xref: /freebsd/sys/netinet/ip_input.c (revision 5773cccf19ef7b97e56c1101aa481c43149224da)
1 /*
2  * Copyright (c) 1982, 1986, 1988, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
34  * $FreeBSD$
35  */
36 
37 #include "opt_bootp.h"
38 #include "opt_ipfw.h"
39 #include "opt_ipdn.h"
40 #include "opt_ipdivert.h"
41 #include "opt_ipfilter.h"
42 #include "opt_ipstealth.h"
43 #include "opt_ipsec.h"
44 #include "opt_mac.h"
45 #include "opt_pfil_hooks.h"
46 #include "opt_random_ip_id.h"
47 
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/mac.h>
51 #include <sys/mbuf.h>
52 #include <sys/malloc.h>
53 #include <sys/domain.h>
54 #include <sys/protosw.h>
55 #include <sys/socket.h>
56 #include <sys/time.h>
57 #include <sys/kernel.h>
58 #include <sys/syslog.h>
59 #include <sys/sysctl.h>
60 
61 #include <net/pfil.h>
62 #include <net/if.h>
63 #include <net/if_types.h>
64 #include <net/if_var.h>
65 #include <net/if_dl.h>
66 #include <net/route.h>
67 #include <net/netisr.h>
68 #include <net/intrq.h>
69 
70 #include <netinet/in.h>
71 #include <netinet/in_systm.h>
72 #include <netinet/in_var.h>
73 #include <netinet/ip.h>
74 #include <netinet/in_pcb.h>
75 #include <netinet/ip_var.h>
76 #include <netinet/ip_icmp.h>
77 #include <machine/in_cksum.h>
78 
79 #include <sys/socketvar.h>
80 
81 #include <netinet/ip_fw.h>
82 #include <netinet/ip_dummynet.h>
83 
84 #ifdef IPSEC
85 #include <netinet6/ipsec.h>
86 #include <netkey/key.h>
87 #endif
88 
89 #ifdef FAST_IPSEC
90 #include <netipsec/ipsec.h>
91 #include <netipsec/key.h>
92 #endif
93 
94 int rsvp_on = 0;
95 
96 int	ipforwarding = 0;
97 SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
98     &ipforwarding, 0, "Enable IP forwarding between interfaces");
99 
100 static int	ipsendredirects = 1; /* XXX */
101 SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
102     &ipsendredirects, 0, "Enable sending IP redirects");
103 
104 int	ip_defttl = IPDEFTTL;
105 SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
106     &ip_defttl, 0, "Maximum TTL on IP packets");
107 
108 static int	ip_dosourceroute = 0;
109 SYSCTL_INT(_net_inet_ip, IPCTL_SOURCEROUTE, sourceroute, CTLFLAG_RW,
110     &ip_dosourceroute, 0, "Enable forwarding source routed IP packets");
111 
112 static int	ip_acceptsourceroute = 0;
113 SYSCTL_INT(_net_inet_ip, IPCTL_ACCEPTSOURCEROUTE, accept_sourceroute,
114     CTLFLAG_RW, &ip_acceptsourceroute, 0,
115     "Enable accepting source routed IP packets");
116 
117 static int	ip_keepfaith = 0;
118 SYSCTL_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
119 	&ip_keepfaith,	0,
120 	"Enable packet capture for FAITH IPv4->IPv6 translater daemon");
121 
122 static int	ip_nfragpackets = 0;
123 static int	ip_maxfragpackets;	/* initialized in ip_init() */
124 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragpackets, CTLFLAG_RW,
125 	&ip_maxfragpackets, 0,
126 	"Maximum number of IPv4 fragment reassembly queue entries");
127 
128 static int	ip_sendsourcequench = 0;
129 SYSCTL_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW,
130 	&ip_sendsourcequench, 0,
131 	"Enable the transmission of source quench packets");
132 
133 /*
134  * XXX - Setting ip_checkinterface mostly implements the receive side of
135  * the Strong ES model described in RFC 1122, but since the routing table
136  * and transmit implementation do not implement the Strong ES model,
137  * setting this to 1 results in an odd hybrid.
138  *
139  * XXX - ip_checkinterface currently must be disabled if you use ipnat
140  * to translate the destination address to another local interface.
141  *
142  * XXX - ip_checkinterface must be disabled if you add IP aliases
143  * to the loopback interface instead of the interface where the
144  * packets for those addresses are received.
145  */
146 static int	ip_checkinterface = 1;
147 SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
148     &ip_checkinterface, 0, "Verify packet arrives on correct interface");
149 
150 #ifdef DIAGNOSTIC
151 static int	ipprintfs = 0;
152 #endif
153 
154 static int	ipqmaxlen = IFQ_MAXLEN;
155 
156 extern	struct domain inetdomain;
157 extern	struct protosw inetsw[];
158 u_char	ip_protox[IPPROTO_MAX];
159 struct	in_ifaddrhead in_ifaddrhead; 		/* first inet address */
160 struct	in_ifaddrhashhead *in_ifaddrhashtbl;	/* inet addr hash table  */
161 u_long 	in_ifaddrhmask;				/* mask for hash table */
162 
163 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen, CTLFLAG_RW,
164     &ipintrq.ifq_maxlen, 0, "Maximum size of the IP input queue");
165 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops, CTLFLAG_RD,
166     &ipintrq.ifq_drops, 0, "Number of packets dropped from the IP input queue");
167 
168 struct ipstat ipstat;
169 SYSCTL_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RW,
170     &ipstat, ipstat, "IP statistics (struct ipstat, netinet/ip_var.h)");
171 
172 /* Packet reassembly stuff */
173 #define IPREASS_NHASH_LOG2      6
174 #define IPREASS_NHASH           (1 << IPREASS_NHASH_LOG2)
175 #define IPREASS_HMASK           (IPREASS_NHASH - 1)
176 #define IPREASS_HASH(x,y) \
177 	(((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
178 
179 static TAILQ_HEAD(ipqhead, ipq) ipq[IPREASS_NHASH];
180 static int    nipq = 0;         /* total # of reass queues */
181 static int    maxnipq;
182 
183 #ifdef IPCTL_DEFMTU
184 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
185     &ip_mtu, 0, "Default MTU");
186 #endif
187 
188 #ifdef IPSTEALTH
189 static int	ipstealth = 0;
190 SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW,
191     &ipstealth, 0, "");
192 #endif
193 
194 
195 /* Firewall hooks */
196 ip_fw_chk_t *ip_fw_chk_ptr;
197 int fw_enable = 1 ;
198 int fw_one_pass = 1;
199 
200 /* Dummynet hooks */
201 ip_dn_io_t *ip_dn_io_ptr;
202 
203 
204 /*
205  * XXX this is ugly -- the following two global variables are
206  * used to store packet state while it travels through the stack.
207  * Note that the code even makes assumptions on the size and
208  * alignment of fields inside struct ip_srcrt so e.g. adding some
209  * fields will break the code. This needs to be fixed.
210  *
211  * We need to save the IP options in case a protocol wants to respond
212  * to an incoming packet over the same route if the packet got here
213  * using IP source routing.  This allows connection establishment and
214  * maintenance when the remote end is on a network that is not known
215  * to us.
216  */
217 static int	ip_nhops = 0;
218 static	struct ip_srcrt {
219 	struct	in_addr dst;			/* final destination */
220 	char	nop;				/* one NOP to align */
221 	char	srcopt[IPOPT_OFFSET + 1];	/* OPTVAL, OLEN and OFFSET */
222 	struct	in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
223 } ip_srcrt;
224 
225 static void	save_rte(u_char *, struct in_addr);
226 static int	ip_dooptions(struct mbuf *m, int,
227 			struct sockaddr_in *next_hop);
228 static void	ip_forward(struct mbuf *m, int srcrt,
229 			struct sockaddr_in *next_hop);
230 static void	ip_freef(struct ipqhead *, struct ipq *);
231 static struct	mbuf *ip_reass(struct mbuf *, struct ipqhead *,
232 		struct ipq *, u_int32_t *, u_int16_t *);
233 static void	ipintr(void);
234 
235 /*
236  * IP initialization: fill in IP protocol switch table.
237  * All protocols not implemented in kernel go to raw IP protocol handler.
238  */
239 void
240 ip_init()
241 {
242 	register struct protosw *pr;
243 	register int i;
244 
245 	TAILQ_INIT(&in_ifaddrhead);
246 	in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &in_ifaddrhmask);
247 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
248 	if (pr == 0)
249 		panic("ip_init");
250 	for (i = 0; i < IPPROTO_MAX; i++)
251 		ip_protox[i] = pr - inetsw;
252 	for (pr = inetdomain.dom_protosw;
253 	    pr < inetdomain.dom_protoswNPROTOSW; pr++)
254 		if (pr->pr_domain->dom_family == PF_INET &&
255 		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
256 			ip_protox[pr->pr_protocol] = pr - inetsw;
257 
258 	for (i = 0; i < IPREASS_NHASH; i++)
259 	    TAILQ_INIT(&ipq[i]);
260 
261 	maxnipq = nmbclusters / 4;
262 	ip_maxfragpackets = nmbclusters / 4;
263 
264 #ifndef RANDOM_IP_ID
265 	ip_id = time_second & 0xffff;
266 #endif
267 	ipintrq.ifq_maxlen = ipqmaxlen;
268 	mtx_init(&ipintrq.ifq_mtx, "ip_inq", NULL, MTX_DEF);
269 	ipintrq_present = 1;
270 
271 	register_netisr(NETISR_IP, ipintr);
272 }
273 
274 /*
275  * XXX watch out this one. It is perhaps used as a cache for
276  * the most recently used route ? it is cleared in in_addroute()
277  * when a new route is successfully created.
