1 /* 2 * Copyright (c) 1982, 1986, 1988, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. All advertising materials mentioning features or use of this software 14 * must display the following acknowledgement: 15 * This product includes software developed by the University of 16 * California, Berkeley and its contributors. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * @(#)ip_input.c 8.2 (Berkeley) 1/4/94 34 * $Id$ 35 * $ANA: ip_input.c,v 1.5 1996/09/18 14:34:59 wollman Exp $ 36 */ 37 38 #define _IP_VHL 39 40 #include "opt_ipfw.h" 41 42 #include <stddef.h> 43 44 #include <sys/param.h> 45 #include <sys/systm.h> 46 #include <sys/malloc.h> 47 #include <sys/mbuf.h> 48 #include <sys/domain.h> 49 #include <sys/protosw.h> 50 #include <sys/socket.h> 51 #include <sys/errno.h> 52 #include <sys/time.h> 53 #include <sys/kernel.h> 54 #include <sys/syslog.h> 55 #include <sys/sysctl.h> 56 57 #include <net/if.h> 58 #include <net/if_dl.h> 59 #include <net/route.h> 60 #include <net/netisr.h> 61 62 #include <netinet/in.h> 63 #include <netinet/in_systm.h> 64 #include <netinet/in_var.h> 65 #include <netinet/ip.h> 66 #include <netinet/in_pcb.h> 67 #include <netinet/in_var.h> 68 #include <netinet/ip_var.h> 69 #include <netinet/ip_icmp.h> 70 #include <machine/in_cksum.h> 71 72 #include <sys/socketvar.h> 73 74 #ifdef IPFIREWALL 75 #include <netinet/ip_fw.h> 76 #endif 77 78 int rsvp_on = 0; 79 static int ip_rsvp_on; 80 struct socket *ip_rsvpd; 81 82 static int ipforwarding = 0; 83 SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW, 84 &ipforwarding, 0, ""); 85 86 static int ipsendredirects = 1; /* XXX */ 87 SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW, 88 &ipsendredirects, 0, ""); 89 90 int ip_defttl = IPDEFTTL; 91 SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW, 92 &ip_defttl, 0, ""); 93 94 static int ip_dosourceroute = 0; 95 SYSCTL_INT(_net_inet_ip, IPCTL_SOURCEROUTE, sourceroute, CTLFLAG_RW, 96 &ip_dosourceroute, 0, ""); 97 #ifdef DIAGNOSTIC 98 static int ipprintfs = 0; 99 #endif 100 101 extern struct domain inetdomain; 102 extern struct protosw inetsw[]; 103 u_char ip_protox[IPPROTO_MAX]; 104 static int ipqmaxlen = IFQ_MAXLEN; 105 struct in_ifaddrhead in_ifaddrhead; /* first inet address */ 106 struct ifqueue ipintrq; 107 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen, CTLFLAG_RD, 108 &ipintrq.ifq_maxlen, 0, ""); 109 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops, CTLFLAG_RD, 110 &ipintrq.ifq_drops, 0, ""); 111 112 struct ipstat ipstat; 113 static struct ipq ipq; 114 115 #ifdef IPCTL_DEFMTU 116 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW, 117 &ip_mtu, 0, ""); 118 #endif 119 120 #if !defined(COMPAT_IPFW) || COMPAT_IPFW == 1 121 #undef COMPAT_IPFW 122 #define COMPAT_IPFW 1 123 #else 124 #undef COMPAT_IPFW 125 #endif 126 127 #ifdef COMPAT_IPFW 128 /* Firewall hooks */ 129 ip_fw_chk_t *ip_fw_chk_ptr; 130 ip_fw_ctl_t *ip_fw_ctl_ptr; 131 132 /* IP Network Address Translation (NAT) hooks */ 133 ip_nat_t *ip_nat_ptr; 134 ip_nat_ctl_t *ip_nat_ctl_ptr; 135 #endif 136 137 #if defined(IPFILTER_LKM) || defined(IPFILTER) 138 int fr_check __P((struct ip *, int, struct ifnet *, int, struct mbuf **)); 139 int (*fr_checkp) __P((struct ip *, int, struct ifnet *, int, struct mbuf **)) = NULL; 140 #endif 141 142 143 /* 144 * We need to save the IP options in case a protocol wants to respond 145 * to an incoming packet over the same route if the packet got here 146 * using IP source routing. This allows connection establishment and 147 * maintenance when the remote end is on a network that is not known 148 * to us. 149 */ 150 static int ip_nhops = 0; 151 static struct ip_srcrt { 152 struct in_addr dst; /* final destination */ 153 char nop; /* one NOP to align */ 154 char srcopt[IPOPT_OFFSET + 1]; /* OPTVAL, OLEN and OFFSET */ 155 struct in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)]; 156 } ip_srcrt; 157 158 #ifdef IPDIVERT 159 /* 160 * Shared variable between ip_input() and ip_reass() to communicate 161 * about which packets, once assembled from fragments, get diverted, 162 * and to which port. 163 */ 164 static u_short frag_divert_port; 165 #endif 166 167 static void save_rte __P((u_char *, struct in_addr)); 168 static void ip_deq __P((struct ipasfrag *)); 169 static int ip_dooptions __P((struct mbuf *)); 170 static void ip_enq __P((struct ipasfrag *, struct ipasfrag *)); 171 static void ip_forward __P((struct mbuf *, int)); 172 static void ip_freef __P((struct ipq *)); 173 static struct ip * 174 ip_reass __P((struct ipasfrag *, struct ipq *)); 175 static struct in_ifaddr * 176 ip_rtaddr __P((struct in_addr)); 177 static void ipintr __P((void)); 178 /* 179 * IP initialization: fill in IP protocol switch table. 