ia != NULL) {
722 		ia->ia_ifa.if_ipackets++;
723 		ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
724 	}
725 
726 	/*
727 	 * If offset or IP_MF are set, must reassemble.
728 	 * Otherwise, nothing need be done.
729 	 * (We could look in the reassembly queue to see
730 	 * if the packet was previously fragmented,
731 	 * but it's not worth the time; just let them time out.)
732 	 */
733 	if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
734 
735 		/* If maxnipq is 0, never accept fragments. */
736 		if (maxnipq == 0) {
737                 	ipstat.ips_fragments++;
738 			ipstat.ips_fragdropped++;
739 			goto bad;
740 		}
741 
742 		sum = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
743 		/*
744 		 * Look for queue of fragments
745 		 * of this datagram.
746 		 */
747 		TAILQ_FOREACH(fp, &ipq[sum], ipq_list)
748 			if (ip->ip_id == fp->ipq_id &&
749 			    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
750 			    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
751 #ifdef MAC
752 			    mac_fragment_match(m, fp) &&
753 #endif
754 			    ip->ip_p == fp->ipq_p)
755 				goto found;
756 
757 		fp = 0;
758 
759 		/*
760 		 * Enforce upper bound on number of fragmented packets
761 		 * for which we attempt reassembly;
762 		 * If maxnipq is -1, accept all fragments without limitation.
763 		 */
764 		if ((nipq > maxnipq) && (maxnipq > 0)) {
765 		    /*
766 		     * drop something from the tail of the current queue
767 		     * before proceeding further
768 		     */
769 		    struct ipq *q = TAILQ_LAST(&ipq[sum], ipqhead);
770 		    if (q == NULL) {   /* gak */
771 			for (i = 0; i < IPREASS_NHASH; i++) {
772 			    struct ipq *r = TAILQ_LAST(&ipq[i], ipqhead);
773 			    if (r) {
774 				ipstat.ips_fragtimeout += r->ipq_nfrags;
775 				ip_freef(&ipq[i], r);
776 				break;
777 			    }
778 			}
779 		    } else {
780 			ipstat.ips_fragtimeout += q->ipq_nfrags;
781 			ip_freef(&ipq[sum], q);
782 		    }
783 		}
784 found:
785 		/*
786 		 * Adjust ip_len to not reflect header,
787 		 * convert offset of this to bytes.
788 		 */
789 		ip->ip_len -= hlen;
790 		if (ip->ip_off & IP_MF) {
791 		        /*
792 		         * Make sure that fragments have a data length
793 			 * that's a non-zero multiple of 8 bytes.
794 		         */
795 			if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
796 				ipstat.ips_toosmall++; /* XXX */
797 				goto bad;
798 			}
799 			m->m_flags |= M_FRAG;
800 		} else
801 			m->m_flags &= ~M_FRAG;
802 		ip->ip_off <<= 3;
803 
804 		/*
805 		 * Attempt reassembly; if it succeeds, proceed.
806 		 * ip_reass() will return a different mbuf, and update
807 		 * the divert info in divert_info and args.divert_rule.
808 		 */
809 		ipstat.ips_fragments++;
810 		m->m_pkthdr.header = ip;
811 		m = ip_reass(m,
812 		    &ipq[sum], fp, &divert_info, &args.divert_rule);
813 		if (m == 0)
814 			return;
815 		ipstat.ips_reassembled++;
816 		ip = mtod(m, struct ip *);
817 		/* Get the header length of the reassembled packet */
818 		hlen = ip->ip_hl << 2;
819 #ifdef IPDIVERT
820 		/* Restore original checksum before diverting packet */
821 		if (divert_info != 0) {
822 			ip->ip_len += hlen;
823 			ip->ip_len = htons(ip->ip_len);
824 			ip->ip_off = htons(ip->ip_off);
825 			ip->ip_sum = 0;
826 			if (hlen == sizeof(struct ip))
827 				ip->ip_sum = in_cksum_hdr(ip);
828 			else
829 				ip->ip_sum = in_cksum(m, hlen);
830 			ip->ip_off = ntohs(ip->ip_off);
831 			ip->ip_len = ntohs(ip->ip_len);
832 			ip->ip_len -= hlen;
833 		}
834 #endif
835 	} else
836 		ip->ip_len -= hlen;
837 
838 #ifdef IPDIVERT
839 	/*
840 	 * Divert or tee packet to the divert protocol if required.
841 	 */
842 	if (divert_info != 0) {
843 		struct mbuf *clone = NULL;
844 
845 		/* Clone packet if we're doing a 'tee' */
846 		if ((divert_info & IP_FW_PORT_TEE_FLAG) != 0)
847 			clone = m_dup(m, M_DONTWAIT);
848 
849 		/* Restore packet header fields to original values */
850 		ip->ip_len += hlen;
851 		ip->ip_len = htons(ip->ip_len);
852 		ip->ip_off = htons(ip->ip_off);
853 
854 		/* Deliver packet to divert input routine */
855 		divert_packet(m, 1, divert_info & 0xffff, args.divert_rule);
856 		ipstat.ips_delivered++;
857 
858 		/* If 'tee', continue with original packet */
859 		if (clone == NULL)
860 			return;
861 		m = clone;
862 		ip = mtod(m, struct ip *);
863 		ip->ip_len += hlen;
864 		/*
865 		 * Jump backwards to complete processing of the
866 		 * packet. But first clear divert_info to avoid
867 		 * entering this block again.
868 		 * We do not need to clear args.divert_rule
869 		 * or args.next_hop as they will not be used.
870 		 */
871 		divert_info = 0;
872 		goto pass;
873 	}
874 #endif
875 
876 #ifdef IPSEC
877 	/*
878 	 * enforce IPsec policy checking if we are seeing last header.
879 	 * note that we do not visit this with protocols with pcb layer
880 	 * code - like udp/tcp/raw ip.
881 	 */
882 	if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0 &&
883 	    ipsec4_in_reject(m, NULL)) {
884 		ipsecstat.in_polvio++;
885 		goto bad;
886 	}
887 #endif
888 #if FAST_IPSEC
889 	/*
890 	 * enforce IPsec policy checking if we are seeing last header.
891 	 * note that we do not visit this with protocols with pcb layer
892 	 * code - like udp/tcp/raw ip.
893 	 */
894 	if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0) {
895 		/*
896 		 * Check if the packet has already had IPsec processing
897 		 * done.  If so, then just pass it along.  This tag gets
898 		 * set during AH, ESP, etc. input handling, before the
899 		 * packet is returned to the ip input queue for delivery.
