1 /* 2 * Copyright (c) 1982, 1986, 1988, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. All advertising materials mentioning features or use of this software 14 * must display the following acknowledgement: 15 * This product includes software developed by the University of 16 * California, Berkeley and its contributors. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * @(#)ip_input.c 8.2 (Berkeley) 1/4/94 34 * $FreeBSD$ 35 */ 36 37 #include "opt_bootp.h" 38 #include "opt_ipfw.h" 39 #include "opt_ipdn.h" 40 #include "opt_ipdivert.h" 41 #include "opt_ipfilter.h" 42 #include "opt_ipstealth.h" 43 #include "opt_ipsec.h" 44 #include "opt_mac.h" 45 #include "opt_pfil_hooks.h" 46 #include "opt_random_ip_id.h" 47 48 #include <sys/param.h> 49 #include <sys/systm.h> 50 #include <sys/mac.h> 51 #include <sys/mbuf.h> 52 #include <sys/malloc.h> 53 #include <sys/domain.h> 54 #include <sys/protosw.h> 55 #include <sys/socket.h> 56 #include <sys/time.h> 57 #include <sys/kernel.h> 58 #include <sys/syslog.h> 59 #include <sys/sysctl.h> 60 61 #include <net/pfil.h> 62 #include <net/if.h> 63 #include <net/if_types.h> 64 #include <net/if_var.h> 65 #include <net/if_dl.h> 66 #include <net/route.h> 67 #include <net/netisr.h> 68 #include <net/intrq.h> 69 70 #include <netinet/in.h> 71 #include <netinet/in_systm.h> 72 #include <netinet/in_var.h> 73 #include <netinet/ip.h> 74 #include <netinet/in_pcb.h> 75 #include <netinet/ip_var.h> 76 #include <netinet/ip_icmp.h> 77 #include <machine/in_cksum.h> 78 79 #include <sys/socketvar.h> 80 81 #include <netinet/ip_fw.h> 82 #include <netinet/ip_dummynet.h> 83 84 #ifdef IPSEC 85 #include <netinet6/ipsec.h> 86 #include <netkey/key.h> 87 #endif 88 89 #ifdef FAST_IPSEC 90 #include <netipsec/ipsec.h> 91 #include <netipsec/key.h> 92 #endif 93 94 int rsvp_on = 0; 95 96 int ipforwarding = 0; 97 SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW, 98 &ipforwarding, 0, "Enable IP forwarding between interfaces"); 99 100 static int ipsendredirects = 1; /* XXX */ 101 SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW, 102 &ipsendredirects, 0, "Enable sending IP redirects"); 103 104 int ip_defttl = IPDEFTTL; 105 SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW, 106 &ip_defttl, 0, "Maximum TTL on IP packets"); 107 108 static int ip_dosourceroute = 0; 109 SYSCTL_INT(_net_inet_ip, IPCTL_SOURCEROUTE, sourceroute, CTLFLAG_RW, 110 &ip_dosourceroute, 0, "Enable forwarding source routed IP packets"); 111 112 static int ip_acceptsourceroute = 0; 113 SYSCTL_INT(_net_inet_ip, IPCTL_ACCEPTSOURCEROUTE, accept_sourceroute, 114 CTLFLAG_RW, &ip_acceptsourceroute, 0, 115 "Enable accepting source routed IP packets"); 116 117 static int ip_keepfaith = 0; 118 SYSCTL_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW, 119 &ip_keepfaith, 0, 120 "Enable packet capture for FAITH IPv4->IPv6 translater daemon"); 121 122 static int nipq = 0; /* total # of reass queues */ 123 static int maxnipq; 124 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragpackets, CTLFLAG_RW, 125 &maxnipq, 0, 126 "Maximum number of IPv4 fragment reassembly queue entries"); 127 128 static int ip_sendsourcequench = 0; 129 SYSCTL_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW, 130 &ip_sendsourcequench, 0, 131 "Enable the transmission of source quench packets"); 132 133 /* 134 * XXX - Setting ip_checkinterface mostly implements the receive side of 135 * the Strong ES model described in RFC 1122, but since the routing table 136 * and transmit implementation do not implement the Strong ES model, 137 * setting this to 1 results in an odd hybrid. 138 * 139 * XXX - ip_checkinterface currently must be disabled if you use ipnat 140 * to translate the destination address to another local interface. 141 * 142 * XXX - ip_checkinterface must be disabled if you add IP aliases 143 * to the loopback interface instead of the interface where the 144 * packets for those addresses are received. 145 */ 146 static int ip_checkinterface = 1; 147 SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW, 148 &ip_checkinterface, 0, "Verify packet arrives on correct interface"); 149 150 #ifdef DIAGNOSTIC 151 static int ipprintfs = 0; 152 #endif 153 154 static int ipqmaxlen = IFQ_MAXLEN; 155 156 extern struct domain inetdomain; 157 extern struct protosw inetsw[]; 158 u_char ip_protox[IPPROTO_MAX]; 159 struct in_ifaddrhead in_ifaddrhead; /* first inet address */ 160 struct in_ifaddrhashhead *in_ifaddrhashtbl; /* inet addr hash table */ 161 u_long in_ifaddrhmask; /* mask for hash table */ 162 163 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen, CTLFLAG_RW, 164 &ipintrq.ifq_maxlen, 0, "Maximum size of the IP input queue"); 165 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops, CTLFLAG_RD, 166 &ipintrq.ifq_drops, 0, "Number of packets dropped from the IP input queue"); 167 168 struct ipstat ipstat; 169 SYSCTL_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RW, 170 &ipstat, ipstat, "IP statistics (struct ipstat, netinet/ip_var.h)"); 171 172 /* Packet reassembly stuff */ 173 #define IPREASS_NHASH_LOG2 6 174 #define IPREASS_NHASH (1 << IPREASS_NHASH_LOG2) 175 #define IPREASS_HMASK (IPREASS_NHASH - 1) 176 #define IPREASS_HASH(x,y) \ 177 (((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK) 178 179 static TAILQ_HEAD(ipqhead, ipq) ipq[IPREASS_NHASH]; 180 181 #ifdef IPCTL_DEFMTU 182 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW, 183 &ip_mtu, 0, "Default MTU"); 184 #endif 185 186 #ifdef IPSTEALTH 187 static int ipstealth = 0; 188 SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW, 189 &ipstealth, 0, ""); 190 #endif 191 192 193 /* Firewall hooks */ 194 ip_fw_chk_t *ip_fw_chk_ptr; 195 int fw_enable = 1 ; 196 int fw_one_pass = 1; 197 198 /* Dummynet hooks */ 199 ip_dn_io_t *ip_dn_io_ptr; 200 201 202 /* 203 * XXX this is ugly -- the following two global variables are 204 * used to store packet state while it travels through the stack. 205 * Note that the code even makes assumptions on the size and 206 * alignment of fields inside struct ip_srcrt so e.g. adding some 207 * fields will break the code. This needs to be fixed. 208 * 209 * We need to save the IP options in case a protocol wants to respond 210 * to an incoming packet over the same route if the packet got here 211 * using IP source routing. This allows connection establishment and 212 * maintenance when the remote end is on a network that is not known 213 * to us. 214 */ 215 static int ip_nhops = 0; 216 static struct ip_srcrt { 217 struct in_addr dst; /* final destination */ 218 char nop; /* one NOP to align */ 219 char srcopt[IPOPT_OFFSET + 1]; /* OPTVAL, OLEN and OFFSET */ 220 struct in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)]; 221 } ip_srcrt; 222 223 static void save_rte(u_char *, struct in_addr); 224 static int ip_dooptions(struct mbuf *m, int, 225 struct sockaddr_in *next_hop); 226 static void ip_forward(struct mbuf *m, int srcrt, 227 struct sockaddr_in *next_hop); 228 static void ip_freef(struct ipqhead *, struct ipq *); 229 static struct mbuf *ip_reass(struct mbuf *, struct ipqhead *, 230 struct ipq *, u_int32_t *, u_int16_t *); 231 static void ipintr(void); 232 233 /* 234 * IP initialization: fill in IP protocol switch table. 235 * All protocols not implemented in kernel go to raw IP protocol handler. 