xref: /freebsd/sys/netinet/ip_input.c (revision 4b2eaea43fec8e8792be611dea204071a10b655a)
1 /*
2  * Copyright (c) 1982, 1986, 1988, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
34  * $FreeBSD$
35  */
36 
37 #include "opt_bootp.h"
38 #include "opt_ipfw.h"
39 #include "opt_ipdn.h"
40 #include "opt_ipdivert.h"
41 #include "opt_ipfilter.h"
42 #include "opt_ipstealth.h"
43 #include "opt_ipsec.h"
44 #include "opt_mac.h"
45 #include "opt_pfil_hooks.h"
46 #include "opt_random_ip_id.h"
47 
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/mac.h>
51 #include <sys/mbuf.h>
52 #include <sys/malloc.h>
53 #include <sys/domain.h>
54 #include <sys/protosw.h>
55 #include <sys/socket.h>
56 #include <sys/time.h>
57 #include <sys/kernel.h>
58 #include <sys/syslog.h>
59 #include <sys/sysctl.h>
60 
61 #include <net/pfil.h>
62 #include <net/if.h>
63 #include <net/if_types.h>
64 #include <net/if_var.h>
65 #include <net/if_dl.h>
66 #include <net/route.h>
67 #include <net/netisr.h>
68 #include <net/intrq.h>
69 
70 #include <netinet/in.h>
71 #include <netinet/in_systm.h>
72 #include <netinet/in_var.h>
73 #include <netinet/ip.h>
74 #include <netinet/in_pcb.h>
75 #include <netinet/ip_var.h>
76 #include <netinet/ip_icmp.h>
77 #include <machine/in_cksum.h>
78 
79 #include <sys/socketvar.h>
80 
81 #include <netinet/ip_fw.h>
82 #include <netinet/ip_dummynet.h>
83 
84 #ifdef IPSEC
85 #include <netinet6/ipsec.h>
86 #include <netkey/key.h>
87 #endif
88 
89 #ifdef FAST_IPSEC
90 #include <netipsec/ipsec.h>
91 #include <netipsec/key.h>
92 #endif
93 
94 int rsvp_on = 0;
95 
96 int	ipforwarding = 0;
97 SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
98     &ipforwarding, 0, "Enable IP forwarding between interfaces");
99 
100 static int	ipsendredirects = 1; /* XXX */
101 SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
102     &ipsendredirects, 0, "Enable sending IP redirects");
103 
104 int	ip_defttl = IPDEFTTL;
105 SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
106     &ip_defttl, 0, "Maximum TTL on IP packets");
107 
108 static int	ip_dosourceroute = 0;
109 SYSCTL_INT(_net_inet_ip, IPCTL_SOURCEROUTE, sourceroute, CTLFLAG_RW,
110     &ip_dosourceroute, 0, "Enable forwarding source routed IP packets");
111 
112 static int	ip_acceptsourceroute = 0;
113 SYSCTL_INT(_net_inet_ip, IPCTL_ACCEPTSOURCEROUTE, accept_sourceroute,
114     CTLFLAG_RW, &ip_acceptsourceroute, 0,
115     "Enable accepting source routed IP packets");
116 
117 static int	ip_keepfaith = 0;
118 SYSCTL_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
119 	&ip_keepfaith,	0,
120 	"Enable packet capture for FAITH IPv4->IPv6 translater daemon");
121 
122 static int    nipq = 0;         /* total # of reass queues */
123 static int    maxnipq;
124 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragpackets, CTLFLAG_RW,
125 	&maxnipq, 0,
126 	"Maximum number of IPv4 fragment reassembly queue entries");
127 
128 static int	ip_sendsourcequench = 0;
129 SYSCTL_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW,
130 	&ip_sendsourcequench, 0,
131 	"Enable the transmission of source quench packets");
132 
133 /*
134  * XXX - Setting ip_checkinterface mostly implements the receive side of
135  * the Strong ES model described in RFC 1122, but since the routing table
136  * and transmit implementation do not implement the Strong ES model,
137  * setting this to 1 results in an odd hybrid.
138  *
139  * XXX - ip_checkinterface currently must be disabled if you use ipnat
140  * to translate the destination address to another local interface.
141  *
142  * XXX - ip_checkinterface must be disabled if you add IP aliases
143  * to the loopback interface instead of the interface where the
144  * packets for those addresses are received.
145  */
146 static int	ip_checkinterface = 1;
147 SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
148     &ip_checkinterface, 0, "Verify packet arrives on correct interface");
149 
150 #ifdef DIAGNOSTIC
151 static int	ipprintfs = 0;
152 #endif
153 
154 static int	ipqmaxlen = IFQ_MAXLEN;
155 
156 extern	struct domain inetdomain;
157 extern	struct protosw inetsw[];
158 u_char	ip_protox[IPPROTO_MAX];
159 struct	in_ifaddrhead in_ifaddrhead; 		/* first inet address */
160 struct	in_ifaddrhashhead *in_ifaddrhashtbl;	/* inet addr hash table  */
161 u_long 	in_ifaddrhmask;				/* mask for hash table */
162 
163 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen, CTLFLAG_RW,
164     &ipintrq.ifq_maxlen, 0, "Maximum size of the IP input queue");
165 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops, CTLFLAG_RD,
166     &ipintrq.ifq_drops, 0, "Number of packets dropped from the IP input queue");
167 
168 struct ipstat ipstat;
169 SYSCTL_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RW,
170     &ipstat, ipstat, "IP statistics (struct ipstat, netinet/ip_var.h)");
171 
172 /* Packet reassembly stuff */
173 #define IPREASS_NHASH_LOG2      6
174 #define IPREASS_NHASH           (1 << IPREASS_NHASH_LOG2)
175 #define IPREASS_HMASK           (IPREASS_NHASH - 1)
176 #define IPREASS_HASH(x,y) \
177 	(((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
178 
179 static TAILQ_HEAD(ipqhead, ipq) ipq[IPREASS_NHASH];
180 
181 #ifdef IPCTL_DEFMTU
182 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
183     &ip_mtu, 0, "Default MTU");
184 #endif
185 
186 #ifdef IPSTEALTH
187 static int	ipstealth = 0;
188 SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW,
189     &ipstealth, 0, "");
190 #endif
191 
192 
193 /* Firewall hooks */
194 ip_fw_chk_t *ip_fw_chk_ptr;
195 int fw_enable = 1 ;
196 int fw_one_pass = 1;
197 
198 /* Dummynet hooks */
199 ip_dn_io_t *ip_dn_io_ptr;
200 
201 
202 /*
203  * XXX this is ugly -- the following two global variables are
204  * used to store packet state while it travels through the stack.
205  * Note that the code even makes assumptions on the size and
206  * alignment of fields inside struct ip_srcrt so e.g. adding some
207  * fields will break the code. This needs to be fixed.
208  *
209  * We need to save the IP options in case a protocol wants to respond
210  * to an incoming packet over the same route if the packet got here
211  * using IP source routing.  This allows connection establishment and
212  * maintenance when the remote end is on a network that is not known
213  * to us.
214  */
215 static int	ip_nhops = 0;
216 static	struct ip_srcrt {
217 	struct	in_addr dst;			/* final destination */
218 	char	nop;				/* one NOP to align */
219 	char	srcopt[IPOPT_OFFSET + 1];	/* OPTVAL, OLEN and OFFSET */
220 	struct	in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
221 } ip_srcrt;
222 
223 static void	save_rte(u_char *, struct in_addr);
224 static int	ip_dooptions(struct mbuf *m, int,
225 			struct sockaddr_in *next_hop);
226 static void	ip_forward(struct mbuf *m, int srcrt,
227 			struct sockaddr_in *next_hop);
228 static void	ip_freef(struct ipqhead *, struct ipq *);
229 static struct	mbuf *ip_reass(struct mbuf *, struct ipqhead *,
230 		struct ipq *, u_int32_t *, u_int16_t *);
231 static void	ipintr(void);
232 
233 /*
234  * IP initialization: fill in IP protocol switch table.
235  * All protocols not implemented in kernel go to raw IP protocol handler.
236  */
237 void
238 ip_init()
239 {
240 	register struct protosw *pr;
241 	register int i;
242 
243 	TAILQ_INIT(&in_ifaddrhead);
244 	in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &in_ifaddrhmask);
245 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
246 	if (pr == 0)
247 		panic("ip_init");
248 	for (i = 0; i < IPPROTO_MAX; i++)
249 		ip_protox[i] = pr - inetsw;
250 	for (pr = inetdomain.dom_protosw;
251 	    pr < inetdomain.dom_protoswNPROTOSW; pr++)
252 		if (pr->pr_domain->dom_family == PF_INET &&
253 		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
254 			ip_protox[pr->pr_protocol] = pr - inetsw;
255 
256 	for (i = 0; i < IPREASS_NHASH; i++)
257 	    TAILQ_INIT(&ipq[i]);
258 
259 	maxnipq = nmbclusters / 4;
260 
261 #ifndef RANDOM_IP_ID
262 	ip_id = time_second & 0xffff;
263 #endif
264 	ipintrq.ifq_maxlen = ipqmaxlen;
265 	mtx_init(&ipintrq.ifq_mtx, "ip_inq", NULL, MTX_DEF);
266 	ipintrq_present = 1;
267 
268 	register_netisr(NETISR_IP, ipintr);
269 }
270 
271 /*
272  * XXX watch out this one. It is perhaps used as a cache for
273  * the most recently used route ? it is cleared in in_addroute()
274  * when a new route is successfully created.
