xref: /freebsd/sys/netinet/ip_input.c (revision 5521ff5a4d1929056e7ffc982fac3341ca54df7c)
1 /*
2  * Copyright (c) 1982, 1986, 1988, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
34  * $FreeBSD$
35  */
36 
37 #define	_IP_VHL
38 
39 #include "opt_bootp.h"
40 #include "opt_ipfw.h"
41 #include "opt_ipdn.h"
42 #include "opt_ipdivert.h"
43 #include "opt_ipfilter.h"
44 #include "opt_ipstealth.h"
45 #include "opt_ipsec.h"
46 #include "opt_pfil_hooks.h"
47 #include "opt_random_ip_id.h"
48 
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/mbuf.h>
52 #include <sys/malloc.h>
53 #include <sys/domain.h>
54 #include <sys/protosw.h>
55 #include <sys/socket.h>
56 #include <sys/time.h>
57 #include <sys/kernel.h>
58 #include <sys/syslog.h>
59 #include <sys/sysctl.h>
60 
61 #include <net/pfil.h>
62 #include <net/if.h>
63 #include <net/if_var.h>
64 #include <net/if_dl.h>
65 #include <net/route.h>
66 #include <net/netisr.h>
67 #include <net/intrq.h>
68 
69 #include <netinet/in.h>
70 #include <netinet/in_systm.h>
71 #include <netinet/in_var.h>
72 #include <netinet/ip.h>
73 #include <netinet/in_pcb.h>
74 #include <netinet/ip_var.h>
75 #include <netinet/ip_icmp.h>
76 #include <machine/in_cksum.h>
77 
78 #include <netinet/ipprotosw.h>
79 
80 #include <sys/socketvar.h>
81 
82 #include <netinet/ip_fw.h>
83 
84 #ifdef IPSEC
85 #include <netinet6/ipsec.h>
86 #include <netkey/key.h>
87 #endif
88 
89 #include "faith.h"
90 #if defined(NFAITH) && NFAITH > 0
91 #include <net/if_types.h>
92 #endif
93 
94 #ifdef DUMMYNET
95 #include <netinet/ip_dummynet.h>
96 #endif
97 
98 int rsvp_on = 0;
99 static int ip_rsvp_on;
100 struct socket *ip_rsvpd;
101 
102 int	ipforwarding = 0;
103 SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
104     &ipforwarding, 0, "Enable IP forwarding between interfaces");
105 
106 static int	ipsendredirects = 1; /* XXX */
107 SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
108     &ipsendredirects, 0, "Enable sending IP redirects");
109 
110 int	ip_defttl = IPDEFTTL;
111 SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
112     &ip_defttl, 0, "Maximum TTL on IP packets");
113 
114 static int	ip_dosourceroute = 0;
115 SYSCTL_INT(_net_inet_ip, IPCTL_SOURCEROUTE, sourceroute, CTLFLAG_RW,
116     &ip_dosourceroute, 0, "Enable forwarding source routed IP packets");
117 
118 static int	ip_acceptsourceroute = 0;
119 SYSCTL_INT(_net_inet_ip, IPCTL_ACCEPTSOURCEROUTE, accept_sourceroute,
120     CTLFLAG_RW, &ip_acceptsourceroute, 0,
121     "Enable accepting source routed IP packets");
122 
123 static int	ip_keepfaith = 0;
124 SYSCTL_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
125 	&ip_keepfaith,	0,
126 	"Enable packet capture for FAITH IPv4->IPv6 translater daemon");
127 
128 static int	ip_nfragpackets = 0;
129 static int	ip_maxfragpackets;	/* initialized in ip_init() */
130 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragpackets, CTLFLAG_RW,
131 	&ip_maxfragpackets, 0,
132 	"Maximum number of IPv4 fragment reassembly queue entries");
133 
134 /*
135  * XXX - Setting ip_checkinterface mostly implements the receive side of
136  * the Strong ES model described in RFC 1122, but since the routing table
137  * and transmit implementation do not implement the Strong ES model,
138  * setting this to 1 results in an odd hybrid.
139  *
140  * XXX - ip_checkinterface currently must be disabled if you use ipnat
141  * to translate the destination address to another local interface.
142  *
143  * XXX - ip_checkinterface must be disabled if you add IP aliases
144  * to the loopback interface instead of the interface where the
145  * packets for those addresses are received.
146  */
147 static int	ip_checkinterface = 1;
148 SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
149     &ip_checkinterface, 0, "Verify packet arrives on correct interface");
150 
151 #ifdef DIAGNOSTIC
152 static int	ipprintfs = 0;
153 #endif
154 
155 extern	struct domain inetdomain;
156 extern	struct ipprotosw inetsw[];
157 u_char	ip_protox[IPPROTO_MAX];
158 static int	ipqmaxlen = IFQ_MAXLEN;
159 struct	in_ifaddrhead in_ifaddrhead; /* first inet address */
160 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen, CTLFLAG_RW,
161     &ipintrq.ifq_maxlen, 0, "Maximum size of the IP input queue");
162 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops, CTLFLAG_RD,
163     &ipintrq.ifq_drops, 0, "Number of packets dropped from the IP input queue");
164 
165 struct ipstat ipstat;
166 SYSCTL_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RW,
167     &ipstat, ipstat, "IP statistics (struct ipstat, netinet/ip_var.h)");
168 
169 /* Packet reassembly stuff */
170 #define IPREASS_NHASH_LOG2      6
171 #define IPREASS_NHASH           (1 << IPREASS_NHASH_LOG2)
172 #define IPREASS_HMASK           (IPREASS_NHASH - 1)
173 #define IPREASS_HASH(x,y) \
174 	(((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
175 
176 static TAILQ_HEAD(ipqhead, ipq) ipq[IPREASS_NHASH];
177 static int    nipq = 0;         /* total # of reass queues */
178 static int    maxnipq;
179 const  int    ipintrq_present = 1;
180 
181 #ifdef IPCTL_DEFMTU
182 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
183     &ip_mtu, 0, "Default MTU");
184 #endif
185 
186 #ifdef IPSTEALTH
187 static int	ipstealth = 0;
188 SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW,
189     &ipstealth, 0, "");
190 #endif
191 
192 
193 /* Firewall hooks */
194 ip_fw_chk_t *ip_fw_chk_ptr;
195 ip_fw_ctl_t *ip_fw_ctl_ptr;
196 int fw_enable = 1 ;
197 
198 #ifdef DUMMYNET
199 ip_dn_ctl_t *ip_dn_ctl_ptr;
200 #endif
201 
202 
203 /*
204  * We need to save the IP options in case a protocol wants to respond
205  * to an incoming packet over the same route if the packet got here
206  * using IP source routing.  This allows connection establishment and
207  * maintenance when the remote end is on a network that is not known
208  * to us.
209  */
210 static int	ip_nhops = 0;
211 static	struct ip_srcrt {
212 	struct	in_addr dst;			/* final destination */
213 	char	nop;				/* one NOP to align */
214 	char	srcopt[IPOPT_OFFSET + 1];	/* OPTVAL, OLEN and OFFSET */
215 	struct	in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
216 } ip_srcrt;
217 
218 struct sockaddr_in *ip_fw_fwd_addr;
219 
220 static void	save_rte __P((u_char *, struct in_addr));
221 static int	ip_dooptions __P((struct mbuf *));
222 static void	ip_forward __P((struct mbuf *, int));
223 static void	ip_freef __P((struct ipqhead *, struct ipq *));
224 #ifdef IPDIVERT
225 static struct	mbuf *ip_reass __P((struct mbuf *, struct ipqhead *, struct ipq *, u_int32_t *, u_int16_t *));
226 #else
227 static struct	mbuf *ip_reass __P((struct mbuf *, struct ipqhead *, struct ipq *));
228 #endif
229 static struct	in_ifaddr *ip_rtaddr __P((struct in_addr));
230 static void	ipintr __P((void));
231 
232 /*
233  * IP initialization: fill in IP protocol switch table.
234  * All protocols not implemented in kernel go to raw IP protocol handler.