236 */ 237 void 238 ip_init() 239 { 240 register struct protosw *pr; 241 register int i; 242 243 TAILQ_INIT(&in_ifaddrhead); 244 in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &in_ifaddrhmask); 245 pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW); 246 if (pr == 0) 247 panic("ip_init"); 248 for (i = 0; i < IPPROTO_MAX; i++) 249 ip_protox[i] = pr - inetsw; 250 for (pr = inetdomain.dom_protosw; 251 pr < inetdomain.dom_protoswNPROTOSW; pr++) 252 if (pr->pr_domain->dom_family == PF_INET && 253 pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW) 254 ip_protox[pr->pr_protocol] = pr - inetsw; 255 256 for (i = 0; i < IPREASS_NHASH; i++) 257 TAILQ_INIT(&ipq[i]); 258 259 maxnipq = nmbclusters / 4; 260 261 #ifndef RANDOM_IP_ID 262 ip_id = time_second & 0xffff; 263 #endif 264 ipintrq.ifq_maxlen = ipqmaxlen; 265 mtx_init(&ipintrq.ifq_mtx, "ip_inq", NULL, MTX_DEF); 266 ipintrq_present = 1; 267 268 register_netisr(NETISR_IP, ipintr); 269 } 270 271 /* 272 * XXX watch out this one. It is perhaps used as a cache for 273 * the most recently used route ? it is cleared in in_addroute() 274 * when a new route is successfully created. 275 */ 276 struct route ipforward_rt; 277 278 /* 279 * Ip input routine. Checksum and byte swap header. If fragmented 280 * try to reassemble. Process options. Pass to next level. 281 */ 282 void 283 ip_input(struct mbuf *m) 284 { 285 struct ip *ip; 286 struct ipq *fp; 287 struct in_ifaddr *ia = NULL; 288 struct ifaddr *ifa; 289 int i, hlen, checkif; 290 u_short sum; 291 struct in_addr pkt_dst; 292 u_int32_t divert_info = 0; /* packet divert/tee info */ 293 struct ip_fw_args args; 294 #ifdef PFIL_HOOKS 295 struct packet_filter_hook *pfh; 296 struct mbuf *m0; 297 int rv; 298 #endif /* PFIL_HOOKS */ 299 #ifdef FAST_IPSEC 300 struct m_tag *mtag; 301 struct tdb_ident *tdbi; 302 struct secpolicy *sp; 303 int s, error; 304 #endif /* FAST_IPSEC */ 305 306 args.eh = NULL; 307 args.oif = NULL; 308 args.rule = NULL; 309 args.divert_rule = 0; /* divert cookie */ 310 args.next_hop = NULL; 311 312 /* Grab info from MT_TAG mbufs prepended to the chain. */ 313 for (; m && m->m_type == MT_TAG; m = m->m_next) { 314 switch(m->_m_tag_id) { 315 default: 316 printf("ip_input: unrecognised MT_TAG tag %d\n", 317 m->_m_tag_id); 318 break; 319 320 case PACKET_TAG_DUMMYNET: 321 args.rule = ((struct dn_pkt *)m)->rule; 322 break; 323 324 case PACKET_TAG_DIVERT: 325 args.divert_rule = (intptr_t)m->m_hdr.mh_data & 0xffff; 326 break; 327 328 case PACKET_TAG_IPFORWARD: 329 args.next_hop = (struct sockaddr_in *)m->m_hdr.mh_data; 330 break; 331 } 332 } 333 334 KASSERT(m != NULL && (m->m_flags & M_PKTHDR) != 0, 335 ("ip_input: no HDR")); 336 337 if (args.rule) { /* dummynet already filtered us */ 338 ip = mtod(m, struct ip *); 339 hlen = ip->ip_hl << 2; 340 goto iphack ; 341 } 342 343 ipstat.ips_total++; 344 345 if (m->m_pkthdr.len < sizeof(struct ip)) 346 goto tooshort; 347 348 if (m->m_len < sizeof (struct ip) && 349 (m = m_pullup(m, sizeof (struct ip))) == 0) { 350 ipstat.ips_toosmall++; 351 return; 352 } 353 ip = mtod(m, struct ip *); 354 355 if (ip->ip_v != IPVERSION) { 356 ipstat.ips_badvers++; 357 goto bad; 358 } 359 360 hlen = ip->ip_hl << 2; 361 if (hlen < sizeof(struct ip)) { /* minimum header length */ 362 ipstat.ips_badhlen++; 363 goto bad; 364 } 365 if (hlen > m->m_len) { 366 if ((m = m_pullup(m, hlen)) == 0) { 367 ipstat.ips_badhlen++; 368 return; 369 } 370 ip = mtod(m, struct ip *); 371 } 372 373 /* 127/8 must not appear on wire - RFC1122 */ 374 if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET || 375 (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) { 376 if ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) { 377 ipstat.ips_badaddr++; 378 goto bad; 379 } 380 } 381 382 if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) { 383 sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID); 384 } else { 385 if (hlen == sizeof(struct ip)) { 386 sum = in_cksum_hdr(ip); 387 } else { 388 sum = in_cksum(m, hlen); 389 } 390 } 391 if (sum) { 392 ipstat.ips_badsum++; 393 goto bad; 394 } 395 396 /* 397 * Convert fields to host representation. 398 */ 399 ip->ip_len = ntohs(ip->ip_len); 400 if (ip->ip_len < hlen) { 401 ipstat.ips_badlen++; 402 goto bad; 403 } 404 ip->ip_off = ntohs(ip->ip_off); 405 406 /* 407 * Check that the amount of data in the buffers 408 * is as at least much as the IP header would have us expect. 409 * Trim mbufs if longer than we expect. 410 * Drop packet if shorter than we expect. 411 */ 412 if (m->m_pkthdr.len < ip->ip_len) { 413 tooshort: 414 ipstat.ips_tooshort++; 415 goto bad; 416 } 417 if (m->m_pkthdr.len > ip->ip_len) { 418 if (m->m_len == m->m_pkthdr.len) { 419 m->m_len = ip->ip_len; 420 m->m_pkthdr.len = ip->ip_len; 421 } else 422 m_adj(m, ip->ip_len - m->m_pkthdr.len); 423 } 424 425 /* 426 * IpHack's section. 427 * Right now when no processing on packet has done 428 * and it is still fresh out of network we do our black 429 * deals with it. 430 * - Firewall: deny/allow/divert 431 * - Xlate: translate packet's addr/port (NAT). 432 * - Pipe: pass pkt through dummynet. 433 * - Wrap: fake packet's addr/port <unimpl.> 434 * - Encapsulate: put it in another IP and send out. <unimp.> 435 */ 436 437 iphack: 438 439 #ifdef PFIL_HOOKS 440 /* 441 * Run through list of hooks for input packets. If there are any 442 * filters which require that additional packets in the flow are 443 * not fast-forwarded, they must clear the M_CANFASTFWD flag. 444 * Note that filters must _never_ set this flag, as another filter 445 * in the list may have previously cleared it. 446 */ 447 m0 = m; 448 pfh = pfil_hook_get(PFIL_IN, &inetsw[ip_protox[IPPROTO_IP]].pr_pfh); 449 for (; pfh; pfh = TAILQ_NEXT(pfh, pfil_link)) 450 if (pfh->pfil_func) { 451 rv = pfh->pfil_func(ip, hlen, 452 m->m_pkthdr.rcvif, 0, &m0); 453 if (rv) 454 return; 455 m = m0; 456 if (m == NULL) 457 return; 458 ip = mtod(m, struct ip *); 459 } 460 #endif /* PFIL_HOOKS */ 461 462 if (fw_enable && IPFW_LOADED) { 463 /* 464 * If we've been forwarded from the output side, then 465 * skip the firewall a second time 466 */ 467 if (args.next_hop) 468 goto ours; 469 470 args.m = m; 471 i = ip_fw_chk_ptr(&args); 472 m = args.m; 473 474 if ( (i & IP_FW_PORT_DENY_FLAG) || m == NULL) { /* drop */ 475 if (m) 476 m_freem(m); 477 return; 478 } 479 ip = mtod(m, struct ip *); /* just in case m changed */ 480 if (i == 0 && args.next_hop == NULL) /* common case */ 481 goto pass; 482 if (DUMMYNET_LOADED && (i & IP_FW_PORT_DYNT_FLAG) != 0) { 483 /* Send packet to the appropriate pipe */ 484 ip_dn_io_ptr(m, i&0xffff, DN_TO_IP_IN, &args); 485 return; 486 } 487 #ifdef IPDIVERT 488 if (i != 0 && (i & IP_FW_PORT_DYNT_FLAG) == 0) { 489 /* Divert or tee packet */ 490 divert_info = i; 491 goto ours; 492 } 493 #endif 494 if (i == 0 && args.next_hop != NULL) 495 goto pass; 496 /* 497 * if we get here, the packet must be dropped 498 */ 499 m_freem(m); 500 return; 501 } 502 pass: 503 504 /* 505 * Process options and, if not destined for us, 506 * ship it on. ip_dooptions returns 1 when an 507 * error was detected (causing an icmp message 508 * to be sent and the original packet to be freed). 509 */ 510 ip_nhops = 0; /* for source routed packets */ 511 if (hlen > sizeof (struct ip) && ip_dooptions(m, 0, args.next_hop)) 512 return; 513 514 /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no 515 * matter if it is destined to another node, or whether it is 516 * a multicast one, RSVP wants it! and prevents it from being forwarded 517 * anywhere else. Also checks if the rsvp daemon is running before 518 * grabbing the packet. 