275  */
276 struct	route ipforward_rt;
277 
278 /*
279  * Ip input routine.  Checksum and byte swap header.  If fragmented
280  * try to reassemble.  Process options.  Pass to next level.
281  */
282 void
283 ip_input(struct mbuf *m)
284 {
285 	struct ip *ip;
286 	struct ipq *fp;
287 	struct in_ifaddr *ia = NULL;
288 	struct ifaddr *ifa;
289 	int    i, hlen, checkif;
290 	u_short sum;
291 	struct in_addr pkt_dst;
292 	u_int32_t divert_info = 0;		/* packet divert/tee info */
293 	struct ip_fw_args args;
294 #ifdef PFIL_HOOKS
295 	struct packet_filter_hook *pfh;
296 	struct mbuf *m0;
297 	int rv;
298 #endif /* PFIL_HOOKS */
299 #ifdef FAST_IPSEC
300 	struct m_tag *mtag;
301 	struct tdb_ident *tdbi;
302 	struct secpolicy *sp;
303 	int s, error;
304 #endif /* FAST_IPSEC */
305 
306 	args.eh = NULL;
307 	args.oif = NULL;
308 	args.rule = NULL;
309 	args.divert_rule = 0;			/* divert cookie */
310 	args.next_hop = NULL;
311 
312 	/* Grab info from MT_TAG mbufs prepended to the chain.	*/
313 	for (; m && m->m_type == MT_TAG; m = m->m_next) {
314 		switch(m->_m_tag_id) {
315 		default:
316 			printf("ip_input: unrecognised MT_TAG tag %d\n",
317 			    m->_m_tag_id);
318 			break;
319 
320 		case PACKET_TAG_DUMMYNET:
321 			args.rule = ((struct dn_pkt *)m)->rule;
322 			break;
323 
324 		case PACKET_TAG_DIVERT:
325 			args.divert_rule = (intptr_t)m->m_hdr.mh_data & 0xffff;
326 			break;
327 
328 		case PACKET_TAG_IPFORWARD:
329 			args.next_hop = (struct sockaddr_in *)m->m_hdr.mh_data;
330 			break;
331 		}
332 	}
333 
334 	KASSERT(m != NULL && (m->m_flags & M_PKTHDR) != 0,
335 	    ("ip_input: no HDR"));
336 
337 	if (args.rule) {	/* dummynet already filtered us */
338 		ip = mtod(m, struct ip *);
339 		hlen = ip->ip_hl << 2;
340 		goto iphack ;
341 	}
342 
343 	ipstat.ips_total++;
344 
345 	if (m->m_pkthdr.len < sizeof(struct ip))
346 		goto tooshort;
347 
348 	if (m->m_len < sizeof (struct ip) &&
349 	    (m = m_pullup(m, sizeof (struct ip))) == 0) {
350 		ipstat.ips_toosmall++;
351 		return;
352 	}
353 	ip = mtod(m, struct ip *);
354 
355 	if (ip->ip_v != IPVERSION) {
356 		ipstat.ips_badvers++;
357 		goto bad;
358 	}
359 
360 	hlen = ip->ip_hl << 2;
361 	if (hlen < sizeof(struct ip)) {	/* minimum header length */
362 		ipstat.ips_badhlen++;
363 		goto bad;
364 	}
365 	if (hlen > m->m_len) {
366 		if ((m = m_pullup(m, hlen)) == 0) {
367 			ipstat.ips_badhlen++;
368 			return;
369 		}
370 		ip = mtod(m, struct ip *);
371 	}
372 
373 	/* 127/8 must not appear on wire - RFC1122 */
374 	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
375 	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
376 		if ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) {
377 			ipstat.ips_badaddr++;
378 			goto bad;
379 		}
380 	}
381 
382 	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
383 		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
384 	} else {
385 		if (hlen == sizeof(struct ip)) {
386 			sum = in_cksum_hdr(ip);
387 		} else {
388 			sum = in_cksum(m, hlen);
389 		}
390 	}
391 	if (sum) {
392 		ipstat.ips_badsum++;
393 		goto bad;
394 	}
395 
396 	/*
397 	 * Convert fields to host representation.
398 	 */
399 	ip->ip_len = ntohs(ip->ip_len);
400 	if (ip->ip_len < hlen) {
401 		ipstat.ips_badlen++;
402 		goto bad;
403 	}
404 	ip->ip_off = ntohs(ip->ip_off);
405 
406 	/*
407 	 * Check that the amount of data in the buffers
408 	 * is as at least much as the IP header would have us expect.
409 	 * Trim mbufs if longer than we expect.
410 	 * Drop packet if shorter than we expect.
411 	 */
412 	if (m->m_pkthdr.len < ip->ip_len) {
413 tooshort:
414 		ipstat.ips_tooshort++;
415 		goto bad;
416 	}
417 	if (m->m_pkthdr.len > ip->ip_len) {
418 		if (m->m_len == m->m_pkthdr.len) {
419 			m->m_len = ip->ip_len;
420 			m->m_pkthdr.len = ip->ip_len;
421 		} else
422 			m_adj(m, ip->ip_len - m->m_pkthdr.len);
423 	}
424 
425 	/*
426 	 * IpHack's section.
427 	 * Right now when no processing on packet has done
428 	 * and it is still fresh out of network we do our black
429 	 * deals with it.
430 	 * - Firewall: deny/allow/divert
431 	 * - Xlate: translate packet's addr/port (NAT).
432 	 * - Pipe: pass pkt through dummynet.
433 	 * - Wrap: fake packet's addr/port <unimpl.>
434 	 * - Encapsulate: put it in another IP and send out. <unimp.>
435  	 */
436 
437 iphack:
438 
439 #ifdef PFIL_HOOKS
440 	/*
441 	 * Run through list of hooks for input packets.  If there are any
442 	 * filters which require that additional packets in the flow are
443 	 * not fast-forwarded, they must clear the M_CANFASTFWD flag.
444 	 * Note that filters must _never_ set this flag, as another filter
445 	 * in the list may have previously cleared it.
446 	 */
447 	m0 = m;
448 	pfh = pfil_hook_get(PFIL_IN, &inetsw[ip_protox[IPPROTO_IP]].pr_pfh);
449 	for (; pfh; pfh = TAILQ_NEXT(pfh, pfil_link))
450 		if (pfh->pfil_func) {
451 			rv = pfh->pfil_func(ip, hlen,
452 					    m->m_pkthdr.rcvif, 0, &m0);
453 			if (rv)
454 				return;
455 			m = m0;
456 			if (m == NULL)
457 				return;
458 			ip = mtod(m, struct ip *);
459 		}
460 #endif /* PFIL_HOOKS */
461 
462 	if (fw_enable && IPFW_LOADED) {
463 		/*
464 		 * If we've been forwarded from the output side, then
465 		 * skip the firewall a second time
466 		 */
467 		if (args.next_hop)
468 			goto ours;
469 
470 		args.m = m;
471 		i = ip_fw_chk_ptr(&args);
472 		m = args.m;
473 
474 		if ( (i & IP_FW_PORT_DENY_FLAG) || m == NULL) { /* drop */
475 			if (m)
476 				m_freem(m);
477 			return;
478 		}
479 		ip = mtod(m, struct ip *); /* just in case m changed */
480 		if (i == 0 && args.next_hop == NULL)	/* common case */
481 			goto pass;
482                 if (DUMMYNET_LOADED && (i & IP_FW_PORT_DYNT_FLAG) != 0) {
483 			/* Send packet to the appropriate pipe */
484 			ip_dn_io_ptr(m, i&0xffff, DN_TO_IP_IN, &args);
485 			return;
486 		}
487 #ifdef IPDIVERT
488 		if (i != 0 && (i & IP_FW_PORT_DYNT_FLAG) == 0) {
489 			/* Divert or tee packet */
490 			divert_info = i;
491 			goto ours;
492 		}
493 #endif
494 		if (i == 0 && args.next_hop != NULL)
495 			goto pass;
496 		/*
497 		 * if we get here, the packet must be dropped
498 		 */
499 		m_freem(m);
500 		return;
501 	}
502 pass:
503 
504 	/*
505 	 * Process options and, if not destined for us,
506 	 * ship it on.  ip_dooptions returns 1 when an
507 	 * error was detected (causing an icmp message
508 	 * to be sent and the original packet to be freed).
509 	 */
510 	ip_nhops = 0;		/* for source routed packets */
511 	if (hlen > sizeof (struct ip) && ip_dooptions(m, 0, args.next_hop))
512 		return;
513 
514         /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
515          * matter if it is destined to another node, or whether it is
516          * a multicast one, RSVP wants it! and prevents it from being forwarded
517          * anywhere else. Also checks if the rsvp daemon is running before
518 	 * grabbing the packet.
519          */
520 	if (rsvp_on && ip->ip_p==IPPROTO_RSVP)
521 		goto ours;
522 
523 	/*
524 	 * Check our list of addresses, to see if the packet is for us.
525 	 * If we don't have any addresses, assume any unicast packet
526 	 * we receive might be for us (and let the upper layers deal
527 	 * with it).
528 	 */
529 	if (TAILQ_EMPTY(&in_ifaddrhead) &&
530 	    (m->m_flags & (M_MCAST|M_BCAST)) == 0)
531 		goto ours;
532 
533 	/*
534 	 * Cache the destination address of the packet; this may be
535 	 * changed by use of 'ipfw fwd'.
536 	 */
537 	pkt_dst = args.next_hop ? args.next_hop->sin_addr : ip->ip_dst;
538 
539 	/*
540 	 * Enable a consistency check between the destination address
541 	 * and the arrival interface for a unicast packet (the RFC 1122
542 	 * strong ES model) if IP forwarding is disabled and the packet
543 	 * is not locally generated and the packet is not subject to
544 	 * 'ipfw fwd'.
