xref: /freebsd/sys/netinet/ip_input.c (revision 77b7cdf1999ee965ad494fddd184b18f532ac91a)
1 /*
2  * Copyright (c) 1982, 1986, 1988, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
34  * $FreeBSD$
35  */
36 
37 #include "opt_bootp.h"
38 #include "opt_ipfw.h"
39 #include "opt_ipdn.h"
40 #include "opt_ipdivert.h"
41 #include "opt_ipfilter.h"
42 #include "opt_ipstealth.h"
43 #include "opt_ipsec.h"
44 #include "opt_mac.h"
45 #include "opt_pfil_hooks.h"
46 #include "opt_random_ip_id.h"
47 
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/mac.h>
51 #include <sys/mbuf.h>
52 #include <sys/malloc.h>
53 #include <sys/domain.h>
54 #include <sys/protosw.h>
55 #include <sys/socket.h>
56 #include <sys/time.h>
57 #include <sys/kernel.h>
58 #include <sys/syslog.h>
59 #include <sys/sysctl.h>
60 
61 #include <net/pfil.h>
62 #include <net/if.h>
63 #include <net/if_types.h>
64 #include <net/if_var.h>
65 #include <net/if_dl.h>
66 #include <net/route.h>
67 #include <net/netisr.h>
68 
69 #include <netinet/in.h>
70 #include <netinet/in_systm.h>
71 #include <netinet/in_var.h>
72 #include <netinet/ip.h>
73 #include <netinet/in_pcb.h>
74 #include <netinet/ip_var.h>
75 #include <netinet/ip_icmp.h>
76 #include <machine/in_cksum.h>
77 
78 #include <sys/socketvar.h>
79 
80 #include <netinet/ip_fw.h>
81 #include <netinet/ip_dummynet.h>
82 
83 #ifdef IPSEC
84 #include <netinet6/ipsec.h>
85 #include <netkey/key.h>
86 #endif
87 
88 #ifdef FAST_IPSEC
89 #include <netipsec/ipsec.h>
90 #include <netipsec/key.h>
91 #endif
92 
93 int rsvp_on = 0;
94 
95 int	ipforwarding = 0;
96 SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
97     &ipforwarding, 0, "Enable IP forwarding between interfaces");
98 
99 static int	ipsendredirects = 1; /* XXX */
100 SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
101     &ipsendredirects, 0, "Enable sending IP redirects");
102 
103 int	ip_defttl = IPDEFTTL;
104 SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
105     &ip_defttl, 0, "Maximum TTL on IP packets");
106 
107 static int	ip_dosourceroute = 0;
108 SYSCTL_INT(_net_inet_ip, IPCTL_SOURCEROUTE, sourceroute, CTLFLAG_RW,
109     &ip_dosourceroute, 0, "Enable forwarding source routed IP packets");
110 
111 static int	ip_acceptsourceroute = 0;
112 SYSCTL_INT(_net_inet_ip, IPCTL_ACCEPTSOURCEROUTE, accept_sourceroute,
113     CTLFLAG_RW, &ip_acceptsourceroute, 0,
114     "Enable accepting source routed IP packets");
115 
116 static int	ip_keepfaith = 0;
117 SYSCTL_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
118 	&ip_keepfaith,	0,
119 	"Enable packet capture for FAITH IPv4->IPv6 translater daemon");
120 
121 static int    nipq = 0;         /* total # of reass queues */
122 static int    maxnipq;
123 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragpackets, CTLFLAG_RW,
124 	&maxnipq, 0,
125 	"Maximum number of IPv4 fragment reassembly queue entries");
126 
127 static int    maxfragsperpacket;
128 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_RW,
129 	&maxfragsperpacket, 0,
130 	"Maximum number of IPv4 fragments allowed per packet");
131 
132 static int	ip_sendsourcequench = 0;
133 SYSCTL_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW,
134 	&ip_sendsourcequench, 0,
135 	"Enable the transmission of source quench packets");
136 
137 /*
138  * XXX - Setting ip_checkinterface mostly implements the receive side of
139  * the Strong ES model described in RFC 1122, but since the routing table
140  * and transmit implementation do not implement the Strong ES model,
141  * setting this to 1 results in an odd hybrid.
142  *
143  * XXX - ip_checkinterface currently must be disabled if you use ipnat
144  * to translate the destination address to another local interface.
145  *
146  * XXX - ip_checkinterface must be disabled if you add IP aliases
147  * to the loopback interface instead of the interface where the
148  * packets for those addresses are received.
149  */
150 static int	ip_checkinterface = 1;
151 SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
152     &ip_checkinterface, 0, "Verify packet arrives on correct interface");
153 
154 #ifdef DIAGNOSTIC
155 static int	ipprintfs = 0;
156 #endif
157 
158 static struct	ifqueue ipintrq;
159 static int	ipqmaxlen = IFQ_MAXLEN;
160 
161 extern	struct domain inetdomain;
162 extern	struct protosw inetsw[];
163 u_char	ip_protox[IPPROTO_MAX];
164 struct	in_ifaddrhead in_ifaddrhead; 		/* first inet address */
165 struct	in_ifaddrhashhead *in_ifaddrhashtbl;	/* inet addr hash table  */
166 u_long 	in_ifaddrhmask;				/* mask for hash table */
167 
168 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen, CTLFLAG_RW,
169     &ipintrq.ifq_maxlen, 0, "Maximum size of the IP input queue");
170 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops, CTLFLAG_RD,
171     &ipintrq.ifq_drops, 0, "Number of packets dropped from the IP input queue");
172 
173 struct ipstat ipstat;
174 SYSCTL_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RW,
175     &ipstat, ipstat, "IP statistics (struct ipstat, netinet/ip_var.h)");
176 
177 /* Packet reassembly stuff */
178 #define IPREASS_NHASH_LOG2      6
179 #define IPREASS_NHASH           (1 << IPREASS_NHASH_LOG2)
180 #define IPREASS_HMASK           (IPREASS_NHASH - 1)
181 #define IPREASS_HASH(x,y) \
182 	(((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
183 
184 static TAILQ_HEAD(ipqhead, ipq) ipq[IPREASS_NHASH];
185 
186 #ifdef IPCTL_DEFMTU
187 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
188     &ip_mtu, 0, "Default MTU");
189 #endif
190 
191 #ifdef IPSTEALTH
192 static int	ipstealth = 0;
193 SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW,
194     &ipstealth, 0, "");
195 #endif
196 
197 
198 /* Firewall hooks */
199 ip_fw_chk_t *ip_fw_chk_ptr;
200 int fw_enable = 1 ;
201 int fw_one_pass = 1;
202 
203 /* Dummynet hooks */
204 ip_dn_io_t *ip_dn_io_ptr;
205 
206 
207 /*
208  * XXX this is ugly -- the following two global variables are
209  * used to store packet state while it travels through the stack.
210  * Note that the code even makes assumptions on the size and
211  * alignment of fields inside struct ip_srcrt so e.g. adding some
212  * fields will break the code. This needs to be fixed.
213  *
214  * We need to save the IP options in case a protocol wants to respond
215  * to an incoming packet over the same route if the packet got here
216  * using IP source routing.  This allows connection establishment and
217  * maintenance when the remote end is on a network that is not known
218  * to us.
219  */
220 static int	ip_nhops = 0;
221 static	struct ip_srcrt {
222 	struct	in_addr dst;			/* final destination */
223 	char	nop;				/* one NOP to align */
224 	char	srcopt[IPOPT_OFFSET + 1];	/* OPTVAL, OLEN and OFFSET */
225 	struct	in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
226 } ip_srcrt;
227 
228 static void	save_rte(u_char *, struct in_addr);
229 static int	ip_dooptions(struct mbuf *m, int,
230 			struct sockaddr_in *next_hop);
231 static void	ip_forward(struct mbuf *m, int srcrt,
232 			struct sockaddr_in *next_hop);
233 static void	ip_freef(struct ipqhead *, struct ipq *);
234 static struct	mbuf *ip_reass(struct mbuf *, struct ipqhead *,
235 		struct ipq *, u_int32_t *, u_int16_t *);
236 
237 /*
238  * IP initialization: fill in IP protocol switch table.
239  * All protocols not implemented in kernel go to raw IP protocol handler.
240  */
241 void
242 ip_init()
243 {
244 	register struct protosw *pr;
245 	register int i;
246 
247 	TAILQ_INIT(&in_ifaddrhead);
248 	in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &in_ifaddrhmask);
249 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
250 	if (pr == 0)
251 		panic("ip_init");
252 	for (i = 0; i < IPPROTO_MAX; i++)
253 		ip_protox[i] = pr - inetsw;
254 	for (pr = inetdomain.dom_protosw;
255 	    pr < inetdomain.dom_protoswNPROTOSW; pr++)
256 		if (pr->pr_domain->dom_family == PF_INET &&
257 		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
258 			ip_protox[pr->pr_protocol] = pr - inetsw;
259 
260 	for (i = 0; i < IPREASS_NHASH; i++)
261 	    TAILQ_INIT(&ipq[i]);
262 
263 	maxnipq = nmbclusters / 32;
264 	maxfragsperpacket = 16;
265 
266 #ifndef RANDOM_IP_ID
267 	ip_id = time_second & 0xffff;
268 #endif
269 	ipintrq.ifq_maxlen = ipqmaxlen;
270 	mtx_init(&ipintrq.ifq_mtx, "ip_inq", NULL, MTX_DEF);
271 	netisr_register(NETISR_IP, ip_input, &ipintrq);
272 }
273 
274 /*
275  * XXX watch out this one. It is perhaps used as a cache for
276  * the most recently used route ? it is cleared in in_addroute()
277  * when a new route is successfully created.
278  */
279 struct	route ipforward_rt;
280 
281 /*
282  * Ip input routine.  Checksum and byte swap header.  If fragmented
283  * try to reassemble.  Process options.  Pass to next level.