519 */ 520 if (rsvp_on && ip->ip_p==IPPROTO_RSVP) 521 goto ours; 522 523 /* 524 * Check our list of addresses, to see if the packet is for us. 525 * If we don't have any addresses, assume any unicast packet 526 * we receive might be for us (and let the upper layers deal 527 * with it). 528 */ 529 if (TAILQ_EMPTY(&in_ifaddrhead) && 530 (m->m_flags & (M_MCAST|M_BCAST)) == 0) 531 goto ours; 532 533 /* 534 * Cache the destination address of the packet; this may be 535 * changed by use of 'ipfw fwd'. 536 */ 537 pkt_dst = args.next_hop ? args.next_hop->sin_addr : ip->ip_dst; 538 539 /* 540 * Enable a consistency check between the destination address 541 * and the arrival interface for a unicast packet (the RFC 1122 542 * strong ES model) if IP forwarding is disabled and the packet 543 * is not locally generated and the packet is not subject to 544 * 'ipfw fwd'. 545 * 546 * XXX - Checking also should be disabled if the destination 547 * address is ipnat'ed to a different interface. 548 * 549 * XXX - Checking is incompatible with IP aliases added 550 * to the loopback interface instead of the interface where 551 * the packets are received. 552 */ 553 checkif = ip_checkinterface && (ipforwarding == 0) && 554 m->m_pkthdr.rcvif != NULL && 555 ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) && 556 (args.next_hop == NULL); 557 558 /* 559 * Check for exact addresses in the hash bucket. 560 */ 561 LIST_FOREACH(ia, INADDR_HASH(pkt_dst.s_addr), ia_hash) { 562 /* 563 * If the address matches, verify that the packet 564 * arrived via the correct interface if checking is 565 * enabled. 566 */ 567 if (IA_SIN(ia)->sin_addr.s_addr == pkt_dst.s_addr && 568 (!checkif || ia->ia_ifp == m->m_pkthdr.rcvif)) 569 goto ours; 570 } 571 /* 572 * Check for broadcast addresses. 573 * 574 * Only accept broadcast packets that arrive via the matching 575 * interface. Reception of forwarded directed broadcasts would 576 * be handled via ip_forward() and ether_output() with the loopback 577 * into the stack for SIMPLEX interfaces handled by ether_output(). 578 */ 579 if (m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) { 580 TAILQ_FOREACH(ifa, &m->m_pkthdr.rcvif->if_addrhead, ifa_link) { 581 if (ifa->ifa_addr->sa_family != AF_INET) 582 continue; 583 ia = ifatoia(ifa); 584 if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr == 585 pkt_dst.s_addr) 586 goto ours; 587 if (ia->ia_netbroadcast.s_addr == pkt_dst.s_addr) 588 goto ours; 589 #ifdef BOOTP_COMPAT 590 if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY) 591 goto ours; 592 #endif 593 } 594 } 595 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) { 596 struct in_multi *inm; 597 if (ip_mrouter) { 598 /* 599 * If we are acting as a multicast router, all 600 * incoming multicast packets are passed to the 601 * kernel-level multicast forwarding function. 602 * The packet is returned (relatively) intact; if 603 * ip_mforward() returns a non-zero value, the packet 604 * must be discarded, else it may be accepted below. 605 */ 606 if (ip_mforward && 607 ip_mforward(ip, m->m_pkthdr.rcvif, m, 0) != 0) { 608 ipstat.ips_cantforward++; 609 m_freem(m); 610 return; 611 } 612 613 /* 614 * The process-level routing daemon needs to receive 615 * all multicast IGMP packets, whether or not this 616 * host belongs to their destination groups. 617 */ 618 if (ip->ip_p == IPPROTO_IGMP) 619 goto ours; 620 ipstat.ips_forward++; 621 } 622 /* 623 * See if we belong to the destination multicast group on the 624 * arrival interface. 625 */ 626 IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm); 627 if (inm == NULL) { 628 ipstat.ips_notmember++; 629 m_freem(m); 630 return; 631 } 632 goto ours; 633 } 634 if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST) 635 goto ours; 636 if (ip->ip_dst.s_addr == INADDR_ANY) 637 goto ours; 638 639 /* 640 * FAITH(Firewall Aided Internet Translator) 641 */ 642 if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) { 643 if (ip_keepfaith) { 644 if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP) 645 goto ours; 646 } 647 m_freem(m); 648 return; 649 } 650 651 /* 652 * Not for us; forward if possible and desirable. 653 */ 654 if (ipforwarding == 0) { 655 ipstat.ips_cantforward++; 656 m_freem(m); 657 } else { 658 #ifdef IPSEC 659 /* 660 * Enforce inbound IPsec SPD. 661 */ 662 if (ipsec4_in_reject(m, NULL)) { 663 ipsecstat.in_polvio++; 664 goto bad; 665 } 666 #endif /* IPSEC */ 667 #ifdef FAST_IPSEC 668 mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL); 669 s = splnet(); 670 if (mtag != NULL) { 671 tdbi = (struct tdb_ident *)(mtag + 1); 672 sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND); 673 } else { 674 sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND, 675 IP_FORWARDING, &error); 676 } 677 if (sp == NULL) { /* NB: can happen if error */ 678 splx(s); 679 /*XXX error stat???*/ 680 DPRINTF(("ip_input: no SP for forwarding\n")); /*XXX*/ 681 goto bad; 682 } 683 684 /* 685 * Check security policy against packet attributes. 686 */ 687 error = ipsec_in_reject(sp, m); 688 KEY_FREESP(&sp); 689 splx(s); 690 if (error) { 691 ipstat.ips_cantforward++; 692 goto bad; 693 } 694 #endif /* FAST_IPSEC */ 695 ip_forward(m, 0, args.next_hop); 696 } 697 return; 698 699 ours: 700 #ifdef IPSTEALTH 701 /* 702 * IPSTEALTH: Process non-routing options only 703 * if the packet is destined for us. 704 */ 705 if (ipstealth && hlen > sizeof (struct ip) && 706 ip_dooptions(m, 1, args.next_hop)) 707 return; 708 #endif /* IPSTEALTH */ 709 710 /* Count the packet in the ip address stats */ 711 if (ia != NULL) { 712 ia->ia_ifa.if_ipackets++; 713 ia->ia_ifa.if_ibytes += m->m_pkthdr.len; 714 } 715 716 /* 717 * If offset or IP_MF are set, must reassemble. 718 * Otherwise, nothing need be done. 719 * (We could look in the reassembly queue to see 720 * if the packet was previously fragmented, 721 * but it's not worth the time; just let them time out.) 722 */ 723 if (ip->ip_off & (IP_MF | IP_OFFMASK)) { 724 725 if (maxnipq == 0) { 726 ipstat.ips_fragments++; 727 ipstat.ips_fragdropped++; 728 goto bad; 729 } 730 731 sum = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id); 732 /* 733 * Look for queue of fragments 734 * of this datagram. 735 */ 736 TAILQ_FOREACH(fp, &ipq[sum], ipq_list) 737 if (ip->ip_id == fp->ipq_id && 738 ip->ip_src.s_addr == fp->ipq_src.s_addr && 739 ip->ip_dst.s_addr == fp->ipq_dst.s_addr && 740 #ifdef MAC 741 mac_fragment_match(m, fp) && 742 #endif 743 ip->ip_p == fp->ipq_p) 744 goto found; 745 746 fp = 0; 747 748 /* 749 * Enforce upper bound on number of fragmented packets 750 * for which we attempt reassembly; 751 * If maxnipq is 0, never accept fragments. (Handled above.) 752 * If maxnipq is -1, accept all fragments without limitation. 753 */ 754 if ((nipq > maxnipq) && (maxnipq > 0)) { 755 /* 756 * drop something from the tail of the current queue 757 * before proceeding further 758 */ 759 struct ipq *q = TAILQ_LAST(&ipq[sum], ipqhead); 760 if (q == NULL) { /* gak */ 761 for (i = 0; i < IPREASS_NHASH; i++) { 762 struct ipq *r = TAILQ_LAST(&ipq[i], ipqhead); 763 if (r) { 764 ip_freef(&ipq[i], r); 765 ipstat.ips_fragtimeout++; 766 break; 767 } 768 } 769 } else { 770 ip_freef(&ipq[sum], q); 771 ipstat.ips_fragtimeout++; 772 } 773 } 774 found: 775 /* 776 * Adjust ip_len to not reflect header, 777 * convert offset of this to bytes. 