545 	 *
546 	 * XXX - Checking also should be disabled if the destination
547 	 * address is ipnat'ed to a different interface.
548 	 *
549 	 * XXX - Checking is incompatible with IP aliases added
550 	 * to the loopback interface instead of the interface where
551 	 * the packets are received.
552 	 */
553 	checkif = ip_checkinterface && (ipforwarding == 0) &&
554 	    m->m_pkthdr.rcvif != NULL &&
555 	    ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) &&
556 	    (args.next_hop == NULL);
557 
558 	/*
559 	 * Check for exact addresses in the hash bucket.
560 	 */
561 	LIST_FOREACH(ia, INADDR_HASH(pkt_dst.s_addr), ia_hash) {
562 		/*
563 		 * If the address matches, verify that the packet
564 		 * arrived via the correct interface if checking is
565 		 * enabled.
566 		 */
567 		if (IA_SIN(ia)->sin_addr.s_addr == pkt_dst.s_addr &&
568 		    (!checkif || ia->ia_ifp == m->m_pkthdr.rcvif))
569 			goto ours;
570 	}
571 	/*
572 	 * Check for broadcast addresses.
573 	 *
574 	 * Only accept broadcast packets that arrive via the matching
575 	 * interface.  Reception of forwarded directed broadcasts would
576 	 * be handled via ip_forward() and ether_output() with the loopback
577 	 * into the stack for SIMPLEX interfaces handled by ether_output().
578 	 */
579 	if (m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
580 	        TAILQ_FOREACH(ifa, &m->m_pkthdr.rcvif->if_addrhead, ifa_link) {
581 			if (ifa->ifa_addr->sa_family != AF_INET)
582 				continue;
583 			ia = ifatoia(ifa);
584 			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
585 			    pkt_dst.s_addr)
586 				goto ours;
587 			if (ia->ia_netbroadcast.s_addr == pkt_dst.s_addr)
588 				goto ours;
589 #ifdef BOOTP_COMPAT
590 			if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY)
591 				goto ours;
592 #endif
593 		}
594 	}
595 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
596 		struct in_multi *inm;
597 		if (ip_mrouter) {
598 			/*
599 			 * If we are acting as a multicast router, all
600 			 * incoming multicast packets are passed to the
601 			 * kernel-level multicast forwarding function.
602 			 * The packet is returned (relatively) intact; if
603 			 * ip_mforward() returns a non-zero value, the packet
604 			 * must be discarded, else it may be accepted below.
605 			 */
606 			if (ip_mforward &&
607 			    ip_mforward(ip, m->m_pkthdr.rcvif, m, 0) != 0) {
608 				ipstat.ips_cantforward++;
609 				m_freem(m);
610 				return;
611 			}
612 
613 			/*
614 			 * The process-level routing daemon needs to receive
615 			 * all multicast IGMP packets, whether or not this
616 			 * host belongs to their destination groups.
617 			 */
618 			if (ip->ip_p == IPPROTO_IGMP)
619 				goto ours;
620 			ipstat.ips_forward++;
621 		}
622 		/*
623 		 * See if we belong to the destination multicast group on the
624 		 * arrival interface.
625 		 */
626 		IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
627 		if (inm == NULL) {
628 			ipstat.ips_notmember++;
629 			m_freem(m);
630 			return;
631 		}
632 		goto ours;
633 	}
634 	if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
635 		goto ours;
636 	if (ip->ip_dst.s_addr == INADDR_ANY)
637 		goto ours;
638 
639 	/*
640 	 * FAITH(Firewall Aided Internet Translator)
641 	 */
642 	if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
643 		if (ip_keepfaith) {
644 			if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
645 				goto ours;
646 		}
647 		m_freem(m);
648 		return;
649 	}
650 
651 	/*
652 	 * Not for us; forward if possible and desirable.
653 	 */
654 	if (ipforwarding == 0) {
655 		ipstat.ips_cantforward++;
656 		m_freem(m);
657 	} else {
658 #ifdef IPSEC
659 		/*
660 		 * Enforce inbound IPsec SPD.
661 		 */
662 		if (ipsec4_in_reject(m, NULL)) {
663 			ipsecstat.in_polvio++;
664 			goto bad;
665 		}
666 #endif /* IPSEC */
667 #ifdef FAST_IPSEC
668 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
669 		s = splnet();
670 		if (mtag != NULL) {
671 			tdbi = (struct tdb_ident *)(mtag + 1);
672 			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
673 		} else {
674 			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
675 						   IP_FORWARDING, &error);
676 		}
677 		if (sp == NULL) {	/* NB: can happen if error */
678 			splx(s);
679 			/*XXX error stat???*/
680 			DPRINTF(("ip_input: no SP for forwarding\n"));	/*XXX*/
681 			goto bad;
682 		}
683 
684 		/*
685 		 * Check security policy against packet attributes.
686 		 */
687 		error = ipsec_in_reject(sp, m);
688 		KEY_FREESP(&sp);
689 		splx(s);
690 		if (error) {
691 			ipstat.ips_cantforward++;
692 			goto bad;
693 		}
694 #endif /* FAST_IPSEC */
695 		ip_forward(m, 0, args.next_hop);
696 	}
697 	return;
698 
699 ours:
700 #ifdef IPSTEALTH
701 	/*
702 	 * IPSTEALTH: Process non-routing options only
703 	 * if the packet is destined for us.
704 	 */
705 	if (ipstealth && hlen > sizeof (struct ip) &&
706 	    ip_dooptions(m, 1, args.next_hop))
707 		return;
708 #endif /* IPSTEALTH */
709 
710 	/* Count the packet in the ip address stats */
711 	if (ia != NULL) {
712 		ia->ia_ifa.if_ipackets++;
713 		ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
714 	}
715 
716 	/*
717 	 * If offset or IP_MF are set, must reassemble.
718 	 * Otherwise, nothing need be done.
719 	 * (We could look in the reassembly queue to see
720 	 * if the packet was previously fragmented,
721 	 * but it's not worth the time; just let them time out.)
722 	 */
723 	if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
724 
725 		if (maxnipq == 0) {
726                 	ipstat.ips_fragments++;
727 			ipstat.ips_fragdropped++;
728 			goto bad;
729 		}
730 
731 		sum = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
732 		/*
733 		 * Look for queue of fragments
734 		 * of this datagram.
735 		 */
736 		TAILQ_FOREACH(fp, &ipq[sum], ipq_list)
737 			if (ip->ip_id == fp->ipq_id &&
738 			    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
739 			    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
740 #ifdef MAC
741 			    mac_fragment_match(m, fp) &&
742 #endif
743 			    ip->ip_p == fp->ipq_p)
744 				goto found;
745 
746 		fp = 0;
747 
748 		/*
749 		 * Enforce upper bound on number of fragmented packets
750 		 * for which we attempt reassembly;
751 		 * If maxnipq is 0, never accept fragments. (Handled above.)
752 		 * If maxnipq is -1, accept all fragments without limitation.
753 		 */
754 		if ((nipq > maxnipq) && (maxnipq > 0)) {
755 		    /*
756 		     * drop something from the tail of the current queue
757 		     * before proceeding further
758 		     */
759 		    struct ipq *q = TAILQ_LAST(&ipq[sum], ipqhead);
760 		    if (q == NULL) {   /* gak */
761 			for (i = 0; i < IPREASS_NHASH; i++) {
762 			    struct ipq *r = TAILQ_LAST(&ipq[i], ipqhead);
763 			    if (r) {
764 				ip_freef(&ipq[i], r);
765 				ipstat.ips_fragtimeout++;
766 				break;
767 			    }
768 			}
769 		    } else {
770 			ip_freef(&ipq[sum], q);
771 			ipstat.ips_fragtimeout++;
772 		    }
773 		}
774 found:
775 		/*
776 		 * Adjust ip_len to not reflect header,
777 		 * convert offset of this to bytes.
778 		 */
779 		ip->ip_len -= hlen;
780 		if (ip->ip_off & IP_MF) {
781 		        /*
782 		         * Make sure that fragments have a data length
783 			 * that's a non-zero multiple of 8 bytes.
784 		         */
785 			if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
786 				ipstat.ips_toosmall++; /* XXX */
787 				goto bad;
788 			}
789 			m->m_flags |= M_FRAG;
790 		} else
791 			m->m_flags &= ~M_FRAG;
792 		ip->ip_off <<= 3;
793 
794 		/*
795 		 * Attempt reassembly; if it succeeds, proceed.
796 		 * ip_reass() will return a different mbuf, and update
797 		 * the divert info in divert_info and args.divert_rule.
798 		 */
799 		ipstat.ips_fragments++;
800 		m->m_pkthdr.header = ip;
801 		m = ip_reass(m,
802 		    &ipq[sum], fp, &divert_info, &args.divert_rule);
803 		if (m == 0)
804 			return;
805 		ipstat.ips_reassembled++;
806 		ip = mtod(m, struct ip *);
807 		/* Get the header length of the reassembled packet */
808 		hlen = ip->ip_hl << 2;
809 #ifdef IPDIVERT
810 		/* Restore original checksum before diverting packet */
811 		if (divert_info != 0) {
812 			ip->ip_len += hlen;
813 			ip->ip_len = htons(ip->ip_len);
814 			ip->ip_off = htons(ip->ip_off);
815 			ip->ip_sum = 0;
816 			if (hlen == sizeof(struct ip))
817 				ip->ip_sum = in_cksum_hdr(ip);
818 			else
819 				ip->ip_sum = in_cksum(m, hlen);
820 			ip->ip_off = ntohs(ip->ip_off);
821 			ip->ip_len = ntohs(ip->ip_len);
822 			ip->ip_len -= hlen;
823 		}
824 #endif
825 	} else
826 		ip->ip_len -= hlen;
827 
828 #ifdef IPDIVERT
829 	/*
830 	 * Divert or tee packet to the divert protocol if required.
