xref: /freebsd/sys/netinet/ip_input.c (revision 4620173a5ff7cdd405ab98e6f91828f27d41b698)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_bootp.h"
36 #include "opt_ipfw.h"
37 #include "opt_ipstealth.h"
38 #include "opt_ipsec.h"
39 #include "opt_route.h"
40 #include "opt_rss.h"
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/mbuf.h>
45 #include <sys/malloc.h>
46 #include <sys/domain.h>
47 #include <sys/protosw.h>
48 #include <sys/socket.h>
49 #include <sys/time.h>
50 #include <sys/kernel.h>
51 #include <sys/lock.h>
52 #include <sys/rwlock.h>
53 #include <sys/sdt.h>
54 #include <sys/syslog.h>
55 #include <sys/sysctl.h>
56 
57 #include <net/pfil.h>
58 #include <net/if.h>
59 #include <net/if_types.h>
60 #include <net/if_var.h>
61 #include <net/if_dl.h>
62 #include <net/route.h>
63 #include <net/netisr.h>
64 #include <net/rss_config.h>
65 #include <net/vnet.h>
66 
67 #include <netinet/in.h>
68 #include <netinet/in_kdtrace.h>
69 #include <netinet/in_systm.h>
70 #include <netinet/in_var.h>
71 #include <netinet/ip.h>
72 #include <netinet/in_pcb.h>
73 #include <netinet/ip_var.h>
74 #include <netinet/ip_fw.h>
75 #include <netinet/ip_icmp.h>
76 #include <netinet/ip_options.h>
77 #include <machine/in_cksum.h>
78 #include <netinet/ip_carp.h>
79 #ifdef IPSEC
80 #include <netinet/ip_ipsec.h>
81 #endif /* IPSEC */
82 #include <netinet/in_rss.h>
83 
84 #include <sys/socketvar.h>
85 
86 #include <security/mac/mac_framework.h>
87 
88 #ifdef CTASSERT
89 CTASSERT(sizeof(struct ip) == 20);
90 #endif
91 
92 struct	rwlock in_ifaddr_lock;
93 RW_SYSINIT(in_ifaddr_lock, &in_ifaddr_lock, "in_ifaddr_lock");
94 
95 VNET_DEFINE(int, rsvp_on);
96 
97 VNET_DEFINE(int, ipforwarding);
98 SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_VNET | CTLFLAG_RW,
99     &VNET_NAME(ipforwarding), 0,
100     "Enable IP forwarding between interfaces");
101 
102 static VNET_DEFINE(int, ipsendredirects) = 1;	/* XXX */
103 #define	V_ipsendredirects	VNET(ipsendredirects)
104 SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_VNET | CTLFLAG_RW,
105     &VNET_NAME(ipsendredirects), 0,
106     "Enable sending IP redirects");
107 
108 /*
109  * XXX - Setting ip_checkinterface mostly implements the receive side of
110  * the Strong ES model described in RFC 1122, but since the routing table
111  * and transmit implementation do not implement the Strong ES model,
112  * setting this to 1 results in an odd hybrid.
113  *
114  * XXX - ip_checkinterface currently must be disabled if you use ipnat
115  * to translate the destination address to another local interface.
116  *
117  * XXX - ip_checkinterface must be disabled if you add IP aliases
118  * to the loopback interface instead of the interface where the
119  * packets for those addresses are received.
120  */
121 static VNET_DEFINE(int, ip_checkinterface);
122 #define	V_ip_checkinterface	VNET(ip_checkinterface)
123 SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_VNET | CTLFLAG_RW,
124     &VNET_NAME(ip_checkinterface), 0,
125     "Verify packet arrives on correct interface");
126 
127 VNET_DEFINE(struct pfil_head, inet_pfil_hook);	/* Packet filter hooks */
128 
129 static struct netisr_handler ip_nh = {
130 	.nh_name = "ip",
131 	.nh_handler = ip_input,
132 	.nh_proto = NETISR_IP,
133 #ifdef	RSS
134 	.nh_m2cpuid = rss_soft_m2cpuid,
135 	.nh_policy = NETISR_POLICY_CPU,
136 	.nh_dispatch = NETISR_DISPATCH_HYBRID,
137 #else
138 	.nh_policy = NETISR_POLICY_FLOW,
139 #endif
140 };
141 
142 #ifdef	RSS
143 /*
144  * Directly dispatched frames are currently assumed
145  * to have a flowid already calculated.
146  *
147  * It should likely have something that assert it
148  * actually has valid flow details.
149  */
150 static struct netisr_handler ip_direct_nh = {
151 	.nh_name = "ip_direct",
152 	.nh_handler = ip_direct_input,
153 	.nh_proto = NETISR_IP_DIRECT,
154 	.nh_m2cpuid = rss_m2cpuid,
155 	.nh_policy = NETISR_POLICY_CPU,
156 	.nh_dispatch = NETISR_DISPATCH_HYBRID,
157 };
158 #endif
159 
160 extern	struct domain inetdomain;
161 extern	struct protosw inetsw[];
162 u_char	ip_protox[IPPROTO_MAX];
163 VNET_DEFINE(struct in_ifaddrhead, in_ifaddrhead);  /* first inet address */
164 VNET_DEFINE(struct in_ifaddrhashhead *, in_ifaddrhashtbl); /* inet addr hash table  */
165 VNET_DEFINE(u_long, in_ifaddrhmask);		/* mask for hash table */
166 
167 static VNET_DEFINE(uma_zone_t, ipq_zone);
168 static VNET_DEFINE(TAILQ_HEAD(ipqhead, ipq), ipq[IPREASS_NHASH]);
169 static struct mtx_padalign ipqlock[IPREASS_NHASH];
170 
171 #define	V_ipq_zone		VNET(ipq_zone)
172 #define	V_ipq			VNET(ipq)
173 
174 /*
175  * The ipqlock array is global, /not/ per-VNET.
176  */
177 #define	IPQ_LOCK(i)	mtx_lock(&ipqlock[(i)])
178 #define	IPQ_UNLOCK(i)	mtx_unlock(&ipqlock[(i)])
179 #define	IPQ_LOCK_INIT(i)	mtx_init(&ipqlock[(i)], "ipqlock", NULL, MTX_DEF)
180 
181 static void	maxnipq_update(void);
182 static void	ipq_zone_change(void *);
183 static void	ip_drain_vnet(void);
184 static void	ipq_free(struct ipqhead *, struct ipq *);
185 
186 static inline void
187 ipq_timeout(struct ipqhead *head, struct ipq *fp)
188 {
189 
190 	IPSTAT_ADD(ips_fragtimeout, fp->ipq_nfrags);
191 	ipq_free(head, fp);
192 }
193 
194 static inline void
195 ipq_drop(struct ipqhead *head, struct ipq *fp)
196 {
197 
198 	IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
199 	ipq_free(head, fp);
200 }
201 
202 static VNET_DEFINE(int, maxnipq);  /* Administrative limit on # reass queues. */
203 static VNET_DEFINE(int, nipq);			/* Total # of reass queues */
204 #define	V_maxnipq		VNET(maxnipq)
205 #define	V_nipq			VNET(nipq)
206 SYSCTL_INT(_net_inet_ip, OID_AUTO, fragpackets, CTLFLAG_VNET | CTLFLAG_RD,
207     &VNET_NAME(nipq), 0,
208     "Current number of IPv4 fragment reassembly queue entries");
209 
210 static VNET_DEFINE(int, maxfragsperpacket);
211 #define	V_maxfragsperpacket	VNET(maxfragsperpacket)
212 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_VNET | CTLFLAG_RW,
213     &VNET_NAME(maxfragsperpacket), 0,
214     "Maximum number of IPv4 fragments allowed per packet");
215 
216 #ifdef IPCTL_DEFMTU
217 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
218     &ip_mtu, 0, "Default MTU");
219 #endif
220 
221 #ifdef IPSTEALTH
222 VNET_DEFINE(int, ipstealth);
223 SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_VNET | CTLFLAG_RW,
224     &VNET_NAME(ipstealth), 0,
225     "IP stealth mode, no TTL decrementation on forwarding");
226 #endif
227 
228 /*
229  * IP statistics are stored in the "array" of counter(9)s.
230  */
231 VNET_PCPUSTAT_DEFINE(struct ipstat, ipstat);
232 VNET_PCPUSTAT_SYSINIT(ipstat);
233 SYSCTL_VNET_PCPUSTAT(_net_inet_ip, IPCTL_STATS, stats, struct ipstat, ipstat,
234     "IP statistics (struct ipstat, netinet/ip_var.h)");
235 
236 #ifdef VIMAGE
237 VNET_PCPUSTAT_SYSUNINIT(ipstat);
238 #endif /* VIMAGE */
239 
240 /*
241  * Kernel module interface for updating ipstat.  The argument is an index
242  * into ipstat treated as an array.
