xref: /freebsd/sys/netinet/ip_input.c (revision 6186fd1857626de0f7cb1a9e4dff19082f9ebb11)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_bootp.h"
36 #include "opt_ipfw.h"
37 #include "opt_ipstealth.h"
38 #include "opt_ipsec.h"
39 #include "opt_route.h"
40 #include "opt_rss.h"
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/mbuf.h>
45 #include <sys/malloc.h>
46 #include <sys/domain.h>
47 #include <sys/protosw.h>
48 #include <sys/socket.h>
49 #include <sys/time.h>
50 #include <sys/kernel.h>
51 #include <sys/lock.h>
52 #include <sys/rwlock.h>
53 #include <sys/sdt.h>
54 #include <sys/syslog.h>
55 #include <sys/sysctl.h>
56 
57 #include <net/pfil.h>
58 #include <net/if.h>
59 #include <net/if_types.h>
60 #include <net/if_var.h>
61 #include <net/if_dl.h>
62 #include <net/route.h>
63 #include <net/netisr.h>
64 #include <net/vnet.h>
65 
66 #include <netinet/in.h>
67 #include <netinet/in_kdtrace.h>
68 #include <netinet/in_systm.h>
69 #include <netinet/in_var.h>
70 #include <netinet/ip.h>
71 #include <netinet/in_pcb.h>
72 #include <netinet/ip_var.h>
73 #include <netinet/ip_fw.h>
74 #include <netinet/ip_icmp.h>
75 #include <netinet/ip_options.h>
76 #include <machine/in_cksum.h>
77 #include <netinet/ip_carp.h>
78 #ifdef IPSEC
79 #include <netinet/ip_ipsec.h>
80 #endif /* IPSEC */
81 #include <netinet/in_rss.h>
82 
83 #include <sys/socketvar.h>
84 
85 #include <security/mac/mac_framework.h>
86 
87 #ifdef CTASSERT
88 CTASSERT(sizeof(struct ip) == 20);
89 #endif
90 
91 struct	rwlock in_ifaddr_lock;
92 RW_SYSINIT(in_ifaddr_lock, &in_ifaddr_lock, "in_ifaddr_lock");
93 
94 VNET_DEFINE(int, rsvp_on);
95 
96 VNET_DEFINE(int, ipforwarding);
97 SYSCTL_VNET_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
98     &VNET_NAME(ipforwarding), 0,
99     "Enable IP forwarding between interfaces");
100 
101 static VNET_DEFINE(int, ipsendredirects) = 1;	/* XXX */
102 #define	V_ipsendredirects	VNET(ipsendredirects)
103 SYSCTL_VNET_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
104     &VNET_NAME(ipsendredirects), 0,
105     "Enable sending IP redirects");
106 
107 static VNET_DEFINE(int, ip_keepfaith);
108 #define	V_ip_keepfaith		VNET(ip_keepfaith)
109 SYSCTL_VNET_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
110     &VNET_NAME(ip_keepfaith), 0,
111     "Enable packet capture for FAITH IPv4->IPv6 translater daemon");
112 
113 static VNET_DEFINE(int, ip_sendsourcequench);
114 #define	V_ip_sendsourcequench	VNET(ip_sendsourcequench)
115 SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW,
116     &VNET_NAME(ip_sendsourcequench), 0,
117     "Enable the transmission of source quench packets");
118 
119 VNET_DEFINE(int, ip_do_randomid);
120 SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, random_id, CTLFLAG_RW,
121     &VNET_NAME(ip_do_randomid), 0,
122     "Assign random ip_id values");
123 
124 /*
125  * XXX - Setting ip_checkinterface mostly implements the receive side of
126  * the Strong ES model described in RFC 1122, but since the routing table
127  * and transmit implementation do not implement the Strong ES model,
128  * setting this to 1 results in an odd hybrid.
129  *
130  * XXX - ip_checkinterface currently must be disabled if you use ipnat
131  * to translate the destination address to another local interface.
132  *
133  * XXX - ip_checkinterface must be disabled if you add IP aliases
134  * to the loopback interface instead of the interface where the
135  * packets for those addresses are received.
136  */
137 static VNET_DEFINE(int, ip_checkinterface);
138 #define	V_ip_checkinterface	VNET(ip_checkinterface)
139 SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
140     &VNET_NAME(ip_checkinterface), 0,
141     "Verify packet arrives on correct interface");
142 
143 VNET_DEFINE(struct pfil_head, inet_pfil_hook);	/* Packet filter hooks */
144 
145 static struct netisr_handler ip_nh = {
146 	.nh_name = "ip",
147 	.nh_handler = ip_input,
148 	.nh_proto = NETISR_IP,
149 #ifdef	RSS
150 	.nh_m2cpuid = rss_soft_m2cpuid,
151 	.nh_policy = NETISR_POLICY_CPU,
152 	.nh_dispatch = NETISR_DISPATCH_HYBRID,
153 #else
154 	.nh_policy = NETISR_POLICY_FLOW,
155 #endif
156 };
157 
158 #ifdef	RSS
159 /*
160  * Directly dispatched frames are currently assumed
161  * to have a flowid already calculated.
162  *
163  * It should likely have something that assert it
164  * actually has valid flow details.
165  */
166 static struct netisr_handler ip_direct_nh = {
167 	.nh_name = "ip_direct",
168 	.nh_handler = ip_direct_input,
169 	.nh_proto = NETISR_IP_DIRECT,
170 	.nh_m2cpuid = rss_m2cpuid,
171 	.nh_policy = NETISR_POLICY_CPU,
172 	.nh_dispatch = NETISR_DISPATCH_HYBRID,
173 };
174 #endif
175 
176 extern	struct domain inetdomain;
177 extern	struct protosw inetsw[];
178 u_char	ip_protox[IPPROTO_MAX];
179 VNET_DEFINE(struct in_ifaddrhead, in_ifaddrhead);  /* first inet address */
180 VNET_DEFINE(struct in_ifaddrhashhead *, in_ifaddrhashtbl); /* inet addr hash table  */
181 VNET_DEFINE(u_long, in_ifaddrhmask);		/* mask for hash table */
182 
183 static VNET_DEFINE(uma_zone_t, ipq_zone);
184 static VNET_DEFINE(TAILQ_HEAD(ipqhead, ipq), ipq[IPREASS_NHASH]);
185 static struct mtx ipqlock;
186 
187 #define	V_ipq_zone		VNET(ipq_zone)
188 #define	V_ipq			VNET(ipq)
189 
190 #define	IPQ_LOCK()	mtx_lock(&ipqlock)
191 #define	IPQ_UNLOCK()	mtx_unlock(&ipqlock)
192 #define	IPQ_LOCK_INIT()	mtx_init(&ipqlock, "ipqlock", NULL, MTX_DEF)
193 #define	IPQ_LOCK_ASSERT()	mtx_assert(&ipqlock, MA_OWNED)
194 
195 static void	maxnipq_update(void);
196 static void	ipq_zone_change(void *);
197 static void	ip_drain_locked(void);
198 
199 static VNET_DEFINE(int, maxnipq);  /* Administrative limit on # reass queues. */
200 static VNET_DEFINE(int, nipq);			/* Total # of reass queues */
201 #define	V_maxnipq		VNET(maxnipq)
202 #define	V_nipq			VNET(nipq)
203 SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, fragpackets, CTLFLAG_RD,
204     &VNET_NAME(nipq), 0,
205     "Current number of IPv4 fragment reassembly queue entries");
206 
207 static VNET_DEFINE(int, maxfragsperpacket);
208 #define	V_maxfragsperpacket	VNET(maxfragsperpacket)
209 SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_RW,
210     &VNET_NAME(maxfragsperpacket), 0,
211     "Maximum number of IPv4 fragments allowed per packet");
212 
213 #ifdef IPCTL_DEFMTU
214 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
215     &ip_mtu, 0, "Default MTU");
216 #endif
217 
218 #ifdef IPSTEALTH
219 VNET_DEFINE(int, ipstealth);
220 SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW,
221     &VNET_NAME(ipstealth), 0,
222     "IP stealth mode, no TTL decrementation on forwarding");
223 #endif
224 
225 static void	ip_freef(struct ipqhead *, struct ipq *);
226 
227 /*
228  * IP statistics are stored in the "array" of counter(9)s.
229  */
230 VNET_PCPUSTAT_DEFINE(struct ipstat, ipstat);
231 VNET_PCPUSTAT_SYSINIT(ipstat);
232 SYSCTL_VNET_PCPUSTAT(_net_inet_ip, IPCTL_STATS, stats, struct ipstat, ipstat,
233     "IP statistics (struct ipstat, netinet/ip_var.h)");
234 
235 #ifdef VIMAGE
236 VNET_PCPUSTAT_SYSUNINIT(ipstat);
237 #endif /* VIMAGE */
238 
239 /*
240  * Kernel module interface for updating ipstat.  The argument is an index
241  * into ipstat treated as an array.