778 */ 779 ip->ip_len -= hlen; 780 if (ip->ip_off & IP_MF) { 781 /* 782 * Make sure that fragments have a data length 783 * that's a non-zero multiple of 8 bytes. 784 */ 785 if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) { 786 ipstat.ips_toosmall++; /* XXX */ 787 goto bad; 788 } 789 m->m_flags |= M_FRAG; 790 } else 791 m->m_flags &= ~M_FRAG; 792 ip->ip_off <<= 3; 793 794 /* 795 * Attempt reassembly; if it succeeds, proceed. 796 * ip_reass() will return a different mbuf, and update 797 * the divert info in divert_info and args.divert_rule. 798 */ 799 ipstat.ips_fragments++; 800 m->m_pkthdr.header = ip; 801 m = ip_reass(m, 802 &ipq[sum], fp, &divert_info, &args.divert_rule); 803 if (m == 0) 804 return; 805 ipstat.ips_reassembled++; 806 ip = mtod(m, struct ip *); 807 /* Get the header length of the reassembled packet */ 808 hlen = ip->ip_hl << 2; 809 #ifdef IPDIVERT 810 /* Restore original checksum before diverting packet */ 811 if (divert_info != 0) { 812 ip->ip_len += hlen; 813 ip->ip_len = htons(ip->ip_len); 814 ip->ip_off = htons(ip->ip_off); 815 ip->ip_sum = 0; 816 if (hlen == sizeof(struct ip)) 817 ip->ip_sum = in_cksum_hdr(ip); 818 else 819 ip->ip_sum = in_cksum(m, hlen); 820 ip->ip_off = ntohs(ip->ip_off); 821 ip->ip_len = ntohs(ip->ip_len); 822 ip->ip_len -= hlen; 823 } 824 #endif 825 } else 826 ip->ip_len -= hlen; 827 828 #ifdef IPDIVERT 829 /* 830 * Divert or tee packet to the divert protocol if required. 831 */ 832 if (divert_info != 0) { 833 struct mbuf *clone = NULL; 834 835 /* Clone packet if we're doing a 'tee' */ 836 if ((divert_info & IP_FW_PORT_TEE_FLAG) != 0) 837 clone = m_dup(m, M_NOWAIT); 838 839 /* Restore packet header fields to original values */ 840 ip->ip_len += hlen; 841 ip->ip_len = htons(ip->ip_len); 842 ip->ip_off = htons(ip->ip_off); 843 844 /* Deliver packet to divert input routine */ 845 divert_packet(m, 1, divert_info & 0xffff, args.divert_rule); 846 ipstat.ips_delivered++; 847 848 /* If 'tee', continue with original packet */ 849 if (clone == NULL) 850 return; 851 m = clone; 852 ip = mtod(m, struct ip *); 853 ip->ip_len += hlen; 854 /* 855 * Jump backwards to complete processing of the 856 * packet. But first clear divert_info to avoid 857 * entering this block again. 858 * We do not need to clear args.divert_rule 859 * or args.next_hop as they will not be used. 860 */ 861 divert_info = 0; 862 goto pass; 863 } 864 #endif 865 866 #ifdef IPSEC 867 /* 868 * enforce IPsec policy checking if we are seeing last header. 869 * note that we do not visit this with protocols with pcb layer 870 * code - like udp/tcp/raw ip. 871 */ 872 if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0 && 873 ipsec4_in_reject(m, NULL)) { 874 ipsecstat.in_polvio++; 875 goto bad; 876 } 877 #endif 878 #if FAST_IPSEC 879 /* 880 * enforce IPsec policy checking if we are seeing last header. 881 * note that we do not visit this with protocols with pcb layer 882 * code - like udp/tcp/raw ip. 883 */ 884 if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0) { 885 /* 886 * Check if the packet has already had IPsec processing 887 * done. If so, then just pass it along. This tag gets 888 * set during AH, ESP, etc. input handling, before the 889 * packet is returned to the ip input queue for delivery. 890 */ 891 mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL); 892 s = splnet(); 893 if (mtag != NULL) { 894 tdbi = (struct tdb_ident *)(mtag + 1); 895 sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND); 896 } else { 897 sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND, 898 IP_FORWARDING, &error); 899 } 900 if (sp != NULL) { 901 /* 902 * Check security policy against packet attributes. 903 */ 904 error = ipsec_in_reject(sp, m); 905 KEY_FREESP(&sp); 906 } else { 907 /* XXX error stat??? */ 908 error = EINVAL; 909 DPRINTF(("ip_input: no SP, packet discarded\n"));/*XXX*/ 910 goto bad; 911 } 912 splx(s); 913 if (error) 914 goto bad; 915 } 916 #endif /* FAST_IPSEC */ 917 918 /* 919 * Switch out to protocol's input routine. 920 */ 921 ipstat.ips_delivered++; 922 if (args.next_hop && ip->ip_p == IPPROTO_TCP) { 923 /* TCP needs IPFORWARD info if available */ 924 struct m_hdr tag; 925 926 tag.mh_type = MT_TAG; 927 tag.mh_flags = PACKET_TAG_IPFORWARD; 928 tag.mh_data = (caddr_t)args.next_hop; 929 tag.mh_next = m; 930 931 (*inetsw[ip_protox[ip->ip_p]].pr_input)( 932 (struct mbuf *)&tag, hlen); 933 } else 934 (*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen); 935 return; 936 bad: 937 m_freem(m); 938 } 939 940 /* 941 * IP software interrupt routine - to go away sometime soon 942 */ 943 static void 944 ipintr(void) 945 { 946 struct mbuf *m; 947 948 while (1) { 949 IF_DEQUEUE(&ipintrq, m); 950 if (m == 0) 951 return; 952 ip_input(m); 953 } 954 } 955 956 /* 957 * Take incoming datagram fragment and try to reassemble it into 958 * whole datagram. If a chain for reassembly of this datagram already 959 * exists, then it is given as fp; otherwise have to make a chain. 960 * 961 * When IPDIVERT enabled, keep additional state with each packet that 962 * tells us if we need to divert or tee the packet we're building. 963 * In particular, *divinfo includes the port and TEE flag, 964 * *divert_rule is the number of the matching rule. 965 */ 966 967 static struct mbuf * 968 ip_reass(struct mbuf *m, struct ipqhead *head, struct ipq *fp, 969 u_int32_t *divinfo, u_int16_t *divert_rule) 970 { 971 struct ip *ip = mtod(m, struct ip *); 972 register struct mbuf *p, *q, *nq; 973 struct mbuf *t; 974 int hlen = ip->ip_hl << 2; 975 int i, next; 976 977 /* 978 * Presence of header sizes in mbufs 979 * would confuse code below. 980 */ 981 m->m_data += hlen; 982 m->m_len -= hlen; 983 984 /* 985 * If first fragment to arrive, create a reassembly queue. 986 */ 987 if (fp == 0) { 988 if ((t = m_get(M_NOWAIT, MT_FTABLE)) == NULL) 989 goto dropfrag; 990 fp = mtod(t, struct ipq *); 991 #ifdef MAC 992 mac_init_ipq(fp); 993 mac_create_ipq(m, fp); 994 #endif 995 TAILQ_INSERT_HEAD(head, fp, ipq_list); 996 nipq++; 997 fp->ipq_ttl = IPFRAGTTL; 998 fp->ipq_p = ip->ip_p; 999 fp->ipq_id = ip->ip_id; 1000 fp->ipq_src = ip->ip_src; 1001 fp->ipq_dst = ip->ip_dst; 1002 fp->ipq_frags = m; 1003 m->m_nextpkt = NULL; 1004 #ifdef IPDIVERT 1005 fp->ipq_div_info = 0; 1006 fp->ipq_div_cookie = 0; 1007 #endif 1008 goto inserted; 1009 } else { 1010 #ifdef MAC 1011 mac_update_ipq(m, fp); 1012 #endif 1013 } 1014 1015 #define GETIP(m) ((struct ip*)((m)->m_pkthdr.header)) 1016 1017 /* 1018 * Find a segment which begins after this one does. 1019 */ 1020 for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) 1021 if (GETIP(q)->ip_off > ip->ip_off) 1022 break; 1023 1024 /* 1025 * If there is a preceding segment, it may provide some of 1026 * our data already. If so, drop the data from the incoming 1027 * segment. If it provides all of our data, drop us, otherwise 1028 * stick new segment in the proper place. 1029 * 1030 * If some of the data is dropped from the the preceding 1031 * segment, then it's checksum is invalidated. 