278  */
279 struct	route ipforward_rt;
280 
281 /*
282  * Ip input routine.  Checksum and byte swap header.  If fragmented
283  * try to reassemble.  Process options.  Pass to next level.
284  */
285 void
286 ip_input(struct mbuf *m)
287 {
288 	struct ip *ip;
289 	struct ipq *fp;
290 	struct in_ifaddr *ia = NULL;
291 	struct ifaddr *ifa;
292 	int    i, hlen, checkif;
293 	u_short sum;
294 	struct in_addr pkt_dst;
295 	u_int32_t divert_info = 0;		/* packet divert/tee info */
296 	struct ip_fw_args args;
297 #ifdef PFIL_HOOKS
298 	struct packet_filter_hook *pfh;
299 	struct mbuf *m0;
300 	int rv;
301 #endif /* PFIL_HOOKS */
302 #ifdef FAST_IPSEC
303 	struct m_tag *mtag;
304 	struct tdb_ident *tdbi;
305 	struct secpolicy *sp;
306 	int s, error;
307 #endif /* FAST_IPSEC */
308 
309 	args.eh = NULL;
310 	args.oif = NULL;
311 	args.rule = NULL;
312 	args.divert_rule = 0;			/* divert cookie */
313 	args.next_hop = NULL;
314 
315 	/* Grab info from MT_TAG mbufs prepended to the chain.	*/
316 	for (; m && m->m_type == MT_TAG; m = m->m_next) {
317 		switch(m->_m_tag_id) {
318 		default:
319 			printf("ip_input: unrecognised MT_TAG tag %d\n",
320 			    m->_m_tag_id);
321 			break;
322 
323 		case PACKET_TAG_DUMMYNET:
324 			args.rule = ((struct dn_pkt *)m)->rule;
325 			break;
326 
327 		case PACKET_TAG_DIVERT:
328 			args.divert_rule = (intptr_t)m->m_hdr.mh_data & 0xffff;
329 			break;
330 
331 		case PACKET_TAG_IPFORWARD:
332 			args.next_hop = (struct sockaddr_in *)m->m_hdr.mh_data;
333 			break;
334 		}
335 	}
336 
337 	KASSERT(m != NULL && (m->m_flags & M_PKTHDR) != 0,
338 	    ("ip_input: no HDR"));
339 
340 	if (args.rule) {	/* dummynet already filtered us */
341 		ip = mtod(m, struct ip *);
342 		hlen = ip->ip_hl << 2;
343 		goto iphack ;
344 	}
345 
346 	ipstat.ips_total++;
347 
348 	if (m->m_pkthdr.len < sizeof(struct ip))
349 		goto tooshort;
350 
351 	if (m->m_len < sizeof (struct ip) &&
352 	    (m = m_pullup(m, sizeof (struct ip))) == 0) {
353 		ipstat.ips_toosmall++;
354 		return;
355 	}
356 	ip = mtod(m, struct ip *);
357 
358 	if (ip->ip_v != IPVERSION) {
359 		ipstat.ips_badvers++;
360 		goto bad;
361 	}
362 
363 	hlen = ip->ip_hl << 2;
364 	if (hlen < sizeof(struct ip)) {	/* minimum header length */
365 		ipstat.ips_badhlen++;
366 		goto bad;
367 	}
368 	if (hlen > m->m_len) {
369 		if ((m = m_pullup(m, hlen)) == 0) {
370 			ipstat.ips_badhlen++;
371 			return;
372 		}
373 		ip = mtod(m, struct ip *);
374 	}
375 
376 	/* 127/8 must not appear on wire - RFC1122 */
377 	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
378 	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
379 		if ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) {
380 			ipstat.ips_badaddr++;
381 			goto bad;
382 		}
383 	}
384 
385 	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
386 		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
387 	} else {
388 		if (hlen == sizeof(struct ip)) {
389 			sum = in_cksum_hdr(ip);
390 		} else {
391 			sum = in_cksum(m, hlen);
392 		}
393 	}
394 	if (sum) {
395 		ipstat.ips_badsum++;
396 		goto bad;
397 	}
398 
399 	/*
400 	 * Convert fields to host representation.
401 	 */
402 	ip->ip_len = ntohs(ip->ip_len);
403 	if (ip->ip_len < hlen) {
404 		ipstat.ips_badlen++;
405 		goto bad;
406 	}
407 	ip->ip_off = ntohs(ip->ip_off);
408 
409 	/*
410 	 * Check that the amount of data in the buffers
411 	 * is as at least much as the IP header would have us expect.
412 	 * Trim mbufs if longer than we expect.
413 	 * Drop packet if shorter than we expect.
414 	 */
415 	if (m->m_pkthdr.len < ip->ip_len) {
416 tooshort:
417 		ipstat.ips_tooshort++;
418 		goto bad;
419 	}
420 	if (m->m_pkthdr.len > ip->ip_len) {
421 		if (m->m_len == m->m_pkthdr.len) {
422 			m->m_len = ip->ip_len;
423 			m->m_pkthdr.len = ip->ip_len;
424 		} else
425 			m_adj(m, ip->ip_len - m->m_pkthdr.len);
426 	}
427 
428 	/*
429 	 * IpHack's section.
430 	 * Right now when no processing on packet has done
431 	 * and it is still fresh out of network we do our black
432 	 * deals with it.
433 	 * - Firewall: deny/allow/divert
434 	 * - Xlate: translate packet's addr/port (NAT).
435 	 * - Pipe: pass pkt through dummynet.
436 	 * - Wrap: fake packet's addr/port <unimpl.>
437 	 * - Encapsulate: put it in another IP and send out. <unimp.>
438  	 */
439 
440 iphack:
441 
442 #ifdef PFIL_HOOKS
443 	/*
444 	 * Run through list of hooks for input packets.  If there are any
445 	 * filters which require that additional packets in the flow are
446 	 * not fast-forwarded, they must clear the M_CANFASTFWD flag.
447 	 * Note that filters must _never_ set this flag, as another filter
448 	 * in the list may have previously cleared it.
449 	 */
450 	m0 = m;
451 	pfh = pfil_hook_get(PFIL_IN, &inetsw[ip_protox[IPPROTO_IP]].pr_pfh);
452 	for (; pfh; pfh = TAILQ_NEXT(pfh, pfil_link))
453 		if (pfh->pfil_func) {
454 			rv = pfh->pfil_func(ip, hlen,
455 					    m->m_pkthdr.rcvif, 0, &m0);
456 			if (rv)
457 				return;
458 			m = m0;
459 			if (m == NULL)
460 				return;
461 			ip = mtod(m, struct ip *);
462 		}
463 #endif /* PFIL_HOOKS */
464 
465 	if (fw_enable && IPFW_LOADED) {
466 		/*
467 		 * If we've been forwarded from the output side, then
468 		 * skip the firewall a second time
469 		 */
470 		if (args.next_hop)
471 			goto ours;
472 
473 		args.m = m;
474 		i = ip_fw_chk_ptr(&args);
475 		m = args.m;
476 
477 		if ( (i & IP_FW_PORT_DENY_FLAG) || m == NULL) { /* drop */
478 			if (m)
479 				m_freem(m);
480 			return;
481 		}
482 		ip = mtod(m, struct ip *); /* just in case m changed */
483 		if (i == 0 && args.next_hop == NULL)	/* common case */
484 			goto pass;
485                 if (DUMMYNET_LOADED && (i & IP_FW_PORT_DYNT_FLAG) != 0) {
486 			/* Send packet to the appropriate pipe */
487 			ip_dn_io_ptr(m, i&0xffff, DN_TO_IP_IN, &args);
488 			return;
489 		}
490 #ifdef IPDIVERT
491 		if (i != 0 && (i & IP_FW_PORT_DYNT_FLAG) == 0) {
492 			/* Divert or tee packet */
493 			divert_info = i;
494 			goto ours;
495 		}
496 #endif
497 		if (i == 0 && args.next_hop != NULL)
498 			goto pass;
499 		/*
500 		 * if we get here, the packet must be dropped
501 		 */
502 		m_freem(m);
503 		return;
504 	}
505 pass:
506 
507 	/*
508 	 * Process options and, if not destined for us,
509 	 * ship it on.  ip_dooptions returns 1 when an
510 	 * error was detected (causing an icmp message
511 	 * to be sent and the original packet to be freed).
512 	 */
513 	ip_nhops = 0;		/* for source routed packets */
514 	if (hlen > sizeof (struct ip) && ip_dooptions(m, 0, args.next_hop))
515 		return;
516 
517         /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
518          * matter if it is destined to another node, or whether it is
519          * a multicast one, RSVP wants it! and prevents it from being forwarded
520          * anywhere else. Also checks if the rsvp daemon is running before
521 	 * grabbing the packet.
522          */
523 	if (rsvp_on && ip->ip_p==IPPROTO_RSVP)
524 		goto ours;
525 
526 	/*
527 	 * Check our list of addresses, to see if the packet is for us.
528 	 * If we don't have any addresses, assume any unicast packet
529 	 * we receive might be for us (and let the upper layers deal
530 	 * with it).
531 	 */
532 	if (TAILQ_EMPTY(&in_ifaddrhead) &&
533 	    (m->m_flags & (M_MCAST|M_BCAST)) == 0)
534 		goto ours;
535 
536 	/*
537 	 * Cache the destination address of the packet; this may be
538 	 * changed by use of 'ipfw fwd'.