180 * All protocols not implemented in kernel go to raw IP protocol handler. 181 */ 182 void 183 ip_init() 184 { 185 register struct protosw *pr; 186 register int i; 187 188 TAILQ_INIT(&in_ifaddrhead); 189 pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW); 190 if (pr == 0) 191 panic("ip_init"); 192 for (i = 0; i < IPPROTO_MAX; i++) 193 ip_protox[i] = pr - inetsw; 194 for (pr = inetdomain.dom_protosw; 195 pr < inetdomain.dom_protoswNPROTOSW; pr++) 196 if (pr->pr_domain->dom_family == PF_INET && 197 pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW) 198 ip_protox[pr->pr_protocol] = pr - inetsw; 199 ipq.next = ipq.prev = &ipq; 200 ip_id = time.tv_sec & 0xffff; 201 ipintrq.ifq_maxlen = ipqmaxlen; 202 #ifdef IPFIREWALL 203 ip_fw_init(); 204 #endif 205 #ifdef IPNAT 206 ip_nat_init(); 207 #endif 208 209 } 210 211 static struct sockaddr_in ipaddr = { sizeof(ipaddr), AF_INET }; 212 static struct route ipforward_rt; 213 214 /* 215 * Ip input routine. Checksum and byte swap header. If fragmented 216 * try to reassemble. Process options. Pass to next level. 217 */ 218 void 219 ip_input(struct mbuf *m) 220 { 221 struct ip *ip; 222 struct ipq *fp; 223 struct in_ifaddr *ia; 224 int hlen; 225 u_short sum; 226 227 #ifdef DIAGNOSTIC 228 if ((m->m_flags & M_PKTHDR) == 0) 229 panic("ip_input no HDR"); 230 #endif 231 /* 232 * If no IP addresses have been set yet but the interfaces 233 * are receiving, can't do anything with incoming packets yet. 234 * XXX This is broken! We should be able to receive broadcasts 235 * and multicasts even without any local addresses configured. 236 */ 237 if (TAILQ_EMPTY(&in_ifaddrhead)) 238 goto bad; 239 ipstat.ips_total++; 240 241 if (m->m_pkthdr.len < sizeof(struct ip)) 242 goto tooshort; 243 244 #ifdef DIAGNOSTIC 245 if (m->m_len < sizeof(struct ip)) 246 panic("ipintr mbuf too short"); 247 #endif 248 249 if (m->m_len < sizeof (struct ip) && 250 (m = m_pullup(m, sizeof (struct ip))) == 0) { 251 ipstat.ips_toosmall++; 252 return; 253 } 254 ip = mtod(m, struct ip *); 255 256 if (IP_VHL_V(ip->ip_vhl) != IPVERSION) { 257 ipstat.ips_badvers++; 258 goto bad; 259 } 260 261 hlen = IP_VHL_HL(ip->ip_vhl) << 2; 262 if (hlen < sizeof(struct ip)) { /* minimum header length */ 263 ipstat.ips_badhlen++; 264 goto bad; 265 } 266 if (hlen > m->m_len) { 267 if ((m = m_pullup(m, hlen)) == 0) { 268 ipstat.ips_badhlen++; 269 return; 270 } 271 ip = mtod(m, struct ip *); 272 } 273 if (hlen == sizeof(struct ip)) { 274 sum = in_cksum_hdr(ip); 275 } else { 276 sum = in_cksum(m, hlen); 277 } 278 if (sum) { 279 ipstat.ips_badsum++; 280 goto bad; 281 } 282 283 /* 284 * Convert fields to host representation. 285 */ 286 NTOHS(ip->ip_len); 287 if (ip->ip_len < hlen) { 288 ipstat.ips_badlen++; 289 goto bad; 290 } 291 NTOHS(ip->ip_id); 292 NTOHS(ip->ip_off); 293 294 /* 295 * Check that the amount of data in the buffers 296 * is as at least much as the IP header would have us expect. 297 * Trim mbufs if longer than we expect. 298 * Drop packet if shorter than we expect. 299 */ 300 if (m->m_pkthdr.len < ip->ip_len) { 301 tooshort: 302 ipstat.ips_tooshort++; 303 goto bad; 304 } 305 if (m->m_pkthdr.len > ip->ip_len) { 306 if (m->m_len == m->m_pkthdr.len) { 307 m->m_len = ip->ip_len; 308 m->m_pkthdr.len = ip->ip_len; 309 } else 310 m_adj(m, ip->ip_len - m->m_pkthdr.len); 311 } 312 /* 313 * IpHack's section. 314 * Right now when no processing on packet has done 315 * and it is still fresh out of network we do our black 316 * deals with it. 317 * - Firewall: deny/allow/divert 318 * - Xlate: translate packet's addr/port (NAT). 319 * - Wrap: fake packet's addr/port <unimpl.> 320 * - Encapsulate: put it in another IP and send out. <unimp.> 321 */ 322 323 #ifdef COMPAT_IPFW 324 if (ip_fw_chk_ptr) { 325 int action; 326 327 #ifdef IPDIVERT 328 action = (*ip_fw_chk_ptr)(&ip, hlen, 329 m->m_pkthdr.rcvif, ip_divert_ignore, &m); 330 ip_divert_ignore = 0; 331 #else 332 action = (*ip_fw_chk_ptr)(&ip, hlen, m->m_pkthdr.rcvif, 0, &m); 333 #endif 334 if (action == -1) 335 return; 336 if (action != 0) { 337 #ifdef IPDIVERT 338 frag_divert_port = action; 339 goto ours; 340 #else 341 goto bad; /* ipfw said divert but we can't */ 342 #endif 343 } 344 } 345 346 if (ip_nat_ptr && !(*ip_nat_ptr)(&ip, &m, m->m_pkthdr.rcvif, IP_NAT_IN)) 347 return; 348 #endif 349 350 #if defined(IPFILTER) || defined(IPFILTER_LKM) 351 /* 352 * Check if we want to allow this packet to be processed. 353 * Consider it to be bad if not. 354 */ 355 if (fr_check) { 356 struct mbuf *m1 = m; 357 358 if ((*fr_checkp)(ip, hlen, m->m_pkthdr.rcvif, 0, &m1) || !m1) 359 goto next; 360 ip = mtod(m = m1, struct ip *); 361 } 362 #endif 363 364 /* 365 * Process options and, if not destined for us, 366 * ship it on. ip_dooptions returns 1 when an 367 * error was detected (causing an icmp message 368 * to be sent and the original packet to be freed). 