1032 */ 1033 if (p) { 1034 i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off; 1035 if (i > 0) { 1036 if (i >= ip->ip_len) 1037 goto dropfrag; 1038 m_adj(m, i); 1039 m->m_pkthdr.csum_flags = 0; 1040 ip->ip_off += i; 1041 ip->ip_len -= i; 1042 } 1043 m->m_nextpkt = p->m_nextpkt; 1044 p->m_nextpkt = m; 1045 } else { 1046 m->m_nextpkt = fp->ipq_frags; 1047 fp->ipq_frags = m; 1048 } 1049 1050 /* 1051 * While we overlap succeeding segments trim them or, 1052 * if they are completely covered, dequeue them. 1053 */ 1054 for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off; 1055 q = nq) { 1056 i = (ip->ip_off + ip->ip_len) - 1057 GETIP(q)->ip_off; 1058 if (i < GETIP(q)->ip_len) { 1059 GETIP(q)->ip_len -= i; 1060 GETIP(q)->ip_off += i; 1061 m_adj(q, i); 1062 q->m_pkthdr.csum_flags = 0; 1063 break; 1064 } 1065 nq = q->m_nextpkt; 1066 m->m_nextpkt = nq; 1067 m_freem(q); 1068 } 1069 1070 inserted: 1071 1072 #ifdef IPDIVERT 1073 /* 1074 * Transfer firewall instructions to the fragment structure. 1075 * Only trust info in the fragment at offset 0. 1076 */ 1077 if (ip->ip_off == 0) { 1078 fp->ipq_div_info = *divinfo; 1079 fp->ipq_div_cookie = *divert_rule; 1080 } 1081 *divinfo = 0; 1082 *divert_rule = 0; 1083 #endif 1084 1085 /* 1086 * Check for complete reassembly. 1087 */ 1088 next = 0; 1089 for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) { 1090 if (GETIP(q)->ip_off != next) 1091 return (0); 1092 next += GETIP(q)->ip_len; 1093 } 1094 /* Make sure the last packet didn't have the IP_MF flag */ 1095 if (p->m_flags & M_FRAG) 1096 return (0); 1097 1098 /* 1099 * Reassembly is complete. Make sure the packet is a sane size. 1100 */ 1101 q = fp->ipq_frags; 1102 ip = GETIP(q); 1103 if (next + (ip->ip_hl << 2) > IP_MAXPACKET) { 1104 ipstat.ips_toolong++; 1105 ip_freef(head, fp); 1106 return (0); 1107 } 1108 1109 /* 1110 * Concatenate fragments. 1111 */ 1112 m = q; 1113 t = m->m_next; 1114 m->m_next = 0; 1115 m_cat(m, t); 1116 nq = q->m_nextpkt; 1117 q->m_nextpkt = 0; 1118 for (q = nq; q != NULL; q = nq) { 1119 nq = q->m_nextpkt; 1120 q->m_nextpkt = NULL; 1121 m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags; 1122 m->m_pkthdr.csum_data += q->m_pkthdr.csum_data; 1123 m_cat(m, q); 1124 } 1125 #ifdef MAC 1126 mac_create_datagram_from_ipq(fp, m); 1127 mac_destroy_ipq(fp); 1128 #endif 1129 1130 #ifdef IPDIVERT 1131 /* 1132 * Extract firewall instructions from the fragment structure. 1133 */ 1134 *divinfo = fp->ipq_div_info; 1135 *divert_rule = fp->ipq_div_cookie; 1136 #endif 1137 1138 /* 1139 * Create header for new ip packet by 1140 * modifying header of first packet; 1141 * dequeue and discard fragment reassembly header. 1142 * Make header visible. 1143 */ 1144 ip->ip_len = next; 1145 ip->ip_src = fp->ipq_src; 1146 ip->ip_dst = fp->ipq_dst; 1147 TAILQ_REMOVE(head, fp, ipq_list); 1148 nipq--; 1149 (void) m_free(dtom(fp)); 1150 m->m_len += (ip->ip_hl << 2); 1151 m->m_data -= (ip->ip_hl << 2); 1152 /* some debugging cruft by sklower, below, will go away soon */ 1153 if (m->m_flags & M_PKTHDR) /* XXX this should be done elsewhere */ 1154 m_fixhdr(m); 1155 return (m); 1156 1157 dropfrag: 1158 #ifdef IPDIVERT 1159 *divinfo = 0; 1160 *divert_rule = 0; 1161 #endif 1162 ipstat.ips_fragdropped++; 1163 m_freem(m); 1164 return (0); 1165 1166 #undef GETIP 1167 } 1168 1169 /* 1170 * Free a fragment reassembly header and all 1171 * associated datagrams. 1172 */ 1173 static void 1174 ip_freef(fhp, fp) 1175 struct ipqhead *fhp; 1176 struct ipq *fp; 1177 { 1178 register struct mbuf *q; 1179 1180 while (fp->ipq_frags) { 1181 q = fp->ipq_frags; 1182 fp->ipq_frags = q->m_nextpkt; 1183 m_freem(q); 1184 } 1185 TAILQ_REMOVE(fhp, fp, ipq_list); 1186 (void) m_free(dtom(fp)); 1187 nipq--; 1188 } 1189 1190 /* 1191 * IP timer processing; 1192 * if a timer expires on a reassembly 1193 * queue, discard it. 1194 */ 1195 void 1196 ip_slowtimo() 1197 { 1198 register struct ipq *fp; 1199 int s = splnet(); 1200 int i; 1201 1202 for (i = 0; i < IPREASS_NHASH; i++) { 1203 for(fp = TAILQ_FIRST(&ipq[i]); fp;) { 1204 struct ipq *fpp; 1205 1206 fpp = fp; 1207 fp = TAILQ_NEXT(fp, ipq_list); 1208 if(--fpp->ipq_ttl == 0) { 1209 ipstat.ips_fragtimeout++; 1210 ip_freef(&ipq[i], fpp); 1211 } 1212 } 1213 } 1214 /* 1215 * If we are over the maximum number of fragments 1216 * (due to the limit being lowered), drain off 1217 * enough to get down to the new limit. 1218 */ 1219 for (i = 0; i < IPREASS_NHASH; i++) { 1220 if (maxnipq >= 0) { 1221 while (nipq > maxnipq && 1222 !TAILQ_EMPTY(&ipq[i])) { 1223 ipstat.ips_fragdropped++; 1224 ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i])); 1225 } 1226 } 1227 } 1228 ipflow_slowtimo(); 1229 splx(s); 1230 } 1231 1232 /* 1233 * Drain off all datagram fragments. 1234 */ 1235 void 1236 ip_drain() 1237 { 1238 int i; 1239 1240 for (i = 0; i < IPREASS_NHASH; i++) { 1241 while(!TAILQ_EMPTY(&ipq[i])) { 1242 ipstat.ips_fragdropped++; 1243 ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i])); 1244 } 1245 } 1246 in_rtqdrain(); 1247 } 1248 1249 /* 1250 * Do option processing on a datagram, 1251 * possibly discarding it if bad options are encountered, 1252 * or forwarding it if source-routed. 1253 * The pass argument is used when operating in the IPSTEALTH 1254 * mode to tell what options to process: 1255 * [LS]SRR (pass 0) or the others (pass 1). 1256 * The reason for as many as two passes is that when doing IPSTEALTH, 1257 * non-routing options should be processed only if the packet is for us. 1258 * Returns 1 if packet has been forwarded/freed, 1259 * 0 if the packet should be processed further. 1260 */ 1261 static int 1262 ip_dooptions(struct mbuf *m, int pass, struct sockaddr_in *next_hop) 1263 { 1264 struct ip *ip = mtod(m, struct ip *); 1265 u_char *cp; 1266 struct in_ifaddr *ia; 1267 int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0; 1268 struct in_addr *sin, dst; 1269 n_time ntime; 1270 struct sockaddr_in ipaddr = { sizeof(ipaddr), AF_INET }; 1271 1272 dst = ip->ip_dst; 1273 cp = (u_char *)(ip + 1); 1274 cnt = (ip->ip_hl << 2) - sizeof (struct ip); 1275 for (; cnt > 0; cnt -= optlen, cp += optlen) { 1276 opt = cp[IPOPT_OPTVAL]; 1277 if (opt == IPOPT_EOL) 1278 break; 1279 if (opt == IPOPT_NOP) 1280 optlen = 1; 1281 else { 1282 if (cnt < IPOPT_OLEN + sizeof(*cp)) { 1283 code = &cp[IPOPT_OLEN] - (u_char *)ip; 1284 goto bad; 1285 } 1286 optlen = cp[IPOPT_OLEN]; 1287 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) { 1288 code = &cp[IPOPT_OLEN] - (u_char *)ip; 1289 goto bad; 1290 } 1291 } 1292 switch (opt) { 1293 1294 default: 1295 break; 1296 1297 /* 1298 * Source routing with record. 1299 * Find interface with current destination address. 1300 * If none on this machine then drop if strictly routed, 1301 * or do nothing if loosely routed. 1302 * Record interface address and bring up next address 1303 * component. If strictly routed make sure next 1304 * address is on directly accessible net. 1305 */ 1306 case IPOPT_LSRR: 1307 case IPOPT_SSRR: 1308 #ifdef IPSTEALTH 1309 if (ipstealth && pass > 0) 1310 break; 1311 #endif 1312 if (optlen < IPOPT_OFFSET + sizeof(*cp)) { 1313 code = &cp[IPOPT_OLEN] - (u_char *)ip; 1314 goto bad; 1315 } 1316 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) { 1317 code = &cp[IPOPT_OFFSET] - (u_char *)ip; 1318 goto bad; 1319 } 1320 ipaddr.sin_addr = ip->ip_dst; 1321 ia = (struct in_ifaddr *) 1322 ifa_ifwithaddr((struct sockaddr *)&ipaddr); 1323 if (ia == 0) { 1324 if (opt == IPOPT_SSRR) { 1325 type = ICMP_UNREACH; 1326 code = ICMP_UNREACH_SRCFAIL; 1327 goto bad; 1328 } 1329 if (!ip_dosourceroute) 1330 goto nosourcerouting; 1331 /* 1332 * Loose routing, and not at next destination 1333 * yet; nothing to do except forward. 