235  */
236 void
237 ip_init()
238 {
239 	register struct ipprotosw *pr;
240 	register int i;
241 
242 	TAILQ_INIT(&in_ifaddrhead);
243 	pr = (struct ipprotosw *)pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
244 	if (pr == 0)
245 		panic("ip_init");
246 	for (i = 0; i < IPPROTO_MAX; i++)
247 		ip_protox[i] = pr - inetsw;
248 	for (pr = (struct ipprotosw *)inetdomain.dom_protosw;
249 	    pr < (struct ipprotosw *)inetdomain.dom_protoswNPROTOSW; pr++)
250 		if (pr->pr_domain->dom_family == PF_INET &&
251 		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
252 			ip_protox[pr->pr_protocol] = pr - inetsw;
253 
254 	for (i = 0; i < IPREASS_NHASH; i++)
255 	    TAILQ_INIT(&ipq[i]);
256 
257 	maxnipq = nmbclusters / 4;
258 	ip_maxfragpackets = nmbclusters / 4;
259 
260 #ifndef RANDOM_IP_ID
261 	ip_id = time_second & 0xffff;
262 #endif
263 	ipintrq.ifq_maxlen = ipqmaxlen;
264 	mtx_init(&ipintrq.ifq_mtx, "ip_inq", MTX_DEF);
265 
266 	register_netisr(NETISR_IP, ipintr);
267 }
268 
269 static struct	sockaddr_in ipaddr = { sizeof(ipaddr), AF_INET };
270 struct	route ipforward_rt;
271 
272 /*
273  * Ip input routine.  Checksum and byte swap header.  If fragmented
274  * try to reassemble.  Process options.  Pass to next level.
275  */
276 void
277 ip_input(struct mbuf *m)
278 {
279 	struct ip *ip;
280 	struct ipq *fp;
281 	struct in_ifaddr *ia = NULL;
282 	int    i, hlen, checkif;
283 	u_short sum;
284 	u_int16_t divert_cookie;		/* firewall cookie */
285 	struct in_addr pkt_dst;
286 #ifdef IPDIVERT
287 	u_int32_t divert_info = 0;		/* packet divert/tee info */
288 #endif
289 	struct ip_fw_chain *rule = NULL;
290 #ifdef PFIL_HOOKS
291 	struct packet_filter_hook *pfh;
292 	struct mbuf *m0;
293 	int rv;
294 #endif /* PFIL_HOOKS */
295 
296 #ifdef IPDIVERT
297 	/* Get and reset firewall cookie */
298 	divert_cookie = ip_divert_cookie;
299 	ip_divert_cookie = 0;
300 #else
301 	divert_cookie = 0;
302 #endif
303 
304 #if defined(IPFIREWALL) && defined(DUMMYNET)
305         /*
306          * dummynet packet are prepended a vestigial mbuf with
307          * m_type = MT_DUMMYNET and m_data pointing to the matching
308          * rule.
309          */
310         if (m->m_type == MT_DUMMYNET) {
311             rule = (struct ip_fw_chain *)(m->m_data) ;
312             m = m->m_next ;
313             ip = mtod(m, struct ip *);
314             hlen = IP_VHL_HL(ip->ip_vhl) << 2;
315             goto iphack ;
316         } else
317             rule = NULL ;
318 #endif
319 
320 #ifdef	DIAGNOSTIC
321 	if (m == NULL || (m->m_flags & M_PKTHDR) == 0)
322 		panic("ip_input no HDR");
323 #endif
324 	ipstat.ips_total++;
325 
326 	if (m->m_pkthdr.len < sizeof(struct ip))
327 		goto tooshort;
328 
329 	if (m->m_len < sizeof (struct ip) &&
330 	    (m = m_pullup(m, sizeof (struct ip))) == 0) {
331 		ipstat.ips_toosmall++;
332 		return;
333 	}
334 	ip = mtod(m, struct ip *);
335 
336 	if (IP_VHL_V(ip->ip_vhl) != IPVERSION) {
337 		ipstat.ips_badvers++;
338 		goto bad;
339 	}
340 
341 	hlen = IP_VHL_HL(ip->ip_vhl) << 2;
342 	if (hlen < sizeof(struct ip)) {	/* minimum header length */
343 		ipstat.ips_badhlen++;
344 		goto bad;
345 	}
346 	if (hlen > m->m_len) {
347 		if ((m = m_pullup(m, hlen)) == 0) {
348 			ipstat.ips_badhlen++;
349 			return;
350 		}
351 		ip = mtod(m, struct ip *);
352 	}
353 
354 	/* 127/8 must not appear on wire - RFC1122 */
355 	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
356 	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
357 		if ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) {
358 			ipstat.ips_badaddr++;
359 			goto bad;
360 		}
361 	}
362 
363 	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
364 		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
365 	} else {
366 		if (hlen == sizeof(struct ip)) {
367 			sum = in_cksum_hdr(ip);
368 		} else {
369 			sum = in_cksum(m, hlen);
370 		}
371 	}
372 	if (sum) {
373 		ipstat.ips_badsum++;
374 		goto bad;
375 	}
376 
377 	/*
378 	 * Convert fields to host representation.
379 	 */
380 	NTOHS(ip->ip_len);
381 	if (ip->ip_len < hlen) {
382 		ipstat.ips_badlen++;
383 		goto bad;
384 	}
385 	NTOHS(ip->ip_off);
386 
387 	/*
388 	 * Check that the amount of data in the buffers
389 	 * is as at least much as the IP header would have us expect.
390 	 * Trim mbufs if longer than we expect.
391 	 * Drop packet if shorter than we expect.
392 	 */
393 	if (m->m_pkthdr.len < ip->ip_len) {
394 tooshort:
395 		ipstat.ips_tooshort++;
396 		goto bad;
397 	}
398 	if (m->m_pkthdr.len > ip->ip_len) {
399 		if (m->m_len == m->m_pkthdr.len) {
400 			m->m_len = ip->ip_len;
401 			m->m_pkthdr.len = ip->ip_len;
402 		} else
403 			m_adj(m, ip->ip_len - m->m_pkthdr.len);
404 	}
405 
406 #ifdef IPSEC
407 	if (ipsec_gethist(m, NULL))
408 		goto pass;
409 #endif
410 
411 	/*
412 	 * IpHack's section.
413 	 * Right now when no processing on packet has done
414 	 * and it is still fresh out of network we do our black
415 	 * deals with it.
416 	 * - Firewall: deny/allow/divert
417 	 * - Xlate: translate packet's addr/port (NAT).
418 	 * - Pipe: pass pkt through dummynet.
419 	 * - Wrap: fake packet's addr/port <unimpl.>
420 	 * - Encapsulate: put it in another IP and send out. <unimp.>
421  	 */
422 
423 #if defined(IPFIREWALL) && defined(DUMMYNET)
424 iphack:
425 #endif
426 
427 #ifdef PFIL_HOOKS
428 	/*
429 	 * Run through list of hooks for input packets.  If there are any
430 	 * filters which require that additional packets in the flow are
431 	 * not fast-forwarded, they must clear the M_CANFASTFWD flag.
432 	 * Note that filters must _never_ set this flag, as another filter
433 	 * in the list may have previously cleared it.
434 	 */
435 	m0 = m;
436 	pfh = pfil_hook_get(PFIL_IN, &inetsw[ip_protox[IPPROTO_IP]].pr_pfh);
437 	for (; pfh; pfh = TAILQ_NEXT(pfh, pfil_link))
438 		if (pfh->pfil_func) {
439 			rv = pfh->pfil_func(ip, hlen,
440 					    m->m_pkthdr.rcvif, 0, &m0);
441 			if (rv)
442 				return;
443 			m = m0;
444 			if (m == NULL)
445 				return;
446 			ip = mtod(m, struct ip *);
447 		}
448 #endif /* PFIL_HOOKS */
449 
450 	if (fw_enable && ip_fw_chk_ptr) {
451 #ifdef IPFIREWALL_FORWARD
452 		/*
453 		 * If we've been forwarded from the output side, then
454 		 * skip the firewall a second time
455 		 */
456 		if (ip_fw_fwd_addr)
457 			goto ours;
458 #endif	/* IPFIREWALL_FORWARD */
459 		/*
460 		 * See the comment in ip_output for the return values
461 		 * produced by the firewall.