242  */
243 void
244 kmod_ipstat_inc(int statnum)
245 {
246 
247 	counter_u64_add(VNET(ipstat)[statnum], 1);
248 }
249 
250 void
251 kmod_ipstat_dec(int statnum)
252 {
253 
254 	counter_u64_add(VNET(ipstat)[statnum], -1);
255 }
256 
257 static int
258 sysctl_netinet_intr_queue_maxlen(SYSCTL_HANDLER_ARGS)
259 {
260 	int error, qlimit;
261 
262 	netisr_getqlimit(&ip_nh, &qlimit);
263 	error = sysctl_handle_int(oidp, &qlimit, 0, req);
264 	if (error || !req->newptr)
265 		return (error);
266 	if (qlimit < 1)
267 		return (EINVAL);
268 	return (netisr_setqlimit(&ip_nh, qlimit));
269 }
270 SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen,
271     CTLTYPE_INT|CTLFLAG_RW, 0, 0, sysctl_netinet_intr_queue_maxlen, "I",
272     "Maximum size of the IP input queue");
273 
274 static int
275 sysctl_netinet_intr_queue_drops(SYSCTL_HANDLER_ARGS)
276 {
277 	u_int64_t qdrops_long;
278 	int error, qdrops;
279 
280 	netisr_getqdrops(&ip_nh, &qdrops_long);
281 	qdrops = qdrops_long;
282 	error = sysctl_handle_int(oidp, &qdrops, 0, req);
283 	if (error || !req->newptr)
284 		return (error);
285 	if (qdrops != 0)
286 		return (EINVAL);
287 	netisr_clearqdrops(&ip_nh);
288 	return (0);
289 }
290 
291 SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops,
292     CTLTYPE_INT|CTLFLAG_RD, 0, 0, sysctl_netinet_intr_queue_drops, "I",
293     "Number of packets dropped from the IP input queue");
294 
295 #ifdef	RSS
296 static int
297 sysctl_netinet_intr_direct_queue_maxlen(SYSCTL_HANDLER_ARGS)
298 {
299 	int error, qlimit;
300 
301 	netisr_getqlimit(&ip_direct_nh, &qlimit);
302 	error = sysctl_handle_int(oidp, &qlimit, 0, req);
303 	if (error || !req->newptr)
304 		return (error);
305 	if (qlimit < 1)
306 		return (EINVAL);
307 	return (netisr_setqlimit(&ip_direct_nh, qlimit));
308 }
309 SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_direct_queue_maxlen,
310     CTLTYPE_INT|CTLFLAG_RW, 0, 0, sysctl_netinet_intr_direct_queue_maxlen, "I",
311     "Maximum size of the IP direct input queue");
312 
313 static int
314 sysctl_netinet_intr_direct_queue_drops(SYSCTL_HANDLER_ARGS)
315 {
316 	u_int64_t qdrops_long;
317 	int error, qdrops;
318 
319 	netisr_getqdrops(&ip_direct_nh, &qdrops_long);
320 	qdrops = qdrops_long;
321 	error = sysctl_handle_int(oidp, &qdrops, 0, req);
322 	if (error || !req->newptr)
323 		return (error);
324 	if (qdrops != 0)
325 		return (EINVAL);
326 	netisr_clearqdrops(&ip_direct_nh);
327 	return (0);
328 }
329 
330 SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQDROPS, intr_direct_queue_drops,
331     CTLTYPE_INT|CTLFLAG_RD, 0, 0, sysctl_netinet_intr_direct_queue_drops, "I",
332     "Number of packets dropped from the IP direct input queue");
333 #endif	/* RSS */
334 
335 /*
336  * IP initialization: fill in IP protocol switch table.
337  * All protocols not implemented in kernel go to raw IP protocol handler.
338  */
339 void
340 ip_init(void)
341 {
342 	struct protosw *pr;
343 	int i;
344 
345 	V_ip_id = time_second & 0xffff;
346 
347 	TAILQ_INIT(&V_in_ifaddrhead);
348 	V_in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &V_in_ifaddrhmask);
349 
350 	/* Initialize IP reassembly queue. */
351 	for (i = 0; i < IPREASS_NHASH; i++)
352 		TAILQ_INIT(&V_ipq[i]);
353 	V_maxnipq = nmbclusters / 32;
354 	V_maxfragsperpacket = 16;
355 	V_ipq_zone = uma_zcreate("ipq", sizeof(struct ipq), NULL, NULL, NULL,
356 	    NULL, UMA_ALIGN_PTR, 0);
357 	maxnipq_update();
358 
359 	/* Initialize packet filter hooks. */
360 	V_inet_pfil_hook.ph_type = PFIL_TYPE_AF;
361 	V_inet_pfil_hook.ph_af = AF_INET;
362 	if ((i = pfil_head_register(&V_inet_pfil_hook)) != 0)
363 		printf("%s: WARNING: unable to register pfil hook, "
364 			"error %d\n", __func__, i);
365 
366 	/* Skip initialization of globals for non-default instances. */
367 	if (!IS_DEFAULT_VNET(curvnet))
368 		return;
369 
370 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
371 	if (pr == NULL)
372 		panic("ip_init: PF_INET not found");
373 
374 	/* Initialize the entire ip_protox[] array to IPPROTO_RAW. */
375 	for (i = 0; i < IPPROTO_MAX; i++)
376 		ip_protox[i] = pr - inetsw;
377 	/*
378 	 * Cycle through IP protocols and put them into the appropriate place
379 	 * in ip_protox[].
380 	 */
381 	for (pr = inetdomain.dom_protosw;
382 	    pr < inetdomain.dom_protoswNPROTOSW; pr++)
383 		if (pr->pr_domain->dom_family == PF_INET &&
384 		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW) {
385 			/* Be careful to only index valid IP protocols. */
386 			if (pr->pr_protocol < IPPROTO_MAX)
387 				ip_protox[pr->pr_protocol] = pr - inetsw;
388 		}
389 
390 	EVENTHANDLER_REGISTER(nmbclusters_change, ipq_zone_change,
391 		NULL, EVENTHANDLER_PRI_ANY);
392 
393 	/* Initialize various other remaining things. */
394 	IPQ_LOCK_INIT();
395 	netisr_register(&ip_nh);
396 #ifdef	RSS
397 	netisr_register(&ip_direct_nh);
398 #endif
399 }
400 
401 #ifdef VIMAGE
402 void
403 ip_destroy(void)
404 {
405 	int i;
406 
407 	if ((i = pfil_head_unregister(&V_inet_pfil_hook)) != 0)
408 		printf("%s: WARNING: unable to unregister pfil hook, "
409 		    "error %d\n", __func__, i);
410 
411 	/* Cleanup in_ifaddr hash table; should be empty. */
412 	hashdestroy(V_in_ifaddrhashtbl, M_IFADDR, V_in_ifaddrhmask);
413 
414 	IPQ_LOCK();
415 	ip_drain_locked();
416 	IPQ_UNLOCK();
417 
418 	uma_zdestroy(V_ipq_zone);
419 }
420 #endif
421 
422 #ifdef	RSS
423 /*
424  * IP direct input routine.
425  *
426  * This is called when reinjecting completed fragments where
427  * all of the previous checking and book-keeping has been done.
428  */
429 void
430 ip_direct_input(struct mbuf *m)
431 {
432 	struct ip *ip;
433 	int hlen;
434 
435 	ip = mtod(m, struct ip *);
436 	hlen = ip->ip_hl << 2;
437 
438 	IPSTAT_INC(ips_delivered);
439 	(*inetsw[ip_protox[ip->ip_p]].pr_input)(&m, &hlen, ip->ip_p);
440 	return;
441 }
442 #endif
443 
444 /*
445  * Ip input routine.  Checksum and byte swap header.  If fragmented
446  * try to reassemble.  Process options.  Pass to next level.
447  */
448 void
449 ip_input(struct mbuf *m)
450 {
451 	struct ip *ip = NULL;
452 	struct in_ifaddr *ia = NULL;
453 	struct ifaddr *ifa;
454 	struct ifnet *ifp;
455 	int    checkif, hlen = 0;
456 	uint16_t sum, ip_len;
457 	int dchg = 0;				/* dest changed after fw */
458 	struct in_addr odst;			/* original dst address */
459 
460 	M_ASSERTPKTHDR(m);
461 
462 	if (m->m_flags & M_FASTFWD_OURS) {
463 		m->m_flags &= ~M_FASTFWD_OURS;
464 		/* Set up some basics that will be used later. */
465 		ip = mtod(m, struct ip *);
466 		hlen = ip->ip_hl << 2;
467 		ip_len = ntohs(ip->ip_len);
468 		goto ours;
469 	}
470 
471 	IPSTAT_INC(ips_total);
472 
473 	if (m->m_pkthdr.len < sizeof(struct ip))
474 		goto tooshort;
475 
476 	if (m->m_len < sizeof (struct ip) &&
477 	    (m = m_pullup(m, sizeof (struct ip))) == NULL) {
478 		IPSTAT_INC(ips_toosmall);
479 		return;
480 	}
481 	ip = mtod(m, struct ip *);
482 
483 	if (ip->ip_v != IPVERSION) {
484 		IPSTAT_INC(ips_badvers);
485 		goto bad;
486 	}
487 
488 	hlen = ip->ip_hl << 2;
489 	if (hlen < sizeof(struct ip)) {	/* minimum header length */
490 		IPSTAT_INC(ips_badhlen);
491 		goto bad;
492 	}
493 	if (hlen > m->m_len) {
494 		if ((m = m_pullup(m, hlen)) == NULL) {
495 			IPSTAT_INC(ips_badhlen);
496 			return;
497 		}
498 		ip = mtod(m, struct ip *);
499 	}
500 
501 	IP_PROBE(receive, NULL, NULL, ip, m->m_pkthdr.rcvif, ip, NULL);
502 
503 	/* 127/8 must not appear on wire - RFC1122 */
504 	ifp = m->m_pkthdr.rcvif;
505 	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
506 	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
507 		if ((ifp->if_flags & IFF_LOOPBACK) == 0) {
508 			IPSTAT_INC(ips_badaddr);
509 			goto bad;
510 		}
511 	}
512 
513 	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
514 		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
515 	} else {
516 		if (hlen == sizeof(struct ip)) {
517 			sum = in_cksum_hdr(ip);
518 		} else {
519 			sum = in_cksum(m, hlen);
520 		}
521 	}
522 	if (sum) {
523 		IPSTAT_INC(ips_badsum);
524 		goto bad;
525 	}
526 
527 #ifdef ALTQ
528 	if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0)
529 		/* packet is dropped by traffic conditioner */
530 		return;
531 #endif
532 
533 	ip_len = ntohs(ip->ip_len);
534 	if (ip_len < hlen) {
535 		IPSTAT_INC(ips_badlen);
536 		goto bad;
537 	}
538 
539 	/*
540 	 * Check that the amount of data in the buffers
541 	 * is as at least much as the IP header would have us expect.