284  */
285 void
286 ip_input(struct mbuf *m)
287 {
288 	struct ip *ip;
289 	struct ipq *fp;
290 	struct in_ifaddr *ia = NULL;
291 	struct ifaddr *ifa;
292 	int    i, hlen, checkif;
293 	u_short sum;
294 	struct in_addr pkt_dst;
295 	u_int32_t divert_info = 0;		/* packet divert/tee info */
296 	struct ip_fw_args args;
297 #ifdef PFIL_HOOKS
298 	struct packet_filter_hook *pfh;
299 	struct mbuf *m0;
300 	int rv;
301 #endif /* PFIL_HOOKS */
302 #ifdef FAST_IPSEC
303 	struct m_tag *mtag;
304 	struct tdb_ident *tdbi;
305 	struct secpolicy *sp;
306 	int s, error;
307 #endif /* FAST_IPSEC */
308 
309 	args.eh = NULL;
310 	args.oif = NULL;
311 	args.rule = NULL;
312 	args.divert_rule = 0;			/* divert cookie */
313 	args.next_hop = NULL;
314 
315 	/* Grab info from MT_TAG mbufs prepended to the chain.	*/
316 	for (; m && m->m_type == MT_TAG; m = m->m_next) {
317 		switch(m->_m_tag_id) {
318 		default:
319 			printf("ip_input: unrecognised MT_TAG tag %d\n",
320 			    m->_m_tag_id);
321 			break;
322 
323 		case PACKET_TAG_DUMMYNET:
324 			args.rule = ((struct dn_pkt *)m)->rule;
325 			break;
326 
327 		case PACKET_TAG_DIVERT:
328 			args.divert_rule = (intptr_t)m->m_hdr.mh_data & 0xffff;
329 			break;
330 
331 		case PACKET_TAG_IPFORWARD:
332 			args.next_hop = (struct sockaddr_in *)m->m_hdr.mh_data;
333 			break;
334 		}
335 	}
336 
337 	M_ASSERTPKTHDR(m);
338 
339 	if (args.rule) {	/* dummynet already filtered us */
340 		ip = mtod(m, struct ip *);
341 		hlen = ip->ip_hl << 2;
342 		goto iphack ;
343 	}
344 
345 	ipstat.ips_total++;
346 
347 	if (m->m_pkthdr.len < sizeof(struct ip))
348 		goto tooshort;
349 
350 	if (m->m_len < sizeof (struct ip) &&
351 	    (m = m_pullup(m, sizeof (struct ip))) == 0) {
352 		ipstat.ips_toosmall++;
353 		return;
354 	}
355 	ip = mtod(m, struct ip *);
356 
357 	if (ip->ip_v != IPVERSION) {
358 		ipstat.ips_badvers++;
359 		goto bad;
360 	}
361 
362 	hlen = ip->ip_hl << 2;
363 	if (hlen < sizeof(struct ip)) {	/* minimum header length */
364 		ipstat.ips_badhlen++;
365 		goto bad;
366 	}
367 	if (hlen > m->m_len) {
368 		if ((m = m_pullup(m, hlen)) == 0) {
369 			ipstat.ips_badhlen++;
370 			return;
371 		}
372 		ip = mtod(m, struct ip *);
373 	}
374 
375 	/* 127/8 must not appear on wire - RFC1122 */
376 	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
377 	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
378 		if ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) {
379 			ipstat.ips_badaddr++;
380 			goto bad;
381 		}
382 	}
383 
384 	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
385 		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
386 	} else {
387 		if (hlen == sizeof(struct ip)) {
388 			sum = in_cksum_hdr(ip);
389 		} else {
390 			sum = in_cksum(m, hlen);
391 		}
392 	}
393 	if (sum) {
394 		ipstat.ips_badsum++;
395 		goto bad;
396 	}
397 
398 	/*
399 	 * Convert fields to host representation.
400 	 */
401 	ip->ip_len = ntohs(ip->ip_len);
402 	if (ip->ip_len < hlen) {
403 		ipstat.ips_badlen++;
404 		goto bad;
405 	}
406 	ip->ip_off = ntohs(ip->ip_off);
407 
408 	/*
409 	 * Check that the amount of data in the buffers
410 	 * is as at least much as the IP header would have us expect.
411 	 * Trim mbufs if longer than we expect.
412 	 * Drop packet if shorter than we expect.
413 	 */
414 	if (m->m_pkthdr.len < ip->ip_len) {
415 tooshort:
416 		ipstat.ips_tooshort++;
417 		goto bad;
418 	}
419 	if (m->m_pkthdr.len > ip->ip_len) {
420 		if (m->m_len == m->m_pkthdr.len) {
421 			m->m_len = ip->ip_len;
422 			m->m_pkthdr.len = ip->ip_len;
423 		} else
424 			m_adj(m, ip->ip_len - m->m_pkthdr.len);
425 	}
426 #if defined(IPSEC) && !defined(IPSEC_FILTERGIF)
427 	/*
428 	 * Bypass packet filtering for packets from a tunnel (gif).
429 	 */
430 	if (ipsec_gethist(m, NULL))
431 		goto pass;
432 #endif
433 
434 	/*
435 	 * IpHack's section.
436 	 * Right now when no processing on packet has done
437 	 * and it is still fresh out of network we do our black
438 	 * deals with it.
439 	 * - Firewall: deny/allow/divert
440 	 * - Xlate: translate packet's addr/port (NAT).
441 	 * - Pipe: pass pkt through dummynet.
442 	 * - Wrap: fake packet's addr/port <unimpl.>
443 	 * - Encapsulate: put it in another IP and send out. <unimp.>
444  	 */
445 
446 iphack:
447 
448 #ifdef PFIL_HOOKS
449 	/*
450 	 * Run through list of hooks for input packets.  If there are any
451 	 * filters which require that additional packets in the flow are
452 	 * not fast-forwarded, they must clear the M_CANFASTFWD flag.
453 	 * Note that filters must _never_ set this flag, as another filter
454 	 * in the list may have previously cleared it.
455 	 */
456 	m0 = m;
457 	pfh = pfil_hook_get(PFIL_IN, &inetsw[ip_protox[IPPROTO_IP]].pr_pfh);
458 	for (; pfh; pfh = TAILQ_NEXT(pfh, pfil_link))
459 		if (pfh->pfil_func) {
460 			rv = pfh->pfil_func(ip, hlen,
461 					    m->m_pkthdr.rcvif, 0, &m0);
462 			if (rv)
463 				return;
464 			m = m0;
465 			if (m == NULL)
466 				return;
467 			ip = mtod(m, struct ip *);
468 		}
469 #endif /* PFIL_HOOKS */
470 
471 	if (fw_enable && IPFW_LOADED) {
472 		/*
473 		 * If we've been forwarded from the output side, then
474 		 * skip the firewall a second time
475 		 */
476 		if (args.next_hop)
477 			goto ours;
478 
479 		args.m = m;
480 		i = ip_fw_chk_ptr(&args);
481 		m = args.m;
482 
483 		if ( (i & IP_FW_PORT_DENY_FLAG) || m == NULL) { /* drop */
484 			if (m)
485 				m_freem(m);
486 			return;
487 		}
488 		ip = mtod(m, struct ip *); /* just in case m changed */
489 		if (i == 0 && args.next_hop == NULL)	/* common case */
490 			goto pass;
491                 if (DUMMYNET_LOADED && (i & IP_FW_PORT_DYNT_FLAG) != 0) {
492 			/* Send packet to the appropriate pipe */
493 			ip_dn_io_ptr(m, i&0xffff, DN_TO_IP_IN, &args);
494 			return;
495 		}
496 #ifdef IPDIVERT
497 		if (i != 0 && (i & IP_FW_PORT_DYNT_FLAG) == 0) {
498 			/* Divert or tee packet */
499 			divert_info = i;
500 			goto ours;
501 		}
502 #endif
503 		if (i == 0 && args.next_hop != NULL)
504 			goto pass;
505 		/*
506 		 * if we get here, the packet must be dropped
507 		 */
508 		m_freem(m);
509 		return;
510 	}
511 pass:
512 
513 	/*
514 	 * Process options and, if not destined for us,
515 	 * ship it on.  ip_dooptions returns 1 when an
516 	 * error was detected (causing an icmp message
517 	 * to be sent and the original packet to be freed).
518 	 */
519 	ip_nhops = 0;		/* for source routed packets */
520 	if (hlen > sizeof (struct ip) && ip_dooptions(m, 0, args.next_hop))
521 		return;
522 
523         /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
524          * matter if it is destined to another node, or whether it is
525          * a multicast one, RSVP wants it! and prevents it from being forwarded
526          * anywhere else. Also checks if the rsvp daemon is running before
527 	 * grabbing the packet.
528          */
529 	if (rsvp_on && ip->ip_p==IPPROTO_RSVP)
530 		goto ours;
531 
532 	/*
533 	 * Check our list of addresses, to see if the packet is for us.
534 	 * If we don't have any addresses, assume any unicast packet
535 	 * we receive might be for us (and let the upper layers deal
536 	 * with it).
537 	 */
538 	if (TAILQ_EMPTY(&in_ifaddrhead) &&
539 	    (m->m_flags & (M_MCAST|M_BCAST)) == 0)
540 		goto ours;
541 
542 	/*
543 	 * Cache the destination address of the packet; this may be
544 	 * changed by use of 'ipfw fwd'.
545 	 */
546 	pkt_dst = args.next_hop ? args.next_hop->sin_addr : ip->ip_dst;
547 
548 	/*
549 	 * Enable a consistency check between the destination address
550 	 * and the arrival interface for a unicast packet (the RFC 1122
551 	 * strong ES model) if IP forwarding is disabled and the packet
552 	 * is not locally generated and the packet is not subject to
553 	 * 'ipfw fwd'.