243  */
244 void
245 kmod_ipstat_inc(int statnum)
246 {
247 
248 	counter_u64_add(VNET(ipstat)[statnum], 1);
249 }
250 
251 void
252 kmod_ipstat_dec(int statnum)
253 {
254 
255 	counter_u64_add(VNET(ipstat)[statnum], -1);
256 }
257 
258 static int
259 sysctl_netinet_intr_queue_maxlen(SYSCTL_HANDLER_ARGS)
260 {
261 	int error, qlimit;
262 
263 	netisr_getqlimit(&ip_nh, &qlimit);
264 	error = sysctl_handle_int(oidp, &qlimit, 0, req);
265 	if (error || !req->newptr)
266 		return (error);
267 	if (qlimit < 1)
268 		return (EINVAL);
269 	return (netisr_setqlimit(&ip_nh, qlimit));
270 }
271 SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen,
272     CTLTYPE_INT|CTLFLAG_RW, 0, 0, sysctl_netinet_intr_queue_maxlen, "I",
273     "Maximum size of the IP input queue");
274 
275 static int
276 sysctl_netinet_intr_queue_drops(SYSCTL_HANDLER_ARGS)
277 {
278 	u_int64_t qdrops_long;
279 	int error, qdrops;
280 
281 	netisr_getqdrops(&ip_nh, &qdrops_long);
282 	qdrops = qdrops_long;
283 	error = sysctl_handle_int(oidp, &qdrops, 0, req);
284 	if (error || !req->newptr)
285 		return (error);
286 	if (qdrops != 0)
287 		return (EINVAL);
288 	netisr_clearqdrops(&ip_nh);
289 	return (0);
290 }
291 
292 SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops,
293     CTLTYPE_INT|CTLFLAG_RD, 0, 0, sysctl_netinet_intr_queue_drops, "I",
294     "Number of packets dropped from the IP input queue");
295 
296 #ifdef	RSS
297 static int
298 sysctl_netinet_intr_direct_queue_maxlen(SYSCTL_HANDLER_ARGS)
299 {
300 	int error, qlimit;
301 
302 	netisr_getqlimit(&ip_direct_nh, &qlimit);
303 	error = sysctl_handle_int(oidp, &qlimit, 0, req);
304 	if (error || !req->newptr)
305 		return (error);
306 	if (qlimit < 1)
307 		return (EINVAL);
308 	return (netisr_setqlimit(&ip_direct_nh, qlimit));
309 }
310 SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_direct_queue_maxlen,
311     CTLTYPE_INT|CTLFLAG_RW, 0, 0, sysctl_netinet_intr_direct_queue_maxlen, "I",
312     "Maximum size of the IP direct input queue");
313 
314 static int
315 sysctl_netinet_intr_direct_queue_drops(SYSCTL_HANDLER_ARGS)
316 {
317 	u_int64_t qdrops_long;
318 	int error, qdrops;
319 
320 	netisr_getqdrops(&ip_direct_nh, &qdrops_long);
321 	qdrops = qdrops_long;
322 	error = sysctl_handle_int(oidp, &qdrops, 0, req);
323 	if (error || !req->newptr)
324 		return (error);
325 	if (qdrops != 0)
326 		return (EINVAL);
327 	netisr_clearqdrops(&ip_direct_nh);
328 	return (0);
329 }
330 
331 SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQDROPS, intr_direct_queue_drops,
332     CTLTYPE_INT|CTLFLAG_RD, 0, 0, sysctl_netinet_intr_direct_queue_drops, "I",
333     "Number of packets dropped from the IP direct input queue");
334 #endif	/* RSS */
335 
336 /*
337  * IP initialization: fill in IP protocol switch table.
338  * All protocols not implemented in kernel go to raw IP protocol handler.
339  */
340 void
341 ip_init(void)
342 {
343 	struct protosw *pr;
344 	int i;
345 
346 	TAILQ_INIT(&V_in_ifaddrhead);
347 	V_in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &V_in_ifaddrhmask);
348 
349 	/* Initialize IP reassembly queue. */
350 	for (i = 0; i < IPREASS_NHASH; i++)
351 		TAILQ_INIT(&V_ipq[i]);
352 	V_maxnipq = nmbclusters / 32;
353 	V_maxfragsperpacket = 16;
354 	V_ipq_zone = uma_zcreate("ipq", sizeof(struct ipq), NULL, NULL, NULL,
355 	    NULL, UMA_ALIGN_PTR, 0);
356 	maxnipq_update();
357 
358 	/* Initialize packet filter hooks. */
359 	V_inet_pfil_hook.ph_type = PFIL_TYPE_AF;
360 	V_inet_pfil_hook.ph_af = AF_INET;
361 	if ((i = pfil_head_register(&V_inet_pfil_hook)) != 0)
362 		printf("%s: WARNING: unable to register pfil hook, "
363 			"error %d\n", __func__, i);
364 
365 	/* Skip initialization of globals for non-default instances. */
366 	if (!IS_DEFAULT_VNET(curvnet))
367 		return;
368 
369 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
370 	if (pr == NULL)
371 		panic("ip_init: PF_INET not found");
372 
373 	/* Initialize the entire ip_protox[] array to IPPROTO_RAW. */
374 	for (i = 0; i < IPPROTO_MAX; i++)
375 		ip_protox[i] = pr - inetsw;
376 	/*
377 	 * Cycle through IP protocols and put them into the appropriate place
378 	 * in ip_protox[].
379 	 */
380 	for (pr = inetdomain.dom_protosw;
381 	    pr < inetdomain.dom_protoswNPROTOSW; pr++)
382 		if (pr->pr_domain->dom_family == PF_INET &&
383 		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW) {
384 			/* Be careful to only index valid IP protocols. */
385 			if (pr->pr_protocol < IPPROTO_MAX)
386 				ip_protox[pr->pr_protocol] = pr - inetsw;
387 		}
388 
389 	EVENTHANDLER_REGISTER(nmbclusters_change, ipq_zone_change,
390 		NULL, EVENTHANDLER_PRI_ANY);
391 
392 	/* Initialize various other remaining things. */
393 	for (i = 0; i < IPREASS_NHASH; i++)
394 		IPQ_LOCK_INIT(i);
395 	netisr_register(&ip_nh);
396 #ifdef	RSS
397 	netisr_register(&ip_direct_nh);
398 #endif
399 }
400 
401 #ifdef VIMAGE
402 void
403 ip_destroy(void)
404 {
405 	int i;
406 
407 	if ((i = pfil_head_unregister(&V_inet_pfil_hook)) != 0)
408 		printf("%s: WARNING: unable to unregister pfil hook, "
409 		    "error %d\n", __func__, i);
410 
411 	/* Cleanup in_ifaddr hash table; should be empty. */
412 	hashdestroy(V_in_ifaddrhashtbl, M_IFADDR, V_in_ifaddrhmask);
413 
414 	ip_drain_vnet();
415 
416 	uma_zdestroy(V_ipq_zone);
417 }
418 #endif
419 
420 #ifdef	RSS
421 /*
422  * IP direct input routine.
423  *
424  * This is called when reinjecting completed fragments where
425  * all of the previous checking and book-keeping has been done.
426  */
427 void
428 ip_direct_input(struct mbuf *m)
429 {
430 	struct ip *ip;
431 	int hlen;
432 
433 	ip = mtod(m, struct ip *);
434 	hlen = ip->ip_hl << 2;
435 
436 	IPSTAT_INC(ips_delivered);
437 	(*inetsw[ip_protox[ip->ip_p]].pr_input)(&m, &hlen, ip->ip_p);
438 	return;
439 }
440 #endif
441 
442 /*
443  * Ip input routine.  Checksum and byte swap header.  If fragmented
444  * try to reassemble.  Process options.  Pass to next level.
445  */
446 void
447 ip_input(struct mbuf *m)
448 {
449 	struct ip *ip = NULL;
450 	struct in_ifaddr *ia = NULL;
451 	struct ifaddr *ifa;
452 	struct ifnet *ifp;
453 	int    checkif, hlen = 0;
454 	uint16_t sum, ip_len;
455 	int dchg = 0;				/* dest changed after fw */
456 	struct in_addr odst;			/* original dst address */
457 
458 	M_ASSERTPKTHDR(m);
459 
460 	if (m->m_flags & M_FASTFWD_OURS) {
461 		m->m_flags &= ~M_FASTFWD_OURS;
462 		/* Set up some basics that will be used later. */
463 		ip = mtod(m, struct ip *);
464 		hlen = ip->ip_hl << 2;
465 		ip_len = ntohs(ip->ip_len);
466 		goto ours;
467 	}
468 
469 	IPSTAT_INC(ips_total);
470 
471 	if (m->m_pkthdr.len < sizeof(struct ip))
472 		goto tooshort;
473 
474 	if (m->m_len < sizeof (struct ip) &&
475 	    (m = m_pullup(m, sizeof (struct ip))) == NULL) {
476 		IPSTAT_INC(ips_toosmall);
477 		return;
478 	}
479 	ip = mtod(m, struct ip *);
480 
481 	if (ip->ip_v != IPVERSION) {
482 		IPSTAT_INC(ips_badvers);
483 		goto bad;
484 	}
485 
486 	hlen = ip->ip_hl << 2;
487 	if (hlen < sizeof(struct ip)) {	/* minimum header length */
488 		IPSTAT_INC(ips_badhlen);
489 		goto bad;
490 	}
491 	if (hlen > m->m_len) {
492 		if ((m = m_pullup(m, hlen)) == NULL) {
493 			IPSTAT_INC(ips_badhlen);
494 			return;
495 		}
496 		ip = mtod(m, struct ip *);
497 	}
498 
499 	IP_PROBE(receive, NULL, NULL, ip, m->m_pkthdr.rcvif, ip, NULL);
500 
501 	/* 127/8 must not appear on wire - RFC1122 */
502 	ifp = m->m_pkthdr.rcvif;
503 	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
504 	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
505 		if ((ifp->if_flags & IFF_LOOPBACK) == 0) {
506 			IPSTAT_INC(ips_badaddr);
507 			goto bad;
508 		}
509 	}
510 
511 	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
512 		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
513 	} else {
514 		if (hlen == sizeof(struct ip)) {
515 			sum = in_cksum_hdr(ip);
516 		} else {
517 			sum = in_cksum(m, hlen);
518 		}
519 	}
520 	if (sum) {
521 		IPSTAT_INC(ips_badsum);
522 		goto bad;
523 	}
524 
525 #ifdef ALTQ
526 	if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0)
527 		/* packet is dropped by traffic conditioner */
528 		return;
529 #endif
530 
531 	ip_len = ntohs(ip->ip_len);
532 	if (ip_len < hlen) {
533 		IPSTAT_INC(ips_badlen);
534 		goto bad;
535 	}
536 
537 	/*
538 	 * Check that the amount of data in the buffers
539 	 * is as at least much as the IP header would have us expect.
