xref: /freebsd/sys/netinet/ip_input.c (revision 7dfd9569a2f0637fb9a48157b1c1bfe5709faee3)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
30  * $FreeBSD$
31  */
32 
33 #include "opt_bootp.h"
34 #include "opt_ipfw.h"
35 #include "opt_ipstealth.h"
36 #include "opt_ipsec.h"
37 #include "opt_mac.h"
38 #include "opt_carp.h"
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/callout.h>
43 #include <sys/mac.h>
44 #include <sys/mbuf.h>
45 #include <sys/malloc.h>
46 #include <sys/domain.h>
47 #include <sys/protosw.h>
48 #include <sys/socket.h>
49 #include <sys/time.h>
50 #include <sys/kernel.h>
51 #include <sys/syslog.h>
52 #include <sys/sysctl.h>
53 
54 #include <net/pfil.h>
55 #include <net/if.h>
56 #include <net/if_types.h>
57 #include <net/if_var.h>
58 #include <net/if_dl.h>
59 #include <net/route.h>
60 #include <net/netisr.h>
61 
62 #include <netinet/in.h>
63 #include <netinet/in_systm.h>
64 #include <netinet/in_var.h>
65 #include <netinet/ip.h>
66 #include <netinet/in_pcb.h>
67 #include <netinet/ip_var.h>
68 #include <netinet/ip_icmp.h>
69 #include <netinet/ip_options.h>
70 #include <machine/in_cksum.h>
71 #ifdef DEV_CARP
72 #include <netinet/ip_carp.h>
73 #endif
74 #if defined(IPSEC) || defined(FAST_IPSEC)
75 #include <netinet/ip_ipsec.h>
76 #endif /* IPSEC */
77 
78 #include <sys/socketvar.h>
79 
80 /* XXX: Temporary until ipfw_ether and ipfw_bridge are converted. */
81 #include <netinet/ip_fw.h>
82 #include <netinet/ip_dummynet.h>
83 
84 int rsvp_on = 0;
85 
86 int	ipforwarding = 0;
87 SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
88     &ipforwarding, 0, "Enable IP forwarding between interfaces");
89 
90 static int	ipsendredirects = 1; /* XXX */
91 SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
92     &ipsendredirects, 0, "Enable sending IP redirects");
93 
94 int	ip_defttl = IPDEFTTL;
95 SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
96     &ip_defttl, 0, "Maximum TTL on IP packets");
97 
98 static int	ip_keepfaith = 0;
99 SYSCTL_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
100 	&ip_keepfaith,	0,
101 	"Enable packet capture for FAITH IPv4->IPv6 translater daemon");
102 
103 static int	ip_sendsourcequench = 0;
104 SYSCTL_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW,
105 	&ip_sendsourcequench, 0,
106 	"Enable the transmission of source quench packets");
107 
108 int	ip_do_randomid = 0;
109 SYSCTL_INT(_net_inet_ip, OID_AUTO, random_id, CTLFLAG_RW,
110 	&ip_do_randomid, 0,
111 	"Assign random ip_id values");
112 
113 /*
114  * XXX - Setting ip_checkinterface mostly implements the receive side of
115  * the Strong ES model described in RFC 1122, but since the routing table
116  * and transmit implementation do not implement the Strong ES model,
117  * setting this to 1 results in an odd hybrid.
118  *
119  * XXX - ip_checkinterface currently must be disabled if you use ipnat
120  * to translate the destination address to another local interface.
121  *
122  * XXX - ip_checkinterface must be disabled if you add IP aliases
123  * to the loopback interface instead of the interface where the
124  * packets for those addresses are received.
125  */
126 static int	ip_checkinterface = 0;
127 SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
128     &ip_checkinterface, 0, "Verify packet arrives on correct interface");
129 
130 struct pfil_head inet_pfil_hook;	/* Packet filter hooks */
131 
132 static struct	ifqueue ipintrq;
133 static int	ipqmaxlen = IFQ_MAXLEN;
134 
135 extern	struct domain inetdomain;
136 extern	struct protosw inetsw[];
137 u_char	ip_protox[IPPROTO_MAX];
138 struct	in_ifaddrhead in_ifaddrhead; 		/* first inet address */
139 struct	in_ifaddrhashhead *in_ifaddrhashtbl;	/* inet addr hash table  */
140 u_long 	in_ifaddrhmask;				/* mask for hash table */
141 
142 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen, CTLFLAG_RW,
143     &ipintrq.ifq_maxlen, 0, "Maximum size of the IP input queue");
144 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops, CTLFLAG_RD,
145     &ipintrq.ifq_drops, 0, "Number of packets dropped from the IP input queue");
146 
147 struct ipstat ipstat;
148 SYSCTL_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RW,
149     &ipstat, ipstat, "IP statistics (struct ipstat, netinet/ip_var.h)");
150 
151 /*
152  * IP datagram reassembly.
153  */
154 #define IPREASS_NHASH_LOG2      6
155 #define IPREASS_NHASH           (1 << IPREASS_NHASH_LOG2)
156 #define IPREASS_HMASK           (IPREASS_NHASH - 1)
157 #define IPREASS_HASH(x,y) \
158 	(((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
159 
160 static uma_zone_t ipq_zone;
161 static TAILQ_HEAD(ipqhead, ipq) ipq[IPREASS_NHASH];
162 static struct mtx ipqlock;
163 
164 #define	IPQ_LOCK()	mtx_lock(&ipqlock)
165 #define	IPQ_UNLOCK()	mtx_unlock(&ipqlock)
166 #define	IPQ_LOCK_INIT()	mtx_init(&ipqlock, "ipqlock", NULL, MTX_DEF)
167 #define	IPQ_LOCK_ASSERT()	mtx_assert(&ipqlock, MA_OWNED)
168 
169 static void	maxnipq_update(void);
170 static void	ipq_zone_change(void *);
171 
172 static int	maxnipq;	/* Administrative limit on # reass queues. */
173 static int	nipq = 0;	/* Total # of reass queues */
174 SYSCTL_INT(_net_inet_ip, OID_AUTO, fragpackets, CTLFLAG_RD, &nipq, 0,
175 	"Current number of IPv4 fragment reassembly queue entries");
176 
177 static int	maxfragsperpacket;
178 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_RW,
179 	&maxfragsperpacket, 0,
180 	"Maximum number of IPv4 fragments allowed per packet");
181 
182 struct callout	ipport_tick_callout;
183 
184 #ifdef IPCTL_DEFMTU
185 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
186     &ip_mtu, 0, "Default MTU");
187 #endif
188 
189 #ifdef IPSTEALTH
190 int	ipstealth = 0;
191 SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW,
192     &ipstealth, 0, "");
193 #endif
194 
195 /*
196  * ipfw_ether and ipfw_bridge hooks.
197  * XXX: Temporary until those are converted to pfil_hooks as well.
198  */
199 ip_fw_chk_t *ip_fw_chk_ptr = NULL;
200 ip_dn_io_t *ip_dn_io_ptr = NULL;
201 int fw_enable = 1;
202 int fw_one_pass = 1;
203 
204 static void	ip_freef(struct ipqhead *, struct ipq *);
205 
206 /*
207  * IP initialization: fill in IP protocol switch table.
208  * All protocols not implemented in kernel go to raw IP protocol handler.