831 	 */
832 	if (divert_info != 0) {
833 		struct mbuf *clone = NULL;
834 
835 		/* Clone packet if we're doing a 'tee' */
836 		if ((divert_info & IP_FW_PORT_TEE_FLAG) != 0)
837 			clone = m_dup(m, M_NOWAIT);
838 
839 		/* Restore packet header fields to original values */
840 		ip->ip_len += hlen;
841 		ip->ip_len = htons(ip->ip_len);
842 		ip->ip_off = htons(ip->ip_off);
843 
844 		/* Deliver packet to divert input routine */
845 		divert_packet(m, 1, divert_info & 0xffff, args.divert_rule);
846 		ipstat.ips_delivered++;
847 
848 		/* If 'tee', continue with original packet */
849 		if (clone == NULL)
850 			return;
851 		m = clone;
852 		ip = mtod(m, struct ip *);
853 		ip->ip_len += hlen;
854 		/*
855 		 * Jump backwards to complete processing of the
856 		 * packet. But first clear divert_info to avoid
857 		 * entering this block again.
858 		 * We do not need to clear args.divert_rule
859 		 * or args.next_hop as they will not be used.
860 		 */
861 		divert_info = 0;
862 		goto pass;
863 	}
864 #endif
865 
866 #ifdef IPSEC
867 	/*
868 	 * enforce IPsec policy checking if we are seeing last header.
869 	 * note that we do not visit this with protocols with pcb layer
870 	 * code - like udp/tcp/raw ip.
871 	 */
872 	if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0 &&
873 	    ipsec4_in_reject(m, NULL)) {
874 		ipsecstat.in_polvio++;
875 		goto bad;
876 	}
877 #endif
878 #if FAST_IPSEC
879 	/*
880 	 * enforce IPsec policy checking if we are seeing last header.
881 	 * note that we do not visit this with protocols with pcb layer
882 	 * code - like udp/tcp/raw ip.
883 	 */
884 	if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0) {
885 		/*
886 		 * Check if the packet has already had IPsec processing
887 		 * done.  If so, then just pass it along.  This tag gets
888 		 * set during AH, ESP, etc. input handling, before the
889 		 * packet is returned to the ip input queue for delivery.
890 		 */
891 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
892 		s = splnet();
893 		if (mtag != NULL) {
894 			tdbi = (struct tdb_ident *)(mtag + 1);
895 			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
896 		} else {
897 			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
898 						   IP_FORWARDING, &error);
899 		}
900 		if (sp != NULL) {
901 			/*
902 			 * Check security policy against packet attributes.
903 			 */
904 			error = ipsec_in_reject(sp, m);
905 			KEY_FREESP(&sp);
906 		} else {
907 			/* XXX error stat??? */
908 			error = EINVAL;
909 DPRINTF(("ip_input: no SP, packet discarded\n"));/*XXX*/
910 			goto bad;
911 		}
912 		splx(s);
913 		if (error)
914 			goto bad;
915 	}
916 #endif /* FAST_IPSEC */
917 
918 	/*
919 	 * Switch out to protocol's input routine.
920 	 */
921 	ipstat.ips_delivered++;
922 	if (args.next_hop && ip->ip_p == IPPROTO_TCP) {
923 		/* TCP needs IPFORWARD info if available */
924 		struct m_hdr tag;
925 
926 		tag.mh_type = MT_TAG;
927 		tag.mh_flags = PACKET_TAG_IPFORWARD;
928 		tag.mh_data = (caddr_t)args.next_hop;
929 		tag.mh_next = m;
930 
931 		(*inetsw[ip_protox[ip->ip_p]].pr_input)(
932 			(struct mbuf *)&tag, hlen);
933 	} else
934 		(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
935 	return;
936 bad:
937 	m_freem(m);
938 }
939 
940 /*
941  * IP software interrupt routine - to go away sometime soon
942  */
943 static void
944 ipintr(void)
945 {
946 	struct mbuf *m;
947 
948 	while (1) {
949 		IF_DEQUEUE(&ipintrq, m);
950 		if (m == 0)
951 			return;
952 		ip_input(m);
953 	}
954 }
955 
956 /*
957  * Take incoming datagram fragment and try to reassemble it into
958  * whole datagram.  If a chain for reassembly of this datagram already
959  * exists, then it is given as fp; otherwise have to make a chain.
960  *
961  * When IPDIVERT enabled, keep additional state with each packet that
962  * tells us if we need to divert or tee the packet we're building.
963  * In particular, *divinfo includes the port and TEE flag,
964  * *divert_rule is the number of the matching rule.
965  */
966 
967 static struct mbuf *
968 ip_reass(struct mbuf *m, struct ipqhead *head, struct ipq *fp,
969 	u_int32_t *divinfo, u_int16_t *divert_rule)
970 {
971 	struct ip *ip = mtod(m, struct ip *);
972 	register struct mbuf *p, *q, *nq;
973 	struct mbuf *t;
974 	int hlen = ip->ip_hl << 2;
975 	int i, next;
976 
977 	/*
978 	 * Presence of header sizes in mbufs
979 	 * would confuse code below.
980 	 */
981 	m->m_data += hlen;
982 	m->m_len -= hlen;
983 
984 	/*
985 	 * If first fragment to arrive, create a reassembly queue.
986 	 */
987 	if (fp == 0) {
988 		if ((t = m_get(M_NOWAIT, MT_FTABLE)) == NULL)
989 			goto dropfrag;
990 		fp = mtod(t, struct ipq *);
991 #ifdef MAC
992 		mac_init_ipq(fp);
993 		mac_create_ipq(m, fp);
994 #endif
995 		TAILQ_INSERT_HEAD(head, fp, ipq_list);
996 		nipq++;
997 		fp->ipq_ttl = IPFRAGTTL;
998 		fp->ipq_p = ip->ip_p;
999 		fp->ipq_id = ip->ip_id;
1000 		fp->ipq_src = ip->ip_src;
1001 		fp->ipq_dst = ip->ip_dst;
1002 		fp->ipq_frags = m;
1003 		m->m_nextpkt = NULL;
1004 #ifdef IPDIVERT
1005 		fp->ipq_div_info = 0;
1006 		fp->ipq_div_cookie = 0;
1007 #endif
1008 		goto inserted;
1009 	} else {
1010 #ifdef MAC
1011 		mac_update_ipq(m, fp);
1012 #endif
1013 	}
1014 
1015 #define GETIP(m)	((struct ip*)((m)->m_pkthdr.header))
1016 
1017 	/*
1018 	 * Find a segment which begins after this one does.
1019 	 */
1020 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
1021 		if (GETIP(q)->ip_off > ip->ip_off)
1022 			break;
1023 
1024 	/*
1025 	 * If there is a preceding segment, it may provide some of
1026 	 * our data already.  If so, drop the data from the incoming
1027 	 * segment.  If it provides all of our data, drop us, otherwise
1028 	 * stick new segment in the proper place.
1029 	 *
1030 	 * If some of the data is dropped from the the preceding
1031 	 * segment, then it's checksum is invalidated.
1032 	 */
1033 	if (p) {
1034 		i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
1035 		if (i > 0) {
1036 			if (i >= ip->ip_len)
1037 				goto dropfrag;
1038 			m_adj(m, i);
1039 			m->m_pkthdr.csum_flags = 0;
1040 			ip->ip_off += i;
1041 			ip->ip_len -= i;
1042 		}
1043 		m->m_nextpkt = p->m_nextpkt;
1044 		p->m_nextpkt = m;
1045 	} else {
1046 		m->m_nextpkt = fp->ipq_frags;
1047 		fp->ipq_frags = m;
1048 	}
1049 
1050 	/*
1051 	 * While we overlap succeeding segments trim them or,
1052 	 * if they are completely covered, dequeue them.
1053 	 */
1054 	for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
1055 	     q = nq) {
1056 		i = (ip->ip_off + ip->ip_len) -
1057 		    GETIP(q)->ip_off;
1058 		if (i < GETIP(q)->ip_len) {
1059 			GETIP(q)->ip_len -= i;
1060 			GETIP(q)->ip_off += i;
1061 			m_adj(q, i);
1062 			q->m_pkthdr.csum_flags = 0;
1063 			break;
1064 		}
1065 		nq = q->m_nextpkt;
1066 		m->m_nextpkt = nq;
1067 		m_freem(q);
1068 	}
1069 
1070 inserted:
1071 
1072 #ifdef IPDIVERT
1073 	/*
1074 	 * Transfer firewall instructions to the fragment structure.
1075 	 * Only trust info in the fragment at offset 0.
1076 	 */
1077 	if (ip->ip_off == 0) {
1078 		fp->ipq_div_info = *divinfo;
1079 		fp->ipq_div_cookie = *divert_rule;
1080 	}
1081 	*divinfo = 0;
1082 	*divert_rule = 0;
1083 #endif
1084 
1085 	/*
1086 	 * Check for complete reassembly.
1087 	 */
1088 	next = 0;
1089 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1090 		if (GETIP(q)->ip_off != next)
1091 			return (0);
1092 		next += GETIP(q)->ip_len;
1093 	}
1094 	/* Make sure the last packet didn't have the IP_MF flag */
1095 	if (p->m_flags & M_FRAG)
1096 		return (0);
1097 
1098 	/*
1099 	 * Reassembly is complete.  Make sure the packet is a sane size.
