1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1988, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)ip_input.c 8.2 (Berkeley) 1/4/94 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_bootp.h" 38 #include "opt_ipstealth.h" 39 #include "opt_ipsec.h" 40 #include "opt_route.h" 41 #include "opt_rss.h" 42 43 #include <sys/param.h> 44 #include <sys/systm.h> 45 #include <sys/hhook.h> 46 #include <sys/mbuf.h> 47 #include <sys/malloc.h> 48 #include <sys/domain.h> 49 #include <sys/protosw.h> 50 #include <sys/socket.h> 51 #include <sys/time.h> 52 #include <sys/kernel.h> 53 #include <sys/lock.h> 54 #include <sys/rmlock.h> 55 #include <sys/rwlock.h> 56 #include <sys/sdt.h> 57 #include <sys/syslog.h> 58 #include <sys/sysctl.h> 59 60 #include <net/if.h> 61 #include <net/if_types.h> 62 #include <net/if_var.h> 63 #include <net/if_dl.h> 64 #include <net/pfil.h> 65 #include <net/route.h> 66 #include <net/route/nhop.h> 67 #include <net/netisr.h> 68 #include <net/rss_config.h> 69 #include <net/vnet.h> 70 71 #include <netinet/in.h> 72 #include <netinet/in_kdtrace.h> 73 #include <netinet/in_systm.h> 74 #include <netinet/in_var.h> 75 #include <netinet/ip.h> 76 #include <netinet/in_fib.h> 77 #include <netinet/in_pcb.h> 78 #include <netinet/ip_var.h> 79 #include <netinet/ip_fw.h> 80 #include <netinet/ip_icmp.h> 81 #include <netinet/ip_options.h> 82 #include <machine/in_cksum.h> 83 #include <netinet/ip_carp.h> 84 #include <netinet/in_rss.h> 85 #include <netinet/ip_mroute.h> 86 87 #include <netipsec/ipsec_support.h> 88 89 #include <sys/socketvar.h> 90 91 #include <security/mac/mac_framework.h> 92 93 #ifdef CTASSERT 94 CTASSERT(sizeof(struct ip) == 20); 95 #endif 96 97 /* IP reassembly functions are defined in ip_reass.c. */ 98 extern void ipreass_init(void); 99 extern void ipreass_drain(void); 100 extern void ipreass_slowtimo(void); 101 #ifdef VIMAGE 102 extern void ipreass_destroy(void); 103 #endif 104 105 VNET_DEFINE(int, rsvp_on); 106 107 VNET_DEFINE(int, ipforwarding); 108 SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_VNET | CTLFLAG_RW, 109 &VNET_NAME(ipforwarding), 0, 110 "Enable IP forwarding between interfaces"); 111 112 /* 113 * Respond with an ICMP host redirect when we forward a packet out of 114 * the same interface on which it was received. See RFC 792. 115 */ 116 VNET_DEFINE(int, ipsendredirects) = 1; 117 SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_VNET | CTLFLAG_RW, 118 &VNET_NAME(ipsendredirects), 0, 119 "Enable sending IP redirects"); 120 121 /* 122 * XXX - Setting ip_checkinterface mostly implements the receive side of 123 * the Strong ES model described in RFC 1122, but since the routing table 124 * and transmit implementation do not implement the Strong ES model, 125 * setting this to 1 results in an odd hybrid. 126 * 127 * XXX - ip_checkinterface currently must be disabled if you use ipnat 128 * to translate the destination address to another local interface. 129 * 130 * XXX - ip_checkinterface must be disabled if you add IP aliases 131 * to the loopback interface instead of the interface where the 132 * packets for those addresses are received. 133 */ 134 VNET_DEFINE_STATIC(int, ip_checkinterface); 135 #define V_ip_checkinterface VNET(ip_checkinterface) 136 SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_VNET | CTLFLAG_RW, 137 &VNET_NAME(ip_checkinterface), 0, 138 "Verify packet arrives on correct interface"); 139 140 VNET_DEFINE(pfil_head_t, inet_pfil_head); /* Packet filter hooks */ 141 142 static struct netisr_handler ip_nh = { 143 .nh_name = "ip", 144 .nh_handler = ip_input, 145 .nh_proto = NETISR_IP, 146 #ifdef RSS 147 .nh_m2cpuid = rss_soft_m2cpuid_v4, 148 .nh_policy = NETISR_POLICY_CPU, 149 .nh_dispatch = NETISR_DISPATCH_HYBRID, 150 #else 151 .nh_policy = NETISR_POLICY_FLOW, 152 #endif 153 }; 154 155 #ifdef RSS 156 /* 157 * Directly dispatched frames are currently assumed 158 * to have a flowid already calculated. 159 * 160 * It should likely have something that assert it 161 * actually has valid flow details. 162 */ 163 static struct netisr_handler ip_direct_nh = { 164 .nh_name = "ip_direct", 165 .nh_handler = ip_direct_input, 166 .nh_proto = NETISR_IP_DIRECT, 167 .nh_m2cpuid = rss_soft_m2cpuid_v4, 168 .nh_policy = NETISR_POLICY_CPU, 169 .nh_dispatch = NETISR_DISPATCH_HYBRID, 170 }; 171 #endif 172 173 extern struct domain inetdomain; 174 extern struct protosw inetsw[]; 175 u_char ip_protox[IPPROTO_MAX]; 176 VNET_DEFINE(struct in_ifaddrhead, in_ifaddrhead); /* first inet address */ 177 VNET_DEFINE(struct in_ifaddrhashhead *, in_ifaddrhashtbl); /* inet addr hash table */ 178 VNET_DEFINE(u_long, in_ifaddrhmask); /* mask for hash table */ 179 180 /* Make sure it is safe to use hashinit(9) on CK_LIST. */ 181 CTASSERT(sizeof(struct in_ifaddrhashhead) == sizeof(LIST_HEAD(, in_addr))); 182 183 #ifdef IPCTL_DEFMTU 184 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW, 185 &ip_mtu, 0, "Default MTU"); 186 #endif 187 188 #ifdef IPSTEALTH 189 VNET_DEFINE(int, ipstealth); 190 SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_VNET | CTLFLAG_RW, 191 &VNET_NAME(ipstealth), 0, 192 "IP stealth mode, no TTL decrementation on forwarding"); 193 #endif 194 195 /* 196 * IP statistics are stored in the "array" of counter(9)s. 197 */ 198 VNET_PCPUSTAT_DEFINE(struct ipstat, ipstat); 199 VNET_PCPUSTAT_SYSINIT(ipstat); 200 SYSCTL_VNET_PCPUSTAT(_net_inet_ip, IPCTL_STATS, stats, struct ipstat, ipstat, 201 "IP statistics (struct ipstat, netinet/ip_var.h)"); 202 203 #ifdef VIMAGE 204 VNET_PCPUSTAT_SYSUNINIT(ipstat); 205 #endif /* VIMAGE */ 206 207 /* 208 * Kernel module interface for updating ipstat. The argument is an index 209 * into ipstat treated as an array. 