900 		 */
901 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
902 		s = splnet();
903 		if (mtag != NULL) {
904 			tdbi = (struct tdb_ident *)(mtag + 1);
905 			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
906 		} else {
907 			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
908 						   IP_FORWARDING, &error);
909 		}
910 		if (sp != NULL) {
911 			/*
912 			 * Check security policy against packet attributes.
913 			 */
914 			error = ipsec_in_reject(sp, m);
915 			KEY_FREESP(&sp);
916 		} else {
917 			/* XXX error stat??? */
918 			error = EINVAL;
919 DPRINTF(("ip_input: no SP, packet discarded\n"));/*XXX*/
920 			goto bad;
921 		}
922 		splx(s);
923 		if (error)
924 			goto bad;
925 	}
926 #endif /* FAST_IPSEC */
927 
928 	/*
929 	 * Switch out to protocol's input routine.
930 	 */
931 	ipstat.ips_delivered++;
932 	if (args.next_hop && ip->ip_p == IPPROTO_TCP) {
933 		/* TCP needs IPFORWARD info if available */
934 		struct m_hdr tag;
935 
936 		tag.mh_type = MT_TAG;
937 		tag.mh_flags = PACKET_TAG_IPFORWARD;
938 		tag.mh_data = (caddr_t)args.next_hop;
939 		tag.mh_next = m;
940 
941 		(*inetsw[ip_protox[ip->ip_p]].pr_input)(
942 			(struct mbuf *)&tag, hlen);
943 	} else
944 		(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
945 	return;
946 bad:
947 	m_freem(m);
948 }
949 
950 /*
951  * Take incoming datagram fragment and try to reassemble it into
952  * whole datagram.  If a chain for reassembly of this datagram already
953  * exists, then it is given as fp; otherwise have to make a chain.
954  *
955  * When IPDIVERT enabled, keep additional state with each packet that
956  * tells us if we need to divert or tee the packet we're building.
957  * In particular, *divinfo includes the port and TEE flag,
958  * *divert_rule is the number of the matching rule.
959  */
960 
961 static struct mbuf *
962 ip_reass(struct mbuf *m, struct ipqhead *head, struct ipq *fp,
963 	u_int32_t *divinfo, u_int16_t *divert_rule)
964 {
965 	struct ip *ip = mtod(m, struct ip *);
966 	register struct mbuf *p, *q, *nq;
967 	struct mbuf *t;
968 	int hlen = ip->ip_hl << 2;
969 	int i, next;
970 
971 	/*
972 	 * Presence of header sizes in mbufs
973 	 * would confuse code below.
974 	 */
975 	m->m_data += hlen;
976 	m->m_len -= hlen;
977 
978 	/*
979 	 * If first fragment to arrive, create a reassembly queue.
980 	 */
981 	if (fp == 0) {
982 		if ((t = m_get(M_DONTWAIT, MT_FTABLE)) == NULL)
983 			goto dropfrag;
984 		fp = mtod(t, struct ipq *);
985 #ifdef MAC
986 		mac_init_ipq(fp);
987 		mac_create_ipq(m, fp);
988 #endif
989 		TAILQ_INSERT_HEAD(head, fp, ipq_list);
990 		nipq++;
991 		fp->ipq_nfrags = 1;
992 		fp->ipq_ttl = IPFRAGTTL;
993 		fp->ipq_p = ip->ip_p;
994 		fp->ipq_id = ip->ip_id;
995 		fp->ipq_src = ip->ip_src;
996 		fp->ipq_dst = ip->ip_dst;
997 		fp->ipq_frags = m;
998 		m->m_nextpkt = NULL;
999 #ifdef IPDIVERT
1000 		fp->ipq_div_info = 0;
1001 		fp->ipq_div_cookie = 0;
1002 #endif
1003 		goto inserted;
1004 	} else {
1005 		fp->ipq_nfrags++;
1006 #ifdef MAC
1007 		mac_update_ipq(m, fp);
1008 #endif
1009 	}
1010 
1011 #define GETIP(m)	((struct ip*)((m)->m_pkthdr.header))
1012 
1013 	/*
1014 	 * Find a segment which begins after this one does.
1015 	 */
1016 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
1017 		if (GETIP(q)->ip_off > ip->ip_off)
1018 			break;
1019 
1020 	/*
1021 	 * If there is a preceding segment, it may provide some of
1022 	 * our data already.  If so, drop the data from the incoming
1023 	 * segment.  If it provides all of our data, drop us, otherwise
1024 	 * stick new segment in the proper place.
1025 	 *
1026 	 * If some of the data is dropped from the the preceding
1027 	 * segment, then it's checksum is invalidated.
1028 	 */
1029 	if (p) {
1030 		i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
1031 		if (i > 0) {
1032 			if (i >= ip->ip_len)
1033 				goto dropfrag;
1034 			m_adj(m, i);
1035 			m->m_pkthdr.csum_flags = 0;
1036 			ip->ip_off += i;
1037 			ip->ip_len -= i;
1038 		}
1039 		m->m_nextpkt = p->m_nextpkt;
1040 		p->m_nextpkt = m;
1041 	} else {
1042 		m->m_nextpkt = fp->ipq_frags;
1043 		fp->ipq_frags = m;
1044 	}
1045 
1046 	/*
1047 	 * While we overlap succeeding segments trim them or,
1048 	 * if they are completely covered, dequeue them.
1049 	 */
1050 	for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
1051 	     q = nq) {
1052 		i = (ip->ip_off + ip->ip_len) - GETIP(q)->ip_off;
1053 		if (i < GETIP(q)->ip_len) {
1054 			GETIP(q)->ip_len -= i;
1055 			GETIP(q)->ip_off += i;
1056 			m_adj(q, i);
1057 			q->m_pkthdr.csum_flags = 0;
1058 			break;
1059 		}
1060 		nq = q->m_nextpkt;
1061 		m->m_nextpkt = nq;
1062 		ipstat.ips_fragdropped++;
1063 		fp->ipq_nfrags--;
1064 		m_freem(q);
1065 	}
1066 
1067 inserted:
1068 
1069 #ifdef IPDIVERT
1070 	/*
1071 	 * Transfer firewall instructions to the fragment structure.
1072 	 * Only trust info in the fragment at offset 0.
1073 	 */
1074 	if (ip->ip_off == 0) {
1075 		fp->ipq_div_info = *divinfo;
1076 		fp->ipq_div_cookie = *divert_rule;
1077 	}
1078 	*divinfo = 0;
1079 	*divert_rule = 0;
1080 #endif
1081 
1082 	/*
1083 	 * Check for complete reassembly and perform frag per packet
1084 	 * limiting.
1085 	 *
1086 	 * Frag limiting is performed here so that the nth frag has
1087 	 * a chance to complete the packet before we drop the packet.