542 	 * Trim mbufs if longer than we expect.
543 	 * Drop packet if shorter than we expect.
544 	 */
545 	if (m->m_pkthdr.len < ip_len) {
546 tooshort:
547 		IPSTAT_INC(ips_tooshort);
548 		goto bad;
549 	}
550 	if (m->m_pkthdr.len > ip_len) {
551 		if (m->m_len == m->m_pkthdr.len) {
552 			m->m_len = ip_len;
553 			m->m_pkthdr.len = ip_len;
554 		} else
555 			m_adj(m, ip_len - m->m_pkthdr.len);
556 	}
557 
558 #ifdef IPSEC
559 	/*
560 	 * Bypass packet filtering for packets previously handled by IPsec.
561 	 */
562 	if (ip_ipsec_filtertunnel(m))
563 		goto passin;
564 #endif /* IPSEC */
565 
566 	/*
567 	 * Run through list of hooks for input packets.
568 	 *
569 	 * NB: Beware of the destination address changing (e.g.
570 	 *     by NAT rewriting).  When this happens, tell
571 	 *     ip_forward to do the right thing.
572 	 */
573 
574 	/* Jump over all PFIL processing if hooks are not active. */
575 	if (!PFIL_HOOKED(&V_inet_pfil_hook))
576 		goto passin;
577 
578 	odst = ip->ip_dst;
579 	if (pfil_run_hooks(&V_inet_pfil_hook, &m, ifp, PFIL_IN, NULL) != 0)
580 		return;
581 	if (m == NULL)			/* consumed by filter */
582 		return;
583 
584 	ip = mtod(m, struct ip *);
585 	dchg = (odst.s_addr != ip->ip_dst.s_addr);
586 	ifp = m->m_pkthdr.rcvif;
587 
588 	if (m->m_flags & M_FASTFWD_OURS) {
589 		m->m_flags &= ~M_FASTFWD_OURS;
590 		goto ours;
591 	}
592 	if (m->m_flags & M_IP_NEXTHOP) {
593 		dchg = (m_tag_find(m, PACKET_TAG_IPFORWARD, NULL) != NULL);
594 		if (dchg != 0) {
595 			/*
596 			 * Directly ship the packet on.  This allows
597 			 * forwarding packets originally destined to us
598 			 * to some other directly connected host.
599 			 */
600 			ip_forward(m, 1);
601 			return;
602 		}
603 	}
604 passin:
605 
606 	/*
607 	 * Process options and, if not destined for us,
608 	 * ship it on.  ip_dooptions returns 1 when an
609 	 * error was detected (causing an icmp message
610 	 * to be sent and the original packet to be freed).
611 	 */
612 	if (hlen > sizeof (struct ip) && ip_dooptions(m, 0))
613 		return;
614 
615         /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
616          * matter if it is destined to another node, or whether it is
617          * a multicast one, RSVP wants it! and prevents it from being forwarded
618          * anywhere else. Also checks if the rsvp daemon is running before
619 	 * grabbing the packet.
620          */
621 	if (V_rsvp_on && ip->ip_p==IPPROTO_RSVP)
622 		goto ours;
623 
624 	/*
625 	 * Check our list of addresses, to see if the packet is for us.
626 	 * If we don't have any addresses, assume any unicast packet
627 	 * we receive might be for us (and let the upper layers deal
628 	 * with it).
629 	 */
630 	if (TAILQ_EMPTY(&V_in_ifaddrhead) &&
631 	    (m->m_flags & (M_MCAST|M_BCAST)) == 0)
632 		goto ours;
633 
634 	/*
635 	 * Enable a consistency check between the destination address
636 	 * and the arrival interface for a unicast packet (the RFC 1122
637 	 * strong ES model) if IP forwarding is disabled and the packet
638 	 * is not locally generated and the packet is not subject to
639 	 * 'ipfw fwd'.
640 	 *
641 	 * XXX - Checking also should be disabled if the destination
642 	 * address is ipnat'ed to a different interface.
643 	 *
644 	 * XXX - Checking is incompatible with IP aliases added
645 	 * to the loopback interface instead of the interface where
646 	 * the packets are received.
647 	 *
648 	 * XXX - This is the case for carp vhost IPs as well so we
649 	 * insert a workaround. If the packet got here, we already
650 	 * checked with carp_iamatch() and carp_forus().
651 	 */
652 	checkif = V_ip_checkinterface && (V_ipforwarding == 0) &&
653 	    ifp != NULL && ((ifp->if_flags & IFF_LOOPBACK) == 0) &&
654 	    ifp->if_carp == NULL && (dchg == 0);
655 
656 	/*
657 	 * Check for exact addresses in the hash bucket.
658 	 */
659 	/* IN_IFADDR_RLOCK(); */
660 	LIST_FOREACH(ia, INADDR_HASH(ip->ip_dst.s_addr), ia_hash) {
661 		/*
662 		 * If the address matches, verify that the packet
663 		 * arrived via the correct interface if checking is
664 		 * enabled.
665 		 */
666 		if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr &&
667 		    (!checkif || ia->ia_ifp == ifp)) {
668 			counter_u64_add(ia->ia_ifa.ifa_ipackets, 1);
669 			counter_u64_add(ia->ia_ifa.ifa_ibytes,
670 			    m->m_pkthdr.len);
671 			/* IN_IFADDR_RUNLOCK(); */
672 			goto ours;
673 		}
674 	}
675 	/* IN_IFADDR_RUNLOCK(); */
676 
677 	/*
678 	 * Check for broadcast addresses.
679 	 *
680 	 * Only accept broadcast packets that arrive via the matching
681 	 * interface.  Reception of forwarded directed broadcasts would
682 	 * be handled via ip_forward() and ether_output() with the loopback
683 	 * into the stack for SIMPLEX interfaces handled by ether_output().
684 	 */
685 	if (ifp != NULL && ifp->if_flags & IFF_BROADCAST) {
686 		IF_ADDR_RLOCK(ifp);
687 	        TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
688 			if (ifa->ifa_addr->sa_family != AF_INET)
689 				continue;
690 			ia = ifatoia(ifa);
691 			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
692 			    ip->ip_dst.s_addr) {
693 				counter_u64_add(ia->ia_ifa.ifa_ipackets, 1);
694 				counter_u64_add(ia->ia_ifa.ifa_ibytes,
695 				    m->m_pkthdr.len);
696 				IF_ADDR_RUNLOCK(ifp);
697 				goto ours;
698 			}
699 #ifdef BOOTP_COMPAT
700 			if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY) {
701 				counter_u64_add(ia->ia_ifa.ifa_ipackets, 1);
702 				counter_u64_add(ia->ia_ifa.ifa_ibytes,
703 				    m->m_pkthdr.len);
704 				IF_ADDR_RUNLOCK(ifp);
705 				goto ours;
706 			}
707 #endif
708 		}
709 		IF_ADDR_RUNLOCK(ifp);
710 		ia = NULL;
711 	}
712 	/* RFC 3927 2.7: Do not forward datagrams for 169.254.0.0/16. */
713 	if (IN_LINKLOCAL(ntohl(ip->ip_dst.s_addr))) {
714 		IPSTAT_INC(ips_cantforward);
715 		m_freem(m);
716 		return;
717 	}
718 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
719 		if (V_ip_mrouter) {
720 			/*
721 			 * If we are acting as a multicast router, all
722 			 * incoming multicast packets are passed to the
723 			 * kernel-level multicast forwarding function.
724 			 * The packet is returned (relatively) intact; if
725 			 * ip_mforward() returns a non-zero value, the packet
726 			 * must be discarded, else it may be accepted below.
