xref: /freebsd/sys/netinet/ip_input.c (revision 3ff369fed2a08f32dda232c10470b949bef9489f)
1 /*
2  * Copyright (c) 1982, 1986, 1988, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
34  * $FreeBSD$
35  */
36 
37 #define	_IP_VHL
38 
39 #include "opt_bootp.h"
40 #include "opt_ipfw.h"
41 #include "opt_ipdn.h"
42 #include "opt_ipdivert.h"
43 #include "opt_ipfilter.h"
44 #include "opt_ipstealth.h"
45 #include "opt_ipsec.h"
46 #include "opt_pfil_hooks.h"
47 #include "opt_random_ip_id.h"
48 
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/mbuf.h>
52 #include <sys/malloc.h>
53 #include <sys/domain.h>
54 #include <sys/protosw.h>
55 #include <sys/socket.h>
56 #include <sys/time.h>
57 #include <sys/kernel.h>
58 #include <sys/syslog.h>
59 #include <sys/sysctl.h>
60 
61 #include <net/pfil.h>
62 #include <net/if.h>
63 #include <net/if_types.h>
64 #include <net/if_var.h>
65 #include <net/if_dl.h>
66 #include <net/route.h>
67 #include <net/netisr.h>
68 #include <net/intrq.h>
69 
70 #include <netinet/in.h>
71 #include <netinet/in_systm.h>
72 #include <netinet/in_var.h>
73 #include <netinet/ip.h>
74 #include <netinet/in_pcb.h>
75 #include <netinet/ip_var.h>
76 #include <netinet/ip_icmp.h>
77 #include <machine/in_cksum.h>
78 
79 #include <sys/socketvar.h>
80 
81 #include <netinet/ip_fw.h>
82 #include <netinet/ip_dummynet.h>
83 
84 #ifdef IPSEC
85 #include <netinet6/ipsec.h>
86 #include <netkey/key.h>
87 #endif
88 
89 int rsvp_on = 0;
90 static int ip_rsvp_on;
91 struct socket *ip_rsvpd;
92 
93 int	ipforwarding = 0;
94 SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
95     &ipforwarding, 0, "Enable IP forwarding between interfaces");
96 
97 static int	ipsendredirects = 1; /* XXX */
98 SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
99     &ipsendredirects, 0, "Enable sending IP redirects");
100 
101 int	ip_defttl = IPDEFTTL;
102 SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
103     &ip_defttl, 0, "Maximum TTL on IP packets");
104 
105 static int	ip_dosourceroute = 0;
106 SYSCTL_INT(_net_inet_ip, IPCTL_SOURCEROUTE, sourceroute, CTLFLAG_RW,
107     &ip_dosourceroute, 0, "Enable forwarding source routed IP packets");
108 
109 static int	ip_acceptsourceroute = 0;
110 SYSCTL_INT(_net_inet_ip, IPCTL_ACCEPTSOURCEROUTE, accept_sourceroute,
111     CTLFLAG_RW, &ip_acceptsourceroute, 0,
112     "Enable accepting source routed IP packets");
113 
114 static int	ip_keepfaith = 0;
115 SYSCTL_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
116 	&ip_keepfaith,	0,
117 	"Enable packet capture for FAITH IPv4->IPv6 translater daemon");
118 
119 static int	ip_nfragpackets = 0;
120 static int	ip_maxfragpackets;	/* initialized in ip_init() */
121 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragpackets, CTLFLAG_RW,
122 	&ip_maxfragpackets, 0,
123 	"Maximum number of IPv4 fragment reassembly queue entries");
124 
125 /*
126  * XXX - Setting ip_checkinterface mostly implements the receive side of
127  * the Strong ES model described in RFC 1122, but since the routing table
128  * and transmit implementation do not implement the Strong ES model,
129  * setting this to 1 results in an odd hybrid.
130  *
131  * XXX - ip_checkinterface currently must be disabled if you use ipnat
132  * to translate the destination address to another local interface.
133  *
134  * XXX - ip_checkinterface must be disabled if you add IP aliases
135  * to the loopback interface instead of the interface where the
136  * packets for those addresses are received.
137  */
138 static int	ip_checkinterface = 1;
139 SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
140     &ip_checkinterface, 0, "Verify packet arrives on correct interface");
141 
142 #ifdef DIAGNOSTIC
143 static int	ipprintfs = 0;
144 #endif
145 
146 static int	ipqmaxlen = IFQ_MAXLEN;
147 
148 extern	struct domain inetdomain;
149 extern	struct protosw inetsw[];
150 u_char	ip_protox[IPPROTO_MAX];
151 struct	in_ifaddrhead in_ifaddrhead; 		/* first inet address */
152 struct	in_ifaddrhashhead *in_ifaddrhashtbl;	/* inet addr hash table  */
153 u_long 	in_ifaddrhmask;				/* mask for hash table */
154 
155 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen, CTLFLAG_RW,
156     &ipintrq.ifq_maxlen, 0, "Maximum size of the IP input queue");
157 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops, CTLFLAG_RD,
158     &ipintrq.ifq_drops, 0, "Number of packets dropped from the IP input queue");
159 
160 struct ipstat ipstat;
161 SYSCTL_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RW,
162     &ipstat, ipstat, "IP statistics (struct ipstat, netinet/ip_var.h)");
163 
164 /* Packet reassembly stuff */
165 #define IPREASS_NHASH_LOG2      6
166 #define IPREASS_NHASH           (1 << IPREASS_NHASH_LOG2)
167 #define IPREASS_HMASK           (IPREASS_NHASH - 1)
168 #define IPREASS_HASH(x,y) \
169 	(((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
170 
171 static TAILQ_HEAD(ipqhead, ipq) ipq[IPREASS_NHASH];
172 static int    nipq = 0;         /* total # of reass queues */
173 static int    maxnipq;
174 
175 #ifdef IPCTL_DEFMTU
176 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
177     &ip_mtu, 0, "Default MTU");
178 #endif
179 
180 #ifdef IPSTEALTH
181 static int	ipstealth = 0;
182 SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW,
183     &ipstealth, 0, "");
184 #endif
185 
186 
187 /* Firewall hooks */
188 ip_fw_chk_t *ip_fw_chk_ptr;
189 int fw_enable = 1 ;
190 
191 /* Dummynet hooks */
192 ip_dn_io_t *ip_dn_io_ptr;
193 
194 
195 /*
196  * We need to save the IP options in case a protocol wants to respond
197  * to an incoming packet over the same route if the packet got here
198  * using IP source routing.  This allows connection establishment and
199  * maintenance when the remote end is on a network that is not known
200  * to us.
201  */
202 static int	ip_nhops = 0;
203 static	struct ip_srcrt {
204 	struct	in_addr dst;			/* final destination */
205 	char	nop;				/* one NOP to align */
206 	char	srcopt[IPOPT_OFFSET + 1];	/* OPTVAL, OLEN and OFFSET */
207 	struct	in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
208 } ip_srcrt;
209 
210 struct sockaddr_in *ip_fw_fwd_addr;
211 
212 static void	save_rte(u_char *, struct in_addr);
213 static int	ip_dooptions(struct mbuf *, int);
214 static void	ip_forward(struct mbuf *, int);
215 static void	ip_freef(struct ipqhead *, struct ipq *);
216 #ifdef IPDIVERT
217 static struct	mbuf *ip_reass(struct mbuf *, struct ipqhead *, struct ipq *, u_int32_t *, u_int16_t *);
218 #else
219 static struct	mbuf *ip_reass(struct mbuf *, struct ipqhead *, struct ipq *);
220 #endif
221 static void	ipintr(void);
222 
223 /*
224  * IP initialization: fill in IP protocol switch table.
225  * All protocols not implemented in kernel go to raw IP protocol handler.
226  */
227 void
228 ip_init()
229 {
230 	register struct protosw *pr;
231 	register int i;
232 
233 	TAILQ_INIT(&in_ifaddrhead);
234 	in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &in_ifaddrhmask);
235 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
236 	if (pr == 0)
237 		panic("ip_init");
238 	for (i = 0; i < IPPROTO_MAX; i++)
239 		ip_protox[i] = pr - inetsw;
240 	for (pr = inetdomain.dom_protosw;
241 	    pr < inetdomain.dom_protoswNPROTOSW; pr++)
242 		if (pr->pr_domain->dom_family == PF_INET &&
243 		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
244 			ip_protox[pr->pr_protocol] = pr - inetsw;
245 
246 	for (i = 0; i < IPREASS_NHASH; i++)
247 	    TAILQ_INIT(&ipq[i]);
248 
249 	maxnipq = nmbclusters / 4;
250 	ip_maxfragpackets = nmbclusters / 4;
251 
252 #ifndef RANDOM_IP_ID
253 	ip_id = time_second & 0xffff;
254 #endif
255 	ipintrq.ifq_maxlen = ipqmaxlen;
256 	mtx_init(&ipintrq.ifq_mtx, "ip_inq", NULL, MTX_DEF);
257 	ipintrq_present = 1;
258 
259 	register_netisr(NETISR_IP, ipintr);
260 }
261 
262 static struct	sockaddr_in ipaddr = { sizeof(ipaddr), AF_INET };
263 struct	route ipforward_rt;
264 
265 /*
266  * Ip input routine.  Checksum and byte swap header.  If fragmented
267  * try to reassemble.  Process options.  Pass to next level.