1100 	 */
1101 	q = fp->ipq_frags;
1102 	ip = GETIP(q);
1103 	if (next + (ip->ip_hl << 2) > IP_MAXPACKET) {
1104 		ipstat.ips_toolong++;
1105 		ip_freef(head, fp);
1106 		return (0);
1107 	}
1108 
1109 	/*
1110 	 * Concatenate fragments.
1111 	 */
1112 	m = q;
1113 	t = m->m_next;
1114 	m->m_next = 0;
1115 	m_cat(m, t);
1116 	nq = q->m_nextpkt;
1117 	q->m_nextpkt = 0;
1118 	for (q = nq; q != NULL; q = nq) {
1119 		nq = q->m_nextpkt;
1120 		q->m_nextpkt = NULL;
1121 		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1122 		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1123 		m_cat(m, q);
1124 	}
1125 #ifdef MAC
1126 	mac_create_datagram_from_ipq(fp, m);
1127 	mac_destroy_ipq(fp);
1128 #endif
1129 
1130 #ifdef IPDIVERT
1131 	/*
1132 	 * Extract firewall instructions from the fragment structure.
1133 	 */
1134 	*divinfo = fp->ipq_div_info;
1135 	*divert_rule = fp->ipq_div_cookie;
1136 #endif
1137 
1138 	/*
1139 	 * Create header for new ip packet by
1140 	 * modifying header of first packet;
1141 	 * dequeue and discard fragment reassembly header.
1142 	 * Make header visible.
1143 	 */
1144 	ip->ip_len = next;
1145 	ip->ip_src = fp->ipq_src;
1146 	ip->ip_dst = fp->ipq_dst;
1147 	TAILQ_REMOVE(head, fp, ipq_list);
1148 	nipq--;
1149 	(void) m_free(dtom(fp));
1150 	m->m_len += (ip->ip_hl << 2);
1151 	m->m_data -= (ip->ip_hl << 2);
1152 	/* some debugging cruft by sklower, below, will go away soon */
1153 	if (m->m_flags & M_PKTHDR)	/* XXX this should be done elsewhere */
1154 		m_fixhdr(m);
1155 	return (m);
1156 
1157 dropfrag:
1158 #ifdef IPDIVERT
1159 	*divinfo = 0;
1160 	*divert_rule = 0;
1161 #endif
1162 	ipstat.ips_fragdropped++;
1163 	m_freem(m);
1164 	return (0);
1165 
1166 #undef GETIP
1167 }
1168 
1169 /*
1170  * Free a fragment reassembly header and all
1171  * associated datagrams.
1172  */
1173 static void
1174 ip_freef(fhp, fp)
1175 	struct ipqhead *fhp;
1176 	struct ipq *fp;
1177 {
1178 	register struct mbuf *q;
1179 
1180 	while (fp->ipq_frags) {
1181 		q = fp->ipq_frags;
1182 		fp->ipq_frags = q->m_nextpkt;
1183 		m_freem(q);
1184 	}
1185 	TAILQ_REMOVE(fhp, fp, ipq_list);
1186 	(void) m_free(dtom(fp));
1187 	nipq--;
1188 }
1189 
1190 /*
1191  * IP timer processing;
1192  * if a timer expires on a reassembly
1193  * queue, discard it.
1194  */
1195 void
1196 ip_slowtimo()
1197 {
1198 	register struct ipq *fp;
1199 	int s = splnet();
1200 	int i;
1201 
1202 	for (i = 0; i < IPREASS_NHASH; i++) {
1203 		for(fp = TAILQ_FIRST(&ipq[i]); fp;) {
1204 			struct ipq *fpp;
1205 
1206 			fpp = fp;
1207 			fp = TAILQ_NEXT(fp, ipq_list);
1208 			if(--fpp->ipq_ttl == 0) {
1209 				ipstat.ips_fragtimeout++;
1210 				ip_freef(&ipq[i], fpp);
1211 			}
1212 		}
1213 	}
1214 	/*
1215 	 * If we are over the maximum number of fragments
1216 	 * (due to the limit being lowered), drain off
1217 	 * enough to get down to the new limit.
1218 	 */
1219 	for (i = 0; i < IPREASS_NHASH; i++) {
1220 		if (maxnipq >= 0) {
1221 			while (nipq > maxnipq &&
1222 				!TAILQ_EMPTY(&ipq[i])) {
1223 				ipstat.ips_fragdropped++;
1224 				ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i]));
1225 			}
1226 		}
1227 	}
1228 	ipflow_slowtimo();
1229 	splx(s);
1230 }
1231 
1232 /*
1233  * Drain off all datagram fragments.
1234  */
1235 void
1236 ip_drain()
1237 {
1238 	int     i;
1239 
1240 	for (i = 0; i < IPREASS_NHASH; i++) {
1241 		while(!TAILQ_EMPTY(&ipq[i])) {
1242 			ipstat.ips_fragdropped++;
1243 			ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i]));
1244 		}
1245 	}
1246 	in_rtqdrain();
1247 }
1248 
1249 /*
1250  * Do option processing on a datagram,
1251  * possibly discarding it if bad options are encountered,
1252  * or forwarding it if source-routed.
1253  * The pass argument is used when operating in the IPSTEALTH
1254  * mode to tell what options to process:
1255  * [LS]SRR (pass 0) or the others (pass 1).
1256  * The reason for as many as two passes is that when doing IPSTEALTH,
1257  * non-routing options should be processed only if the packet is for us.
1258  * Returns 1 if packet has been forwarded/freed,
1259  * 0 if the packet should be processed further.
1260  */
1261 static int
1262 ip_dooptions(struct mbuf *m, int pass, struct sockaddr_in *next_hop)
1263 {
1264 	struct ip *ip = mtod(m, struct ip *);
1265 	u_char *cp;
1266 	struct in_ifaddr *ia;
1267 	int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
1268 	struct in_addr *sin, dst;
1269 	n_time ntime;
1270 	struct	sockaddr_in ipaddr = { sizeof(ipaddr), AF_INET };
1271 
1272 	dst = ip->ip_dst;
1273 	cp = (u_char *)(ip + 1);
1274 	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1275 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1276 		opt = cp[IPOPT_OPTVAL];
1277 		if (opt == IPOPT_EOL)
1278 			break;
1279 		if (opt == IPOPT_NOP)
1280 			optlen = 1;
1281 		else {
1282 			if (cnt < IPOPT_OLEN + sizeof(*cp)) {
1283 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1284 				goto bad;
1285 			}
1286 			optlen = cp[IPOPT_OLEN];
1287 			if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
1288 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1289 				goto bad;
1290 			}
1291 		}
1292 		switch (opt) {
1293 
1294 		default:
1295 			break;
1296 
1297 		/*
1298 		 * Source routing with record.
1299 		 * Find interface with current destination address.
1300 		 * If none on this machine then drop if strictly routed,
1301 		 * or do nothing if loosely routed.
1302 		 * Record interface address and bring up next address
1303 		 * component.  If strictly routed make sure next
1304 		 * address is on directly accessible net.
1305 		 */
1306 		case IPOPT_LSRR:
1307 		case IPOPT_SSRR:
1308 #ifdef IPSTEALTH
1309 			if (ipstealth && pass > 0)
1310 				break;
1311 #endif
1312 			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1313 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1314 				goto bad;
1315 			}
1316 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1317 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1318 				goto bad;
1319 			}
1320 			ipaddr.sin_addr = ip->ip_dst;
1321 			ia = (struct in_ifaddr *)
1322 				ifa_ifwithaddr((struct sockaddr *)&ipaddr);
1323 			if (ia == 0) {
1324 				if (opt == IPOPT_SSRR) {
1325 					type = ICMP_UNREACH;
1326 					code = ICMP_UNREACH_SRCFAIL;
1327 					goto bad;
1328 				}
1329 				if (!ip_dosourceroute)
1330 					goto nosourcerouting;
1331 				/*
1332 				 * Loose routing, and not at next destination
1333 				 * yet; nothing to do except forward.
1334 				 */
1335 				break;
1336 			}
1337 			off--;			/* 0 origin */
1338 			if (off > optlen - (int)sizeof(struct in_addr)) {
1339 				/*
1340 				 * End of source route.  Should be for us.
1341 				 */
1342 				if (!ip_acceptsourceroute)
1343 					goto nosourcerouting;
1344 				save_rte(cp, ip->ip_src);
1345 				break;
1346 			}
1347 #ifdef IPSTEALTH
1348 			if (ipstealth)
1349 				goto dropit;
1350 #endif
1351 			if (!ip_dosourceroute) {
1352 				if (ipforwarding) {
1353 					char buf[16]; /* aaa.bbb.ccc.ddd\0 */
1354 					/*
1355 					 * Acting as a router, so generate ICMP
1356 					 */
1357 nosourcerouting:
1358 					strcpy(buf, inet_ntoa(ip->ip_dst));
1359 					log(LOG_WARNING,
1360 					    "attempted source route from %s to %s\n",
1361 					    inet_ntoa(ip->ip_src), buf);
1362 					type = ICMP_UNREACH;
1363 					code = ICMP_UNREACH_SRCFAIL;
1364 					goto bad;
1365 				} else {
1366 					/*
1367 					 * Not acting as a router, so silently drop.