727 			 */
728 			if (ip_mforward && ip_mforward(ip, ifp, m, 0) != 0) {
729 				IPSTAT_INC(ips_cantforward);
730 				m_freem(m);
731 				return;
732 			}
733 
734 			/*
735 			 * The process-level routing daemon needs to receive
736 			 * all multicast IGMP packets, whether or not this
737 			 * host belongs to their destination groups.
738 			 */
739 			if (ip->ip_p == IPPROTO_IGMP)
740 				goto ours;
741 			IPSTAT_INC(ips_forward);
742 		}
743 		/*
744 		 * Assume the packet is for us, to avoid prematurely taking
745 		 * a lock on the in_multi hash. Protocols must perform
746 		 * their own filtering and update statistics accordingly.
747 		 */
748 		goto ours;
749 	}
750 	if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
751 		goto ours;
752 	if (ip->ip_dst.s_addr == INADDR_ANY)
753 		goto ours;
754 
755 	/*
756 	 * FAITH(Firewall Aided Internet Translator)
757 	 */
758 	if (ifp && ifp->if_type == IFT_FAITH) {
759 		if (V_ip_keepfaith) {
760 			if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
761 				goto ours;
762 		}
763 		m_freem(m);
764 		return;
765 	}
766 
767 	/*
768 	 * Not for us; forward if possible and desirable.
769 	 */
770 	if (V_ipforwarding == 0) {
771 		IPSTAT_INC(ips_cantforward);
772 		m_freem(m);
773 	} else {
774 #ifdef IPSEC
775 		if (ip_ipsec_fwd(m))
776 			goto bad;
777 #endif /* IPSEC */
778 		ip_forward(m, dchg);
779 	}
780 	return;
781 
782 ours:
783 #ifdef IPSTEALTH
784 	/*
785 	 * IPSTEALTH: Process non-routing options only
786 	 * if the packet is destined for us.
787 	 */
788 	if (V_ipstealth && hlen > sizeof (struct ip) && ip_dooptions(m, 1))
789 		return;
790 #endif /* IPSTEALTH */
791 
792 	/*
793 	 * Attempt reassembly; if it succeeds, proceed.
794 	 * ip_reass() will return a different mbuf.
795 	 */
796 	if (ip->ip_off & htons(IP_MF | IP_OFFMASK)) {
797 		/* XXXGL: shouldn't we save & set m_flags? */
798 		m = ip_reass(m);
799 		if (m == NULL)
800 			return;
801 		ip = mtod(m, struct ip *);
802 		/* Get the header length of the reassembled packet */
803 		hlen = ip->ip_hl << 2;
804 	}
805 
806 #ifdef IPSEC
807 	/*
808 	 * enforce IPsec policy checking if we are seeing last header.
809 	 * note that we do not visit this with protocols with pcb layer
810 	 * code - like udp/tcp/raw ip.
811 	 */
812 	if (ip_ipsec_input(m))
813 		goto bad;
814 #endif /* IPSEC */
815 
816 	/*
817 	 * Switch out to protocol's input routine.
818 	 */
819 	IPSTAT_INC(ips_delivered);
820 
821 	(*inetsw[ip_protox[ip->ip_p]].pr_input)(&m, &hlen, ip->ip_p);
822 	return;
823 bad:
824 	m_freem(m);
825 }
826 
827 /*
828  * After maxnipq has been updated, propagate the change to UMA.  The UMA zone
829  * max has slightly different semantics than the sysctl, for historical
830  * reasons.
831  */
832 static void
833 maxnipq_update(void)
834 {
835 
836 	/*
837 	 * -1 for unlimited allocation.
838 	 */
839 	if (V_maxnipq < 0)
840 		uma_zone_set_max(V_ipq_zone, 0);
841 	/*
842 	 * Positive number for specific bound.
843 	 */
844 	if (V_maxnipq > 0)
845 		uma_zone_set_max(V_ipq_zone, V_maxnipq);
846 	/*
847 	 * Zero specifies no further fragment queue allocation -- set the
848 	 * bound very low, but rely on implementation elsewhere to actually
849 	 * prevent allocation and reclaim current queues.
850 	 */
851 	if (V_maxnipq == 0)
852 		uma_zone_set_max(V_ipq_zone, 1);
853 }
854 
855 static void
856 ipq_zone_change(void *tag)
857 {
858 
859 	if (V_maxnipq > 0 && V_maxnipq < (nmbclusters / 32)) {
860 		V_maxnipq = nmbclusters / 32;
861 		maxnipq_update();
862 	}
863 }
864 
865 static int
866 sysctl_maxnipq(SYSCTL_HANDLER_ARGS)
867 {
868 	int error, i;
869 
870 	i = V_maxnipq;
871 	error = sysctl_handle_int(oidp, &i, 0, req);
872 	if (error || !req->newptr)
873 		return (error);
874 
875 	/*
876 	 * XXXRW: Might be a good idea to sanity check the argument and place
877 	 * an extreme upper bound.
878 	 */
879 	if (i < -1)
880 		return (EINVAL);
881 	V_maxnipq = i;
882 	maxnipq_update();
883 	return (0);
884 }
885 
886 SYSCTL_PROC(_net_inet_ip, OID_AUTO, maxfragpackets, CTLTYPE_INT|CTLFLAG_RW,
887     NULL, 0, sysctl_maxnipq, "I",
888     "Maximum number of IPv4 fragment reassembly queue entries");
889 
890 #define	M_IP_FRAG	M_PROTO9
891 
892 /*
893  * Take incoming datagram fragment and try to reassemble it into
894  * whole datagram.  If the argument is the first fragment or one
895  * in between the function will return NULL and store the mbuf
896  * in the fragment chain.  If the argument is the last fragment
897  * the packet will be reassembled and the pointer to the new
898  * mbuf returned for further processing.  Only m_tags attached
899  * to the first packet/fragment are preserved.
900  * The IP header is *NOT* adjusted out of iplen.
901  */
902 struct mbuf *
903 ip_reass(struct mbuf *m)
904 {
905 	struct ip *ip;
906 	struct mbuf *p, *q, *nq, *t;
907 	struct ipq *fp = NULL;
908 	struct ipqhead *head;
909 	int i, hlen, next;
910 	u_int8_t ecn, ecn0;
911 	u_short hash;
912 #ifdef	RSS
913 	uint32_t rss_hash, rss_type;
914 #endif
915 
916 	/* If maxnipq or maxfragsperpacket are 0, never accept fragments. */
917 	if (V_maxnipq == 0 || V_maxfragsperpacket == 0) {
918 		IPSTAT_INC(ips_fragments);
919 		IPSTAT_INC(ips_fragdropped);
920 		m_freem(m);
921 		return (NULL);
922 	}
923 
924 	ip = mtod(m, struct ip *);
925 	hlen = ip->ip_hl << 2;
926 
927 	hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
928 	head = &V_ipq[hash];
929 	IPQ_LOCK();
930 
931 	/*
932 	 * Look for queue of fragments
933 	 * of this datagram.
934 	 */
935 	TAILQ_FOREACH(fp, head, ipq_list)
936 		if (ip->ip_id == fp->ipq_id &&
937 		    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
938 		    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
939 #ifdef MAC
940 		    mac_ipq_match(m, fp) &&
941 #endif
942 		    ip->ip_p == fp->ipq_p)
943 			goto found;
944 
945 	fp = NULL;
946 
947 	/*
948 	 * Attempt to trim the number of allocated fragment queues if it
949 	 * exceeds the administrative limit.
950 	 */
951 	if ((V_nipq > V_maxnipq) && (V_maxnipq > 0)) {
952 		/*
953 		 * drop something from the tail of the current queue
954 		 * before proceeding further
955 		 */
956 		struct ipq *q = TAILQ_LAST(head, ipqhead);
957 		if (q == NULL) {   /* gak */
958 			for (i = 0; i < IPREASS_NHASH; i++) {
959 				struct ipq *r = TAILQ_LAST(&V_ipq[i], ipqhead);
960 				if (r) {
961 					IPSTAT_ADD(ips_fragtimeout,
962 					    r->ipq_nfrags);
963 					ip_freef(&V_ipq[i], r);
964 					break;
965 				}
966 			}
967 		} else {
968 			IPSTAT_ADD(ips_fragtimeout, q->ipq_nfrags);
969 			ip_freef(head, q);
970 		}
971 	}
972 
973 found:
974 	/*
975 	 * Adjust ip_len to not reflect header,
976 	 * convert offset of this to bytes.
977 	 */
978 	ip->ip_len = htons(ntohs(ip->ip_len) - hlen);
979 	if (ip->ip_off & htons(IP_MF)) {
980 		/*
981 		 * Make sure that fragments have a data length
982 		 * that's a non-zero multiple of 8 bytes.
983 		 */
984 		if (ip->ip_len == htons(0) || (ntohs(ip->ip_len) & 0x7) != 0) {
985 			IPSTAT_INC(ips_toosmall); /* XXX */
986 			goto dropfrag;
987 		}
988 		m->m_flags |= M_IP_FRAG;
989 	} else
990 		m->m_flags &= ~M_IP_FRAG;
991 	ip->ip_off = htons(ntohs(ip->ip_off) << 3);
992 
993 	/*
994 	 * Attempt reassembly; if it succeeds, proceed.
995 	 * ip_reass() will return a different mbuf.