540 	 * Trim mbufs if longer than we expect.
541 	 * Drop packet if shorter than we expect.
542 	 */
543 	if (m->m_pkthdr.len < ip_len) {
544 tooshort:
545 		IPSTAT_INC(ips_tooshort);
546 		goto bad;
547 	}
548 	if (m->m_pkthdr.len > ip_len) {
549 		if (m->m_len == m->m_pkthdr.len) {
550 			m->m_len = ip_len;
551 			m->m_pkthdr.len = ip_len;
552 		} else
553 			m_adj(m, ip_len - m->m_pkthdr.len);
554 	}
555 
556 #ifdef IPSEC
557 	/*
558 	 * Bypass packet filtering for packets previously handled by IPsec.
559 	 */
560 	if (ip_ipsec_filtertunnel(m))
561 		goto passin;
562 #endif /* IPSEC */
563 
564 	/*
565 	 * Run through list of hooks for input packets.
566 	 *
567 	 * NB: Beware of the destination address changing (e.g.
568 	 *     by NAT rewriting).  When this happens, tell
569 	 *     ip_forward to do the right thing.
570 	 */
571 
572 	/* Jump over all PFIL processing if hooks are not active. */
573 	if (!PFIL_HOOKED(&V_inet_pfil_hook))
574 		goto passin;
575 
576 	odst = ip->ip_dst;
577 	if (pfil_run_hooks(&V_inet_pfil_hook, &m, ifp, PFIL_IN, NULL) != 0)
578 		return;
579 	if (m == NULL)			/* consumed by filter */
580 		return;
581 
582 	ip = mtod(m, struct ip *);
583 	dchg = (odst.s_addr != ip->ip_dst.s_addr);
584 	ifp = m->m_pkthdr.rcvif;
585 
586 	if (m->m_flags & M_FASTFWD_OURS) {
587 		m->m_flags &= ~M_FASTFWD_OURS;
588 		goto ours;
589 	}
590 	if (m->m_flags & M_IP_NEXTHOP) {
591 		dchg = (m_tag_find(m, PACKET_TAG_IPFORWARD, NULL) != NULL);
592 		if (dchg != 0) {
593 			/*
594 			 * Directly ship the packet on.  This allows
595 			 * forwarding packets originally destined to us
596 			 * to some other directly connected host.
597 			 */
598 			ip_forward(m, 1);
599 			return;
600 		}
601 	}
602 passin:
603 
604 	/*
605 	 * Process options and, if not destined for us,
606 	 * ship it on.  ip_dooptions returns 1 when an
607 	 * error was detected (causing an icmp message
608 	 * to be sent and the original packet to be freed).
609 	 */
610 	if (hlen > sizeof (struct ip) && ip_dooptions(m, 0))
611 		return;
612 
613         /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
614          * matter if it is destined to another node, or whether it is
615          * a multicast one, RSVP wants it! and prevents it from being forwarded
616          * anywhere else. Also checks if the rsvp daemon is running before
617 	 * grabbing the packet.
618          */
619 	if (V_rsvp_on && ip->ip_p==IPPROTO_RSVP)
620 		goto ours;
621 
622 	/*
623 	 * Check our list of addresses, to see if the packet is for us.
624 	 * If we don't have any addresses, assume any unicast packet
625 	 * we receive might be for us (and let the upper layers deal
626 	 * with it).
627 	 */
628 	if (TAILQ_EMPTY(&V_in_ifaddrhead) &&
629 	    (m->m_flags & (M_MCAST|M_BCAST)) == 0)
630 		goto ours;
631 
632 	/*
633 	 * Enable a consistency check between the destination address
634 	 * and the arrival interface for a unicast packet (the RFC 1122
635 	 * strong ES model) if IP forwarding is disabled and the packet
636 	 * is not locally generated and the packet is not subject to
637 	 * 'ipfw fwd'.
638 	 *
639 	 * XXX - Checking also should be disabled if the destination
640 	 * address is ipnat'ed to a different interface.
641 	 *
642 	 * XXX - Checking is incompatible with IP aliases added
643 	 * to the loopback interface instead of the interface where
644 	 * the packets are received.
645 	 *
646 	 * XXX - This is the case for carp vhost IPs as well so we
647 	 * insert a workaround. If the packet got here, we already
648 	 * checked with carp_iamatch() and carp_forus().
649 	 */
650 	checkif = V_ip_checkinterface && (V_ipforwarding == 0) &&
651 	    ifp != NULL && ((ifp->if_flags & IFF_LOOPBACK) == 0) &&
652 	    ifp->if_carp == NULL && (dchg == 0);
653 
654 	/*
655 	 * Check for exact addresses in the hash bucket.
656 	 */
657 	/* IN_IFADDR_RLOCK(); */
658 	LIST_FOREACH(ia, INADDR_HASH(ip->ip_dst.s_addr), ia_hash) {
659 		/*
660 		 * If the address matches, verify that the packet
661 		 * arrived via the correct interface if checking is
662 		 * enabled.
663 		 */
664 		if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr &&
665 		    (!checkif || ia->ia_ifp == ifp)) {
666 			counter_u64_add(ia->ia_ifa.ifa_ipackets, 1);
667 			counter_u64_add(ia->ia_ifa.ifa_ibytes,
668 			    m->m_pkthdr.len);
669 			/* IN_IFADDR_RUNLOCK(); */
670 			goto ours;
671 		}
672 	}
673 	/* IN_IFADDR_RUNLOCK(); */
674 
675 	/*
676 	 * Check for broadcast addresses.
677 	 *
678 	 * Only accept broadcast packets that arrive via the matching
679 	 * interface.  Reception of forwarded directed broadcasts would
680 	 * be handled via ip_forward() and ether_output() with the loopback
681 	 * into the stack for SIMPLEX interfaces handled by ether_output().
682 	 */
683 	if (ifp != NULL && ifp->if_flags & IFF_BROADCAST) {
684 		IF_ADDR_RLOCK(ifp);
685 	        TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
686 			if (ifa->ifa_addr->sa_family != AF_INET)
687 				continue;
688 			ia = ifatoia(ifa);
689 			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
690 			    ip->ip_dst.s_addr) {
691 				counter_u64_add(ia->ia_ifa.ifa_ipackets, 1);
692 				counter_u64_add(ia->ia_ifa.ifa_ibytes,
693 				    m->m_pkthdr.len);
694 				IF_ADDR_RUNLOCK(ifp);
695 				goto ours;
696 			}
697 #ifdef BOOTP_COMPAT
698 			if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY) {
699 				counter_u64_add(ia->ia_ifa.ifa_ipackets, 1);
700 				counter_u64_add(ia->ia_ifa.ifa_ibytes,
701 				    m->m_pkthdr.len);
702 				IF_ADDR_RUNLOCK(ifp);
703 				goto ours;
704 			}
705 #endif
706 		}
707 		IF_ADDR_RUNLOCK(ifp);
708 		ia = NULL;
709 	}
710 	/* RFC 3927 2.7: Do not forward datagrams for 169.254.0.0/16. */
711 	if (IN_LINKLOCAL(ntohl(ip->ip_dst.s_addr))) {
712 		IPSTAT_INC(ips_cantforward);
713 		m_freem(m);
714 		return;
715 	}
716 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
717 		if (V_ip_mrouter) {
718 			/*
719 			 * If we are acting as a multicast router, all
720 			 * incoming multicast packets are passed to the
721 			 * kernel-level multicast forwarding function.
722 			 * The packet is returned (relatively) intact; if
723 			 * ip_mforward() returns a non-zero value, the packet
724 			 * must be discarded, else it may be accepted below.