1368 					 */
1369 #ifdef IPSTEALTH
1370 dropit:
1371 #endif
1372 					ipstat.ips_cantforward++;
1373 					m_freem(m);
1374 					return (1);
1375 				}
1376 			}
1377 
1378 			/*
1379 			 * locate outgoing interface
1380 			 */
1381 			(void)memcpy(&ipaddr.sin_addr, cp + off,
1382 			    sizeof(ipaddr.sin_addr));
1383 
1384 			if (opt == IPOPT_SSRR) {
1385 #define	INA	struct in_ifaddr *
1386 #define	SA	struct sockaddr *
1387 			    if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr)) == 0)
1388 				ia = (INA)ifa_ifwithnet((SA)&ipaddr);
1389 			} else
1390 				ia = ip_rtaddr(ipaddr.sin_addr, &ipforward_rt);
1391 			if (ia == 0) {
1392 				type = ICMP_UNREACH;
1393 				code = ICMP_UNREACH_SRCFAIL;
1394 				goto bad;
1395 			}
1396 			ip->ip_dst = ipaddr.sin_addr;
1397 			(void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr),
1398 			    sizeof(struct in_addr));
1399 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1400 			/*
1401 			 * Let ip_intr's mcast routing check handle mcast pkts
1402 			 */
1403 			forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr));
1404 			break;
1405 
1406 		case IPOPT_RR:
1407 #ifdef IPSTEALTH
1408 			if (ipstealth && pass == 0)
1409 				break;
1410 #endif
1411 			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1412 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1413 				goto bad;
1414 			}
1415 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1416 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1417 				goto bad;
1418 			}
1419 			/*
1420 			 * If no space remains, ignore.
1421 			 */
1422 			off--;			/* 0 origin */
1423 			if (off > optlen - (int)sizeof(struct in_addr))
1424 				break;
1425 			(void)memcpy(&ipaddr.sin_addr, &ip->ip_dst,
1426 			    sizeof(ipaddr.sin_addr));
1427 			/*
1428 			 * locate outgoing interface; if we're the destination,
1429 			 * use the incoming interface (should be same).
1430 			 */
1431 			if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == 0 &&
1432 			    (ia = ip_rtaddr(ipaddr.sin_addr,
1433 			    &ipforward_rt)) == 0) {
1434 				type = ICMP_UNREACH;
1435 				code = ICMP_UNREACH_HOST;
1436 				goto bad;
1437 			}
1438 			(void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr),
1439 			    sizeof(struct in_addr));
1440 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1441 			break;
1442 
1443 		case IPOPT_TS:
1444 #ifdef IPSTEALTH
1445 			if (ipstealth && pass == 0)
1446 				break;
1447 #endif
1448 			code = cp - (u_char *)ip;
1449 			if (optlen < 4 || optlen > 40) {
1450 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1451 				goto bad;
1452 			}
1453 			if ((off = cp[IPOPT_OFFSET]) < 5) {
1454 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1455 				goto bad;
1456 			}
1457 			if (off > optlen - (int)sizeof(int32_t)) {
1458 				cp[IPOPT_OFFSET + 1] += (1 << 4);
1459 				if ((cp[IPOPT_OFFSET + 1] & 0xf0) == 0) {
1460 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1461 					goto bad;
1462 				}
1463 				break;
1464 			}
1465 			off--;				/* 0 origin */
1466 			sin = (struct in_addr *)(cp + off);
1467 			switch (cp[IPOPT_OFFSET + 1] & 0x0f) {
1468 
1469 			case IPOPT_TS_TSONLY:
1470 				break;
1471 
1472 			case IPOPT_TS_TSANDADDR:
1473 				if (off + sizeof(n_time) +
1474 				    sizeof(struct in_addr) > optlen) {
1475 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1476 					goto bad;
1477 				}
1478 				ipaddr.sin_addr = dst;
1479 				ia = (INA)ifaof_ifpforaddr((SA)&ipaddr,
1480 							    m->m_pkthdr.rcvif);
1481 				if (ia == 0)
1482 					continue;
1483 				(void)memcpy(sin, &IA_SIN(ia)->sin_addr,
1484 				    sizeof(struct in_addr));
1485 				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1486 				off += sizeof(struct in_addr);
1487 				break;
1488 
1489 			case IPOPT_TS_PRESPEC:
1490 				if (off + sizeof(n_time) +
1491 				    sizeof(struct in_addr) > optlen) {
1492 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1493 					goto bad;
1494 				}
1495 				(void)memcpy(&ipaddr.sin_addr, sin,
1496 				    sizeof(struct in_addr));
1497 				if (ifa_ifwithaddr((SA)&ipaddr) == 0)
1498 					continue;
1499 				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1500 				off += sizeof(struct in_addr);
1501 				break;
1502 
1503 			default:
1504 				code = &cp[IPOPT_OFFSET + 1] - (u_char *)ip;
1505 				goto bad;
1506 			}
1507 			ntime = iptime();
1508 			(void)memcpy(cp + off, &ntime, sizeof(n_time));
1509 			cp[IPOPT_OFFSET] += sizeof(n_time);
1510 		}
1511 	}
1512 	if (forward && ipforwarding) {
1513 		ip_forward(m, 1, next_hop);
1514 		return (1);
1515 	}
1516 	return (0);
1517 bad:
1518 	icmp_error(m, type, code, 0, 0);
1519 	ipstat.ips_badoptions++;
1520 	return (1);
1521 }
1522 
1523 /*
1524  * Given address of next destination (final or next hop),
1525  * return internet address info of interface to be used to get there.
1526  */
1527 struct in_ifaddr *
1528 ip_rtaddr(dst, rt)
1529 	struct in_addr dst;
1530 	struct route *rt;
1531 {
1532 	register struct sockaddr_in *sin;
1533 
1534 	sin = (struct sockaddr_in *)&rt->ro_dst;
1535 
1536 	if (rt->ro_rt == 0 ||
1537 	    !(rt->ro_rt->rt_flags & RTF_UP) ||
1538 	    dst.s_addr != sin->sin_addr.s_addr) {
1539 		if (rt->ro_rt) {
1540 			RTFREE(rt->ro_rt);
1541 			rt->ro_rt = 0;
1542 		}
1543 		sin->sin_family = AF_INET;
1544 		sin->sin_len = sizeof(*sin);
1545 		sin->sin_addr = dst;
1546 
1547 		rtalloc_ign(rt, RTF_PRCLONING);
1548 	}
1549 	if (rt->ro_rt == 0)
1550 		return ((struct in_ifaddr *)0);
1551 	return (ifatoia(rt->ro_rt->rt_ifa));
1552 }
1553 
1554 /*
1555  * Save incoming source route for use in replies,
1556  * to be picked up later by ip_srcroute if the receiver is interested.
1557  */
1558 static void
1559 save_rte(option, dst)
1560 	u_char *option;
1561 	struct in_addr dst;
1562 {
1563 	unsigned olen;
1564 
1565 	olen = option[IPOPT_OLEN];
1566 #ifdef DIAGNOSTIC
1567 	if (ipprintfs)
1568 		printf("save_rte: olen %d\n", olen);
1569 #endif
1570 	if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
1571 		return;
1572 	bcopy(option, ip_srcrt.srcopt, olen);
1573 	ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
1574 	ip_srcrt.dst = dst;
1575 }
1576 
1577 /*
1578  * Retrieve incoming source route for use in replies,
1579  * in the same form used by setsockopt.
1580  * The first hop is placed before the options, will be removed later.
1581  */
1582 struct mbuf *
1583 ip_srcroute()
1584 {
1585 	register struct in_addr *p, *q;
1586 	register struct mbuf *m;
1587 
1588 	if (ip_nhops == 0)
1589 		return ((struct mbuf *)0);
1590 	m = m_get(M_NOWAIT, MT_HEADER);
1591 	if (m == 0)
1592 		return ((struct mbuf *)0);
1593 
1594 #define OPTSIZ	(sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
1595 
1596 	/* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1597 	m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
1598 	    OPTSIZ;
1599 #ifdef DIAGNOSTIC
1600 	if (ipprintfs)
1601 		printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
1602 #endif
1603 
1604 	/*
1605 	 * First save first hop for return route
1606 	 */
1607 	p = &ip_srcrt.route[ip_nhops - 1];
1608 	*(mtod(m, struct in_addr *)) = *p--;
1609 #ifdef DIAGNOSTIC
1610 	if (ipprintfs)
1611 		printf(" hops %lx", (u_long)ntohl(mtod(m, struct in_addr *)->s_addr));
1612 #endif
1613 
1614 	/*
1615 	 * Copy option fields and padding (nop) to mbuf.
1616 	 */
1617 	ip_srcrt.nop = IPOPT_NOP;
1618 	ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
1619 	(void)memcpy(mtod(m, caddr_t) + sizeof(struct in_addr),
1620 	    &ip_srcrt.nop, OPTSIZ);
1621 	q = (struct in_addr *)(mtod(m, caddr_t) +
1622 	    sizeof(struct in_addr) + OPTSIZ);
1623 #undef OPTSIZ
1624 	/*
1625 	 * Record return path as an IP source route,
1626 	 * reversing the path (pointers are now aligned).
1627 	 */
1628 	while (p >= ip_srcrt.route) {
1629 #ifdef DIAGNOSTIC
1630 		if (ipprintfs)
1631 			printf(" %lx", (u_long)ntohl(q->s_addr));
1632 #endif
1633 		*q++ = *p--;
1634 	}
1635 	/*
1636 	 * Last hop goes to final destination.
1637 	 */
1638 	*q = ip_srcrt.dst;
1639 #ifdef DIAGNOSTIC
1640 	if (ipprintfs)
1641 		printf(" %lx\n", (u_long)ntohl(q->s_addr));
1642 #endif
1643 	return (m);
1644 }
1645 
1646 /*
1647  * Strip out IP options, at higher
1648  * level protocol in the kernel.