462 		 */
463 		i = (*ip_fw_chk_ptr)(&ip,
464 		    hlen, NULL, &divert_cookie, &m, &rule, &ip_fw_fwd_addr);
465 		if (i & IP_FW_PORT_DENY_FLAG) { /* XXX new interface-denied */
466 		    if (m)
467 			m_freem(m);
468 		    return ;
469 		}
470 		if (m == NULL) {	/* Packet discarded by firewall */
471 		    static int __debug=10;
472 		    if (__debug >0) {
473 			printf("firewall returns NULL, please update!\n");
474 			__debug-- ;
475 		    }
476 		    return;
477 		}
478 		if (i == 0 && ip_fw_fwd_addr == NULL)	/* common case */
479 			goto pass;
480 #ifdef DUMMYNET
481                 if ((i & IP_FW_PORT_DYNT_FLAG) != 0) {
482                         /* Send packet to the appropriate pipe */
483                         dummynet_io(i&0xffff,DN_TO_IP_IN,m,NULL,NULL,0, rule,
484 				    0);
485 			return;
486 		}
487 #endif
488 #ifdef IPDIVERT
489 		if (i != 0 && (i & IP_FW_PORT_DYNT_FLAG) == 0) {
490 			/* Divert or tee packet */
491 			divert_info = i;
492 			goto ours;
493 		}
494 #endif
495 #ifdef IPFIREWALL_FORWARD
496 		if (i == 0 && ip_fw_fwd_addr != NULL)
497 			goto pass;
498 #endif
499 		/*
500 		 * if we get here, the packet must be dropped
501 		 */
502 		m_freem(m);
503 		return;
504 	}
505 pass:
506 
507 	/*
508 	 * Process options and, if not destined for us,
509 	 * ship it on.  ip_dooptions returns 1 when an
510 	 * error was detected (causing an icmp message
511 	 * to be sent and the original packet to be freed).
512 	 */
513 	ip_nhops = 0;		/* for source routed packets */
514 	if (hlen > sizeof (struct ip) && ip_dooptions(m)) {
515 #ifdef IPFIREWALL_FORWARD
516 		ip_fw_fwd_addr = NULL;
517 #endif
518 		return;
519 	}
520 
521         /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
522          * matter if it is destined to another node, or whether it is
523          * a multicast one, RSVP wants it! and prevents it from being forwarded
524          * anywhere else. Also checks if the rsvp daemon is running before
525 	 * grabbing the packet.
526          */
527 	if (rsvp_on && ip->ip_p==IPPROTO_RSVP)
528 		goto ours;
529 
530 	/*
531 	 * Check our list of addresses, to see if the packet is for us.
532 	 * If we don't have any addresses, assume any unicast packet
533 	 * we receive might be for us (and let the upper layers deal
534 	 * with it).
535 	 */
536 	if (TAILQ_EMPTY(&in_ifaddrhead) &&
537 	    (m->m_flags & (M_MCAST|M_BCAST)) == 0)
538 		goto ours;
539 
540 	/*
541 	 * Cache the destination address of the packet; this may be
542 	 * changed by use of 'ipfw fwd'.
543 	 */
544 	pkt_dst = ip_fw_fwd_addr == NULL ?
545 	    ip->ip_dst : ip_fw_fwd_addr->sin_addr;
546 
547 	/*
548 	 * Enable a consistency check between the destination address
549 	 * and the arrival interface for a unicast packet (the RFC 1122
550 	 * strong ES model) if IP forwarding is disabled and the packet
551 	 * is not locally generated and the packet is not subject to
552 	 * 'ipfw fwd'.
553 	 *
554          * XXX - Checking also should be disabled if the destination
555 	 * address is ipnat'ed to a different interface.
556 	 *
557 	 * XXX - Checking is incompatible with IP aliases added
558 	 * to the loopback interface instead of the interface where
559 	 * the packets are received.
560 	 */
561 	checkif = ip_checkinterface && (ipforwarding == 0) &&
562 	    ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) &&
563 	    (ip_fw_fwd_addr == NULL);
564 
565 	TAILQ_FOREACH(ia, &in_ifaddrhead, ia_link) {
566 #define	satosin(sa)	((struct sockaddr_in *)(sa))
567 
568 #ifdef BOOTP_COMPAT
569 		if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY)
570 			goto ours;
571 #endif
572 		/*
573 		 * If the address matches, verify that the packet
574 		 * arrived via the correct interface if checking is
575 		 * enabled.
576 		 */
577 		if (IA_SIN(ia)->sin_addr.s_addr == pkt_dst.s_addr &&
578 		    (!checkif || ia->ia_ifp == m->m_pkthdr.rcvif))
579 			goto ours;
580 		/*
581 		 * Only accept broadcast packets that arrive via the
582 		 * matching interface.  Reception of forwarded directed
583 		 * broadcasts would be handled via ip_forward() and
584 		 * ether_output() with the loopback into the stack for
585 		 * SIMPLEX interfaces handled by ether_output().
586 		 */
587 		if (ia->ia_ifp == m->m_pkthdr.rcvif &&
588 		    ia->ia_ifp && ia->ia_ifp->if_flags & IFF_BROADCAST) {
589 			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
590 			    pkt_dst.s_addr)
591 				goto ours;
592 			if (ia->ia_netbroadcast.s_addr == pkt_dst.s_addr)
593 				goto ours;
594 		}
595 	}
596 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
597 		struct in_multi *inm;
598 		if (ip_mrouter) {
599 			/*
600 			 * If we are acting as a multicast router, all
601 			 * incoming multicast packets are passed to the
602 			 * kernel-level multicast forwarding function.
603 			 * The packet is returned (relatively) intact; if
604 			 * ip_mforward() returns a non-zero value, the packet
605 			 * must be discarded, else it may be accepted below.
606 			 */
607 			if (ip_mforward(ip, m->m_pkthdr.rcvif, m, 0) != 0) {
608 				ipstat.ips_cantforward++;
609 				m_freem(m);
610 				return;
611 			}
612 
613 			/*
614 			 * The process-level routing demon needs to receive
615 			 * all multicast IGMP packets, whether or not this
616 			 * host belongs to their destination groups.
617 			 */
618 			if (ip->ip_p == IPPROTO_IGMP)
619 				goto ours;
620 			ipstat.ips_forward++;
621 		}
622 		/*
623 		 * See if we belong to the destination multicast group on the
624 		 * arrival interface.
625 		 */
626 		IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
627 		if (inm == NULL) {
628 			ipstat.ips_notmember++;
629 			m_freem(m);
630 			return;
631 		}
632 		goto ours;
633 	}
634 	if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
635 		goto ours;
636 	if (ip->ip_dst.s_addr == INADDR_ANY)
637 		goto ours;
638 
639 #if defined(NFAITH) && 0 < NFAITH
640 	/*
641 	 * FAITH(Firewall Aided Internet Translator)
642 	 */
643 	if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
644 		if (ip_keepfaith) {
645 			if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
646 				goto ours;
647 		}
648 		m_freem(m);
649 		return;
650 	}
651 #endif
652 	/*
653 	 * Not for us; forward if possible and desirable.
654 	 */
655 	if (ipforwarding == 0) {
656 		ipstat.ips_cantforward++;
657 		m_freem(m);
658 	} else
659 		ip_forward(m, 0);
660 #ifdef IPFIREWALL_FORWARD
661 	ip_fw_fwd_addr = NULL;
662 #endif
663 	return;
664 
665 ours:
666 	/* Count the packet in the ip address stats */
667 	if (ia != NULL) {
668 		ia->ia_ifa.if_ipackets++;
669 		ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
670 	}
671 
672 	/*
673 	 * If offset or IP_MF are set, must reassemble.
674 	 * Otherwise, nothing need be done.
675 	 * (We could look in the reassembly queue to see
676 	 * if the packet was previously fragmented,
677 	 * but it's not worth the time; just let them time out.)
678 	 */
679 	if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
680 
681 		sum = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
682 		/*
683 		 * Look for queue of fragments
684 		 * of this datagram.
685 		 */
686 		TAILQ_FOREACH(fp, &ipq[sum], ipq_list)
687 			if (ip->ip_id == fp->ipq_id &&
688 			    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
689 			    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
690 			    ip->ip_p == fp->ipq_p)
691 				goto found;
692 
693 		fp = 0;
694 
695 		/* check if there's a place for the new queue */
696 		if (nipq > maxnipq) {
697 		    /*
698 		     * drop something from the tail of the current queue
699 		     * before proceeding further
700 		     */
701 		    struct ipq *q = TAILQ_LAST(&ipq[sum], ipqhead);
702 		    if (q == NULL) {   /* gak */
703 			for (i = 0; i < IPREASS_NHASH; i++) {
704 			    struct ipq *r = TAILQ_LAST(&ipq[i], ipqhead);
705 			    if (r) {
706 				ip_freef(&ipq[i], r);
707 				break;
708 			    }
709 			}
710 		    } else
711 			ip_freef(&ipq[sum], q);
712 		}
713 found:
714 		/*
715 		 * Adjust ip_len to not reflect header,
716 		 * convert offset of this to bytes.