1334 */ 1335 break; 1336 } 1337 off--; /* 0 origin */ 1338 if (off > optlen - (int)sizeof(struct in_addr)) { 1339 /* 1340 * End of source route. Should be for us. 1341 */ 1342 if (!ip_acceptsourceroute) 1343 goto nosourcerouting; 1344 save_rte(cp, ip->ip_src); 1345 break; 1346 } 1347 #ifdef IPSTEALTH 1348 if (ipstealth) 1349 goto dropit; 1350 #endif 1351 if (!ip_dosourceroute) { 1352 if (ipforwarding) { 1353 char buf[16]; /* aaa.bbb.ccc.ddd\0 */ 1354 /* 1355 * Acting as a router, so generate ICMP 1356 */ 1357 nosourcerouting: 1358 strcpy(buf, inet_ntoa(ip->ip_dst)); 1359 log(LOG_WARNING, 1360 "attempted source route from %s to %s\n", 1361 inet_ntoa(ip->ip_src), buf); 1362 type = ICMP_UNREACH; 1363 code = ICMP_UNREACH_SRCFAIL; 1364 goto bad; 1365 } else { 1366 /* 1367 * Not acting as a router, so silently drop. 1368 */ 1369 #ifdef IPSTEALTH 1370 dropit: 1371 #endif 1372 ipstat.ips_cantforward++; 1373 m_freem(m); 1374 return (1); 1375 } 1376 } 1377 1378 /* 1379 * locate outgoing interface 1380 */ 1381 (void)memcpy(&ipaddr.sin_addr, cp + off, 1382 sizeof(ipaddr.sin_addr)); 1383 1384 if (opt == IPOPT_SSRR) { 1385 #define INA struct in_ifaddr * 1386 #define SA struct sockaddr * 1387 if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr)) == 0) 1388 ia = (INA)ifa_ifwithnet((SA)&ipaddr); 1389 } else 1390 ia = ip_rtaddr(ipaddr.sin_addr, &ipforward_rt); 1391 if (ia == 0) { 1392 type = ICMP_UNREACH; 1393 code = ICMP_UNREACH_SRCFAIL; 1394 goto bad; 1395 } 1396 ip->ip_dst = ipaddr.sin_addr; 1397 (void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr), 1398 sizeof(struct in_addr)); 1399 cp[IPOPT_OFFSET] += sizeof(struct in_addr); 1400 /* 1401 * Let ip_intr's mcast routing check handle mcast pkts 1402 */ 1403 forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr)); 1404 break; 1405 1406 case IPOPT_RR: 1407 #ifdef IPSTEALTH 1408 if (ipstealth && pass == 0) 1409 break; 1410 #endif 1411 if (optlen < IPOPT_OFFSET + sizeof(*cp)) { 1412 code = &cp[IPOPT_OFFSET] - (u_char *)ip; 1413 goto bad; 1414 } 1415 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) { 1416 code = &cp[IPOPT_OFFSET] - (u_char *)ip; 1417 goto bad; 1418 } 1419 /* 1420 * If no space remains, ignore. 1421 */ 1422 off--; /* 0 origin */ 1423 if (off > optlen - (int)sizeof(struct in_addr)) 1424 break; 1425 (void)memcpy(&ipaddr.sin_addr, &ip->ip_dst, 1426 sizeof(ipaddr.sin_addr)); 1427 /* 1428 * locate outgoing interface; if we're the destination, 1429 * use the incoming interface (should be same). 1430 */ 1431 if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == 0 && 1432 (ia = ip_rtaddr(ipaddr.sin_addr, 1433 &ipforward_rt)) == 0) { 1434 type = ICMP_UNREACH; 1435 code = ICMP_UNREACH_HOST; 1436 goto bad; 1437 } 1438 (void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr), 1439 sizeof(struct in_addr)); 1440 cp[IPOPT_OFFSET] += sizeof(struct in_addr); 1441 break; 1442 1443 case IPOPT_TS: 1444 #ifdef IPSTEALTH 1445 if (ipstealth && pass == 0) 1446 break; 1447 #endif 1448 code = cp - (u_char *)ip; 1449 if (optlen < 4 || optlen > 40) { 1450 code = &cp[IPOPT_OLEN] - (u_char *)ip; 1451 goto bad; 1452 } 1453 if ((off = cp[IPOPT_OFFSET]) < 5) { 1454 code = &cp[IPOPT_OLEN] - (u_char *)ip; 1455 goto bad; 1456 } 1457 if (off > optlen - (int)sizeof(int32_t)) { 1458 cp[IPOPT_OFFSET + 1] += (1 << 4); 1459 if ((cp[IPOPT_OFFSET + 1] & 0xf0) == 0) { 1460 code = &cp[IPOPT_OFFSET] - (u_char *)ip; 1461 goto bad; 1462 } 1463 break; 1464 } 1465 off--; /* 0 origin */ 1466 sin = (struct in_addr *)(cp + off); 1467 switch (cp[IPOPT_OFFSET + 1] & 0x0f) { 1468 1469 case IPOPT_TS_TSONLY: 1470 break; 1471 1472 case IPOPT_TS_TSANDADDR: 1473 if (off + sizeof(n_time) + 1474 sizeof(struct in_addr) > optlen) { 1475 code = &cp[IPOPT_OFFSET] - (u_char *)ip; 1476 goto bad; 1477 } 1478 ipaddr.sin_addr = dst; 1479 ia = (INA)ifaof_ifpforaddr((SA)&ipaddr, 1480 m->m_pkthdr.rcvif); 1481 if (ia == 0) 1482 continue; 1483 (void)memcpy(sin, &IA_SIN(ia)->sin_addr, 1484 sizeof(struct in_addr)); 1485 cp[IPOPT_OFFSET] += sizeof(struct in_addr); 1486 off += sizeof(struct in_addr); 1487 break; 1488 1489 case IPOPT_TS_PRESPEC: 1490 if (off + sizeof(n_time) + 1491 sizeof(struct in_addr) > optlen) { 1492 code = &cp[IPOPT_OFFSET] - (u_char *)ip; 1493 goto bad; 1494 } 1495 (void)memcpy(&ipaddr.sin_addr, sin, 1496 sizeof(struct in_addr)); 1497 if (ifa_ifwithaddr((SA)&ipaddr) == 0) 1498 continue; 1499 cp[IPOPT_OFFSET] += sizeof(struct in_addr); 1500 off += sizeof(struct in_addr); 1501 break; 1502 1503 default: 1504 code = &cp[IPOPT_OFFSET + 1] - (u_char *)ip; 1505 goto bad; 1506 } 1507 ntime = iptime(); 1508 (void)memcpy(cp + off, &ntime, sizeof(n_time)); 1509 cp[IPOPT_OFFSET] += sizeof(n_time); 1510 } 1511 } 1512 if (forward && ipforwarding) { 1513 ip_forward(m, 1, next_hop); 1514 return (1); 1515 } 1516 return (0); 1517 bad: 1518 icmp_error(m, type, code, 0, 0); 1519 ipstat.ips_badoptions++; 1520 return (1); 1521 } 1522 1523 /* 1524 * Given address of next destination (final or next hop), 1525 * return internet address info of interface to be used to get there. 1526 */ 1527 struct in_ifaddr * 1528 ip_rtaddr(dst, rt) 1529 struct in_addr dst; 1530 struct route *rt; 1531 { 1532 register struct sockaddr_in *sin; 1533 1534 sin = (struct sockaddr_in *)&rt->ro_dst; 1535 1536 if (rt->ro_rt == 0 || 1537 !(rt->ro_rt->rt_flags & RTF_UP) || 1538 dst.s_addr != sin->sin_addr.s_addr) { 1539 if (rt->ro_rt) { 1540 RTFREE(rt->ro_rt); 1541 rt->ro_rt = 0; 1542 } 1543 sin->sin_family = AF_INET; 1544 sin->sin_len = sizeof(*sin); 1545 sin->sin_addr = dst; 1546 1547 rtalloc_ign(rt, RTF_PRCLONING); 1548 } 1549 if (rt->ro_rt == 0) 1550 return ((struct in_ifaddr *)0); 1551 return (ifatoia(rt->ro_rt->rt_ifa)); 1552 } 1553 1554 /* 1555 * Save incoming source route for use in replies, 1556 * to be picked up later by ip_srcroute if the receiver is interested. 1557 */ 1558 static void 1559 save_rte(option, dst) 1560 u_char *option; 1561 struct in_addr dst; 1562 { 1563 unsigned olen; 1564 1565 olen = option[IPOPT_OLEN]; 1566 #ifdef DIAGNOSTIC 1567 if (ipprintfs) 1568 printf("save_rte: olen %d\n", olen); 1569 #endif 1570 if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst))) 1571 return; 1572 bcopy(option, ip_srcrt.srcopt, olen); 1573 ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr); 1574 ip_srcrt.dst = dst; 1575 } 1576 1577 /* 1578 * Retrieve incoming source route for use in replies, 1579 * in the same form used by setsockopt. 1580 * The first hop is placed before the options, will be removed later. 1581 */ 1582 struct mbuf * 1583 ip_srcroute() 1584 { 1585 register struct in_addr *p, *q; 1586 register struct mbuf *m; 1587 1588 if (ip_nhops == 0) 1589 return ((struct mbuf *)0); 1590 m = m_get(M_NOWAIT, MT_HEADER); 1591 if (m == 0) 1592 return ((struct mbuf *)0); 1593 1594 #define OPTSIZ (sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt)) 1595 1596 /* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */ 1597 m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) + 1598 OPTSIZ; 1599 #ifdef DIAGNOSTIC 1600 if (ipprintfs) 1601 printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len); 1602 #endif 1603 1604 /* 1605 * First save first hop for return route 1606 */ 1607 p = &ip_srcrt.route[ip_nhops - 1]; 1608 *(mtod(m, struct in_addr *)) = *p--; 1609 #ifdef DIAGNOSTIC 1610 if (ipprintfs) 1611 printf(" hops %lx", (u_long)ntohl(mtod(m, struct in_addr *)->s_addr)); 1612 #endif 1613 1614 /* 1615 * Copy option fields and padding (nop) to mbuf. 1616 */ 1617 ip_srcrt.nop = IPOPT_NOP; 1618 ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF; 1619 (void)memcpy(mtod(m, caddr_t) + sizeof(struct in_addr), 1620 &ip_srcrt.nop, OPTSIZ); 1621 q = (struct in_addr *)(mtod(m, caddr_t) + 1622 sizeof(struct in_addr) + OPTSIZ); 1623 #undef OPTSIZ 1624 /* 1625 * Record return path as an IP source route, 1626 * reversing the path (pointers are now aligned). 