725 			 */
726 			if (ip_mforward && ip_mforward(ip, ifp, m, 0) != 0) {
727 				IPSTAT_INC(ips_cantforward);
728 				m_freem(m);
729 				return;
730 			}
731 
732 			/*
733 			 * The process-level routing daemon needs to receive
734 			 * all multicast IGMP packets, whether or not this
735 			 * host belongs to their destination groups.
736 			 */
737 			if (ip->ip_p == IPPROTO_IGMP)
738 				goto ours;
739 			IPSTAT_INC(ips_forward);
740 		}
741 		/*
742 		 * Assume the packet is for us, to avoid prematurely taking
743 		 * a lock on the in_multi hash. Protocols must perform
744 		 * their own filtering and update statistics accordingly.
745 		 */
746 		goto ours;
747 	}
748 	if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
749 		goto ours;
750 	if (ip->ip_dst.s_addr == INADDR_ANY)
751 		goto ours;
752 
753 	/*
754 	 * Not for us; forward if possible and desirable.
755 	 */
756 	if (V_ipforwarding == 0) {
757 		IPSTAT_INC(ips_cantforward);
758 		m_freem(m);
759 	} else {
760 		ip_forward(m, dchg);
761 	}
762 	return;
763 
764 ours:
765 #ifdef IPSTEALTH
766 	/*
767 	 * IPSTEALTH: Process non-routing options only
768 	 * if the packet is destined for us.
769 	 */
770 	if (V_ipstealth && hlen > sizeof (struct ip) && ip_dooptions(m, 1))
771 		return;
772 #endif /* IPSTEALTH */
773 
774 	/*
775 	 * Attempt reassembly; if it succeeds, proceed.
776 	 * ip_reass() will return a different mbuf.
777 	 */
778 	if (ip->ip_off & htons(IP_MF | IP_OFFMASK)) {
779 		/* XXXGL: shouldn't we save & set m_flags? */
780 		m = ip_reass(m);
781 		if (m == NULL)
782 			return;
783 		ip = mtod(m, struct ip *);
784 		/* Get the header length of the reassembled packet */
785 		hlen = ip->ip_hl << 2;
786 	}
787 
788 #ifdef IPSEC
789 	/*
790 	 * enforce IPsec policy checking if we are seeing last header.
791 	 * note that we do not visit this with protocols with pcb layer
792 	 * code - like udp/tcp/raw ip.
793 	 */
794 	if (ip_ipsec_input(m, ip->ip_p) != 0)
795 		goto bad;
796 #endif /* IPSEC */
797 
798 	/*
799 	 * Switch out to protocol's input routine.
800 	 */
801 	IPSTAT_INC(ips_delivered);
802 
803 	(*inetsw[ip_protox[ip->ip_p]].pr_input)(&m, &hlen, ip->ip_p);
804 	return;
805 bad:
806 	m_freem(m);
807 }
808 
809 /*
810  * After maxnipq has been updated, propagate the change to UMA.  The UMA zone
811  * max has slightly different semantics than the sysctl, for historical
812  * reasons.
813  */
814 static void
815 maxnipq_update(void)
816 {
817 
818 	/*
819 	 * -1 for unlimited allocation.
820 	 */
821 	if (V_maxnipq < 0)
822 		uma_zone_set_max(V_ipq_zone, 0);
823 	/*
824 	 * Positive number for specific bound.
825 	 */
826 	if (V_maxnipq > 0)
827 		uma_zone_set_max(V_ipq_zone, V_maxnipq);
828 	/*
829 	 * Zero specifies no further fragment queue allocation.
830 	 */
831 	if (V_maxnipq == 0) {
832 		uma_zone_set_max(V_ipq_zone, 1);
833 		ip_drain_vnet();
834 	}
835 }
836 
837 static void
838 ipq_zone_change(void *tag)
839 {
840 
841 	if (V_maxnipq > 0 && V_maxnipq < (nmbclusters / 32)) {
842 		V_maxnipq = nmbclusters / 32;
843 		maxnipq_update();
844 	}
845 }
846 
847 static int
848 sysctl_maxnipq(SYSCTL_HANDLER_ARGS)
849 {
850 	int error, i;
851 
852 	i = V_maxnipq;
853 	error = sysctl_handle_int(oidp, &i, 0, req);
854 	if (error || !req->newptr)
855 		return (error);
856 
857 	/*
858 	 * XXXRW: Might be a good idea to sanity check the argument and place
859 	 * an extreme upper bound.
860 	 */
861 	if (i < -1)
862 		return (EINVAL);
863 	V_maxnipq = i;
864 	maxnipq_update();
865 	return (0);
866 }
867 
868 SYSCTL_PROC(_net_inet_ip, OID_AUTO, maxfragpackets, CTLTYPE_INT|CTLFLAG_RW,
869     NULL, 0, sysctl_maxnipq, "I",
870     "Maximum number of IPv4 fragment reassembly queue entries");
871 
872 #define	M_IP_FRAG	M_PROTO9
873 
874 /*
875  * Attempt to purge something from the reassembly queue to make
876  * room.
877  *
878  * Must be called without any IPQ locks held, as it will attempt
879  * to lock each in turn.
880  *
881  * 'skip_bucket' is the bucket with which to skip over, or -1 to
882  * not skip over anything.
883  *
884  * Returns the bucket being freed, or -1 for no action.
885  */
886 static int
887 ip_reass_purge_element(int skip_bucket)
888 {
889 	int i;
890 	struct ipq *r;
891 
892 	for (i = 0; i < IPREASS_NHASH; i++) {
893 		if (skip_bucket > -1 && i == skip_bucket)
894 			continue;
895 		IPQ_LOCK(i);
896 		r = TAILQ_LAST(&V_ipq[i], ipqhead);
897 		if (r) {
898 			ipq_timeout(&V_ipq[i], r);
899 			IPQ_UNLOCK(i);
900 			return (i);
901 		}
902 		IPQ_UNLOCK(i);
903 	}
904 	return (-1);
905 }
906 
907 /*
908  * Take incoming datagram fragment and try to reassemble it into
909  * whole datagram.  If the argument is the first fragment or one
910  * in between the function will return NULL and store the mbuf
911  * in the fragment chain.  If the argument is the last fragment
912  * the packet will be reassembled and the pointer to the new
913  * mbuf returned for further processing.  Only m_tags attached
914  * to the first packet/fragment are preserved.
915  * The IP header is *NOT* adjusted out of iplen.
916  */
917 struct mbuf *
918 ip_reass(struct mbuf *m)
919 {
920 	struct ip *ip;
921 	struct mbuf *p, *q, *nq, *t;
922 	struct ipq *fp = NULL;
923 	struct ipqhead *head;
924 	int i, hlen, next;
925 	u_int8_t ecn, ecn0;
926 	u_short hash;
927 #ifdef	RSS
928 	uint32_t rss_hash, rss_type;
929 #endif
930 	int do_purge = 0;
931 
932 	/* If maxnipq or maxfragsperpacket are 0, never accept fragments. */
933 	if (V_maxnipq == 0 || V_maxfragsperpacket == 0) {
934 		IPSTAT_INC(ips_fragments);
935 		IPSTAT_INC(ips_fragdropped);
936 		m_freem(m);
937 		return (NULL);
938 	}
939 
940 	ip = mtod(m, struct ip *);
941 	hlen = ip->ip_hl << 2;
942 
943 	hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
944 	head = &V_ipq[hash];
945 	IPQ_LOCK(hash);
946 
947 	/*
948 	 * Look for queue of fragments
949 	 * of this datagram.
950 	 */
951 	TAILQ_FOREACH(fp, head, ipq_list)
952 		if (ip->ip_id == fp->ipq_id &&
953 		    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
954 		    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
955 #ifdef MAC
956 		    mac_ipq_match(m, fp) &&
957 #endif
958 		    ip->ip_p == fp->ipq_p)
959 			goto found;
960 
961 	fp = NULL;
962 
963 	/*
964 	 * Attempt to trim the number of allocated fragment queues if it
965 	 * exceeds the administrative limit.
966 	 */
967 	if ((V_nipq > V_maxnipq) && (V_maxnipq > 0)) {
968 		/*
969 		 * drop something from the tail of the current queue
970 		 * before proceeding further
971 		 */
972 		struct ipq *q = TAILQ_LAST(head, ipqhead);
973 		if (q == NULL) {   /* gak */
974 			/*
975 			 * Defer doing this until later; when the
976 			 * lock is no longer held.
977 			 */
978 			do_purge = 1;
979 		} else
980 			ipq_timeout(head, q);
981 	}
982 
983 found:
984 	/*
985 	 * Adjust ip_len to not reflect header,
986 	 * convert offset of this to bytes.
987 	 */
988 	ip->ip_len = htons(ntohs(ip->ip_len) - hlen);
989 	if (ip->ip_off & htons(IP_MF)) {
990 		/*
991 		 * Make sure that fragments have a data length
992 		 * that's a non-zero multiple of 8 bytes.