268  */
269 void
270 ip_input(struct mbuf *m)
271 {
272 	struct ip *ip;
273 	struct ipq *fp;
274 	struct in_ifaddr *ia = NULL;
275 	struct ifaddr *ifa;
276 	int    i, hlen, checkif;
277 	u_short sum;
278 	u_int16_t divert_cookie;		/* firewall cookie */
279 	struct in_addr pkt_dst;
280 #ifdef IPDIVERT
281 	u_int32_t divert_info = 0;		/* packet divert/tee info */
282 #endif
283 	struct ip_fw *rule = NULL;
284 #ifdef PFIL_HOOKS
285 	struct packet_filter_hook *pfh;
286 	struct mbuf *m0;
287 	int rv;
288 #endif /* PFIL_HOOKS */
289 
290 #ifdef IPDIVERT
291 	/* Get and reset firewall cookie */
292 	divert_cookie = ip_divert_cookie;
293 	ip_divert_cookie = 0;
294 #else
295 	divert_cookie = 0;
296 #endif
297 
298         /*
299          * dummynet packet are prepended a vestigial mbuf with
300          * m_type = MT_DUMMYNET and m_data pointing to the matching
301          * rule.
302          */
303         if (m->m_type == MT_DUMMYNET) {
304             rule = (struct ip_fw *)(m->m_data) ;
305             m = m->m_next ;
306             ip = mtod(m, struct ip *);
307             hlen = IP_VHL_HL(ip->ip_vhl) << 2;
308             goto iphack ;
309         } else
310             rule = NULL ;
311 
312 	KASSERT(m != NULL && (m->m_flags & M_PKTHDR) != 0,
313 	    ("ip_input: no HDR"));
314 
315 	ipstat.ips_total++;
316 
317 	if (m->m_pkthdr.len < sizeof(struct ip))
318 		goto tooshort;
319 
320 	if (m->m_len < sizeof (struct ip) &&
321 	    (m = m_pullup(m, sizeof (struct ip))) == 0) {
322 		ipstat.ips_toosmall++;
323 		return;
324 	}
325 	ip = mtod(m, struct ip *);
326 
327 	if (IP_VHL_V(ip->ip_vhl) != IPVERSION) {
328 		ipstat.ips_badvers++;
329 		goto bad;
330 	}
331 
332 	hlen = IP_VHL_HL(ip->ip_vhl) << 2;
333 	if (hlen < sizeof(struct ip)) {	/* minimum header length */
334 		ipstat.ips_badhlen++;
335 		goto bad;
336 	}
337 	if (hlen > m->m_len) {
338 		if ((m = m_pullup(m, hlen)) == 0) {
339 			ipstat.ips_badhlen++;
340 			return;
341 		}
342 		ip = mtod(m, struct ip *);
343 	}
344 
345 	/* 127/8 must not appear on wire - RFC1122 */
346 	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
347 	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
348 		if ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) {
349 			ipstat.ips_badaddr++;
350 			goto bad;
351 		}
352 	}
353 
354 	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
355 		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
356 	} else {
357 		if (hlen == sizeof(struct ip)) {
358 			sum = in_cksum_hdr(ip);
359 		} else {
360 			sum = in_cksum(m, hlen);
361 		}
362 	}
363 	if (sum) {
364 		ipstat.ips_badsum++;
365 		goto bad;
366 	}
367 
368 	/*
369 	 * Convert fields to host representation.
370 	 */
371 	ip->ip_len = ntohs(ip->ip_len);
372 	if (ip->ip_len < hlen) {
373 		ipstat.ips_badlen++;
374 		goto bad;
375 	}
376 	ip->ip_off = ntohs(ip->ip_off);
377 
378 	/*
379 	 * Check that the amount of data in the buffers
380 	 * is as at least much as the IP header would have us expect.
381 	 * Trim mbufs if longer than we expect.
382 	 * Drop packet if shorter than we expect.
383 	 */
384 	if (m->m_pkthdr.len < ip->ip_len) {
385 tooshort:
386 		ipstat.ips_tooshort++;
387 		goto bad;
388 	}
389 	if (m->m_pkthdr.len > ip->ip_len) {
390 		if (m->m_len == m->m_pkthdr.len) {
391 			m->m_len = ip->ip_len;
392 			m->m_pkthdr.len = ip->ip_len;
393 		} else
394 			m_adj(m, ip->ip_len - m->m_pkthdr.len);
395 	}
396 
397 #ifdef IPSEC
398 	if (ipsec_gethist(m, NULL))
399 		goto pass;
400 #endif
401 
402 	/*
403 	 * IpHack's section.
404 	 * Right now when no processing on packet has done
405 	 * and it is still fresh out of network we do our black
406 	 * deals with it.
407 	 * - Firewall: deny/allow/divert
408 	 * - Xlate: translate packet's addr/port (NAT).
409 	 * - Pipe: pass pkt through dummynet.
410 	 * - Wrap: fake packet's addr/port <unimpl.>
411 	 * - Encapsulate: put it in another IP and send out. <unimp.>
412  	 */
413 
414 iphack:
415 
416 #ifdef PFIL_HOOKS
417 	/*
418 	 * Run through list of hooks for input packets.  If there are any
419 	 * filters which require that additional packets in the flow are
420 	 * not fast-forwarded, they must clear the M_CANFASTFWD flag.
421 	 * Note that filters must _never_ set this flag, as another filter
422 	 * in the list may have previously cleared it.
423 	 */
424 	m0 = m;
425 	pfh = pfil_hook_get(PFIL_IN, &inetsw[ip_protox[IPPROTO_IP]].pr_pfh);
426 	for (; pfh; pfh = TAILQ_NEXT(pfh, pfil_link))
427 		if (pfh->pfil_func) {
428 			rv = pfh->pfil_func(ip, hlen,
429 					    m->m_pkthdr.rcvif, 0, &m0);
430 			if (rv)
431 				return;
432 			m = m0;
433 			if (m == NULL)
434 				return;
435 			ip = mtod(m, struct ip *);
436 		}
437 #endif /* PFIL_HOOKS */
438 
439 	if (fw_enable && IPFW_LOADED) {
440 #ifdef IPFIREWALL_FORWARD
441 		/*
442 		 * If we've been forwarded from the output side, then
443 		 * skip the firewall a second time
444 		 */
445 		if (ip_fw_fwd_addr)
446 			goto ours;
447 #endif	/* IPFIREWALL_FORWARD */
448 		/*
449 		 * See the comment in ip_output for the return values
450 		 * produced by the firewall.
451 		 */
452 		i = ip_fw_chk_ptr(&m, NULL /* oif */, &divert_cookie,
453 			&rule, &ip_fw_fwd_addr);
454 		if ( (i & IP_FW_PORT_DENY_FLAG) || m == NULL) { /* drop */
455 			if (m)
456 				m_freem(m);
457 			return;
458 		}
459 		ip = mtod(m, struct ip *); /* just in case m changed */
460 		if (i == 0 && ip_fw_fwd_addr == NULL)	/* common case */
461 			goto pass;
462                 if (DUMMYNET_LOADED && (i & IP_FW_PORT_DYNT_FLAG) != 0) {
463                         /* Send packet to the appropriate pipe */
464                         ip_dn_io_ptr(i&0xffff,DN_TO_IP_IN,m,NULL,NULL,0, rule,
465 				    0);
466 			return;
467 		}
468 #ifdef IPDIVERT
469 		if (i != 0 && (i & IP_FW_PORT_DYNT_FLAG) == 0) {
470 			/* Divert or tee packet */
471 			divert_info = i;
472 			goto ours;
473 		}
474 #endif
475 #ifdef IPFIREWALL_FORWARD
476 		if (i == 0 && ip_fw_fwd_addr != NULL)
477 			goto pass;
478 #endif
479 		/*
480 		 * if we get here, the packet must be dropped
481 		 */
482 		m_freem(m);
483 		return;
484 	}
485 pass:
486 
487 	/*
488 	 * Process options and, if not destined for us,
489 	 * ship it on.  ip_dooptions returns 1 when an
490 	 * error was detected (causing an icmp message
491 	 * to be sent and the original packet to be freed).