369 */ 370 ip_nhops = 0; /* for source routed packets */ 371 if (hlen > sizeof (struct ip) && ip_dooptions(m)) 372 return; 373 374 /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no 375 * matter if it is destined to another node, or whether it is 376 * a multicast one, RSVP wants it! and prevents it from being forwarded 377 * anywhere else. Also checks if the rsvp daemon is running before 378 * grabbing the packet. 379 */ 380 if (rsvp_on && ip->ip_p==IPPROTO_RSVP) 381 goto ours; 382 383 /* 384 * Check our list of addresses, to see if the packet is for us. 385 */ 386 for (ia = in_ifaddrhead.tqh_first; ia; ia = ia->ia_link.tqe_next) { 387 #define satosin(sa) ((struct sockaddr_in *)(sa)) 388 389 if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr) 390 goto ours; 391 if (ia->ia_ifp && ia->ia_ifp->if_flags & IFF_BROADCAST) { 392 if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr == 393 ip->ip_dst.s_addr) 394 goto ours; 395 if (ip->ip_dst.s_addr == ia->ia_netbroadcast.s_addr) 396 goto ours; 397 } 398 } 399 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) { 400 struct in_multi *inm; 401 if (ip_mrouter) { 402 /* 403 * If we are acting as a multicast router, all 404 * incoming multicast packets are passed to the 405 * kernel-level multicast forwarding function. 406 * The packet is returned (relatively) intact; if 407 * ip_mforward() returns a non-zero value, the packet 408 * must be discarded, else it may be accepted below. 409 * 410 * (The IP ident field is put in the same byte order 411 * as expected when ip_mforward() is called from 412 * ip_output().) 413 */ 414 ip->ip_id = htons(ip->ip_id); 415 if (ip_mforward(ip, m->m_pkthdr.rcvif, m, 0) != 0) { 416 ipstat.ips_cantforward++; 417 m_freem(m); 418 return; 419 } 420 ip->ip_id = ntohs(ip->ip_id); 421 422 /* 423 * The process-level routing demon needs to receive 424 * all multicast IGMP packets, whether or not this 425 * host belongs to their destination groups. 426 */ 427 if (ip->ip_p == IPPROTO_IGMP) 428 goto ours; 429 ipstat.ips_forward++; 430 } 431 /* 432 * See if we belong to the destination multicast group on the 433 * arrival interface. 434 */ 435 IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm); 436 if (inm == NULL) { 437 ipstat.ips_notmember++; 438 m_freem(m); 439 return; 440 } 441 goto ours; 442 } 443 if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST) 444 goto ours; 445 if (ip->ip_dst.s_addr == INADDR_ANY) 446 goto ours; 447 448 /* 449 * Not for us; forward if possible and desirable. 450 */ 451 if (ipforwarding == 0) { 452 ipstat.ips_cantforward++; 453 m_freem(m); 454 } else 455 ip_forward(m, 0); 456 return; 457 458 ours: 459 460 /* 461 * If offset or IP_MF are set, must reassemble. 462 * Otherwise, nothing need be done. 463 * (We could look in the reassembly queue to see 464 * if the packet was previously fragmented, 465 * but it's not worth the time; just let them time out.) 466 */ 467 if (ip->ip_off & (IP_MF | IP_OFFMASK)) { 468 if (m->m_flags & M_EXT) { /* XXX */ 469 if ((m = m_pullup(m, sizeof (struct ip))) == 0) { 470 ipstat.ips_toosmall++; 471 #ifdef IPDIVERT 472 frag_divert_port = 0; 473 #endif 474 return; 475 } 476 ip = mtod(m, struct ip *); 477 } 478 /* 479 * Look for queue of fragments 480 * of this datagram. 481 */ 482 for (fp = ipq.next; fp != &ipq; fp = fp->next) 483 if (ip->ip_id == fp->ipq_id && 484 ip->ip_src.s_addr == fp->ipq_src.s_addr && 485 ip->ip_dst.s_addr == fp->ipq_dst.s_addr && 486 ip->ip_p == fp->ipq_p) 487 goto found; 488 fp = 0; 489 found: 490 491 /* 492 * Adjust ip_len to not reflect header, 493 * set ip_mff if more fragments are expected, 494 * convert offset of this to bytes. 495 */ 496 ip->ip_len -= hlen; 497 ((struct ipasfrag *)ip)->ipf_mff &= ~1; 498 if (ip->ip_off & IP_MF) 499 ((struct ipasfrag *)ip)->ipf_mff |= 1; 500 ip->ip_off <<= 3; 501 502 /* 503 * If datagram marked as having more fragments 504 * or if this is not the first fragment, 505 * attempt reassembly; if it succeeds, proceed. 506 */ 507 if (((struct ipasfrag *)ip)->ipf_mff & 1 || ip->ip_off) { 508 ipstat.ips_fragments++; 509 ip = ip_reass((struct ipasfrag *)ip, fp); 510 if (ip == 0) 511 return; 512 ipstat.ips_reassembled++; 513 m = dtom(ip); 514 } else 515 if (fp) 516 ip_freef(fp); 517 } else 518 ip->ip_len -= hlen; 519 520 #ifdef IPDIVERT 521 /* 522 * Divert packets here to the divert protocol if required 523 */ 524 if (frag_divert_port) { 525 ip_divert_port = frag_divert_port; 526 frag_divert_port = 0; 527 (*inetsw[ip_protox[IPPROTO_DIVERT]].pr_input)(m, hlen); 528 return; 529 } 530 #endif 531 532 /* 533 * Switch out to protocol's input routine. 