209  */
210 void
211 ip_init()
212 {
213 	register struct protosw *pr;
214 	register int i;
215 
216 	TAILQ_INIT(&in_ifaddrhead);
217 	in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &in_ifaddrhmask);
218 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
219 	if (pr == NULL)
220 		panic("ip_init: PF_INET not found");
221 
222 	/* Initialize the entire ip_protox[] array to IPPROTO_RAW. */
223 	for (i = 0; i < IPPROTO_MAX; i++)
224 		ip_protox[i] = pr - inetsw;
225 	/*
226 	 * Cycle through IP protocols and put them into the appropriate place
227 	 * in ip_protox[].
228 	 */
229 	for (pr = inetdomain.dom_protosw;
230 	    pr < inetdomain.dom_protoswNPROTOSW; pr++)
231 		if (pr->pr_domain->dom_family == PF_INET &&
232 		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW) {
233 			/* Be careful to only index valid IP protocols. */
234 			if (pr->pr_protocol < IPPROTO_MAX)
235 				ip_protox[pr->pr_protocol] = pr - inetsw;
236 		}
237 
238 	/* Initialize packet filter hooks. */
239 	inet_pfil_hook.ph_type = PFIL_TYPE_AF;
240 	inet_pfil_hook.ph_af = AF_INET;
241 	if ((i = pfil_head_register(&inet_pfil_hook)) != 0)
242 		printf("%s: WARNING: unable to register pfil hook, "
243 			"error %d\n", __func__, i);
244 
245 	/* Initialize IP reassembly queue. */
246 	IPQ_LOCK_INIT();
247 	for (i = 0; i < IPREASS_NHASH; i++)
248 	    TAILQ_INIT(&ipq[i]);
249 	maxnipq = nmbclusters / 32;
250 	maxfragsperpacket = 16;
251 	ipq_zone = uma_zcreate("ipq", sizeof(struct ipq), NULL, NULL, NULL,
252 	    NULL, UMA_ALIGN_PTR, 0);
253 	maxnipq_update();
254 
255 	/* Start ipport_tick. */
256 	callout_init(&ipport_tick_callout, CALLOUT_MPSAFE);
257 	ipport_tick(NULL);
258 	EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL,
259 		SHUTDOWN_PRI_DEFAULT);
260 	EVENTHANDLER_REGISTER(nmbclusters_change, ipq_zone_change,
261 		NULL, EVENTHANDLER_PRI_ANY);
262 
263 	/* Initialize various other remaining things. */
264 	ip_id = time_second & 0xffff;
265 	ipintrq.ifq_maxlen = ipqmaxlen;
266 	mtx_init(&ipintrq.ifq_mtx, "ip_inq", NULL, MTX_DEF);
267 	netisr_register(NETISR_IP, ip_input, &ipintrq, NETISR_MPSAFE);
268 }
269 
270 void ip_fini(xtp)
271 	void *xtp;
272 {
273 	callout_stop(&ipport_tick_callout);
274 }
275 
276 /*
277  * Ip input routine.  Checksum and byte swap header.  If fragmented
278  * try to reassemble.  Process options.  Pass to next level.
279  */
280 void
281 ip_input(struct mbuf *m)
282 {
283 	struct ip *ip = NULL;
284 	struct in_ifaddr *ia = NULL;
285 	struct ifaddr *ifa;
286 	int    checkif, hlen = 0;
287 	u_short sum;
288 	int dchg = 0;				/* dest changed after fw */
289 	struct in_addr odst;			/* original dst address */
290 
291   	M_ASSERTPKTHDR(m);
292 
293 	if (m->m_flags & M_FASTFWD_OURS) {
294 		/*
295 		 * Firewall or NAT changed destination to local.
296 		 * We expect ip_len and ip_off to be in host byte order.
297 		 */
298 		m->m_flags &= ~M_FASTFWD_OURS;
299 		/* Set up some basics that will be used later. */
300 		ip = mtod(m, struct ip *);
301 		hlen = ip->ip_hl << 2;
302   		goto ours;
303   	}
304 
305 	ipstat.ips_total++;
306 
307 	if (m->m_pkthdr.len < sizeof(struct ip))
308 		goto tooshort;
309 
310 	if (m->m_len < sizeof (struct ip) &&
311 	    (m = m_pullup(m, sizeof (struct ip))) == NULL) {
312 		ipstat.ips_toosmall++;
313 		return;
314 	}
315 	ip = mtod(m, struct ip *);
316 
317 	if (ip->ip_v != IPVERSION) {
318 		ipstat.ips_badvers++;
319 		goto bad;
320 	}
321 
322 	hlen = ip->ip_hl << 2;
323 	if (hlen < sizeof(struct ip)) {	/* minimum header length */
324 		ipstat.ips_badhlen++;
325 		goto bad;
326 	}
327 	if (hlen > m->m_len) {
328 		if ((m = m_pullup(m, hlen)) == NULL) {
329 			ipstat.ips_badhlen++;
330 			return;
331 		}
332 		ip = mtod(m, struct ip *);
333 	}
334 
335 	/* 127/8 must not appear on wire - RFC1122 */
336 	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
337 	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
338 		if ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) {
339 			ipstat.ips_badaddr++;
340 			goto bad;
341 		}
342 	}
343 
344 	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
345 		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
346 	} else {
347 		if (hlen == sizeof(struct ip)) {
348 			sum = in_cksum_hdr(ip);
349 		} else {
350 			sum = in_cksum(m, hlen);
351 		}
352 	}
353 	if (sum) {
354 		ipstat.ips_badsum++;
355 		goto bad;
356 	}
357 
358 #ifdef ALTQ
359 	if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0)
360 		/* packet is dropped by traffic conditioner */
361 		return;
362 #endif
363 
364 	/*
365 	 * Convert fields to host representation.
366 	 */
367 	ip->ip_len = ntohs(ip->ip_len);
368 	if (ip->ip_len < hlen) {
369 		ipstat.ips_badlen++;
370 		goto bad;
371 	}
372 	ip->ip_off = ntohs(ip->ip_off);
373 
374 	/*
375 	 * Check that the amount of data in the buffers
376 	 * is as at least much as the IP header would have us expect.
377 	 * Trim mbufs if longer than we expect.
378 	 * Drop packet if shorter than we expect.
379 	 */
380 	if (m->m_pkthdr.len < ip->ip_len) {
381 tooshort:
382 		ipstat.ips_tooshort++;
383 		goto bad;
384 	}
385 	if (m->m_pkthdr.len > ip->ip_len) {
386 		if (m->m_len == m->m_pkthdr.len) {
387 			m->m_len = ip->ip_len;
388 			m->m_pkthdr.len = ip->ip_len;
389 		} else
390 			m_adj(m, ip->ip_len - m->m_pkthdr.len);
391 	}
392 #if defined(IPSEC) || defined(FAST_IPSEC)
393 	/*
394 	 * Bypass packet filtering for packets from a tunnel (gif).
395 	 */
396 	if (ip_ipsec_filtergif(m))
397 		goto passin;
398 #endif /* IPSEC */
399 
400 	/*
401 	 * Run through list of hooks for input packets.
402 	 *
403 	 * NB: Beware of the destination address changing (e.g.
404 	 *     by NAT rewriting).  When this happens, tell
405 	 *     ip_forward to do the right thing.