539 	 */
540 	pkt_dst = args.next_hop ? args.next_hop->sin_addr : ip->ip_dst;
541 
542 	/*
543 	 * Enable a consistency check between the destination address
544 	 * and the arrival interface for a unicast packet (the RFC 1122
545 	 * strong ES model) if IP forwarding is disabled and the packet
546 	 * is not locally generated and the packet is not subject to
547 	 * 'ipfw fwd'.
548 	 *
549 	 * XXX - Checking also should be disabled if the destination
550 	 * address is ipnat'ed to a different interface.
551 	 *
552 	 * XXX - Checking is incompatible with IP aliases added
553 	 * to the loopback interface instead of the interface where
554 	 * the packets are received.
555 	 */
556 	checkif = ip_checkinterface && (ipforwarding == 0) &&
557 	    m->m_pkthdr.rcvif != NULL &&
558 	    ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) &&
559 	    (args.next_hop == NULL);
560 
561 	/*
562 	 * Check for exact addresses in the hash bucket.
563 	 */
564 	LIST_FOREACH(ia, INADDR_HASH(pkt_dst.s_addr), ia_hash) {
565 		/*
566 		 * If the address matches, verify that the packet
567 		 * arrived via the correct interface if checking is
568 		 * enabled.
569 		 */
570 		if (IA_SIN(ia)->sin_addr.s_addr == pkt_dst.s_addr &&
571 		    (!checkif || ia->ia_ifp == m->m_pkthdr.rcvif))
572 			goto ours;
573 	}
574 	/*
575 	 * Check for broadcast addresses.
576 	 *
577 	 * Only accept broadcast packets that arrive via the matching
578 	 * interface.  Reception of forwarded directed broadcasts would
579 	 * be handled via ip_forward() and ether_output() with the loopback
580 	 * into the stack for SIMPLEX interfaces handled by ether_output().
581 	 */
582 	if (m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
583 	        TAILQ_FOREACH(ifa, &m->m_pkthdr.rcvif->if_addrhead, ifa_link) {
584 			if (ifa->ifa_addr->sa_family != AF_INET)
585 				continue;
586 			ia = ifatoia(ifa);
587 			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
588 			    pkt_dst.s_addr)
589 				goto ours;
590 			if (ia->ia_netbroadcast.s_addr == pkt_dst.s_addr)
591 				goto ours;
592 #ifdef BOOTP_COMPAT
593 			if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY)
594 				goto ours;
595 #endif
596 		}
597 	}
598 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
599 		struct in_multi *inm;
600 		if (ip_mrouter) {
601 			/*
602 			 * If we are acting as a multicast router, all
603 			 * incoming multicast packets are passed to the
604 			 * kernel-level multicast forwarding function.
605 			 * The packet is returned (relatively) intact; if
606 			 * ip_mforward() returns a non-zero value, the packet
607 			 * must be discarded, else it may be accepted below.
608 			 */
609 			if (ip_mforward &&
610 			    ip_mforward(ip, m->m_pkthdr.rcvif, m, 0) != 0) {
611 				ipstat.ips_cantforward++;
612 				m_freem(m);
613 				return;
614 			}
615 
616 			/*
617 			 * The process-level routing daemon needs to receive
618 			 * all multicast IGMP packets, whether or not this
619 			 * host belongs to their destination groups.
620 			 */
621 			if (ip->ip_p == IPPROTO_IGMP)
622 				goto ours;
623 			ipstat.ips_forward++;
624 		}
625 		/*
626 		 * See if we belong to the destination multicast group on the
627 		 * arrival interface.
628 		 */
629 		IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
630 		if (inm == NULL) {
631 			ipstat.ips_notmember++;
632 			m_freem(m);
633 			return;
634 		}
635 		goto ours;
636 	}
637 	if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
638 		goto ours;
639 	if (ip->ip_dst.s_addr == INADDR_ANY)
640 		goto ours;
641 
642 	/*
643 	 * FAITH(Firewall Aided Internet Translator)
644 	 */
645 	if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
646 		if (ip_keepfaith) {
647 			if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
648 				goto ours;
649 		}
650 		m_freem(m);
651 		return;
652 	}
653 
654 	/*
655 	 * Not for us; forward if possible and desirable.
656 	 */
657 	if (ipforwarding == 0) {
658 		ipstat.ips_cantforward++;
659 		m_freem(m);
660 	} else {
661 #ifdef IPSEC
662 		/*
663 		 * Enforce inbound IPsec SPD.
664 		 */
665 		if (ipsec4_in_reject(m, NULL)) {
666 			ipsecstat.in_polvio++;
667 			goto bad;
668 		}
669 #endif /* IPSEC */
670 #ifdef FAST_IPSEC
671 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
672 		s = splnet();
673 		if (mtag != NULL) {
674 			tdbi = (struct tdb_ident *)(mtag + 1);
675 			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
676 		} else {
677 			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
678 						   IP_FORWARDING, &error);
679 		}
680 		if (sp == NULL) {	/* NB: can happen if error */
681 			splx(s);
682 			/*XXX error stat???*/
683 			DPRINTF(("ip_input: no SP for forwarding\n"));	/*XXX*/
684 			goto bad;
685 		}
686 
687 		/*
688 		 * Check security policy against packet attributes.
689 		 */
690 		error = ipsec_in_reject(sp, m);
691 		KEY_FREESP(&sp);
692 		splx(s);
693 		if (error) {
694 			ipstat.ips_cantforward++;
695 			goto bad;
696 		}
697 #endif /* FAST_IPSEC */
698 		ip_forward(m, 0, args.next_hop);
699 	}
700 	return;
701 
702 ours:
703 #ifdef IPSTEALTH
704 	/*
705 	 * IPSTEALTH: Process non-routing options only
706 	 * if the packet is destined for us.
707 	 */
708 	if (ipstealth && hlen > sizeof (struct ip) &&
709 	    ip_dooptions(m, 1, args.next_hop))
710 		return;
711 #endif /* IPSTEALTH */
712 
713 	/* Count the packet in the ip address stats */
714 	if (ia != NULL) {
715 		ia->ia_ifa.if_ipackets++;
716 		ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
717 	}
718 
719 	/*
720 	 * If offset or IP_MF are set, must reassemble.
721 	 * Otherwise, nothing need be done.
722 	 * (We could look in the reassembly queue to see
723 	 * if the packet was previously fragmented,
724 	 * but it's not worth the time; just let them time out.)
725 	 */
726 	if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
727 
728 		sum = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
729 		/*
730 		 * Look for queue of fragments
731 		 * of this datagram.
732 		 */
733 		TAILQ_FOREACH(fp, &ipq[sum], ipq_list)
734 			if (ip->ip_id == fp->ipq_id &&
735 			    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
736 			    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
737 #ifdef MAC
738 			    mac_fragment_match(m, fp) &&
739 #endif
740 			    ip->ip_p == fp->ipq_p)
741 				goto found;
742 
743 		fp = 0;
744 
745 		/* check if there's a place for the new queue */
746 		if (nipq > maxnipq) {
747 		    /*
748 		     * drop something from the tail of the current queue
749 		     * before proceeding further
750 		     */
751 		    struct ipq *q = TAILQ_LAST(&ipq[sum], ipqhead);
752 		    if (q == NULL) {   /* gak */
753 			for (i = 0; i < IPREASS_NHASH; i++) {
754 			    struct ipq *r = TAILQ_LAST(&ipq[i], ipqhead);
755 			    if (r) {
756 				ip_freef(&ipq[i], r);
757 				break;
758 			    }
759 			}
760 		    } else
761 			ip_freef(&ipq[sum], q);
762 		}
763 found:
764 		/*
765 		 * Adjust ip_len to not reflect header,
766 		 * convert offset of this to bytes.
767 		 */
768 		ip->ip_len -= hlen;
769 		if (ip->ip_off & IP_MF) {
770 		        /*
771 		         * Make sure that fragments have a data length
772 			 * that's a non-zero multiple of 8 bytes.
773 		         */
774 			if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
775 				ipstat.ips_toosmall++; /* XXX */
776 				goto bad;
777 			}
778 			m->m_flags |= M_FRAG;
779 		} else
780 			m->m_flags &= ~M_FRAG;
781 		ip->ip_off <<= 3;
782 
783 		/*
784 		 * Attempt reassembly; if it succeeds, proceed.
785 		 * ip_reass() will return a different mbuf, and update
786 		 * the divert info in divert_info and args.divert_rule.
787 		 */
788 		ipstat.ips_fragments++;
789 		m->m_pkthdr.header = ip;
790 		m = ip_reass(m,
791 		    &ipq[sum], fp, &divert_info, &args.divert_rule);
792 		if (m == 0)
793 			return;
794 		ipstat.ips_reassembled++;
795 		ip = mtod(m, struct ip *);
796 		/* Get the header length of the reassembled packet */
797 		hlen = ip->ip_hl << 2;
798 #ifdef IPDIVERT
799 		/* Restore original checksum before diverting packet */
800 		if (divert_info != 0) {
801 			ip->ip_len += hlen;
802 			ip->ip_len = htons(ip->ip_len);
803 			ip->ip_off = htons(ip->ip_off);
804 			ip->ip_sum = 0;
805 			if (hlen == sizeof(struct ip))
806 				ip->ip_sum = in_cksum_hdr(ip);
807 			else
808 				ip->ip_sum = in_cksum(m, hlen);
809 			ip->ip_off = ntohs(ip->ip_off);
810 			ip->ip_len = ntohs(ip->ip_len);
811 			ip->ip_len -= hlen;
812 		}
813 #endif
814 	} else
815 		ip->ip_len -= hlen;
816 
817 #ifdef IPDIVERT
818 	/*
819 	 * Divert or tee packet to the divert protocol if required.