1649  * Second argument is buffer to which options
1650  * will be moved, and return value is their length.
1651  * XXX should be deleted; last arg currently ignored.
1652  */
1653 void
1654 ip_stripoptions(m, mopt)
1655 	register struct mbuf *m;
1656 	struct mbuf *mopt;
1657 {
1658 	register int i;
1659 	struct ip *ip = mtod(m, struct ip *);
1660 	register caddr_t opts;
1661 	int olen;
1662 
1663 	olen = (ip->ip_hl << 2) - sizeof (struct ip);
1664 	opts = (caddr_t)(ip + 1);
1665 	i = m->m_len - (sizeof (struct ip) + olen);
1666 	bcopy(opts + olen, opts, (unsigned)i);
1667 	m->m_len -= olen;
1668 	if (m->m_flags & M_PKTHDR)
1669 		m->m_pkthdr.len -= olen;
1670 	ip->ip_v = IPVERSION;
1671 	ip->ip_hl = sizeof(struct ip) >> 2;
1672 }
1673 
1674 u_char inetctlerrmap[PRC_NCMDS] = {
1675 	0,		0,		0,		0,
1676 	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1677 	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1678 	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1679 	0,		0,		0,		0,
1680 	ENOPROTOOPT,	ECONNREFUSED
1681 };
1682 
1683 /*
1684  * Forward a packet.  If some error occurs return the sender
1685  * an icmp packet.  Note we can't always generate a meaningful
1686  * icmp message because icmp doesn't have a large enough repertoire
1687  * of codes and types.
1688  *
1689  * If not forwarding, just drop the packet.  This could be confusing
1690  * if ipforwarding was zero but some routing protocol was advancing
1691  * us as a gateway to somewhere.  However, we must let the routing
1692  * protocol deal with that.
1693  *
1694  * The srcrt parameter indicates whether the packet is being forwarded
1695  * via a source route.
1696  */
1697 static void
1698 ip_forward(struct mbuf *m, int srcrt, struct sockaddr_in *next_hop)
1699 {
1700 	struct ip *ip = mtod(m, struct ip *);
1701 	struct rtentry *rt;
1702 	int error, type = 0, code = 0;
1703 	struct mbuf *mcopy;
1704 	n_long dest;
1705 	struct in_addr pkt_dst;
1706 	struct ifnet *destifp;
1707 #if defined(IPSEC) || defined(FAST_IPSEC)
1708 	struct ifnet dummyifp;
1709 #endif
1710 
1711 	dest = 0;
1712 	/*
1713 	 * Cache the destination address of the packet; this may be
1714 	 * changed by use of 'ipfw fwd'.
1715 	 */
1716 	pkt_dst = next_hop ? next_hop->sin_addr : ip->ip_dst;
1717 
1718 #ifdef DIAGNOSTIC
1719 	if (ipprintfs)
1720 		printf("forward: src %lx dst %lx ttl %x\n",
1721 		    (u_long)ip->ip_src.s_addr, (u_long)pkt_dst.s_addr,
1722 		    ip->ip_ttl);
1723 #endif
1724 
1725 
1726 	if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(pkt_dst) == 0) {
1727 		ipstat.ips_cantforward++;
1728 		m_freem(m);
1729 		return;
1730 	}
1731 #ifdef IPSTEALTH
1732 	if (!ipstealth) {
1733 #endif
1734 		if (ip->ip_ttl <= IPTTLDEC) {
1735 			icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS,
1736 			    dest, 0);
1737 			return;
1738 		}
1739 #ifdef IPSTEALTH
1740 	}
1741 #endif
1742 
1743 	if (ip_rtaddr(pkt_dst, &ipforward_rt) == 0) {
1744 		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0);
1745 		return;
1746 	} else
1747 		rt = ipforward_rt.ro_rt;
1748 
1749 	/*
1750 	 * Save the IP header and at most 8 bytes of the payload,
1751 	 * in case we need to generate an ICMP message to the src.
1752 	 *
1753 	 * XXX this can be optimized a lot by saving the data in a local
1754 	 * buffer on the stack (72 bytes at most), and only allocating the
1755 	 * mbuf if really necessary. The vast majority of the packets
1756 	 * are forwarded without having to send an ICMP back (either
1757 	 * because unnecessary, or because rate limited), so we are
1758 	 * really we are wasting a lot of work here.
1759 	 *
1760 	 * We don't use m_copy() because it might return a reference
1761 	 * to a shared cluster. Both this function and ip_output()
1762 	 * assume exclusive access to the IP header in `m', so any
1763 	 * data in a cluster may change before we reach icmp_error().
1764 	 */
1765 	MGET(mcopy, M_NOWAIT, m->m_type);
1766 	if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, M_NOWAIT)) {
1767 		/*
1768 		 * It's probably ok if the pkthdr dup fails (because
1769 		 * the deep copy of the tag chain failed), but for now
1770 		 * be conservative and just discard the copy since
1771 		 * code below may some day want the tags.
1772 		 */
1773 		m_free(mcopy);
1774 		mcopy = NULL;
1775 	}
1776 	if (mcopy != NULL) {
1777 		mcopy->m_len = imin((ip->ip_hl << 2) + 8,
1778 		    (int)ip->ip_len);
1779 		m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
1780 #ifdef MAC
1781 		/*
1782 		 * XXXMAC: This will eventually become an explicit
1783 		 * labeling point.
1784 		 */
1785 		mac_create_mbuf_from_mbuf(m, mcopy);
1786 #endif
1787 	}
1788 
1789 #ifdef IPSTEALTH
1790 	if (!ipstealth) {
1791 #endif
1792 		ip->ip_ttl -= IPTTLDEC;
1793 #ifdef IPSTEALTH
1794 	}
1795 #endif
1796 
1797 	/*
1798 	 * If forwarding packet using same interface that it came in on,
1799 	 * perhaps should send a redirect to sender to shortcut a hop.
1800 	 * Only send redirect if source is sending directly to us,
1801 	 * and if packet was not source routed (or has any options).
1802 	 * Also, don't send redirect if forwarding using a default route
1803 	 * or a route modified by a redirect.
1804 	 */
1805 	if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1806 	    (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1807 	    satosin(rt_key(rt))->sin_addr.s_addr != 0 &&
1808 	    ipsendredirects && !srcrt && !next_hop) {
1809 #define	RTA(rt)	((struct in_ifaddr *)(rt->rt_ifa))
1810 		u_long src = ntohl(ip->ip_src.s_addr);
1811 
1812 		if (RTA(rt) &&
1813 		    (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
1814 		    if (rt->rt_flags & RTF_GATEWAY)
1815 			dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1816 		    else
1817 			dest = pkt_dst.s_addr;
1818 		    /* Router requirements says to only send host redirects */
1819 		    type = ICMP_REDIRECT;
1820 		    code = ICMP_REDIRECT_HOST;
1821 #ifdef DIAGNOSTIC
1822 		    if (ipprintfs)
1823 		        printf("redirect (%d) to %lx\n", code, (u_long)dest);
1824 #endif
1825 		}
1826 	}
1827 
1828     {
1829 	struct m_hdr tag;
1830 
1831 	if (next_hop) {
1832 		/* Pass IPFORWARD info if available */
1833 
1834 		tag.mh_type = MT_TAG;
1835 		tag.mh_flags = PACKET_TAG_IPFORWARD;
1836 		tag.mh_data = (caddr_t)next_hop;
1837 		tag.mh_next = m;
1838 		m = (struct mbuf *)&tag;
1839 	}
1840 	error = ip_output(m, (struct mbuf *)0, &ipforward_rt,
1841 			  IP_FORWARDING, 0, NULL);
1842     }
1843 	if (error)
1844 		ipstat.ips_cantforward++;
1845 	else {
1846 		ipstat.ips_forward++;
1847 		if (type)
1848 			ipstat.ips_redirectsent++;
1849 		else {
1850 			if (mcopy) {
1851 				ipflow_create(&ipforward_rt, mcopy);
1852 				m_freem(mcopy);
1853 			}
1854 			return;
1855 		}
1856 	}
1857 	if (mcopy == NULL)
1858 		return;
1859 	destifp = NULL;
1860 
1861 	switch (error) {
1862 
1863 	case 0:				/* forwarded, but need redirect */
1864 		/* type, code set above */
1865 		break;
1866 
1867 	case ENETUNREACH:		/* shouldn't happen, checked above */
1868 	case EHOSTUNREACH:
1869 	case ENETDOWN:
1870 	case EHOSTDOWN:
1871 	default:
1872 		type = ICMP_UNREACH;
1873 		code = ICMP_UNREACH_HOST;
1874 		break;
1875 
1876 	case EMSGSIZE:
1877 		type = ICMP_UNREACH;
1878 		code = ICMP_UNREACH_NEEDFRAG;
1879 #ifdef IPSEC
1880 		/*
1881 		 * If the packet is routed over IPsec tunnel, tell the
1882 		 * originator the tunnel MTU.
1883 		 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
1884 		 * XXX quickhack!!!
1885 		 */
1886 		if (ipforward_rt.ro_rt) {
1887 			struct secpolicy *sp = NULL;
1888 			int ipsecerror;
1889 			int ipsechdr;
1890 			struct route *ro;
1891 
1892 			sp = ipsec4_getpolicybyaddr(mcopy,
1893 						    IPSEC_DIR_OUTBOUND,
1894 			                            IP_FORWARDING,
1895 			                            &ipsecerror);
1896 
1897 			if (sp == NULL)
1898 				destifp = ipforward_rt.ro_rt->rt_ifp;
1899 			else {
1900 				/* count IPsec header size */
1901 				ipsechdr = ipsec4_hdrsiz(mcopy,
1902 							 IPSEC_DIR_OUTBOUND,
1903 							 NULL);
1904 
1905 				/*
1906 				 * find the correct route for outer IPv4
1907 				 * header, compute tunnel MTU.