492 	 */
493 	ip_nhops = 0;		/* for source routed packets */
494 	if (hlen > sizeof (struct ip) && ip_dooptions(m, 0)) {
495 #ifdef IPFIREWALL_FORWARD
496 		ip_fw_fwd_addr = NULL;
497 #endif
498 		return;
499 	}
500 
501         /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
502          * matter if it is destined to another node, or whether it is
503          * a multicast one, RSVP wants it! and prevents it from being forwarded
504          * anywhere else. Also checks if the rsvp daemon is running before
505 	 * grabbing the packet.
506          */
507 	if (rsvp_on && ip->ip_p==IPPROTO_RSVP)
508 		goto ours;
509 
510 	/*
511 	 * Check our list of addresses, to see if the packet is for us.
512 	 * If we don't have any addresses, assume any unicast packet
513 	 * we receive might be for us (and let the upper layers deal
514 	 * with it).
515 	 */
516 	if (TAILQ_EMPTY(&in_ifaddrhead) &&
517 	    (m->m_flags & (M_MCAST|M_BCAST)) == 0)
518 		goto ours;
519 
520 	/*
521 	 * Cache the destination address of the packet; this may be
522 	 * changed by use of 'ipfw fwd'.
523 	 */
524 	pkt_dst = ip_fw_fwd_addr == NULL ?
525 	    ip->ip_dst : ip_fw_fwd_addr->sin_addr;
526 
527 	/*
528 	 * Enable a consistency check between the destination address
529 	 * and the arrival interface for a unicast packet (the RFC 1122
530 	 * strong ES model) if IP forwarding is disabled and the packet
531 	 * is not locally generated and the packet is not subject to
532 	 * 'ipfw fwd'.
533 	 *
534 	 * XXX - Checking also should be disabled if the destination
535 	 * address is ipnat'ed to a different interface.
536 	 *
537 	 * XXX - Checking is incompatible with IP aliases added
538 	 * to the loopback interface instead of the interface where
539 	 * the packets are received.
540 	 */
541 	checkif = ip_checkinterface && (ipforwarding == 0) &&
542 	    m->m_pkthdr.rcvif != NULL &&
543 	    ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) &&
544 	    (ip_fw_fwd_addr == NULL);
545 
546 	/*
547 	 * Check for exact addresses in the hash bucket.
548 	 */
549 	LIST_FOREACH(ia, INADDR_HASH(pkt_dst.s_addr), ia_hash) {
550 		/*
551 		 * If the address matches, verify that the packet
552 		 * arrived via the correct interface if checking is
553 		 * enabled.
554 		 */
555 		if (IA_SIN(ia)->sin_addr.s_addr == pkt_dst.s_addr &&
556 		    (!checkif || ia->ia_ifp == m->m_pkthdr.rcvif))
557 			goto ours;
558 	}
559 	/*
560 	 * Check for broadcast addresses.
561 	 *
562 	 * Only accept broadcast packets that arrive via the matching
563 	 * interface.  Reception of forwarded directed broadcasts would
564 	 * be handled via ip_forward() and ether_output() with the loopback
565 	 * into the stack for SIMPLEX interfaces handled by ether_output().
566 	 */
567 	if (m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
568 	        TAILQ_FOREACH(ifa, &m->m_pkthdr.rcvif->if_addrhead, ifa_link) {
569 			if (ifa->ifa_addr->sa_family != AF_INET)
570 				continue;
571 			ia = ifatoia(ifa);
572 			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
573 			    pkt_dst.s_addr)
574 				goto ours;
575 			if (ia->ia_netbroadcast.s_addr == pkt_dst.s_addr)
576 				goto ours;
577 #ifdef BOOTP_COMPAT
578 			if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY)
579 				goto ours;
580 #endif
581 		}
582 	}
583 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
584 		struct in_multi *inm;
585 		if (ip_mrouter) {
586 			/*
587 			 * If we are acting as a multicast router, all
588 			 * incoming multicast packets are passed to the
589 			 * kernel-level multicast forwarding function.
590 			 * The packet is returned (relatively) intact; if
591 			 * ip_mforward() returns a non-zero value, the packet
592 			 * must be discarded, else it may be accepted below.
593 			 */
594 			if (ip_mforward(ip, m->m_pkthdr.rcvif, m, 0) != 0) {
595 				ipstat.ips_cantforward++;
596 				m_freem(m);
597 				return;
598 			}
599 
600 			/*
601 			 * The process-level routing daemon needs to receive
602 			 * all multicast IGMP packets, whether or not this
603 			 * host belongs to their destination groups.
604 			 */
605 			if (ip->ip_p == IPPROTO_IGMP)
606 				goto ours;
607 			ipstat.ips_forward++;
608 		}
609 		/*
610 		 * See if we belong to the destination multicast group on the
611 		 * arrival interface.
612 		 */
613 		IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
614 		if (inm == NULL) {
615 			ipstat.ips_notmember++;
616 			m_freem(m);
617 			return;
618 		}
619 		goto ours;
620 	}
621 	if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
622 		goto ours;
623 	if (ip->ip_dst.s_addr == INADDR_ANY)
624 		goto ours;
625 
626 	/*
627 	 * FAITH(Firewall Aided Internet Translator)
628 	 */
629 	if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
630 		if (ip_keepfaith) {
631 			if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
632 				goto ours;
633 		}
634 		m_freem(m);
635 		return;
636 	}
637 
638 	/*
639 	 * Not for us; forward if possible and desirable.
640 	 */
641 	if (ipforwarding == 0) {
642 		ipstat.ips_cantforward++;
643 		m_freem(m);
644 	} else {
645 #ifdef IPSEC
646 		/*
647 		 * Enforce inbound IPsec SPD.
648 		 */
649 		if (ipsec4_in_reject(m, NULL)) {
650 			ipsecstat.in_polvio++;
651 			goto bad;
652 		}
653 #endif /* IPSEC */
654 		ip_forward(m, 0);
655 	}
656 #ifdef IPFIREWALL_FORWARD
657 	ip_fw_fwd_addr = NULL;
658 #endif
659 	return;
660 
661 ours:
662 #ifdef IPSTEALTH
663 	/*
664 	 * IPSTEALTH: Process non-routing options only
665 	 * if the packet is destined for us.
666 	 */
667 	if (ipstealth && hlen > sizeof (struct ip) && ip_dooptions(m, 1)) {
668 #ifdef IPFIREWALL_FORWARD
669 		ip_fw_fwd_addr = NULL;
670 #endif
671 		return;
672 	}
673 #endif /* IPSTEALTH */
674 
675 	/* Count the packet in the ip address stats */
676 	if (ia != NULL) {
677 		ia->ia_ifa.if_ipackets++;
678 		ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
679 	}
680 
681 	/*
682 	 * If offset or IP_MF are set, must reassemble.
683 	 * Otherwise, nothing need be done.
684 	 * (We could look in the reassembly queue to see
685 	 * if the packet was previously fragmented,
686 	 * but it's not worth the time; just let them time out.)
687 	 */
688 	if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
689 
690 		sum = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
691 		/*
692 		 * Look for queue of fragments
693 		 * of this datagram.
694 		 */
695 		TAILQ_FOREACH(fp, &ipq[sum], ipq_list)
696 			if (ip->ip_id == fp->ipq_id &&
697 			    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
698 			    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
699 			    ip->ip_p == fp->ipq_p)
700 				goto found;
701 
702 		fp = 0;
703 
704 		/* check if there's a place for the new queue */
705 		if (nipq > maxnipq) {
706 		    /*
707 		     * drop something from the tail of the current queue
708 		     * before proceeding further
709 		     */
710 		    struct ipq *q = TAILQ_LAST(&ipq[sum], ipqhead);
711 		    if (q == NULL) {   /* gak */
712 			for (i = 0; i < IPREASS_NHASH; i++) {
713 			    struct ipq *r = TAILQ_LAST(&ipq[i], ipqhead);
714 			    if (r) {
715 				ip_freef(&ipq[i], r);
716 				break;
717 			    }
718 			}
719 		    } else
720 			ip_freef(&ipq[sum], q);
721 		}
722 found:
723 		/*
724 		 * Adjust ip_len to not reflect header,
725 		 * convert offset of this to bytes.
726 		 */
727 		ip->ip_len -= hlen;
728 		if (ip->ip_off & IP_MF) {
729 		        /*
730 		         * Make sure that fragments have a data length
731 			 * that's a non-zero multiple of 8 bytes.