210 */ 211 void 212 kmod_ipstat_inc(int statnum) 213 { 214 215 counter_u64_add(VNET(ipstat)[statnum], 1); 216 } 217 218 void 219 kmod_ipstat_dec(int statnum) 220 { 221 222 counter_u64_add(VNET(ipstat)[statnum], -1); 223 } 224 225 static int 226 sysctl_netinet_intr_queue_maxlen(SYSCTL_HANDLER_ARGS) 227 { 228 int error, qlimit; 229 230 netisr_getqlimit(&ip_nh, &qlimit); 231 error = sysctl_handle_int(oidp, &qlimit, 0, req); 232 if (error || !req->newptr) 233 return (error); 234 if (qlimit < 1) 235 return (EINVAL); 236 return (netisr_setqlimit(&ip_nh, qlimit)); 237 } 238 SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen, 239 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 0, 240 sysctl_netinet_intr_queue_maxlen, "I", 241 "Maximum size of the IP input queue"); 242 243 static int 244 sysctl_netinet_intr_queue_drops(SYSCTL_HANDLER_ARGS) 245 { 246 u_int64_t qdrops_long; 247 int error, qdrops; 248 249 netisr_getqdrops(&ip_nh, &qdrops_long); 250 qdrops = qdrops_long; 251 error = sysctl_handle_int(oidp, &qdrops, 0, req); 252 if (error || !req->newptr) 253 return (error); 254 if (qdrops != 0) 255 return (EINVAL); 256 netisr_clearqdrops(&ip_nh); 257 return (0); 258 } 259 260 SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops, 261 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, 262 0, 0, sysctl_netinet_intr_queue_drops, "I", 263 "Number of packets dropped from the IP input queue"); 264 265 #ifdef RSS 266 static int 267 sysctl_netinet_intr_direct_queue_maxlen(SYSCTL_HANDLER_ARGS) 268 { 269 int error, qlimit; 270 271 netisr_getqlimit(&ip_direct_nh, &qlimit); 272 error = sysctl_handle_int(oidp, &qlimit, 0, req); 273 if (error || !req->newptr) 274 return (error); 275 if (qlimit < 1) 276 return (EINVAL); 277 return (netisr_setqlimit(&ip_direct_nh, qlimit)); 278 } 279 SYSCTL_PROC(_net_inet_ip, IPCTL_INTRDQMAXLEN, intr_direct_queue_maxlen, 280 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 281 0, 0, sysctl_netinet_intr_direct_queue_maxlen, 282 "I", "Maximum size of the IP direct input queue"); 283 284 static int 285 sysctl_netinet_intr_direct_queue_drops(SYSCTL_HANDLER_ARGS) 286 { 287 u_int64_t qdrops_long; 288 int error, qdrops; 289 290 netisr_getqdrops(&ip_direct_nh, &qdrops_long); 291 qdrops = qdrops_long; 292 error = sysctl_handle_int(oidp, &qdrops, 0, req); 293 if (error || !req->newptr) 294 return (error); 295 if (qdrops != 0) 296 return (EINVAL); 297 netisr_clearqdrops(&ip_direct_nh); 298 return (0); 299 } 300 301 SYSCTL_PROC(_net_inet_ip, IPCTL_INTRDQDROPS, intr_direct_queue_drops, 302 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 0, 303 sysctl_netinet_intr_direct_queue_drops, "I", 304 "Number of packets dropped from the IP direct input queue"); 305 #endif /* RSS */ 306 307 /* 308 * IP initialization: fill in IP protocol switch table. 309 * All protocols not implemented in kernel go to raw IP protocol handler. 310 */ 311 void 312 ip_init(void) 313 { 314 struct pfil_head_args args; 315 struct protosw *pr; 316 int i; 317 318 CK_STAILQ_INIT(&V_in_ifaddrhead); 319 V_in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &V_in_ifaddrhmask); 320 321 /* Initialize IP reassembly queue. */ 322 ipreass_init(); 323 324 /* Initialize packet filter hooks. */ 325 args.pa_version = PFIL_VERSION; 326 args.pa_flags = PFIL_IN | PFIL_OUT; 327 args.pa_type = PFIL_TYPE_IP4; 328 args.pa_headname = PFIL_INET_NAME; 329 V_inet_pfil_head = pfil_head_register(&args); 330 331 if (hhook_head_register(HHOOK_TYPE_IPSEC_IN, AF_INET, 332 &V_ipsec_hhh_in[HHOOK_IPSEC_INET], 333 HHOOK_WAITOK | HHOOK_HEADISINVNET) != 0) 334 printf("%s: WARNING: unable to register input helper hook\n", 335 __func__); 336 if (hhook_head_register(HHOOK_TYPE_IPSEC_OUT, AF_INET, 337 &V_ipsec_hhh_out[HHOOK_IPSEC_INET], 338 HHOOK_WAITOK | HHOOK_HEADISINVNET) != 0) 339 printf("%s: WARNING: unable to register output helper hook\n", 340 __func__); 341 342 /* Skip initialization of globals for non-default instances. */ 343 #ifdef VIMAGE 344 if (!IS_DEFAULT_VNET(curvnet)) { 345 netisr_register_vnet(&ip_nh); 346 #ifdef RSS 347 netisr_register_vnet(&ip_direct_nh); 348 #endif 349 return; 350 } 351 #endif 352 353 pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW); 354 if (pr == NULL) 355 panic("ip_init: PF_INET not found"); 356 357 /* Initialize the entire ip_protox[] array to IPPROTO_RAW. */ 358 for (i = 0; i < IPPROTO_MAX; i++) 359 ip_protox[i] = pr - inetsw; 360 /* 361 * Cycle through IP protocols and put them into the appropriate place 362 * in ip_protox[]. 