996 	 */
997 	IPSTAT_INC(ips_fragments);
998 	m->m_pkthdr.PH_loc.ptr = ip;
999 
1000 	/* Previous ip_reass() started here. */
1001 	/*
1002 	 * Presence of header sizes in mbufs
1003 	 * would confuse code below.
1004 	 */
1005 	m->m_data += hlen;
1006 	m->m_len -= hlen;
1007 
1008 	/*
1009 	 * If first fragment to arrive, create a reassembly queue.
1010 	 */
1011 	if (fp == NULL) {
1012 		fp = uma_zalloc(V_ipq_zone, M_NOWAIT);
1013 		if (fp == NULL)
1014 			goto dropfrag;
1015 #ifdef MAC
1016 		if (mac_ipq_init(fp, M_NOWAIT) != 0) {
1017 			uma_zfree(V_ipq_zone, fp);
1018 			fp = NULL;
1019 			goto dropfrag;
1020 		}
1021 		mac_ipq_create(m, fp);
1022 #endif
1023 		TAILQ_INSERT_HEAD(head, fp, ipq_list);
1024 		V_nipq++;
1025 		fp->ipq_nfrags = 1;
1026 		fp->ipq_ttl = IPFRAGTTL;
1027 		fp->ipq_p = ip->ip_p;
1028 		fp->ipq_id = ip->ip_id;
1029 		fp->ipq_src = ip->ip_src;
1030 		fp->ipq_dst = ip->ip_dst;
1031 		fp->ipq_frags = m;
1032 		m->m_nextpkt = NULL;
1033 		goto done;
1034 	} else {
1035 		fp->ipq_nfrags++;
1036 #ifdef MAC
1037 		mac_ipq_update(m, fp);
1038 #endif
1039 	}
1040 
1041 #define GETIP(m)	((struct ip*)((m)->m_pkthdr.PH_loc.ptr))
1042 
1043 	/*
1044 	 * Handle ECN by comparing this segment with the first one;
1045 	 * if CE is set, do not lose CE.
1046 	 * drop if CE and not-ECT are mixed for the same packet.
1047 	 */
1048 	ecn = ip->ip_tos & IPTOS_ECN_MASK;
1049 	ecn0 = GETIP(fp->ipq_frags)->ip_tos & IPTOS_ECN_MASK;
1050 	if (ecn == IPTOS_ECN_CE) {
1051 		if (ecn0 == IPTOS_ECN_NOTECT)
1052 			goto dropfrag;
1053 		if (ecn0 != IPTOS_ECN_CE)
1054 			GETIP(fp->ipq_frags)->ip_tos |= IPTOS_ECN_CE;
1055 	}
1056 	if (ecn == IPTOS_ECN_NOTECT && ecn0 != IPTOS_ECN_NOTECT)
1057 		goto dropfrag;
1058 
1059 	/*
1060 	 * Find a segment which begins after this one does.
1061 	 */
1062 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
1063 		if (ntohs(GETIP(q)->ip_off) > ntohs(ip->ip_off))
1064 			break;
1065 
1066 	/*
1067 	 * If there is a preceding segment, it may provide some of
1068 	 * our data already.  If so, drop the data from the incoming
1069 	 * segment.  If it provides all of our data, drop us, otherwise
1070 	 * stick new segment in the proper place.
1071 	 *
1072 	 * If some of the data is dropped from the preceding
1073 	 * segment, then it's checksum is invalidated.
1074 	 */
1075 	if (p) {
1076 		i = ntohs(GETIP(p)->ip_off) + ntohs(GETIP(p)->ip_len) -
1077 		    ntohs(ip->ip_off);
1078 		if (i > 0) {
1079 			if (i >= ntohs(ip->ip_len))
1080 				goto dropfrag;
1081 			m_adj(m, i);
1082 			m->m_pkthdr.csum_flags = 0;
1083 			ip->ip_off = htons(ntohs(ip->ip_off) + i);
1084 			ip->ip_len = htons(ntohs(ip->ip_len) - i);
1085 		}
1086 		m->m_nextpkt = p->m_nextpkt;
1087 		p->m_nextpkt = m;
1088 	} else {
1089 		m->m_nextpkt = fp->ipq_frags;
1090 		fp->ipq_frags = m;
1091 	}
1092 
1093 	/*
1094 	 * While we overlap succeeding segments trim them or,
1095 	 * if they are completely covered, dequeue them.
1096 	 */
1097 	for (; q != NULL && ntohs(ip->ip_off) + ntohs(ip->ip_len) >
1098 	    ntohs(GETIP(q)->ip_off); q = nq) {
1099 		i = (ntohs(ip->ip_off) + ntohs(ip->ip_len)) -
1100 		    ntohs(GETIP(q)->ip_off);
1101 		if (i < ntohs(GETIP(q)->ip_len)) {
1102 			GETIP(q)->ip_len = htons(ntohs(GETIP(q)->ip_len) - i);
1103 			GETIP(q)->ip_off = htons(ntohs(GETIP(q)->ip_off) + i);
1104 			m_adj(q, i);
1105 			q->m_pkthdr.csum_flags = 0;
1106 			break;
1107 		}
1108 		nq = q->m_nextpkt;
1109 		m->m_nextpkt = nq;
1110 		IPSTAT_INC(ips_fragdropped);
1111 		fp->ipq_nfrags--;
1112 		m_freem(q);
1113 	}
1114 
1115 	/*
1116 	 * Check for complete reassembly and perform frag per packet
1117 	 * limiting.
1118 	 *
1119 	 * Frag limiting is performed here so that the nth frag has
1120 	 * a chance to complete the packet before we drop the packet.
1121 	 * As a result, n+1 frags are actually allowed per packet, but
1122 	 * only n will ever be stored. (n = maxfragsperpacket.)
1123 	 *
1124 	 */
1125 	next = 0;
1126 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1127 		if (ntohs(GETIP(q)->ip_off) != next) {
1128 			if (fp->ipq_nfrags > V_maxfragsperpacket) {
1129 				IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
1130 				ip_freef(head, fp);
1131 			}
1132 			goto done;
1133 		}
1134 		next += ntohs(GETIP(q)->ip_len);
1135 	}
1136 	/* Make sure the last packet didn't have the IP_MF flag */
1137 	if (p->m_flags & M_IP_FRAG) {
1138 		if (fp->ipq_nfrags > V_maxfragsperpacket) {
1139 			IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
1140 			ip_freef(head, fp);
1141 		}
1142 		goto done;
1143 	}
1144 
1145 	/*
1146 	 * Reassembly is complete.  Make sure the packet is a sane size.
1147 	 */
1148 	q = fp->ipq_frags;
1149 	ip = GETIP(q);
1150 	if (next + (ip->ip_hl << 2) > IP_MAXPACKET) {
1151 		IPSTAT_INC(ips_toolong);
1152 		IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
1153 		ip_freef(head, fp);
1154 		goto done;
1155 	}
1156 
1157 	/*
1158 	 * Concatenate fragments.
1159 	 */
1160 	m = q;
1161 	t = m->m_next;
1162 	m->m_next = NULL;
1163 	m_cat(m, t);
1164 	nq = q->m_nextpkt;
1165 	q->m_nextpkt = NULL;
1166 	for (q = nq; q != NULL; q = nq) {
1167 		nq = q->m_nextpkt;
1168 		q->m_nextpkt = NULL;
1169 		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1170 		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1171 		m_cat(m, q);
1172 	}
1173 	/*
1174 	 * In order to do checksumming faster we do 'end-around carry' here
1175 	 * (and not in for{} loop), though it implies we are not going to
1176 	 * reassemble more than 64k fragments.
1177 	 */
1178 	while (m->m_pkthdr.csum_data & 0xffff0000)
1179 		m->m_pkthdr.csum_data = (m->m_pkthdr.csum_data & 0xffff) +
1180 		    (m->m_pkthdr.csum_data >> 16);
1181 #ifdef MAC
1182 	mac_ipq_reassemble(fp, m);
1183 	mac_ipq_destroy(fp);
1184 #endif
1185 
1186 	/*
1187 	 * Create header for new ip packet by modifying header of first
1188 	 * packet;  dequeue and discard fragment reassembly header.
1189 	 * Make header visible.
1190 	 */
1191 	ip->ip_len = htons((ip->ip_hl << 2) + next);
1192 	ip->ip_src = fp->ipq_src;
1193 	ip->ip_dst = fp->ipq_dst;
1194 	TAILQ_REMOVE(head, fp, ipq_list);
1195 	V_nipq--;
1196 	uma_zfree(V_ipq_zone, fp);
1197 	m->m_len += (ip->ip_hl << 2);
1198 	m->m_data -= (ip->ip_hl << 2);
1199 	/* some debugging cruft by sklower, below, will go away soon */
1200 	if (m->m_flags & M_PKTHDR)	/* XXX this should be done elsewhere */
1201 		m_fixhdr(m);
1202 	IPSTAT_INC(ips_reassembled);
1203 	IPQ_UNLOCK();
1204 
1205 #ifdef	RSS
1206 	/*
1207 	 * Query the RSS layer for the flowid / flowtype for the
1208 	 * mbuf payload.
1209 	 *
1210 	 * For now, just assume we have to calculate a new one.