1908 				 *
1909 				 * XXX BUG ALERT
1910 				 * The "dummyifp" code relies upon the fact
1911 				 * that icmp_error() touches only ifp->if_mtu.
1912 				 */
1913 				/*XXX*/
1914 				destifp = NULL;
1915 				if (sp->req != NULL
1916 				 && sp->req->sav != NULL
1917 				 && sp->req->sav->sah != NULL) {
1918 					ro = &sp->req->sav->sah->sa_route;
1919 					if (ro->ro_rt && ro->ro_rt->rt_ifp) {
1920 						dummyifp.if_mtu =
1921 						    ro->ro_rt->rt_ifp->if_mtu;
1922 						dummyifp.if_mtu -= ipsechdr;
1923 						destifp = &dummyifp;
1924 					}
1925 				}
1926 
1927 				key_freesp(sp);
1928 			}
1929 		}
1930 #elif FAST_IPSEC
1931 		/*
1932 		 * If the packet is routed over IPsec tunnel, tell the
1933 		 * originator the tunnel MTU.
1934 		 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
1935 		 * XXX quickhack!!!
1936 		 */
1937 		if (ipforward_rt.ro_rt) {
1938 			struct secpolicy *sp = NULL;
1939 			int ipsecerror;
1940 			int ipsechdr;
1941 			struct route *ro;
1942 
1943 			sp = ipsec_getpolicybyaddr(mcopy,
1944 						   IPSEC_DIR_OUTBOUND,
1945 			                           IP_FORWARDING,
1946 			                           &ipsecerror);
1947 
1948 			if (sp == NULL)
1949 				destifp = ipforward_rt.ro_rt->rt_ifp;
1950 			else {
1951 				/* count IPsec header size */
1952 				ipsechdr = ipsec4_hdrsiz(mcopy,
1953 							 IPSEC_DIR_OUTBOUND,
1954 							 NULL);
1955 
1956 				/*
1957 				 * find the correct route for outer IPv4
1958 				 * header, compute tunnel MTU.
1959 				 *
1960 				 * XXX BUG ALERT
1961 				 * The "dummyifp" code relies upon the fact
1962 				 * that icmp_error() touches only ifp->if_mtu.
1963 				 */
1964 				/*XXX*/
1965 				destifp = NULL;
1966 				if (sp->req != NULL
1967 				 && sp->req->sav != NULL
1968 				 && sp->req->sav->sah != NULL) {
1969 					ro = &sp->req->sav->sah->sa_route;
1970 					if (ro->ro_rt && ro->ro_rt->rt_ifp) {
1971 						dummyifp.if_mtu =
1972 						    ro->ro_rt->rt_ifp->if_mtu;
1973 						dummyifp.if_mtu -= ipsechdr;
1974 						destifp = &dummyifp;
1975 					}
1976 				}
1977 
1978 				KEY_FREESP(&sp);
1979 			}
1980 		}
1981 #else /* !IPSEC && !FAST_IPSEC */
1982 		if (ipforward_rt.ro_rt)
1983 			destifp = ipforward_rt.ro_rt->rt_ifp;
1984 #endif /*IPSEC*/
1985 		ipstat.ips_cantfrag++;
1986 		break;
1987 
1988 	case ENOBUFS:
1989 		/*
1990 		 * A router should not generate ICMP_SOURCEQUENCH as
1991 		 * required in RFC1812 Requirements for IP Version 4 Routers.
1992 		 * Source quench could be a big problem under DoS attacks,
1993 		 * or if the underlying interface is rate-limited.
1994 		 * Those who need source quench packets may re-enable them
1995 		 * via the net.inet.ip.sendsourcequench sysctl.
1996 		 */
1997 		if (ip_sendsourcequench == 0) {
1998 			m_freem(mcopy);
1999 			return;
2000 		} else {
2001 			type = ICMP_SOURCEQUENCH;
2002 			code = 0;
2003 		}
2004 		break;
2005 
2006 	case EACCES:			/* ipfw denied packet */
2007 		m_freem(mcopy);
2008 		return;
2009 	}
2010 	icmp_error(mcopy, type, code, dest, destifp);
2011 }
2012 
2013 void
2014 ip_savecontrol(inp, mp, ip, m)
2015 	register struct inpcb *inp;
2016 	register struct mbuf **mp;
2017 	register struct ip *ip;
2018 	register struct mbuf *m;
2019 {
2020 	if (inp->inp_socket->so_options & SO_TIMESTAMP) {
2021 		struct timeval tv;
2022 
2023 		microtime(&tv);
2024 		*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
2025 			SCM_TIMESTAMP, SOL_SOCKET);
2026 		if (*mp)
2027 			mp = &(*mp)->m_next;
2028 	}
2029 	if (inp->inp_flags & INP_RECVDSTADDR) {
2030 		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
2031 		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
2032 		if (*mp)
2033 			mp = &(*mp)->m_next;
2034 	}
2035 #ifdef notyet
2036 	/* XXX
2037 	 * Moving these out of udp_input() made them even more broken
2038 	 * than they already were.
2039 	 */
2040 	/* options were tossed already */
2041 	if (inp->inp_flags & INP_RECVOPTS) {
2042 		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
2043 		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
2044 		if (*mp)
2045 			mp = &(*mp)->m_next;
2046 	}
2047 	/* ip_srcroute doesn't do what we want here, need to fix */
2048 	if (inp->inp_flags & INP_RECVRETOPTS) {
2049 		*mp = sbcreatecontrol((caddr_t) ip_srcroute(),
2050 		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
2051 		if (*mp)
2052 			mp = &(*mp)->m_next;
2053 	}
2054 #endif
2055 	if (inp->inp_flags & INP_RECVIF) {
2056 		struct ifnet *ifp;
2057 		struct sdlbuf {
2058 			struct sockaddr_dl sdl;
2059 			u_char	pad[32];
2060 		} sdlbuf;
2061 		struct sockaddr_dl *sdp;
2062 		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
2063 
2064 		if (((ifp = m->m_pkthdr.rcvif))
2065 		&& ( ifp->if_index && (ifp->if_index <= if_index))) {
2066 			sdp = (struct sockaddr_dl *)
2067 			    (ifaddr_byindex(ifp->if_index)->ifa_addr);
2068 			/*
2069 			 * Change our mind and don't try copy.
2070 			 */
2071 			if ((sdp->sdl_family != AF_LINK)
2072 			|| (sdp->sdl_len > sizeof(sdlbuf))) {
2073 				goto makedummy;
2074 			}
2075 			bcopy(sdp, sdl2, sdp->sdl_len);
2076 		} else {
2077 makedummy:
2078 			sdl2->sdl_len
2079 				= offsetof(struct sockaddr_dl, sdl_data[0]);
2080 			sdl2->sdl_family = AF_LINK;
2081 			sdl2->sdl_index = 0;
2082 			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
2083 		}
2084 		*mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
2085 			IP_RECVIF, IPPROTO_IP);
2086 		if (*mp)
2087 			mp = &(*mp)->m_next;
2088 	}
2089 }
2090 
2091 /*
2092  * XXX these routines are called from the upper part of the kernel.
2093  * They need to be locked when we remove Giant.
2094  *
2095  * They could also be moved to ip_mroute.c, since all the RSVP
2096  *  handling is done there already.
2097  */
2098 static int ip_rsvp_on;
2099 struct socket *ip_rsvpd;
2100 int
2101 ip_rsvp_init(struct socket *so)
2102 {
2103 	if (so->so_type != SOCK_RAW ||
2104 	    so->so_proto->pr_protocol != IPPROTO_RSVP)
2105 		return EOPNOTSUPP;
2106 
2107 	if (ip_rsvpd != NULL)
2108 		return EADDRINUSE;
2109 
2110 	ip_rsvpd = so;
2111 	/*
2112 	 * This may seem silly, but we need to be sure we don't over-increment
2113 	 * the RSVP counter, in case something slips up.
2114 	 */
2115 	if (!ip_rsvp_on) {
2116 		ip_rsvp_on = 1;
2117 		rsvp_on++;
2118 	}
2119 
2120 	return 0;
2121 }
2122 
2123 int
2124 ip_rsvp_done(void)
2125 {
2126 	ip_rsvpd = NULL;
2127 	/*
2128 	 * This may seem silly, but we need to be sure we don't over-decrement
2129 	 * the RSVP counter, in case something slips up.
2130 	 */
2131 	if (ip_rsvp_on) {
2132 		ip_rsvp_on = 0;
2133 		rsvp_on--;
2134 	}
2135 	return 0;
2136 }
2137 
2138 void
2139 rsvp_input(struct mbuf *m, int off)	/* XXX must fixup manually */
2140 {
2141 	if (rsvp_input_p) { /* call the real one if loaded */
2142 		rsvp_input_p(m, off);
2143 		return;
2144 	}
2145 
2146 	/* Can still get packets with rsvp_on = 0 if there is a local member
2147 	 * of the group to which the RSVP packet is addressed.  But in this
2148 	 * case we want to throw the packet away.
2149 	 */
2150 
2151 	if (!rsvp_on) {
2152 		m_freem(m);
2153 		return;
2154 	}
2155 
2156 	if (ip_rsvpd != NULL) {
2157 		rip_input(m, off);
2158 		return;
2159 	}
2160 	/* Drop the packet */
2161 	m_freem(m);
2162 }
2163