820 	 */
821 	if (divert_info != 0) {
822 		struct mbuf *clone = NULL;
823 
824 		/* Clone packet if we're doing a 'tee' */
825 		if ((divert_info & IP_FW_PORT_TEE_FLAG) != 0)
826 			clone = m_dup(m, M_DONTWAIT);
827 
828 		/* Restore packet header fields to original values */
829 		ip->ip_len += hlen;
830 		ip->ip_len = htons(ip->ip_len);
831 		ip->ip_off = htons(ip->ip_off);
832 
833 		/* Deliver packet to divert input routine */
834 		divert_packet(m, 1, divert_info & 0xffff, args.divert_rule);
835 		ipstat.ips_delivered++;
836 
837 		/* If 'tee', continue with original packet */
838 		if (clone == NULL)
839 			return;
840 		m = clone;
841 		ip = mtod(m, struct ip *);
842 		ip->ip_len += hlen;
843 		/*
844 		 * Jump backwards to complete processing of the
845 		 * packet. But first clear divert_info to avoid
846 		 * entering this block again.
847 		 * We do not need to clear args.divert_rule
848 		 * or args.next_hop as they will not be used.
849 		 */
850 		divert_info = 0;
851 		goto pass;
852 	}
853 #endif
854 
855 #ifdef IPSEC
856 	/*
857 	 * enforce IPsec policy checking if we are seeing last header.
858 	 * note that we do not visit this with protocols with pcb layer
859 	 * code - like udp/tcp/raw ip.
860 	 */
861 	if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0 &&
862 	    ipsec4_in_reject(m, NULL)) {
863 		ipsecstat.in_polvio++;
864 		goto bad;
865 	}
866 #endif
867 #if FAST_IPSEC
868 	/*
869 	 * enforce IPsec policy checking if we are seeing last header.
870 	 * note that we do not visit this with protocols with pcb layer
871 	 * code - like udp/tcp/raw ip.
872 	 */
873 	if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0) {
874 		/*
875 		 * Check if the packet has already had IPsec processing
876 		 * done.  If so, then just pass it along.  This tag gets
877 		 * set during AH, ESP, etc. input handling, before the
878 		 * packet is returned to the ip input queue for delivery.
879 		 */
880 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
881 		s = splnet();
882 		if (mtag != NULL) {
883 			tdbi = (struct tdb_ident *)(mtag + 1);
884 			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
885 		} else {
886 			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
887 						   IP_FORWARDING, &error);
888 		}
889 		if (sp != NULL) {
890 			/*
891 			 * Check security policy against packet attributes.
892 			 */
893 			error = ipsec_in_reject(sp, m);
894 			KEY_FREESP(&sp);
895 		} else {
896 			/* XXX error stat??? */
897 			error = EINVAL;
898 DPRINTF(("ip_input: no SP, packet discarded\n"));/*XXX*/
899 			goto bad;
900 		}
901 		splx(s);
902 		if (error)
903 			goto bad;
904 	}
905 #endif /* FAST_IPSEC */
906 
907 	/*
908 	 * Switch out to protocol's input routine.
909 	 */
910 	ipstat.ips_delivered++;
911 	if (args.next_hop && ip->ip_p == IPPROTO_TCP) {
912 		/* TCP needs IPFORWARD info if available */
913 		struct m_hdr tag;
914 
915 		tag.mh_type = MT_TAG;
916 		tag.mh_flags = PACKET_TAG_IPFORWARD;
917 		tag.mh_data = (caddr_t)args.next_hop;
918 		tag.mh_next = m;
919 
920 		(*inetsw[ip_protox[ip->ip_p]].pr_input)(
921 			(struct mbuf *)&tag, hlen);
922 	} else
923 		(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
924 	return;
925 bad:
926 	m_freem(m);
927 }
928 
929 /*
930  * IP software interrupt routine - to go away sometime soon
931  */
932 static void
933 ipintr(void)
934 {
935 	struct mbuf *m;
936 
937 	while (1) {
938 		IF_DEQUEUE(&ipintrq, m);
939 		if (m == 0)
940 			return;
941 		ip_input(m);
942 	}
943 }
944 
945 /*
946  * Take incoming datagram fragment and try to reassemble it into
947  * whole datagram.  If a chain for reassembly of this datagram already
948  * exists, then it is given as fp; otherwise have to make a chain.
949  *
950  * When IPDIVERT enabled, keep additional state with each packet that
951  * tells us if we need to divert or tee the packet we're building.
952  * In particular, *divinfo includes the port and TEE flag,
953  * *divert_rule is the number of the matching rule.
954  */
955 
956 static struct mbuf *
957 ip_reass(struct mbuf *m, struct ipqhead *head, struct ipq *fp,
958 	u_int32_t *divinfo, u_int16_t *divert_rule)
959 {
960 	struct ip *ip = mtod(m, struct ip *);
961 	register struct mbuf *p, *q, *nq;
962 	struct mbuf *t;
963 	int hlen = ip->ip_hl << 2;
964 	int i, next;
965 
966 	/*
967 	 * Presence of header sizes in mbufs
968 	 * would confuse code below.
969 	 */
970 	m->m_data += hlen;
971 	m->m_len -= hlen;
972 
973 	/*
974 	 * If first fragment to arrive, create a reassembly queue.
975 	 */
976 	if (fp == 0) {
977 		/*
978 		 * Enforce upper bound on number of fragmented packets
979 		 * for which we attempt reassembly;
980 		 * If maxfrag is 0, never accept fragments.
981 		 * If maxfrag is -1, accept all fragments without limitation.
982 		 */
983 		if ((ip_maxfragpackets >= 0) && (ip_nfragpackets >= ip_maxfragpackets))
984 			goto dropfrag;
985 		ip_nfragpackets++;
986 		if ((t = m_get(M_DONTWAIT, MT_FTABLE)) == NULL)
987 			goto dropfrag;
988 		fp = mtod(t, struct ipq *);
989 #ifdef MAC
990 		mac_init_ipq(fp);
991 		mac_create_ipq(m, fp);
992 #endif
993 		TAILQ_INSERT_HEAD(head, fp, ipq_list);
994 		nipq++;
995 		fp->ipq_ttl = IPFRAGTTL;
996 		fp->ipq_p = ip->ip_p;
997 		fp->ipq_id = ip->ip_id;
998 		fp->ipq_src = ip->ip_src;
999 		fp->ipq_dst = ip->ip_dst;
1000 		fp->ipq_frags = m;
1001 		m->m_nextpkt = NULL;
1002 #ifdef IPDIVERT
1003 		fp->ipq_div_info = 0;
1004 		fp->ipq_div_cookie = 0;
1005 #endif
1006 		goto inserted;
1007 	} else {
1008 #ifdef MAC
1009 		mac_update_ipq(m, fp);
1010 #endif
1011 	}
1012 
1013 #define GETIP(m)	((struct ip*)((m)->m_pkthdr.header))
1014 
1015 	/*
1016 	 * Find a segment which begins after this one does.
1017 	 */
1018 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
1019 		if (GETIP(q)->ip_off > ip->ip_off)
1020 			break;
1021 
1022 	/*
1023 	 * If there is a preceding segment, it may provide some of
1024 	 * our data already.  If so, drop the data from the incoming
1025 	 * segment.  If it provides all of our data, drop us, otherwise
1026 	 * stick new segment in the proper place.
1027 	 *
1028 	 * If some of the data is dropped from the the preceding
1029 	 * segment, then it's checksum is invalidated.
1030 	 */
1031 	if (p) {
1032 		i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
1033 		if (i > 0) {
1034 			if (i >= ip->ip_len)
1035 				goto dropfrag;
1036 			m_adj(m, i);
1037 			m->m_pkthdr.csum_flags = 0;
1038 			ip->ip_off += i;
1039 			ip->ip_len -= i;
1040 		}
1041 		m->m_nextpkt = p->m_nextpkt;
1042 		p->m_nextpkt = m;
1043 	} else {
1044 		m->m_nextpkt = fp->ipq_frags;
1045 		fp->ipq_frags = m;
1046 	}
1047 
1048 	/*
1049 	 * While we overlap succeeding segments trim them or,
1050 	 * if they are completely covered, dequeue them.
1051 	 */
1052 	for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
1053 	     q = nq) {
1054 		i = (ip->ip_off + ip->ip_len) -
1055 		    GETIP(q)->ip_off;
1056 		if (i < GETIP(q)->ip_len) {
1057 			GETIP(q)->ip_len -= i;
1058 			GETIP(q)->ip_off += i;
1059 			m_adj(q, i);
1060 			q->m_pkthdr.csum_flags = 0;
1061 			break;
1062 		}
1063 		nq = q->m_nextpkt;
1064 		m->m_nextpkt = nq;
1065 		m_freem(q);
1066 	}
1067 
1068 inserted:
1069 
1070 #ifdef IPDIVERT
1071 	/*
1072 	 * Transfer firewall instructions to the fragment structure.
1073 	 * Only trust info in the fragment at offset 0.
1074 	 */
1075 	if (ip->ip_off == 0) {
1076 		fp->ipq_div_info = *divinfo;
1077 		fp->ipq_div_cookie = *divert_rule;
1078 	}
1079 	*divinfo = 0;
1080 	*divert_rule = 0;
1081 #endif
1082 
1083 	/*
1084 	 * Check for complete reassembly.