1211 	 * Later on we should check to see if the assigned flowid matches
1212 	 * what RSS wants for the given IP protocol and if so, just keep it.
1213 	 *
1214 	 * We then queue into the relevant netisr so it can be dispatched
1215 	 * to the correct CPU.
1216 	 *
1217 	 * Note - this may return 1, which means the flowid in the mbuf
1218 	 * is correct for the configured RSS hash types and can be used.
1219 	 */
1220 	if (rss_mbuf_software_hash_v4(m, 0, &rss_hash, &rss_type) == 0) {
1221 		m->m_pkthdr.flowid = rss_hash;
1222 		M_HASHTYPE_SET(m, rss_type);
1223 		m->m_flags |= M_FLOWID;
1224 	}
1225 
1226 	/*
1227 	 * Queue/dispatch for reprocessing.
1228 	 *
1229 	 * Note: this is much slower than just handling the frame in the
1230 	 * current receive context.  It's likely worth investigating
1231 	 * why this is.
1232 	 */
1233 	netisr_dispatch(NETISR_IP_DIRECT, m);
1234 	return (NULL);
1235 #endif
1236 
1237 	/* Handle in-line */
1238 	return (m);
1239 
1240 dropfrag:
1241 	IPSTAT_INC(ips_fragdropped);
1242 	if (fp != NULL)
1243 		fp->ipq_nfrags--;
1244 	m_freem(m);
1245 done:
1246 	IPQ_UNLOCK();
1247 	return (NULL);
1248 
1249 #undef GETIP
1250 }
1251 
1252 /*
1253  * Free a fragment reassembly header and all
1254  * associated datagrams.
1255  */
1256 static void
1257 ip_freef(struct ipqhead *fhp, struct ipq *fp)
1258 {
1259 	struct mbuf *q;
1260 
1261 	IPQ_LOCK_ASSERT();
1262 
1263 	while (fp->ipq_frags) {
1264 		q = fp->ipq_frags;
1265 		fp->ipq_frags = q->m_nextpkt;
1266 		m_freem(q);
1267 	}
1268 	TAILQ_REMOVE(fhp, fp, ipq_list);
1269 	uma_zfree(V_ipq_zone, fp);
1270 	V_nipq--;
1271 }
1272 
1273 /*
1274  * IP timer processing;
1275  * if a timer expires on a reassembly
1276  * queue, discard it.
1277  */
1278 void
1279 ip_slowtimo(void)
1280 {
1281 	VNET_ITERATOR_DECL(vnet_iter);
1282 	struct ipq *fp;
1283 	int i;
1284 
1285 	VNET_LIST_RLOCK_NOSLEEP();
1286 	IPQ_LOCK();
1287 	VNET_FOREACH(vnet_iter) {
1288 		CURVNET_SET(vnet_iter);
1289 		for (i = 0; i < IPREASS_NHASH; i++) {
1290 			for(fp = TAILQ_FIRST(&V_ipq[i]); fp;) {
1291 				struct ipq *fpp;
1292 
1293 				fpp = fp;
1294 				fp = TAILQ_NEXT(fp, ipq_list);
1295 				if(--fpp->ipq_ttl == 0) {
1296 					IPSTAT_ADD(ips_fragtimeout,
1297 					    fpp->ipq_nfrags);
1298 					ip_freef(&V_ipq[i], fpp);
1299 				}
1300 			}
1301 		}
1302 		/*
1303 		 * If we are over the maximum number of fragments
1304 		 * (due to the limit being lowered), drain off
1305 		 * enough to get down to the new limit.
1306 		 */
1307 		if (V_maxnipq >= 0 && V_nipq > V_maxnipq) {
1308 			for (i = 0; i < IPREASS_NHASH; i++) {
1309 				while (V_nipq > V_maxnipq &&
1310 				    !TAILQ_EMPTY(&V_ipq[i])) {
1311 					IPSTAT_ADD(ips_fragdropped,
1312 					    TAILQ_FIRST(&V_ipq[i])->ipq_nfrags);
1313 					ip_freef(&V_ipq[i],
1314 					    TAILQ_FIRST(&V_ipq[i]));
1315 				}
1316 			}
1317 		}
1318 		CURVNET_RESTORE();
1319 	}
1320 	IPQ_UNLOCK();
1321 	VNET_LIST_RUNLOCK_NOSLEEP();
1322 }
1323 
1324 /*
1325  * Drain off all datagram fragments.
1326  */
1327 static void
1328 ip_drain_locked(void)
1329 {
1330 	int     i;
1331 
1332 	IPQ_LOCK_ASSERT();
1333 
1334 	for (i = 0; i < IPREASS_NHASH; i++) {
1335 		while(!TAILQ_EMPTY(&V_ipq[i])) {
1336 			IPSTAT_ADD(ips_fragdropped,
1337 			    TAILQ_FIRST(&V_ipq[i])->ipq_nfrags);
1338 			ip_freef(&V_ipq[i], TAILQ_FIRST(&V_ipq[i]));
1339 		}
1340 	}
1341 }
1342 
1343 void
1344 ip_drain(void)
1345 {
1346 	VNET_ITERATOR_DECL(vnet_iter);
1347 
1348 	VNET_LIST_RLOCK_NOSLEEP();
1349 	IPQ_LOCK();
1350 	VNET_FOREACH(vnet_iter) {
1351 		CURVNET_SET(vnet_iter);
1352 		ip_drain_locked();
1353 		CURVNET_RESTORE();
1354 	}
1355 	IPQ_UNLOCK();
1356 	VNET_LIST_RUNLOCK_NOSLEEP();
1357 	in_rtqdrain();
1358 }
1359 
1360 /*
1361  * The protocol to be inserted into ip_protox[] must be already registered
1362  * in inetsw[], either statically or through pf_proto_register().
1363  */
1364 int
1365 ipproto_register(short ipproto)
1366 {
1367 	struct protosw *pr;
1368 
1369 	/* Sanity checks. */
1370 	if (ipproto <= 0 || ipproto >= IPPROTO_MAX)
1371 		return (EPROTONOSUPPORT);
1372 
1373 	/*
1374 	 * The protocol slot must not be occupied by another protocol
1375 	 * already.  An index pointing to IPPROTO_RAW is unused.
1376 	 */
1377 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
1378 	if (pr == NULL)
1379 		return (EPFNOSUPPORT);
1380 	if (ip_protox[ipproto] != pr - inetsw)	/* IPPROTO_RAW */
1381 		return (EEXIST);
1382 
1383 	/* Find the protocol position in inetsw[] and set the index. */
1384 	for (pr = inetdomain.dom_protosw;
1385 	     pr < inetdomain.dom_protoswNPROTOSW; pr++) {
1386 		if (pr->pr_domain->dom_family == PF_INET &&
1387 		    pr->pr_protocol && pr->pr_protocol == ipproto) {
1388 			ip_protox[pr->pr_protocol] = pr - inetsw;
1389 			return (0);
1390 		}
1391 	}
1392 	return (EPROTONOSUPPORT);
1393 }
1394 
1395 int
1396 ipproto_unregister(short ipproto)
1397 {
1398 	struct protosw *pr;
1399 
1400 	/* Sanity checks. */
1401 	if (ipproto <= 0 || ipproto >= IPPROTO_MAX)
1402 		return (EPROTONOSUPPORT);
1403 
1404 	/* Check if the protocol was indeed registered. */
1405 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
1406 	if (pr == NULL)
1407 		return (EPFNOSUPPORT);
1408 	if (ip_protox[ipproto] == pr - inetsw)  /* IPPROTO_RAW */
1409 		return (ENOENT);
1410 
1411 	/* Reset the protocol slot to IPPROTO_RAW. */
1412 	ip_protox[ipproto] = pr - inetsw;
1413 	return (0);
1414 }
1415 
1416 /*
1417  * Given address of next destination (final or next hop), return (referenced)
1418  * internet address info of interface to be used to get there.
1419  */
1420 struct in_ifaddr *
1421 ip_rtaddr(struct in_addr dst, u_int fibnum)
1422 {
1423 	struct route sro;
1424 	struct sockaddr_in *sin;
1425 	struct in_ifaddr *ia;
1426 
1427 	bzero(&sro, sizeof(sro));
1428 	sin = (struct sockaddr_in *)&sro.ro_dst;
1429 	sin->sin_family = AF_INET;
1430 	sin->sin_len = sizeof(*sin);
1431 	sin->sin_addr = dst;
1432 	in_rtalloc_ign(&sro, 0, fibnum);
1433 
1434 	if (sro.ro_rt == NULL)
1435 		return (NULL);
1436 
1437 	ia = ifatoia(sro.ro_rt->rt_ifa);
1438 	ifa_ref(&ia->ia_ifa);
1439 	RTFREE(sro.ro_rt);
1440 	return (ia);
1441 }
1442 
1443 u_char inetctlerrmap[PRC_NCMDS] = {
1444 	0,		0,		0,		0,
1445 	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1446 	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1447 	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1448 	0,		0,		EHOSTUNREACH,	0,
1449 	ENOPROTOOPT,	ECONNREFUSED
1450 };
1451 
1452 /*
1453  * Forward a packet.  If some error occurs return the sender
1454  * an icmp packet.  Note we can't always generate a meaningful
1455  * icmp message because icmp doesn't have a large enough repertoire
1456  * of codes and types.