534 */ 535 ipstat.ips_delivered++; 536 (*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen); 537 return; 538 bad: 539 m_freem(m); 540 } 541 542 /* 543 * IP software interrupt routine - to go away sometime soon 544 */ 545 static void 546 ipintr(void) 547 { 548 int s; 549 struct mbuf *m; 550 551 while(1) { 552 s = splimp(); 553 IF_DEQUEUE(&ipintrq, m); 554 splx(s); 555 if (m == 0) 556 return; 557 ip_input(m); 558 } 559 } 560 561 NETISR_SET(NETISR_IP, ipintr); 562 563 /* 564 * Take incoming datagram fragment and try to 565 * reassemble it into whole datagram. If a chain for 566 * reassembly of this datagram already exists, then it 567 * is given as fp; otherwise have to make a chain. 568 */ 569 static struct ip * 570 ip_reass(ip, fp) 571 register struct ipasfrag *ip; 572 register struct ipq *fp; 573 { 574 register struct mbuf *m = dtom(ip); 575 register struct ipasfrag *q; 576 struct mbuf *t; 577 int hlen = ip->ip_hl << 2; 578 int i, next; 579 580 /* 581 * Presence of header sizes in mbufs 582 * would confuse code below. 583 */ 584 m->m_data += hlen; 585 m->m_len -= hlen; 586 587 /* 588 * If first fragment to arrive, create a reassembly queue. 589 */ 590 if (fp == 0) { 591 if ((t = m_get(M_DONTWAIT, MT_FTABLE)) == NULL) 592 goto dropfrag; 593 fp = mtod(t, struct ipq *); 594 insque(fp, &ipq); 595 fp->ipq_ttl = IPFRAGTTL; 596 fp->ipq_p = ip->ip_p; 597 fp->ipq_id = ip->ip_id; 598 fp->ipq_next = fp->ipq_prev = (struct ipasfrag *)fp; 599 fp->ipq_src = ((struct ip *)ip)->ip_src; 600 fp->ipq_dst = ((struct ip *)ip)->ip_dst; 601 #ifdef IPDIVERT 602 fp->ipq_divert = 0; 603 #endif 604 q = (struct ipasfrag *)fp; 605 goto insert; 606 } 607 608 /* 609 * Find a segment which begins after this one does. 610 */ 611 for (q = fp->ipq_next; q != (struct ipasfrag *)fp; q = q->ipf_next) 612 if (q->ip_off > ip->ip_off) 613 break; 614 615 /* 616 * If there is a preceding segment, it may provide some of 617 * our data already. If so, drop the data from the incoming 618 * segment. If it provides all of our data, drop us. 619 */ 620 if (q->ipf_prev != (struct ipasfrag *)fp) { 621 i = q->ipf_prev->ip_off + q->ipf_prev->ip_len - ip->ip_off; 622 if (i > 0) { 623 if (i >= ip->ip_len) 624 goto dropfrag; 625 m_adj(dtom(ip), i); 626 ip->ip_off += i; 627 ip->ip_len -= i; 628 } 629 } 630 631 /* 632 * While we overlap succeeding segments trim them or, 633 * if they are completely covered, dequeue them. 634 */ 635 while (q != (struct ipasfrag *)fp && ip->ip_off + ip->ip_len > q->ip_off) { 636 struct mbuf *m0; 637 638 i = (ip->ip_off + ip->ip_len) - q->ip_off; 639 if (i < q->ip_len) { 640 q->ip_len -= i; 641 q->ip_off += i; 642 m_adj(dtom(q), i); 643 break; 644 } 645 m0 = dtom(q); 646 q = q->ipf_next; 647 ip_deq(q->ipf_prev); 648 m_freem(m0); 649 } 650 651 insert: 652 653 #ifdef IPDIVERT 654 /* 655 * Any fragment diverting causes the whole packet to divert 656 */ 657 if (frag_divert_port != 0) 658 fp->ipq_divert = frag_divert_port; 659 frag_divert_port = 0; 660 #endif 661 662 /* 663 * Stick new segment in its place; 664 * check for complete reassembly. 665 */ 666 ip_enq(ip, q->ipf_prev); 667 next = 0; 668 for (q = fp->ipq_next; q != (struct ipasfrag *)fp; q = q->ipf_next) { 669 if (q->ip_off != next) 670 return (0); 671 next += q->ip_len; 672 } 673 if (q->ipf_prev->ipf_mff & 1) 674 return (0); 675 676 /* 677 * Reassembly is complete. Make sure the packet is a sane size. 678 */ 679 if (next + (IP_VHL_HL(((struct ip *)fp->ipq_next)->ip_vhl) << 2) 680 > IP_MAXPACKET) { 681 ipstat.ips_toolong++; 682 ip_freef(fp); 683 return (0); 684 } 685 686 /* 687 * Concatenate fragments. 688 */ 689 q = fp->ipq_next; 690 m = dtom(q); 691 t = m->m_next; 692 m->m_next = 0; 693 m_cat(m, t); 694 q = q->ipf_next; 695 while (q != (struct ipasfrag *)fp) { 696 t = dtom(q); 697 q = q->ipf_next; 698 m_cat(m, t); 699 } 700 701 #ifdef IPDIVERT 702 /* 703 * Record divert port for packet, if any 704 */ 705 frag_divert_port = fp->ipq_divert; 706 #endif 707 708 /* 709 * Create header for new ip packet by 710 * modifying header of first packet; 711 * dequeue and discard fragment reassembly header. 712 * Make header visible. 713 */ 714 ip = fp->ipq_next; 715 ip->ip_len = next; 716 ip->ipf_mff &= ~1; 717 ((struct ip *)ip)->ip_src = fp->ipq_src; 718 ((struct ip *)ip)->ip_dst = fp->ipq_dst; 719 remque(fp); 720 (void) m_free(dtom(fp)); 721 m = dtom(ip); 722 m->m_len += (ip->ip_hl << 2); 723 m->m_data -= (ip->ip_hl << 2); 724 /* some debugging cruft by sklower, below, will go away soon */ 725 if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */ 726 register int plen = 0; 727 for (t = m; m; m = m->m_next) 728 plen += m->m_len; 729 t->m_pkthdr.len = plen; 730 } 731 return ((struct ip *)ip); 732 733 dropfrag: 734 ipstat.ips_fragdropped++; 735 m_freem(m); 736 return (0); 737 } 738 739 /* 740 * Free a fragment reassembly header and all 741 * associated datagrams. 