1085 	 */
1086 	next = 0;
1087 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1088 		if (GETIP(q)->ip_off != next)
1089 			return (0);
1090 		next += GETIP(q)->ip_len;
1091 	}
1092 	/* Make sure the last packet didn't have the IP_MF flag */
1093 	if (p->m_flags & M_FRAG)
1094 		return (0);
1095 
1096 	/*
1097 	 * Reassembly is complete.  Make sure the packet is a sane size.
1098 	 */
1099 	q = fp->ipq_frags;
1100 	ip = GETIP(q);
1101 	if (next + (ip->ip_hl << 2) > IP_MAXPACKET) {
1102 		ipstat.ips_toolong++;
1103 		ip_freef(head, fp);
1104 		return (0);
1105 	}
1106 
1107 	/*
1108 	 * Concatenate fragments.
1109 	 */
1110 	m = q;
1111 	t = m->m_next;
1112 	m->m_next = 0;
1113 	m_cat(m, t);
1114 	nq = q->m_nextpkt;
1115 	q->m_nextpkt = 0;
1116 	for (q = nq; q != NULL; q = nq) {
1117 		nq = q->m_nextpkt;
1118 		q->m_nextpkt = NULL;
1119 		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1120 		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1121 		m_cat(m, q);
1122 	}
1123 #ifdef MAC
1124 	mac_create_datagram_from_ipq(fp, m);
1125 	mac_destroy_ipq(fp);
1126 #endif
1127 
1128 #ifdef IPDIVERT
1129 	/*
1130 	 * Extract firewall instructions from the fragment structure.
1131 	 */
1132 	*divinfo = fp->ipq_div_info;
1133 	*divert_rule = fp->ipq_div_cookie;
1134 #endif
1135 
1136 	/*
1137 	 * Create header for new ip packet by
1138 	 * modifying header of first packet;
1139 	 * dequeue and discard fragment reassembly header.
1140 	 * Make header visible.
1141 	 */
1142 	ip->ip_len = next;
1143 	ip->ip_src = fp->ipq_src;
1144 	ip->ip_dst = fp->ipq_dst;
1145 	TAILQ_REMOVE(head, fp, ipq_list);
1146 	nipq--;
1147 	(void) m_free(dtom(fp));
1148 	ip_nfragpackets--;
1149 	m->m_len += (ip->ip_hl << 2);
1150 	m->m_data -= (ip->ip_hl << 2);
1151 	/* some debugging cruft by sklower, below, will go away soon */
1152 	if (m->m_flags & M_PKTHDR)	/* XXX this should be done elsewhere */
1153 		m_fixhdr(m);
1154 	return (m);
1155 
1156 dropfrag:
1157 #ifdef IPDIVERT
1158 	*divinfo = 0;
1159 	*divert_rule = 0;
1160 #endif
1161 	ipstat.ips_fragdropped++;
1162 	m_freem(m);
1163 	return (0);
1164 
1165 #undef GETIP
1166 }
1167 
1168 /*
1169  * Free a fragment reassembly header and all
1170  * associated datagrams.
1171  */
1172 static void
1173 ip_freef(fhp, fp)
1174 	struct ipqhead *fhp;
1175 	struct ipq *fp;
1176 {
1177 	register struct mbuf *q;
1178 
1179 	while (fp->ipq_frags) {
1180 		q = fp->ipq_frags;
1181 		fp->ipq_frags = q->m_nextpkt;
1182 		m_freem(q);
1183 	}
1184 	TAILQ_REMOVE(fhp, fp, ipq_list);
1185 	(void) m_free(dtom(fp));
1186 	ip_nfragpackets--;
1187 	nipq--;
1188 }
1189 
1190 /*
1191  * IP timer processing;
1192  * if a timer expires on a reassembly
1193  * queue, discard it.
1194  */
1195 void
1196 ip_slowtimo()
1197 {
1198 	register struct ipq *fp;
1199 	int s = splnet();
1200 	int i;
1201 
1202 	for (i = 0; i < IPREASS_NHASH; i++) {
1203 		for(fp = TAILQ_FIRST(&ipq[i]); fp;) {
1204 			struct ipq *fpp;
1205 
1206 			fpp = fp;
1207 			fp = TAILQ_NEXT(fp, ipq_list);
1208 			if(--fpp->ipq_ttl == 0) {
1209 				ipstat.ips_fragtimeout++;
1210 				ip_freef(&ipq[i], fpp);
1211 			}
1212 		}
1213 	}
1214 	/*
1215 	 * If we are over the maximum number of fragments
1216 	 * (due to the limit being lowered), drain off
1217 	 * enough to get down to the new limit.
1218 	 */
1219 	for (i = 0; i < IPREASS_NHASH; i++) {
1220 		if (ip_maxfragpackets >= 0) {
1221 			while (ip_nfragpackets > ip_maxfragpackets &&
1222 				!TAILQ_EMPTY(&ipq[i])) {
1223 				ipstat.ips_fragdropped++;
1224 				ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i]));
1225 			}
1226 		}
1227 	}
1228 	ipflow_slowtimo();
1229 	splx(s);
1230 }
1231 
1232 /*
1233  * Drain off all datagram fragments.
1234  */
1235 void
1236 ip_drain()
1237 {
1238 	int     i;
1239 
1240 	for (i = 0; i < IPREASS_NHASH; i++) {
1241 		while(!TAILQ_EMPTY(&ipq[i])) {
1242 			ipstat.ips_fragdropped++;
1243 			ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i]));
1244 		}
1245 	}
1246 	in_rtqdrain();
1247 }
1248 
1249 /*
1250  * Do option processing on a datagram,
1251  * possibly discarding it if bad options are encountered,
1252  * or forwarding it if source-routed.
1253  * The pass argument is used when operating in the IPSTEALTH
1254  * mode to tell what options to process:
1255  * [LS]SRR (pass 0) or the others (pass 1).
1256  * The reason for as many as two passes is that when doing IPSTEALTH,
1257  * non-routing options should be processed only if the packet is for us.
1258  * Returns 1 if packet has been forwarded/freed,
1259  * 0 if the packet should be processed further.
1260  */
1261 static int
1262 ip_dooptions(struct mbuf *m, int pass, struct sockaddr_in *next_hop)
1263 {
1264 	struct ip *ip = mtod(m, struct ip *);
1265 	u_char *cp;
1266 	struct in_ifaddr *ia;
1267 	int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
1268 	struct in_addr *sin, dst;
1269 	n_time ntime;
1270 	struct	sockaddr_in ipaddr = { sizeof(ipaddr), AF_INET };
1271 
1272 	dst = ip->ip_dst;
1273 	cp = (u_char *)(ip + 1);
1274 	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1275 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1276 		opt = cp[IPOPT_OPTVAL];
1277 		if (opt == IPOPT_EOL)
1278 			break;
1279 		if (opt == IPOPT_NOP)
1280 			optlen = 1;
1281 		else {
1282 			if (cnt < IPOPT_OLEN + sizeof(*cp)) {
1283 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1284 				goto bad;
1285 			}
1286 			optlen = cp[IPOPT_OLEN];
1287 			if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
1288 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1289 				goto bad;
1290 			}
1291 		}
1292 		switch (opt) {
1293 
1294 		default:
1295 			break;
1296 
1297 		/*
1298 		 * Source routing with record.
1299 		 * Find interface with current destination address.
1300 		 * If none on this machine then drop if strictly routed,
1301 		 * or do nothing if loosely routed.
1302 		 * Record interface address and bring up next address
1303 		 * component.  If strictly routed make sure next
1304 		 * address is on directly accessible net.
1305 		 */
1306 		case IPOPT_LSRR:
1307 		case IPOPT_SSRR:
1308 #ifdef IPSTEALTH
1309 			if (ipstealth && pass > 0)
1310 				break;
1311 #endif
1312 			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1313 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1314 				goto bad;
1315 			}
1316 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1317 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1318 				goto bad;
1319 			}
1320 			ipaddr.sin_addr = ip->ip_dst;
1321 			ia = (struct in_ifaddr *)
1322 				ifa_ifwithaddr((struct sockaddr *)&ipaddr);
1323 			if (ia == 0) {
1324 				if (opt == IPOPT_SSRR) {
1325 					type = ICMP_UNREACH;
1326 					code = ICMP_UNREACH_SRCFAIL;
1327 					goto bad;
1328 				}
1329 				if (!ip_dosourceroute)
1330 					goto nosourcerouting;
1331 				/*
1332 				 * Loose routing, and not at next destination
1333 				 * yet; nothing to do except forward.
1334 				 */
1335 				break;
1336 			}
1337 			off--;			/* 0 origin */
1338 			if (off > optlen - (int)sizeof(struct in_addr)) {
1339 				/*
1340 				 * End of source route.  Should be for us.
1341 				 */
1342 				if (!ip_acceptsourceroute)
1343 					goto nosourcerouting;
1344 				save_rte(cp, ip->ip_src);
1345 				break;
1346 			}
1347 #ifdef IPSTEALTH
1348 			if (ipstealth)
1349 				goto dropit;
1350 #endif
1351 			if (!ip_dosourceroute) {
1352 				if (ipforwarding) {
1353 					char buf[16]; /* aaa.bbb.ccc.ddd\0 */
1354 					/*
1355 					 * Acting as a router, so generate ICMP
1356 					 */
1357 nosourcerouting:
1358 					strcpy(buf, inet_ntoa(ip->ip_dst));
1359 					log(LOG_WARNING,
1360 					    "attempted source route from %s to %s\n",
1361 					    inet_ntoa(ip->ip_src), buf);
1362 					type = ICMP_UNREACH;
1363 					code = ICMP_UNREACH_SRCFAIL;
1364 					goto bad;
1365 				} else {
1366 					/*
1367 					 * Not acting as a router, so silently drop.