554 	 *
555 	 * XXX - Checking also should be disabled if the destination
556 	 * address is ipnat'ed to a different interface.
557 	 *
558 	 * XXX - Checking is incompatible with IP aliases added
559 	 * to the loopback interface instead of the interface where
560 	 * the packets are received.
561 	 */
562 	checkif = ip_checkinterface && (ipforwarding == 0) &&
563 	    m->m_pkthdr.rcvif != NULL &&
564 	    ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) &&
565 	    (args.next_hop == NULL);
566 
567 	/*
568 	 * Check for exact addresses in the hash bucket.
569 	 */
570 	LIST_FOREACH(ia, INADDR_HASH(pkt_dst.s_addr), ia_hash) {
571 		/*
572 		 * If the address matches, verify that the packet
573 		 * arrived via the correct interface if checking is
574 		 * enabled.
575 		 */
576 		if (IA_SIN(ia)->sin_addr.s_addr == pkt_dst.s_addr &&
577 		    (!checkif || ia->ia_ifp == m->m_pkthdr.rcvif))
578 			goto ours;
579 	}
580 	/*
581 	 * Check for broadcast addresses.
582 	 *
583 	 * Only accept broadcast packets that arrive via the matching
584 	 * interface.  Reception of forwarded directed broadcasts would
585 	 * be handled via ip_forward() and ether_output() with the loopback
586 	 * into the stack for SIMPLEX interfaces handled by ether_output().
587 	 */
588 	if (m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
589 	        TAILQ_FOREACH(ifa, &m->m_pkthdr.rcvif->if_addrhead, ifa_link) {
590 			if (ifa->ifa_addr->sa_family != AF_INET)
591 				continue;
592 			ia = ifatoia(ifa);
593 			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
594 			    pkt_dst.s_addr)
595 				goto ours;
596 			if (ia->ia_netbroadcast.s_addr == pkt_dst.s_addr)
597 				goto ours;
598 #ifdef BOOTP_COMPAT
599 			if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY)
600 				goto ours;
601 #endif
602 		}
603 	}
604 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
605 		struct in_multi *inm;
606 		if (ip_mrouter) {
607 			/*
608 			 * If we are acting as a multicast router, all
609 			 * incoming multicast packets are passed to the
610 			 * kernel-level multicast forwarding function.
611 			 * The packet is returned (relatively) intact; if
612 			 * ip_mforward() returns a non-zero value, the packet
613 			 * must be discarded, else it may be accepted below.
614 			 */
615 			if (ip_mforward &&
616 			    ip_mforward(ip, m->m_pkthdr.rcvif, m, 0) != 0) {
617 				ipstat.ips_cantforward++;
618 				m_freem(m);
619 				return;
620 			}
621 
622 			/*
623 			 * The process-level routing daemon needs to receive
624 			 * all multicast IGMP packets, whether or not this
625 			 * host belongs to their destination groups.
626 			 */
627 			if (ip->ip_p == IPPROTO_IGMP)
628 				goto ours;
629 			ipstat.ips_forward++;
630 		}
631 		/*
632 		 * See if we belong to the destination multicast group on the
633 		 * arrival interface.
634 		 */
635 		IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
636 		if (inm == NULL) {
637 			ipstat.ips_notmember++;
638 			m_freem(m);
639 			return;
640 		}
641 		goto ours;
642 	}
643 	if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
644 		goto ours;
645 	if (ip->ip_dst.s_addr == INADDR_ANY)
646 		goto ours;
647 
648 	/*
649 	 * FAITH(Firewall Aided Internet Translator)
650 	 */
651 	if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
652 		if (ip_keepfaith) {
653 			if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
654 				goto ours;
655 		}
656 		m_freem(m);
657 		return;
658 	}
659 
660 	/*
661 	 * Not for us; forward if possible and desirable.
662 	 */
663 	if (ipforwarding == 0) {
664 		ipstat.ips_cantforward++;
665 		m_freem(m);
666 	} else {
667 #ifdef IPSEC
668 		/*
669 		 * Enforce inbound IPsec SPD.
670 		 */
671 		if (ipsec4_in_reject(m, NULL)) {
672 			ipsecstat.in_polvio++;
673 			goto bad;
674 		}
675 #endif /* IPSEC */
676 #ifdef FAST_IPSEC
677 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
678 		s = splnet();
679 		if (mtag != NULL) {
680 			tdbi = (struct tdb_ident *)(mtag + 1);
681 			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
682 		} else {
683 			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
684 						   IP_FORWARDING, &error);
685 		}
686 		if (sp == NULL) {	/* NB: can happen if error */
687 			splx(s);
688 			/*XXX error stat???*/
689 			DPRINTF(("ip_input: no SP for forwarding\n"));	/*XXX*/
690 			goto bad;
691 		}
692 
693 		/*
694 		 * Check security policy against packet attributes.
695 		 */
696 		error = ipsec_in_reject(sp, m);
697 		KEY_FREESP(&sp);
698 		splx(s);
699 		if (error) {
700 			ipstat.ips_cantforward++;
701 			goto bad;
702 		}
703 #endif /* FAST_IPSEC */
704 		ip_forward(m, 0, args.next_hop);
705 	}
706 	return;
707 
708 ours:
709 #ifdef IPSTEALTH
710 	/*
711 	 * IPSTEALTH: Process non-routing options only
712 	 * if the packet is destined for us.
713 	 */
714 	if (ipstealth && hlen > sizeof (struct ip) &&
715 	    ip_dooptions(m, 1, args.next_hop))
716 		return;
717 #endif /* IPSTEALTH */
718 
719 	/* Count the packet in the ip address stats */
720 	if (ia != NULL) {
721 		ia->ia_ifa.if_ipackets++;
722 		ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
723 	}
724 
725 	/*
726 	 * If offset or IP_MF are set, must reassemble.
727 	 * Otherwise, nothing need be done.
728 	 * (We could look in the reassembly queue to see
729 	 * if the packet was previously fragmented,
730 	 * but it's not worth the time; just let them time out.)
731 	 */
732 	if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
733 
734 		/* If maxnipq is 0, never accept fragments. */
735 		if (maxnipq == 0) {
736                 	ipstat.ips_fragments++;
737 			ipstat.ips_fragdropped++;
738 			goto bad;
739 		}
740 
741 		sum = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
742 		/*
743 		 * Look for queue of fragments
744 		 * of this datagram.
745 		 */
746 		TAILQ_FOREACH(fp, &ipq[sum], ipq_list)
747 			if (ip->ip_id == fp->ipq_id &&
748 			    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
749 			    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
750 #ifdef MAC
751 			    mac_fragment_match(m, fp) &&
752 #endif
753 			    ip->ip_p == fp->ipq_p)
754 				goto found;
755 
756 		fp = 0;
757 
758 		/*
759 		 * Enforce upper bound on number of fragmented packets
760 		 * for which we attempt reassembly;
761 		 * If maxnipq is -1, accept all fragments without limitation.
762 		 */
763 		if ((nipq > maxnipq) && (maxnipq > 0)) {
764 		    /*
765 		     * drop something from the tail of the current queue
766 		     * before proceeding further
767 		     */
768 		    struct ipq *q = TAILQ_LAST(&ipq[sum], ipqhead);
769 		    if (q == NULL) {   /* gak */
770 			for (i = 0; i < IPREASS_NHASH; i++) {
771 			    struct ipq *r = TAILQ_LAST(&ipq[i], ipqhead);
772 			    if (r) {
773 				ipstat.ips_fragtimeout += r->ipq_nfrags;
774 				ip_freef(&ipq[i], r);
775 				break;
776 			    }
777 			}
778 		    } else {
779 			ipstat.ips_fragtimeout += q->ipq_nfrags;
780 			ip_freef(&ipq[sum], q);
781 		    }
782 		}
783 found:
784 		/*
785 		 * Adjust ip_len to not reflect header,
786 		 * convert offset of this to bytes.
787 		 */
788 		ip->ip_len -= hlen;
789 		if (ip->ip_off & IP_MF) {
790 		        /*
791 		         * Make sure that fragments have a data length
792 			 * that's a non-zero multiple of 8 bytes.
793 		         */
794 			if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
795 				ipstat.ips_toosmall++; /* XXX */
796 				goto bad;
797 			}
798 			m->m_flags |= M_FRAG;
799 		} else
800 			m->m_flags &= ~M_FRAG;
801 		ip->ip_off <<= 3;
802 
803 		/*
804 		 * Attempt reassembly; if it succeeds, proceed.
805 		 * ip_reass() will return a different mbuf, and update
806 		 * the divert info in divert_info and args.divert_rule.
807 		 */
808 		ipstat.ips_fragments++;
809 		m->m_pkthdr.header = ip;
810 		m = ip_reass(m,
811 		    &ipq[sum], fp, &divert_info, &args.divert_rule);
812 		if (m == 0)
813 			return;
814 		ipstat.ips_reassembled++;
815 		ip = mtod(m, struct ip *);
816 		/* Get the header length of the reassembled packet */
817 		hlen = ip->ip_hl << 2;
818 #ifdef IPDIVERT
819 		/* Restore original checksum before diverting packet */
820 		if (divert_info != 0) {
821 			ip->ip_len += hlen;
822 			ip->ip_len = htons(ip->ip_len);
823 			ip->ip_off = htons(ip->ip_off);
824 			ip->ip_sum = 0;
825 			if (hlen == sizeof(struct ip))
826 				ip->ip_sum = in_cksum_hdr(ip);
827 			else
828 				ip->ip_sum = in_cksum(m, hlen);
829 			ip->ip_off = ntohs(ip->ip_off);
830 			ip->ip_len = ntohs(ip->ip_len);
831 			ip->ip_len -= hlen;
832 		}
833 #endif
834 	} else
835 		ip->ip_len -= hlen;
836 
837 #ifdef IPDIVERT
838 	/*
839 	 * Divert or tee packet to the divert protocol if required.