993 		 */
994 		if (ip->ip_len == htons(0) || (ntohs(ip->ip_len) & 0x7) != 0) {
995 			IPSTAT_INC(ips_toosmall); /* XXX */
996 			goto dropfrag;
997 		}
998 		m->m_flags |= M_IP_FRAG;
999 	} else
1000 		m->m_flags &= ~M_IP_FRAG;
1001 	ip->ip_off = htons(ntohs(ip->ip_off) << 3);
1002 
1003 	/*
1004 	 * Attempt reassembly; if it succeeds, proceed.
1005 	 * ip_reass() will return a different mbuf.
1006 	 */
1007 	IPSTAT_INC(ips_fragments);
1008 	m->m_pkthdr.PH_loc.ptr = ip;
1009 
1010 	/* Previous ip_reass() started here. */
1011 	/*
1012 	 * Presence of header sizes in mbufs
1013 	 * would confuse code below.
1014 	 */
1015 	m->m_data += hlen;
1016 	m->m_len -= hlen;
1017 
1018 	/*
1019 	 * If first fragment to arrive, create a reassembly queue.
1020 	 */
1021 	if (fp == NULL) {
1022 		fp = uma_zalloc(V_ipq_zone, M_NOWAIT);
1023 		if (fp == NULL)
1024 			goto dropfrag;
1025 #ifdef MAC
1026 		if (mac_ipq_init(fp, M_NOWAIT) != 0) {
1027 			uma_zfree(V_ipq_zone, fp);
1028 			fp = NULL;
1029 			goto dropfrag;
1030 		}
1031 		mac_ipq_create(m, fp);
1032 #endif
1033 		TAILQ_INSERT_HEAD(head, fp, ipq_list);
1034 		V_nipq++;
1035 		fp->ipq_nfrags = 1;
1036 		fp->ipq_ttl = IPFRAGTTL;
1037 		fp->ipq_p = ip->ip_p;
1038 		fp->ipq_id = ip->ip_id;
1039 		fp->ipq_src = ip->ip_src;
1040 		fp->ipq_dst = ip->ip_dst;
1041 		fp->ipq_frags = m;
1042 		m->m_nextpkt = NULL;
1043 		goto done;
1044 	} else {
1045 		fp->ipq_nfrags++;
1046 #ifdef MAC
1047 		mac_ipq_update(m, fp);
1048 #endif
1049 	}
1050 
1051 #define GETIP(m)	((struct ip*)((m)->m_pkthdr.PH_loc.ptr))
1052 
1053 	/*
1054 	 * Handle ECN by comparing this segment with the first one;
1055 	 * if CE is set, do not lose CE.
1056 	 * drop if CE and not-ECT are mixed for the same packet.
1057 	 */
1058 	ecn = ip->ip_tos & IPTOS_ECN_MASK;
1059 	ecn0 = GETIP(fp->ipq_frags)->ip_tos & IPTOS_ECN_MASK;
1060 	if (ecn == IPTOS_ECN_CE) {
1061 		if (ecn0 == IPTOS_ECN_NOTECT)
1062 			goto dropfrag;
1063 		if (ecn0 != IPTOS_ECN_CE)
1064 			GETIP(fp->ipq_frags)->ip_tos |= IPTOS_ECN_CE;
1065 	}
1066 	if (ecn == IPTOS_ECN_NOTECT && ecn0 != IPTOS_ECN_NOTECT)
1067 		goto dropfrag;
1068 
1069 	/*
1070 	 * Find a segment which begins after this one does.
1071 	 */
1072 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
1073 		if (ntohs(GETIP(q)->ip_off) > ntohs(ip->ip_off))
1074 			break;
1075 
1076 	/*
1077 	 * If there is a preceding segment, it may provide some of
1078 	 * our data already.  If so, drop the data from the incoming
1079 	 * segment.  If it provides all of our data, drop us, otherwise
1080 	 * stick new segment in the proper place.
1081 	 *
1082 	 * If some of the data is dropped from the preceding
1083 	 * segment, then it's checksum is invalidated.
1084 	 */
1085 	if (p) {
1086 		i = ntohs(GETIP(p)->ip_off) + ntohs(GETIP(p)->ip_len) -
1087 		    ntohs(ip->ip_off);
1088 		if (i > 0) {
1089 			if (i >= ntohs(ip->ip_len))
1090 				goto dropfrag;
1091 			m_adj(m, i);
1092 			m->m_pkthdr.csum_flags = 0;
1093 			ip->ip_off = htons(ntohs(ip->ip_off) + i);
1094 			ip->ip_len = htons(ntohs(ip->ip_len) - i);
1095 		}
1096 		m->m_nextpkt = p->m_nextpkt;
1097 		p->m_nextpkt = m;
1098 	} else {
1099 		m->m_nextpkt = fp->ipq_frags;
1100 		fp->ipq_frags = m;
1101 	}
1102 
1103 	/*
1104 	 * While we overlap succeeding segments trim them or,
1105 	 * if they are completely covered, dequeue them.
1106 	 */
1107 	for (; q != NULL && ntohs(ip->ip_off) + ntohs(ip->ip_len) >
1108 	    ntohs(GETIP(q)->ip_off); q = nq) {
1109 		i = (ntohs(ip->ip_off) + ntohs(ip->ip_len)) -
1110 		    ntohs(GETIP(q)->ip_off);
1111 		if (i < ntohs(GETIP(q)->ip_len)) {
1112 			GETIP(q)->ip_len = htons(ntohs(GETIP(q)->ip_len) - i);
1113 			GETIP(q)->ip_off = htons(ntohs(GETIP(q)->ip_off) + i);
1114 			m_adj(q, i);
1115 			q->m_pkthdr.csum_flags = 0;
1116 			break;
1117 		}
1118 		nq = q->m_nextpkt;
1119 		m->m_nextpkt = nq;
1120 		IPSTAT_INC(ips_fragdropped);
1121 		fp->ipq_nfrags--;
1122 		m_freem(q);
1123 	}
1124 
1125 	/*
1126 	 * Check for complete reassembly and perform frag per packet
1127 	 * limiting.
1128 	 *
1129 	 * Frag limiting is performed here so that the nth frag has
1130 	 * a chance to complete the packet before we drop the packet.
1131 	 * As a result, n+1 frags are actually allowed per packet, but
1132 	 * only n will ever be stored. (n = maxfragsperpacket.)
1133 	 *
1134 	 */
1135 	next = 0;
1136 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1137 		if (ntohs(GETIP(q)->ip_off) != next) {
1138 			if (fp->ipq_nfrags > V_maxfragsperpacket)
1139 				ipq_drop(head, fp);
1140 			goto done;
1141 		}
1142 		next += ntohs(GETIP(q)->ip_len);
1143 	}
1144 	/* Make sure the last packet didn't have the IP_MF flag */
1145 	if (p->m_flags & M_IP_FRAG) {
1146 		if (fp->ipq_nfrags > V_maxfragsperpacket)
1147 			ipq_drop(head, fp);
1148 		goto done;
1149 	}
1150 
1151 	/*
1152 	 * Reassembly is complete.  Make sure the packet is a sane size.
1153 	 */
1154 	q = fp->ipq_frags;
1155 	ip = GETIP(q);
1156 	if (next + (ip->ip_hl << 2) > IP_MAXPACKET) {
1157 		IPSTAT_INC(ips_toolong);
1158 		ipq_drop(head, fp);
1159 		goto done;
1160 	}
1161 
1162 	/*
1163 	 * Concatenate fragments.
1164 	 */
1165 	m = q;
1166 	t = m->m_next;
1167 	m->m_next = NULL;
1168 	m_cat(m, t);
1169 	nq = q->m_nextpkt;
1170 	q->m_nextpkt = NULL;
1171 	for (q = nq; q != NULL; q = nq) {
1172 		nq = q->m_nextpkt;
1173 		q->m_nextpkt = NULL;
1174 		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1175 		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1176 		m_cat(m, q);
1177 	}
1178 	/*
1179 	 * In order to do checksumming faster we do 'end-around carry' here
1180 	 * (and not in for{} loop), though it implies we are not going to
1181 	 * reassemble more than 64k fragments.
1182 	 */
1183 	while (m->m_pkthdr.csum_data & 0xffff0000)
1184 		m->m_pkthdr.csum_data = (m->m_pkthdr.csum_data & 0xffff) +
1185 		    (m->m_pkthdr.csum_data >> 16);
1186 #ifdef MAC
1187 	mac_ipq_reassemble(fp, m);
1188 	mac_ipq_destroy(fp);
1189 #endif
1190 
1191 	/*
1192 	 * Create header for new ip packet by modifying header of first
1193 	 * packet;  dequeue and discard fragment reassembly header.
1194 	 * Make header visible.
1195 	 */
1196 	ip->ip_len = htons((ip->ip_hl << 2) + next);
1197 	ip->ip_src = fp->ipq_src;
1198 	ip->ip_dst = fp->ipq_dst;
1199 	TAILQ_REMOVE(head, fp, ipq_list);
1200 	V_nipq--;
1201 	uma_zfree(V_ipq_zone, fp);
1202 	m->m_len += (ip->ip_hl << 2);
1203 	m->m_data -= (ip->ip_hl << 2);
1204 	/* some debugging cruft by sklower, below, will go away soon */
1205 	if (m->m_flags & M_PKTHDR)	/* XXX this should be done elsewhere */
1206 		m_fixhdr(m);
1207 	IPSTAT_INC(ips_reassembled);
1208 	IPQ_UNLOCK(hash);
1209 
1210 	/*
1211 	 * Do the delayed purge to keep fragment counts under
1212 	 * the configured maximum.