1368 					 */
1369 #ifdef IPSTEALTH
1370 dropit:
1371 #endif
1372 					ipstat.ips_cantforward++;
1373 					m_freem(m);
1374 					return (1);
1375 				}
1376 			}
1377 
1378 			/*
1379 			 * locate outgoing interface
1380 			 */
1381 			(void)memcpy(&ipaddr.sin_addr, cp + off,
1382 			    sizeof(ipaddr.sin_addr));
1383 
1384 			if (opt == IPOPT_SSRR) {
1385 #define	INA	struct in_ifaddr *
1386 #define	SA	struct sockaddr *
1387 			    if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr)) == 0)
1388 				ia = (INA)ifa_ifwithnet((SA)&ipaddr);
1389 			} else
1390 				ia = ip_rtaddr(ipaddr.sin_addr, &ipforward_rt);
1391 			if (ia == 0) {
1392 				type = ICMP_UNREACH;
1393 				code = ICMP_UNREACH_SRCFAIL;
1394 				goto bad;
1395 			}
1396 			ip->ip_dst = ipaddr.sin_addr;
1397 			(void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr),
1398 			    sizeof(struct in_addr));
1399 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1400 			/*
1401 			 * Let ip_intr's mcast routing check handle mcast pkts
1402 			 */
1403 			forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr));
1404 			break;
1405 
1406 		case IPOPT_RR:
1407 #ifdef IPSTEALTH
1408 			if (ipstealth && pass == 0)
1409 				break;
1410 #endif
1411 			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1412 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1413 				goto bad;
1414 			}
1415 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1416 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1417 				goto bad;
1418 			}
1419 			/*
1420 			 * If no space remains, ignore.
1421 			 */
1422 			off--;			/* 0 origin */
1423 			if (off > optlen - (int)sizeof(struct in_addr))
1424 				break;
1425 			(void)memcpy(&ipaddr.sin_addr, &ip->ip_dst,
1426 			    sizeof(ipaddr.sin_addr));
1427 			/*
1428 			 * locate outgoing interface; if we're the destination,
1429 			 * use the incoming interface (should be same).
1430 			 */
1431 			if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == 0 &&
1432 			    (ia = ip_rtaddr(ipaddr.sin_addr,
1433 			    &ipforward_rt)) == 0) {
1434 				type = ICMP_UNREACH;
1435 				code = ICMP_UNREACH_HOST;
1436 				goto bad;
1437 			}
1438 			(void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr),
1439 			    sizeof(struct in_addr));
1440 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1441 			break;
1442 
1443 		case IPOPT_TS:
1444 #ifdef IPSTEALTH
1445 			if (ipstealth && pass == 0)
1446 				break;
1447 #endif
1448 			code = cp - (u_char *)ip;
1449 			if (optlen < 4 || optlen > 40) {
1450 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1451 				goto bad;
1452 			}
1453 			if ((off = cp[IPOPT_OFFSET]) < 5) {
1454 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1455 				goto bad;
1456 			}
1457 			if (off > optlen - (int)sizeof(int32_t)) {
1458 				cp[IPOPT_OFFSET + 1] += (1 << 4);
1459 				if ((cp[IPOPT_OFFSET + 1] & 0xf0) == 0) {
1460 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1461 					goto bad;
1462 				}
1463 				break;
1464 			}
1465 			off--;				/* 0 origin */
1466 			sin = (struct in_addr *)(cp + off);
1467 			switch (cp[IPOPT_OFFSET + 1] & 0x0f) {
1468 
1469 			case IPOPT_TS_TSONLY:
1470 				break;
1471 
1472 			case IPOPT_TS_TSANDADDR:
1473 				if (off + sizeof(n_time) +
1474 				    sizeof(struct in_addr) > optlen) {
1475 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1476 					goto bad;
1477 				}
1478 				ipaddr.sin_addr = dst;
1479 				ia = (INA)ifaof_ifpforaddr((SA)&ipaddr,
1480 							    m->m_pkthdr.rcvif);
1481 				if (ia == 0)
1482 					continue;
1483 				(void)memcpy(sin, &IA_SIN(ia)->sin_addr,
1484 				    sizeof(struct in_addr));
1485 				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1486 				off += sizeof(struct in_addr);
1487 				break;
1488 
1489 			case IPOPT_TS_PRESPEC:
1490 				if (off + sizeof(n_time) +
1491 				    sizeof(struct in_addr) > optlen) {
1492 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1493 					goto bad;
1494 				}
1495 				(void)memcpy(&ipaddr.sin_addr, sin,
1496 				    sizeof(struct in_addr));
1497 				if (ifa_ifwithaddr((SA)&ipaddr) == 0)
1498 					continue;
1499 				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1500 				off += sizeof(struct in_addr);
1501 				break;
1502 
1503 			default:
1504 				code = &cp[IPOPT_OFFSET + 1] - (u_char *)ip;
1505 				goto bad;
1506 			}
1507 			ntime = iptime();
1508 			(void)memcpy(cp + off, &ntime, sizeof(n_time));
1509 			cp[IPOPT_OFFSET] += sizeof(n_time);
1510 		}
1511 	}
1512 	if (forward && ipforwarding) {
1513 		ip_forward(m, 1, next_hop);
1514 		return (1);
1515 	}
1516 	return (0);
1517 bad:
1518 	icmp_error(m, type, code, 0, 0);
1519 	ipstat.ips_badoptions++;
1520 	return (1);
1521 }
1522 
1523 /*
1524  * Given address of next destination (final or next hop),
1525  * return internet address info of interface to be used to get there.
1526  */
1527 struct in_ifaddr *
1528 ip_rtaddr(dst, rt)
1529 	struct in_addr dst;
1530 	struct route *rt;
1531 {
1532 	register struct sockaddr_in *sin;
1533 
1534 	sin = (struct sockaddr_in *)&rt->ro_dst;
1535 
1536 	if (rt->ro_rt == 0 ||
1537 	    !(rt->ro_rt->rt_flags & RTF_UP) ||
1538 	    dst.s_addr != sin->sin_addr.s_addr) {
1539 		if (rt->ro_rt) {
1540 			RTFREE(rt->ro_rt);
1541 			rt->ro_rt = 0;
1542 		}
1543 		sin->sin_family = AF_INET;
1544 		sin->sin_len = sizeof(*sin);
1545 		sin->sin_addr = dst;
1546 
1547 		rtalloc_ign(rt, RTF_PRCLONING);
1548 	}
1549 	if (rt->ro_rt == 0)
1550 		return ((struct in_ifaddr *)0);
1551 	return (ifatoia(rt->ro_rt->rt_ifa));
1552 }
1553 
1554 /*
1555  * Save incoming source route for use in replies,
1556  * to be picked up later by ip_srcroute if the receiver is interested.
1557  */
1558 static void
1559 save_rte(option, dst)
1560 	u_char *option;
1561 	struct in_addr dst;
1562 {
1563 	unsigned olen;
1564 
1565 	olen = option[IPOPT_OLEN];
1566 #ifdef DIAGNOSTIC
1567 	if (ipprintfs)
1568 		printf("save_rte: olen %d\n", olen);
1569 #endif
1570 	if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
1571 		return;
1572 	bcopy(option, ip_srcrt.srcopt, olen);
1573 	ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
1574 	ip_srcrt.dst = dst;
1575 }
1576 
1577 /*
1578  * Retrieve incoming source route for use in replies,
1579  * in the same form used by setsockopt.
1580  * The first hop is placed before the options, will be removed later.
1581  */
1582 struct mbuf *
1583 ip_srcroute()
1584 {
1585 	register struct in_addr *p, *q;
1586 	register struct mbuf *m;
1587 
1588 	if (ip_nhops == 0)
1589 		return ((struct mbuf *)0);
1590 	m = m_get(M_DONTWAIT, MT_HEADER);
1591 	if (m == 0)
1592 		return ((struct mbuf *)0);
1593 
1594 #define OPTSIZ	(sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
1595 
1596 	/* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1597 	m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
1598 	    OPTSIZ;
1599 #ifdef DIAGNOSTIC
1600 	if (ipprintfs)
1601 		printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
1602 #endif
1603 
1604 	/*
1605 	 * First save first hop for return route
1606 	 */
1607 	p = &ip_srcrt.route[ip_nhops - 1];
1608 	*(mtod(m, struct in_addr *)) = *p--;
1609 #ifdef DIAGNOSTIC
1610 	if (ipprintfs)
1611 		printf(" hops %lx", (u_long)ntohl(mtod(m, struct in_addr *)->s_addr));
1612 #endif
1613 
1614 	/*
1615 	 * Copy option fields and padding (nop) to mbuf.
1616 	 */
1617 	ip_srcrt.nop = IPOPT_NOP;
1618 	ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
1619 	(void)memcpy(mtod(m, caddr_t) + sizeof(struct in_addr),
1620 	    &ip_srcrt.nop, OPTSIZ);
1621 	q = (struct in_addr *)(mtod(m, caddr_t) +
1622 	    sizeof(struct in_addr) + OPTSIZ);
1623 #undef OPTSIZ
1624 	/*
1625 	 * Record return path as an IP source route,
1626 	 * reversing the path (pointers are now aligned).
1627 	 */
1628 	while (p >= ip_srcrt.route) {
1629 #ifdef DIAGNOSTIC
1630 		if (ipprintfs)
1631 			printf(" %lx", (u_long)ntohl(q->s_addr));
1632 #endif
1633 		*q++ = *p--;
1634 	}
1635 	/*
1636 	 * Last hop goes to final destination.