717 		 */
718 		ip->ip_len -= hlen;
719 		if (ip->ip_off & IP_MF) {
720 		        /*
721 		         * Make sure that fragments have a data length
722 			 * that's a non-zero multiple of 8 bytes.
723 		         */
724 			if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
725 				ipstat.ips_toosmall++; /* XXX */
726 				goto bad;
727 			}
728 			m->m_flags |= M_FRAG;
729 		}
730 		ip->ip_off <<= 3;
731 
732 		/*
733 		 * Attempt reassembly; if it succeeds, proceed.
734 		 */
735 		ipstat.ips_fragments++;
736 		m->m_pkthdr.header = ip;
737 #ifdef IPDIVERT
738 		m = ip_reass(m,
739 		    &ipq[sum], fp, &divert_info, &divert_cookie);
740 #else
741 		m = ip_reass(m, &ipq[sum], fp);
742 #endif
743 		if (m == 0) {
744 #ifdef IPFIREWALL_FORWARD
745 			ip_fw_fwd_addr = NULL;
746 #endif
747 			return;
748 		}
749 		ipstat.ips_reassembled++;
750 		ip = mtod(m, struct ip *);
751 		/* Get the header length of the reassembled packet */
752 		hlen = IP_VHL_HL(ip->ip_vhl) << 2;
753 #ifdef IPDIVERT
754 		/* Restore original checksum before diverting packet */
755 		if (divert_info != 0) {
756 			ip->ip_len += hlen;
757 			HTONS(ip->ip_len);
758 			HTONS(ip->ip_off);
759 			ip->ip_sum = 0;
760 			if (hlen == sizeof(struct ip))
761 				ip->ip_sum = in_cksum_hdr(ip);
762 			else
763 				ip->ip_sum = in_cksum(m, hlen);
764 			NTOHS(ip->ip_off);
765 			NTOHS(ip->ip_len);
766 			ip->ip_len -= hlen;
767 		}
768 #endif
769 	} else
770 		ip->ip_len -= hlen;
771 
772 #ifdef IPDIVERT
773 	/*
774 	 * Divert or tee packet to the divert protocol if required.
775 	 *
776 	 * If divert_info is zero then cookie should be too, so we shouldn't
777 	 * need to clear them here.  Assume divert_packet() does so also.
778 	 */
779 	if (divert_info != 0) {
780 		struct mbuf *clone = NULL;
781 
782 		/* Clone packet if we're doing a 'tee' */
783 		if ((divert_info & IP_FW_PORT_TEE_FLAG) != 0)
784 			clone = m_dup(m, M_DONTWAIT);
785 
786 		/* Restore packet header fields to original values */
787 		ip->ip_len += hlen;
788 		HTONS(ip->ip_len);
789 		HTONS(ip->ip_off);
790 
791 		/* Deliver packet to divert input routine */
792 		ip_divert_cookie = divert_cookie;
793 		divert_packet(m, 1, divert_info & 0xffff);
794 		ipstat.ips_delivered++;
795 
796 		/* If 'tee', continue with original packet */
797 		if (clone == NULL)
798 			return;
799 		m = clone;
800 		ip = mtod(m, struct ip *);
801 	}
802 #endif
803 
804 #ifdef IPSEC
805 	/*
806 	 * enforce IPsec policy checking if we are seeing last header.
807 	 * note that we do not visit this with protocols with pcb layer
808 	 * code - like udp/tcp/raw ip.
809 	 */
810 	if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0 &&
811 	    ipsec4_in_reject(m, NULL)) {
812 		ipsecstat.in_polvio++;
813 		goto bad;
814 	}
815 #endif
816 
817 	/*
818 	 * Switch out to protocol's input routine.
819 	 */
820 	ipstat.ips_delivered++;
821     {
822 	int off = hlen, nh = ip->ip_p;
823 
824 	(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, off, nh);
825 #ifdef	IPFIREWALL_FORWARD
826 	ip_fw_fwd_addr = NULL;	/* tcp needed it */
827 #endif
828 	return;
829     }
830 bad:
831 #ifdef	IPFIREWALL_FORWARD
832 	ip_fw_fwd_addr = NULL;
833 #endif
834 	m_freem(m);
835 }
836 
837 /*
838  * IP software interrupt routine - to go away sometime soon
839  */
840 static void
841 ipintr(void)
842 {
843 	struct mbuf *m;
844 
845 	while (1) {
846 		IF_DEQUEUE(&ipintrq, m);
847 		if (m == 0)
848 			return;
849 		ip_input(m);
850 	}
851 }
852 
853 /*
854  * Take incoming datagram fragment and try to reassemble it into
855  * whole datagram.  If a chain for reassembly of this datagram already
856  * exists, then it is given as fp; otherwise have to make a chain.
857  *
858  * When IPDIVERT enabled, keep additional state with each packet that
859  * tells us if we need to divert or tee the packet we're building.
860  */
861 
862 static struct mbuf *
863 #ifdef IPDIVERT
864 ip_reass(m, head, fp, divinfo, divcookie)
865 #else
866 ip_reass(m, head, fp)
867 #endif
868 	struct mbuf *m;
869 	struct ipqhead *head;
870 	struct ipq *fp;
871 #ifdef IPDIVERT
872 	u_int32_t *divinfo;
873 	u_int16_t *divcookie;
874 #endif
875 {
876 	struct ip *ip = mtod(m, struct ip *);
877 	register struct mbuf *p, *q, *nq;
878 	struct mbuf *t;
879 	int hlen = IP_VHL_HL(ip->ip_vhl) << 2;
880 	int i, next;
881 
882 	/*
883 	 * Presence of header sizes in mbufs
884 	 * would confuse code below.
885 	 */
886 	m->m_data += hlen;
887 	m->m_len -= hlen;
888 
889 	/*
890 	 * If first fragment to arrive, create a reassembly queue.
891 	 */
892 	if (fp == 0) {
893 		/*
894 		 * Enforce upper bound on number of fragmented packets
895 		 * for which we attempt reassembly;
896 		 * If maxfrag is 0, never accept fragments.
897 		 * If maxfrag is -1, accept all fragments without limitation.
898 		 */
899 		if ((ip_maxfragpackets >= 0) && (ip_nfragpackets >= ip_maxfragpackets))
900 			goto dropfrag;
901 		ip_nfragpackets++;
902 		if ((t = m_get(M_DONTWAIT, MT_FTABLE)) == NULL)
903 			goto dropfrag;
904 		fp = mtod(t, struct ipq *);
905 		TAILQ_INSERT_HEAD(head, fp, ipq_list);
906 		nipq++;
907 		fp->ipq_ttl = IPFRAGTTL;
908 		fp->ipq_p = ip->ip_p;
909 		fp->ipq_id = ip->ip_id;
910 		fp->ipq_src = ip->ip_src;
911 		fp->ipq_dst = ip->ip_dst;
912 		fp->ipq_frags = m;
913 		m->m_nextpkt = NULL;
914 #ifdef IPDIVERT
915 		fp->ipq_div_info = 0;
916 		fp->ipq_div_cookie = 0;
917 #endif
918 		goto inserted;
919 	}
920 
921 #define GETIP(m)	((struct ip*)((m)->m_pkthdr.header))
922 
923 	/*
924 	 * Find a segment which begins after this one does.
925 	 */
926 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
927 		if (GETIP(q)->ip_off > ip->ip_off)
928 			break;
929 
930 	/*
931 	 * If there is a preceding segment, it may provide some of
932 	 * our data already.  If so, drop the data from the incoming
933 	 * segment.  If it provides all of our data, drop us, otherwise
934 	 * stick new segment in the proper place.
935 	 *
936 	 * If some of the data is dropped from the the preceding
937 	 * segment, then it's checksum is invalidated.
938 	 */
939 	if (p) {
940 		i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
941 		if (i > 0) {
942 			if (i >= ip->ip_len)
943 				goto dropfrag;
944 			m_adj(m, i);
945 			m->m_pkthdr.csum_flags = 0;
946 			ip->ip_off += i;
947 			ip->ip_len -= i;
948 		}
949 		m->m_nextpkt = p->m_nextpkt;
950 		p->m_nextpkt = m;
951 	} else {
952 		m->m_nextpkt = fp->ipq_frags;
953 		fp->ipq_frags = m;
954 	}
955 
956 	/*
957 	 * While we overlap succeeding segments trim them or,
958 	 * if they are completely covered, dequeue them.