1213 	 *
1214 	 * This is delayed so that it's not done with another IPQ bucket
1215 	 * lock held.
1216 	 *
1217 	 * Note that we pass in the bucket to /skip/ over, not
1218 	 * the bucket to /purge/.
1219 	 */
1220 	if (do_purge)
1221 		ip_reass_purge_element(hash);
1222 
1223 #ifdef	RSS
1224 	/*
1225 	 * Query the RSS layer for the flowid / flowtype for the
1226 	 * mbuf payload.
1227 	 *
1228 	 * For now, just assume we have to calculate a new one.
1229 	 * Later on we should check to see if the assigned flowid matches
1230 	 * what RSS wants for the given IP protocol and if so, just keep it.
1231 	 *
1232 	 * We then queue into the relevant netisr so it can be dispatched
1233 	 * to the correct CPU.
1234 	 *
1235 	 * Note - this may return 1, which means the flowid in the mbuf
1236 	 * is correct for the configured RSS hash types and can be used.
1237 	 */
1238 	if (rss_mbuf_software_hash_v4(m, 0, &rss_hash, &rss_type) == 0) {
1239 		m->m_pkthdr.flowid = rss_hash;
1240 		M_HASHTYPE_SET(m, rss_type);
1241 	}
1242 
1243 	/*
1244 	 * Queue/dispatch for reprocessing.
1245 	 *
1246 	 * Note: this is much slower than just handling the frame in the
1247 	 * current receive context.  It's likely worth investigating
1248 	 * why this is.
1249 	 */
1250 	netisr_dispatch(NETISR_IP_DIRECT, m);
1251 	return (NULL);
1252 #endif
1253 
1254 	/* Handle in-line */
1255 	return (m);
1256 
1257 dropfrag:
1258 	IPSTAT_INC(ips_fragdropped);
1259 	if (fp != NULL)
1260 		fp->ipq_nfrags--;
1261 	m_freem(m);
1262 done:
1263 	IPQ_UNLOCK(hash);
1264 	return (NULL);
1265 
1266 #undef GETIP
1267 }
1268 
1269 /*
1270  * Free a fragment reassembly header and all
1271  * associated datagrams.
1272  */
1273 static void
1274 ipq_free(struct ipqhead *fhp, struct ipq *fp)
1275 {
1276 	struct mbuf *q;
1277 
1278 	while (fp->ipq_frags) {
1279 		q = fp->ipq_frags;
1280 		fp->ipq_frags = q->m_nextpkt;
1281 		m_freem(q);
1282 	}
1283 	TAILQ_REMOVE(fhp, fp, ipq_list);
1284 	uma_zfree(V_ipq_zone, fp);
1285 	V_nipq--;
1286 }
1287 
1288 /*
1289  * IP timer processing;
1290  * if a timer expires on a reassembly
1291  * queue, discard it.
1292  */
1293 void
1294 ip_slowtimo(void)
1295 {
1296 	VNET_ITERATOR_DECL(vnet_iter);
1297 	struct ipq *fp, *tmp;
1298 	int i;
1299 
1300 	VNET_LIST_RLOCK_NOSLEEP();
1301 	VNET_FOREACH(vnet_iter) {
1302 		CURVNET_SET(vnet_iter);
1303 		for (i = 0; i < IPREASS_NHASH; i++) {
1304 			IPQ_LOCK(i);
1305 			TAILQ_FOREACH_SAFE(fp, &V_ipq[i], ipq_list, tmp)
1306 				if (--fp->ipq_ttl == 0)
1307 					ipq_timeout(&V_ipq[i], fp);
1308 			IPQ_UNLOCK(i);
1309 		}
1310 		/*
1311 		 * If we are over the maximum number of fragments
1312 		 * (due to the limit being lowered), drain off
1313 		 * enough to get down to the new limit.
1314 		 */
1315 		if (V_maxnipq >= 0 && V_nipq > V_maxnipq) {
1316 			for (i = 0; i < IPREASS_NHASH; i++) {
1317 				IPQ_LOCK(i);
1318 				while (V_nipq > V_maxnipq &&
1319 				    !TAILQ_EMPTY(&V_ipq[i]))
1320 					ipq_drop(&V_ipq[i],
1321 					    TAILQ_FIRST(&V_ipq[i]));
1322 				IPQ_UNLOCK(i);
1323 			}
1324 		}
1325 		CURVNET_RESTORE();
1326 	}
1327 	VNET_LIST_RUNLOCK_NOSLEEP();
1328 }
1329 
1330 /*
1331  * Drain off all datagram fragments.
1332  */
1333 static void
1334 ip_drain_vnet(void)
1335 {
1336 	int     i;
1337 
1338 	for (i = 0; i < IPREASS_NHASH; i++) {
1339 		IPQ_LOCK(i);
1340 		while(!TAILQ_EMPTY(&V_ipq[i]))
1341 			ipq_drop(&V_ipq[i], TAILQ_FIRST(&V_ipq[i]));
1342 		IPQ_UNLOCK(i);
1343 	}
1344 }
1345 
1346 void
1347 ip_drain(void)
1348 {
1349 	VNET_ITERATOR_DECL(vnet_iter);
1350 
1351 	VNET_LIST_RLOCK_NOSLEEP();
1352 	VNET_FOREACH(vnet_iter) {
1353 		CURVNET_SET(vnet_iter);
1354 		ip_drain_vnet();
1355 		CURVNET_RESTORE();
1356 	}
1357 	VNET_LIST_RUNLOCK_NOSLEEP();
1358 }
1359 
1360 /*
1361  * The protocol to be inserted into ip_protox[] must be already registered
1362  * in inetsw[], either statically or through pf_proto_register().
1363  */
1364 int
1365 ipproto_register(short ipproto)
1366 {
1367 	struct protosw *pr;
1368 
1369 	/* Sanity checks. */
1370 	if (ipproto <= 0 || ipproto >= IPPROTO_MAX)
1371 		return (EPROTONOSUPPORT);
1372 
1373 	/*
1374 	 * The protocol slot must not be occupied by another protocol
1375 	 * already.  An index pointing to IPPROTO_RAW is unused.
1376 	 */
1377 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
1378 	if (pr == NULL)
1379 		return (EPFNOSUPPORT);
1380 	if (ip_protox[ipproto] != pr - inetsw)	/* IPPROTO_RAW */
1381 		return (EEXIST);
1382 
1383 	/* Find the protocol position in inetsw[] and set the index. */
1384 	for (pr = inetdomain.dom_protosw;
1385 	     pr < inetdomain.dom_protoswNPROTOSW; pr++) {
1386 		if (pr->pr_domain->dom_family == PF_INET &&
1387 		    pr->pr_protocol && pr->pr_protocol == ipproto) {
1388 			ip_protox[pr->pr_protocol] = pr - inetsw;
1389 			return (0);
1390 		}
1391 	}
1392 	return (EPROTONOSUPPORT);
1393 }
1394 
1395 int
1396 ipproto_unregister(short ipproto)
1397 {
1398 	struct protosw *pr;
1399 
1400 	/* Sanity checks. */
1401 	if (ipproto <= 0 || ipproto >= IPPROTO_MAX)
1402 		return (EPROTONOSUPPORT);
1403 
1404 	/* Check if the protocol was indeed registered. */
1405 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
1406 	if (pr == NULL)
1407 		return (EPFNOSUPPORT);
1408 	if (ip_protox[ipproto] == pr - inetsw)  /* IPPROTO_RAW */
1409 		return (ENOENT);
1410 
1411 	/* Reset the protocol slot to IPPROTO_RAW. */
1412 	ip_protox[ipproto] = pr - inetsw;
1413 	return (0);
1414 }
1415 
1416 /*
1417  * Given address of next destination (final or next hop), return (referenced)
1418  * internet address info of interface to be used to get there.
1419  */
1420 struct in_ifaddr *
1421 ip_rtaddr(struct in_addr dst, u_int fibnum)
1422 {
1423 	struct route sro;
1424 	struct sockaddr_in *sin;
1425 	struct in_ifaddr *ia;
1426 
1427 	bzero(&sro, sizeof(sro));
1428 	sin = (struct sockaddr_in *)&sro.ro_dst;
1429 	sin->sin_family = AF_INET;
1430 	sin->sin_len = sizeof(*sin);
1431 	sin->sin_addr = dst;
1432 	in_rtalloc_ign(&sro, 0, fibnum);
1433 
1434 	if (sro.ro_rt == NULL)
1435 		return (NULL);
1436 
1437 	ia = ifatoia(sro.ro_rt->rt_ifa);
1438 	ifa_ref(&ia->ia_ifa);
1439 	RTFREE(sro.ro_rt);
1440 	return (ia);
1441 }
1442 
1443 u_char inetctlerrmap[PRC_NCMDS] = {
1444 	0,		0,		0,		0,
1445 	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1446 	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1447 	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1448 	0,		0,		EHOSTUNREACH,	0,
1449 	ENOPROTOOPT,	ECONNREFUSED
1450 };
1451 
1452 /*
1453  * Forward a packet.  If some error occurs return the sender
1454  * an icmp packet.  Note we can't always generate a meaningful
1455  * icmp message because icmp doesn't have a large enough repertoire
1456  * of codes and types.