363 */ 364 for (pr = inetdomain.dom_protosw; 365 pr < inetdomain.dom_protoswNPROTOSW; pr++) 366 if (pr->pr_domain->dom_family == PF_INET && 367 pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW) { 368 /* Be careful to only index valid IP protocols. */ 369 if (pr->pr_protocol < IPPROTO_MAX) 370 ip_protox[pr->pr_protocol] = pr - inetsw; 371 } 372 373 netisr_register(&ip_nh); 374 #ifdef RSS 375 netisr_register(&ip_direct_nh); 376 #endif 377 } 378 379 #ifdef VIMAGE 380 static void 381 ip_destroy(void *unused __unused) 382 { 383 int error; 384 385 #ifdef RSS 386 netisr_unregister_vnet(&ip_direct_nh); 387 #endif 388 netisr_unregister_vnet(&ip_nh); 389 390 pfil_head_unregister(V_inet_pfil_head); 391 error = hhook_head_deregister(V_ipsec_hhh_in[HHOOK_IPSEC_INET]); 392 if (error != 0) { 393 printf("%s: WARNING: unable to deregister input helper hook " 394 "type HHOOK_TYPE_IPSEC_IN, id HHOOK_IPSEC_INET: " 395 "error %d returned\n", __func__, error); 396 } 397 error = hhook_head_deregister(V_ipsec_hhh_out[HHOOK_IPSEC_INET]); 398 if (error != 0) { 399 printf("%s: WARNING: unable to deregister output helper hook " 400 "type HHOOK_TYPE_IPSEC_OUT, id HHOOK_IPSEC_INET: " 401 "error %d returned\n", __func__, error); 402 } 403 404 /* Remove the IPv4 addresses from all interfaces. */ 405 in_ifscrub_all(); 406 407 /* Make sure the IPv4 routes are gone as well. */ 408 rib_flush_routes_family(AF_INET); 409 410 /* Destroy IP reassembly queue. */ 411 ipreass_destroy(); 412 413 /* Cleanup in_ifaddr hash table; should be empty. */ 414 hashdestroy(V_in_ifaddrhashtbl, M_IFADDR, V_in_ifaddrhmask); 415 } 416 417 VNET_SYSUNINIT(ip, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, ip_destroy, NULL); 418 #endif 419 420 #ifdef RSS 421 /* 422 * IP direct input routine. 423 * 424 * This is called when reinjecting completed fragments where 425 * all of the previous checking and book-keeping has been done. 426 */ 427 void 428 ip_direct_input(struct mbuf *m) 429 { 430 struct ip *ip; 431 int hlen; 432 433 ip = mtod(m, struct ip *); 434 hlen = ip->ip_hl << 2; 435 436 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 437 if (IPSEC_ENABLED(ipv4)) { 438 if (IPSEC_INPUT(ipv4, m, hlen, ip->ip_p) != 0) 439 return; 440 } 441 #endif /* IPSEC */ 442 IPSTAT_INC(ips_delivered); 443 (*inetsw[ip_protox[ip->ip_p]].pr_input)(&m, &hlen, ip->ip_p); 444 return; 445 } 446 #endif 447 448 /* 449 * Ip input routine. Checksum and byte swap header. If fragmented 450 * try to reassemble. Process options. Pass to next level. 451 */ 452 void 453 ip_input(struct mbuf *m) 454 { 455 MROUTER_RLOCK_TRACKER; 456 struct ip *ip = NULL; 457 struct in_ifaddr *ia = NULL; 458 struct ifaddr *ifa; 459 struct ifnet *ifp; 460 int checkif, hlen = 0; 461 uint16_t sum, ip_len; 462 int dchg = 0; /* dest changed after fw */ 463 struct in_addr odst; /* original dst address */ 464 465 M_ASSERTPKTHDR(m); 466 NET_EPOCH_ASSERT(); 467 468 if (m->m_flags & M_FASTFWD_OURS) { 469 m->m_flags &= ~M_FASTFWD_OURS; 470 /* Set up some basics that will be used later. */ 471 ip = mtod(m, struct ip *); 472 hlen = ip->ip_hl << 2; 473 ip_len = ntohs(ip->ip_len); 474 goto ours; 475 } 476 477 IPSTAT_INC(ips_total); 478 479 if (m->m_pkthdr.len < sizeof(struct ip)) 480 goto tooshort; 481 482 if (m->m_len < sizeof (struct ip) && 483 (m = m_pullup(m, sizeof (struct ip))) == NULL) { 484 IPSTAT_INC(ips_toosmall); 485 return; 486 } 487 ip = mtod(m, struct ip *); 488 489 if (ip->ip_v != IPVERSION) { 490 IPSTAT_INC(ips_badvers); 491 goto bad; 492 } 493 494 hlen = ip->ip_hl << 2; 495 if (hlen < sizeof(struct ip)) { /* minimum header length */ 496 IPSTAT_INC(ips_badhlen); 497 goto bad; 498 } 499 if (hlen > m->m_len) { 500 if ((m = m_pullup(m, hlen)) == NULL) { 501 IPSTAT_INC(ips_badhlen); 502 return; 503 } 504 ip = mtod(m, struct ip *); 505 } 506 507 IP_PROBE(receive, NULL, NULL, ip, m->m_pkthdr.rcvif, ip, NULL); 508 509 /* IN_LOOPBACK must not appear on the wire - RFC1122 */ 510 ifp = m->m_pkthdr.rcvif; 511 if (IN_LOOPBACK(ntohl(ip->ip_dst.s_addr)) || 512 IN_LOOPBACK(ntohl(ip->ip_src.s_addr))) { 513 if ((ifp->if_flags & IFF_LOOPBACK) == 0) { 514 IPSTAT_INC(ips_badaddr); 515 goto bad; 516 } 517 } 518 519 if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) { 520 sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID); 521 } else { 522 if (hlen == sizeof(struct ip)) { 523 sum = in_cksum_hdr(ip); 524 } else { 525 sum = in_cksum(m, hlen); 526 } 527 } 528 if (sum) { 529 IPSTAT_INC(ips_badsum); 530 goto bad; 531 } 532 533 #ifdef ALTQ 534 if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0) 535 /* packet is dropped by traffic conditioner */ 536 return; 537 #endif 538 539 ip_len = ntohs(ip->ip_len); 540 if (ip_len < hlen) { 541 IPSTAT_INC(ips_badlen); 542 goto bad; 543 } 544 545 /* 546 * Check that the amount of data in the buffers 547 * is as at least much as the IP header would have us expect. 548 * Trim mbufs if longer than we expect. 549 * Drop packet if shorter than we expect. 