840 	 */
841 	if (divert_info != 0) {
842 		struct mbuf *clone = NULL;
843 
844 		/* Clone packet if we're doing a 'tee' */
845 		if ((divert_info & IP_FW_PORT_TEE_FLAG) != 0)
846 			clone = m_dup(m, M_DONTWAIT);
847 
848 		/* Restore packet header fields to original values */
849 		ip->ip_len += hlen;
850 		ip->ip_len = htons(ip->ip_len);
851 		ip->ip_off = htons(ip->ip_off);
852 
853 		/* Deliver packet to divert input routine */
854 		divert_packet(m, 1, divert_info & 0xffff, args.divert_rule);
855 		ipstat.ips_delivered++;
856 
857 		/* If 'tee', continue with original packet */
858 		if (clone == NULL)
859 			return;
860 		m = clone;
861 		ip = mtod(m, struct ip *);
862 		ip->ip_len += hlen;
863 		/*
864 		 * Jump backwards to complete processing of the
865 		 * packet. But first clear divert_info to avoid
866 		 * entering this block again.
867 		 * We do not need to clear args.divert_rule
868 		 * or args.next_hop as they will not be used.
869 		 */
870 		divert_info = 0;
871 		goto pass;
872 	}
873 #endif
874 
875 #ifdef IPSEC
876 	/*
877 	 * enforce IPsec policy checking if we are seeing last header.
878 	 * note that we do not visit this with protocols with pcb layer
879 	 * code - like udp/tcp/raw ip.
880 	 */
881 	if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0 &&
882 	    ipsec4_in_reject(m, NULL)) {
883 		ipsecstat.in_polvio++;
884 		goto bad;
885 	}
886 #endif
887 #if FAST_IPSEC
888 	/*
889 	 * enforce IPsec policy checking if we are seeing last header.
890 	 * note that we do not visit this with protocols with pcb layer
891 	 * code - like udp/tcp/raw ip.
892 	 */
893 	if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0) {
894 		/*
895 		 * Check if the packet has already had IPsec processing
896 		 * done.  If so, then just pass it along.  This tag gets
897 		 * set during AH, ESP, etc. input handling, before the
898 		 * packet is returned to the ip input queue for delivery.
899 		 */
900 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
901 		s = splnet();
902 		if (mtag != NULL) {
903 			tdbi = (struct tdb_ident *)(mtag + 1);
904 			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
905 		} else {
906 			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
907 						   IP_FORWARDING, &error);
908 		}
909 		if (sp != NULL) {
910 			/*
911 			 * Check security policy against packet attributes.
912 			 */
913 			error = ipsec_in_reject(sp, m);
914 			KEY_FREESP(&sp);
915 		} else {
916 			/* XXX error stat??? */
917 			error = EINVAL;
918 DPRINTF(("ip_input: no SP, packet discarded\n"));/*XXX*/
919 			goto bad;
920 		}
921 		splx(s);
922 		if (error)
923 			goto bad;
924 	}
925 #endif /* FAST_IPSEC */
926 
927 	/*
928 	 * Switch out to protocol's input routine.
929 	 */
930 	ipstat.ips_delivered++;
931 	if (args.next_hop && ip->ip_p == IPPROTO_TCP) {
932 		/* TCP needs IPFORWARD info if available */
933 		struct m_hdr tag;
934 
935 		tag.mh_type = MT_TAG;
936 		tag.mh_flags = PACKET_TAG_IPFORWARD;
937 		tag.mh_data = (caddr_t)args.next_hop;
938 		tag.mh_next = m;
939 
940 		(*inetsw[ip_protox[ip->ip_p]].pr_input)(
941 			(struct mbuf *)&tag, hlen);
942 	} else
943 		(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
944 	return;
945 bad:
946 	m_freem(m);
947 }
948 
949 /*
950  * Take incoming datagram fragment and try to reassemble it into
951  * whole datagram.  If a chain for reassembly of this datagram already
952  * exists, then it is given as fp; otherwise have to make a chain.
953  *
954  * When IPDIVERT enabled, keep additional state with each packet that
955  * tells us if we need to divert or tee the packet we're building.
956  * In particular, *divinfo includes the port and TEE flag,
957  * *divert_rule is the number of the matching rule.
958  */
959 
960 static struct mbuf *
961 ip_reass(struct mbuf *m, struct ipqhead *head, struct ipq *fp,
962 	u_int32_t *divinfo, u_int16_t *divert_rule)
963 {
964 	struct ip *ip = mtod(m, struct ip *);
965 	register struct mbuf *p, *q, *nq;
966 	struct mbuf *t;
967 	int hlen = ip->ip_hl << 2;
968 	int i, next;
969 
970 	/*
971 	 * Presence of header sizes in mbufs
972 	 * would confuse code below.
973 	 */
974 	m->m_data += hlen;
975 	m->m_len -= hlen;
976 
977 	/*
978 	 * If first fragment to arrive, create a reassembly queue.
979 	 */
980 	if (fp == 0) {
981 		if ((t = m_get(M_DONTWAIT, MT_FTABLE)) == NULL)
982 			goto dropfrag;
983 		fp = mtod(t, struct ipq *);
984 #ifdef MAC
985 		if (mac_init_ipq(fp, M_NOWAIT) != 0) {
986 			m_free(t);
987 			goto dropfrag;
988 		}
989 		mac_create_ipq(m, fp);
990 #endif
991 		TAILQ_INSERT_HEAD(head, fp, ipq_list);
992 		nipq++;
993 		fp->ipq_nfrags = 1;
994 		fp->ipq_ttl = IPFRAGTTL;
995 		fp->ipq_p = ip->ip_p;
996 		fp->ipq_id = ip->ip_id;
997 		fp->ipq_src = ip->ip_src;
998 		fp->ipq_dst = ip->ip_dst;
999 		fp->ipq_frags = m;
1000 		m->m_nextpkt = NULL;
1001 #ifdef IPDIVERT
1002 		fp->ipq_div_info = 0;
1003 		fp->ipq_div_cookie = 0;
1004 #endif
1005 		goto inserted;
1006 	} else {
1007 		fp->ipq_nfrags++;
1008 #ifdef MAC
1009 		mac_update_ipq(m, fp);
1010 #endif
1011 	}
1012 
1013 #define GETIP(m)	((struct ip*)((m)->m_pkthdr.header))
1014 
1015 	/*
1016 	 * Find a segment which begins after this one does.
1017 	 */
1018 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
1019 		if (GETIP(q)->ip_off > ip->ip_off)
1020 			break;
1021 
1022 	/*
1023 	 * If there is a preceding segment, it may provide some of
1024 	 * our data already.  If so, drop the data from the incoming
1025 	 * segment.  If it provides all of our data, drop us, otherwise
1026 	 * stick new segment in the proper place.
1027 	 *
1028 	 * If some of the data is dropped from the the preceding
1029 	 * segment, then it's checksum is invalidated.
1030 	 */
1031 	if (p) {
1032 		i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
1033 		if (i > 0) {
1034 			if (i >= ip->ip_len)
1035 				goto dropfrag;
1036 			m_adj(m, i);
1037 			m->m_pkthdr.csum_flags = 0;
1038 			ip->ip_off += i;
1039 			ip->ip_len -= i;
1040 		}
1041 		m->m_nextpkt = p->m_nextpkt;
1042 		p->m_nextpkt = m;
1043 	} else {
1044 		m->m_nextpkt = fp->ipq_frags;
1045 		fp->ipq_frags = m;
1046 	}
1047 
1048 	/*
1049 	 * While we overlap succeeding segments trim them or,
1050 	 * if they are completely covered, dequeue them.
1051 	 */
1052 	for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
1053 	     q = nq) {
1054 		i = (ip->ip_off + ip->ip_len) - GETIP(q)->ip_off;
1055 		if (i < GETIP(q)->ip_len) {
1056 			GETIP(q)->ip_len -= i;
1057 			GETIP(q)->ip_off += i;
1058 			m_adj(q, i);
1059 			q->m_pkthdr.csum_flags = 0;
1060 			break;
1061 		}
1062 		nq = q->m_nextpkt;
1063 		m->m_nextpkt = nq;
1064 		ipstat.ips_fragdropped++;
1065 		fp->ipq_nfrags--;
1066 		m_freem(q);
1067 	}
1068 
1069 inserted:
1070 
1071 #ifdef IPDIVERT
1072 	/*
1073 	 * Transfer firewall instructions to the fragment structure.
1074 	 * Only trust info in the fragment at offset 0.
1075 	 */
1076 	if (ip->ip_off == 0) {
1077 		fp->ipq_div_info = *divinfo;
1078 		fp->ipq_div_cookie = *divert_rule;
1079 	}
1080 	*divinfo = 0;
1081 	*divert_rule = 0;
1082 #endif
1083 
1084 	/*
1085 	 * Check for complete reassembly and perform frag per packet
1086 	 * limiting.
1087 	 *
1088 	 * Frag limiting is performed here so that the nth frag has
1089 	 * a chance to complete the packet before we drop the packet.
1090 	 * As a result, n+1 frags are actually allowed per packet, but
1091 	 * only n will ever be stored. (n = maxfragsperpacket.)
1092 	 *
1093 	 */
1094 	next = 0;
1095 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1096 		if (GETIP(q)->ip_off != next) {
1097 			if (fp->ipq_nfrags > maxfragsperpacket) {
1098 				ipstat.ips_fragdropped += fp->ipq_nfrags;
1099 				ip_freef(head, fp);
1100 			}
1101 			return (0);
1102 		}
1103 		next += GETIP(q)->ip_len;
1104 	}
1105 	/* Make sure the last packet didn't have the IP_MF flag */
1106 	if (p->m_flags & M_FRAG) {
1107 		if (fp->ipq_nfrags > maxfragsperpacket) {
1108 			ipstat.ips_fragdropped += fp->ipq_nfrags;
1109 			ip_freef(head, fp);
1110 		}
1111 		return (0);
1112 	}
1113 
1114 	/*
1115 	 * Reassembly is complete.  Make sure the packet is a sane size.