1088 	 * As a result, n+1 frags are actually allowed per packet, but
1089 	 * only n will ever be stored. (n = maxfragsperpacket.)
1090 	 *
1091 	 */
1092 	next = 0;
1093 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1094 		if (GETIP(q)->ip_off != next) {
1095 			if (fp->ipq_nfrags > maxfragsperpacket) {
1096 				ipstat.ips_fragdropped += fp->ipq_nfrags;
1097 				ip_freef(head, fp);
1098 			}
1099 			return (0);
1100 		}
1101 		next += GETIP(q)->ip_len;
1102 	}
1103 	/* Make sure the last packet didn't have the IP_MF flag */
1104 	if (p->m_flags & M_FRAG) {
1105 		if (fp->ipq_nfrags > maxfragsperpacket) {
1106 			ipstat.ips_fragdropped += fp->ipq_nfrags;
1107 			ip_freef(head, fp);
1108 		}
1109 		return (0);
1110 	}
1111 
1112 	/*
1113 	 * Reassembly is complete.  Make sure the packet is a sane size.
1114 	 */
1115 	q = fp->ipq_frags;
1116 	ip = GETIP(q);
1117 	if (next + (ip->ip_hl << 2) > IP_MAXPACKET) {
1118 		ipstat.ips_toolong++;
1119 		ipstat.ips_fragdropped += fp->ipq_nfrags;
1120 		ip_freef(head, fp);
1121 		return (0);
1122 	}
1123 
1124 	/*
1125 	 * Concatenate fragments.
1126 	 */
1127 	m = q;
1128 	t = m->m_next;
1129 	m->m_next = 0;
1130 	m_cat(m, t);
1131 	nq = q->m_nextpkt;
1132 	q->m_nextpkt = 0;
1133 	for (q = nq; q != NULL; q = nq) {
1134 		nq = q->m_nextpkt;
1135 		q->m_nextpkt = NULL;
1136 		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1137 		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1138 		m_cat(m, q);
1139 	}
1140 #ifdef MAC
1141 	mac_create_datagram_from_ipq(fp, m);
1142 	mac_destroy_ipq(fp);
1143 #endif
1144 
1145 #ifdef IPDIVERT
1146 	/*
1147 	 * Extract firewall instructions from the fragment structure.
1148 	 */
1149 	*divinfo = fp->ipq_div_info;
1150 	*divert_rule = fp->ipq_div_cookie;
1151 #endif
1152 
1153 	/*
1154 	 * Create header for new ip packet by
1155 	 * modifying header of first packet;
1156 	 * dequeue and discard fragment reassembly header.
1157 	 * Make header visible.
1158 	 */
1159 	ip->ip_len = next;
1160 	ip->ip_src = fp->ipq_src;
1161 	ip->ip_dst = fp->ipq_dst;
1162 	TAILQ_REMOVE(head, fp, ipq_list);
1163 	nipq--;
1164 	(void) m_free(dtom(fp));
1165 	m->m_len += (ip->ip_hl << 2);
1166 	m->m_data -= (ip->ip_hl << 2);
1167 	/* some debugging cruft by sklower, below, will go away soon */
1168 	if (m->m_flags & M_PKTHDR)	/* XXX this should be done elsewhere */
1169 		m_fixhdr(m);
1170 	return (m);
1171 
1172 dropfrag:
1173 #ifdef IPDIVERT
1174 	*divinfo = 0;
1175 	*divert_rule = 0;
1176 #endif
1177 	ipstat.ips_fragdropped++;
1178 	if (fp != 0)
1179 		fp->ipq_nfrags--;
1180 	m_freem(m);
1181 	return (0);
1182 
1183 #undef GETIP
1184 }
1185 
1186 /*
1187  * Free a fragment reassembly header and all
1188  * associated datagrams.
1189  */
1190 static void
1191 ip_freef(fhp, fp)
1192 	struct ipqhead *fhp;
1193 	struct ipq *fp;
1194 {
1195 	register struct mbuf *q;
1196 
1197 	while (fp->ipq_frags) {
1198 		q = fp->ipq_frags;
1199 		fp->ipq_frags = q->m_nextpkt;
1200 		m_freem(q);
1201 	}
1202 	TAILQ_REMOVE(fhp, fp, ipq_list);
1203 	(void) m_free(dtom(fp));
1204 	nipq--;
1205 }
1206 
1207 /*
1208  * IP timer processing;
1209  * if a timer expires on a reassembly
1210  * queue, discard it.
1211  */
1212 void
1213 ip_slowtimo()
1214 {
1215 	register struct ipq *fp;
1216 	int s = splnet();
1217 	int i;
1218 
1219 	for (i = 0; i < IPREASS_NHASH; i++) {
1220 		for(fp = TAILQ_FIRST(&ipq[i]); fp;) {
1221 			struct ipq *fpp;
1222 
1223 			fpp = fp;
1224 			fp = TAILQ_NEXT(fp, ipq_list);
1225 			if(--fpp->ipq_ttl == 0) {
1226 				ipstat.ips_fragtimeout += fpp->ipq_nfrags;
1227 				ip_freef(&ipq[i], fpp);
1228 			}
1229 		}
1230 	}
1231 	/*
1232 	 * If we are over the maximum number of fragments
1233 	 * (due to the limit being lowered), drain off
1234 	 * enough to get down to the new limit.
1235 	 */
1236 	if (maxnipq >= 0 && nipq > maxnipq) {
1237 		for (i = 0; i < IPREASS_NHASH; i++) {
1238 			while (nipq > maxnipq && !TAILQ_EMPTY(&ipq[i])) {
1239 				ipstat.ips_fragdropped +=
1240 				    TAILQ_FIRST(&ipq[i])->ipq_nfrags;
1241 				ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i]));
1242 			}
1243 		}
1244 	}
1245 	ipflow_slowtimo();
1246 	splx(s);
1247 }
1248 
1249 /*
1250  * Drain off all datagram fragments.
1251  */
1252 void
1253 ip_drain()
1254 {
1255 	int     i;
1256 
1257 	for (i = 0; i < IPREASS_NHASH; i++) {
1258 		while(!TAILQ_EMPTY(&ipq[i])) {
1259 			ipstat.ips_fragdropped +=
1260 			    TAILQ_FIRST(&ipq[i])->ipq_nfrags;
1261 			ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i]));
1262 		}
1263 	}
1264 	in_rtqdrain();
1265 }
1266 
1267 /*
1268  * Do option processing on a datagram,
1269  * possibly discarding it if bad options are encountered,
1270  * or forwarding it if source-routed.
1271  * The pass argument is used when operating in the IPSTEALTH
1272  * mode to tell what options to process:
1273  * [LS]SRR (pass 0) or the others (pass 1).