732 		         */
733 			if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
734 				ipstat.ips_toosmall++; /* XXX */
735 				goto bad;
736 			}
737 			m->m_flags |= M_FRAG;
738 		}
739 		ip->ip_off <<= 3;
740 
741 		/*
742 		 * Attempt reassembly; if it succeeds, proceed.
743 		 */
744 		ipstat.ips_fragments++;
745 		m->m_pkthdr.header = ip;
746 #ifdef IPDIVERT
747 		m = ip_reass(m,
748 		    &ipq[sum], fp, &divert_info, &divert_cookie);
749 #else
750 		m = ip_reass(m, &ipq[sum], fp);
751 #endif
752 		if (m == 0) {
753 #ifdef IPFIREWALL_FORWARD
754 			ip_fw_fwd_addr = NULL;
755 #endif
756 			return;
757 		}
758 		ipstat.ips_reassembled++;
759 		ip = mtod(m, struct ip *);
760 		/* Get the header length of the reassembled packet */
761 		hlen = IP_VHL_HL(ip->ip_vhl) << 2;
762 #ifdef IPDIVERT
763 		/* Restore original checksum before diverting packet */
764 		if (divert_info != 0) {
765 			ip->ip_len += hlen;
766 			ip->ip_len = htons(ip->ip_len);
767 			ip->ip_off = htons(ip->ip_off);
768 			ip->ip_sum = 0;
769 			if (hlen == sizeof(struct ip))
770 				ip->ip_sum = in_cksum_hdr(ip);
771 			else
772 				ip->ip_sum = in_cksum(m, hlen);
773 			ip->ip_off = ntohs(ip->ip_off);
774 			ip->ip_len = ntohs(ip->ip_len);
775 			ip->ip_len -= hlen;
776 		}
777 #endif
778 	} else
779 		ip->ip_len -= hlen;
780 
781 #ifdef IPDIVERT
782 	/*
783 	 * Divert or tee packet to the divert protocol if required.
784 	 *
785 	 * If divert_info is zero then cookie should be too, so we shouldn't
786 	 * need to clear them here.  Assume divert_packet() does so also.
787 	 */
788 	if (divert_info != 0) {
789 		struct mbuf *clone = NULL;
790 
791 		/* Clone packet if we're doing a 'tee' */
792 		if ((divert_info & IP_FW_PORT_TEE_FLAG) != 0)
793 			clone = m_dup(m, M_DONTWAIT);
794 
795 		/* Restore packet header fields to original values */
796 		ip->ip_len += hlen;
797 		ip->ip_len = htons(ip->ip_len);
798 		ip->ip_off = htons(ip->ip_off);
799 
800 		/* Deliver packet to divert input routine */
801 		ip_divert_cookie = divert_cookie;
802 		divert_packet(m, 1, divert_info & 0xffff);
803 		ipstat.ips_delivered++;
804 
805 		/* If 'tee', continue with original packet */
806 		if (clone == NULL)
807 			return;
808 		m = clone;
809 		ip = mtod(m, struct ip *);
810 		ip->ip_len += hlen;
811 		divert_info = 0;
812 		goto pass;
813 	}
814 #endif
815 
816 #ifdef IPSEC
817 	/*
818 	 * enforce IPsec policy checking if we are seeing last header.
819 	 * note that we do not visit this with protocols with pcb layer
820 	 * code - like udp/tcp/raw ip.
821 	 */
822 	if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0 &&
823 	    ipsec4_in_reject(m, NULL)) {
824 		ipsecstat.in_polvio++;
825 		goto bad;
826 	}
827 #endif
828 
829 	/*
830 	 * Switch out to protocol's input routine.
831 	 */
832 	ipstat.ips_delivered++;
833     {
834 	int off = hlen;
835 
836 	(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, off);
837 #ifdef	IPFIREWALL_FORWARD
838 	ip_fw_fwd_addr = NULL;	/* tcp needed it */
839 #endif
840 	return;
841     }
842 bad:
843 #ifdef	IPFIREWALL_FORWARD
844 	ip_fw_fwd_addr = NULL;
845 #endif
846 	m_freem(m);
847 }
848 
849 /*
850  * IP software interrupt routine - to go away sometime soon
851  */
852 static void
853 ipintr(void)
854 {
855 	struct mbuf *m;
856 
857 	while (1) {
858 		IF_DEQUEUE(&ipintrq, m);
859 		if (m == 0)
860 			return;
861 		ip_input(m);
862 	}
863 }
864 
865 /*
866  * Take incoming datagram fragment and try to reassemble it into
867  * whole datagram.  If a chain for reassembly of this datagram already
868  * exists, then it is given as fp; otherwise have to make a chain.
869  *
870  * When IPDIVERT enabled, keep additional state with each packet that
871  * tells us if we need to divert or tee the packet we're building.
872  */
873 
874 static struct mbuf *
875 #ifdef IPDIVERT
876 ip_reass(m, head, fp, divinfo, divcookie)
877 #else
878 ip_reass(m, head, fp)
879 #endif
880 	struct mbuf *m;
881 	struct ipqhead *head;
882 	struct ipq *fp;
883 #ifdef IPDIVERT
884 	u_int32_t *divinfo;
885 	u_int16_t *divcookie;
886 #endif
887 {
888 	struct ip *ip = mtod(m, struct ip *);
889 	register struct mbuf *p, *q, *nq;
890 	struct mbuf *t;
891 	int hlen = IP_VHL_HL(ip->ip_vhl) << 2;
892 	int i, next;
893 
894 	/*
895 	 * Presence of header sizes in mbufs
896 	 * would confuse code below.
897 	 */
898 	m->m_data += hlen;
899 	m->m_len -= hlen;
900 
901 	/*
902 	 * If first fragment to arrive, create a reassembly queue.
903 	 */
904 	if (fp == 0) {
905 		/*
906 		 * Enforce upper bound on number of fragmented packets
907 		 * for which we attempt reassembly;
908 		 * If maxfrag is 0, never accept fragments.
909 		 * If maxfrag is -1, accept all fragments without limitation.
910 		 */
911 		if ((ip_maxfragpackets >= 0) && (ip_nfragpackets >= ip_maxfragpackets))
912 			goto dropfrag;
913 		ip_nfragpackets++;
914 		if ((t = m_get(M_DONTWAIT, MT_FTABLE)) == NULL)
915 			goto dropfrag;
916 		fp = mtod(t, struct ipq *);
917 		TAILQ_INSERT_HEAD(head, fp, ipq_list);
918 		nipq++;
919 		fp->ipq_ttl = IPFRAGTTL;
920 		fp->ipq_p = ip->ip_p;
921 		fp->ipq_id = ip->ip_id;
922 		fp->ipq_src = ip->ip_src;
923 		fp->ipq_dst = ip->ip_dst;
924 		fp->ipq_frags = m;
925 		m->m_nextpkt = NULL;
926 #ifdef IPDIVERT
927 		fp->ipq_div_info = 0;
928 		fp->ipq_div_cookie = 0;
929 #endif
930 		goto inserted;
931 	}
932 
933 #define GETIP(m)	((struct ip*)((m)->m_pkthdr.header))
934 
935 	/*
936 	 * Find a segment which begins after this one does.
937 	 */
938 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
939 		if (GETIP(q)->ip_off > ip->ip_off)
940 			break;
941 
942 	/*
943 	 * If there is a preceding segment, it may provide some of
944 	 * our data already.  If so, drop the data from the incoming
945 	 * segment.  If it provides all of our data, drop us, otherwise
946 	 * stick new segment in the proper place.
947 	 *
948 	 * If some of the data is dropped from the the preceding
949 	 * segment, then it's checksum is invalidated.
950 	 */
951 	if (p) {
952 		i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
953 		if (i > 0) {
954 			if (i >= ip->ip_len)
955 				goto dropfrag;
956 			m_adj(m, i);
957 			m->m_pkthdr.csum_flags = 0;
958 			ip->ip_off += i;
959 			ip->ip_len -= i;
960 		}
961 		m->m_nextpkt = p->m_nextpkt;
962 		p->m_nextpkt = m;
963 	} else {
964 		m->m_nextpkt = fp->ipq_frags;
965 		fp->ipq_frags = m;
966 	}
967 
968 	/*
969 	 * While we overlap succeeding segments trim them or,
970 	 * if they are completely covered, dequeue them.