406 	 */
407 
408 	/* Jump over all PFIL processing if hooks are not active. */
409 	if (!PFIL_HOOKED(&inet_pfil_hook))
410 		goto passin;
411 
412 	odst = ip->ip_dst;
413 	if (pfil_run_hooks(&inet_pfil_hook, &m, m->m_pkthdr.rcvif,
414 	    PFIL_IN, NULL) != 0)
415 		return;
416 	if (m == NULL)			/* consumed by filter */
417 		return;
418 
419 	ip = mtod(m, struct ip *);
420 	dchg = (odst.s_addr != ip->ip_dst.s_addr);
421 
422 #ifdef IPFIREWALL_FORWARD
423 	if (m->m_flags & M_FASTFWD_OURS) {
424 		m->m_flags &= ~M_FASTFWD_OURS;
425 		goto ours;
426 	}
427 #ifndef IPFIREWALL_FORWARD_EXTENDED
428 	dchg = (m_tag_find(m, PACKET_TAG_IPFORWARD, NULL) != NULL);
429 #else
430 	if ((dchg = (m_tag_find(m, PACKET_TAG_IPFORWARD, NULL) != NULL)) != 0) {
431 		/*
432 		 * Directly ship on the packet.  This allows to forward packets
433 		 * that were destined for us to some other directly connected
434 		 * host.
435 		 */
436 		ip_forward(m, dchg);
437 		return;
438 	}
439 #endif /* IPFIREWALL_FORWARD_EXTENDED */
440 #endif /* IPFIREWALL_FORWARD */
441 
442 passin:
443 	/*
444 	 * Process options and, if not destined for us,
445 	 * ship it on.  ip_dooptions returns 1 when an
446 	 * error was detected (causing an icmp message
447 	 * to be sent and the original packet to be freed).
448 	 */
449 	if (hlen > sizeof (struct ip) && ip_dooptions(m, 0))
450 		return;
451 
452         /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
453          * matter if it is destined to another node, or whether it is
454          * a multicast one, RSVP wants it! and prevents it from being forwarded
455          * anywhere else. Also checks if the rsvp daemon is running before
456 	 * grabbing the packet.
457          */
458 	if (rsvp_on && ip->ip_p==IPPROTO_RSVP)
459 		goto ours;
460 
461 	/*
462 	 * Check our list of addresses, to see if the packet is for us.
463 	 * If we don't have any addresses, assume any unicast packet
464 	 * we receive might be for us (and let the upper layers deal
465 	 * with it).
466 	 */
467 	if (TAILQ_EMPTY(&in_ifaddrhead) &&
468 	    (m->m_flags & (M_MCAST|M_BCAST)) == 0)
469 		goto ours;
470 
471 	/*
472 	 * Enable a consistency check between the destination address
473 	 * and the arrival interface for a unicast packet (the RFC 1122
474 	 * strong ES model) if IP forwarding is disabled and the packet
475 	 * is not locally generated and the packet is not subject to
476 	 * 'ipfw fwd'.
477 	 *
478 	 * XXX - Checking also should be disabled if the destination
479 	 * address is ipnat'ed to a different interface.
480 	 *
481 	 * XXX - Checking is incompatible with IP aliases added
482 	 * to the loopback interface instead of the interface where
483 	 * the packets are received.
484 	 *
485 	 * XXX - This is the case for carp vhost IPs as well so we
486 	 * insert a workaround. If the packet got here, we already
487 	 * checked with carp_iamatch() and carp_forus().
488 	 */
489 	checkif = ip_checkinterface && (ipforwarding == 0) &&
490 	    m->m_pkthdr.rcvif != NULL &&
491 	    ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) &&
492 #ifdef DEV_CARP
493 	    !m->m_pkthdr.rcvif->if_carp &&
494 #endif
495 	    (dchg == 0);
496 
497 	/*
498 	 * Check for exact addresses in the hash bucket.
499 	 */
500 	LIST_FOREACH(ia, INADDR_HASH(ip->ip_dst.s_addr), ia_hash) {
501 		/*
502 		 * If the address matches, verify that the packet
503 		 * arrived via the correct interface if checking is
504 		 * enabled.
505 		 */
506 		if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr &&
507 		    (!checkif || ia->ia_ifp == m->m_pkthdr.rcvif))
508 			goto ours;
509 	}
510 	/*
511 	 * Check for broadcast addresses.
512 	 *
513 	 * Only accept broadcast packets that arrive via the matching
514 	 * interface.  Reception of forwarded directed broadcasts would
515 	 * be handled via ip_forward() and ether_output() with the loopback
516 	 * into the stack for SIMPLEX interfaces handled by ether_output().
517 	 */
518 	if (m->m_pkthdr.rcvif != NULL &&
519 	    m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
520 	        TAILQ_FOREACH(ifa, &m->m_pkthdr.rcvif->if_addrhead, ifa_link) {
521 			if (ifa->ifa_addr->sa_family != AF_INET)
522 				continue;
523 			ia = ifatoia(ifa);
524 			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
525 			    ip->ip_dst.s_addr)
526 				goto ours;
527 			if (ia->ia_netbroadcast.s_addr == ip->ip_dst.s_addr)
528 				goto ours;
529 #ifdef BOOTP_COMPAT
530 			if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY)
531 				goto ours;
532 #endif
533 		}
534 	}
535 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
536 		struct in_multi *inm;
537 		if (ip_mrouter) {
538 			/*
539 			 * If we are acting as a multicast router, all
540 			 * incoming multicast packets are passed to the
541 			 * kernel-level multicast forwarding function.
542 			 * The packet is returned (relatively) intact; if
543 			 * ip_mforward() returns a non-zero value, the packet
544 			 * must be discarded, else it may be accepted below.
545 			 */
546 			if (ip_mforward &&
547 			    ip_mforward(ip, m->m_pkthdr.rcvif, m, 0) != 0) {
548 				ipstat.ips_cantforward++;
549 				m_freem(m);
550 				return;
551 			}
552 
553 			/*
554 			 * The process-level routing daemon needs to receive
555 			 * all multicast IGMP packets, whether or not this
556 			 * host belongs to their destination groups.
557 			 */
558 			if (ip->ip_p == IPPROTO_IGMP)
559 				goto ours;
560 			ipstat.ips_forward++;
561 		}
562 		/*
563 		 * See if we belong to the destination multicast group on the
564 		 * arrival interface.
565 		 */
566 		IN_MULTI_LOCK();
567 		IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
568 		IN_MULTI_UNLOCK();
569 		if (inm == NULL) {
570 			ipstat.ips_notmember++;
571 			m_freem(m);
572 			return;
573 		}
574 		goto ours;
575 	}
576 	if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
577 		goto ours;
578 	if (ip->ip_dst.s_addr == INADDR_ANY)
579 		goto ours;
580 
581 	/*
582 	 * FAITH(Firewall Aided Internet Translator)
583 	 */
584 	if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
585 		if (ip_keepfaith) {
586 			if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
587 				goto ours;
588 		}
589 		m_freem(m);
590 		return;
591 	}
592 
593 	/*
594 	 * Not for us; forward if possible and desirable.