1274  * The reason for as many as two passes is that when doing IPSTEALTH,
1275  * non-routing options should be processed only if the packet is for us.
1276  * Returns 1 if packet has been forwarded/freed,
1277  * 0 if the packet should be processed further.
1278  */
1279 static int
1280 ip_dooptions(struct mbuf *m, int pass, struct sockaddr_in *next_hop)
1281 {
1282 	struct ip *ip = mtod(m, struct ip *);
1283 	u_char *cp;
1284 	struct in_ifaddr *ia;
1285 	int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
1286 	struct in_addr *sin, dst;
1287 	n_time ntime;
1288 	struct	sockaddr_in ipaddr = { sizeof(ipaddr), AF_INET };
1289 
1290 	dst = ip->ip_dst;
1291 	cp = (u_char *)(ip + 1);
1292 	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1293 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1294 		opt = cp[IPOPT_OPTVAL];
1295 		if (opt == IPOPT_EOL)
1296 			break;
1297 		if (opt == IPOPT_NOP)
1298 			optlen = 1;
1299 		else {
1300 			if (cnt < IPOPT_OLEN + sizeof(*cp)) {
1301 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1302 				goto bad;
1303 			}
1304 			optlen = cp[IPOPT_OLEN];
1305 			if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
1306 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1307 				goto bad;
1308 			}
1309 		}
1310 		switch (opt) {
1311 
1312 		default:
1313 			break;
1314 
1315 		/*
1316 		 * Source routing with record.
1317 		 * Find interface with current destination address.
1318 		 * If none on this machine then drop if strictly routed,
1319 		 * or do nothing if loosely routed.
1320 		 * Record interface address and bring up next address
1321 		 * component.  If strictly routed make sure next
1322 		 * address is on directly accessible net.
1323 		 */
1324 		case IPOPT_LSRR:
1325 		case IPOPT_SSRR:
1326 #ifdef IPSTEALTH
1327 			if (ipstealth && pass > 0)
1328 				break;
1329 #endif
1330 			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1331 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1332 				goto bad;
1333 			}
1334 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1335 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1336 				goto bad;
1337 			}
1338 			ipaddr.sin_addr = ip->ip_dst;
1339 			ia = (struct in_ifaddr *)
1340 				ifa_ifwithaddr((struct sockaddr *)&ipaddr);
1341 			if (ia == 0) {
1342 				if (opt == IPOPT_SSRR) {
1343 					type = ICMP_UNREACH;
1344 					code = ICMP_UNREACH_SRCFAIL;
1345 					goto bad;
1346 				}
1347 				if (!ip_dosourceroute)
1348 					goto nosourcerouting;
1349 				/*
1350 				 * Loose routing, and not at next destination
1351 				 * yet; nothing to do except forward.
1352 				 */
1353 				break;
1354 			}
1355 			off--;			/* 0 origin */
1356 			if (off > optlen - (int)sizeof(struct in_addr)) {
1357 				/*
1358 				 * End of source route.  Should be for us.
1359 				 */
1360 				if (!ip_acceptsourceroute)
1361 					goto nosourcerouting;
1362 				save_rte(cp, ip->ip_src);
1363 				break;
1364 			}
1365 #ifdef IPSTEALTH
1366 			if (ipstealth)
1367 				goto dropit;
1368 #endif
1369 			if (!ip_dosourceroute) {
1370 				if (ipforwarding) {
1371 					char buf[16]; /* aaa.bbb.ccc.ddd\0 */
1372 					/*
1373 					 * Acting as a router, so generate ICMP
1374 					 */
1375 nosourcerouting:
1376 					strcpy(buf, inet_ntoa(ip->ip_dst));
1377 					log(LOG_WARNING,
1378 					    "attempted source route from %s to %s\n",
1379 					    inet_ntoa(ip->ip_src), buf);
1380 					type = ICMP_UNREACH;
1381 					code = ICMP_UNREACH_SRCFAIL;
1382 					goto bad;
1383 				} else {
1384 					/*
1385 					 * Not acting as a router, so silently drop.
1386 					 */
1387 #ifdef IPSTEALTH
1388 dropit:
1389 #endif
1390 					ipstat.ips_cantforward++;
1391 					m_freem(m);
1392 					return (1);
1393 				}
1394 			}
1395 
1396 			/*
1397 			 * locate outgoing interface
1398 			 */
1399 			(void)memcpy(&ipaddr.sin_addr, cp + off,
1400 			    sizeof(ipaddr.sin_addr));
1401 
1402 			if (opt == IPOPT_SSRR) {
1403 #define	INA	struct in_ifaddr *
1404 #define	SA	struct sockaddr *
1405 			    if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr)) == 0)
1406 				ia = (INA)ifa_ifwithnet((SA)&ipaddr);
1407 			} else
1408 				ia = ip_rtaddr(ipaddr.sin_addr, &ipforward_rt);
1409 			if (ia == 0) {
1410 				type = ICMP_UNREACH;
1411 				code = ICMP_UNREACH_SRCFAIL;
1412 				goto bad;
1413 			}
1414 			ip->ip_dst = ipaddr.sin_addr;
1415 			(void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr),
1416 			    sizeof(struct in_addr));
1417 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1418 			/*
1419 			 * Let ip_intr's mcast routing check handle mcast pkts
1420 			 */
1421 			forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr));
1422 			break;
1423 
1424 		case IPOPT_RR:
1425 #ifdef IPSTEALTH
1426 			if (ipstealth && pass == 0)
1427 				break;
1428 #endif
1429 			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1430 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1431 				goto bad;
1432 			}
1433 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1434 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1435 				goto bad;
1436 			}
1437 			/*
1438 			 * If no space remains, ignore.
1439 			 */
1440 			off--;			/* 0 origin */
1441 			if (off > optlen - (int)sizeof(struct in_addr))
1442 				break;
1443 			(void)memcpy(&ipaddr.sin_addr, &ip->ip_dst,
1444 			    sizeof(ipaddr.sin_addr));
1445 			/*
1446 			 * locate outgoing interface; if we're the destination,
1447 			 * use the incoming interface (should be same).