1116 	 */
1117 	q = fp->ipq_frags;
1118 	ip = GETIP(q);
1119 	if (next + (ip->ip_hl << 2) > IP_MAXPACKET) {
1120 		ipstat.ips_toolong++;
1121 		ipstat.ips_fragdropped += fp->ipq_nfrags;
1122 		ip_freef(head, fp);
1123 		return (0);
1124 	}
1125 
1126 	/*
1127 	 * Concatenate fragments.
1128 	 */
1129 	m = q;
1130 	t = m->m_next;
1131 	m->m_next = 0;
1132 	m_cat(m, t);
1133 	nq = q->m_nextpkt;
1134 	q->m_nextpkt = 0;
1135 	for (q = nq; q != NULL; q = nq) {
1136 		nq = q->m_nextpkt;
1137 		q->m_nextpkt = NULL;
1138 		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1139 		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1140 		m_cat(m, q);
1141 	}
1142 #ifdef MAC
1143 	mac_create_datagram_from_ipq(fp, m);
1144 	mac_destroy_ipq(fp);
1145 #endif
1146 
1147 #ifdef IPDIVERT
1148 	/*
1149 	 * Extract firewall instructions from the fragment structure.
1150 	 */
1151 	*divinfo = fp->ipq_div_info;
1152 	*divert_rule = fp->ipq_div_cookie;
1153 #endif
1154 
1155 	/*
1156 	 * Create header for new ip packet by
1157 	 * modifying header of first packet;
1158 	 * dequeue and discard fragment reassembly header.
1159 	 * Make header visible.
1160 	 */
1161 	ip->ip_len = next;
1162 	ip->ip_src = fp->ipq_src;
1163 	ip->ip_dst = fp->ipq_dst;
1164 	TAILQ_REMOVE(head, fp, ipq_list);
1165 	nipq--;
1166 	(void) m_free(dtom(fp));
1167 	m->m_len += (ip->ip_hl << 2);
1168 	m->m_data -= (ip->ip_hl << 2);
1169 	/* some debugging cruft by sklower, below, will go away soon */
1170 	if (m->m_flags & M_PKTHDR)	/* XXX this should be done elsewhere */
1171 		m_fixhdr(m);
1172 	return (m);
1173 
1174 dropfrag:
1175 #ifdef IPDIVERT
1176 	*divinfo = 0;
1177 	*divert_rule = 0;
1178 #endif
1179 	ipstat.ips_fragdropped++;
1180 	if (fp != 0)
1181 		fp->ipq_nfrags--;
1182 	m_freem(m);
1183 	return (0);
1184 
1185 #undef GETIP
1186 }
1187 
1188 /*
1189  * Free a fragment reassembly header and all
1190  * associated datagrams.
1191  */
1192 static void
1193 ip_freef(fhp, fp)
1194 	struct ipqhead *fhp;
1195 	struct ipq *fp;
1196 {
1197 	register struct mbuf *q;
1198 
1199 	while (fp->ipq_frags) {
1200 		q = fp->ipq_frags;
1201 		fp->ipq_frags = q->m_nextpkt;
1202 		m_freem(q);
1203 	}
1204 	TAILQ_REMOVE(fhp, fp, ipq_list);
1205 	(void) m_free(dtom(fp));
1206 	nipq--;
1207 }
1208 
1209 /*
1210  * IP timer processing;
1211  * if a timer expires on a reassembly
1212  * queue, discard it.
1213  */
1214 void
1215 ip_slowtimo()
1216 {
1217 	register struct ipq *fp;
1218 	int s = splnet();
1219 	int i;
1220 
1221 	for (i = 0; i < IPREASS_NHASH; i++) {
1222 		for(fp = TAILQ_FIRST(&ipq[i]); fp;) {
1223 			struct ipq *fpp;
1224 
1225 			fpp = fp;
1226 			fp = TAILQ_NEXT(fp, ipq_list);
1227 			if(--fpp->ipq_ttl == 0) {
1228 				ipstat.ips_fragtimeout += fpp->ipq_nfrags;
1229 				ip_freef(&ipq[i], fpp);
1230 			}
1231 		}
1232 	}
1233 	/*
1234 	 * If we are over the maximum number of fragments
1235 	 * (due to the limit being lowered), drain off
1236 	 * enough to get down to the new limit.
1237 	 */
1238 	if (maxnipq >= 0 && nipq > maxnipq) {
1239 		for (i = 0; i < IPREASS_NHASH; i++) {
1240 			while (nipq > maxnipq && !TAILQ_EMPTY(&ipq[i])) {
1241 				ipstat.ips_fragdropped +=
1242 				    TAILQ_FIRST(&ipq[i])->ipq_nfrags;
1243 				ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i]));
1244 			}
1245 		}
1246 	}
1247 	ipflow_slowtimo();
1248 	splx(s);
1249 }
1250 
1251 /*
1252  * Drain off all datagram fragments.
1253  */
1254 void
1255 ip_drain()
1256 {
1257 	int     i;
1258 
1259 	for (i = 0; i < IPREASS_NHASH; i++) {
1260 		while(!TAILQ_EMPTY(&ipq[i])) {
1261 			ipstat.ips_fragdropped +=
1262 			    TAILQ_FIRST(&ipq[i])->ipq_nfrags;
1263 			ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i]));
1264 		}
1265 	}
1266 	in_rtqdrain();
1267 }
1268 
1269 /*
1270  * Do option processing on a datagram,
1271  * possibly discarding it if bad options are encountered,
1272  * or forwarding it if source-routed.
1273  * The pass argument is used when operating in the IPSTEALTH
1274  * mode to tell what options to process:
1275  * [LS]SRR (pass 0) or the others (pass 1).
1276  * The reason for as many as two passes is that when doing IPSTEALTH,
1277  * non-routing options should be processed only if the packet is for us.
1278  * Returns 1 if packet has been forwarded/freed,
1279  * 0 if the packet should be processed further.
1280  */
1281 static int
1282 ip_dooptions(struct mbuf *m, int pass, struct sockaddr_in *next_hop)
1283 {
1284 	struct ip *ip = mtod(m, struct ip *);
1285 	u_char *cp;
1286 	struct in_ifaddr *ia;
1287 	int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
1288 	struct in_addr *sin, dst;
1289 	n_time ntime;
1290 	struct	sockaddr_in ipaddr = { sizeof(ipaddr), AF_INET };
1291 
1292 	dst = ip->ip_dst;
1293 	cp = (u_char *)(ip + 1);
1294 	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1295 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1296 		opt = cp[IPOPT_OPTVAL];
1297 		if (opt == IPOPT_EOL)
1298 			break;
1299 		if (opt == IPOPT_NOP)
1300 			optlen = 1;
1301 		else {
1302 			if (cnt < IPOPT_OLEN + sizeof(*cp)) {
1303 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1304 				goto bad;
1305 			}
1306 			optlen = cp[IPOPT_OLEN];
1307 			if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
1308 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1309 				goto bad;
1310 			}
1311 		}
1312 		switch (opt) {
1313 
1314 		default:
1315 			break;
1316 
1317 		/*
1318 		 * Source routing with record.
1319 		 * Find interface with current destination address.
1320 		 * If none on this machine then drop if strictly routed,
1321 		 * or do nothing if loosely routed.
1322 		 * Record interface address and bring up next address
1323 		 * component.  If strictly routed make sure next
1324 		 * address is on directly accessible net.
1325 		 */
1326 		case IPOPT_LSRR:
1327 		case IPOPT_SSRR:
1328 #ifdef IPSTEALTH
1329 			if (ipstealth && pass > 0)
1330 				break;
1331 #endif
1332 			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1333 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1334 				goto bad;
1335 			}
1336 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1337 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1338 				goto bad;
1339 			}
1340 			ipaddr.sin_addr = ip->ip_dst;
1341 			ia = (struct in_ifaddr *)
1342 				ifa_ifwithaddr((struct sockaddr *)&ipaddr);
1343 			if (ia == 0) {
1344 				if (opt == IPOPT_SSRR) {
1345 					type = ICMP_UNREACH;
1346 					code = ICMP_UNREACH_SRCFAIL;
1347 					goto bad;
1348 				}
1349 				if (!ip_dosourceroute)
1350 					goto nosourcerouting;
1351 				/*
1352 				 * Loose routing, and not at next destination
1353 				 * yet; nothing to do except forward.
1354 				 */
1355 				break;
1356 			}
1357 			off--;			/* 0 origin */
1358 			if (off > optlen - (int)sizeof(struct in_addr)) {
1359 				/*
1360 				 * End of source route.  Should be for us.
1361 				 */
1362 				if (!ip_acceptsourceroute)
1363 					goto nosourcerouting;
1364 				save_rte(cp, ip->ip_src);
1365 				break;
1366 			}
1367 #ifdef IPSTEALTH
1368 			if (ipstealth)
1369 				goto dropit;
1370 #endif
1371 			if (!ip_dosourceroute) {
1372 				if (ipforwarding) {
1373 					char buf[16]; /* aaa.bbb.ccc.ddd\0 */
1374 					/*
1375 					 * Acting as a router, so generate ICMP
1376 					 */
1377 nosourcerouting:
1378 					strcpy(buf, inet_ntoa(ip->ip_dst));
1379 					log(LOG_WARNING,
1380 					    "attempted source route from %s to %s\n",
1381 					    inet_ntoa(ip->ip_src), buf);
1382 					type = ICMP_UNREACH;
1383 					code = ICMP_UNREACH_SRCFAIL;
1384 					goto bad;
1385 				} else {
1386 					/*
1387 					 * Not acting as a router, so silently drop.