595 	 */
596 	if (ipforwarding == 0) {
597 		ipstat.ips_cantforward++;
598 		m_freem(m);
599 	} else {
600 #if defined(IPSEC) || defined(FAST_IPSEC)
601 		if (ip_ipsec_fwd(m))
602 			goto bad;
603 #endif /* IPSEC */
604 		ip_forward(m, dchg);
605 	}
606 	return;
607 
608 ours:
609 #ifdef IPSTEALTH
610 	/*
611 	 * IPSTEALTH: Process non-routing options only
612 	 * if the packet is destined for us.
613 	 */
614 	if (ipstealth && hlen > sizeof (struct ip) &&
615 	    ip_dooptions(m, 1))
616 		return;
617 #endif /* IPSTEALTH */
618 
619 	/* Count the packet in the ip address stats */
620 	if (ia != NULL) {
621 		ia->ia_ifa.if_ipackets++;
622 		ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
623 	}
624 
625 	/*
626 	 * Attempt reassembly; if it succeeds, proceed.
627 	 * ip_reass() will return a different mbuf.
628 	 */
629 	if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
630 		m = ip_reass(m);
631 		if (m == NULL)
632 			return;
633 		ip = mtod(m, struct ip *);
634 		/* Get the header length of the reassembled packet */
635 		hlen = ip->ip_hl << 2;
636 	}
637 
638 	/*
639 	 * Further protocols expect the packet length to be w/o the
640 	 * IP header.
641 	 */
642 	ip->ip_len -= hlen;
643 
644 #if defined(IPSEC) || defined(FAST_IPSEC)
645 	/*
646 	 * enforce IPsec policy checking if we are seeing last header.
647 	 * note that we do not visit this with protocols with pcb layer
648 	 * code - like udp/tcp/raw ip.
649 	 */
650 	if (ip_ipsec_input(m))
651 		goto bad;
652 #endif /* IPSEC */
653 
654 	/*
655 	 * Switch out to protocol's input routine.
656 	 */
657 	ipstat.ips_delivered++;
658 
659 	(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
660 	return;
661 bad:
662 	m_freem(m);
663 }
664 
665 /*
666  * After maxnipq has been updated, propagate the change to UMA.  The UMA zone
667  * max has slightly different semantics than the sysctl, for historical
668  * reasons.
669  */
670 static void
671 maxnipq_update(void)
672 {
673 
674 	/*
675 	 * -1 for unlimited allocation.
676 	 */
677 	if (maxnipq < 0)
678 		uma_zone_set_max(ipq_zone, 0);
679 	/*
680 	 * Positive number for specific bound.
681 	 */
682 	if (maxnipq > 0)
683 		uma_zone_set_max(ipq_zone, maxnipq);
684 	/*
685 	 * Zero specifies no further fragment queue allocation -- set the
686 	 * bound very low, but rely on implementation elsewhere to actually
687 	 * prevent allocation and reclaim current queues.
688 	 */
689 	if (maxnipq == 0)
690 		uma_zone_set_max(ipq_zone, 1);
691 }
692 
693 static void
694 ipq_zone_change(void *tag)
695 {
696 
697 	if (maxnipq > 0 && maxnipq < (nmbclusters / 32)) {
698 		maxnipq = nmbclusters / 32;
699 		maxnipq_update();
700 	}
701 }
702 
703 static int
704 sysctl_maxnipq(SYSCTL_HANDLER_ARGS)
705 {
706 	int error, i;
707 
708 	i = maxnipq;
709 	error = sysctl_handle_int(oidp, &i, 0, req);
710 	if (error || !req->newptr)
711 		return (error);
712 
713 	/*
714 	 * XXXRW: Might be a good idea to sanity check the argument and place
715 	 * an extreme upper bound.
716 	 */
717 	if (i < -1)
718 		return (EINVAL);
719 	maxnipq = i;
720 	maxnipq_update();
721 	return (0);
722 }
723 
724 SYSCTL_PROC(_net_inet_ip, OID_AUTO, maxfragpackets, CTLTYPE_INT|CTLFLAG_RW,
725     NULL, 0, sysctl_maxnipq, "I",
726     "Maximum number of IPv4 fragment reassembly queue entries");
727 
728 /*
729  * Take incoming datagram fragment and try to reassemble it into
730  * whole datagram.  If the argument is the first fragment or one
731  * in between the function will return NULL and store the mbuf
732  * in the fragment chain.  If the argument is the last fragment
733  * the packet will be reassembled and the pointer to the new
734  * mbuf returned for further processing.  Only m_tags attached
735  * to the first packet/fragment are preserved.
736  * The IP header is *NOT* adjusted out of iplen.
737  */
738 
739 struct mbuf *
740 ip_reass(struct mbuf *m)
741 {
742 	struct ip *ip;
743 	struct mbuf *p, *q, *nq, *t;
744 	struct ipq *fp = NULL;
745 	struct ipqhead *head;
746 	int i, hlen, next;
747 	u_int8_t ecn, ecn0;
748 	u_short hash;
749 
750 	/* If maxnipq or maxfragsperpacket are 0, never accept fragments. */
751 	if (maxnipq == 0 || maxfragsperpacket == 0) {
752 		ipstat.ips_fragments++;
753 		ipstat.ips_fragdropped++;
754 		m_freem(m);
755 		return (NULL);
756 	}
757 
758 	ip = mtod(m, struct ip *);
759 	hlen = ip->ip_hl << 2;
760 
761 	hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
762 	head = &ipq[hash];
763 	IPQ_LOCK();
764 
765 	/*
766 	 * Look for queue of fragments
767 	 * of this datagram.
768 	 */
769 	TAILQ_FOREACH(fp, head, ipq_list)
770 		if (ip->ip_id == fp->ipq_id &&
771 		    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
772 		    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
773 #ifdef MAC
774 		    mac_fragment_match(m, fp) &&
775 #endif
776 		    ip->ip_p == fp->ipq_p)
777 			goto found;
778 
779 	fp = NULL;
780 
781 	/*
782 	 * Attempt to trim the number of allocated fragment queues if it
783 	 * exceeds the administrative limit.
784 	 */
785 	if ((nipq > maxnipq) && (maxnipq > 0)) {
786 		/*
787 		 * drop something from the tail of the current queue
788 		 * before proceeding further
789 		 */
790 		struct ipq *q = TAILQ_LAST(head, ipqhead);
791 		if (q == NULL) {   /* gak */
792 			for (i = 0; i < IPREASS_NHASH; i++) {
793 				struct ipq *r = TAILQ_LAST(&ipq[i], ipqhead);
794 				if (r) {
795 					ipstat.ips_fragtimeout += r->ipq_nfrags;
796 					ip_freef(&ipq[i], r);
797 					break;
798 				}
799 			}
800 		} else {
801 			ipstat.ips_fragtimeout += q->ipq_nfrags;
802 			ip_freef(head, q);
803 		}
804 	}
805 
806 found:
807 	/*
808 	 * Adjust ip_len to not reflect header,
809 	 * convert offset of this to bytes.
810 	 */
811 	ip->ip_len -= hlen;
812 	if (ip->ip_off & IP_MF) {
813 		/*
814 		 * Make sure that fragments have a data length
815 		 * that's a non-zero multiple of 8 bytes.
816 		 */
817 		if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
818 			ipstat.ips_toosmall++; /* XXX */
819 			goto dropfrag;
820 		}
821 		m->m_flags |= M_FRAG;
822 	} else
823 		m->m_flags &= ~M_FRAG;
824 	ip->ip_off <<= 3;
825 
826 
827 	/*
828 	 * Attempt reassembly; if it succeeds, proceed.