1448 			 */
1449 			if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == 0 &&
1450 			    (ia = ip_rtaddr(ipaddr.sin_addr,
1451 			    &ipforward_rt)) == 0) {
1452 				type = ICMP_UNREACH;
1453 				code = ICMP_UNREACH_HOST;
1454 				goto bad;
1455 			}
1456 			(void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr),
1457 			    sizeof(struct in_addr));
1458 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1459 			break;
1460 
1461 		case IPOPT_TS:
1462 #ifdef IPSTEALTH
1463 			if (ipstealth && pass == 0)
1464 				break;
1465 #endif
1466 			code = cp - (u_char *)ip;
1467 			if (optlen < 4 || optlen > 40) {
1468 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1469 				goto bad;
1470 			}
1471 			if ((off = cp[IPOPT_OFFSET]) < 5) {
1472 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1473 				goto bad;
1474 			}
1475 			if (off > optlen - (int)sizeof(int32_t)) {
1476 				cp[IPOPT_OFFSET + 1] += (1 << 4);
1477 				if ((cp[IPOPT_OFFSET + 1] & 0xf0) == 0) {
1478 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1479 					goto bad;
1480 				}
1481 				break;
1482 			}
1483 			off--;				/* 0 origin */
1484 			sin = (struct in_addr *)(cp + off);
1485 			switch (cp[IPOPT_OFFSET + 1] & 0x0f) {
1486 
1487 			case IPOPT_TS_TSONLY:
1488 				break;
1489 
1490 			case IPOPT_TS_TSANDADDR:
1491 				if (off + sizeof(n_time) +
1492 				    sizeof(struct in_addr) > optlen) {
1493 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1494 					goto bad;
1495 				}
1496 				ipaddr.sin_addr = dst;
1497 				ia = (INA)ifaof_ifpforaddr((SA)&ipaddr,
1498 							    m->m_pkthdr.rcvif);
1499 				if (ia == 0)
1500 					continue;
1501 				(void)memcpy(sin, &IA_SIN(ia)->sin_addr,
1502 				    sizeof(struct in_addr));
1503 				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1504 				off += sizeof(struct in_addr);
1505 				break;
1506 
1507 			case IPOPT_TS_PRESPEC:
1508 				if (off + sizeof(n_time) +
1509 				    sizeof(struct in_addr) > optlen) {
1510 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1511 					goto bad;
1512 				}
1513 				(void)memcpy(&ipaddr.sin_addr, sin,
1514 				    sizeof(struct in_addr));
1515 				if (ifa_ifwithaddr((SA)&ipaddr) == 0)
1516 					continue;
1517 				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1518 				off += sizeof(struct in_addr);
1519 				break;
1520 
1521 			default:
1522 				code = &cp[IPOPT_OFFSET + 1] - (u_char *)ip;
1523 				goto bad;
1524 			}
1525 			ntime = iptime();
1526 			(void)memcpy(cp + off, &ntime, sizeof(n_time));
1527 			cp[IPOPT_OFFSET] += sizeof(n_time);
1528 		}
1529 	}
1530 	if (forward && ipforwarding) {
1531 		ip_forward(m, 1, next_hop);
1532 		return (1);
1533 	}
1534 	return (0);
1535 bad:
1536 	icmp_error(m, type, code, 0, 0);
1537 	ipstat.ips_badoptions++;
1538 	return (1);
1539 }
1540 
1541 /*
1542  * Given address of next destination (final or next hop),
1543  * return internet address info of interface to be used to get there.
1544  */
1545 struct in_ifaddr *
1546 ip_rtaddr(dst, rt)
1547 	struct in_addr dst;
1548 	struct route *rt;
1549 {
1550 	register struct sockaddr_in *sin;
1551 
1552 	sin = (struct sockaddr_in *)&rt->ro_dst;
1553 
1554 	if (rt->ro_rt == 0 ||
1555 	    !(rt->ro_rt->rt_flags & RTF_UP) ||
1556 	    dst.s_addr != sin->sin_addr.s_addr) {
1557 		if (rt->ro_rt) {
1558 			RTFREE(rt->ro_rt);
1559 			rt->ro_rt = 0;
1560 		}
1561 		sin->sin_family = AF_INET;
1562 		sin->sin_len = sizeof(*sin);
1563 		sin->sin_addr = dst;
1564 
1565 		rtalloc_ign(rt, RTF_PRCLONING);
1566 	}
1567 	if (rt->ro_rt == 0)
1568 		return ((struct in_ifaddr *)0);
1569 	return (ifatoia(rt->ro_rt->rt_ifa));
1570 }
1571 
1572 /*
1573  * Save incoming source route for use in replies,
1574  * to be picked up later by ip_srcroute if the receiver is interested.
1575  */
1576 static void
1577 save_rte(option, dst)
1578 	u_char *option;
1579 	struct in_addr dst;
1580 {
1581 	unsigned olen;
1582 
1583 	olen = option[IPOPT_OLEN];
1584 #ifdef DIAGNOSTIC
1585 	if (ipprintfs)
1586 		printf("save_rte: olen %d\n", olen);
1587 #endif
1588 	if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
1589 		return;
1590 	bcopy(option, ip_srcrt.srcopt, olen);
1591 	ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
1592 	ip_srcrt.dst = dst;
1593 }
1594 
1595 /*
1596  * Retrieve incoming source route for use in replies,
1597  * in the same form used by setsockopt.
1598  * The first hop is placed before the options, will be removed later.
1599  */
1600 struct mbuf *
1601 ip_srcroute()
1602 {
1603 	register struct in_addr *p, *q;
1604 	register struct mbuf *m;
1605 
1606 	if (ip_nhops == 0)
1607 		return ((struct mbuf *)0);
1608 	m = m_get(M_DONTWAIT, MT_HEADER);
1609 	if (m == 0)
1610 		return ((struct mbuf *)0);
1611 
1612 #define OPTSIZ	(sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
1613 
1614 	/* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1615 	m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
1616 	    OPTSIZ;
1617 #ifdef DIAGNOSTIC
1618 	if (ipprintfs)
1619 		printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
1620 #endif
1621 
1622 	/*
1623 	 * First save first hop for return route
1624 	 */
1625 	p = &ip_srcrt.route[ip_nhops - 1];
1626 	*(mtod(m, struct in_addr *)) = *p--;
1627 #ifdef DIAGNOSTIC
1628 	if (ipprintfs)
1629 		printf(" hops %lx", (u_long)ntohl(mtod(m, struct in_addr *)->s_addr));
1630 #endif
1631 
1632 	/*
1633 	 * Copy option fields and padding (nop) to mbuf.
1634 	 */
1635 	ip_srcrt.nop = IPOPT_NOP;
1636 	ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
1637 	(void)memcpy(mtod(m, caddr_t) + sizeof(struct in_addr),
1638 	    &ip_srcrt.nop, OPTSIZ);
1639 	q = (struct in_addr *)(mtod(m, caddr_t) +
1640 	    sizeof(struct in_addr) + OPTSIZ);
1641 #undef OPTSIZ
1642 	/*
1643 	 * Record return path as an IP source route,
1644 	 * reversing the path (pointers are now aligned).