1627 */ 1628 while (p >= ip_srcrt.route) { 1629 #ifdef DIAGNOSTIC 1630 if (ipprintfs) 1631 printf(" %lx", (u_long)ntohl(q->s_addr)); 1632 #endif 1633 *q++ = *p--; 1634 } 1635 /* 1636 * Last hop goes to final destination. 1637 */ 1638 *q = ip_srcrt.dst; 1639 #ifdef DIAGNOSTIC 1640 if (ipprintfs) 1641 printf(" %lx\n", (u_long)ntohl(q->s_addr)); 1642 #endif 1643 return (m); 1644 } 1645 1646 /* 1647 * Strip out IP options, at higher 1648 * level protocol in the kernel. 1649 * Second argument is buffer to which options 1650 * will be moved, and return value is their length. 1651 * XXX should be deleted; last arg currently ignored. 1652 */ 1653 void 1654 ip_stripoptions(m, mopt) 1655 register struct mbuf *m; 1656 struct mbuf *mopt; 1657 { 1658 register int i; 1659 struct ip *ip = mtod(m, struct ip *); 1660 register caddr_t opts; 1661 int olen; 1662 1663 olen = (ip->ip_hl << 2) - sizeof (struct ip); 1664 opts = (caddr_t)(ip + 1); 1665 i = m->m_len - (sizeof (struct ip) + olen); 1666 bcopy(opts + olen, opts, (unsigned)i); 1667 m->m_len -= olen; 1668 if (m->m_flags & M_PKTHDR) 1669 m->m_pkthdr.len -= olen; 1670 ip->ip_v = IPVERSION; 1671 ip->ip_hl = sizeof(struct ip) >> 2; 1672 } 1673 1674 u_char inetctlerrmap[PRC_NCMDS] = { 1675 0, 0, 0, 0, 1676 0, EMSGSIZE, EHOSTDOWN, EHOSTUNREACH, 1677 EHOSTUNREACH, EHOSTUNREACH, ECONNREFUSED, ECONNREFUSED, 1678 EMSGSIZE, EHOSTUNREACH, 0, 0, 1679 0, 0, 0, 0, 1680 ENOPROTOOPT, ECONNREFUSED 1681 }; 1682 1683 /* 1684 * Forward a packet. If some error occurs return the sender 1685 * an icmp packet. Note we can't always generate a meaningful 1686 * icmp message because icmp doesn't have a large enough repertoire 1687 * of codes and types. 1688 * 1689 * If not forwarding, just drop the packet. This could be confusing 1690 * if ipforwarding was zero but some routing protocol was advancing 1691 * us as a gateway to somewhere. However, we must let the routing 1692 * protocol deal with that. 1693 * 1694 * The srcrt parameter indicates whether the packet is being forwarded 1695 * via a source route. 1696 */ 1697 static void 1698 ip_forward(struct mbuf *m, int srcrt, struct sockaddr_in *next_hop) 1699 { 1700 struct ip *ip = mtod(m, struct ip *); 1701 struct rtentry *rt; 1702 int error, type = 0, code = 0; 1703 struct mbuf *mcopy; 1704 n_long dest; 1705 struct in_addr pkt_dst; 1706 struct ifnet *destifp; 1707 #if defined(IPSEC) || defined(FAST_IPSEC) 1708 struct ifnet dummyifp; 1709 #endif 1710 1711 dest = 0; 1712 /* 1713 * Cache the destination address of the packet; this may be 1714 * changed by use of 'ipfw fwd'. 1715 */ 1716 pkt_dst = next_hop ? next_hop->sin_addr : ip->ip_dst; 1717 1718 #ifdef DIAGNOSTIC 1719 if (ipprintfs) 1720 printf("forward: src %lx dst %lx ttl %x\n", 1721 (u_long)ip->ip_src.s_addr, (u_long)pkt_dst.s_addr, 1722 ip->ip_ttl); 1723 #endif 1724 1725 1726 if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(pkt_dst) == 0) { 1727 ipstat.ips_cantforward++; 1728 m_freem(m); 1729 return; 1730 } 1731 #ifdef IPSTEALTH 1732 if (!ipstealth) { 1733 #endif 1734 if (ip->ip_ttl <= IPTTLDEC) { 1735 icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, 1736 dest, 0); 1737 return; 1738 } 1739 #ifdef IPSTEALTH 1740 } 1741 #endif 1742 1743 if (ip_rtaddr(pkt_dst, &ipforward_rt) == 0) { 1744 icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0); 1745 return; 1746 } else 1747 rt = ipforward_rt.ro_rt; 1748 1749 /* 1750 * Save the IP header and at most 8 bytes of the payload, 1751 * in case we need to generate an ICMP message to the src. 1752 * 1753 * XXX this can be optimized a lot by saving the data in a local 1754 * buffer on the stack (72 bytes at most), and only allocating the 1755 * mbuf if really necessary. The vast majority of the packets 1756 * are forwarded without having to send an ICMP back (either 1757 * because unnecessary, or because rate limited), so we are 1758 * really we are wasting a lot of work here. 1759 * 1760 * We don't use m_copy() because it might return a reference 1761 * to a shared cluster. Both this function and ip_output() 1762 * assume exclusive access to the IP header in `m', so any 1763 * data in a cluster may change before we reach icmp_error(). 1764 */ 1765 MGET(mcopy, M_NOWAIT, m->m_type); 1766 if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, M_NOWAIT)) { 1767 /* 1768 * It's probably ok if the pkthdr dup fails (because 1769 * the deep copy of the tag chain failed), but for now 1770 * be conservative and just discard the copy since 1771 * code below may some day want the tags. 1772 */ 1773 m_free(mcopy); 1774 mcopy = NULL; 1775 } 1776 if (mcopy != NULL) { 1777 mcopy->m_len = imin((ip->ip_hl << 2) + 8, 1778 (int)ip->ip_len); 1779 m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t)); 1780 #ifdef MAC 1781 /* 1782 * XXXMAC: This will eventually become an explicit 1783 * labeling point. 1784 */ 1785 mac_create_mbuf_from_mbuf(m, mcopy); 1786 #endif 1787 } 1788 1789 #ifdef IPSTEALTH 1790 if (!ipstealth) { 1791 #endif 1792 ip->ip_ttl -= IPTTLDEC; 1793 #ifdef IPSTEALTH 1794 } 1795 #endif 1796 1797 /* 1798 * If forwarding packet using same interface that it came in on, 1799 * perhaps should send a redirect to sender to shortcut a hop. 1800 * Only send redirect if source is sending directly to us, 1801 * and if packet was not source routed (or has any options). 1802 * Also, don't send redirect if forwarding using a default route 1803 * or a route modified by a redirect. 1804 */ 1805 if (rt->rt_ifp == m->m_pkthdr.rcvif && 1806 (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 && 1807 satosin(rt_key(rt))->sin_addr.s_addr != 0 && 1808 ipsendredirects && !srcrt && !next_hop) { 1809 #define RTA(rt) ((struct in_ifaddr *)(rt->rt_ifa)) 1810 u_long src = ntohl(ip->ip_src.s_addr); 1811 1812 if (RTA(rt) && 1813 (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) { 1814 if (rt->rt_flags & RTF_GATEWAY) 1815 dest = satosin(rt->rt_gateway)->sin_addr.s_addr; 1816 else 1817 dest = pkt_dst.s_addr; 1818 /* Router requirements says to only send host redirects */ 1819 type = ICMP_REDIRECT; 1820 code = ICMP_REDIRECT_HOST; 1821 #ifdef DIAGNOSTIC 1822 if (ipprintfs) 1823 printf("redirect (%d) to %lx\n", code, (u_long)dest); 1824 #endif 1825 } 1826 } 1827 1828 { 1829 struct m_hdr tag; 1830 1831 if (next_hop) { 1832 /* Pass IPFORWARD info if available */ 1833 1834 tag.mh_type = MT_TAG; 1835 tag.mh_flags = PACKET_TAG_IPFORWARD; 1836 tag.mh_data = (caddr_t)next_hop; 1837 tag.mh_next = m; 1838 m = (struct mbuf *)&tag; 1839 } 1840 error = ip_output(m, (struct mbuf *)0, &ipforward_rt, 1841 IP_FORWARDING, 0, NULL); 1842 } 1843 if (error) 1844 ipstat.ips_cantforward++; 1845 else { 1846 ipstat.ips_forward++; 1847 if (type) 1848 ipstat.ips_redirectsent++; 1849 else { 1850 if (mcopy) { 1851 ipflow_create(&ipforward_rt, mcopy); 1852 m_freem(mcopy); 1853 } 1854 return; 1855 } 1856 } 1857 if (mcopy == NULL) 1858 return; 1859 destifp = NULL; 1860 1861 switch (error) { 1862 1863 case 0: /* forwarded, but need redirect */ 1864 /* type, code set above */ 1865 break; 1866 1867 case ENETUNREACH: /* shouldn't happen, checked above */ 1868 case EHOSTUNREACH: 1869 case ENETDOWN: 1870 case EHOSTDOWN: 1871 default: 1872 type = ICMP_UNREACH; 1873 code = ICMP_UNREACH_HOST; 1874 break; 1875 1876 case EMSGSIZE: 1877 type = ICMP_UNREACH; 1878 code = ICMP_UNREACH_NEEDFRAG; 1879 #ifdef IPSEC 1880 /* 1881 * If the packet is routed over IPsec tunnel, tell the 1882 * originator the tunnel MTU. 1883 * tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz 1884 * XXX quickhack!!! 