971 	 */
972 	for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
973 	     q = nq) {
974 		i = (ip->ip_off + ip->ip_len) -
975 		    GETIP(q)->ip_off;
976 		if (i < GETIP(q)->ip_len) {
977 			GETIP(q)->ip_len -= i;
978 			GETIP(q)->ip_off += i;
979 			m_adj(q, i);
980 			q->m_pkthdr.csum_flags = 0;
981 			break;
982 		}
983 		nq = q->m_nextpkt;
984 		m->m_nextpkt = nq;
985 		m_freem(q);
986 	}
987 
988 inserted:
989 
990 #ifdef IPDIVERT
991 	/*
992 	 * Transfer firewall instructions to the fragment structure.
993 	 * Any fragment diverting causes the whole packet to divert.
994 	 */
995 	fp->ipq_div_info = *divinfo;
996 	fp->ipq_div_cookie = *divcookie;
997 	*divinfo = 0;
998 	*divcookie = 0;
999 #endif
1000 
1001 	/*
1002 	 * Check for complete reassembly.
1003 	 */
1004 	next = 0;
1005 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1006 		if (GETIP(q)->ip_off != next)
1007 			return (0);
1008 		next += GETIP(q)->ip_len;
1009 	}
1010 	/* Make sure the last packet didn't have the IP_MF flag */
1011 	if (p->m_flags & M_FRAG)
1012 		return (0);
1013 
1014 	/*
1015 	 * Reassembly is complete.  Make sure the packet is a sane size.
1016 	 */
1017 	q = fp->ipq_frags;
1018 	ip = GETIP(q);
1019 	if (next + (IP_VHL_HL(ip->ip_vhl) << 2) > IP_MAXPACKET) {
1020 		ipstat.ips_toolong++;
1021 		ip_freef(head, fp);
1022 		return (0);
1023 	}
1024 
1025 	/*
1026 	 * Concatenate fragments.
1027 	 */
1028 	m = q;
1029 	t = m->m_next;
1030 	m->m_next = 0;
1031 	m_cat(m, t);
1032 	nq = q->m_nextpkt;
1033 	q->m_nextpkt = 0;
1034 	for (q = nq; q != NULL; q = nq) {
1035 		nq = q->m_nextpkt;
1036 		q->m_nextpkt = NULL;
1037 		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1038 		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1039 		m_cat(m, q);
1040 	}
1041 
1042 #ifdef IPDIVERT
1043 	/*
1044 	 * Extract firewall instructions from the fragment structure.
1045 	 */
1046 	*divinfo = fp->ipq_div_info;
1047 	*divcookie = fp->ipq_div_cookie;
1048 #endif
1049 
1050 	/*
1051 	 * Create header for new ip packet by
1052 	 * modifying header of first packet;
1053 	 * dequeue and discard fragment reassembly header.
1054 	 * Make header visible.
1055 	 */
1056 	ip->ip_len = next;
1057 	ip->ip_src = fp->ipq_src;
1058 	ip->ip_dst = fp->ipq_dst;
1059 	TAILQ_REMOVE(head, fp, ipq_list);
1060 	nipq--;
1061 	(void) m_free(dtom(fp));
1062 	ip_nfragpackets--;
1063 	m->m_len += (IP_VHL_HL(ip->ip_vhl) << 2);
1064 	m->m_data -= (IP_VHL_HL(ip->ip_vhl) << 2);
1065 	/* some debugging cruft by sklower, below, will go away soon */
1066 	if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
1067 		register int plen = 0;
1068 		for (t = m; t; t = t->m_next)
1069 			plen += t->m_len;
1070 		m->m_pkthdr.len = plen;
1071 	}
1072 	return (m);
1073 
1074 dropfrag:
1075 #ifdef IPDIVERT
1076 	*divinfo = 0;
1077 	*divcookie = 0;
1078 #endif
1079 	ipstat.ips_fragdropped++;
1080 	m_freem(m);
1081 	return (0);
1082 
1083 #undef GETIP
1084 }
1085 
1086 /*
1087  * Free a fragment reassembly header and all
1088  * associated datagrams.
1089  */
1090 static void
1091 ip_freef(fhp, fp)
1092 	struct ipqhead *fhp;
1093 	struct ipq *fp;
1094 {
1095 	register struct mbuf *q;
1096 
1097 	while (fp->ipq_frags) {
1098 		q = fp->ipq_frags;
1099 		fp->ipq_frags = q->m_nextpkt;
1100 		m_freem(q);
1101 	}
1102 	TAILQ_REMOVE(fhp, fp, ipq_list);
1103 	(void) m_free(dtom(fp));
1104 	ip_nfragpackets--;
1105 	nipq--;
1106 }
1107 
1108 /*
1109  * IP timer processing;
1110  * if a timer expires on a reassembly
1111  * queue, discard it.
1112  */
1113 void
1114 ip_slowtimo()
1115 {
1116 	register struct ipq *fp;
1117 	int s = splnet();
1118 	int i;
1119 
1120 	for (i = 0; i < IPREASS_NHASH; i++) {
1121 		for(fp = TAILQ_FIRST(&ipq[i]); fp;) {
1122 			struct ipq *fpp;
1123 
1124 			fpp = fp;
1125 			fp = TAILQ_NEXT(fp, ipq_list);
1126 			if(--fpp->ipq_ttl == 0) {
1127 				ipstat.ips_fragtimeout++;
1128 				ip_freef(&ipq[i], fpp);
1129 			}
1130 		}
1131 	}
1132 	/*
1133 	 * If we are over the maximum number of fragments
1134 	 * (due to the limit being lowered), drain off
1135 	 * enough to get down to the new limit.
1136 	 */
1137 	for (i = 0; i < IPREASS_NHASH; i++) {
1138 		if (ip_maxfragpackets >= 0) {
1139 			while (ip_nfragpackets > ip_maxfragpackets &&
1140 				!TAILQ_EMPTY(&ipq[i])) {
1141 				ipstat.ips_fragdropped++;
1142 				ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i]));
1143 			}
1144 		}
1145 	}
1146 	ipflow_slowtimo();
1147 	splx(s);
1148 }
1149 
1150 /*
1151  * Drain off all datagram fragments.
1152  */
1153 void
1154 ip_drain()
1155 {
1156 	int     i;
1157 
1158 	for (i = 0; i < IPREASS_NHASH; i++) {
1159 		while(!TAILQ_EMPTY(&ipq[i])) {
1160 			ipstat.ips_fragdropped++;
1161 			ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i]));
1162 		}
1163 	}
1164 	in_rtqdrain();
1165 }
1166 
1167 /*
1168  * Do option processing on a datagram,
1169  * possibly discarding it if bad options are encountered,
1170  * or forwarding it if source-routed.
1171  * The pass argument is used when operating in the IPSTEALTH
1172  * mode to tell what options to process:
1173  * [LS]SRR (pass 0) or the others (pass 1).
1174  * The reason for as many as two passes is that when doing IPSTEALTH,
1175  * non-routing options should be processed only if the packet is for us.
1176  * Returns 1 if packet has been forwarded/freed,
1177  * 0 if the packet should be processed further.
1178  */
1179 static int
1180 ip_dooptions(m, pass)
1181 	struct mbuf *m;
1182 	int pass;
1183 {
1184 	register struct ip *ip = mtod(m, struct ip *);
1185 	register u_char *cp;
1186 	register struct in_ifaddr *ia;
1187 	int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
1188 	struct in_addr *sin, dst;
1189 	n_time ntime;
1190 
1191 	dst = ip->ip_dst;
1192 	cp = (u_char *)(ip + 1);
1193 	cnt = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof (struct ip);
1194 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1195 		opt = cp[IPOPT_OPTVAL];
1196 		if (opt == IPOPT_EOL)
1197 			break;
1198 		if (opt == IPOPT_NOP)
1199 			optlen = 1;
1200 		else {
1201 			if (cnt < IPOPT_OLEN + sizeof(*cp)) {
1202 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1203 				goto bad;
1204 			}
1205 			optlen = cp[IPOPT_OLEN];
1206 			if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
1207 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1208 				goto bad;
1209 			}
1210 		}
1211 		switch (opt) {
1212 
1213 		default:
1214 			break;
1215 
1216 		/*
1217 		 * Source routing with record.
1218 		 * Find interface with current destination address.
1219 		 * If none on this machine then drop if strictly routed,
1220 		 * or do nothing if loosely routed.
1221 		 * Record interface address and bring up next address
1222 		 * component.  If strictly routed make sure next
1223 		 * address is on directly accessible net.