959 	 */
960 	for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
961 	     q = nq) {
962 		i = (ip->ip_off + ip->ip_len) -
963 		    GETIP(q)->ip_off;
964 		if (i < GETIP(q)->ip_len) {
965 			GETIP(q)->ip_len -= i;
966 			GETIP(q)->ip_off += i;
967 			m_adj(q, i);
968 			q->m_pkthdr.csum_flags = 0;
969 			break;
970 		}
971 		nq = q->m_nextpkt;
972 		m->m_nextpkt = nq;
973 		m_freem(q);
974 	}
975 
976 inserted:
977 
978 #ifdef IPDIVERT
979 	/*
980 	 * Transfer firewall instructions to the fragment structure.
981 	 * Any fragment diverting causes the whole packet to divert.
982 	 */
983 	fp->ipq_div_info = *divinfo;
984 	fp->ipq_div_cookie = *divcookie;
985 	*divinfo = 0;
986 	*divcookie = 0;
987 #endif
988 
989 	/*
990 	 * Check for complete reassembly.
991 	 */
992 	next = 0;
993 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
994 		if (GETIP(q)->ip_off != next)
995 			return (0);
996 		next += GETIP(q)->ip_len;
997 	}
998 	/* Make sure the last packet didn't have the IP_MF flag */
999 	if (p->m_flags & M_FRAG)
1000 		return (0);
1001 
1002 	/*
1003 	 * Reassembly is complete.  Make sure the packet is a sane size.
1004 	 */
1005 	q = fp->ipq_frags;
1006 	ip = GETIP(q);
1007 	if (next + (IP_VHL_HL(ip->ip_vhl) << 2) > IP_MAXPACKET) {
1008 		ipstat.ips_toolong++;
1009 		ip_freef(head, fp);
1010 		return (0);
1011 	}
1012 
1013 	/*
1014 	 * Concatenate fragments.
1015 	 */
1016 	m = q;
1017 	t = m->m_next;
1018 	m->m_next = 0;
1019 	m_cat(m, t);
1020 	nq = q->m_nextpkt;
1021 	q->m_nextpkt = 0;
1022 	for (q = nq; q != NULL; q = nq) {
1023 		nq = q->m_nextpkt;
1024 		q->m_nextpkt = NULL;
1025 		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1026 		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1027 		m_cat(m, q);
1028 	}
1029 
1030 #ifdef IPDIVERT
1031 	/*
1032 	 * Extract firewall instructions from the fragment structure.
1033 	 */
1034 	*divinfo = fp->ipq_div_info;
1035 	*divcookie = fp->ipq_div_cookie;
1036 #endif
1037 
1038 	/*
1039 	 * Create header for new ip packet by
1040 	 * modifying header of first packet;
1041 	 * dequeue and discard fragment reassembly header.
1042 	 * Make header visible.
1043 	 */
1044 	ip->ip_len = next;
1045 	ip->ip_src = fp->ipq_src;
1046 	ip->ip_dst = fp->ipq_dst;
1047 	TAILQ_REMOVE(head, fp, ipq_list);
1048 	nipq--;
1049 	(void) m_free(dtom(fp));
1050 	ip_nfragpackets--;
1051 	m->m_len += (IP_VHL_HL(ip->ip_vhl) << 2);
1052 	m->m_data -= (IP_VHL_HL(ip->ip_vhl) << 2);
1053 	/* some debugging cruft by sklower, below, will go away soon */
1054 	if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
1055 		register int plen = 0;
1056 		for (t = m; t; t = t->m_next)
1057 			plen += t->m_len;
1058 		m->m_pkthdr.len = plen;
1059 	}
1060 	return (m);
1061 
1062 dropfrag:
1063 #ifdef IPDIVERT
1064 	*divinfo = 0;
1065 	*divcookie = 0;
1066 #endif
1067 	ipstat.ips_fragdropped++;
1068 	m_freem(m);
1069 	return (0);
1070 
1071 #undef GETIP
1072 }
1073 
1074 /*
1075  * Free a fragment reassembly header and all
1076  * associated datagrams.
1077  */
1078 static void
1079 ip_freef(fhp, fp)
1080 	struct ipqhead *fhp;
1081 	struct ipq *fp;
1082 {
1083 	register struct mbuf *q;
1084 
1085 	while (fp->ipq_frags) {
1086 		q = fp->ipq_frags;
1087 		fp->ipq_frags = q->m_nextpkt;
1088 		m_freem(q);
1089 	}
1090 	TAILQ_REMOVE(fhp, fp, ipq_list);
1091 	(void) m_free(dtom(fp));
1092 	ip_nfragpackets--;
1093 	nipq--;
1094 }
1095 
1096 /*
1097  * IP timer processing;
1098  * if a timer expires on a reassembly
1099  * queue, discard it.
1100  */
1101 void
1102 ip_slowtimo()
1103 {
1104 	register struct ipq *fp;
1105 	int s = splnet();
1106 	int i;
1107 
1108 	for (i = 0; i < IPREASS_NHASH; i++) {
1109 		for(fp = TAILQ_FIRST(&ipq[i]); fp;) {
1110 			struct ipq *fpp;
1111 
1112 			fpp = fp;
1113 			fp = TAILQ_NEXT(fp, ipq_list);
1114 			if(--fpp->ipq_ttl == 0) {
1115 				ipstat.ips_fragtimeout++;
1116 				ip_freef(&ipq[i], fpp);
1117 			}
1118 		}
1119 	}
1120 	/*
1121 	 * If we are over the maximum number of fragments
1122 	 * (due to the limit being lowered), drain off
1123 	 * enough to get down to the new limit.
1124 	 */
1125 	for (i = 0; i < IPREASS_NHASH; i++) {
1126 		if (ip_maxfragpackets >= 0) {
1127 			while (ip_nfragpackets > ip_maxfragpackets &&
1128 				!TAILQ_EMPTY(&ipq[i])) {
1129 				ipstat.ips_fragdropped++;
1130 				ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i]));
1131 			}
1132 		}
1133 	}
1134 	ipflow_slowtimo();
1135 	splx(s);
1136 }
1137 
1138 /*
1139  * Drain off all datagram fragments.
1140  */
1141 void
1142 ip_drain()
1143 {
1144 	int     i;
1145 
1146 	for (i = 0; i < IPREASS_NHASH; i++) {
1147 		while(!TAILQ_EMPTY(&ipq[i])) {
1148 			ipstat.ips_fragdropped++;
1149 			ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i]));
1150 		}
1151 	}
1152 	in_rtqdrain();
1153 }
1154 
1155 /*
1156  * Do option processing on a datagram,
1157  * possibly discarding it if bad options are encountered,
1158  * or forwarding it if source-routed.
1159  * Returns 1 if packet has been forwarded/freed,
1160  * 0 if the packet should be processed further.
1161  */
1162 static int
1163 ip_dooptions(m)
1164 	struct mbuf *m;
1165 {
1166 	register struct ip *ip = mtod(m, struct ip *);
1167 	register u_char *cp;
1168 	register struct ip_timestamp *ipt;
1169 	register struct in_ifaddr *ia;
1170 	int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
1171 	struct in_addr *sin, dst;
1172 	n_time ntime;
1173 
1174 	dst = ip->ip_dst;
1175 	cp = (u_char *)(ip + 1);
1176 	cnt = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof (struct ip);
1177 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1178 		opt = cp[IPOPT_OPTVAL];
1179 		if (opt == IPOPT_EOL)
1180 			break;
1181 		if (opt == IPOPT_NOP)
1182 			optlen = 1;
1183 		else {
1184 			if (cnt < IPOPT_OLEN + sizeof(*cp)) {
1185 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1186 				goto bad;
1187 			}
1188 			optlen = cp[IPOPT_OLEN];
1189 			if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
1190 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1191 				goto bad;
1192 			}
1193 		}
1194 		switch (opt) {
1195 
1196 		default:
1197 			break;
1198 
1199 		/*
1200 		 * Source routing with record.
1201 		 * Find interface with current destination address.
1202 		 * If none on this machine then drop if strictly routed,
1203 		 * or do nothing if loosely routed.
1204 		 * Record interface address and bring up next address
1205 		 * component.  If strictly routed make sure next
1206 		 * address is on directly accessible net.
1207 		 */
1208 		case IPOPT_LSRR:
1209 		case IPOPT_SSRR:
1210 			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1211 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1212 				goto bad;
1213 			}
1214 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1215 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1216 				goto bad;
1217 			}
1218 			ipaddr.sin_addr = ip->ip_dst;
1219 			ia = (struct in_ifaddr *)
1220 				ifa_ifwithaddr((struct sockaddr *)&ipaddr);
1221 			if (ia == 0) {
1222 				if (opt == IPOPT_SSRR) {
1223 					type = ICMP_UNREACH;
1224 					code = ICMP_UNREACH_SRCFAIL;
1225 					goto bad;
1226 				}
1227 				if (!ip_dosourceroute)
1228 					goto nosourcerouting;
1229 				/*
1230 				 * Loose routing, and not at next destination
1231 				 * yet; nothing to do except forward.