829 	 * ip_reass() will return a different mbuf.
830 	 */
831 	ipstat.ips_fragments++;
832 	m->m_pkthdr.header = ip;
833 
834 	/* Previous ip_reass() started here. */
835 	/*
836 	 * Presence of header sizes in mbufs
837 	 * would confuse code below.
838 	 */
839 	m->m_data += hlen;
840 	m->m_len -= hlen;
841 
842 	/*
843 	 * If first fragment to arrive, create a reassembly queue.
844 	 */
845 	if (fp == NULL) {
846 		fp = uma_zalloc(ipq_zone, M_NOWAIT);
847 		if (fp == NULL)
848 			goto dropfrag;
849 #ifdef MAC
850 		if (mac_init_ipq(fp, M_NOWAIT) != 0) {
851 			uma_zfree(ipq_zone, fp);
852 			fp = NULL;
853 			goto dropfrag;
854 		}
855 		mac_create_ipq(m, fp);
856 #endif
857 		TAILQ_INSERT_HEAD(head, fp, ipq_list);
858 		nipq++;
859 		fp->ipq_nfrags = 1;
860 		fp->ipq_ttl = IPFRAGTTL;
861 		fp->ipq_p = ip->ip_p;
862 		fp->ipq_id = ip->ip_id;
863 		fp->ipq_src = ip->ip_src;
864 		fp->ipq_dst = ip->ip_dst;
865 		fp->ipq_frags = m;
866 		m->m_nextpkt = NULL;
867 		goto done;
868 	} else {
869 		fp->ipq_nfrags++;
870 #ifdef MAC
871 		mac_update_ipq(m, fp);
872 #endif
873 	}
874 
875 #define GETIP(m)	((struct ip*)((m)->m_pkthdr.header))
876 
877 	/*
878 	 * Handle ECN by comparing this segment with the first one;
879 	 * if CE is set, do not lose CE.
880 	 * drop if CE and not-ECT are mixed for the same packet.
881 	 */
882 	ecn = ip->ip_tos & IPTOS_ECN_MASK;
883 	ecn0 = GETIP(fp->ipq_frags)->ip_tos & IPTOS_ECN_MASK;
884 	if (ecn == IPTOS_ECN_CE) {
885 		if (ecn0 == IPTOS_ECN_NOTECT)
886 			goto dropfrag;
887 		if (ecn0 != IPTOS_ECN_CE)
888 			GETIP(fp->ipq_frags)->ip_tos |= IPTOS_ECN_CE;
889 	}
890 	if (ecn == IPTOS_ECN_NOTECT && ecn0 != IPTOS_ECN_NOTECT)
891 		goto dropfrag;
892 
893 	/*
894 	 * Find a segment which begins after this one does.
895 	 */
896 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
897 		if (GETIP(q)->ip_off > ip->ip_off)
898 			break;
899 
900 	/*
901 	 * If there is a preceding segment, it may provide some of
902 	 * our data already.  If so, drop the data from the incoming
903 	 * segment.  If it provides all of our data, drop us, otherwise
904 	 * stick new segment in the proper place.
905 	 *
906 	 * If some of the data is dropped from the the preceding
907 	 * segment, then it's checksum is invalidated.
908 	 */
909 	if (p) {
910 		i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
911 		if (i > 0) {
912 			if (i >= ip->ip_len)
913 				goto dropfrag;
914 			m_adj(m, i);
915 			m->m_pkthdr.csum_flags = 0;
916 			ip->ip_off += i;
917 			ip->ip_len -= i;
918 		}
919 		m->m_nextpkt = p->m_nextpkt;
920 		p->m_nextpkt = m;
921 	} else {
922 		m->m_nextpkt = fp->ipq_frags;
923 		fp->ipq_frags = m;
924 	}
925 
926 	/*
927 	 * While we overlap succeeding segments trim them or,
928 	 * if they are completely covered, dequeue them.
929 	 */
930 	for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
931 	     q = nq) {
932 		i = (ip->ip_off + ip->ip_len) - GETIP(q)->ip_off;
933 		if (i < GETIP(q)->ip_len) {
934 			GETIP(q)->ip_len -= i;
935 			GETIP(q)->ip_off += i;
936 			m_adj(q, i);
937 			q->m_pkthdr.csum_flags = 0;
938 			break;
939 		}
940 		nq = q->m_nextpkt;
941 		m->m_nextpkt = nq;
942 		ipstat.ips_fragdropped++;
943 		fp->ipq_nfrags--;
944 		m_freem(q);
945 	}
946 
947 	/*
948 	 * Check for complete reassembly and perform frag per packet
949 	 * limiting.
950 	 *
951 	 * Frag limiting is performed here so that the nth frag has
952 	 * a chance to complete the packet before we drop the packet.
953 	 * As a result, n+1 frags are actually allowed per packet, but
954 	 * only n will ever be stored. (n = maxfragsperpacket.)
955 	 *
956 	 */
957 	next = 0;
958 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
959 		if (GETIP(q)->ip_off != next) {
960 			if (fp->ipq_nfrags > maxfragsperpacket) {
961 				ipstat.ips_fragdropped += fp->ipq_nfrags;
962 				ip_freef(head, fp);
963 			}
964 			goto done;
965 		}
966 		next += GETIP(q)->ip_len;
967 	}
968 	/* Make sure the last packet didn't have the IP_MF flag */
969 	if (p->m_flags & M_FRAG) {
970 		if (fp->ipq_nfrags > maxfragsperpacket) {
971 			ipstat.ips_fragdropped += fp->ipq_nfrags;
972 			ip_freef(head, fp);
973 		}
974 		goto done;
975 	}
976 
977 	/*
978 	 * Reassembly is complete.  Make sure the packet is a sane size.
979 	 */
980 	q = fp->ipq_frags;
981 	ip = GETIP(q);
982 	if (next + (ip->ip_hl << 2) > IP_MAXPACKET) {
983 		ipstat.ips_toolong++;
984 		ipstat.ips_fragdropped += fp->ipq_nfrags;
985 		ip_freef(head, fp);
986 		goto done;
987 	}
988 
989 	/*
990 	 * Concatenate fragments.
991 	 */
992 	m = q;
993 	t = m->m_next;
994 	m->m_next = NULL;
995 	m_cat(m, t);
996 	nq = q->m_nextpkt;
997 	q->m_nextpkt = NULL;
998 	for (q = nq; q != NULL; q = nq) {
999 		nq = q->m_nextpkt;
1000 		q->m_nextpkt = NULL;
1001 		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1002 		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1003 		m_cat(m, q);
1004 	}
1005 	/*
1006 	 * In order to do checksumming faster we do 'end-around carry' here
1007 	 * (and not in for{} loop), though it implies we are not going to
1008 	 * reassemble more than 64k fragments.
1009 	 */
1010 	m->m_pkthdr.csum_data =
1011 	    (m->m_pkthdr.csum_data & 0xffff) + (m->m_pkthdr.csum_data >> 16);
1012 #ifdef MAC
1013 	mac_create_datagram_from_ipq(fp, m);
1014 	mac_destroy_ipq(fp);
1015 #endif
1016 
1017 	/*
1018 	 * Create header for new ip packet by modifying header of first
1019 	 * packet;  dequeue and discard fragment reassembly header.