1388 					 */
1389 #ifdef IPSTEALTH
1390 dropit:
1391 #endif
1392 					ipstat.ips_cantforward++;
1393 					m_freem(m);
1394 					return (1);
1395 				}
1396 			}
1397 
1398 			/*
1399 			 * locate outgoing interface
1400 			 */
1401 			(void)memcpy(&ipaddr.sin_addr, cp + off,
1402 			    sizeof(ipaddr.sin_addr));
1403 
1404 			if (opt == IPOPT_SSRR) {
1405 #define	INA	struct in_ifaddr *
1406 #define	SA	struct sockaddr *
1407 			    if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr)) == 0)
1408 				ia = (INA)ifa_ifwithnet((SA)&ipaddr);
1409 			} else
1410 				ia = ip_rtaddr(ipaddr.sin_addr, &ipforward_rt);
1411 			if (ia == 0) {
1412 				type = ICMP_UNREACH;
1413 				code = ICMP_UNREACH_SRCFAIL;
1414 				goto bad;
1415 			}
1416 			ip->ip_dst = ipaddr.sin_addr;
1417 			(void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr),
1418 			    sizeof(struct in_addr));
1419 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1420 			/*
1421 			 * Let ip_intr's mcast routing check handle mcast pkts
1422 			 */
1423 			forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr));
1424 			break;
1425 
1426 		case IPOPT_RR:
1427 #ifdef IPSTEALTH
1428 			if (ipstealth && pass == 0)
1429 				break;
1430 #endif
1431 			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1432 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1433 				goto bad;
1434 			}
1435 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1436 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1437 				goto bad;
1438 			}
1439 			/*
1440 			 * If no space remains, ignore.
1441 			 */
1442 			off--;			/* 0 origin */
1443 			if (off > optlen - (int)sizeof(struct in_addr))
1444 				break;
1445 			(void)memcpy(&ipaddr.sin_addr, &ip->ip_dst,
1446 			    sizeof(ipaddr.sin_addr));
1447 			/*
1448 			 * locate outgoing interface; if we're the destination,
1449 			 * use the incoming interface (should be same).
1450 			 */
1451 			if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == 0 &&
1452 			    (ia = ip_rtaddr(ipaddr.sin_addr,
1453 			    &ipforward_rt)) == 0) {
1454 				type = ICMP_UNREACH;
1455 				code = ICMP_UNREACH_HOST;
1456 				goto bad;
1457 			}
1458 			(void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr),
1459 			    sizeof(struct in_addr));
1460 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1461 			break;
1462 
1463 		case IPOPT_TS:
1464 #ifdef IPSTEALTH
1465 			if (ipstealth && pass == 0)
1466 				break;
1467 #endif
1468 			code = cp - (u_char *)ip;
1469 			if (optlen < 4 || optlen > 40) {
1470 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1471 				goto bad;
1472 			}
1473 			if ((off = cp[IPOPT_OFFSET]) < 5) {
1474 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1475 				goto bad;
1476 			}
1477 			if (off > optlen - (int)sizeof(int32_t)) {
1478 				cp[IPOPT_OFFSET + 1] += (1 << 4);
1479 				if ((cp[IPOPT_OFFSET + 1] & 0xf0) == 0) {
1480 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1481 					goto bad;
1482 				}
1483 				break;
1484 			}
1485 			off--;				/* 0 origin */
1486 			sin = (struct in_addr *)(cp + off);
1487 			switch (cp[IPOPT_OFFSET + 1] & 0x0f) {
1488 
1489 			case IPOPT_TS_TSONLY:
1490 				break;
1491 
1492 			case IPOPT_TS_TSANDADDR:
1493 				if (off + sizeof(n_time) +
1494 				    sizeof(struct in_addr) > optlen) {
1495 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1496 					goto bad;
1497 				}
1498 				ipaddr.sin_addr = dst;
1499 				ia = (INA)ifaof_ifpforaddr((SA)&ipaddr,
1500 							    m->m_pkthdr.rcvif);
1501 				if (ia == 0)
1502 					continue;
1503 				(void)memcpy(sin, &IA_SIN(ia)->sin_addr,
1504 				    sizeof(struct in_addr));
1505 				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1506 				off += sizeof(struct in_addr);
1507 				break;
1508 
1509 			case IPOPT_TS_PRESPEC:
1510 				if (off + sizeof(n_time) +
1511 				    sizeof(struct in_addr) > optlen) {
1512 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1513 					goto bad;
1514 				}
1515 				(void)memcpy(&ipaddr.sin_addr, sin,
1516 				    sizeof(struct in_addr));
1517 				if (ifa_ifwithaddr((SA)&ipaddr) == 0)
1518 					continue;
1519 				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1520 				off += sizeof(struct in_addr);
1521 				break;
1522 
1523 			default:
1524 				code = &cp[IPOPT_OFFSET + 1] - (u_char *)ip;
1525 				goto bad;
1526 			}
1527 			ntime = iptime();
1528 			(void)memcpy(cp + off, &ntime, sizeof(n_time));
1529 			cp[IPOPT_OFFSET] += sizeof(n_time);
1530 		}
1531 	}
1532 	if (forward && ipforwarding) {
1533 		ip_forward(m, 1, next_hop);
1534 		return (1);
1535 	}
1536 	return (0);
1537 bad:
1538 	icmp_error(m, type, code, 0, 0);
1539 	ipstat.ips_badoptions++;
1540 	return (1);
1541 }
1542 
1543 /*
1544  * Given address of next destination (final or next hop),
1545  * return internet address info of interface to be used to get there.
1546  */
1547 struct in_ifaddr *
1548 ip_rtaddr(dst, rt)
1549 	struct in_addr dst;
1550 	struct route *rt;
1551 {
1552 	register struct sockaddr_in *sin;
1553 
1554 	sin = (struct sockaddr_in *)&rt->ro_dst;
1555 
1556 	if (rt->ro_rt == 0 ||
1557 	    !(rt->ro_rt->rt_flags & RTF_UP) ||
1558 	    dst.s_addr != sin->sin_addr.s_addr) {
1559 		if (rt->ro_rt) {
1560 			RTFREE(rt->ro_rt);
1561 			rt->ro_rt = 0;
1562 		}
1563 		sin->sin_family = AF_INET;
1564 		sin->sin_len = sizeof(*sin);
1565 		sin->sin_addr = dst;
1566 
1567 		rtalloc_ign(rt, RTF_PRCLONING);
1568 	}
1569 	if (rt->ro_rt == 0)
1570 		return ((struct in_ifaddr *)0);
1571 	return (ifatoia(rt->ro_rt->rt_ifa));
1572 }
1573 
1574 /*
1575  * Save incoming source route for use in replies,
1576  * to be picked up later by ip_srcroute if the receiver is interested.
1577  */
1578 static void
1579 save_rte(option, dst)
1580 	u_char *option;
1581 	struct in_addr dst;
1582 {
1583 	unsigned olen;
1584 
1585 	olen = option[IPOPT_OLEN];
1586 #ifdef DIAGNOSTIC
1587 	if (ipprintfs)
1588 		printf("save_rte: olen %d\n", olen);
1589 #endif
1590 	if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
1591 		return;
1592 	bcopy(option, ip_srcrt.srcopt, olen);
1593 	ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
1594 	ip_srcrt.dst = dst;
1595 }
1596 
1597 /*
1598  * Retrieve incoming source route for use in replies,
1599  * in the same form used by setsockopt.
1600  * The first hop is placed before the options, will be removed later.
1601  */
1602 struct mbuf *
1603 ip_srcroute()
1604 {
1605 	register struct in_addr *p, *q;
1606 	register struct mbuf *m;
1607 
1608 	if (ip_nhops == 0)
1609 		return ((struct mbuf *)0);
1610 	m = m_get(M_DONTWAIT, MT_HEADER);
1611 	if (m == 0)
1612 		return ((struct mbuf *)0);
1613 
1614 #define OPTSIZ	(sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
1615 
1616 	/* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1617 	m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
1618 	    OPTSIZ;
1619 #ifdef DIAGNOSTIC
1620 	if (ipprintfs)
1621 		printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
1622 #endif
1623 
1624 	/*
1625 	 * First save first hop for return route
1626 	 */
1627 	p = &ip_srcrt.route[ip_nhops - 1];
1628 	*(mtod(m, struct in_addr *)) = *p--;
1629 #ifdef DIAGNOSTIC
1630 	if (ipprintfs)
1631 		printf(" hops %lx", (u_long)ntohl(mtod(m, struct in_addr *)->s_addr));
1632 #endif
1633 
1634 	/*
1635 	 * Copy option fields and padding (nop) to mbuf.
1636 	 */
1637 	ip_srcrt.nop = IPOPT_NOP;
1638 	ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
1639 	(void)memcpy(mtod(m, caddr_t) + sizeof(struct in_addr),
1640 	    &ip_srcrt.nop, OPTSIZ);
1641 	q = (struct in_addr *)(mtod(m, caddr_t) +
1642 	    sizeof(struct in_addr) + OPTSIZ);
1643 #undef OPTSIZ
1644 	/*
1645 	 * Record return path as an IP source route,
1646 	 * reversing the path (pointers are now aligned).
1647 	 */
1648 	while (p >= ip_srcrt.route) {
1649 #ifdef DIAGNOSTIC
1650 		if (ipprintfs)
1651 			printf(" %lx", (u_long)ntohl(q->s_addr));
1652 #endif
1653 		*q++ = *p--;
1654 	}
1655 	/*
1656 	 * Last hop goes to final destination.
1657 	 */
1658 	*q = ip_srcrt.dst;
1659 #ifdef DIAGNOSTIC
1660 	if (ipprintfs)
1661 		printf(" %lx\n", (u_long)ntohl(q->s_addr));
1662 #endif
1663 	return (m);
1664 }
1665 
1666 /*
1667  * Strip out IP options, at higher
1668  * level protocol in the kernel.