550 */ 551 if (m->m_pkthdr.len < ip_len) { 552 tooshort: 553 IPSTAT_INC(ips_tooshort); 554 goto bad; 555 } 556 if (m->m_pkthdr.len > ip_len) { 557 if (m->m_len == m->m_pkthdr.len) { 558 m->m_len = ip_len; 559 m->m_pkthdr.len = ip_len; 560 } else 561 m_adj(m, ip_len - m->m_pkthdr.len); 562 } 563 564 /* 565 * Try to forward the packet, but if we fail continue. 566 * ip_tryforward() does not generate redirects, so fall 567 * through to normal processing if redirects are required. 568 * ip_tryforward() does inbound and outbound packet firewall 569 * processing. If firewall has decided that destination becomes 570 * our local address, it sets M_FASTFWD_OURS flag. In this 571 * case skip another inbound firewall processing and update 572 * ip pointer. 573 */ 574 if (V_ipforwarding != 0 575 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 576 && (!IPSEC_ENABLED(ipv4) || 577 IPSEC_CAPS(ipv4, m, IPSEC_CAP_OPERABLE) == 0) 578 #endif 579 ) { 580 if ((m = ip_tryforward(m)) == NULL) 581 return; 582 if (m->m_flags & M_FASTFWD_OURS) { 583 m->m_flags &= ~M_FASTFWD_OURS; 584 ip = mtod(m, struct ip *); 585 goto ours; 586 } 587 } 588 589 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 590 /* 591 * Bypass packet filtering for packets previously handled by IPsec. 592 */ 593 if (IPSEC_ENABLED(ipv4) && 594 IPSEC_CAPS(ipv4, m, IPSEC_CAP_BYPASS_FILTER) != 0) 595 goto passin; 596 #endif 597 598 /* 599 * Run through list of hooks for input packets. 600 * 601 * NB: Beware of the destination address changing (e.g. 602 * by NAT rewriting). When this happens, tell 603 * ip_forward to do the right thing. 604 */ 605 606 /* Jump over all PFIL processing if hooks are not active. */ 607 if (!PFIL_HOOKED_IN(V_inet_pfil_head)) 608 goto passin; 609 610 odst = ip->ip_dst; 611 if (pfil_run_hooks(V_inet_pfil_head, &m, ifp, PFIL_IN, NULL) != 612 PFIL_PASS) 613 return; 614 if (m == NULL) /* consumed by filter */ 615 return; 616 617 ip = mtod(m, struct ip *); 618 dchg = (odst.s_addr != ip->ip_dst.s_addr); 619 ifp = m->m_pkthdr.rcvif; 620 621 if (m->m_flags & M_FASTFWD_OURS) { 622 m->m_flags &= ~M_FASTFWD_OURS; 623 goto ours; 624 } 625 if (m->m_flags & M_IP_NEXTHOP) { 626 if (m_tag_find(m, PACKET_TAG_IPFORWARD, NULL) != NULL) { 627 /* 628 * Directly ship the packet on. This allows 629 * forwarding packets originally destined to us 630 * to some other directly connected host. 631 */ 632 ip_forward(m, 1); 633 return; 634 } 635 } 636 passin: 637 638 /* 639 * Process options and, if not destined for us, 640 * ship it on. ip_dooptions returns 1 when an 641 * error was detected (causing an icmp message 642 * to be sent and the original packet to be freed). 643 */ 644 if (hlen > sizeof (struct ip) && ip_dooptions(m, 0)) 645 return; 646 647 /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no 648 * matter if it is destined to another node, or whether it is 649 * a multicast one, RSVP wants it! and prevents it from being forwarded 650 * anywhere else. Also checks if the rsvp daemon is running before 651 * grabbing the packet. 652 */ 653 if (V_rsvp_on && ip->ip_p==IPPROTO_RSVP) 654 goto ours; 655 656 /* 657 * Check our list of addresses, to see if the packet is for us. 658 * If we don't have any addresses, assume any unicast packet 659 * we receive might be for us (and let the upper layers deal 660 * with it). 661 */ 662 if (CK_STAILQ_EMPTY(&V_in_ifaddrhead) && 663 (m->m_flags & (M_MCAST|M_BCAST)) == 0) 664 goto ours; 665 666 /* 667 * Enable a consistency check between the destination address 668 * and the arrival interface for a unicast packet (the RFC 1122 669 * strong ES model) if IP forwarding is disabled and the packet 670 * is not locally generated and the packet is not subject to 671 * 'ipfw fwd'. 672 * 673 * XXX - Checking also should be disabled if the destination 674 * address is ipnat'ed to a different interface. 675 * 676 * XXX - Checking is incompatible with IP aliases added 677 * to the loopback interface instead of the interface where 678 * the packets are received. 679 * 680 * XXX - This is the case for carp vhost IPs as well so we 681 * insert a workaround. If the packet got here, we already 682 * checked with carp_iamatch() and carp_forus(). 683 */ 684 checkif = V_ip_checkinterface && (V_ipforwarding == 0) && 685 ifp != NULL && ((ifp->if_flags & IFF_LOOPBACK) == 0) && 686 ifp->if_carp == NULL && (dchg == 0); 687 688 /* 689 * Check for exact addresses in the hash bucket. 690 */ 691 CK_LIST_FOREACH(ia, INADDR_HASH(ip->ip_dst.s_addr), ia_hash) { 692 /* 693 * If the address matches, verify that the packet 694 * arrived via the correct interface if checking is 695 * enabled. 696 */ 697 if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr && 698 (!checkif || ia->ia_ifp == ifp)) { 699 counter_u64_add(ia->ia_ifa.ifa_ipackets, 1); 700 counter_u64_add(ia->ia_ifa.ifa_ibytes, 701 m->m_pkthdr.len); 702 goto ours; 703 } 704 } 705 706 /* 707 * Check for broadcast addresses. 708 * 709 * Only accept broadcast packets that arrive via the matching 710 * interface. Reception of forwarded directed broadcasts would 711 * be handled via ip_forward() and ether_output() with the loopback 712 * into the stack for SIMPLEX interfaces handled by ether_output(). 