1457  *
1458  * If not forwarding, just drop the packet.  This could be confusing
1459  * if ipforwarding was zero but some routing protocol was advancing
1460  * us as a gateway to somewhere.  However, we must let the routing
1461  * protocol deal with that.
1462  *
1463  * The srcrt parameter indicates whether the packet is being forwarded
1464  * via a source route.
1465  */
1466 void
1467 ip_forward(struct mbuf *m, int srcrt)
1468 {
1469 	struct ip *ip = mtod(m, struct ip *);
1470 	struct in_ifaddr *ia;
1471 	struct mbuf *mcopy;
1472 	struct in_addr dest;
1473 	struct route ro;
1474 	int error, type = 0, code = 0, mtu = 0;
1475 
1476 	if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) {
1477 		IPSTAT_INC(ips_cantforward);
1478 		m_freem(m);
1479 		return;
1480 	}
1481 #ifdef IPSEC
1482 	if (ip_ipsec_fwd(m) != 0) {
1483 		IPSTAT_INC(ips_cantforward);
1484 		m_freem(m);
1485 		return;
1486 	}
1487 #endif /* IPSEC */
1488 #ifdef IPSTEALTH
1489 	if (!V_ipstealth) {
1490 #endif
1491 		if (ip->ip_ttl <= IPTTLDEC) {
1492 			icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS,
1493 			    0, 0);
1494 			return;
1495 		}
1496 #ifdef IPSTEALTH
1497 	}
1498 #endif
1499 
1500 	ia = ip_rtaddr(ip->ip_dst, M_GETFIB(m));
1501 #ifndef IPSEC
1502 	/*
1503 	 * 'ia' may be NULL if there is no route for this destination.
1504 	 * In case of IPsec, Don't discard it just yet, but pass it to
1505 	 * ip_output in case of outgoing IPsec policy.
1506 	 */
1507 	if (!srcrt && ia == NULL) {
1508 		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, 0, 0);
1509 		return;
1510 	}
1511 #endif
1512 
1513 	/*
1514 	 * Save the IP header and at most 8 bytes of the payload,
1515 	 * in case we need to generate an ICMP message to the src.
1516 	 *
1517 	 * XXX this can be optimized a lot by saving the data in a local
1518 	 * buffer on the stack (72 bytes at most), and only allocating the
1519 	 * mbuf if really necessary. The vast majority of the packets
1520 	 * are forwarded without having to send an ICMP back (either
1521 	 * because unnecessary, or because rate limited), so we are
1522 	 * really we are wasting a lot of work here.
1523 	 *
1524 	 * We don't use m_copy() because it might return a reference
1525 	 * to a shared cluster. Both this function and ip_output()
1526 	 * assume exclusive access to the IP header in `m', so any
1527 	 * data in a cluster may change before we reach icmp_error().
1528 	 */
1529 	mcopy = m_gethdr(M_NOWAIT, m->m_type);
1530 	if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, M_NOWAIT)) {
1531 		/*
1532 		 * It's probably ok if the pkthdr dup fails (because
1533 		 * the deep copy of the tag chain failed), but for now
1534 		 * be conservative and just discard the copy since
1535 		 * code below may some day want the tags.
1536 		 */
1537 		m_free(mcopy);
1538 		mcopy = NULL;
1539 	}
1540 	if (mcopy != NULL) {
1541 		mcopy->m_len = min(ntohs(ip->ip_len), M_TRAILINGSPACE(mcopy));
1542 		mcopy->m_pkthdr.len = mcopy->m_len;
1543 		m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
1544 	}
1545 
1546 #ifdef IPSTEALTH
1547 	if (!V_ipstealth) {
1548 #endif
1549 		ip->ip_ttl -= IPTTLDEC;
1550 #ifdef IPSTEALTH
1551 	}
1552 #endif
1553 
1554 	/*
1555 	 * If forwarding packet using same interface that it came in on,
1556 	 * perhaps should send a redirect to sender to shortcut a hop.
1557 	 * Only send redirect if source is sending directly to us,
1558 	 * and if packet was not source routed (or has any options).
1559 	 * Also, don't send redirect if forwarding using a default route
1560 	 * or a route modified by a redirect.
1561 	 */
1562 	dest.s_addr = 0;
1563 	if (!srcrt && V_ipsendredirects &&
1564 	    ia != NULL && ia->ia_ifp == m->m_pkthdr.rcvif) {
1565 		struct sockaddr_in *sin;
1566 		struct rtentry *rt;
1567 
1568 		bzero(&ro, sizeof(ro));
1569 		sin = (struct sockaddr_in *)&ro.ro_dst;
1570 		sin->sin_family = AF_INET;
1571 		sin->sin_len = sizeof(*sin);
1572 		sin->sin_addr = ip->ip_dst;
1573 		in_rtalloc_ign(&ro, 0, M_GETFIB(m));
1574 
1575 		rt = ro.ro_rt;
1576 
1577 		if (rt && (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1578 		    satosin(rt_key(rt))->sin_addr.s_addr != 0) {
1579 #define	RTA(rt)	((struct in_ifaddr *)(rt->rt_ifa))
1580 			u_long src = ntohl(ip->ip_src.s_addr);
1581 
1582 			if (RTA(rt) &&
1583 			    (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
1584 				if (rt->rt_flags & RTF_GATEWAY)
1585 					dest.s_addr = satosin(rt->rt_gateway)->sin_addr.s_addr;
1586 				else
1587 					dest.s_addr = ip->ip_dst.s_addr;
1588 				/* Router requirements says to only send host redirects */
1589 				type = ICMP_REDIRECT;
1590 				code = ICMP_REDIRECT_HOST;
1591 			}
1592 		}
1593 		if (rt)
1594 			RTFREE(rt);
1595 	}
1596 
1597 	/*
1598 	 * Try to cache the route MTU from ip_output so we can consider it for
1599 	 * the ICMP_UNREACH_NEEDFRAG "Next-Hop MTU" field described in RFC1191.
1600 	 */
1601 	bzero(&ro, sizeof(ro));
1602 
1603 	error = ip_output(m, NULL, &ro, IP_FORWARDING, NULL, NULL);
1604 
1605 	if (error == EMSGSIZE && ro.ro_rt)
1606 		mtu = ro.ro_rt->rt_mtu;
1607 	RO_RTFREE(&ro);
1608 
1609 	if (error)
1610 		IPSTAT_INC(ips_cantforward);
1611 	else {
1612 		IPSTAT_INC(ips_forward);
1613 		if (type)
1614 			IPSTAT_INC(ips_redirectsent);
1615 		else {
1616 			if (mcopy)
1617 				m_freem(mcopy);
1618 			if (ia != NULL)
1619 				ifa_free(&ia->ia_ifa);
1620 			return;
1621 		}
1622 	}
1623 	if (mcopy == NULL) {
1624 		if (ia != NULL)
1625 			ifa_free(&ia->ia_ifa);
1626 		return;
1627 	}
1628 
1629 	switch (error) {
1630 
1631 	case 0:				/* forwarded, but need redirect */
1632 		/* type, code set above */
1633 		break;
1634 
1635 	case ENETUNREACH:
1636 	case EHOSTUNREACH:
1637 	case ENETDOWN:
1638 	case EHOSTDOWN:
1639 	default:
1640 		type = ICMP_UNREACH;
1641 		code = ICMP_UNREACH_HOST;
1642 		break;
1643 
1644 	case EMSGSIZE:
1645 		type = ICMP_UNREACH;
1646 		code = ICMP_UNREACH_NEEDFRAG;
1647 
1648 #ifdef IPSEC
1649 		/*
1650 		 * If IPsec is configured for this path,
1651 		 * override any possibly mtu value set by ip_output.
1652 		 */
1653 		mtu = ip_ipsec_mtu(mcopy, mtu);
1654 #endif /* IPSEC */
1655 		/*
1656 		 * If the MTU was set before make sure we are below the
1657 		 * interface MTU.
1658 		 * If the MTU wasn't set before use the interface mtu or
1659 		 * fall back to the next smaller mtu step compared to the
1660 		 * current packet size.