1224 		 */
1225 		case IPOPT_LSRR:
1226 		case IPOPT_SSRR:
1227 #ifdef IPSTEALTH
1228 			if (ipstealth && pass > 0)
1229 				break;
1230 #endif
1231 			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1232 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1233 				goto bad;
1234 			}
1235 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1236 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1237 				goto bad;
1238 			}
1239 			ipaddr.sin_addr = ip->ip_dst;
1240 			ia = (struct in_ifaddr *)
1241 				ifa_ifwithaddr((struct sockaddr *)&ipaddr);
1242 			if (ia == 0) {
1243 				if (opt == IPOPT_SSRR) {
1244 					type = ICMP_UNREACH;
1245 					code = ICMP_UNREACH_SRCFAIL;
1246 					goto bad;
1247 				}
1248 				if (!ip_dosourceroute)
1249 					goto nosourcerouting;
1250 				/*
1251 				 * Loose routing, and not at next destination
1252 				 * yet; nothing to do except forward.
1253 				 */
1254 				break;
1255 			}
1256 			off--;			/* 0 origin */
1257 			if (off > optlen - (int)sizeof(struct in_addr)) {
1258 				/*
1259 				 * End of source route.  Should be for us.
1260 				 */
1261 				if (!ip_acceptsourceroute)
1262 					goto nosourcerouting;
1263 				save_rte(cp, ip->ip_src);
1264 				break;
1265 			}
1266 #ifdef IPSTEALTH
1267 			if (ipstealth)
1268 				goto dropit;
1269 #endif
1270 			if (!ip_dosourceroute) {
1271 				if (ipforwarding) {
1272 					char buf[16]; /* aaa.bbb.ccc.ddd\0 */
1273 					/*
1274 					 * Acting as a router, so generate ICMP
1275 					 */
1276 nosourcerouting:
1277 					strcpy(buf, inet_ntoa(ip->ip_dst));
1278 					log(LOG_WARNING,
1279 					    "attempted source route from %s to %s\n",
1280 					    inet_ntoa(ip->ip_src), buf);
1281 					type = ICMP_UNREACH;
1282 					code = ICMP_UNREACH_SRCFAIL;
1283 					goto bad;
1284 				} else {
1285 					/*
1286 					 * Not acting as a router, so silently drop.
1287 					 */
1288 #ifdef IPSTEALTH
1289 dropit:
1290 #endif
1291 					ipstat.ips_cantforward++;
1292 					m_freem(m);
1293 					return (1);
1294 				}
1295 			}
1296 
1297 			/*
1298 			 * locate outgoing interface
1299 			 */
1300 			(void)memcpy(&ipaddr.sin_addr, cp + off,
1301 			    sizeof(ipaddr.sin_addr));
1302 
1303 			if (opt == IPOPT_SSRR) {
1304 #define	INA	struct in_ifaddr *
1305 #define	SA	struct sockaddr *
1306 			    if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr)) == 0)
1307 				ia = (INA)ifa_ifwithnet((SA)&ipaddr);
1308 			} else
1309 				ia = ip_rtaddr(ipaddr.sin_addr, &ipforward_rt);
1310 			if (ia == 0) {
1311 				type = ICMP_UNREACH;
1312 				code = ICMP_UNREACH_SRCFAIL;
1313 				goto bad;
1314 			}
1315 			ip->ip_dst = ipaddr.sin_addr;
1316 			(void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr),
1317 			    sizeof(struct in_addr));
1318 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1319 			/*
1320 			 * Let ip_intr's mcast routing check handle mcast pkts
1321 			 */
1322 			forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr));
1323 			break;
1324 
1325 		case IPOPT_RR:
1326 #ifdef IPSTEALTH
1327 			if (ipstealth && pass == 0)
1328 				break;
1329 #endif
1330 			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1331 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1332 				goto bad;
1333 			}
1334 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1335 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1336 				goto bad;
1337 			}
1338 			/*
1339 			 * If no space remains, ignore.
1340 			 */
1341 			off--;			/* 0 origin */
1342 			if (off > optlen - (int)sizeof(struct in_addr))
1343 				break;
1344 			(void)memcpy(&ipaddr.sin_addr, &ip->ip_dst,
1345 			    sizeof(ipaddr.sin_addr));
1346 			/*
1347 			 * locate outgoing interface; if we're the destination,
1348 			 * use the incoming interface (should be same).
1349 			 */
1350 			if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == 0 &&
1351 			    (ia = ip_rtaddr(ipaddr.sin_addr,
1352 			    &ipforward_rt)) == 0) {
1353 				type = ICMP_UNREACH;
1354 				code = ICMP_UNREACH_HOST;
1355 				goto bad;
1356 			}
1357 			(void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr),
1358 			    sizeof(struct in_addr));
1359 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1360 			break;
1361 
1362 		case IPOPT_TS:
1363 #ifdef IPSTEALTH
1364 			if (ipstealth && pass == 0)
1365 				break;
1366 #endif
1367 			code = cp - (u_char *)ip;
1368 			if (optlen < 4 || optlen > 40) {
1369 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1370 				goto bad;
1371 			}
1372 			if ((off = cp[IPOPT_OFFSET]) < 5) {
1373 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1374 				goto bad;
1375 			}
1376 			if (off > optlen - (int)sizeof(int32_t)) {
1377 				cp[IPOPT_OFFSET + 1] += (1 << 4);
1378 				if ((cp[IPOPT_OFFSET + 1] & 0xf0) == 0) {
1379 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1380 					goto bad;
1381 				}
1382 				break;
1383 			}
1384 			off--;				/* 0 origin */
1385 			sin = (struct in_addr *)(cp + off);
1386 			switch (cp[IPOPT_OFFSET + 1] & 0x0f) {
1387 
1388 			case IPOPT_TS_TSONLY:
1389 				break;
1390 
1391 			case IPOPT_TS_TSANDADDR:
1392 				if (off + sizeof(n_time) +
1393 				    sizeof(struct in_addr) > optlen) {
1394 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1395 					goto bad;
1396 				}
1397 				ipaddr.sin_addr = dst;
1398 				ia = (INA)ifaof_ifpforaddr((SA)&ipaddr,
1399 							    m->m_pkthdr.rcvif);
1400 				if (ia == 0)
1401 					continue;
1402 				(void)memcpy(sin, &IA_SIN(ia)->sin_addr,
1403 				    sizeof(struct in_addr));
1404 				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1405 				break;
1406 
1407 			case IPOPT_TS_PRESPEC:
1408 				if (off + sizeof(n_time) +
1409 				    sizeof(struct in_addr) > optlen) {
1410 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1411 					goto bad;
1412 				}
1413 				(void)memcpy(&ipaddr.sin_addr, sin,
1414 				    sizeof(struct in_addr));
1415 				if (ifa_ifwithaddr((SA)&ipaddr) == 0)
1416 					continue;
1417 				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1418 				break;
1419 
1420 			default:
1421 				code = &cp[IPOPT_OFFSET + 1] - (u_char *)ip;
1422 				goto bad;
1423 			}
1424 			ntime = iptime();
1425 			(void)memcpy(cp + off, &ntime, sizeof(n_time));
1426 			cp[IPOPT_OFFSET] += sizeof(n_time);
1427 		}
1428 	}
1429 	if (forward && ipforwarding) {
1430 		ip_forward(m, 1);
1431 		return (1);
1432 	}
1433 	return (0);
1434 bad:
1435 	icmp_error(m, type, code, 0, 0);
1436 	ipstat.ips_badoptions++;
1437 	return (1);
1438 }
1439 
1440 /*
1441  * Given address of next destination (final or next hop),
1442  * return internet address info of interface to be used to get there.
1443  */
1444 struct in_ifaddr *
1445 ip_rtaddr(dst, rt)
1446 	struct in_addr dst;
1447 	struct route *rt;
1448 {
1449 	register struct sockaddr_in *sin;
1450 
1451 	sin = (struct sockaddr_in *)&rt->ro_dst;
1452 
1453 	if (rt->ro_rt == 0 ||
1454 	    !(rt->ro_rt->rt_flags & RTF_UP) ||
1455 	    dst.s_addr != sin->sin_addr.s_addr) {
1456 		if (rt->ro_rt) {
1457 			RTFREE(rt->ro_rt);
1458 			rt->ro_rt = 0;
1459 		}
1460 		sin->sin_family = AF_INET;
1461 		sin->sin_len = sizeof(*sin);
1462 		sin->sin_addr = dst;
1463 
1464 		rtalloc_ign(rt, RTF_PRCLONING);
1465 	}
1466 	if (rt->ro_rt == 0)
1467 		return ((struct in_ifaddr *)0);
1468 	return (ifatoia(rt->ro_rt->rt_ifa));
1469 }
1470 
1471 /*
1472  * Save incoming source route for use in replies,
1473  * to be picked up later by ip_srcroute if the receiver is interested.