1637 	 */
1638 	*q = ip_srcrt.dst;
1639 #ifdef DIAGNOSTIC
1640 	if (ipprintfs)
1641 		printf(" %lx\n", (u_long)ntohl(q->s_addr));
1642 #endif
1643 	return (m);
1644 }
1645 
1646 /*
1647  * Strip out IP options, at higher
1648  * level protocol in the kernel.
1649  * Second argument is buffer to which options
1650  * will be moved, and return value is their length.
1651  * XXX should be deleted; last arg currently ignored.
1652  */
1653 void
1654 ip_stripoptions(m, mopt)
1655 	register struct mbuf *m;
1656 	struct mbuf *mopt;
1657 {
1658 	register int i;
1659 	struct ip *ip = mtod(m, struct ip *);
1660 	register caddr_t opts;
1661 	int olen;
1662 
1663 	olen = (ip->ip_hl << 2) - sizeof (struct ip);
1664 	opts = (caddr_t)(ip + 1);
1665 	i = m->m_len - (sizeof (struct ip) + olen);
1666 	bcopy(opts + olen, opts, (unsigned)i);
1667 	m->m_len -= olen;
1668 	if (m->m_flags & M_PKTHDR)
1669 		m->m_pkthdr.len -= olen;
1670 	ip->ip_v = IPVERSION;
1671 	ip->ip_hl = sizeof(struct ip) >> 2;
1672 }
1673 
1674 u_char inetctlerrmap[PRC_NCMDS] = {
1675 	0,		0,		0,		0,
1676 	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1677 	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1678 	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1679 	0,		0,		0,		0,
1680 	ENOPROTOOPT,	ECONNREFUSED
1681 };
1682 
1683 /*
1684  * Forward a packet.  If some error occurs return the sender
1685  * an icmp packet.  Note we can't always generate a meaningful
1686  * icmp message because icmp doesn't have a large enough repertoire
1687  * of codes and types.
1688  *
1689  * If not forwarding, just drop the packet.  This could be confusing
1690  * if ipforwarding was zero but some routing protocol was advancing
1691  * us as a gateway to somewhere.  However, we must let the routing
1692  * protocol deal with that.
1693  *
1694  * The srcrt parameter indicates whether the packet is being forwarded
1695  * via a source route.
1696  */
1697 static void
1698 ip_forward(struct mbuf *m, int srcrt, struct sockaddr_in *next_hop)
1699 {
1700 	struct ip *ip = mtod(m, struct ip *);
1701 	struct rtentry *rt;
1702 	int error, type = 0, code = 0;
1703 	struct mbuf *mcopy;
1704 	n_long dest;
1705 	struct in_addr pkt_dst;
1706 	struct ifnet *destifp;
1707 #if defined(IPSEC) || defined(FAST_IPSEC)
1708 	struct ifnet dummyifp;
1709 #endif
1710 
1711 	dest = 0;
1712 	/*
1713 	 * Cache the destination address of the packet; this may be
1714 	 * changed by use of 'ipfw fwd'.
1715 	 */
1716 	pkt_dst = next_hop ? next_hop->sin_addr : ip->ip_dst;
1717 
1718 #ifdef DIAGNOSTIC
1719 	if (ipprintfs)
1720 		printf("forward: src %lx dst %lx ttl %x\n",
1721 		    (u_long)ip->ip_src.s_addr, (u_long)pkt_dst.s_addr,
1722 		    ip->ip_ttl);
1723 #endif
1724 
1725 
1726 	if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(pkt_dst) == 0) {
1727 		ipstat.ips_cantforward++;
1728 		m_freem(m);
1729 		return;
1730 	}
1731 #ifdef IPSTEALTH
1732 	if (!ipstealth) {
1733 #endif
1734 		if (ip->ip_ttl <= IPTTLDEC) {
1735 			icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS,
1736 			    dest, 0);
1737 			return;
1738 		}
1739 #ifdef IPSTEALTH
1740 	}
1741 #endif
1742 
1743 	if (ip_rtaddr(pkt_dst, &ipforward_rt) == 0) {
1744 		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0);
1745 		return;
1746 	} else
1747 		rt = ipforward_rt.ro_rt;
1748 
1749 	/*
1750 	 * Save the IP header and at most 8 bytes of the payload,
1751 	 * in case we need to generate an ICMP message to the src.
1752 	 *
1753 	 * XXX this can be optimized a lot by saving the data in a local
1754 	 * buffer on the stack (72 bytes at most), and only allocating the
1755 	 * mbuf if really necessary. The vast majority of the packets
1756 	 * are forwarded without having to send an ICMP back (either
1757 	 * because unnecessary, or because rate limited), so we are
1758 	 * really we are wasting a lot of work here.
1759 	 *
1760 	 * We don't use m_copy() because it might return a reference
1761 	 * to a shared cluster. Both this function and ip_output()
1762 	 * assume exclusive access to the IP header in `m', so any
1763 	 * data in a cluster may change before we reach icmp_error().
1764 	 */
1765 	MGET(mcopy, M_DONTWAIT, m->m_type);
1766 	if (mcopy != NULL) {
1767 		M_COPY_PKTHDR(mcopy, m);
1768 		mcopy->m_len = imin((ip->ip_hl << 2) + 8,
1769 		    (int)ip->ip_len);
1770 		m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
1771 #ifdef MAC
1772 		/*
1773 		 * XXXMAC: This will eventually become an explicit
1774 		 * labeling point.
1775 		 */
1776 		mac_create_mbuf_from_mbuf(m, mcopy);
1777 #endif
1778 	}
1779 
1780 #ifdef IPSTEALTH
1781 	if (!ipstealth) {
1782 #endif
1783 		ip->ip_ttl -= IPTTLDEC;
1784 #ifdef IPSTEALTH
1785 	}
1786 #endif
1787 
1788 	/*
1789 	 * If forwarding packet using same interface that it came in on,
1790 	 * perhaps should send a redirect to sender to shortcut a hop.
1791 	 * Only send redirect if source is sending directly to us,
1792 	 * and if packet was not source routed (or has any options).
1793 	 * Also, don't send redirect if forwarding using a default route
1794 	 * or a route modified by a redirect.
1795 	 */
1796 	if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1797 	    (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1798 	    satosin(rt_key(rt))->sin_addr.s_addr != 0 &&
1799 	    ipsendredirects && !srcrt && !next_hop) {
1800 #define	RTA(rt)	((struct in_ifaddr *)(rt->rt_ifa))
1801 		u_long src = ntohl(ip->ip_src.s_addr);
1802 
1803 		if (RTA(rt) &&
1804 		    (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
1805 		    if (rt->rt_flags & RTF_GATEWAY)
1806 			dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1807 		    else
1808 			dest = pkt_dst.s_addr;
1809 		    /* Router requirements says to only send host redirects */
1810 		    type = ICMP_REDIRECT;
1811 		    code = ICMP_REDIRECT_HOST;
1812 #ifdef DIAGNOSTIC
1813 		    if (ipprintfs)
1814 		        printf("redirect (%d) to %lx\n", code, (u_long)dest);
1815 #endif
1816 		}
1817 	}
1818 
1819     {
1820 	struct m_hdr tag;
1821 
1822 	if (next_hop) {
1823 		/* Pass IPFORWARD info if available */
1824 
1825 		tag.mh_type = MT_TAG;
1826 		tag.mh_flags = PACKET_TAG_IPFORWARD;
1827 		tag.mh_data = (caddr_t)next_hop;
1828 		tag.mh_next = m;
1829 		m = (struct mbuf *)&tag;
1830 	}
1831 	error = ip_output(m, (struct mbuf *)0, &ipforward_rt,
1832 			  IP_FORWARDING, 0, NULL);
1833     }
1834 	if (error)
1835 		ipstat.ips_cantforward++;
1836 	else {
1837 		ipstat.ips_forward++;
1838 		if (type)
1839 			ipstat.ips_redirectsent++;
1840 		else {
1841 			if (mcopy) {
1842 				ipflow_create(&ipforward_rt, mcopy);
1843 				m_freem(mcopy);
1844 			}
1845 			return;
1846 		}
1847 	}
1848 	if (mcopy == NULL)
1849 		return;
1850 	destifp = NULL;
1851 
1852 	switch (error) {
1853 
1854 	case 0:				/* forwarded, but need redirect */
1855 		/* type, code set above */
1856 		break;
1857 
1858 	case ENETUNREACH:		/* shouldn't happen, checked above */
1859 	case EHOSTUNREACH:
1860 	case ENETDOWN:
1861 	case EHOSTDOWN:
1862 	default:
1863 		type = ICMP_UNREACH;
1864 		code = ICMP_UNREACH_HOST;
1865 		break;
1866 
1867 	case EMSGSIZE:
1868 		type = ICMP_UNREACH;
1869 		code = ICMP_UNREACH_NEEDFRAG;
1870 #ifdef IPSEC
1871 		/*
1872 		 * If the packet is routed over IPsec tunnel, tell the
1873 		 * originator the tunnel MTU.
1874 		 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
1875 		 * XXX quickhack!!!
1876 		 */
1877 		if (ipforward_rt.ro_rt) {
1878 			struct secpolicy *sp = NULL;
1879 			int ipsecerror;
1880 			int ipsechdr;
1881 			struct route *ro;
1882 
1883 			sp = ipsec4_getpolicybyaddr(mcopy,
1884 						    IPSEC_DIR_OUTBOUND,
1885 			                            IP_FORWARDING,
1886 			                            &ipsecerror);
1887 
1888 			if (sp == NULL)
1889 				destifp = ipforward_rt.ro_rt->rt_ifp;
1890 			else {
1891 				/* count IPsec header size */
1892 				ipsechdr = ipsec4_hdrsiz(mcopy,
1893 							 IPSEC_DIR_OUTBOUND,
1894 							 NULL);
1895 
1896 				/*
1897 				 * find the correct route for outer IPv4
1898 				 * header, compute tunnel MTU.