1020 	 * Make header visible.
1021 	 */
1022 	ip->ip_len = (ip->ip_hl << 2) + next;
1023 	ip->ip_src = fp->ipq_src;
1024 	ip->ip_dst = fp->ipq_dst;
1025 	TAILQ_REMOVE(head, fp, ipq_list);
1026 	nipq--;
1027 	uma_zfree(ipq_zone, fp);
1028 	m->m_len += (ip->ip_hl << 2);
1029 	m->m_data -= (ip->ip_hl << 2);
1030 	/* some debugging cruft by sklower, below, will go away soon */
1031 	if (m->m_flags & M_PKTHDR)	/* XXX this should be done elsewhere */
1032 		m_fixhdr(m);
1033 	ipstat.ips_reassembled++;
1034 	IPQ_UNLOCK();
1035 	return (m);
1036 
1037 dropfrag:
1038 	ipstat.ips_fragdropped++;
1039 	if (fp != NULL)
1040 		fp->ipq_nfrags--;
1041 	m_freem(m);
1042 done:
1043 	IPQ_UNLOCK();
1044 	return (NULL);
1045 
1046 #undef GETIP
1047 }
1048 
1049 /*
1050  * Free a fragment reassembly header and all
1051  * associated datagrams.
1052  */
1053 static void
1054 ip_freef(fhp, fp)
1055 	struct ipqhead *fhp;
1056 	struct ipq *fp;
1057 {
1058 	register struct mbuf *q;
1059 
1060 	IPQ_LOCK_ASSERT();
1061 
1062 	while (fp->ipq_frags) {
1063 		q = fp->ipq_frags;
1064 		fp->ipq_frags = q->m_nextpkt;
1065 		m_freem(q);
1066 	}
1067 	TAILQ_REMOVE(fhp, fp, ipq_list);
1068 	uma_zfree(ipq_zone, fp);
1069 	nipq--;
1070 }
1071 
1072 /*
1073  * IP timer processing;
1074  * if a timer expires on a reassembly
1075  * queue, discard it.
1076  */
1077 void
1078 ip_slowtimo()
1079 {
1080 	register struct ipq *fp;
1081 	int i;
1082 
1083 	IPQ_LOCK();
1084 	for (i = 0; i < IPREASS_NHASH; i++) {
1085 		for(fp = TAILQ_FIRST(&ipq[i]); fp;) {
1086 			struct ipq *fpp;
1087 
1088 			fpp = fp;
1089 			fp = TAILQ_NEXT(fp, ipq_list);
1090 			if(--fpp->ipq_ttl == 0) {
1091 				ipstat.ips_fragtimeout += fpp->ipq_nfrags;
1092 				ip_freef(&ipq[i], fpp);
1093 			}
1094 		}
1095 	}
1096 	/*
1097 	 * If we are over the maximum number of fragments
1098 	 * (due to the limit being lowered), drain off
1099 	 * enough to get down to the new limit.
1100 	 */
1101 	if (maxnipq >= 0 && nipq > maxnipq) {
1102 		for (i = 0; i < IPREASS_NHASH; i++) {
1103 			while (nipq > maxnipq && !TAILQ_EMPTY(&ipq[i])) {
1104 				ipstat.ips_fragdropped +=
1105 				    TAILQ_FIRST(&ipq[i])->ipq_nfrags;
1106 				ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i]));
1107 			}
1108 		}
1109 	}
1110 	IPQ_UNLOCK();
1111 }
1112 
1113 /*
1114  * Drain off all datagram fragments.
1115  */
1116 void
1117 ip_drain()
1118 {
1119 	int     i;
1120 
1121 	IPQ_LOCK();
1122 	for (i = 0; i < IPREASS_NHASH; i++) {
1123 		while(!TAILQ_EMPTY(&ipq[i])) {
1124 			ipstat.ips_fragdropped +=
1125 			    TAILQ_FIRST(&ipq[i])->ipq_nfrags;
1126 			ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i]));
1127 		}
1128 	}
1129 	IPQ_UNLOCK();
1130 	in_rtqdrain();
1131 }
1132 
1133 /*
1134  * The protocol to be inserted into ip_protox[] must be already registered
1135  * in inetsw[], either statically or through pf_proto_register().
1136  */
1137 int
1138 ipproto_register(u_char ipproto)
1139 {
1140 	struct protosw *pr;
1141 
1142 	/* Sanity checks. */
1143 	if (ipproto == 0)
1144 		return (EPROTONOSUPPORT);
1145 
1146 	/*
1147 	 * The protocol slot must not be occupied by another protocol
1148 	 * already.  An index pointing to IPPROTO_RAW is unused.
1149 	 */
1150 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
1151 	if (pr == NULL)
1152 		return (EPFNOSUPPORT);
1153 	if (ip_protox[ipproto] != pr - inetsw)	/* IPPROTO_RAW */
1154 		return (EEXIST);
1155 
1156 	/* Find the protocol position in inetsw[] and set the index. */
1157 	for (pr = inetdomain.dom_protosw;
1158 	     pr < inetdomain.dom_protoswNPROTOSW; pr++) {
1159 		if (pr->pr_domain->dom_family == PF_INET &&
1160 		    pr->pr_protocol && pr->pr_protocol == ipproto) {
1161 			/* Be careful to only index valid IP protocols. */
1162 			if (pr->pr_protocol < IPPROTO_MAX) {
1163 				ip_protox[pr->pr_protocol] = pr - inetsw;
1164 				return (0);
1165 			} else
1166 				return (EINVAL);
1167 		}
1168 	}
1169 	return (EPROTONOSUPPORT);
1170 }
1171 
1172 int
1173 ipproto_unregister(u_char ipproto)
1174 {
1175 	struct protosw *pr;
1176 
1177 	/* Sanity checks. */
1178 	if (ipproto == 0)
1179 		return (EPROTONOSUPPORT);
1180 
1181 	/* Check if the protocol was indeed registered. */
1182 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
1183 	if (pr == NULL)
1184 		return (EPFNOSUPPORT);
1185 	if (ip_protox[ipproto] == pr - inetsw)  /* IPPROTO_RAW */
1186 		return (ENOENT);
1187 
1188 	/* Reset the protocol slot to IPPROTO_RAW. */
1189 	ip_protox[ipproto] = pr - inetsw;
1190 	return (0);
1191 }
1192 
1193 /*
1194  * Given address of next destination (final or next hop),
1195  * return internet address info of interface to be used to get there.
1196  */
1197 struct in_ifaddr *
1198 ip_rtaddr(dst)
1199 	struct in_addr dst;
1200 {
1201 	struct route sro;
1202 	struct sockaddr_in *sin;
1203 	struct in_ifaddr *ifa;
1204 
1205 	bzero(&sro, sizeof(sro));
1206 	sin = (struct sockaddr_in *)&sro.ro_dst;
1207 	sin->sin_family = AF_INET;
1208 	sin->sin_len = sizeof(*sin);
1209 	sin->sin_addr = dst;
1210 	rtalloc_ign(&sro, RTF_CLONING);
1211 
1212 	if (sro.ro_rt == NULL)
1213 		return (NULL);
1214 
1215 	ifa = ifatoia(sro.ro_rt->rt_ifa);
1216 	RTFREE(sro.ro_rt);
1217 	return (ifa);
1218 }
1219 
1220 u_char inetctlerrmap[PRC_NCMDS] = {
1221 	0,		0,		0,		0,
1222 	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1223 	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1224 	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1225 	0,		0,		EHOSTUNREACH,	0,
1226 	ENOPROTOOPT,	ECONNREFUSED
1227 };
1228 
1229 /*
1230  * Forward a packet.  If some error occurs return the sender
1231  * an icmp packet.  Note we can't always generate a meaningful
1232  * icmp message because icmp doesn't have a large enough repertoire
1233  * of codes and types.