1474  */
1475 void
1476 save_rte(option, dst)
1477 	u_char *option;
1478 	struct in_addr dst;
1479 {
1480 	unsigned olen;
1481 
1482 	olen = option[IPOPT_OLEN];
1483 #ifdef DIAGNOSTIC
1484 	if (ipprintfs)
1485 		printf("save_rte: olen %d\n", olen);
1486 #endif
1487 	if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
1488 		return;
1489 	bcopy(option, ip_srcrt.srcopt, olen);
1490 	ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
1491 	ip_srcrt.dst = dst;
1492 }
1493 
1494 /*
1495  * Retrieve incoming source route for use in replies,
1496  * in the same form used by setsockopt.
1497  * The first hop is placed before the options, will be removed later.
1498  */
1499 struct mbuf *
1500 ip_srcroute()
1501 {
1502 	register struct in_addr *p, *q;
1503 	register struct mbuf *m;
1504 
1505 	if (ip_nhops == 0)
1506 		return ((struct mbuf *)0);
1507 	m = m_get(M_DONTWAIT, MT_HEADER);
1508 	if (m == 0)
1509 		return ((struct mbuf *)0);
1510 
1511 #define OPTSIZ	(sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
1512 
1513 	/* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1514 	m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
1515 	    OPTSIZ;
1516 #ifdef DIAGNOSTIC
1517 	if (ipprintfs)
1518 		printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
1519 #endif
1520 
1521 	/*
1522 	 * First save first hop for return route
1523 	 */
1524 	p = &ip_srcrt.route[ip_nhops - 1];
1525 	*(mtod(m, struct in_addr *)) = *p--;
1526 #ifdef DIAGNOSTIC
1527 	if (ipprintfs)
1528 		printf(" hops %lx", (u_long)ntohl(mtod(m, struct in_addr *)->s_addr));
1529 #endif
1530 
1531 	/*
1532 	 * Copy option fields and padding (nop) to mbuf.
1533 	 */
1534 	ip_srcrt.nop = IPOPT_NOP;
1535 	ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
1536 	(void)memcpy(mtod(m, caddr_t) + sizeof(struct in_addr),
1537 	    &ip_srcrt.nop, OPTSIZ);
1538 	q = (struct in_addr *)(mtod(m, caddr_t) +
1539 	    sizeof(struct in_addr) + OPTSIZ);
1540 #undef OPTSIZ
1541 	/*
1542 	 * Record return path as an IP source route,
1543 	 * reversing the path (pointers are now aligned).
1544 	 */
1545 	while (p >= ip_srcrt.route) {
1546 #ifdef DIAGNOSTIC
1547 		if (ipprintfs)
1548 			printf(" %lx", (u_long)ntohl(q->s_addr));
1549 #endif
1550 		*q++ = *p--;
1551 	}
1552 	/*
1553 	 * Last hop goes to final destination.
1554 	 */
1555 	*q = ip_srcrt.dst;
1556 #ifdef DIAGNOSTIC
1557 	if (ipprintfs)
1558 		printf(" %lx\n", (u_long)ntohl(q->s_addr));
1559 #endif
1560 	return (m);
1561 }
1562 
1563 /*
1564  * Strip out IP options, at higher
1565  * level protocol in the kernel.
1566  * Second argument is buffer to which options
1567  * will be moved, and return value is their length.
1568  * XXX should be deleted; last arg currently ignored.
1569  */
1570 void
1571 ip_stripoptions(m, mopt)
1572 	register struct mbuf *m;
1573 	struct mbuf *mopt;
1574 {
1575 	register int i;
1576 	struct ip *ip = mtod(m, struct ip *);
1577 	register caddr_t opts;
1578 	int olen;
1579 
1580 	olen = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof (struct ip);
1581 	opts = (caddr_t)(ip + 1);
1582 	i = m->m_len - (sizeof (struct ip) + olen);
1583 	bcopy(opts + olen, opts, (unsigned)i);
1584 	m->m_len -= olen;
1585 	if (m->m_flags & M_PKTHDR)
1586 		m->m_pkthdr.len -= olen;
1587 	ip->ip_vhl = IP_MAKE_VHL(IPVERSION, sizeof(struct ip) >> 2);
1588 }
1589 
1590 u_char inetctlerrmap[PRC_NCMDS] = {
1591 	0,		0,		0,		0,
1592 	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1593 	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1594 	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1595 	0,		0,		0,		0,
1596 	ENOPROTOOPT,	ECONNREFUSED
1597 };
1598 
1599 /*
1600  * Forward a packet.  If some error occurs return the sender
1601  * an icmp packet.  Note we can't always generate a meaningful
1602  * icmp message because icmp doesn't have a large enough repertoire
1603  * of codes and types.
1604  *
1605  * If not forwarding, just drop the packet.  This could be confusing
1606  * if ipforwarding was zero but some routing protocol was advancing
1607  * us as a gateway to somewhere.  However, we must let the routing
1608  * protocol deal with that.
1609  *
1610  * The srcrt parameter indicates whether the packet is being forwarded
1611  * via a source route.
1612  */
1613 static void
1614 ip_forward(m, srcrt)
1615 	struct mbuf *m;
1616 	int srcrt;
1617 {
1618 	register struct ip *ip = mtod(m, struct ip *);
1619 	register struct rtentry *rt;
1620 	int error, type = 0, code = 0;
1621 	struct mbuf *mcopy;
1622 	n_long dest;
1623 	struct in_addr pkt_dst;
1624 	struct ifnet *destifp;
1625 #ifdef IPSEC
1626 	struct ifnet dummyifp;
1627 #endif
1628 
1629 	dest = 0;
1630 	/*
1631 	 * Cache the destination address of the packet; this may be
1632 	 * changed by use of 'ipfw fwd'.
1633 	 */
1634 	pkt_dst = ip_fw_fwd_addr == NULL ?
1635 	    ip->ip_dst : ip_fw_fwd_addr->sin_addr;
1636 
1637 #ifdef DIAGNOSTIC
1638 	if (ipprintfs)
1639 		printf("forward: src %lx dst %lx ttl %x\n",
1640 		    (u_long)ip->ip_src.s_addr, (u_long)pkt_dst.s_addr,
1641 		    ip->ip_ttl);
1642 #endif
1643 
1644 
1645 	if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(pkt_dst) == 0) {
1646 		ipstat.ips_cantforward++;
1647 		m_freem(m);
1648 		return;
1649 	}
1650 #ifdef IPSTEALTH
1651 	if (!ipstealth) {
1652 #endif
1653 		if (ip->ip_ttl <= IPTTLDEC) {
1654 			icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS,
1655 			    dest, 0);
1656 			return;
1657 		}
1658 #ifdef IPSTEALTH
1659 	}
1660 #endif
1661 
1662 	if (ip_rtaddr(pkt_dst, &ipforward_rt) == 0) {
1663 		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0);
1664 		return;
1665 	} else
1666 		rt = ipforward_rt.ro_rt;
1667 
1668 	/*
1669 	 * Save the IP header and at most 8 bytes of the payload,
1670 	 * in case we need to generate an ICMP message to the src.
1671 	 *
1672 	 * We don't use m_copy() because it might return a reference
1673 	 * to a shared cluster. Both this function and ip_output()
1674 	 * assume exclusive access to the IP header in `m', so any
1675 	 * data in a cluster may change before we reach icmp_error().
1676 	 */
1677 	MGET(mcopy, M_DONTWAIT, m->m_type);
1678 	if (mcopy != NULL) {
1679 		M_COPY_PKTHDR(mcopy, m);
1680 		mcopy->m_len = imin((IP_VHL_HL(ip->ip_vhl) << 2) + 8,
1681 		    (int)ip->ip_len);
1682 		m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
1683 	}
1684 
1685 #ifdef IPSTEALTH
1686 	if (!ipstealth) {
1687 #endif
1688 		ip->ip_ttl -= IPTTLDEC;
1689 #ifdef IPSTEALTH
1690 	}
1691 #endif
1692 
1693 	/*
1694 	 * If forwarding packet using same interface that it came in on,
1695 	 * perhaps should send a redirect to sender to shortcut a hop.
1696 	 * Only send redirect if source is sending directly to us,
1697 	 * and if packet was not source routed (or has any options).
1698 	 * Also, don't send redirect if forwarding using a default route
1699 	 * or a route modified by a redirect.