713 */ 714 if (ifp != NULL && ifp->if_flags & IFF_BROADCAST) { 715 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 716 if (ifa->ifa_addr->sa_family != AF_INET) 717 continue; 718 ia = ifatoia(ifa); 719 if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr == 720 ip->ip_dst.s_addr) { 721 counter_u64_add(ia->ia_ifa.ifa_ipackets, 1); 722 counter_u64_add(ia->ia_ifa.ifa_ibytes, 723 m->m_pkthdr.len); 724 goto ours; 725 } 726 #ifdef BOOTP_COMPAT 727 if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY) { 728 counter_u64_add(ia->ia_ifa.ifa_ipackets, 1); 729 counter_u64_add(ia->ia_ifa.ifa_ibytes, 730 m->m_pkthdr.len); 731 goto ours; 732 } 733 #endif 734 } 735 ia = NULL; 736 } 737 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) { 738 MROUTER_RLOCK(); 739 /* 740 * RFC 3927 2.7: Do not forward multicast packets from 741 * IN_LINKLOCAL. 742 */ 743 if (V_ip_mrouter && !IN_LINKLOCAL(ntohl(ip->ip_src.s_addr))) { 744 /* 745 * If we are acting as a multicast router, all 746 * incoming multicast packets are passed to the 747 * kernel-level multicast forwarding function. 748 * The packet is returned (relatively) intact; if 749 * ip_mforward() returns a non-zero value, the packet 750 * must be discarded, else it may be accepted below. 751 */ 752 if (ip_mforward && ip_mforward(ip, ifp, m, 0) != 0) { 753 MROUTER_RUNLOCK(); 754 IPSTAT_INC(ips_cantforward); 755 m_freem(m); 756 return; 757 } 758 759 /* 760 * The process-level routing daemon needs to receive 761 * all multicast IGMP packets, whether or not this 762 * host belongs to their destination groups. 763 */ 764 if (ip->ip_p == IPPROTO_IGMP) { 765 MROUTER_RUNLOCK(); 766 goto ours; 767 } 768 IPSTAT_INC(ips_forward); 769 } 770 MROUTER_RUNLOCK(); 771 /* 772 * Assume the packet is for us, to avoid prematurely taking 773 * a lock on the in_multi hash. Protocols must perform 774 * their own filtering and update statistics accordingly. 775 */ 776 goto ours; 777 } 778 if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST) 779 goto ours; 780 if (ip->ip_dst.s_addr == INADDR_ANY) 781 goto ours; 782 /* RFC 3927 2.7: Do not forward packets to or from IN_LINKLOCAL. */ 783 if (IN_LINKLOCAL(ntohl(ip->ip_dst.s_addr)) || 784 IN_LINKLOCAL(ntohl(ip->ip_src.s_addr))) { 785 IPSTAT_INC(ips_cantforward); 786 m_freem(m); 787 return; 788 } 789 790 /* 791 * Not for us; forward if possible and desirable. 792 */ 793 if (V_ipforwarding == 0) { 794 IPSTAT_INC(ips_cantforward); 795 m_freem(m); 796 } else { 797 ip_forward(m, dchg); 798 } 799 return; 800 801 ours: 802 #ifdef IPSTEALTH 803 /* 804 * IPSTEALTH: Process non-routing options only 805 * if the packet is destined for us. 806 */ 807 if (V_ipstealth && hlen > sizeof (struct ip) && ip_dooptions(m, 1)) 808 return; 809 #endif /* IPSTEALTH */ 810 811 /* 812 * Attempt reassembly; if it succeeds, proceed. 813 * ip_reass() will return a different mbuf. 814 */ 815 if (ip->ip_off & htons(IP_MF | IP_OFFMASK)) { 816 /* XXXGL: shouldn't we save & set m_flags? */ 817 m = ip_reass(m); 818 if (m == NULL) 819 return; 820 ip = mtod(m, struct ip *); 821 /* Get the header length of the reassembled packet */ 822 hlen = ip->ip_hl << 2; 823 } 824 825 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 826 if (IPSEC_ENABLED(ipv4)) { 827 if (IPSEC_INPUT(ipv4, m, hlen, ip->ip_p) != 0) 828 return; 829 } 830 #endif /* IPSEC */ 831 832 /* 833 * Switch out to protocol's input routine. 834 */ 835 IPSTAT_INC(ips_delivered); 836 837 (*inetsw[ip_protox[ip->ip_p]].pr_input)(&m, &hlen, ip->ip_p); 838 return; 839 bad: 840 m_freem(m); 841 } 842 843 /* 844 * IP timer processing; 845 * if a timer expires on a reassembly 846 * queue, discard it. 847 */ 848 void 849 ip_slowtimo(void) 850 { 851 VNET_ITERATOR_DECL(vnet_iter); 852 853 VNET_LIST_RLOCK_NOSLEEP(); 854 VNET_FOREACH(vnet_iter) { 855 CURVNET_SET(vnet_iter); 856 ipreass_slowtimo(); 857 CURVNET_RESTORE(); 858 } 859 VNET_LIST_RUNLOCK_NOSLEEP(); 860 } 861 862 void 863 ip_drain(void) 864 { 865 VNET_ITERATOR_DECL(vnet_iter); 866 867 VNET_LIST_RLOCK_NOSLEEP(); 868 VNET_FOREACH(vnet_iter) { 869 CURVNET_SET(vnet_iter); 870 ipreass_drain(); 871 CURVNET_RESTORE(); 872 } 873 VNET_LIST_RUNLOCK_NOSLEEP(); 874 } 875 876 /* 877 * The protocol to be inserted into ip_protox[] must be already registered 878 * in inetsw[], either statically or through pf_proto_register(). 879 */ 880 int 881 ipproto_register(short ipproto) 882 { 883 struct protosw *pr; 884 885 /* Sanity checks. */ 886 if (ipproto <= 0 || ipproto >= IPPROTO_MAX) 887 return (EPROTONOSUPPORT); 888 889 /* 890 * The protocol slot must not be occupied by another protocol 891 * already. An index pointing to IPPROTO_RAW is unused. 