1645 	 */
1646 	while (p >= ip_srcrt.route) {
1647 #ifdef DIAGNOSTIC
1648 		if (ipprintfs)
1649 			printf(" %lx", (u_long)ntohl(q->s_addr));
1650 #endif
1651 		*q++ = *p--;
1652 	}
1653 	/*
1654 	 * Last hop goes to final destination.
1655 	 */
1656 	*q = ip_srcrt.dst;
1657 #ifdef DIAGNOSTIC
1658 	if (ipprintfs)
1659 		printf(" %lx\n", (u_long)ntohl(q->s_addr));
1660 #endif
1661 	return (m);
1662 }
1663 
1664 /*
1665  * Strip out IP options, at higher
1666  * level protocol in the kernel.
1667  * Second argument is buffer to which options
1668  * will be moved, and return value is their length.
1669  * XXX should be deleted; last arg currently ignored.
1670  */
1671 void
1672 ip_stripoptions(m, mopt)
1673 	register struct mbuf *m;
1674 	struct mbuf *mopt;
1675 {
1676 	register int i;
1677 	struct ip *ip = mtod(m, struct ip *);
1678 	register caddr_t opts;
1679 	int olen;
1680 
1681 	olen = (ip->ip_hl << 2) - sizeof (struct ip);
1682 	opts = (caddr_t)(ip + 1);
1683 	i = m->m_len - (sizeof (struct ip) + olen);
1684 	bcopy(opts + olen, opts, (unsigned)i);
1685 	m->m_len -= olen;
1686 	if (m->m_flags & M_PKTHDR)
1687 		m->m_pkthdr.len -= olen;
1688 	ip->ip_v = IPVERSION;
1689 	ip->ip_hl = sizeof(struct ip) >> 2;
1690 }
1691 
1692 u_char inetctlerrmap[PRC_NCMDS] = {
1693 	0,		0,		0,		0,
1694 	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1695 	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1696 	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1697 	0,		0,		0,		0,
1698 	ENOPROTOOPT,	ECONNREFUSED
1699 };
1700 
1701 /*
1702  * Forward a packet.  If some error occurs return the sender
1703  * an icmp packet.  Note we can't always generate a meaningful
1704  * icmp message because icmp doesn't have a large enough repertoire
1705  * of codes and types.
1706  *
1707  * If not forwarding, just drop the packet.  This could be confusing
1708  * if ipforwarding was zero but some routing protocol was advancing
1709  * us as a gateway to somewhere.  However, we must let the routing
1710  * protocol deal with that.
1711  *
1712  * The srcrt parameter indicates whether the packet is being forwarded
1713  * via a source route.
1714  */
1715 static void
1716 ip_forward(struct mbuf *m, int srcrt, struct sockaddr_in *next_hop)
1717 {
1718 	struct ip *ip = mtod(m, struct ip *);
1719 	struct rtentry *rt;
1720 	int error, type = 0, code = 0;
1721 	struct mbuf *mcopy;
1722 	n_long dest;
1723 	struct in_addr pkt_dst;
1724 	struct ifnet *destifp;
1725 #if defined(IPSEC) || defined(FAST_IPSEC)
1726 	struct ifnet dummyifp;
1727 #endif
1728 
1729 	dest = 0;
1730 	/*
1731 	 * Cache the destination address of the packet; this may be
1732 	 * changed by use of 'ipfw fwd'.
1733 	 */
1734 	pkt_dst = next_hop ? next_hop->sin_addr : ip->ip_dst;
1735 
1736 #ifdef DIAGNOSTIC
1737 	if (ipprintfs)
1738 		printf("forward: src %lx dst %lx ttl %x\n",
1739 		    (u_long)ip->ip_src.s_addr, (u_long)pkt_dst.s_addr,
1740 		    ip->ip_ttl);
1741 #endif
1742 
1743 
1744 	if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(pkt_dst) == 0) {
1745 		ipstat.ips_cantforward++;
1746 		m_freem(m);
1747 		return;
1748 	}
1749 #ifdef IPSTEALTH
1750 	if (!ipstealth) {
1751 #endif
1752 		if (ip->ip_ttl <= IPTTLDEC) {
1753 			icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS,
1754 			    dest, 0);
1755 			return;
1756 		}
1757 #ifdef IPSTEALTH
1758 	}
1759 #endif
1760 
1761 	if (ip_rtaddr(pkt_dst, &ipforward_rt) == 0) {
1762 		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0);
1763 		return;
1764 	} else
1765 		rt = ipforward_rt.ro_rt;
1766 
1767 	/*
1768 	 * Save the IP header and at most 8 bytes of the payload,
1769 	 * in case we need to generate an ICMP message to the src.
1770 	 *
1771 	 * XXX this can be optimized a lot by saving the data in a local
1772 	 * buffer on the stack (72 bytes at most), and only allocating the
1773 	 * mbuf if really necessary. The vast majority of the packets
1774 	 * are forwarded without having to send an ICMP back (either
1775 	 * because unnecessary, or because rate limited), so we are
1776 	 * really we are wasting a lot of work here.
1777 	 *
1778 	 * We don't use m_copy() because it might return a reference
1779 	 * to a shared cluster. Both this function and ip_output()
1780 	 * assume exclusive access to the IP header in `m', so any
1781 	 * data in a cluster may change before we reach icmp_error().
1782 	 */
1783 	MGET(mcopy, M_DONTWAIT, m->m_type);
1784 	if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, M_DONTWAIT)) {
1785 		/*
1786 		 * It's probably ok if the pkthdr dup fails (because
1787 		 * the deep copy of the tag chain failed), but for now
1788 		 * be conservative and just discard the copy since
1789 		 * code below may some day want the tags.
1790 		 */
1791 		m_free(mcopy);
1792 		mcopy = NULL;
1793 	}
1794 	if (mcopy != NULL) {
1795 		mcopy->m_len = imin((ip->ip_hl << 2) + 8,
1796 		    (int)ip->ip_len);
1797 		m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
1798 #ifdef MAC
1799 		/*
1800 		 * XXXMAC: This will eventually become an explicit
1801 		 * labeling point.
1802 		 */
1803 		mac_create_mbuf_from_mbuf(m, mcopy);
1804 #endif
1805 	}
1806 
1807 #ifdef IPSTEALTH
1808 	if (!ipstealth) {
1809 #endif
1810 		ip->ip_ttl -= IPTTLDEC;
1811 #ifdef IPSTEALTH
1812 	}
1813 #endif
1814 
1815 	/*
1816 	 * If forwarding packet using same interface that it came in on,
1817 	 * perhaps should send a redirect to sender to shortcut a hop.
1818 	 * Only send redirect if source is sending directly to us,
1819 	 * and if packet was not source routed (or has any options).