1885 */ 1886 if (ipforward_rt.ro_rt) { 1887 struct secpolicy *sp = NULL; 1888 int ipsecerror; 1889 int ipsechdr; 1890 struct route *ro; 1891 1892 sp = ipsec4_getpolicybyaddr(mcopy, 1893 IPSEC_DIR_OUTBOUND, 1894 IP_FORWARDING, 1895 &ipsecerror); 1896 1897 if (sp == NULL) 1898 destifp = ipforward_rt.ro_rt->rt_ifp; 1899 else { 1900 /* count IPsec header size */ 1901 ipsechdr = ipsec4_hdrsiz(mcopy, 1902 IPSEC_DIR_OUTBOUND, 1903 NULL); 1904 1905 /* 1906 * find the correct route for outer IPv4 1907 * header, compute tunnel MTU. 1908 * 1909 * XXX BUG ALERT 1910 * The "dummyifp" code relies upon the fact 1911 * that icmp_error() touches only ifp->if_mtu. 1912 */ 1913 /*XXX*/ 1914 destifp = NULL; 1915 if (sp->req != NULL 1916 && sp->req->sav != NULL 1917 && sp->req->sav->sah != NULL) { 1918 ro = &sp->req->sav->sah->sa_route; 1919 if (ro->ro_rt && ro->ro_rt->rt_ifp) { 1920 dummyifp.if_mtu = 1921 ro->ro_rt->rt_ifp->if_mtu; 1922 dummyifp.if_mtu -= ipsechdr; 1923 destifp = &dummyifp; 1924 } 1925 } 1926 1927 key_freesp(sp); 1928 } 1929 } 1930 #elif FAST_IPSEC 1931 /* 1932 * If the packet is routed over IPsec tunnel, tell the 1933 * originator the tunnel MTU. 1934 * tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz 1935 * XXX quickhack!!! 1936 */ 1937 if (ipforward_rt.ro_rt) { 1938 struct secpolicy *sp = NULL; 1939 int ipsecerror; 1940 int ipsechdr; 1941 struct route *ro; 1942 1943 sp = ipsec_getpolicybyaddr(mcopy, 1944 IPSEC_DIR_OUTBOUND, 1945 IP_FORWARDING, 1946 &ipsecerror); 1947 1948 if (sp == NULL) 1949 destifp = ipforward_rt.ro_rt->rt_ifp; 1950 else { 1951 /* count IPsec header size */ 1952 ipsechdr = ipsec4_hdrsiz(mcopy, 1953 IPSEC_DIR_OUTBOUND, 1954 NULL); 1955 1956 /* 1957 * find the correct route for outer IPv4 1958 * header, compute tunnel MTU. 1959 * 1960 * XXX BUG ALERT 1961 * The "dummyifp" code relies upon the fact 1962 * that icmp_error() touches only ifp->if_mtu. 1963 */ 1964 /*XXX*/ 1965 destifp = NULL; 1966 if (sp->req != NULL 1967 && sp->req->sav != NULL 1968 && sp->req->sav->sah != NULL) { 1969 ro = &sp->req->sav->sah->sa_route; 1970 if (ro->ro_rt && ro->ro_rt->rt_ifp) { 1971 dummyifp.if_mtu = 1972 ro->ro_rt->rt_ifp->if_mtu; 1973 dummyifp.if_mtu -= ipsechdr; 1974 destifp = &dummyifp; 1975 } 1976 } 1977 1978 KEY_FREESP(&sp); 1979 } 1980 } 1981 #else /* !IPSEC && !FAST_IPSEC */ 1982 if (ipforward_rt.ro_rt) 1983 destifp = ipforward_rt.ro_rt->rt_ifp; 1984 #endif /*IPSEC*/ 1985 ipstat.ips_cantfrag++; 1986 break; 1987 1988 case ENOBUFS: 1989 /* 1990 * A router should not generate ICMP_SOURCEQUENCH as 1991 * required in RFC1812 Requirements for IP Version 4 Routers. 1992 * Source quench could be a big problem under DoS attacks, 1993 * or if the underlying interface is rate-limited. 1994 * Those who need source quench packets may re-enable them 1995 * via the net.inet.ip.sendsourcequench sysctl. 1996 */ 1997 if (ip_sendsourcequench == 0) { 1998 m_freem(mcopy); 1999 return; 2000 } else { 2001 type = ICMP_SOURCEQUENCH; 2002 code = 0; 2003 } 2004 break; 2005 2006 case EACCES: /* ipfw denied packet */ 2007 m_freem(mcopy); 2008 return; 2009 } 2010 icmp_error(mcopy, type, code, dest, destifp); 2011 } 2012 2013 void 2014 ip_savecontrol(inp, mp, ip, m) 2015 register struct inpcb *inp; 2016 register struct mbuf **mp; 2017 register struct ip *ip; 2018 register struct mbuf *m; 2019 { 2020 if (inp->inp_socket->so_options & SO_TIMESTAMP) { 2021 struct timeval tv; 2022 2023 microtime(&tv); 2024 *mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv), 2025 SCM_TIMESTAMP, SOL_SOCKET); 2026 if (*mp) 2027 mp = &(*mp)->m_next; 2028 } 2029 if (inp->inp_flags & INP_RECVDSTADDR) { 2030 *mp = sbcreatecontrol((caddr_t) &ip->ip_dst, 2031 sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP); 2032 if (*mp) 2033 mp = &(*mp)->m_next; 2034 } 2035 #ifdef notyet 2036 /* XXX 2037 * Moving these out of udp_input() made them even more broken 2038 * than they already were. 2039 */ 2040 /* options were tossed already */ 2041 if (inp->inp_flags & INP_RECVOPTS) { 2042 *mp = sbcreatecontrol((caddr_t) opts_deleted_above, 2043 sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP); 2044 if (*mp) 2045 mp = &(*mp)->m_next; 2046 } 2047 /* ip_srcroute doesn't do what we want here, need to fix */ 2048 if (inp->inp_flags & INP_RECVRETOPTS) { 2049 *mp = sbcreatecontrol((caddr_t) ip_srcroute(), 2050 sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP); 2051 if (*mp) 2052 mp = &(*mp)->m_next; 2053 } 2054 #endif 2055 if (inp->inp_flags & INP_RECVIF) { 2056 struct ifnet *ifp; 2057 struct sdlbuf { 2058 struct sockaddr_dl sdl; 2059 u_char pad[32]; 2060 } sdlbuf; 2061 struct sockaddr_dl *sdp; 2062 struct sockaddr_dl *sdl2 = &sdlbuf.sdl; 2063 2064 if (((ifp = m->m_pkthdr.rcvif)) 2065 && ( ifp->if_index && (ifp->if_index <= if_index))) { 2066 sdp = (struct sockaddr_dl *) 2067 (ifaddr_byindex(ifp->if_index)->ifa_addr); 2068 /* 2069 * Change our mind and don't try copy. 2070 */ 2071 if ((sdp->sdl_family != AF_LINK) 2072 || (sdp->sdl_len > sizeof(sdlbuf))) { 2073 goto makedummy; 2074 } 2075 bcopy(sdp, sdl2, sdp->sdl_len); 2076 } else { 2077 makedummy: 2078 sdl2->sdl_len 2079 = offsetof(struct sockaddr_dl, sdl_data[0]); 2080 sdl2->sdl_family = AF_LINK; 2081 sdl2->sdl_index = 0; 2082 sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0; 2083 } 2084 *mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len, 2085 IP_RECVIF, IPPROTO_IP); 2086 if (*mp) 2087 mp = &(*mp)->m_next; 2088 } 2089 } 2090 2091 /* 2092 * XXX these routines are called from the upper part of the kernel. 2093 * They need to be locked when we remove Giant. 2094 * 2095 * They could also be moved to ip_mroute.c, since all the RSVP 2096 * handling is done there already. 2097 */ 2098 static int ip_rsvp_on; 2099 struct socket *ip_rsvpd; 2100 int 2101 ip_rsvp_init(struct socket *so) 2102 { 2103 if (so->so_type != SOCK_RAW || 2104 so->so_proto->pr_protocol != IPPROTO_RSVP) 2105 return EOPNOTSUPP; 2106 2107 if (ip_rsvpd != NULL) 2108 return EADDRINUSE; 2109 2110 ip_rsvpd = so; 2111 /* 2112 * This may seem silly, but we need to be sure we don't over-increment 2113 * the RSVP counter, in case something slips up. 2114 */ 2115 if (!ip_rsvp_on) { 2116 ip_rsvp_on = 1; 2117 rsvp_on++; 2118 } 2119 2120 return 0; 2121 } 2122 2123 int 2124 ip_rsvp_done(void) 2125 { 2126 ip_rsvpd = NULL; 2127 /* 2128 * This may seem silly, but we need to be sure we don't over-decrement 2129 * the RSVP counter, in case something slips up. 2130 */ 2131 if (ip_rsvp_on) { 2132 ip_rsvp_on = 0; 2133 rsvp_on--; 2134 } 2135 return 0; 2136 } 2137 2138 void 2139 rsvp_input(struct mbuf *m, int off) /* XXX must fixup manually */ 2140 { 2141 if (rsvp_input_p) { /* call the real one if loaded */ 2142 rsvp_input_p(m, off); 2143 return; 2144 } 2145 2146 /* Can still get packets with rsvp_on = 0 if there is a local member 2147 * of the group to which the RSVP packet is addressed. But in this 2148 * case we want to throw the packet away. 2149 */ 2150 2151 if (!rsvp_on) { 2152 m_freem(m); 2153 return; 2154 } 2155 2156 if (ip_rsvpd != NULL) { 2157 rip_input(m, off); 2158 return; 2159 } 2160 /* Drop the packet */ 2161 m_freem(m); 2162 } 2163