1457  *
1458  * If not forwarding, just drop the packet.  This could be confusing
1459  * if ipforwarding was zero but some routing protocol was advancing
1460  * us as a gateway to somewhere.  However, we must let the routing
1461  * protocol deal with that.
1462  *
1463  * The srcrt parameter indicates whether the packet is being forwarded
1464  * via a source route.
1465  */
1466 void
1467 ip_forward(struct mbuf *m, int srcrt)
1468 {
1469 	struct ip *ip = mtod(m, struct ip *);
1470 	struct in_ifaddr *ia;
1471 	struct mbuf *mcopy;
1472 	struct in_addr dest;
1473 	struct route ro;
1474 	int error, type = 0, code = 0, mtu = 0;
1475 
1476 	if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) {
1477 		IPSTAT_INC(ips_cantforward);
1478 		m_freem(m);
1479 		return;
1480 	}
1481 #ifdef IPSTEALTH
1482 	if (!V_ipstealth) {
1483 #endif
1484 		if (ip->ip_ttl <= IPTTLDEC) {
1485 			icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS,
1486 			    0, 0);
1487 			return;
1488 		}
1489 #ifdef IPSTEALTH
1490 	}
1491 #endif
1492 
1493 	ia = ip_rtaddr(ip->ip_dst, M_GETFIB(m));
1494 #ifndef IPSEC
1495 	/*
1496 	 * 'ia' may be NULL if there is no route for this destination.
1497 	 * In case of IPsec, Don't discard it just yet, but pass it to
1498 	 * ip_output in case of outgoing IPsec policy.
1499 	 */
1500 	if (!srcrt && ia == NULL) {
1501 		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, 0, 0);
1502 		return;
1503 	}
1504 #endif
1505 
1506 	/*
1507 	 * Save the IP header and at most 8 bytes of the payload,
1508 	 * in case we need to generate an ICMP message to the src.
1509 	 *
1510 	 * XXX this can be optimized a lot by saving the data in a local
1511 	 * buffer on the stack (72 bytes at most), and only allocating the
1512 	 * mbuf if really necessary. The vast majority of the packets
1513 	 * are forwarded without having to send an ICMP back (either
1514 	 * because unnecessary, or because rate limited), so we are
1515 	 * really we are wasting a lot of work here.
1516 	 *
1517 	 * We don't use m_copy() because it might return a reference
1518 	 * to a shared cluster. Both this function and ip_output()
1519 	 * assume exclusive access to the IP header in `m', so any
1520 	 * data in a cluster may change before we reach icmp_error().
1521 	 */
1522 	mcopy = m_gethdr(M_NOWAIT, m->m_type);
1523 	if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, M_NOWAIT)) {
1524 		/*
1525 		 * It's probably ok if the pkthdr dup fails (because
1526 		 * the deep copy of the tag chain failed), but for now
1527 		 * be conservative and just discard the copy since
1528 		 * code below may some day want the tags.
1529 		 */
1530 		m_free(mcopy);
1531 		mcopy = NULL;
1532 	}
1533 	if (mcopy != NULL) {
1534 		mcopy->m_len = min(ntohs(ip->ip_len), M_TRAILINGSPACE(mcopy));
1535 		mcopy->m_pkthdr.len = mcopy->m_len;
1536 		m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
1537 	}
1538 
1539 #ifdef IPSTEALTH
1540 	if (!V_ipstealth) {
1541 #endif
1542 		ip->ip_ttl -= IPTTLDEC;
1543 #ifdef IPSTEALTH
1544 	}
1545 #endif
1546 
1547 	/*
1548 	 * If forwarding packet using same interface that it came in on,
1549 	 * perhaps should send a redirect to sender to shortcut a hop.
1550 	 * Only send redirect if source is sending directly to us,
1551 	 * and if packet was not source routed (or has any options).
1552 	 * Also, don't send redirect if forwarding using a default route
1553 	 * or a route modified by a redirect.
1554 	 */
1555 	dest.s_addr = 0;
1556 	if (!srcrt && V_ipsendredirects &&
1557 	    ia != NULL && ia->ia_ifp == m->m_pkthdr.rcvif) {
1558 		struct sockaddr_in *sin;
1559 		struct rtentry *rt;
1560 
1561 		bzero(&ro, sizeof(ro));
1562 		sin = (struct sockaddr_in *)&ro.ro_dst;
1563 		sin->sin_family = AF_INET;
1564 		sin->sin_len = sizeof(*sin);
1565 		sin->sin_addr = ip->ip_dst;
1566 		in_rtalloc_ign(&ro, 0, M_GETFIB(m));
1567 
1568 		rt = ro.ro_rt;
1569 
1570 		if (rt && (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1571 		    satosin(rt_key(rt))->sin_addr.s_addr != 0) {
1572 #define	RTA(rt)	((struct in_ifaddr *)(rt->rt_ifa))
1573 			u_long src = ntohl(ip->ip_src.s_addr);
1574 
1575 			if (RTA(rt) &&
1576 			    (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
1577 				if (rt->rt_flags & RTF_GATEWAY)
1578 					dest.s_addr = satosin(rt->rt_gateway)->sin_addr.s_addr;
1579 				else
1580 					dest.s_addr = ip->ip_dst.s_addr;
1581 				/* Router requirements says to only send host redirects */
1582 				type = ICMP_REDIRECT;
1583 				code = ICMP_REDIRECT_HOST;
1584 			}
1585 		}
1586 		if (rt)
1587 			RTFREE(rt);
1588 	}
1589 
1590 	/*
1591 	 * Try to cache the route MTU from ip_output so we can consider it for
1592 	 * the ICMP_UNREACH_NEEDFRAG "Next-Hop MTU" field described in RFC1191.
1593 	 */
1594 	bzero(&ro, sizeof(ro));
1595 
1596 	error = ip_output(m, NULL, &ro, IP_FORWARDING, NULL, NULL);
1597 
1598 	if (error == EMSGSIZE && ro.ro_rt)
1599 		mtu = ro.ro_rt->rt_mtu;
1600 	RO_RTFREE(&ro);
1601 
1602 	if (error)
1603 		IPSTAT_INC(ips_cantforward);
1604 	else {
1605 		IPSTAT_INC(ips_forward);
1606 		if (type)
1607 			IPSTAT_INC(ips_redirectsent);
1608 		else {
1609 			if (mcopy)
1610 				m_freem(mcopy);
1611 			if (ia != NULL)
1612 				ifa_free(&ia->ia_ifa);
1613 			return;
1614 		}
1615 	}
1616 	if (mcopy == NULL) {
1617 		if (ia != NULL)
1618 			ifa_free(&ia->ia_ifa);
1619 		return;
1620 	}
1621 
1622 	switch (error) {
1623 
1624 	case 0:				/* forwarded, but need redirect */
1625 		/* type, code set above */
1626 		break;
1627 
1628 	case ENETUNREACH:
1629 	case EHOSTUNREACH:
1630 	case ENETDOWN:
1631 	case EHOSTDOWN:
1632 	default:
1633 		type = ICMP_UNREACH;
1634 		code = ICMP_UNREACH_HOST;
1635 		break;
1636 
1637 	case EMSGSIZE:
1638 		type = ICMP_UNREACH;
1639 		code = ICMP_UNREACH_NEEDFRAG;
1640 
1641 #ifdef IPSEC
1642 		/*
1643 		 * If IPsec is configured for this path,
1644 		 * override any possibly mtu value set by ip_output.
1645 		 */
1646 		mtu = ip_ipsec_mtu(mcopy, mtu);
1647 #endif /* IPSEC */
1648 		/*
1649 		 * If the MTU was set before make sure we are below the
1650 		 * interface MTU.
1651 		 * If the MTU wasn't set before use the interface mtu or
1652 		 * fall back to the next smaller mtu step compared to the
1653 		 * current packet size.
1654 		 */
1655 		if (mtu != 0) {
1656 			if (ia != NULL)
1657 				mtu = min(mtu, ia->ia_ifp->if_mtu);
1658 		} else {
1659 			if (ia != NULL)
1660 				mtu = ia->ia_ifp->if_mtu;
1661 			else
1662 				mtu = ip_next_mtu(ntohs(ip->ip_len), 0);
1663 		}
1664 		IPSTAT_INC(ips_cantfrag);
1665 		break;
1666 
1667 	case ENOBUFS:
1668 		/*
1669 		 * A router should not generate ICMP_SOURCEQUENCH as
1670 		 * required in RFC1812 Requirements for IP Version 4 Routers.
1671 		 * Source quench could be a big problem under DoS attacks,
1672 		 * or if the underlying interface is rate-limited.
1673 		 * Those who need source quench packets may re-enable them
1674 		 * via the net.inet.ip.sendsourcequench sysctl.