1820 	 * Also, don't send redirect if forwarding using a default route
1821 	 * or a route modified by a redirect.
1822 	 */
1823 	if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1824 	    (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1825 	    satosin(rt_key(rt))->sin_addr.s_addr != 0 &&
1826 	    ipsendredirects && !srcrt && !next_hop) {
1827 #define	RTA(rt)	((struct in_ifaddr *)(rt->rt_ifa))
1828 		u_long src = ntohl(ip->ip_src.s_addr);
1829 
1830 		if (RTA(rt) &&
1831 		    (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
1832 		    if (rt->rt_flags & RTF_GATEWAY)
1833 			dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1834 		    else
1835 			dest = pkt_dst.s_addr;
1836 		    /* Router requirements says to only send host redirects */
1837 		    type = ICMP_REDIRECT;
1838 		    code = ICMP_REDIRECT_HOST;
1839 #ifdef DIAGNOSTIC
1840 		    if (ipprintfs)
1841 		        printf("redirect (%d) to %lx\n", code, (u_long)dest);
1842 #endif
1843 		}
1844 	}
1845 
1846     {
1847 	struct m_hdr tag;
1848 
1849 	if (next_hop) {
1850 		/* Pass IPFORWARD info if available */
1851 
1852 		tag.mh_type = MT_TAG;
1853 		tag.mh_flags = PACKET_TAG_IPFORWARD;
1854 		tag.mh_data = (caddr_t)next_hop;
1855 		tag.mh_next = m;
1856 		m = (struct mbuf *)&tag;
1857 	}
1858 	error = ip_output(m, (struct mbuf *)0, &ipforward_rt,
1859 			  IP_FORWARDING, 0, NULL);
1860     }
1861 	if (error)
1862 		ipstat.ips_cantforward++;
1863 	else {
1864 		ipstat.ips_forward++;
1865 		if (type)
1866 			ipstat.ips_redirectsent++;
1867 		else {
1868 			if (mcopy) {
1869 				ipflow_create(&ipforward_rt, mcopy);
1870 				m_freem(mcopy);
1871 			}
1872 			return;
1873 		}
1874 	}
1875 	if (mcopy == NULL)
1876 		return;
1877 	destifp = NULL;
1878 
1879 	switch (error) {
1880 
1881 	case 0:				/* forwarded, but need redirect */
1882 		/* type, code set above */
1883 		break;
1884 
1885 	case ENETUNREACH:		/* shouldn't happen, checked above */
1886 	case EHOSTUNREACH:
1887 	case ENETDOWN:
1888 	case EHOSTDOWN:
1889 	default:
1890 		type = ICMP_UNREACH;
1891 		code = ICMP_UNREACH_HOST;
1892 		break;
1893 
1894 	case EMSGSIZE:
1895 		type = ICMP_UNREACH;
1896 		code = ICMP_UNREACH_NEEDFRAG;
1897 #ifdef IPSEC
1898 		/*
1899 		 * If the packet is routed over IPsec tunnel, tell the
1900 		 * originator the tunnel MTU.
1901 		 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
1902 		 * XXX quickhack!!!
1903 		 */
1904 		if (ipforward_rt.ro_rt) {
1905 			struct secpolicy *sp = NULL;
1906 			int ipsecerror;
1907 			int ipsechdr;
1908 			struct route *ro;
1909 
1910 			sp = ipsec4_getpolicybyaddr(mcopy,
1911 						    IPSEC_DIR_OUTBOUND,
1912 			                            IP_FORWARDING,
1913 			                            &ipsecerror);
1914 
1915 			if (sp == NULL)
1916 				destifp = ipforward_rt.ro_rt->rt_ifp;
1917 			else {
1918 				/* count IPsec header size */
1919 				ipsechdr = ipsec4_hdrsiz(mcopy,
1920 							 IPSEC_DIR_OUTBOUND,
1921 							 NULL);
1922 
1923 				/*
1924 				 * find the correct route for outer IPv4
1925 				 * header, compute tunnel MTU.
1926 				 *
1927 				 * XXX BUG ALERT
1928 				 * The "dummyifp" code relies upon the fact
1929 				 * that icmp_error() touches only ifp->if_mtu.
1930 				 */
1931 				/*XXX*/
1932 				destifp = NULL;
1933 				if (sp->req != NULL
1934 				 && sp->req->sav != NULL
1935 				 && sp->req->sav->sah != NULL) {
1936 					ro = &sp->req->sav->sah->sa_route;
1937 					if (ro->ro_rt && ro->ro_rt->rt_ifp) {
1938 						dummyifp.if_mtu =
1939 						    ro->ro_rt->rt_ifp->if_mtu;
1940 						dummyifp.if_mtu -= ipsechdr;
1941 						destifp = &dummyifp;
1942 					}
1943 				}
1944 
1945 				key_freesp(sp);
1946 			}
1947 		}
1948 #elif FAST_IPSEC
1949 		/*
1950 		 * If the packet is routed over IPsec tunnel, tell the
1951 		 * originator the tunnel MTU.
1952 		 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
1953 		 * XXX quickhack!!!
1954 		 */
1955 		if (ipforward_rt.ro_rt) {
1956 			struct secpolicy *sp = NULL;
1957 			int ipsecerror;
1958 			int ipsechdr;
1959 			struct route *ro;
1960 
1961 			sp = ipsec_getpolicybyaddr(mcopy,
1962 						   IPSEC_DIR_OUTBOUND,
1963 			                           IP_FORWARDING,
1964 			                           &ipsecerror);
1965 
1966 			if (sp == NULL)
1967 				destifp = ipforward_rt.ro_rt->rt_ifp;
1968 			else {
1969 				/* count IPsec header size */
1970 				ipsechdr = ipsec4_hdrsiz(mcopy,
1971 							 IPSEC_DIR_OUTBOUND,
1972 							 NULL);
1973 
1974 				/*
1975 				 * find the correct route for outer IPv4
1976 				 * header, compute tunnel MTU.
1977 				 *
1978 				 * XXX BUG ALERT
1979 				 * The "dummyifp" code relies upon the fact
1980 				 * that icmp_error() touches only ifp->if_mtu.