892 */ 893 pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW); 894 if (pr == NULL) 895 return (EPFNOSUPPORT); 896 if (ip_protox[ipproto] != pr - inetsw) /* IPPROTO_RAW */ 897 return (EEXIST); 898 899 /* Find the protocol position in inetsw[] and set the index. */ 900 for (pr = inetdomain.dom_protosw; 901 pr < inetdomain.dom_protoswNPROTOSW; pr++) { 902 if (pr->pr_domain->dom_family == PF_INET && 903 pr->pr_protocol && pr->pr_protocol == ipproto) { 904 ip_protox[pr->pr_protocol] = pr - inetsw; 905 return (0); 906 } 907 } 908 return (EPROTONOSUPPORT); 909 } 910 911 int 912 ipproto_unregister(short ipproto) 913 { 914 struct protosw *pr; 915 916 /* Sanity checks. */ 917 if (ipproto <= 0 || ipproto >= IPPROTO_MAX) 918 return (EPROTONOSUPPORT); 919 920 /* Check if the protocol was indeed registered. */ 921 pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW); 922 if (pr == NULL) 923 return (EPFNOSUPPORT); 924 if (ip_protox[ipproto] == pr - inetsw) /* IPPROTO_RAW */ 925 return (ENOENT); 926 927 /* Reset the protocol slot to IPPROTO_RAW. */ 928 ip_protox[ipproto] = pr - inetsw; 929 return (0); 930 } 931 932 u_char inetctlerrmap[PRC_NCMDS] = { 933 0, 0, 0, 0, 934 0, EMSGSIZE, EHOSTDOWN, EHOSTUNREACH, 935 EHOSTUNREACH, EHOSTUNREACH, ECONNREFUSED, ECONNREFUSED, 936 EMSGSIZE, EHOSTUNREACH, 0, 0, 937 0, 0, EHOSTUNREACH, 0, 938 ENOPROTOOPT, ECONNREFUSED 939 }; 940 941 /* 942 * Forward a packet. If some error occurs return the sender 943 * an icmp packet. Note we can't always generate a meaningful 944 * icmp message because icmp doesn't have a large enough repertoire 945 * of codes and types. 946 * 947 * If not forwarding, just drop the packet. This could be confusing 948 * if ipforwarding was zero but some routing protocol was advancing 949 * us as a gateway to somewhere. However, we must let the routing 950 * protocol deal with that. 951 * 952 * The srcrt parameter indicates whether the packet is being forwarded 953 * via a source route. 954 */ 955 void 956 ip_forward(struct mbuf *m, int srcrt) 957 { 958 struct ip *ip = mtod(m, struct ip *); 959 struct in_ifaddr *ia; 960 struct mbuf *mcopy; 961 struct sockaddr_in *sin; 962 struct in_addr dest; 963 struct route ro; 964 uint32_t flowid; 965 int error, type = 0, code = 0, mtu = 0; 966 967 NET_EPOCH_ASSERT(); 968 969 if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) { 970 IPSTAT_INC(ips_cantforward); 971 m_freem(m); 972 return; 973 } 974 if ( 975 #ifdef IPSTEALTH 976 V_ipstealth == 0 && 977 #endif 978 ip->ip_ttl <= IPTTLDEC) { 979 icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, 0, 0); 980 return; 981 } 982 983 bzero(&ro, sizeof(ro)); 984 sin = (struct sockaddr_in *)&ro.ro_dst; 985 sin->sin_family = AF_INET; 986 sin->sin_len = sizeof(*sin); 987 sin->sin_addr = ip->ip_dst; 988 flowid = m->m_pkthdr.flowid; 989 ro.ro_nh = fib4_lookup(M_GETFIB(m), ip->ip_dst, 0, NHR_REF, flowid); 990 if (ro.ro_nh != NULL) { 991 ia = ifatoia(ro.ro_nh->nh_ifa); 992 } else 993 ia = NULL; 994 /* 995 * Save the IP header and at most 8 bytes of the payload, 996 * in case we need to generate an ICMP message to the src. 997 * 998 * XXX this can be optimized a lot by saving the data in a local 999 * buffer on the stack (72 bytes at most), and only allocating the 1000 * mbuf if really necessary. The vast majority of the packets 1001 * are forwarded without having to send an ICMP back (either 1002 * because unnecessary, or because rate limited), so we are 1003 * really we are wasting a lot of work here. 1004 * 1005 * We don't use m_copym() because it might return a reference 1006 * to a shared cluster. Both this function and ip_output() 1007 * assume exclusive access to the IP header in `m', so any 1008 * data in a cluster may change before we reach icmp_error(). 1009 */ 1010 mcopy = m_gethdr(M_NOWAIT, m->m_type); 1011 if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, M_NOWAIT)) { 1012 /* 1013 * It's probably ok if the pkthdr dup fails (because 1014 * the deep copy of the tag chain failed), but for now 1015 * be conservative and just discard the copy since 1016 * code below may some day want the tags. 1017 */ 1018 m_free(mcopy); 1019 mcopy = NULL; 1020 } 1021 if (mcopy != NULL) { 1022 mcopy->m_len = min(ntohs(ip->ip_len), M_TRAILINGSPACE(mcopy)); 1023 mcopy->m_pkthdr.len = mcopy->m_len; 1024 m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t)); 1025 } 1026 #ifdef IPSTEALTH 1027 if (V_ipstealth == 0) 1028 #endif 1029 ip->ip_ttl -= IPTTLDEC; 1030 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1031 if (IPSEC_ENABLED(ipv4)) { 1032 if ((error = IPSEC_FORWARD(ipv4, m)) != 0) { 1033 /* mbuf consumed by IPsec */ 1034 RO_NHFREE(&ro); 1035 m_freem(mcopy); 1036 if (error != EINPROGRESS) 1037 IPSTAT_INC(ips_cantforward); 1038 return; 1039 } 1040 /* No IPsec processing required */ 1041 } 1042 #endif /* IPSEC */ 1043 /* 1044 * If forwarding packet using same interface that it came in on, 1045 * perhaps should send a redirect to sender to shortcut a hop. 1046 * Only send redirect if source is sending directly to us, 1047 * and if packet was not source routed (or has any options). 1048 * Also, don't send redirect if forwarding using a default route 1049 * or a route modified by a redirect. 