742 */ 743 static void 744 ip_freef(fp) 745 struct ipq *fp; 746 { 747 register struct ipasfrag *q, *p; 748 749 for (q = fp->ipq_next; q != (struct ipasfrag *)fp; q = p) { 750 p = q->ipf_next; 751 ip_deq(q); 752 m_freem(dtom(q)); 753 } 754 remque(fp); 755 (void) m_free(dtom(fp)); 756 } 757 758 /* 759 * Put an ip fragment on a reassembly chain. 760 * Like insque, but pointers in middle of structure. 761 */ 762 static void 763 ip_enq(p, prev) 764 register struct ipasfrag *p, *prev; 765 { 766 767 p->ipf_prev = prev; 768 p->ipf_next = prev->ipf_next; 769 prev->ipf_next->ipf_prev = p; 770 prev->ipf_next = p; 771 } 772 773 /* 774 * To ip_enq as remque is to insque. 775 */ 776 static void 777 ip_deq(p) 778 register struct ipasfrag *p; 779 { 780 781 p->ipf_prev->ipf_next = p->ipf_next; 782 p->ipf_next->ipf_prev = p->ipf_prev; 783 } 784 785 /* 786 * IP timer processing; 787 * if a timer expires on a reassembly 788 * queue, discard it. 789 */ 790 void 791 ip_slowtimo() 792 { 793 register struct ipq *fp; 794 int s = splnet(); 795 796 fp = ipq.next; 797 if (fp == 0) { 798 splx(s); 799 return; 800 } 801 while (fp != &ipq) { 802 --fp->ipq_ttl; 803 fp = fp->next; 804 if (fp->prev->ipq_ttl == 0) { 805 ipstat.ips_fragtimeout++; 806 ip_freef(fp->prev); 807 } 808 } 809 splx(s); 810 } 811 812 /* 813 * Drain off all datagram fragments. 814 */ 815 void 816 ip_drain() 817 { 818 while (ipq.next != &ipq) { 819 ipstat.ips_fragdropped++; 820 ip_freef(ipq.next); 821 } 822 823 in_rtqdrain(); 824 } 825 826 /* 827 * Do option processing on a datagram, 828 * possibly discarding it if bad options are encountered, 829 * or forwarding it if source-routed. 830 * Returns 1 if packet has been forwarded/freed, 831 * 0 if the packet should be processed further. 832 */ 833 static int 834 ip_dooptions(m) 835 struct mbuf *m; 836 { 837 register struct ip *ip = mtod(m, struct ip *); 838 register u_char *cp; 839 register struct ip_timestamp *ipt; 840 register struct in_ifaddr *ia; 841 int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0; 842 struct in_addr *sin, dst; 843 n_time ntime; 844 845 dst = ip->ip_dst; 846 cp = (u_char *)(ip + 1); 847 cnt = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof (struct ip); 848 for (; cnt > 0; cnt -= optlen, cp += optlen) { 849 opt = cp[IPOPT_OPTVAL]; 850 if (opt == IPOPT_EOL) 851 break; 852 if (opt == IPOPT_NOP) 853 optlen = 1; 854 else { 855 optlen = cp[IPOPT_OLEN]; 856 if (optlen <= 0 || optlen > cnt) { 857 code = &cp[IPOPT_OLEN] - (u_char *)ip; 858 goto bad; 859 } 860 } 861 switch (opt) { 862 863 default: 864 break; 865 866 /* 867 * Source routing with record. 868 * Find interface with current destination address. 869 * If none on this machine then drop if strictly routed, 870 * or do nothing if loosely routed. 871 * Record interface address and bring up next address 872 * component. If strictly routed make sure next 873 * address is on directly accessible net. 874 */ 875 case IPOPT_LSRR: 876 case IPOPT_SSRR: 877 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) { 878 code = &cp[IPOPT_OFFSET] - (u_char *)ip; 879 goto bad; 880 } 881 ipaddr.sin_addr = ip->ip_dst; 882 ia = (struct in_ifaddr *) 883 ifa_ifwithaddr((struct sockaddr *)&ipaddr); 884 if (ia == 0) { 885 if (opt == IPOPT_SSRR) { 886 type = ICMP_UNREACH; 887 code = ICMP_UNREACH_SRCFAIL; 888 goto bad; 889 } 890 /* 891 * Loose routing, and not at next destination 892 * yet; nothing to do except forward. 893 */ 894 break; 895 } 896 off--; /* 0 origin */ 897 if (off > optlen - sizeof(struct in_addr)) { 898 /* 899 * End of source route. Should be for us. 900 */ 901 save_rte(cp, ip->ip_src); 902 break; 903 } 904 905 if (!ip_dosourceroute) { 906 char buf[4*sizeof "123"]; 907 strcpy(buf, inet_ntoa(ip->ip_dst)); 908 909 log(LOG_WARNING, 910 "attempted source route from %s to %s\n", 911 inet_ntoa(ip->ip_src), buf); 912 type = ICMP_UNREACH; 913 code = ICMP_UNREACH_SRCFAIL; 914 goto bad; 915 } 916 917 /* 918 * locate outgoing interface 919 */ 920 (void)memcpy(&ipaddr.sin_addr, cp + off, 921 sizeof(ipaddr.sin_addr)); 922 923 if (opt == IPOPT_SSRR) { 924 #define INA struct in_ifaddr * 925 #define SA struct sockaddr * 926 if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr)) == 0) 927 ia = (INA)ifa_ifwithnet((SA)&ipaddr); 928 } else 929 ia = ip_rtaddr(ipaddr.sin_addr); 930 if (ia == 0) { 931 type = ICMP_UNREACH; 932 code = ICMP_UNREACH_SRCFAIL; 933 goto bad; 934 } 935 ip->ip_dst = ipaddr.sin_addr; 936 (void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr), 937 sizeof(struct in_addr)); 938 cp[IPOPT_OFFSET] += sizeof(struct in_addr); 939 /* 940 * Let ip_intr's mcast routing check handle mcast pkts 941 */ 942 forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr)); 943 break; 944 945 case IPOPT_RR: 946 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) { 947 code = &cp[IPOPT_OFFSET] - (u_char *)ip; 948 goto bad; 949 } 950 /* 951 * If no space remains, ignore. 