1899 				 *
1900 				 * XXX BUG ALERT
1901 				 * The "dummyifp" code relies upon the fact
1902 				 * that icmp_error() touches only ifp->if_mtu.
1903 				 */
1904 				/*XXX*/
1905 				destifp = NULL;
1906 				if (sp->req != NULL
1907 				 && sp->req->sav != NULL
1908 				 && sp->req->sav->sah != NULL) {
1909 					ro = &sp->req->sav->sah->sa_route;
1910 					if (ro->ro_rt && ro->ro_rt->rt_ifp) {
1911 						dummyifp.if_mtu =
1912 						    ro->ro_rt->rt_ifp->if_mtu;
1913 						dummyifp.if_mtu -= ipsechdr;
1914 						destifp = &dummyifp;
1915 					}
1916 				}
1917 
1918 				key_freesp(sp);
1919 			}
1920 		}
1921 #elif FAST_IPSEC
1922 		/*
1923 		 * If the packet is routed over IPsec tunnel, tell the
1924 		 * originator the tunnel MTU.
1925 		 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
1926 		 * XXX quickhack!!!
1927 		 */
1928 		if (ipforward_rt.ro_rt) {
1929 			struct secpolicy *sp = NULL;
1930 			int ipsecerror;
1931 			int ipsechdr;
1932 			struct route *ro;
1933 
1934 			sp = ipsec_getpolicybyaddr(mcopy,
1935 						   IPSEC_DIR_OUTBOUND,
1936 			                           IP_FORWARDING,
1937 			                           &ipsecerror);
1938 
1939 			if (sp == NULL)
1940 				destifp = ipforward_rt.ro_rt->rt_ifp;
1941 			else {
1942 				/* count IPsec header size */
1943 				ipsechdr = ipsec4_hdrsiz(mcopy,
1944 							 IPSEC_DIR_OUTBOUND,
1945 							 NULL);
1946 
1947 				/*
1948 				 * find the correct route for outer IPv4
1949 				 * header, compute tunnel MTU.
1950 				 *
1951 				 * XXX BUG ALERT
1952 				 * The "dummyifp" code relies upon the fact
1953 				 * that icmp_error() touches only ifp->if_mtu.
1954 				 */
1955 				/*XXX*/
1956 				destifp = NULL;
1957 				if (sp->req != NULL
1958 				 && sp->req->sav != NULL
1959 				 && sp->req->sav->sah != NULL) {
1960 					ro = &sp->req->sav->sah->sa_route;
1961 					if (ro->ro_rt && ro->ro_rt->rt_ifp) {
1962 						dummyifp.if_mtu =
1963 						    ro->ro_rt->rt_ifp->if_mtu;
1964 						dummyifp.if_mtu -= ipsechdr;
1965 						destifp = &dummyifp;
1966 					}
1967 				}
1968 
1969 				KEY_FREESP(&sp);
1970 			}
1971 		}
1972 #else /* !IPSEC && !FAST_IPSEC */
1973 		if (ipforward_rt.ro_rt)
1974 			destifp = ipforward_rt.ro_rt->rt_ifp;
1975 #endif /*IPSEC*/
1976 		ipstat.ips_cantfrag++;
1977 		break;
1978 
1979 	case ENOBUFS:
1980 		/*
1981 		 * A router should not generate ICMP_SOURCEQUENCH as
1982 		 * required in RFC1812 Requirements for IP Version 4 Routers.
1983 		 * Source quench could be a big problem under DoS attacks,
1984 		 * or if the underlying interface is rate-limited.
1985 		 * Those who need source quench packets may re-enable them
1986 		 * via the net.inet.ip.sendsourcequench sysctl.
1987 		 */
1988 		if (ip_sendsourcequench == 0) {
1989 			m_freem(mcopy);
1990 			return;
1991 		} else {
1992 			type = ICMP_SOURCEQUENCH;
1993 			code = 0;
1994 		}
1995 		break;
1996 
1997 	case EACCES:			/* ipfw denied packet */
1998 		m_freem(mcopy);
1999 		return;
2000 	}
2001 	icmp_error(mcopy, type, code, dest, destifp);
2002 }
2003 
2004 void
2005 ip_savecontrol(inp, mp, ip, m)
2006 	register struct inpcb *inp;
2007 	register struct mbuf **mp;
2008 	register struct ip *ip;
2009 	register struct mbuf *m;
2010 {
2011 	if (inp->inp_socket->so_options & SO_TIMESTAMP) {
2012 		struct timeval tv;
2013 
2014 		microtime(&tv);
2015 		*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
2016 			SCM_TIMESTAMP, SOL_SOCKET);
2017 		if (*mp)
2018 			mp = &(*mp)->m_next;
2019 	}
2020 	if (inp->inp_flags & INP_RECVDSTADDR) {
2021 		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
2022 		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
2023 		if (*mp)
2024 			mp = &(*mp)->m_next;
2025 	}
2026 #ifdef notyet
2027 	/* XXX
2028 	 * Moving these out of udp_input() made them even more broken
2029 	 * than they already were.
2030 	 */
2031 	/* options were tossed already */
2032 	if (inp->inp_flags & INP_RECVOPTS) {
2033 		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
2034 		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
2035 		if (*mp)
2036 			mp = &(*mp)->m_next;
2037 	}
2038 	/* ip_srcroute doesn't do what we want here, need to fix */
2039 	if (inp->inp_flags & INP_RECVRETOPTS) {
2040 		*mp = sbcreatecontrol((caddr_t) ip_srcroute(),
2041 		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
2042 		if (*mp)
2043 			mp = &(*mp)->m_next;
2044 	}
2045 #endif
2046 	if (inp->inp_flags & INP_RECVIF) {
2047 		struct ifnet *ifp;
2048 		struct sdlbuf {
2049 			struct sockaddr_dl sdl;
2050 			u_char	pad[32];
2051 		} sdlbuf;
2052 		struct sockaddr_dl *sdp;
2053 		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
2054 
2055 		if (((ifp = m->m_pkthdr.rcvif))
2056 		&& ( ifp->if_index && (ifp->if_index <= if_index))) {
2057 			sdp = (struct sockaddr_dl *)
2058 			    (ifaddr_byindex(ifp->if_index)->ifa_addr);
2059 			/*
2060 			 * Change our mind and don't try copy.
2061 			 */
2062 			if ((sdp->sdl_family != AF_LINK)
2063 			|| (sdp->sdl_len > sizeof(sdlbuf))) {
2064 				goto makedummy;
2065 			}
2066 			bcopy(sdp, sdl2, sdp->sdl_len);
2067 		} else {
2068 makedummy:
2069 			sdl2->sdl_len
2070 				= offsetof(struct sockaddr_dl, sdl_data[0]);
2071 			sdl2->sdl_family = AF_LINK;
2072 			sdl2->sdl_index = 0;
2073 			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
2074 		}
2075 		*mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
2076 			IP_RECVIF, IPPROTO_IP);
2077 		if (*mp)
2078 			mp = &(*mp)->m_next;
2079 	}
2080 }
2081 
2082 /*
2083  * XXX these routines are called from the upper part of the kernel.
2084  * They need to be locked when we remove Giant.
2085  *
2086  * They could also be moved to ip_mroute.c, since all the RSVP
2087  *  handling is done there already.
2088  */
2089 static int ip_rsvp_on;
2090 struct socket *ip_rsvpd;
2091 int
2092 ip_rsvp_init(struct socket *so)
2093 {
2094 	if (so->so_type != SOCK_RAW ||
2095 	    so->so_proto->pr_protocol != IPPROTO_RSVP)
2096 		return EOPNOTSUPP;
2097 
2098 	if (ip_rsvpd != NULL)
2099 		return EADDRINUSE;
2100 
2101 	ip_rsvpd = so;
2102 	/*
2103 	 * This may seem silly, but we need to be sure we don't over-increment
2104 	 * the RSVP counter, in case something slips up.
2105 	 */
2106 	if (!ip_rsvp_on) {
2107 		ip_rsvp_on = 1;
2108 		rsvp_on++;
2109 	}
2110 
2111 	return 0;
2112 }
2113 
2114 int
2115 ip_rsvp_done(void)
2116 {
2117 	ip_rsvpd = NULL;
2118 	/*
2119 	 * This may seem silly, but we need to be sure we don't over-decrement
2120 	 * the RSVP counter, in case something slips up.
2121 	 */
2122 	if (ip_rsvp_on) {
2123 		ip_rsvp_on = 0;
2124 		rsvp_on--;
2125 	}
2126 	return 0;
2127 }
2128 
2129 void
2130 rsvp_input(struct mbuf *m, int off)	/* XXX must fixup manually */
2131 {
2132 	if (rsvp_input_p) { /* call the real one if loaded */
2133 		rsvp_input_p(m, off);
2134 		return;
2135 	}
2136 
2137 	/* Can still get packets with rsvp_on = 0 if there is a local member
2138 	 * of the group to which the RSVP packet is addressed.  But in this
2139 	 * case we want to throw the packet away.
2140 	 */
2141 
2142 	if (!rsvp_on) {
2143 		m_freem(m);
2144 		return;
2145 	}
2146 
2147 	if (ip_rsvpd != NULL) {
2148 		rip_input(m, off);
2149 		return;
2150 	}
2151 	/* Drop the packet */
2152 	m_freem(m);
2153 }
2154