1669  * Second argument is buffer to which options
1670  * will be moved, and return value is their length.
1671  * XXX should be deleted; last arg currently ignored.
1672  */
1673 void
1674 ip_stripoptions(m, mopt)
1675 	register struct mbuf *m;
1676 	struct mbuf *mopt;
1677 {
1678 	register int i;
1679 	struct ip *ip = mtod(m, struct ip *);
1680 	register caddr_t opts;
1681 	int olen;
1682 
1683 	olen = (ip->ip_hl << 2) - sizeof (struct ip);
1684 	opts = (caddr_t)(ip + 1);
1685 	i = m->m_len - (sizeof (struct ip) + olen);
1686 	bcopy(opts + olen, opts, (unsigned)i);
1687 	m->m_len -= olen;
1688 	if (m->m_flags & M_PKTHDR)
1689 		m->m_pkthdr.len -= olen;
1690 	ip->ip_v = IPVERSION;
1691 	ip->ip_hl = sizeof(struct ip) >> 2;
1692 }
1693 
1694 u_char inetctlerrmap[PRC_NCMDS] = {
1695 	0,		0,		0,		0,
1696 	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1697 	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1698 	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1699 	0,		0,		0,		0,
1700 	ENOPROTOOPT,	ECONNREFUSED
1701 };
1702 
1703 /*
1704  * Forward a packet.  If some error occurs return the sender
1705  * an icmp packet.  Note we can't always generate a meaningful
1706  * icmp message because icmp doesn't have a large enough repertoire
1707  * of codes and types.
1708  *
1709  * If not forwarding, just drop the packet.  This could be confusing
1710  * if ipforwarding was zero but some routing protocol was advancing
1711  * us as a gateway to somewhere.  However, we must let the routing
1712  * protocol deal with that.
1713  *
1714  * The srcrt parameter indicates whether the packet is being forwarded
1715  * via a source route.
1716  */
1717 static void
1718 ip_forward(struct mbuf *m, int srcrt, struct sockaddr_in *next_hop)
1719 {
1720 	struct ip *ip = mtod(m, struct ip *);
1721 	struct rtentry *rt;
1722 	int error, type = 0, code = 0;
1723 	struct mbuf *mcopy;
1724 	n_long dest;
1725 	struct in_addr pkt_dst;
1726 	struct ifnet *destifp;
1727 #if defined(IPSEC) || defined(FAST_IPSEC)
1728 	struct ifnet dummyifp;
1729 #endif
1730 
1731 	dest = 0;
1732 	/*
1733 	 * Cache the destination address of the packet; this may be
1734 	 * changed by use of 'ipfw fwd'.
1735 	 */
1736 	pkt_dst = next_hop ? next_hop->sin_addr : ip->ip_dst;
1737 
1738 #ifdef DIAGNOSTIC
1739 	if (ipprintfs)
1740 		printf("forward: src %lx dst %lx ttl %x\n",
1741 		    (u_long)ip->ip_src.s_addr, (u_long)pkt_dst.s_addr,
1742 		    ip->ip_ttl);
1743 #endif
1744 
1745 
1746 	if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(pkt_dst) == 0) {
1747 		ipstat.ips_cantforward++;
1748 		m_freem(m);
1749 		return;
1750 	}
1751 #ifdef IPSTEALTH
1752 	if (!ipstealth) {
1753 #endif
1754 		if (ip->ip_ttl <= IPTTLDEC) {
1755 			icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS,
1756 			    dest, 0);
1757 			return;
1758 		}
1759 #ifdef IPSTEALTH
1760 	}
1761 #endif
1762 
1763 	if (ip_rtaddr(pkt_dst, &ipforward_rt) == 0) {
1764 		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0);
1765 		return;
1766 	} else
1767 		rt = ipforward_rt.ro_rt;
1768 
1769 	/*
1770 	 * Save the IP header and at most 8 bytes of the payload,
1771 	 * in case we need to generate an ICMP message to the src.
1772 	 *
1773 	 * XXX this can be optimized a lot by saving the data in a local
1774 	 * buffer on the stack (72 bytes at most), and only allocating the
1775 	 * mbuf if really necessary. The vast majority of the packets
1776 	 * are forwarded without having to send an ICMP back (either
1777 	 * because unnecessary, or because rate limited), so we are
1778 	 * really we are wasting a lot of work here.
1779 	 *
1780 	 * We don't use m_copy() because it might return a reference
1781 	 * to a shared cluster. Both this function and ip_output()
1782 	 * assume exclusive access to the IP header in `m', so any
1783 	 * data in a cluster may change before we reach icmp_error().
1784 	 */
1785 	MGET(mcopy, M_DONTWAIT, m->m_type);
1786 	if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, M_DONTWAIT)) {
1787 		/*
1788 		 * It's probably ok if the pkthdr dup fails (because
1789 		 * the deep copy of the tag chain failed), but for now
1790 		 * be conservative and just discard the copy since
1791 		 * code below may some day want the tags.
1792 		 */
1793 		m_free(mcopy);
1794 		mcopy = NULL;
1795 	}
1796 	if (mcopy != NULL) {
1797 		mcopy->m_len = imin((ip->ip_hl << 2) + 8,
1798 		    (int)ip->ip_len);
1799 		m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
1800 #ifdef MAC
1801 		/*
1802 		 * XXXMAC: This will eventually become an explicit
1803 		 * labeling point.
1804 		 */
1805 		mac_create_mbuf_from_mbuf(m, mcopy);
1806 #endif
1807 	}
1808 
1809 #ifdef IPSTEALTH
1810 	if (!ipstealth) {
1811 #endif
1812 		ip->ip_ttl -= IPTTLDEC;
1813 #ifdef IPSTEALTH
1814 	}
1815 #endif
1816 
1817 	/*
1818 	 * If forwarding packet using same interface that it came in on,
1819 	 * perhaps should send a redirect to sender to shortcut a hop.
1820 	 * Only send redirect if source is sending directly to us,
1821 	 * and if packet was not source routed (or has any options).
1822 	 * Also, don't send redirect if forwarding using a default route
1823 	 * or a route modified by a redirect.
1824 	 */
1825 	if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1826 	    (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1827 	    satosin(rt_key(rt))->sin_addr.s_addr != 0 &&
1828 	    ipsendredirects && !srcrt && !next_hop) {
1829 #define	RTA(rt)	((struct in_ifaddr *)(rt->rt_ifa))
1830 		u_long src = ntohl(ip->ip_src.s_addr);
1831 
1832 		if (RTA(rt) &&
1833 		    (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
1834 		    if (rt->rt_flags & RTF_GATEWAY)
1835 			dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1836 		    else
1837 			dest = pkt_dst.s_addr;
1838 		    /* Router requirements says to only send host redirects */
1839 		    type = ICMP_REDIRECT;
1840 		    code = ICMP_REDIRECT_HOST;
1841 #ifdef DIAGNOSTIC
1842 		    if (ipprintfs)
1843 		        printf("redirect (%d) to %lx\n", code, (u_long)dest);
1844 #endif
1845 		}
1846 	}
1847 
1848     {
1849 	struct m_hdr tag;
1850 
1851 	if (next_hop) {
1852 		/* Pass IPFORWARD info if available */
1853 
1854 		tag.mh_type = MT_TAG;
1855 		tag.mh_flags = PACKET_TAG_IPFORWARD;
1856 		tag.mh_data = (caddr_t)next_hop;
1857 		tag.mh_next = m;
1858 		m = (struct mbuf *)&tag;
1859 	}
1860 	error = ip_output(m, (struct mbuf *)0, &ipforward_rt,
1861 			  IP_FORWARDING, 0, NULL);
1862     }
1863 	if (error)
1864 		ipstat.ips_cantforward++;
1865 	else {
1866 		ipstat.ips_forward++;
1867 		if (type)
1868 			ipstat.ips_redirectsent++;
1869 		else {
1870 			if (mcopy) {
1871 				ipflow_create(&ipforward_rt, mcopy);
1872 				m_freem(mcopy);
1873 			}
1874 			return;
1875 		}
1876 	}
1877 	if (mcopy == NULL)
1878 		return;
1879 	destifp = NULL;
1880 
1881 	switch (error) {
1882 
1883 	case 0:				/* forwarded, but need redirect */
1884 		/* type, code set above */
1885 		break;
1886 
1887 	case ENETUNREACH:		/* shouldn't happen, checked above */
1888 	case EHOSTUNREACH:
1889 	case ENETDOWN:
1890 	case EHOSTDOWN:
1891 	default:
1892 		type = ICMP_UNREACH;
1893 		code = ICMP_UNREACH_HOST;
1894 		break;
1895 
1896 	case EMSGSIZE:
1897 		type = ICMP_UNREACH;
1898 		code = ICMP_UNREACH_NEEDFRAG;
1899 #ifdef IPSEC
1900 		/*
1901 		 * If the packet is routed over IPsec tunnel, tell the
1902 		 * originator the tunnel MTU.
1903 		 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
1904 		 * XXX quickhack!!!
1905 		 */
1906 		if (ipforward_rt.ro_rt) {
1907 			struct secpolicy *sp = NULL;
1908 			int ipsecerror;
1909 			int ipsechdr;
1910 			struct route *ro;
1911 
1912 			sp = ipsec4_getpolicybyaddr(mcopy,
1913 						    IPSEC_DIR_OUTBOUND,
1914 			                            IP_FORWARDING,
1915 			                            &ipsecerror);
1916 
1917 			if (sp == NULL)
1918 				destifp = ipforward_rt.ro_rt->rt_ifp;
1919 			else {
1920 				/* count IPsec header size */
1921 				ipsechdr = ipsec4_hdrsiz(mcopy,
1922 							 IPSEC_DIR_OUTBOUND,
1923 							 NULL);
1924 
1925 				/*
1926 				 * find the correct route for outer IPv4
1927 				 * header, compute tunnel MTU.