952 */ 953 off--; /* 0 origin */ 954 if (off > optlen - sizeof(struct in_addr)) 955 break; 956 (void)memcpy(&ipaddr.sin_addr, &ip->ip_dst, 957 sizeof(ipaddr.sin_addr)); 958 /* 959 * locate outgoing interface; if we're the destination, 960 * use the incoming interface (should be same). 961 */ 962 if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == 0 && 963 (ia = ip_rtaddr(ipaddr.sin_addr)) == 0) { 964 type = ICMP_UNREACH; 965 code = ICMP_UNREACH_HOST; 966 goto bad; 967 } 968 (void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr), 969 sizeof(struct in_addr)); 970 cp[IPOPT_OFFSET] += sizeof(struct in_addr); 971 break; 972 973 case IPOPT_TS: 974 code = cp - (u_char *)ip; 975 ipt = (struct ip_timestamp *)cp; 976 if (ipt->ipt_len < 5) 977 goto bad; 978 if (ipt->ipt_ptr > ipt->ipt_len - sizeof (long)) { 979 if (++ipt->ipt_oflw == 0) 980 goto bad; 981 break; 982 } 983 sin = (struct in_addr *)(cp + ipt->ipt_ptr - 1); 984 switch (ipt->ipt_flg) { 985 986 case IPOPT_TS_TSONLY: 987 break; 988 989 case IPOPT_TS_TSANDADDR: 990 if (ipt->ipt_ptr + sizeof(n_time) + 991 sizeof(struct in_addr) > ipt->ipt_len) 992 goto bad; 993 ipaddr.sin_addr = dst; 994 ia = (INA)ifaof_ifpforaddr((SA)&ipaddr, 995 m->m_pkthdr.rcvif); 996 if (ia == 0) 997 continue; 998 (void)memcpy(sin, &IA_SIN(ia)->sin_addr, 999 sizeof(struct in_addr)); 1000 ipt->ipt_ptr += sizeof(struct in_addr); 1001 break; 1002 1003 case IPOPT_TS_PRESPEC: 1004 if (ipt->ipt_ptr + sizeof(n_time) + 1005 sizeof(struct in_addr) > ipt->ipt_len) 1006 goto bad; 1007 (void)memcpy(&ipaddr.sin_addr, sin, 1008 sizeof(struct in_addr)); 1009 if (ifa_ifwithaddr((SA)&ipaddr) == 0) 1010 continue; 1011 ipt->ipt_ptr += sizeof(struct in_addr); 1012 break; 1013 1014 default: 1015 goto bad; 1016 } 1017 ntime = iptime(); 1018 (void)memcpy(cp + ipt->ipt_ptr - 1, &ntime, 1019 sizeof(n_time)); 1020 ipt->ipt_ptr += sizeof(n_time); 1021 } 1022 } 1023 if (forward) { 1024 ip_forward(m, 1); 1025 return (1); 1026 } 1027 return (0); 1028 bad: 1029 ip->ip_len -= IP_VHL_HL(ip->ip_vhl) << 2; /* XXX icmp_error adds in hdr length */ 1030 icmp_error(m, type, code, 0, 0); 1031 ipstat.ips_badoptions++; 1032 return (1); 1033 } 1034 1035 /* 1036 * Given address of next destination (final or next hop), 1037 * return internet address info of interface to be used to get there. 1038 */ 1039 static struct in_ifaddr * 1040 ip_rtaddr(dst) 1041 struct in_addr dst; 1042 { 1043 register struct sockaddr_in *sin; 1044 1045 sin = (struct sockaddr_in *) &ipforward_rt.ro_dst; 1046 1047 if (ipforward_rt.ro_rt == 0 || dst.s_addr != sin->sin_addr.s_addr) { 1048 if (ipforward_rt.ro_rt) { 1049 RTFREE(ipforward_rt.ro_rt); 1050 ipforward_rt.ro_rt = 0; 1051 } 1052 sin->sin_family = AF_INET; 1053 sin->sin_len = sizeof(*sin); 1054 sin->sin_addr = dst; 1055 1056 rtalloc_ign(&ipforward_rt, RTF_PRCLONING); 1057 } 1058 if (ipforward_rt.ro_rt == 0) 1059 return ((struct in_ifaddr *)0); 1060 return ((struct in_ifaddr *) ipforward_rt.ro_rt->rt_ifa); 1061 } 1062 1063 /* 1064 * Save incoming source route for use in replies, 1065 * to be picked up later by ip_srcroute if the receiver is interested. 1066 */ 1067 void 1068 save_rte(option, dst) 1069 u_char *option; 1070 struct in_addr dst; 1071 { 1072 unsigned olen; 1073 1074 olen = option[IPOPT_OLEN]; 1075 #ifdef DIAGNOSTIC 1076 if (ipprintfs) 1077 printf("save_rte: olen %d\n", olen); 1078 #endif 1079 if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst))) 1080 return; 1081 bcopy(option, ip_srcrt.srcopt, olen); 1082 ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr); 1083 ip_srcrt.dst = dst; 1084 } 1085 1086 /* 1087 * Retrieve incoming source route for use in replies, 1088 * in the same form used by setsockopt. 1089 * The first hop is placed before the options, will be removed later. 