1700 	 */
1701 	if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1702 	    (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1703 	    satosin(rt_key(rt))->sin_addr.s_addr != 0 &&
1704 	    ipsendredirects && !srcrt && !ip_fw_fwd_addr) {
1705 #define	RTA(rt)	((struct in_ifaddr *)(rt->rt_ifa))
1706 		u_long src = ntohl(ip->ip_src.s_addr);
1707 
1708 		if (RTA(rt) &&
1709 		    (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
1710 		    if (rt->rt_flags & RTF_GATEWAY)
1711 			dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1712 		    else
1713 			dest = pkt_dst.s_addr;
1714 		    /* Router requirements says to only send host redirects */
1715 		    type = ICMP_REDIRECT;
1716 		    code = ICMP_REDIRECT_HOST;
1717 #ifdef DIAGNOSTIC
1718 		    if (ipprintfs)
1719 		        printf("redirect (%d) to %lx\n", code, (u_long)dest);
1720 #endif
1721 		}
1722 	}
1723 
1724 	error = ip_output(m, (struct mbuf *)0, &ipforward_rt,
1725 			  IP_FORWARDING, 0);
1726 	if (error)
1727 		ipstat.ips_cantforward++;
1728 	else {
1729 		ipstat.ips_forward++;
1730 		if (type)
1731 			ipstat.ips_redirectsent++;
1732 		else {
1733 			if (mcopy) {
1734 				ipflow_create(&ipforward_rt, mcopy);
1735 				m_freem(mcopy);
1736 			}
1737 			return;
1738 		}
1739 	}
1740 	if (mcopy == NULL)
1741 		return;
1742 	destifp = NULL;
1743 
1744 	switch (error) {
1745 
1746 	case 0:				/* forwarded, but need redirect */
1747 		/* type, code set above */
1748 		break;
1749 
1750 	case ENETUNREACH:		/* shouldn't happen, checked above */
1751 	case EHOSTUNREACH:
1752 	case ENETDOWN:
1753 	case EHOSTDOWN:
1754 	default:
1755 		type = ICMP_UNREACH;
1756 		code = ICMP_UNREACH_HOST;
1757 		break;
1758 
1759 	case EMSGSIZE:
1760 		type = ICMP_UNREACH;
1761 		code = ICMP_UNREACH_NEEDFRAG;
1762 #ifndef IPSEC
1763 		if (ipforward_rt.ro_rt)
1764 			destifp = ipforward_rt.ro_rt->rt_ifp;
1765 #else
1766 		/*
1767 		 * If the packet is routed over IPsec tunnel, tell the
1768 		 * originator the tunnel MTU.
1769 		 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
1770 		 * XXX quickhack!!!
1771 		 */
1772 		if (ipforward_rt.ro_rt) {
1773 			struct secpolicy *sp = NULL;
1774 			int ipsecerror;
1775 			int ipsechdr;
1776 			struct route *ro;
1777 
1778 			sp = ipsec4_getpolicybyaddr(mcopy,
1779 						    IPSEC_DIR_OUTBOUND,
1780 			                            IP_FORWARDING,
1781 			                            &ipsecerror);
1782 
1783 			if (sp == NULL)
1784 				destifp = ipforward_rt.ro_rt->rt_ifp;
1785 			else {
1786 				/* count IPsec header size */
1787 				ipsechdr = ipsec4_hdrsiz(mcopy,
1788 							 IPSEC_DIR_OUTBOUND,
1789 							 NULL);
1790 
1791 				/*
1792 				 * find the correct route for outer IPv4
1793 				 * header, compute tunnel MTU.
1794 				 *
1795 				 * XXX BUG ALERT
1796 				 * The "dummyifp" code relies upon the fact
1797 				 * that icmp_error() touches only ifp->if_mtu.
1798 				 */
1799 				/*XXX*/
1800 				destifp = NULL;
1801 				if (sp->req != NULL
1802 				 && sp->req->sav != NULL
1803 				 && sp->req->sav->sah != NULL) {
1804 					ro = &sp->req->sav->sah->sa_route;
1805 					if (ro->ro_rt && ro->ro_rt->rt_ifp) {
1806 						dummyifp.if_mtu =
1807 						    ro->ro_rt->rt_ifp->if_mtu;
1808 						dummyifp.if_mtu -= ipsechdr;
1809 						destifp = &dummyifp;
1810 					}
1811 				}
1812 
1813 				key_freesp(sp);
1814 			}
1815 		}
1816 #endif /*IPSEC*/
1817 		ipstat.ips_cantfrag++;
1818 		break;
1819 
1820 	case ENOBUFS:
1821 		type = ICMP_SOURCEQUENCH;
1822 		code = 0;
1823 		break;
1824 
1825 	case EACCES:			/* ipfw denied packet */
1826 		m_freem(mcopy);
1827 		return;
1828 	}
1829 	icmp_error(mcopy, type, code, dest, destifp);
1830 }
1831 
1832 void
1833 ip_savecontrol(inp, mp, ip, m)
1834 	register struct inpcb *inp;
1835 	register struct mbuf **mp;
1836 	register struct ip *ip;
1837 	register struct mbuf *m;
1838 {
1839 	if (inp->inp_socket->so_options & SO_TIMESTAMP) {
1840 		struct timeval tv;
1841 
1842 		microtime(&tv);
1843 		*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
1844 			SCM_TIMESTAMP, SOL_SOCKET);
1845 		if (*mp)
1846 			mp = &(*mp)->m_next;
1847 	}
1848 	if (inp->inp_flags & INP_RECVDSTADDR) {
1849 		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
1850 		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
1851 		if (*mp)
1852 			mp = &(*mp)->m_next;
1853 	}
1854 #ifdef notyet
1855 	/* XXX
1856 	 * Moving these out of udp_input() made them even more broken
1857 	 * than they already were.
1858 	 */
1859 	/* options were tossed already */
1860 	if (inp->inp_flags & INP_RECVOPTS) {
1861 		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
1862 		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
1863 		if (*mp)
1864 			mp = &(*mp)->m_next;
1865 	}
1866 	/* ip_srcroute doesn't do what we want here, need to fix */
1867 	if (inp->inp_flags & INP_RECVRETOPTS) {
1868 		*mp = sbcreatecontrol((caddr_t) ip_srcroute(),
1869 		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
1870 		if (*mp)
1871 			mp = &(*mp)->m_next;
1872 	}
1873 #endif
1874 	if (inp->inp_flags & INP_RECVIF) {
1875 		struct ifnet *ifp;
1876 		struct sdlbuf {
1877 			struct sockaddr_dl sdl;
1878 			u_char	pad[32];
1879 		} sdlbuf;
1880 		struct sockaddr_dl *sdp;
1881 		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
1882 
1883 		if (((ifp = m->m_pkthdr.rcvif))
1884 		&& ( ifp->if_index && (ifp->if_index <= if_index))) {
1885 			sdp = (struct sockaddr_dl *)
1886 			    (ifaddr_byindex(ifp->if_index)->ifa_addr);
1887 			/*
1888 			 * Change our mind and don't try copy.
1889 			 */
1890 			if ((sdp->sdl_family != AF_LINK)
1891 			|| (sdp->sdl_len > sizeof(sdlbuf))) {
1892 				goto makedummy;
1893 			}
1894 			bcopy(sdp, sdl2, sdp->sdl_len);
1895 		} else {
1896 makedummy:
1897 			sdl2->sdl_len
1898 				= offsetof(struct sockaddr_dl, sdl_data[0]);
1899 			sdl2->sdl_family = AF_LINK;
1900 			sdl2->sdl_index = 0;
1901 			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
1902 		}
1903 		*mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
1904 			IP_RECVIF, IPPROTO_IP);
1905 		if (*mp)
1906 			mp = &(*mp)->m_next;
1907 	}
1908 }
1909 
1910 int
1911 ip_rsvp_init(struct socket *so)
1912 {
1913 	if (so->so_type != SOCK_RAW ||
1914 	    so->so_proto->pr_protocol != IPPROTO_RSVP)
1915 	  return EOPNOTSUPP;
1916 
1917 	if (ip_rsvpd != NULL)
1918 	  return EADDRINUSE;
1919 
1920 	ip_rsvpd = so;
1921 	/*
1922 	 * This may seem silly, but we need to be sure we don't over-increment
1923 	 * the RSVP counter, in case something slips up.
1924 	 */
1925 	if (!ip_rsvp_on) {
1926 		ip_rsvp_on = 1;
1927 		rsvp_on++;
1928 	}
1929 
1930 	return 0;
1931 }
1932 
1933 int
1934 ip_rsvp_done(void)
1935 {
1936 	ip_rsvpd = NULL;
1937 	/*
1938 	 * This may seem silly, but we need to be sure we don't over-decrement
1939 	 * the RSVP counter, in case something slips up.
1940 	 */
1941 	if (ip_rsvp_on) {
1942 		ip_rsvp_on = 0;
1943 		rsvp_on--;
1944 	}
1945 	return 0;
1946 }
1947