1234  *
1235  * If not forwarding, just drop the packet.  This could be confusing
1236  * if ipforwarding was zero but some routing protocol was advancing
1237  * us as a gateway to somewhere.  However, we must let the routing
1238  * protocol deal with that.
1239  *
1240  * The srcrt parameter indicates whether the packet is being forwarded
1241  * via a source route.
1242  */
1243 void
1244 ip_forward(struct mbuf *m, int srcrt)
1245 {
1246 	struct ip *ip = mtod(m, struct ip *);
1247 	struct in_ifaddr *ia = NULL;
1248 	struct mbuf *mcopy;
1249 	struct in_addr dest;
1250 	int error, type = 0, code = 0, mtu = 0;
1251 
1252 	if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) {
1253 		ipstat.ips_cantforward++;
1254 		m_freem(m);
1255 		return;
1256 	}
1257 #ifdef IPSTEALTH
1258 	if (!ipstealth) {
1259 #endif
1260 		if (ip->ip_ttl <= IPTTLDEC) {
1261 			icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS,
1262 			    0, 0);
1263 			return;
1264 		}
1265 #ifdef IPSTEALTH
1266 	}
1267 #endif
1268 
1269 	if (!srcrt && (ia = ip_rtaddr(ip->ip_dst)) == NULL) {
1270 		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, 0, 0);
1271 		return;
1272 	}
1273 
1274 	/*
1275 	 * Save the IP header and at most 8 bytes of the payload,
1276 	 * in case we need to generate an ICMP message to the src.
1277 	 *
1278 	 * XXX this can be optimized a lot by saving the data in a local
1279 	 * buffer on the stack (72 bytes at most), and only allocating the
1280 	 * mbuf if really necessary. The vast majority of the packets
1281 	 * are forwarded without having to send an ICMP back (either
1282 	 * because unnecessary, or because rate limited), so we are
1283 	 * really we are wasting a lot of work here.
1284 	 *
1285 	 * We don't use m_copy() because it might return a reference
1286 	 * to a shared cluster. Both this function and ip_output()
1287 	 * assume exclusive access to the IP header in `m', so any
1288 	 * data in a cluster may change before we reach icmp_error().
1289 	 */
1290 	MGETHDR(mcopy, M_DONTWAIT, m->m_type);
1291 	if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, M_DONTWAIT)) {
1292 		/*
1293 		 * It's probably ok if the pkthdr dup fails (because
1294 		 * the deep copy of the tag chain failed), but for now
1295 		 * be conservative and just discard the copy since
1296 		 * code below may some day want the tags.
1297 		 */
1298 		m_free(mcopy);
1299 		mcopy = NULL;
1300 	}
1301 	if (mcopy != NULL) {
1302 		mcopy->m_len = min(ip->ip_len, M_TRAILINGSPACE(mcopy));
1303 		mcopy->m_pkthdr.len = mcopy->m_len;
1304 		m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
1305 	}
1306 
1307 #ifdef IPSTEALTH
1308 	if (!ipstealth) {
1309 #endif
1310 		ip->ip_ttl -= IPTTLDEC;
1311 #ifdef IPSTEALTH
1312 	}
1313 #endif
1314 
1315 	/*
1316 	 * If forwarding packet using same interface that it came in on,
1317 	 * perhaps should send a redirect to sender to shortcut a hop.
1318 	 * Only send redirect if source is sending directly to us,
1319 	 * and if packet was not source routed (or has any options).
1320 	 * Also, don't send redirect if forwarding using a default route
1321 	 * or a route modified by a redirect.
1322 	 */
1323 	dest.s_addr = 0;
1324 	if (!srcrt && ipsendredirects && ia->ia_ifp == m->m_pkthdr.rcvif) {
1325 		struct sockaddr_in *sin;
1326 		struct route ro;
1327 		struct rtentry *rt;
1328 
1329 		bzero(&ro, sizeof(ro));
1330 		sin = (struct sockaddr_in *)&ro.ro_dst;
1331 		sin->sin_family = AF_INET;
1332 		sin->sin_len = sizeof(*sin);
1333 		sin->sin_addr = ip->ip_dst;
1334 		rtalloc_ign(&ro, RTF_CLONING);
1335 
1336 		rt = ro.ro_rt;
1337 
1338 		if (rt && (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1339 		    satosin(rt_key(rt))->sin_addr.s_addr != 0) {
1340 #define	RTA(rt)	((struct in_ifaddr *)(rt->rt_ifa))
1341 			u_long src = ntohl(ip->ip_src.s_addr);
1342 
1343 			if (RTA(rt) &&
1344 			    (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
1345 				if (rt->rt_flags & RTF_GATEWAY)
1346 					dest.s_addr = satosin(rt->rt_gateway)->sin_addr.s_addr;
1347 				else
1348 					dest.s_addr = ip->ip_dst.s_addr;
1349 				/* Router requirements says to only send host redirects */
1350 				type = ICMP_REDIRECT;
1351 				code = ICMP_REDIRECT_HOST;
1352 			}
1353 		}
1354 		if (rt)
1355 			RTFREE(rt);
1356 	}
1357 
1358 	error = ip_output(m, NULL, NULL, IP_FORWARDING, NULL, NULL);
1359 	if (error)
1360 		ipstat.ips_cantforward++;
1361 	else {
1362 		ipstat.ips_forward++;
1363 		if (type)
1364 			ipstat.ips_redirectsent++;
1365 		else {
1366 			if (mcopy)
1367 				m_freem(mcopy);
1368 			return;
1369 		}
1370 	}
1371 	if (mcopy == NULL)
1372 		return;
1373 
1374 	switch (error) {
1375 
1376 	case 0:				/* forwarded, but need redirect */
1377 		/* type, code set above */
1378 		break;
1379 
1380 	case ENETUNREACH:		/* shouldn't happen, checked above */
1381 	case EHOSTUNREACH:
1382 	case ENETDOWN:
1383 	case EHOSTDOWN:
1384 	default:
1385 		type = ICMP_UNREACH;
1386 		code = ICMP_UNREACH_HOST;
1387 		break;
1388 
1389 	case EMSGSIZE:
1390 		type = ICMP_UNREACH;
1391 		code = ICMP_UNREACH_NEEDFRAG;
1392 
1393 #if defined(IPSEC) || defined(FAST_IPSEC)
1394 		mtu = ip_ipsec_mtu(m);
1395 #endif /* IPSEC */
1396 		/*
1397 		 * If the MTU wasn't set before use the interface mtu or
1398 		 * fall back to the next smaller mtu step compared to the
1399 		 * current packet size.