1090 */ 1091 struct mbuf * 1092 ip_srcroute() 1093 { 1094 register struct in_addr *p, *q; 1095 register struct mbuf *m; 1096 1097 if (ip_nhops == 0) 1098 return ((struct mbuf *)0); 1099 m = m_get(M_DONTWAIT, MT_SOOPTS); 1100 if (m == 0) 1101 return ((struct mbuf *)0); 1102 1103 #define OPTSIZ (sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt)) 1104 1105 /* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */ 1106 m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) + 1107 OPTSIZ; 1108 #ifdef DIAGNOSTIC 1109 if (ipprintfs) 1110 printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len); 1111 #endif 1112 1113 /* 1114 * First save first hop for return route 1115 */ 1116 p = &ip_srcrt.route[ip_nhops - 1]; 1117 *(mtod(m, struct in_addr *)) = *p--; 1118 #ifdef DIAGNOSTIC 1119 if (ipprintfs) 1120 printf(" hops %lx", ntohl(mtod(m, struct in_addr *)->s_addr)); 1121 #endif 1122 1123 /* 1124 * Copy option fields and padding (nop) to mbuf. 1125 */ 1126 ip_srcrt.nop = IPOPT_NOP; 1127 ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF; 1128 (void)memcpy(mtod(m, caddr_t) + sizeof(struct in_addr), 1129 &ip_srcrt.nop, OPTSIZ); 1130 q = (struct in_addr *)(mtod(m, caddr_t) + 1131 sizeof(struct in_addr) + OPTSIZ); 1132 #undef OPTSIZ 1133 /* 1134 * Record return path as an IP source route, 1135 * reversing the path (pointers are now aligned). 1136 */ 1137 while (p >= ip_srcrt.route) { 1138 #ifdef DIAGNOSTIC 1139 if (ipprintfs) 1140 printf(" %lx", ntohl(q->s_addr)); 1141 #endif 1142 *q++ = *p--; 1143 } 1144 /* 1145 * Last hop goes to final destination. 1146 */ 1147 *q = ip_srcrt.dst; 1148 #ifdef DIAGNOSTIC 1149 if (ipprintfs) 1150 printf(" %lx\n", ntohl(q->s_addr)); 1151 #endif 1152 return (m); 1153 } 1154 1155 /* 1156 * Strip out IP options, at higher 1157 * level protocol in the kernel. 1158 * Second argument is buffer to which options 1159 * will be moved, and return value is their length. 1160 * XXX should be deleted; last arg currently ignored. 1161 */ 1162 void 1163 ip_stripoptions(m, mopt) 1164 register struct mbuf *m; 1165 struct mbuf *mopt; 1166 { 1167 register int i; 1168 struct ip *ip = mtod(m, struct ip *); 1169 register caddr_t opts; 1170 int olen; 1171 1172 olen = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof (struct ip); 1173 opts = (caddr_t)(ip + 1); 1174 i = m->m_len - (sizeof (struct ip) + olen); 1175 bcopy(opts + olen, opts, (unsigned)i); 1176 m->m_len -= olen; 1177 if (m->m_flags & M_PKTHDR) 1178 m->m_pkthdr.len -= olen; 1179 ip->ip_vhl = IP_MAKE_VHL(IPVERSION, sizeof(struct ip) >> 2); 1180 } 1181 1182 u_char inetctlerrmap[PRC_NCMDS] = { 1183 0, 0, 0, 0, 1184 0, EMSGSIZE, EHOSTDOWN, EHOSTUNREACH, 1185 EHOSTUNREACH, EHOSTUNREACH, ECONNREFUSED, ECONNREFUSED, 1186 EMSGSIZE, EHOSTUNREACH, 0, 0, 1187 0, 0, 0, 0, 1188 ENOPROTOOPT 1189 }; 1190 1191 /* 1192 * Forward a packet. If some error occurs return the sender 1193 * an icmp packet. Note we can't always generate a meaningful 1194 * icmp message because icmp doesn't have a large enough repertoire 1195 * of codes and types. 1196 * 1197 * If not forwarding, just drop the packet. This could be confusing 1198 * if ipforwarding was zero but some routing protocol was advancing 1199 * us as a gateway to somewhere. However, we must let the routing 1200 * protocol deal with that. 1201 * 1202 * The srcrt parameter indicates whether the packet is being forwarded 1203 * via a source route. 1204 */ 1205 static void 1206 ip_forward(m, srcrt) 1207 struct mbuf *m; 1208 int srcrt; 1209 { 1210 register struct ip *ip = mtod(m, struct ip *); 1211 register struct sockaddr_in *sin; 1212 register struct rtentry *rt; 1213 int error, type = 0, code = 0; 1214 struct mbuf *mcopy; 1215 n_long dest; 1216 struct ifnet *destifp; 1217 1218 dest = 0; 1219 #ifdef DIAGNOSTIC 1220 if (ipprintfs) 1221 printf("forward: src %lx dst %lx ttl %x\n", 1222 ip->ip_src.s_addr, ip->ip_dst.s_addr, ip->ip_ttl); 1223 #endif 1224 1225 1226 if (m->m_flags & M_BCAST || in_canforward(ip->ip_dst) == 0) { 1227 ipstat.ips_cantforward++; 1228 m_freem(m); 1229 return; 1230 } 1231 HTONS(ip->ip_id); 1232 if (ip->ip_ttl <= IPTTLDEC) { 1233 icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, dest, 0); 1234 return; 1235 } 1236 ip->ip_ttl -= IPTTLDEC; 1237 1238 sin = (struct sockaddr_in *)&ipforward_rt.ro_dst; 1239 if ((rt = ipforward_rt.ro_rt) == 0 || 1240 ip->ip_dst.s_addr != sin->sin_addr.s_addr) { 1241 if (ipforward_rt.ro_rt) { 1242 RTFREE(ipforward_rt.ro_rt); 1243 ipforward_rt.ro_rt = 0; 1244 } 1245 sin->sin_family = AF_INET; 1246 sin->sin_len = sizeof(*sin); 1247 sin->sin_addr = ip->ip_dst; 1248 1249 rtalloc_ign(&ipforward_rt, RTF_PRCLONING); 1250 if (ipforward_rt.ro_rt == 0) { 1251 icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0); 1252 return; 1253 } 1254 rt = ipforward_rt.ro_rt; 1255 } 1256 1257 /* 1258 * Save at most 64 bytes of the packet in case 1259 * we need to generate an ICMP message to the src. 1260 */ 1261 mcopy = m_copy(m, 0, imin((int)ip->ip_len, 64)); 1262 1263 /* 1264 * If forwarding packet using same interface that it came in on, 1265 * perhaps should send a redirect to sender to shortcut a hop. 1266 * Only send redirect if source is sending directly to us, 1267 * and if packet was not source routed (or has any options). 