1232 				 */
1233 				break;
1234 			}
1235 			off--;			/* 0 origin */
1236 			if (off > optlen - (int)sizeof(struct in_addr)) {
1237 				/*
1238 				 * End of source route.  Should be for us.
1239 				 */
1240 				if (!ip_acceptsourceroute)
1241 					goto nosourcerouting;
1242 				save_rte(cp, ip->ip_src);
1243 				break;
1244 			}
1245 
1246 			if (!ip_dosourceroute) {
1247 				if (ipforwarding) {
1248 					char buf[16]; /* aaa.bbb.ccc.ddd\0 */
1249 					/*
1250 					 * Acting as a router, so generate ICMP
1251 					 */
1252 nosourcerouting:
1253 					strcpy(buf, inet_ntoa(ip->ip_dst));
1254 					log(LOG_WARNING,
1255 					    "attempted source route from %s to %s\n",
1256 					    inet_ntoa(ip->ip_src), buf);
1257 					type = ICMP_UNREACH;
1258 					code = ICMP_UNREACH_SRCFAIL;
1259 					goto bad;
1260 				} else {
1261 					/*
1262 					 * Not acting as a router, so silently drop.
1263 					 */
1264 					ipstat.ips_cantforward++;
1265 					m_freem(m);
1266 					return (1);
1267 				}
1268 			}
1269 
1270 			/*
1271 			 * locate outgoing interface
1272 			 */
1273 			(void)memcpy(&ipaddr.sin_addr, cp + off,
1274 			    sizeof(ipaddr.sin_addr));
1275 
1276 			if (opt == IPOPT_SSRR) {
1277 #define	INA	struct in_ifaddr *
1278 #define	SA	struct sockaddr *
1279 			    if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr)) == 0)
1280 				ia = (INA)ifa_ifwithnet((SA)&ipaddr);
1281 			} else
1282 				ia = ip_rtaddr(ipaddr.sin_addr);
1283 			if (ia == 0) {
1284 				type = ICMP_UNREACH;
1285 				code = ICMP_UNREACH_SRCFAIL;
1286 				goto bad;
1287 			}
1288 			ip->ip_dst = ipaddr.sin_addr;
1289 			(void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr),
1290 			    sizeof(struct in_addr));
1291 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1292 			/*
1293 			 * Let ip_intr's mcast routing check handle mcast pkts
1294 			 */
1295 			forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr));
1296 			break;
1297 
1298 		case IPOPT_RR:
1299 			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1300 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1301 				goto bad;
1302 			}
1303 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1304 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1305 				goto bad;
1306 			}
1307 			/*
1308 			 * If no space remains, ignore.
1309 			 */
1310 			off--;			/* 0 origin */
1311 			if (off > optlen - (int)sizeof(struct in_addr))
1312 				break;
1313 			(void)memcpy(&ipaddr.sin_addr, &ip->ip_dst,
1314 			    sizeof(ipaddr.sin_addr));
1315 			/*
1316 			 * locate outgoing interface; if we're the destination,
1317 			 * use the incoming interface (should be same).
1318 			 */
1319 			if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == 0 &&
1320 			    (ia = ip_rtaddr(ipaddr.sin_addr)) == 0) {
1321 				type = ICMP_UNREACH;
1322 				code = ICMP_UNREACH_HOST;
1323 				goto bad;
1324 			}
1325 			(void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr),
1326 			    sizeof(struct in_addr));
1327 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1328 			break;
1329 
1330 		case IPOPT_TS:
1331 			code = cp - (u_char *)ip;
1332 			ipt = (struct ip_timestamp *)cp;
1333 			if (ipt->ipt_len < 4 || ipt->ipt_len > 40) {
1334 				code = (u_char *)&ipt->ipt_len - (u_char *)ip;
1335 				goto bad;
1336 			}
1337 			if (ipt->ipt_ptr < 5) {
1338 				code = (u_char *)&ipt->ipt_ptr - (u_char *)ip;
1339 				goto bad;
1340 			}
1341 			if (ipt->ipt_ptr >
1342 			    ipt->ipt_len - (int)sizeof(int32_t)) {
1343 				if (++ipt->ipt_oflw == 0) {
1344 					code = (u_char *)&ipt->ipt_ptr -
1345 					    (u_char *)ip;
1346 					goto bad;
1347 				}
1348 				break;
1349 			}
1350 			sin = (struct in_addr *)(cp + ipt->ipt_ptr - 1);
1351 			switch (ipt->ipt_flg) {
1352 
1353 			case IPOPT_TS_TSONLY:
1354 				break;
1355 
1356 			case IPOPT_TS_TSANDADDR:
1357 				if (ipt->ipt_ptr - 1 + sizeof(n_time) +
1358 				    sizeof(struct in_addr) > ipt->ipt_len) {
1359 					code = (u_char *)&ipt->ipt_ptr -
1360 					    (u_char *)ip;
1361 					goto bad;
1362 				}
1363 				ipaddr.sin_addr = dst;
1364 				ia = (INA)ifaof_ifpforaddr((SA)&ipaddr,
1365 							    m->m_pkthdr.rcvif);
1366 				if (ia == 0)
1367 					continue;
1368 				(void)memcpy(sin, &IA_SIN(ia)->sin_addr,
1369 				    sizeof(struct in_addr));
1370 				ipt->ipt_ptr += sizeof(struct in_addr);
1371 				break;
1372 
1373 			case IPOPT_TS_PRESPEC:
1374 				if (ipt->ipt_ptr - 1 + sizeof(n_time) +
1375 				    sizeof(struct in_addr) > ipt->ipt_len) {
1376 					code = (u_char *)&ipt->ipt_ptr -
1377 					    (u_char *)ip;
1378 					goto bad;
1379 				}
1380 				(void)memcpy(&ipaddr.sin_addr, sin,
1381 				    sizeof(struct in_addr));
1382 				if (ifa_ifwithaddr((SA)&ipaddr) == 0)
1383 					continue;
1384 				ipt->ipt_ptr += sizeof(struct in_addr);
1385 				break;
1386 
1387 			default:
1388 				/* XXX can't take &ipt->ipt_flg */
1389 				code = (u_char *)&ipt->ipt_ptr -
1390 				    (u_char *)ip + 1;
1391 				goto bad;
1392 			}
1393 			ntime = iptime();
1394 			(void)memcpy(cp + ipt->ipt_ptr - 1, &ntime,
1395 			    sizeof(n_time));
1396 			ipt->ipt_ptr += sizeof(n_time);
1397 		}
1398 	}
1399 	if (forward && ipforwarding) {
1400 		ip_forward(m, 1);
1401 		return (1);
1402 	}
1403 	return (0);
1404 bad:
1405 	icmp_error(m, type, code, 0, 0);
1406 	ipstat.ips_badoptions++;
1407 	return (1);
1408 }
1409 
1410 /*
1411  * Given address of next destination (final or next hop),
1412  * return internet address info of interface to be used to get there.
1413  */
1414 static struct in_ifaddr *
1415 ip_rtaddr(dst)
1416 	 struct in_addr dst;
1417 {
1418 	register struct sockaddr_in *sin;
1419 
1420 	sin = (struct sockaddr_in *) &ipforward_rt.ro_dst;
1421 
1422 	if (ipforward_rt.ro_rt == 0 ||
1423 	    !(ipforward_rt.ro_rt->rt_flags & RTF_UP) ||
1424 	    dst.s_addr != sin->sin_addr.s_addr) {
1425 		if (ipforward_rt.ro_rt) {
1426 			RTFREE(ipforward_rt.ro_rt);
1427 			ipforward_rt.ro_rt = 0;
1428 		}
1429 		sin->sin_family = AF_INET;
1430 		sin->sin_len = sizeof(*sin);
1431 		sin->sin_addr = dst;
1432 
1433 		rtalloc_ign(&ipforward_rt, RTF_PRCLONING);
1434 	}
1435 	if (ipforward_rt.ro_rt == 0)
1436 		return ((struct in_ifaddr *)0);
1437 	return ((struct in_ifaddr *) ipforward_rt.ro_rt->rt_ifa);
1438 }
1439 
1440 /*
1441  * Save incoming source route for use in replies,
1442  * to be picked up later by ip_srcroute if the receiver is interested.