1928 				 *
1929 				 * XXX BUG ALERT
1930 				 * The "dummyifp" code relies upon the fact
1931 				 * that icmp_error() touches only ifp->if_mtu.
1932 				 */
1933 				/*XXX*/
1934 				destifp = NULL;
1935 				if (sp->req != NULL
1936 				 && sp->req->sav != NULL
1937 				 && sp->req->sav->sah != NULL) {
1938 					ro = &sp->req->sav->sah->sa_route;
1939 					if (ro->ro_rt && ro->ro_rt->rt_ifp) {
1940 						dummyifp.if_mtu =
1941 						    ro->ro_rt->rt_ifp->if_mtu;
1942 						dummyifp.if_mtu -= ipsechdr;
1943 						destifp = &dummyifp;
1944 					}
1945 				}
1946 
1947 				key_freesp(sp);
1948 			}
1949 		}
1950 #elif FAST_IPSEC
1951 		/*
1952 		 * If the packet is routed over IPsec tunnel, tell the
1953 		 * originator the tunnel MTU.
1954 		 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
1955 		 * XXX quickhack!!!
1956 		 */
1957 		if (ipforward_rt.ro_rt) {
1958 			struct secpolicy *sp = NULL;
1959 			int ipsecerror;
1960 			int ipsechdr;
1961 			struct route *ro;
1962 
1963 			sp = ipsec_getpolicybyaddr(mcopy,
1964 						   IPSEC_DIR_OUTBOUND,
1965 			                           IP_FORWARDING,
1966 			                           &ipsecerror);
1967 
1968 			if (sp == NULL)
1969 				destifp = ipforward_rt.ro_rt->rt_ifp;
1970 			else {
1971 				/* count IPsec header size */
1972 				ipsechdr = ipsec4_hdrsiz(mcopy,
1973 							 IPSEC_DIR_OUTBOUND,
1974 							 NULL);
1975 
1976 				/*
1977 				 * find the correct route for outer IPv4
1978 				 * header, compute tunnel MTU.
1979 				 *
1980 				 * XXX BUG ALERT
1981 				 * The "dummyifp" code relies upon the fact
1982 				 * that icmp_error() touches only ifp->if_mtu.
1983 				 */
1984 				/*XXX*/
1985 				destifp = NULL;
1986 				if (sp->req != NULL
1987 				 && sp->req->sav != NULL
1988 				 && sp->req->sav->sah != NULL) {
1989 					ro = &sp->req->sav->sah->sa_route;
1990 					if (ro->ro_rt && ro->ro_rt->rt_ifp) {
1991 						dummyifp.if_mtu =
1992 						    ro->ro_rt->rt_ifp->if_mtu;
1993 						dummyifp.if_mtu -= ipsechdr;
1994 						destifp = &dummyifp;
1995 					}
1996 				}
1997 
1998 				KEY_FREESP(&sp);
1999 			}
2000 		}
2001 #else /* !IPSEC && !FAST_IPSEC */
2002 		if (ipforward_rt.ro_rt)
2003 			destifp = ipforward_rt.ro_rt->rt_ifp;
2004 #endif /*IPSEC*/
2005 		ipstat.ips_cantfrag++;
2006 		break;
2007 
2008 	case ENOBUFS:
2009 		/*
2010 		 * A router should not generate ICMP_SOURCEQUENCH as
2011 		 * required in RFC1812 Requirements for IP Version 4 Routers.
2012 		 * Source quench could be a big problem under DoS attacks,
2013 		 * or if the underlying interface is rate-limited.
2014 		 * Those who need source quench packets may re-enable them
2015 		 * via the net.inet.ip.sendsourcequench sysctl.
2016 		 */
2017 		if (ip_sendsourcequench == 0) {
2018 			m_freem(mcopy);
2019 			return;
2020 		} else {
2021 			type = ICMP_SOURCEQUENCH;
2022 			code = 0;
2023 		}
2024 		break;
2025 
2026 	case EACCES:			/* ipfw denied packet */
2027 		m_freem(mcopy);
2028 		return;
2029 	}
2030 	icmp_error(mcopy, type, code, dest, destifp);
2031 }
2032 
2033 void
2034 ip_savecontrol(inp, mp, ip, m)
2035 	register struct inpcb *inp;
2036 	register struct mbuf **mp;
2037 	register struct ip *ip;
2038 	register struct mbuf *m;
2039 {
2040 	if (inp->inp_socket->so_options & SO_TIMESTAMP) {
2041 		struct timeval tv;
2042 
2043 		microtime(&tv);
2044 		*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
2045 			SCM_TIMESTAMP, SOL_SOCKET);
2046 		if (*mp)
2047 			mp = &(*mp)->m_next;
2048 	}
2049 	if (inp->inp_flags & INP_RECVDSTADDR) {
2050 		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
2051 		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
2052 		if (*mp)
2053 			mp = &(*mp)->m_next;
2054 	}
2055 	if (inp->inp_flags & INP_RECVTTL) {
2056 		*mp = sbcreatecontrol((caddr_t) &ip->ip_ttl,
2057 		    sizeof(u_char), IP_RECVTTL, IPPROTO_IP);
2058 		if (*mp)
2059 			mp = &(*mp)->m_next;
2060 	}
2061 #ifdef notyet
2062 	/* XXX
2063 	 * Moving these out of udp_input() made them even more broken
2064 	 * than they already were.
2065 	 */
2066 	/* options were tossed already */
2067 	if (inp->inp_flags & INP_RECVOPTS) {
2068 		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
2069 		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
2070 		if (*mp)
2071 			mp = &(*mp)->m_next;
2072 	}
2073 	/* ip_srcroute doesn't do what we want here, need to fix */
2074 	if (inp->inp_flags & INP_RECVRETOPTS) {
2075 		*mp = sbcreatecontrol((caddr_t) ip_srcroute(),
2076 		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
2077 		if (*mp)
2078 			mp = &(*mp)->m_next;
2079 	}
2080 #endif
2081 	if (inp->inp_flags & INP_RECVIF) {
2082 		struct ifnet *ifp;
2083 		struct sdlbuf {
2084 			struct sockaddr_dl sdl;
2085 			u_char	pad[32];
2086 		} sdlbuf;
2087 		struct sockaddr_dl *sdp;
2088 		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
2089 
2090 		if (((ifp = m->m_pkthdr.rcvif))
2091 		&& ( ifp->if_index && (ifp->if_index <= if_index))) {
2092 			sdp = (struct sockaddr_dl *)
2093 			    (ifaddr_byindex(ifp->if_index)->ifa_addr);
2094 			/*
2095 			 * Change our mind and don't try copy.
2096 			 */
2097 			if ((sdp->sdl_family != AF_LINK)
2098 			|| (sdp->sdl_len > sizeof(sdlbuf))) {
2099 				goto makedummy;
2100 			}
2101 			bcopy(sdp, sdl2, sdp->sdl_len);
2102 		} else {
2103 makedummy:
2104 			sdl2->sdl_len
2105 				= offsetof(struct sockaddr_dl, sdl_data[0]);
2106 			sdl2->sdl_family = AF_LINK;
2107 			sdl2->sdl_index = 0;
2108 			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
2109 		}
2110 		*mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
2111 			IP_RECVIF, IPPROTO_IP);
2112 		if (*mp)
2113 			mp = &(*mp)->m_next;
2114 	}
2115 }
2116 
2117 /*
2118  * XXX these routines are called from the upper part of the kernel.
2119  * They need to be locked when we remove Giant.
2120  *
2121  * They could also be moved to ip_mroute.c, since all the RSVP
2122  *  handling is done there already.
2123  */
2124 static int ip_rsvp_on;
2125 struct socket *ip_rsvpd;
2126 int
2127 ip_rsvp_init(struct socket *so)
2128 {
2129 	if (so->so_type != SOCK_RAW ||
2130 	    so->so_proto->pr_protocol != IPPROTO_RSVP)
2131 		return EOPNOTSUPP;
2132 
2133 	if (ip_rsvpd != NULL)
2134 		return EADDRINUSE;
2135 
2136 	ip_rsvpd = so;
2137 	/*
2138 	 * This may seem silly, but we need to be sure we don't over-increment
2139 	 * the RSVP counter, in case something slips up.
2140 	 */
2141 	if (!ip_rsvp_on) {
2142 		ip_rsvp_on = 1;
2143 		rsvp_on++;
2144 	}
2145 
2146 	return 0;
2147 }
2148 
2149 int
2150 ip_rsvp_done(void)
2151 {
2152 	ip_rsvpd = NULL;
2153 	/*
2154 	 * This may seem silly, but we need to be sure we don't over-decrement
2155 	 * the RSVP counter, in case something slips up.
2156 	 */
2157 	if (ip_rsvp_on) {
2158 		ip_rsvp_on = 0;
2159 		rsvp_on--;
2160 	}
2161 	return 0;
2162 }
2163 
2164 void
2165 rsvp_input(struct mbuf *m, int off)	/* XXX must fixup manually */
2166 {
2167 	if (rsvp_input_p) { /* call the real one if loaded */
2168 		rsvp_input_p(m, off);
2169 		return;
2170 	}
2171 
2172 	/* Can still get packets with rsvp_on = 0 if there is a local member
2173 	 * of the group to which the RSVP packet is addressed.  But in this
2174 	 * case we want to throw the packet away.
2175 	 */
2176 
2177 	if (!rsvp_on) {
2178 		m_freem(m);
2179 		return;
2180 	}
2181 
2182 	if (ip_rsvpd != NULL) {
2183 		rip_input(m, off);
2184 		return;
2185 	}
2186 	/* Drop the packet */
2187 	m_freem(m);
2188 }
2189