1268 * Also, don't send redirect if forwarding using a default route 1269 * or a route modified by a redirect. 1270 */ 1271 #define satosin(sa) ((struct sockaddr_in *)(sa)) 1272 if (rt->rt_ifp == m->m_pkthdr.rcvif && 1273 (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 && 1274 satosin(rt_key(rt))->sin_addr.s_addr != 0 && 1275 ipsendredirects && !srcrt) { 1276 #define RTA(rt) ((struct in_ifaddr *)(rt->rt_ifa)) 1277 u_long src = ntohl(ip->ip_src.s_addr); 1278 1279 if (RTA(rt) && 1280 (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) { 1281 if (rt->rt_flags & RTF_GATEWAY) 1282 dest = satosin(rt->rt_gateway)->sin_addr.s_addr; 1283 else 1284 dest = ip->ip_dst.s_addr; 1285 /* Router requirements says to only send host redirects */ 1286 type = ICMP_REDIRECT; 1287 code = ICMP_REDIRECT_HOST; 1288 #ifdef DIAGNOSTIC 1289 if (ipprintfs) 1290 printf("redirect (%d) to %lx\n", code, (u_long)dest); 1291 #endif 1292 } 1293 } 1294 1295 error = ip_output(m, (struct mbuf *)0, &ipforward_rt, 1296 IP_FORWARDING, 0); 1297 if (error) 1298 ipstat.ips_cantforward++; 1299 else { 1300 ipstat.ips_forward++; 1301 if (type) 1302 ipstat.ips_redirectsent++; 1303 else { 1304 if (mcopy) 1305 m_freem(mcopy); 1306 return; 1307 } 1308 } 1309 if (mcopy == NULL) 1310 return; 1311 destifp = NULL; 1312 1313 switch (error) { 1314 1315 case 0: /* forwarded, but need redirect */ 1316 /* type, code set above */ 1317 break; 1318 1319 case ENETUNREACH: /* shouldn't happen, checked above */ 1320 case EHOSTUNREACH: 1321 case ENETDOWN: 1322 case EHOSTDOWN: 1323 default: 1324 type = ICMP_UNREACH; 1325 code = ICMP_UNREACH_HOST; 1326 break; 1327 1328 case EMSGSIZE: 1329 type = ICMP_UNREACH; 1330 code = ICMP_UNREACH_NEEDFRAG; 1331 if (ipforward_rt.ro_rt) 1332 destifp = ipforward_rt.ro_rt->rt_ifp; 1333 ipstat.ips_cantfrag++; 1334 break; 1335 1336 case ENOBUFS: 1337 type = ICMP_SOURCEQUENCH; 1338 code = 0; 1339 break; 1340 } 1341 icmp_error(mcopy, type, code, dest, destifp); 1342 } 1343 1344 void 1345 ip_savecontrol(inp, mp, ip, m) 1346 register struct inpcb *inp; 1347 register struct mbuf **mp; 1348 register struct ip *ip; 1349 register struct mbuf *m; 1350 { 1351 if (inp->inp_socket->so_options & SO_TIMESTAMP) { 1352 struct timeval tv; 1353 1354 microtime(&tv); 1355 *mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv), 1356 SCM_TIMESTAMP, SOL_SOCKET); 1357 if (*mp) 1358 mp = &(*mp)->m_next; 1359 } 1360 if (inp->inp_flags & INP_RECVDSTADDR) { 1361 *mp = sbcreatecontrol((caddr_t) &ip->ip_dst, 1362 sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP); 1363 if (*mp) 1364 mp = &(*mp)->m_next; 1365 } 1366 #ifdef notyet 1367 /* XXX 1368 * Moving these out of udp_input() made them even more broken 1369 * than they already were. 1370 */ 1371 /* options were tossed already */ 1372 if (inp->inp_flags & INP_RECVOPTS) { 1373 *mp = sbcreatecontrol((caddr_t) opts_deleted_above, 1374 sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP); 1375 if (*mp) 1376 mp = &(*mp)->m_next; 1377 } 1378 /* ip_srcroute doesn't do what we want here, need to fix */ 1379 if (inp->inp_flags & INP_RECVRETOPTS) { 1380 *mp = sbcreatecontrol((caddr_t) ip_srcroute(), 1381 sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP); 1382 if (*mp) 1383 mp = &(*mp)->m_next; 1384 } 1385 #endif 1386 if (inp->inp_flags & INP_RECVIF) { 1387 struct sockaddr_dl sdl; 1388 1389 sdl.sdl_len = offsetof(struct sockaddr_dl, sdl_data[0]); 1390 sdl.sdl_family = AF_LINK; 1391 sdl.sdl_index = m->m_pkthdr.rcvif ? 1392 m->m_pkthdr.rcvif->if_index : 0; 1393 sdl.sdl_nlen = sdl.sdl_alen = sdl.sdl_slen = 0; 1394 *mp = sbcreatecontrol((caddr_t) &sdl, sdl.sdl_len, 1395 IP_RECVIF, IPPROTO_IP); 1396 if (*mp) 1397 mp = &(*mp)->m_next; 1398 } 1399 } 1400 1401 int 1402 ip_rsvp_init(struct socket *so) 1403 { 1404 if (so->so_type != SOCK_RAW || 1405 so->so_proto->pr_protocol != IPPROTO_RSVP) 1406 return EOPNOTSUPP; 1407 1408 if (ip_rsvpd != NULL) 1409 return EADDRINUSE; 1410 1411 ip_rsvpd = so; 1412 /* 1413 * This may seem silly, but we need to be sure we don't over-increment 1414 * the RSVP counter, in case something slips up. 1415 */ 1416 if (!ip_rsvp_on) { 1417 ip_rsvp_on = 1; 1418 rsvp_on++; 1419 } 1420 1421 return 0; 1422 } 1423 1424 int 1425 ip_rsvp_done(void) 1426 { 1427 ip_rsvpd = NULL; 1428 /* 1429 * This may seem silly, but we need to be sure we don't over-decrement 1430 * the RSVP counter, in case something slips up. 1431 */ 1432 if (ip_rsvp_on) { 1433 ip_rsvp_on = 0; 1434 rsvp_on--; 1435 } 1436 return 0; 1437 } 1438