1661 		 */
1662 		if (mtu != 0) {
1663 			if (ia != NULL)
1664 				mtu = min(mtu, ia->ia_ifp->if_mtu);
1665 		} else {
1666 			if (ia != NULL)
1667 				mtu = ia->ia_ifp->if_mtu;
1668 			else
1669 				mtu = ip_next_mtu(ntohs(ip->ip_len), 0);
1670 		}
1671 		IPSTAT_INC(ips_cantfrag);
1672 		break;
1673 
1674 	case ENOBUFS:
1675 	case EACCES:			/* ipfw denied packet */
1676 		m_freem(mcopy);
1677 		if (ia != NULL)
1678 			ifa_free(&ia->ia_ifa);
1679 		return;
1680 	}
1681 	if (ia != NULL)
1682 		ifa_free(&ia->ia_ifa);
1683 	icmp_error(mcopy, type, code, dest.s_addr, mtu);
1684 }
1685 
1686 void
1687 ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
1688     struct mbuf *m)
1689 {
1690 
1691 	if (inp->inp_socket->so_options & (SO_BINTIME | SO_TIMESTAMP)) {
1692 		struct bintime bt;
1693 
1694 		bintime(&bt);
1695 		if (inp->inp_socket->so_options & SO_BINTIME) {
1696 			*mp = sbcreatecontrol((caddr_t)&bt, sizeof(bt),
1697 			    SCM_BINTIME, SOL_SOCKET);
1698 			if (*mp)
1699 				mp = &(*mp)->m_next;
1700 		}
1701 		if (inp->inp_socket->so_options & SO_TIMESTAMP) {
1702 			struct timeval tv;
1703 
1704 			bintime2timeval(&bt, &tv);
1705 			*mp = sbcreatecontrol((caddr_t)&tv, sizeof(tv),
1706 			    SCM_TIMESTAMP, SOL_SOCKET);
1707 			if (*mp)
1708 				mp = &(*mp)->m_next;
1709 		}
1710 	}
1711 	if (inp->inp_flags & INP_RECVDSTADDR) {
1712 		*mp = sbcreatecontrol((caddr_t)&ip->ip_dst,
1713 		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
1714 		if (*mp)
1715 			mp = &(*mp)->m_next;
1716 	}
1717 	if (inp->inp_flags & INP_RECVTTL) {
1718 		*mp = sbcreatecontrol((caddr_t)&ip->ip_ttl,
1719 		    sizeof(u_char), IP_RECVTTL, IPPROTO_IP);
1720 		if (*mp)
1721 			mp = &(*mp)->m_next;
1722 	}
1723 #ifdef notyet
1724 	/* XXX
1725 	 * Moving these out of udp_input() made them even more broken
1726 	 * than they already were.
1727 	 */
1728 	/* options were tossed already */
1729 	if (inp->inp_flags & INP_RECVOPTS) {
1730 		*mp = sbcreatecontrol((caddr_t)opts_deleted_above,
1731 		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
1732 		if (*mp)
1733 			mp = &(*mp)->m_next;
1734 	}
1735 	/* ip_srcroute doesn't do what we want here, need to fix */
1736 	if (inp->inp_flags & INP_RECVRETOPTS) {
1737 		*mp = sbcreatecontrol((caddr_t)ip_srcroute(m),
1738 		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
1739 		if (*mp)
1740 			mp = &(*mp)->m_next;
1741 	}
1742 #endif
1743 	if (inp->inp_flags & INP_RECVIF) {
1744 		struct ifnet *ifp;
1745 		struct sdlbuf {
1746 			struct sockaddr_dl sdl;
1747 			u_char	pad[32];
1748 		} sdlbuf;
1749 		struct sockaddr_dl *sdp;
1750 		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
1751 
1752 		if ((ifp = m->m_pkthdr.rcvif) &&
1753 		    ifp->if_index && ifp->if_index <= V_if_index) {
1754 			sdp = (struct sockaddr_dl *)ifp->if_addr->ifa_addr;
1755 			/*
1756 			 * Change our mind and don't try copy.
1757 			 */
1758 			if (sdp->sdl_family != AF_LINK ||
1759 			    sdp->sdl_len > sizeof(sdlbuf)) {
1760 				goto makedummy;
1761 			}
1762 			bcopy(sdp, sdl2, sdp->sdl_len);
1763 		} else {
1764 makedummy:
1765 			sdl2->sdl_len =
1766 			    offsetof(struct sockaddr_dl, sdl_data[0]);
1767 			sdl2->sdl_family = AF_LINK;
1768 			sdl2->sdl_index = 0;
1769 			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
1770 		}
1771 		*mp = sbcreatecontrol((caddr_t)sdl2, sdl2->sdl_len,
1772 		    IP_RECVIF, IPPROTO_IP);
1773 		if (*mp)
1774 			mp = &(*mp)->m_next;
1775 	}
1776 	if (inp->inp_flags & INP_RECVTOS) {
1777 		*mp = sbcreatecontrol((caddr_t)&ip->ip_tos,
1778 		    sizeof(u_char), IP_RECVTOS, IPPROTO_IP);
1779 		if (*mp)
1780 			mp = &(*mp)->m_next;
1781 	}
1782 
1783 	if (inp->inp_flags2 & INP_RECVFLOWID) {
1784 		uint32_t flowid, flow_type;
1785 
1786 		flowid = m->m_pkthdr.flowid;
1787 		flow_type = M_HASHTYPE_GET(m);
1788 
1789 		/*
1790 		 * XXX should handle the failure of one or the
1791 		 * other - don't populate both?
1792 		 */
1793 		*mp = sbcreatecontrol((caddr_t) &flowid,
1794 		    sizeof(uint32_t), IP_FLOWID, IPPROTO_IP);
1795 		if (*mp)
1796 			mp = &(*mp)->m_next;
1797 		*mp = sbcreatecontrol((caddr_t) &flow_type,
1798 		    sizeof(uint32_t), IP_FLOWTYPE, IPPROTO_IP);
1799 		if (*mp)
1800 			mp = &(*mp)->m_next;
1801 	}
1802 
1803 #ifdef	RSS
1804 	if (inp->inp_flags2 & INP_RECVRSSBUCKETID) {
1805 		uint32_t flowid, flow_type;
1806 		uint32_t rss_bucketid;
1807 
1808 		flowid = m->m_pkthdr.flowid;
1809 		flow_type = M_HASHTYPE_GET(m);
1810 
1811 		if (rss_hash2bucket(flowid, flow_type, &rss_bucketid) == 0) {
1812 			*mp = sbcreatecontrol((caddr_t) &rss_bucketid,
1813 			   sizeof(uint32_t), IP_RSSBUCKETID, IPPROTO_IP);
1814 			if (*mp)
1815 				mp = &(*mp)->m_next;
1816 		}
1817 	}
1818 #endif
1819 }
1820 
1821 /*
1822  * XXXRW: Multicast routing code in ip_mroute.c is generally MPSAFE, but the
1823  * ip_rsvp and ip_rsvp_on variables need to be interlocked with rsvp_on
1824  * locking.  This code remains in ip_input.c as ip_mroute.c is optionally
1825  * compiled.
1826  */
1827 static VNET_DEFINE(int, ip_rsvp_on);
1828 VNET_DEFINE(struct socket *, ip_rsvpd);
1829 
1830 #define	V_ip_rsvp_on		VNET(ip_rsvp_on)
1831 
1832 int
1833 ip_rsvp_init(struct socket *so)
1834 {
1835 
1836 	if (so->so_type != SOCK_RAW ||
1837 	    so->so_proto->pr_protocol != IPPROTO_RSVP)
1838 		return EOPNOTSUPP;
1839 
1840 	if (V_ip_rsvpd != NULL)
1841 		return EADDRINUSE;
1842 
1843 	V_ip_rsvpd = so;
1844 	/*
1845 	 * This may seem silly, but we need to be sure we don't over-increment
1846 	 * the RSVP counter, in case something slips up.
1847 	 */
1848 	if (!V_ip_rsvp_on) {
1849 		V_ip_rsvp_on = 1;
1850 		V_rsvp_on++;
1851 	}
1852 
1853 	return 0;
1854 }
1855 
1856 int
1857 ip_rsvp_done(void)
1858 {
1859 
1860 	V_ip_rsvpd = NULL;
1861 	/*
1862 	 * This may seem silly, but we need to be sure we don't over-decrement
1863 	 * the RSVP counter, in case something slips up.
1864 	 */
1865 	if (V_ip_rsvp_on) {
1866 		V_ip_rsvp_on = 0;
1867 		V_rsvp_on--;
1868 	}
1869 	return 0;
1870 }
1871 
1872 int
1873 rsvp_input(struct mbuf **mp, int *offp, int proto)
1874 {
1875 	struct mbuf *m;
1876 
1877 	m = *mp;
1878 	*mp = NULL;
1879 
1880 	if (rsvp_input_p) { /* call the real one if loaded */
1881 		*mp = m;
1882 		rsvp_input_p(mp, offp, proto);
1883 		return (IPPROTO_DONE);
1884 	}
1885 
1886 	/* Can still get packets with rsvp_on = 0 if there is a local member
1887 	 * of the group to which the RSVP packet is addressed.  But in this
1888 	 * case we want to throw the packet away.
1889 	 */
1890 
1891 	if (!V_rsvp_on) {
1892 		m_freem(m);
1893 		return (IPPROTO_DONE);
1894 	}
1895 
1896 	if (V_ip_rsvpd != NULL) {
1897 		*mp = m;
1898 		rip_input(mp, offp, proto);
1899 		return (IPPROTO_DONE);
1900 	}
1901 	/* Drop the packet */
1902 	m_freem(m);
1903 	return (IPPROTO_DONE);
1904 }
1905