1050 */ 1051 dest.s_addr = 0; 1052 if (!srcrt && V_ipsendredirects && 1053 ia != NULL && ia->ia_ifp == m->m_pkthdr.rcvif) { 1054 struct nhop_object *nh; 1055 1056 nh = ro.ro_nh; 1057 1058 if (nh != NULL && ((nh->nh_flags & (NHF_REDIRECT|NHF_DEFAULT)) == 0)) { 1059 struct in_ifaddr *nh_ia = (struct in_ifaddr *)(nh->nh_ifa); 1060 u_long src = ntohl(ip->ip_src.s_addr); 1061 1062 if (nh_ia != NULL && 1063 (src & nh_ia->ia_subnetmask) == nh_ia->ia_subnet) { 1064 /* Router requirements says to only send host redirects */ 1065 type = ICMP_REDIRECT; 1066 code = ICMP_REDIRECT_HOST; 1067 if (nh->nh_flags & NHF_GATEWAY) { 1068 if (nh->gw_sa.sa_family == AF_INET) 1069 dest.s_addr = nh->gw4_sa.sin_addr.s_addr; 1070 else /* Do not redirect in case gw is AF_INET6 */ 1071 type = 0; 1072 } else 1073 dest.s_addr = ip->ip_dst.s_addr; 1074 } 1075 } 1076 } 1077 1078 error = ip_output(m, NULL, &ro, IP_FORWARDING, NULL, NULL); 1079 1080 if (error == EMSGSIZE && ro.ro_nh) 1081 mtu = ro.ro_nh->nh_mtu; 1082 RO_NHFREE(&ro); 1083 1084 if (error) 1085 IPSTAT_INC(ips_cantforward); 1086 else { 1087 IPSTAT_INC(ips_forward); 1088 if (type) 1089 IPSTAT_INC(ips_redirectsent); 1090 else { 1091 if (mcopy) 1092 m_freem(mcopy); 1093 return; 1094 } 1095 } 1096 if (mcopy == NULL) 1097 return; 1098 1099 switch (error) { 1100 case 0: /* forwarded, but need redirect */ 1101 /* type, code set above */ 1102 break; 1103 1104 case ENETUNREACH: 1105 case EHOSTUNREACH: 1106 case ENETDOWN: 1107 case EHOSTDOWN: 1108 default: 1109 type = ICMP_UNREACH; 1110 code = ICMP_UNREACH_HOST; 1111 break; 1112 1113 case EMSGSIZE: 1114 type = ICMP_UNREACH; 1115 code = ICMP_UNREACH_NEEDFRAG; 1116 /* 1117 * If the MTU was set before make sure we are below the 1118 * interface MTU. 1119 * If the MTU wasn't set before use the interface mtu or 1120 * fall back to the next smaller mtu step compared to the 1121 * current packet size. 1122 */ 1123 if (mtu != 0) { 1124 if (ia != NULL) 1125 mtu = min(mtu, ia->ia_ifp->if_mtu); 1126 } else { 1127 if (ia != NULL) 1128 mtu = ia->ia_ifp->if_mtu; 1129 else 1130 mtu = ip_next_mtu(ntohs(ip->ip_len), 0); 1131 } 1132 IPSTAT_INC(ips_cantfrag); 1133 break; 1134 1135 case ENOBUFS: 1136 case EACCES: /* ipfw denied packet */ 1137 m_freem(mcopy); 1138 return; 1139 } 1140 icmp_error(mcopy, type, code, dest.s_addr, mtu); 1141 } 1142 1143 #define CHECK_SO_CT(sp, ct) \ 1144 (((sp->so_options & SO_TIMESTAMP) && (sp->so_ts_clock == ct)) ? 1 : 0) 1145 1146 void 1147 ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip, 1148 struct mbuf *m) 1149 { 1150 bool stamped; 1151 1152 stamped = false; 1153 if ((inp->inp_socket->so_options & SO_BINTIME) || 1154 CHECK_SO_CT(inp->inp_socket, SO_TS_BINTIME)) { 1155 struct bintime boottimebin, bt; 1156 struct timespec ts1; 1157 1158 if ((m->m_flags & (M_PKTHDR | M_TSTMP)) == (M_PKTHDR | 1159 M_TSTMP)) { 1160 mbuf_tstmp2timespec(m, &ts1); 1161 timespec2bintime(&ts1, &bt); 1162 getboottimebin(&boottimebin); 1163 bintime_add(&bt, &boottimebin); 1164 } else { 1165 bintime(&bt); 1166 } 1167 *mp = sbcreatecontrol((caddr_t)&bt, sizeof(bt), 1168 SCM_BINTIME, SOL_SOCKET); 1169 if (*mp != NULL) { 1170 mp = &(*mp)->m_next; 1171 stamped = true; 1172 } 1173 } 1174 if (CHECK_SO_CT(inp->inp_socket, SO_TS_REALTIME_MICRO)) { 1175 struct bintime boottimebin, bt1; 1176 struct timespec ts1; 1177 struct timeval tv; 1178 1179 if ((m->m_flags & (M_PKTHDR | M_TSTMP)) == (M_PKTHDR | 1180 M_TSTMP)) { 1181 mbuf_tstmp2timespec(m, &ts1); 1182 timespec2bintime(&ts1, &bt1); 1183 getboottimebin(&boottimebin); 1184 bintime_add(&bt1, &boottimebin); 1185 bintime2timeval(&bt1, &tv); 1186 } else { 1187 microtime(&tv); 1188 } 1189 *mp = sbcreatecontrol((caddr_t)&tv, sizeof(tv), 1190 SCM_TIMESTAMP, SOL_SOCKET); 1191 if (*mp != NULL) { 1192 mp = &(*mp)->m_next; 1193 stamped = true; 1194 } 1195 } else if (CHECK_SO_CT(inp->inp_socket, SO_TS_REALTIME)) { 1196 struct bintime boottimebin; 1197 struct timespec ts, ts1; 1198 1199 if ((m->m_flags & (M_PKTHDR | M_TSTMP)) == (M_PKTHDR | 1200 M_TSTMP)) { 1201 mbuf_tstmp2timespec(m, &ts); 1202 getboottimebin(&boottimebin); 1203 bintime2timespec(&boottimebin, &ts1); 1204 timespecadd(&ts, &ts1, &ts); 1205 } else { 1206 nanotime(&ts); 1207 } 1208 *mp = sbcreatecontrol((caddr_t)&ts, sizeof(ts), 1209 SCM_REALTIME, SOL_SOCKET); 1210 if (*mp != NULL) { 1211 mp = &(*mp)->m_next; 1212 stamped = true; 1213 } 1214 } else if (CHECK_SO_CT(inp->inp_socket, SO_TS_MONOTONIC)) { 1215 struct timespec ts; 1216 1217 if ((m->m_flags & (M_PKTHDR | M_TSTMP)) == (M_PKTHDR | 1218 M_TSTMP)) 1219 mbuf_tstmp2timespec(m, &ts); 1220 else 1221 nanouptime(&ts); 1222 *mp = sbcreatecontrol((caddr_t)&ts, sizeof(ts), 1223 SCM_MONOTONIC, SOL_SOCKET); 1224 if (*mp != NULL) { 1225 mp = &(*mp)->m_next; 1226 stamped = true; 1227 } 1228 } 1229 if (stamped && (m->m_flags & (M_PKTHDR | M_TSTMP)) == (M_PKTHDR | 1230 M_TSTMP)) { 1231 struct sock_timestamp_info sti; 1232 1233 bzero(&sti, sizeof(sti)); 1234 sti.st_info_flags = ST_INFO_HW; 1235 if ((m->m_flags & M_TSTMP_HPREC) != 0) 1236 sti.st_info_flags |= ST_INFO_HW_HPREC; 1237 *mp = sbcreatecontrol((caddr_t)&sti, sizeof(sti), SCM_TIME_INFO, 1238 SOL_SOCKET); 1239 if (*mp != NULL) 1240 mp = &(*mp)->m_next; 1241 } 1242 if (inp->inp_flags & INP_RECVDSTADDR) { 1243 *mp = sbcreatecontrol((caddr_t)&ip->ip_dst, 