1400 		 */
1401 		if (mtu == 0) {
1402 			if (ia != NULL)
1403 				mtu = ia->ia_ifp->if_mtu;
1404 			else
1405 				mtu = ip_next_mtu(ip->ip_len, 0);
1406 		}
1407 		ipstat.ips_cantfrag++;
1408 		break;
1409 
1410 	case ENOBUFS:
1411 		/*
1412 		 * A router should not generate ICMP_SOURCEQUENCH as
1413 		 * required in RFC1812 Requirements for IP Version 4 Routers.
1414 		 * Source quench could be a big problem under DoS attacks,
1415 		 * or if the underlying interface is rate-limited.
1416 		 * Those who need source quench packets may re-enable them
1417 		 * via the net.inet.ip.sendsourcequench sysctl.
1418 		 */
1419 		if (ip_sendsourcequench == 0) {
1420 			m_freem(mcopy);
1421 			return;
1422 		} else {
1423 			type = ICMP_SOURCEQUENCH;
1424 			code = 0;
1425 		}
1426 		break;
1427 
1428 	case EACCES:			/* ipfw denied packet */
1429 		m_freem(mcopy);
1430 		return;
1431 	}
1432 	icmp_error(mcopy, type, code, dest.s_addr, mtu);
1433 }
1434 
1435 void
1436 ip_savecontrol(inp, mp, ip, m)
1437 	register struct inpcb *inp;
1438 	register struct mbuf **mp;
1439 	register struct ip *ip;
1440 	register struct mbuf *m;
1441 {
1442 	if (inp->inp_socket->so_options & (SO_BINTIME | SO_TIMESTAMP)) {
1443 		struct bintime bt;
1444 
1445 		bintime(&bt);
1446 		if (inp->inp_socket->so_options & SO_BINTIME) {
1447 			*mp = sbcreatecontrol((caddr_t) &bt, sizeof(bt),
1448 			SCM_BINTIME, SOL_SOCKET);
1449 			if (*mp)
1450 				mp = &(*mp)->m_next;
1451 		}
1452 		if (inp->inp_socket->so_options & SO_TIMESTAMP) {
1453 			struct timeval tv;
1454 
1455 			bintime2timeval(&bt, &tv);
1456 			*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
1457 				SCM_TIMESTAMP, SOL_SOCKET);
1458 			if (*mp)
1459 				mp = &(*mp)->m_next;
1460 		}
1461 	}
1462 	if (inp->inp_flags & INP_RECVDSTADDR) {
1463 		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
1464 		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
1465 		if (*mp)
1466 			mp = &(*mp)->m_next;
1467 	}
1468 	if (inp->inp_flags & INP_RECVTTL) {
1469 		*mp = sbcreatecontrol((caddr_t) &ip->ip_ttl,
1470 		    sizeof(u_char), IP_RECVTTL, IPPROTO_IP);
1471 		if (*mp)
1472 			mp = &(*mp)->m_next;
1473 	}
1474 #ifdef notyet
1475 	/* XXX
1476 	 * Moving these out of udp_input() made them even more broken
1477 	 * than they already were.
1478 	 */
1479 	/* options were tossed already */
1480 	if (inp->inp_flags & INP_RECVOPTS) {
1481 		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
1482 		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
1483 		if (*mp)
1484 			mp = &(*mp)->m_next;
1485 	}
1486 	/* ip_srcroute doesn't do what we want here, need to fix */
1487 	if (inp->inp_flags & INP_RECVRETOPTS) {
1488 		*mp = sbcreatecontrol((caddr_t) ip_srcroute(m),
1489 		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
1490 		if (*mp)
1491 			mp = &(*mp)->m_next;
1492 	}
1493 #endif
1494 	if (inp->inp_flags & INP_RECVIF) {
1495 		struct ifnet *ifp;
1496 		struct sdlbuf {
1497 			struct sockaddr_dl sdl;
1498 			u_char	pad[32];
1499 		} sdlbuf;
1500 		struct sockaddr_dl *sdp;
1501 		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
1502 
1503 		if (((ifp = m->m_pkthdr.rcvif))
1504 		&& ( ifp->if_index && (ifp->if_index <= if_index))) {
1505 			sdp = (struct sockaddr_dl *)ifp->if_addr->ifa_addr;
1506 			/*
1507 			 * Change our mind and don't try copy.
1508 			 */
1509 			if ((sdp->sdl_family != AF_LINK)
1510 			|| (sdp->sdl_len > sizeof(sdlbuf))) {
1511 				goto makedummy;
1512 			}
1513 			bcopy(sdp, sdl2, sdp->sdl_len);
1514 		} else {
1515 makedummy:
1516 			sdl2->sdl_len
1517 				= offsetof(struct sockaddr_dl, sdl_data[0]);
1518 			sdl2->sdl_family = AF_LINK;
1519 			sdl2->sdl_index = 0;
1520 			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
1521 		}
1522 		*mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
1523 			IP_RECVIF, IPPROTO_IP);
1524 		if (*mp)
1525 			mp = &(*mp)->m_next;
1526 	}
1527 }
1528 
1529 /*
1530  * XXX these routines are called from the upper part of the kernel.
1531  * They need to be locked when we remove Giant.
1532  *
1533  * They could also be moved to ip_mroute.c, since all the RSVP
1534  *  handling is done there already.
1535  */
1536 static int ip_rsvp_on;
1537 struct socket *ip_rsvpd;
1538 int
1539 ip_rsvp_init(struct socket *so)
1540 {
1541 	if (so->so_type != SOCK_RAW ||
1542 	    so->so_proto->pr_protocol != IPPROTO_RSVP)
1543 		return EOPNOTSUPP;
1544 
1545 	if (ip_rsvpd != NULL)
1546 		return EADDRINUSE;
1547 
1548 	ip_rsvpd = so;
1549 	/*
1550 	 * This may seem silly, but we need to be sure we don't over-increment
1551 	 * the RSVP counter, in case something slips up.
1552 	 */
1553 	if (!ip_rsvp_on) {
1554 		ip_rsvp_on = 1;
1555 		rsvp_on++;
1556 	}
1557 
1558 	return 0;
1559 }
1560 
1561 int
1562 ip_rsvp_done(void)
1563 {
1564 	ip_rsvpd = NULL;
1565 	/*
1566 	 * This may seem silly, but we need to be sure we don't over-decrement
1567 	 * the RSVP counter, in case something slips up.
1568 	 */
1569 	if (ip_rsvp_on) {
1570 		ip_rsvp_on = 0;
1571 		rsvp_on--;
1572 	}
1573 	return 0;
1574 }
1575 
1576 void
1577 rsvp_input(struct mbuf *m, int off)	/* XXX must fixup manually */
1578 {
1579 	if (rsvp_input_p) { /* call the real one if loaded */
1580 		rsvp_input_p(m, off);
1581 		return;
1582 	}
1583 
1584 	/* Can still get packets with rsvp_on = 0 if there is a local member
1585 	 * of the group to which the RSVP packet is addressed.  But in this
1586 	 * case we want to throw the packet away.
1587 	 */
1588 
1589 	if (!rsvp_on) {
1590 		m_freem(m);
1591 		return;
1592 	}
1593 
1594 	if (ip_rsvpd != NULL) {
1595 		rip_input(m, off);
1596 		return;
1597 	}
1598 	/* Drop the packet */
1599 	m_freem(m);
1600 }
1601