1981 				 */
1982 				/*XXX*/
1983 				destifp = NULL;
1984 				if (sp->req != NULL
1985 				 && sp->req->sav != NULL
1986 				 && sp->req->sav->sah != NULL) {
1987 					ro = &sp->req->sav->sah->sa_route;
1988 					if (ro->ro_rt && ro->ro_rt->rt_ifp) {
1989 						dummyifp.if_mtu =
1990 						    ro->ro_rt->rt_ifp->if_mtu;
1991 						dummyifp.if_mtu -= ipsechdr;
1992 						destifp = &dummyifp;
1993 					}
1994 				}
1995 
1996 				KEY_FREESP(&sp);
1997 			}
1998 		}
1999 #else /* !IPSEC && !FAST_IPSEC */
2000 		if (ipforward_rt.ro_rt)
2001 			destifp = ipforward_rt.ro_rt->rt_ifp;
2002 #endif /*IPSEC*/
2003 		ipstat.ips_cantfrag++;
2004 		break;
2005 
2006 	case ENOBUFS:
2007 		/*
2008 		 * A router should not generate ICMP_SOURCEQUENCH as
2009 		 * required in RFC1812 Requirements for IP Version 4 Routers.
2010 		 * Source quench could be a big problem under DoS attacks,
2011 		 * or if the underlying interface is rate-limited.
2012 		 * Those who need source quench packets may re-enable them
2013 		 * via the net.inet.ip.sendsourcequench sysctl.
2014 		 */
2015 		if (ip_sendsourcequench == 0) {
2016 			m_freem(mcopy);
2017 			return;
2018 		} else {
2019 			type = ICMP_SOURCEQUENCH;
2020 			code = 0;
2021 		}
2022 		break;
2023 
2024 	case EACCES:			/* ipfw denied packet */
2025 		m_freem(mcopy);
2026 		return;
2027 	}
2028 	icmp_error(mcopy, type, code, dest, destifp);
2029 }
2030 
2031 void
2032 ip_savecontrol(inp, mp, ip, m)
2033 	register struct inpcb *inp;
2034 	register struct mbuf **mp;
2035 	register struct ip *ip;
2036 	register struct mbuf *m;
2037 {
2038 	if (inp->inp_socket->so_options & SO_TIMESTAMP) {
2039 		struct timeval tv;
2040 
2041 		microtime(&tv);
2042 		*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
2043 			SCM_TIMESTAMP, SOL_SOCKET);
2044 		if (*mp)
2045 			mp = &(*mp)->m_next;
2046 	}
2047 	if (inp->inp_flags & INP_RECVDSTADDR) {
2048 		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
2049 		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
2050 		if (*mp)
2051 			mp = &(*mp)->m_next;
2052 	}
2053 #ifdef notyet
2054 	/* XXX
2055 	 * Moving these out of udp_input() made them even more broken
2056 	 * than they already were.
2057 	 */
2058 	/* options were tossed already */
2059 	if (inp->inp_flags & INP_RECVOPTS) {
2060 		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
2061 		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
2062 		if (*mp)
2063 			mp = &(*mp)->m_next;
2064 	}
2065 	/* ip_srcroute doesn't do what we want here, need to fix */
2066 	if (inp->inp_flags & INP_RECVRETOPTS) {
2067 		*mp = sbcreatecontrol((caddr_t) ip_srcroute(),
2068 		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
2069 		if (*mp)
2070 			mp = &(*mp)->m_next;
2071 	}
2072 #endif
2073 	if (inp->inp_flags & INP_RECVIF) {
2074 		struct ifnet *ifp;
2075 		struct sdlbuf {
2076 			struct sockaddr_dl sdl;
2077 			u_char	pad[32];
2078 		} sdlbuf;
2079 		struct sockaddr_dl *sdp;
2080 		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
2081 
2082 		if (((ifp = m->m_pkthdr.rcvif))
2083 		&& ( ifp->if_index && (ifp->if_index <= if_index))) {
2084 			sdp = (struct sockaddr_dl *)
2085 			    (ifaddr_byindex(ifp->if_index)->ifa_addr);
2086 			/*
2087 			 * Change our mind and don't try copy.
2088 			 */
2089 			if ((sdp->sdl_family != AF_LINK)
2090 			|| (sdp->sdl_len > sizeof(sdlbuf))) {
2091 				goto makedummy;
2092 			}
2093 			bcopy(sdp, sdl2, sdp->sdl_len);
2094 		} else {
2095 makedummy:
2096 			sdl2->sdl_len
2097 				= offsetof(struct sockaddr_dl, sdl_data[0]);
2098 			sdl2->sdl_family = AF_LINK;
2099 			sdl2->sdl_index = 0;
2100 			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
2101 		}
2102 		*mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
2103 			IP_RECVIF, IPPROTO_IP);
2104 		if (*mp)
2105 			mp = &(*mp)->m_next;
2106 	}
2107 }
2108 
2109 /*
2110  * XXX these routines are called from the upper part of the kernel.
2111  * They need to be locked when we remove Giant.
2112  *
2113  * They could also be moved to ip_mroute.c, since all the RSVP
2114  *  handling is done there already.
2115  */
2116 static int ip_rsvp_on;
2117 struct socket *ip_rsvpd;
2118 int
2119 ip_rsvp_init(struct socket *so)
2120 {
2121 	if (so->so_type != SOCK_RAW ||
2122 	    so->so_proto->pr_protocol != IPPROTO_RSVP)
2123 		return EOPNOTSUPP;
2124 
2125 	if (ip_rsvpd != NULL)
2126 		return EADDRINUSE;
2127 
2128 	ip_rsvpd = so;
2129 	/*
2130 	 * This may seem silly, but we need to be sure we don't over-increment
2131 	 * the RSVP counter, in case something slips up.
2132 	 */
2133 	if (!ip_rsvp_on) {
2134 		ip_rsvp_on = 1;
2135 		rsvp_on++;
2136 	}
2137 
2138 	return 0;
2139 }
2140 
2141 int
2142 ip_rsvp_done(void)
2143 {
2144 	ip_rsvpd = NULL;
2145 	/*
2146 	 * This may seem silly, but we need to be sure we don't over-decrement
2147 	 * the RSVP counter, in case something slips up.
2148 	 */
2149 	if (ip_rsvp_on) {
2150 		ip_rsvp_on = 0;
2151 		rsvp_on--;
2152 	}
2153 	return 0;
2154 }
2155 
2156 void
2157 rsvp_input(struct mbuf *m, int off)	/* XXX must fixup manually */
2158 {
2159 	if (rsvp_input_p) { /* call the real one if loaded */
2160 		rsvp_input_p(m, off);
2161 		return;
2162 	}
2163 
2164 	/* Can still get packets with rsvp_on = 0 if there is a local member
2165 	 * of the group to which the RSVP packet is addressed.  But in this
2166 	 * case we want to throw the packet away.
2167 	 */
2168 
2169 	if (!rsvp_on) {
2170 		m_freem(m);
2171 		return;
2172 	}
2173 
2174 	if (ip_rsvpd != NULL) {
2175 		rip_input(m, off);
2176 		return;
2177 	}
2178 	/* Drop the packet */
2179 	m_freem(m);
2180 }
2181