1244 sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP); 1245 if (*mp) 1246 mp = &(*mp)->m_next; 1247 } 1248 if (inp->inp_flags & INP_RECVTTL) { 1249 *mp = sbcreatecontrol((caddr_t)&ip->ip_ttl, 1250 sizeof(u_char), IP_RECVTTL, IPPROTO_IP); 1251 if (*mp) 1252 mp = &(*mp)->m_next; 1253 } 1254 #ifdef notyet 1255 /* XXX 1256 * Moving these out of udp_input() made them even more broken 1257 * than they already were. 1258 */ 1259 /* options were tossed already */ 1260 if (inp->inp_flags & INP_RECVOPTS) { 1261 *mp = sbcreatecontrol((caddr_t)opts_deleted_above, 1262 sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP); 1263 if (*mp) 1264 mp = &(*mp)->m_next; 1265 } 1266 /* ip_srcroute doesn't do what we want here, need to fix */ 1267 if (inp->inp_flags & INP_RECVRETOPTS) { 1268 *mp = sbcreatecontrol((caddr_t)ip_srcroute(m), 1269 sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP); 1270 if (*mp) 1271 mp = &(*mp)->m_next; 1272 } 1273 #endif 1274 if (inp->inp_flags & INP_RECVIF) { 1275 struct ifnet *ifp; 1276 struct sdlbuf { 1277 struct sockaddr_dl sdl; 1278 u_char pad[32]; 1279 } sdlbuf; 1280 struct sockaddr_dl *sdp; 1281 struct sockaddr_dl *sdl2 = &sdlbuf.sdl; 1282 1283 if ((ifp = m->m_pkthdr.rcvif) && 1284 ifp->if_index && ifp->if_index <= V_if_index) { 1285 sdp = (struct sockaddr_dl *)ifp->if_addr->ifa_addr; 1286 /* 1287 * Change our mind and don't try copy. 1288 */ 1289 if (sdp->sdl_family != AF_LINK || 1290 sdp->sdl_len > sizeof(sdlbuf)) { 1291 goto makedummy; 1292 } 1293 bcopy(sdp, sdl2, sdp->sdl_len); 1294 } else { 1295 makedummy: 1296 sdl2->sdl_len = 1297 offsetof(struct sockaddr_dl, sdl_data[0]); 1298 sdl2->sdl_family = AF_LINK; 1299 sdl2->sdl_index = 0; 1300 sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0; 1301 } 1302 *mp = sbcreatecontrol((caddr_t)sdl2, sdl2->sdl_len, 1303 IP_RECVIF, IPPROTO_IP); 1304 if (*mp) 1305 mp = &(*mp)->m_next; 1306 } 1307 if (inp->inp_flags & INP_RECVTOS) { 1308 *mp = sbcreatecontrol((caddr_t)&ip->ip_tos, 1309 sizeof(u_char), IP_RECVTOS, IPPROTO_IP); 1310 if (*mp) 1311 mp = &(*mp)->m_next; 1312 } 1313 1314 if (inp->inp_flags2 & INP_RECVFLOWID) { 1315 uint32_t flowid, flow_type; 1316 1317 flowid = m->m_pkthdr.flowid; 1318 flow_type = M_HASHTYPE_GET(m); 1319 1320 /* 1321 * XXX should handle the failure of one or the 1322 * other - don't populate both? 1323 */ 1324 *mp = sbcreatecontrol((caddr_t) &flowid, 1325 sizeof(uint32_t), IP_FLOWID, IPPROTO_IP); 1326 if (*mp) 1327 mp = &(*mp)->m_next; 1328 *mp = sbcreatecontrol((caddr_t) &flow_type, 1329 sizeof(uint32_t), IP_FLOWTYPE, IPPROTO_IP); 1330 if (*mp) 1331 mp = &(*mp)->m_next; 1332 } 1333 1334 #ifdef RSS 1335 if (inp->inp_flags2 & INP_RECVRSSBUCKETID) { 1336 uint32_t flowid, flow_type; 1337 uint32_t rss_bucketid; 1338 1339 flowid = m->m_pkthdr.flowid; 1340 flow_type = M_HASHTYPE_GET(m); 1341 1342 if (rss_hash2bucket(flowid, flow_type, &rss_bucketid) == 0) { 1343 *mp = sbcreatecontrol((caddr_t) &rss_bucketid, 1344 sizeof(uint32_t), IP_RSSBUCKETID, IPPROTO_IP); 1345 if (*mp) 1346 mp = &(*mp)->m_next; 1347 } 1348 } 1349 #endif 1350 } 1351 1352 /* 1353 * XXXRW: Multicast routing code in ip_mroute.c is generally MPSAFE, but the 1354 * ip_rsvp and ip_rsvp_on variables need to be interlocked with rsvp_on 1355 * locking. This code remains in ip_input.c as ip_mroute.c is optionally 1356 * compiled. 1357 */ 1358 VNET_DEFINE_STATIC(int, ip_rsvp_on); 1359 VNET_DEFINE(struct socket *, ip_rsvpd); 1360 1361 #define V_ip_rsvp_on VNET(ip_rsvp_on) 1362 1363 int 1364 ip_rsvp_init(struct socket *so) 1365 { 1366 1367 if (so->so_type != SOCK_RAW || 1368 so->so_proto->pr_protocol != IPPROTO_RSVP) 1369 return EOPNOTSUPP; 1370 1371 if (V_ip_rsvpd != NULL) 1372 return EADDRINUSE; 1373 1374 V_ip_rsvpd = so; 1375 /* 1376 * This may seem silly, but we need to be sure we don't over-increment 1377 * the RSVP counter, in case something slips up. 1378 */ 1379 if (!V_ip_rsvp_on) { 1380 V_ip_rsvp_on = 1; 1381 V_rsvp_on++; 1382 } 1383 1384 return 0; 1385 } 1386 1387 int 1388 ip_rsvp_done(void) 1389 { 1390 1391 V_ip_rsvpd = NULL; 1392 /* 1393 * This may seem silly, but we need to be sure we don't over-decrement 1394 * the RSVP counter, in case something slips up. 1395 */ 1396 if (V_ip_rsvp_on) { 1397 V_ip_rsvp_on = 0; 1398 V_rsvp_on--; 1399 } 1400 return 0; 1401 } 1402 1403 int 1404 rsvp_input(struct mbuf **mp, int *offp, int proto) 1405 { 1406 struct mbuf *m; 1407 1408 m = *mp; 1409 *mp = NULL; 1410 1411 if (rsvp_input_p) { /* call the real one if loaded */ 1412 *mp = m; 1413 rsvp_input_p(mp, offp, proto); 1414 return (IPPROTO_DONE); 1415 } 1416 1417 /* Can still get packets with rsvp_on = 0 if there is a local member 1418 * of the group to which the RSVP packet is addressed. But in this 1419 * case we want to throw the packet away. 1420 */ 1421 1422 if (!V_rsvp_on) { 1423 m_freem(m); 1424 return (IPPROTO_DONE); 1425 } 1426 1427 if (V_ip_rsvpd != NULL) { 1428 *mp = m; 1429 rip_input(mp, offp, proto); 1430 return (IPPROTO_DONE); 1431 } 1432 /* Drop the packet */ 1433 m_freem(m); 1434 return (IPPROTO_DONE); 1435 } 1436