1443  */
1444 void
1445 save_rte(option, dst)
1446 	u_char *option;
1447 	struct in_addr dst;
1448 {
1449 	unsigned olen;
1450 
1451 	olen = option[IPOPT_OLEN];
1452 #ifdef DIAGNOSTIC
1453 	if (ipprintfs)
1454 		printf("save_rte: olen %d\n", olen);
1455 #endif
1456 	if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
1457 		return;
1458 	bcopy(option, ip_srcrt.srcopt, olen);
1459 	ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
1460 	ip_srcrt.dst = dst;
1461 }
1462 
1463 /*
1464  * Retrieve incoming source route for use in replies,
1465  * in the same form used by setsockopt.
1466  * The first hop is placed before the options, will be removed later.
1467  */
1468 struct mbuf *
1469 ip_srcroute()
1470 {
1471 	register struct in_addr *p, *q;
1472 	register struct mbuf *m;
1473 
1474 	if (ip_nhops == 0)
1475 		return ((struct mbuf *)0);
1476 	m = m_get(M_DONTWAIT, MT_HEADER);
1477 	if (m == 0)
1478 		return ((struct mbuf *)0);
1479 
1480 #define OPTSIZ	(sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
1481 
1482 	/* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1483 	m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
1484 	    OPTSIZ;
1485 #ifdef DIAGNOSTIC
1486 	if (ipprintfs)
1487 		printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
1488 #endif
1489 
1490 	/*
1491 	 * First save first hop for return route
1492 	 */
1493 	p = &ip_srcrt.route[ip_nhops - 1];
1494 	*(mtod(m, struct in_addr *)) = *p--;
1495 #ifdef DIAGNOSTIC
1496 	if (ipprintfs)
1497 		printf(" hops %lx", (u_long)ntohl(mtod(m, struct in_addr *)->s_addr));
1498 #endif
1499 
1500 	/*
1501 	 * Copy option fields and padding (nop) to mbuf.
1502 	 */
1503 	ip_srcrt.nop = IPOPT_NOP;
1504 	ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
1505 	(void)memcpy(mtod(m, caddr_t) + sizeof(struct in_addr),
1506 	    &ip_srcrt.nop, OPTSIZ);
1507 	q = (struct in_addr *)(mtod(m, caddr_t) +
1508 	    sizeof(struct in_addr) + OPTSIZ);
1509 #undef OPTSIZ
1510 	/*
1511 	 * Record return path as an IP source route,
1512 	 * reversing the path (pointers are now aligned).
1513 	 */
1514 	while (p >= ip_srcrt.route) {
1515 #ifdef DIAGNOSTIC
1516 		if (ipprintfs)
1517 			printf(" %lx", (u_long)ntohl(q->s_addr));
1518 #endif
1519 		*q++ = *p--;
1520 	}
1521 	/*
1522 	 * Last hop goes to final destination.
1523 	 */
1524 	*q = ip_srcrt.dst;
1525 #ifdef DIAGNOSTIC
1526 	if (ipprintfs)
1527 		printf(" %lx\n", (u_long)ntohl(q->s_addr));
1528 #endif
1529 	return (m);
1530 }
1531 
1532 /*
1533  * Strip out IP options, at higher
1534  * level protocol in the kernel.
1535  * Second argument is buffer to which options
1536  * will be moved, and return value is their length.
1537  * XXX should be deleted; last arg currently ignored.
1538  */
1539 void
1540 ip_stripoptions(m, mopt)
1541 	register struct mbuf *m;
1542 	struct mbuf *mopt;
1543 {
1544 	register int i;
1545 	struct ip *ip = mtod(m, struct ip *);
1546 	register caddr_t opts;
1547 	int olen;
1548 
1549 	olen = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof (struct ip);
1550 	opts = (caddr_t)(ip + 1);
1551 	i = m->m_len - (sizeof (struct ip) + olen);
1552 	bcopy(opts + olen, opts, (unsigned)i);
1553 	m->m_len -= olen;
1554 	if (m->m_flags & M_PKTHDR)
1555 		m->m_pkthdr.len -= olen;
1556 	ip->ip_vhl = IP_MAKE_VHL(IPVERSION, sizeof(struct ip) >> 2);
1557 }
1558 
1559 u_char inetctlerrmap[PRC_NCMDS] = {
1560 	0,		0,		0,		0,
1561 	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1562 	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1563 	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1564 	0,		0,		0,		0,
1565 	ENOPROTOOPT,	ENETRESET
1566 };
1567 
1568 /*
1569  * Forward a packet.  If some error occurs return the sender
1570  * an icmp packet.  Note we can't always generate a meaningful
1571  * icmp message because icmp doesn't have a large enough repertoire
1572  * of codes and types.
1573  *
1574  * If not forwarding, just drop the packet.  This could be confusing
1575  * if ipforwarding was zero but some routing protocol was advancing
1576  * us as a gateway to somewhere.  However, we must let the routing
1577  * protocol deal with that.
1578  *
1579  * The srcrt parameter indicates whether the packet is being forwarded
1580  * via a source route.
1581  */
1582 static void
1583 ip_forward(m, srcrt)
1584 	struct mbuf *m;
1585 	int srcrt;
1586 {
1587 	register struct ip *ip = mtod(m, struct ip *);
1588 	register struct rtentry *rt;
1589 	int error, type = 0, code = 0;
1590 	struct mbuf *mcopy;
1591 	n_long dest;
1592 	struct ifnet *destifp;
1593 #ifdef IPSEC
1594 	struct ifnet dummyifp;
1595 #endif
1596 
1597 	dest = 0;
1598 #ifdef DIAGNOSTIC
1599 	if (ipprintfs)
1600 		printf("forward: src %lx dst %lx ttl %x\n",
1601 		    (u_long)ip->ip_src.s_addr, (u_long)ip->ip_dst.s_addr,
1602 		    ip->ip_ttl);
1603 #endif
1604 
1605 
1606 	if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) {
1607 		ipstat.ips_cantforward++;
1608 		m_freem(m);
1609 		return;
1610 	}
1611 #ifdef IPSTEALTH
1612 	if (!ipstealth) {
1613 #endif
1614 		if (ip->ip_ttl <= IPTTLDEC) {
1615 			icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS,
1616 			    dest, 0);
1617 			return;
1618 		}
1619 #ifdef IPSTEALTH
1620 	}
1621 #endif
1622 
1623 	if (ip_rtaddr(ip->ip_dst) == 0) {
1624 		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0);
1625 		return;
1626 	} else
1627 		rt = ipforward_rt.ro_rt;
1628 
1629 	/*
1630 	 * Save the IP header and at most 8 bytes of the payload,
1631 	 * in case we need to generate an ICMP message to the src.
1632 	 *
1633 	 * We don't use m_copy() because it might return a reference
1634 	 * to a shared cluster. Both this function and ip_output()
1635 	 * assume exclusive access to the IP header in `m', so any
1636 	 * data in a cluster may change before we reach icmp_error().
1637 	 */
1638 	MGET(mcopy, M_DONTWAIT, m->m_type);
1639 	if (mcopy != NULL) {
1640 		M_COPY_PKTHDR(mcopy, m);
1641 		mcopy->m_len = imin((IP_VHL_HL(ip->ip_vhl) << 2) + 8,
1642 		    (int)ip->ip_len);
1643 		m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
1644 	}
1645 
1646 #ifdef IPSTEALTH
1647 	if (!ipstealth) {
1648 #endif
1649 		ip->ip_ttl -= IPTTLDEC;
1650 #ifdef IPSTEALTH
1651 	}
1652 #endif
1653 
1654 	/*
1655 	 * If forwarding packet using same interface that it came in on,
1656 	 * perhaps should send a redirect to sender to shortcut a hop.
1657 	 * Only send redirect if source is sending directly to us,
1658 	 * and if packet was not source routed (or has any options).
1659 	 * Also, don't send redirect if forwarding using a default route
1660 	 * or a route modified by a redirect.