1675 		 */
1676 		if (V_ip_sendsourcequench == 0) {
1677 			m_freem(mcopy);
1678 			if (ia != NULL)
1679 				ifa_free(&ia->ia_ifa);
1680 			return;
1681 		} else {
1682 			type = ICMP_SOURCEQUENCH;
1683 			code = 0;
1684 		}
1685 		break;
1686 
1687 	case EACCES:			/* ipfw denied packet */
1688 		m_freem(mcopy);
1689 		if (ia != NULL)
1690 			ifa_free(&ia->ia_ifa);
1691 		return;
1692 	}
1693 	if (ia != NULL)
1694 		ifa_free(&ia->ia_ifa);
1695 	icmp_error(mcopy, type, code, dest.s_addr, mtu);
1696 }
1697 
1698 void
1699 ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
1700     struct mbuf *m)
1701 {
1702 
1703 	if (inp->inp_socket->so_options & (SO_BINTIME | SO_TIMESTAMP)) {
1704 		struct bintime bt;
1705 
1706 		bintime(&bt);
1707 		if (inp->inp_socket->so_options & SO_BINTIME) {
1708 			*mp = sbcreatecontrol((caddr_t)&bt, sizeof(bt),
1709 			    SCM_BINTIME, SOL_SOCKET);
1710 			if (*mp)
1711 				mp = &(*mp)->m_next;
1712 		}
1713 		if (inp->inp_socket->so_options & SO_TIMESTAMP) {
1714 			struct timeval tv;
1715 
1716 			bintime2timeval(&bt, &tv);
1717 			*mp = sbcreatecontrol((caddr_t)&tv, sizeof(tv),
1718 			    SCM_TIMESTAMP, SOL_SOCKET);
1719 			if (*mp)
1720 				mp = &(*mp)->m_next;
1721 		}
1722 	}
1723 	if (inp->inp_flags & INP_RECVDSTADDR) {
1724 		*mp = sbcreatecontrol((caddr_t)&ip->ip_dst,
1725 		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
1726 		if (*mp)
1727 			mp = &(*mp)->m_next;
1728 	}
1729 	if (inp->inp_flags & INP_RECVTTL) {
1730 		*mp = sbcreatecontrol((caddr_t)&ip->ip_ttl,
1731 		    sizeof(u_char), IP_RECVTTL, IPPROTO_IP);
1732 		if (*mp)
1733 			mp = &(*mp)->m_next;
1734 	}
1735 #ifdef notyet
1736 	/* XXX
1737 	 * Moving these out of udp_input() made them even more broken
1738 	 * than they already were.
1739 	 */
1740 	/* options were tossed already */
1741 	if (inp->inp_flags & INP_RECVOPTS) {
1742 		*mp = sbcreatecontrol((caddr_t)opts_deleted_above,
1743 		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
1744 		if (*mp)
1745 			mp = &(*mp)->m_next;
1746 	}
1747 	/* ip_srcroute doesn't do what we want here, need to fix */
1748 	if (inp->inp_flags & INP_RECVRETOPTS) {
1749 		*mp = sbcreatecontrol((caddr_t)ip_srcroute(m),
1750 		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
1751 		if (*mp)
1752 			mp = &(*mp)->m_next;
1753 	}
1754 #endif
1755 	if (inp->inp_flags & INP_RECVIF) {
1756 		struct ifnet *ifp;
1757 		struct sdlbuf {
1758 			struct sockaddr_dl sdl;
1759 			u_char	pad[32];
1760 		} sdlbuf;
1761 		struct sockaddr_dl *sdp;
1762 		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
1763 
1764 		if ((ifp = m->m_pkthdr.rcvif) &&
1765 		    ifp->if_index && ifp->if_index <= V_if_index) {
1766 			sdp = (struct sockaddr_dl *)ifp->if_addr->ifa_addr;
1767 			/*
1768 			 * Change our mind and don't try copy.
1769 			 */
1770 			if (sdp->sdl_family != AF_LINK ||
1771 			    sdp->sdl_len > sizeof(sdlbuf)) {
1772 				goto makedummy;
1773 			}
1774 			bcopy(sdp, sdl2, sdp->sdl_len);
1775 		} else {
1776 makedummy:
1777 			sdl2->sdl_len =
1778 			    offsetof(struct sockaddr_dl, sdl_data[0]);
1779 			sdl2->sdl_family = AF_LINK;
1780 			sdl2->sdl_index = 0;
1781 			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
1782 		}
1783 		*mp = sbcreatecontrol((caddr_t)sdl2, sdl2->sdl_len,
1784 		    IP_RECVIF, IPPROTO_IP);
1785 		if (*mp)
1786 			mp = &(*mp)->m_next;
1787 	}
1788 	if (inp->inp_flags & INP_RECVTOS) {
1789 		*mp = sbcreatecontrol((caddr_t)&ip->ip_tos,
1790 		    sizeof(u_char), IP_RECVTOS, IPPROTO_IP);
1791 		if (*mp)
1792 			mp = &(*mp)->m_next;
1793 	}
1794 
1795 	if (inp->inp_flags2 & INP_RECVFLOWID) {
1796 		uint32_t flowid, flow_type;
1797 
1798 		flowid = m->m_pkthdr.flowid;
1799 		flow_type = M_HASHTYPE_GET(m);
1800 
1801 		/*
1802 		 * XXX should handle the failure of one or the
1803 		 * other - don't populate both?
1804 		 */
1805 		*mp = sbcreatecontrol((caddr_t) &flowid,
1806 		    sizeof(uint32_t), IP_FLOWID, IPPROTO_IP);
1807 		if (*mp)
1808 			mp = &(*mp)->m_next;
1809 		*mp = sbcreatecontrol((caddr_t) &flow_type,
1810 		    sizeof(uint32_t), IP_FLOWTYPE, IPPROTO_IP);
1811 		if (*mp)
1812 			mp = &(*mp)->m_next;
1813 	}
1814 
1815 #ifdef	RSS
1816 	if (inp->inp_flags2 & INP_RECVRSSBUCKETID) {
1817 		uint32_t flowid, flow_type;
1818 		uint32_t rss_bucketid;
1819 
1820 		flowid = m->m_pkthdr.flowid;
1821 		flow_type = M_HASHTYPE_GET(m);
1822 
1823 		if (rss_hash2bucket(flowid, flow_type, &rss_bucketid) == 0) {
1824 			*mp = sbcreatecontrol((caddr_t) &rss_bucketid,
1825 			   sizeof(uint32_t), IP_RSSBUCKETID, IPPROTO_IP);
1826 			if (*mp)
1827 				mp = &(*mp)->m_next;
1828 		}
1829 	}
1830 #endif
1831 }
1832 
1833 /*
1834  * XXXRW: Multicast routing code in ip_mroute.c is generally MPSAFE, but the
1835  * ip_rsvp and ip_rsvp_on variables need to be interlocked with rsvp_on
1836  * locking.  This code remains in ip_input.c as ip_mroute.c is optionally
1837  * compiled.
1838  */
1839 static VNET_DEFINE(int, ip_rsvp_on);
1840 VNET_DEFINE(struct socket *, ip_rsvpd);
1841 
1842 #define	V_ip_rsvp_on		VNET(ip_rsvp_on)
1843 
1844 int
1845 ip_rsvp_init(struct socket *so)
1846 {
1847 
1848 	if (so->so_type != SOCK_RAW ||
1849 	    so->so_proto->pr_protocol != IPPROTO_RSVP)
1850 		return EOPNOTSUPP;
1851 
1852 	if (V_ip_rsvpd != NULL)
1853 		return EADDRINUSE;
1854 
1855 	V_ip_rsvpd = so;
1856 	/*
1857 	 * This may seem silly, but we need to be sure we don't over-increment
1858 	 * the RSVP counter, in case something slips up.
1859 	 */
1860 	if (!V_ip_rsvp_on) {
1861 		V_ip_rsvp_on = 1;
1862 		V_rsvp_on++;
1863 	}
1864 
1865 	return 0;
1866 }
1867 
1868 int
1869 ip_rsvp_done(void)
1870 {
1871 
1872 	V_ip_rsvpd = NULL;
1873 	/*
1874 	 * This may seem silly, but we need to be sure we don't over-decrement
1875 	 * the RSVP counter, in case something slips up.
1876 	 */
1877 	if (V_ip_rsvp_on) {
1878 		V_ip_rsvp_on = 0;
1879 		V_rsvp_on--;
1880 	}
1881 	return 0;
1882 }
1883 
1884 int
1885 rsvp_input(struct mbuf **mp, int *offp, int proto)
1886 {
1887 	struct mbuf *m;
1888 
1889 	m = *mp;
1890 	*mp = NULL;
1891 
1892 	if (rsvp_input_p) { /* call the real one if loaded */
1893 		*mp = m;
1894 		rsvp_input_p(mp, offp, proto);
1895 		return (IPPROTO_DONE);
1896 	}
1897 
1898 	/* Can still get packets with rsvp_on = 0 if there is a local member
1899 	 * of the group to which the RSVP packet is addressed.  But in this
1900 	 * case we want to throw the packet away.
1901 	 */
1902 
1903 	if (!V_rsvp_on) {
1904 		m_freem(m);
1905 		return (IPPROTO_DONE);
1906 	}
1907 
1908 	if (V_ip_rsvpd != NULL) {
1909 		*mp = m;
1910 		rip_input(mp, offp, proto);
1911 		return (IPPROTO_DONE);
1912 	}
1913 	/* Drop the packet */
1914 	m_freem(m);
1915 	return (IPPROTO_DONE);
1916 }
1917