1661 	 */
1662 #define	satosin(sa)	((struct sockaddr_in *)(sa))
1663 	if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1664 	    (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1665 	    satosin(rt_key(rt))->sin_addr.s_addr != 0 &&
1666 	    ipsendredirects && !srcrt) {
1667 #define	RTA(rt)	((struct in_ifaddr *)(rt->rt_ifa))
1668 		u_long src = ntohl(ip->ip_src.s_addr);
1669 
1670 		if (RTA(rt) &&
1671 		    (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
1672 		    if (rt->rt_flags & RTF_GATEWAY)
1673 			dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1674 		    else
1675 			dest = ip->ip_dst.s_addr;
1676 		    /* Router requirements says to only send host redirects */
1677 		    type = ICMP_REDIRECT;
1678 		    code = ICMP_REDIRECT_HOST;
1679 #ifdef DIAGNOSTIC
1680 		    if (ipprintfs)
1681 		        printf("redirect (%d) to %lx\n", code, (u_long)dest);
1682 #endif
1683 		}
1684 	}
1685 
1686 	error = ip_output(m, (struct mbuf *)0, &ipforward_rt,
1687 			  IP_FORWARDING, 0);
1688 	if (error)
1689 		ipstat.ips_cantforward++;
1690 	else {
1691 		ipstat.ips_forward++;
1692 		if (type)
1693 			ipstat.ips_redirectsent++;
1694 		else {
1695 			if (mcopy) {
1696 				ipflow_create(&ipforward_rt, mcopy);
1697 				m_freem(mcopy);
1698 			}
1699 			return;
1700 		}
1701 	}
1702 	if (mcopy == NULL)
1703 		return;
1704 	destifp = NULL;
1705 
1706 	switch (error) {
1707 
1708 	case 0:				/* forwarded, but need redirect */
1709 		/* type, code set above */
1710 		break;
1711 
1712 	case ENETUNREACH:		/* shouldn't happen, checked above */
1713 	case EHOSTUNREACH:
1714 	case ENETDOWN:
1715 	case EHOSTDOWN:
1716 	default:
1717 		type = ICMP_UNREACH;
1718 		code = ICMP_UNREACH_HOST;
1719 		break;
1720 
1721 	case EMSGSIZE:
1722 		type = ICMP_UNREACH;
1723 		code = ICMP_UNREACH_NEEDFRAG;
1724 #ifndef IPSEC
1725 		if (ipforward_rt.ro_rt)
1726 			destifp = ipforward_rt.ro_rt->rt_ifp;
1727 #else
1728 		/*
1729 		 * If the packet is routed over IPsec tunnel, tell the
1730 		 * originator the tunnel MTU.
1731 		 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
1732 		 * XXX quickhack!!!
1733 		 */
1734 		if (ipforward_rt.ro_rt) {
1735 			struct secpolicy *sp = NULL;
1736 			int ipsecerror;
1737 			int ipsechdr;
1738 			struct route *ro;
1739 
1740 			sp = ipsec4_getpolicybyaddr(mcopy,
1741 						    IPSEC_DIR_OUTBOUND,
1742 			                            IP_FORWARDING,
1743 			                            &ipsecerror);
1744 
1745 			if (sp == NULL)
1746 				destifp = ipforward_rt.ro_rt->rt_ifp;
1747 			else {
1748 				/* count IPsec header size */
1749 				ipsechdr = ipsec4_hdrsiz(mcopy,
1750 							 IPSEC_DIR_OUTBOUND,
1751 							 NULL);
1752 
1753 				/*
1754 				 * find the correct route for outer IPv4
1755 				 * header, compute tunnel MTU.
1756 				 *
1757 				 * XXX BUG ALERT
1758 				 * The "dummyifp" code relies upon the fact
1759 				 * that icmp_error() touches only ifp->if_mtu.
1760 				 */
1761 				/*XXX*/
1762 				destifp = NULL;
1763 				if (sp->req != NULL
1764 				 && sp->req->sav != NULL
1765 				 && sp->req->sav->sah != NULL) {
1766 					ro = &sp->req->sav->sah->sa_route;
1767 					if (ro->ro_rt && ro->ro_rt->rt_ifp) {
1768 						dummyifp.if_mtu =
1769 						    ro->ro_rt->rt_ifp->if_mtu;
1770 						dummyifp.if_mtu -= ipsechdr;
1771 						destifp = &dummyifp;
1772 					}
1773 				}
1774 
1775 				key_freesp(sp);
1776 			}
1777 		}
1778 #endif /*IPSEC*/
1779 		ipstat.ips_cantfrag++;
1780 		break;
1781 
1782 	case ENOBUFS:
1783 		type = ICMP_SOURCEQUENCH;
1784 		code = 0;
1785 		break;
1786 
1787 	case EACCES:			/* ipfw denied packet */
1788 		m_freem(mcopy);
1789 		return;
1790 	}
1791 	icmp_error(mcopy, type, code, dest, destifp);
1792 }
1793 
1794 void
1795 ip_savecontrol(inp, mp, ip, m)
1796 	register struct inpcb *inp;
1797 	register struct mbuf **mp;
1798 	register struct ip *ip;
1799 	register struct mbuf *m;
1800 {
1801 	if (inp->inp_socket->so_options & SO_TIMESTAMP) {
1802 		struct timeval tv;
1803 
1804 		microtime(&tv);
1805 		*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
1806 			SCM_TIMESTAMP, SOL_SOCKET);
1807 		if (*mp)
1808 			mp = &(*mp)->m_next;
1809 	}
1810 	if (inp->inp_flags & INP_RECVDSTADDR) {
1811 		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
1812 		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
1813 		if (*mp)
1814 			mp = &(*mp)->m_next;
1815 	}
1816 #ifdef notyet
1817 	/* XXX
1818 	 * Moving these out of udp_input() made them even more broken
1819 	 * than they already were.
1820 	 */
1821 	/* options were tossed already */
1822 	if (inp->inp_flags & INP_RECVOPTS) {
1823 		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
1824 		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
1825 		if (*mp)
1826 			mp = &(*mp)->m_next;
1827 	}
1828 	/* ip_srcroute doesn't do what we want here, need to fix */
1829 	if (inp->inp_flags & INP_RECVRETOPTS) {
1830 		*mp = sbcreatecontrol((caddr_t) ip_srcroute(),
1831 		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
1832 		if (*mp)
1833 			mp = &(*mp)->m_next;
1834 	}
1835 #endif
1836 	if (inp->inp_flags & INP_RECVIF) {
1837 		struct ifnet *ifp;
1838 		struct sdlbuf {
1839 			struct sockaddr_dl sdl;
1840 			u_char	pad[32];
1841 		} sdlbuf;
1842 		struct sockaddr_dl *sdp;
1843 		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
1844 
1845 		if (((ifp = m->m_pkthdr.rcvif))
1846 		&& ( ifp->if_index && (ifp->if_index <= if_index))) {
1847 			sdp = (struct sockaddr_dl *)(ifnet_addrs
1848 					[ifp->if_index - 1]->ifa_addr);
1849 			/*
1850 			 * Change our mind and don't try copy.
1851 			 */
1852 			if ((sdp->sdl_family != AF_LINK)
1853 			|| (sdp->sdl_len > sizeof(sdlbuf))) {
1854 				goto makedummy;
1855 			}
1856 			bcopy(sdp, sdl2, sdp->sdl_len);
1857 		} else {
1858 makedummy:
1859 			sdl2->sdl_len
1860 				= offsetof(struct sockaddr_dl, sdl_data[0]);
1861 			sdl2->sdl_family = AF_LINK;
1862 			sdl2->sdl_index = 0;
1863 			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
1864 		}
1865 		*mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
1866 			IP_RECVIF, IPPROTO_IP);
1867 		if (*mp)
1868 			mp = &(*mp)->m_next;
1869 	}
1870 }
1871 
1872 int
1873 ip_rsvp_init(struct socket *so)
1874 {
1875 	if (so->so_type != SOCK_RAW ||
1876 	    so->so_proto->pr_protocol != IPPROTO_RSVP)
1877 	  return EOPNOTSUPP;
1878 
1879 	if (ip_rsvpd != NULL)
1880 	  return EADDRINUSE;
1881 
1882 	ip_rsvpd = so;
1883 	/*
1884 	 * This may seem silly, but we need to be sure we don't over-increment
1885 	 * the RSVP counter, in case something slips up.
1886 	 */
1887 	if (!ip_rsvp_on) {
1888 		ip_rsvp_on = 1;
1889 		rsvp_on++;
1890 	}
1891 
1892 	return 0;
1893 }
1894 
1895 int
1896 ip_rsvp_done(void)
1897 {
1898 	ip_rsvpd = NULL;
1899 	/*
1900 	 * This may seem silly, but we need to be sure we don't over-decrement
1901 	 * the RSVP counter, in case something slips up.
1902 	 */
1903 	if (ip_rsvp_on) {
1904 		ip_rsvp_on = 0;
1905 		rsvp_on--;
1906 	}
1907 	return 0;
1908 }
1909