xref: /freebsd/sys/netinet/ip_input.c (revision 3642298923e528d795e3a30ec165d2b469e28b40)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
30  * $FreeBSD$
31  */
32 
33 #include "opt_bootp.h"
34 #include "opt_ipfw.h"
35 #include "opt_ipstealth.h"
36 #include "opt_ipsec.h"
37 #include "opt_mac.h"
38 #include "opt_carp.h"
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/callout.h>
43 #include <sys/mac.h>
44 #include <sys/mbuf.h>
45 #include <sys/malloc.h>
46 #include <sys/domain.h>
47 #include <sys/protosw.h>
48 #include <sys/socket.h>
49 #include <sys/time.h>
50 #include <sys/kernel.h>
51 #include <sys/syslog.h>
52 #include <sys/sysctl.h>
53 
54 #include <net/pfil.h>
55 #include <net/if.h>
56 #include <net/if_types.h>
57 #include <net/if_var.h>
58 #include <net/if_dl.h>
59 #include <net/route.h>
60 #include <net/netisr.h>
61 
62 #include <netinet/in.h>
63 #include <netinet/in_systm.h>
64 #include <netinet/in_var.h>
65 #include <netinet/ip.h>
66 #include <netinet/in_pcb.h>
67 #include <netinet/ip_var.h>
68 #include <netinet/ip_icmp.h>
69 #include <machine/in_cksum.h>
70 #ifdef DEV_CARP
71 #include <netinet/ip_carp.h>
72 #endif
73 
74 #include <sys/socketvar.h>
75 
76 /* XXX: Temporary until ipfw_ether and ipfw_bridge are converted. */
77 #include <netinet/ip_fw.h>
78 #include <netinet/ip_dummynet.h>
79 
80 #ifdef IPSEC
81 #include <netinet6/ipsec.h>
82 #include <netkey/key.h>
83 #endif
84 
85 #ifdef FAST_IPSEC
86 #include <netipsec/ipsec.h>
87 #include <netipsec/key.h>
88 #endif
89 
90 int rsvp_on = 0;
91 
92 int	ipforwarding = 0;
93 SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
94     &ipforwarding, 0, "Enable IP forwarding between interfaces");
95 
96 static int	ipsendredirects = 1; /* XXX */
97 SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
98     &ipsendredirects, 0, "Enable sending IP redirects");
99 
100 int	ip_defttl = IPDEFTTL;
101 SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
102     &ip_defttl, 0, "Maximum TTL on IP packets");
103 
104 static int	ip_dosourceroute = 0;
105 SYSCTL_INT(_net_inet_ip, IPCTL_SOURCEROUTE, sourceroute, CTLFLAG_RW,
106     &ip_dosourceroute, 0, "Enable forwarding source routed IP packets");
107 
108 static int	ip_acceptsourceroute = 0;
109 SYSCTL_INT(_net_inet_ip, IPCTL_ACCEPTSOURCEROUTE, accept_sourceroute,
110     CTLFLAG_RW, &ip_acceptsourceroute, 0,
111     "Enable accepting source routed IP packets");
112 
113 int		ip_doopts = 1;	/* 0 = ignore, 1 = process, 2 = reject */
114 SYSCTL_INT(_net_inet_ip, OID_AUTO, process_options, CTLFLAG_RW,
115     &ip_doopts, 0, "Enable IP options processing ([LS]SRR, RR, TS)");
116 
117 static int	ip_keepfaith = 0;
118 SYSCTL_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
119 	&ip_keepfaith,	0,
120 	"Enable packet capture for FAITH IPv4->IPv6 translater daemon");
121 
122 static int    nipq = 0;         /* total # of reass queues */
123 static int    maxnipq;
124 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragpackets, CTLFLAG_RW,
125 	&maxnipq, 0,
126 	"Maximum number of IPv4 fragment reassembly queue entries");
127 
128 static int    maxfragsperpacket;
129 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_RW,
130 	&maxfragsperpacket, 0,
131 	"Maximum number of IPv4 fragments allowed per packet");
132 
133 static int	ip_sendsourcequench = 0;
134 SYSCTL_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW,
135 	&ip_sendsourcequench, 0,
136 	"Enable the transmission of source quench packets");
137 
138 int	ip_do_randomid = 0;
139 SYSCTL_INT(_net_inet_ip, OID_AUTO, random_id, CTLFLAG_RW,
140 	&ip_do_randomid, 0,
141 	"Assign random ip_id values");
142 
143 /*
144  * XXX - Setting ip_checkinterface mostly implements the receive side of
145  * the Strong ES model described in RFC 1122, but since the routing table
146  * and transmit implementation do not implement the Strong ES model,
147  * setting this to 1 results in an odd hybrid.
148  *
149  * XXX - ip_checkinterface currently must be disabled if you use ipnat
150  * to translate the destination address to another local interface.
151  *
152  * XXX - ip_checkinterface must be disabled if you add IP aliases
153  * to the loopback interface instead of the interface where the
154  * packets for those addresses are received.
155  */
156 static int	ip_checkinterface = 0;
157 SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
158     &ip_checkinterface, 0, "Verify packet arrives on correct interface");
159 
160 #ifdef DIAGNOSTIC
161 static int	ipprintfs = 0;
162 #endif
163 
164 struct pfil_head inet_pfil_hook;	/* Packet filter hooks */
165 
166 static struct	ifqueue ipintrq;
167 static int	ipqmaxlen = IFQ_MAXLEN;
168 
169 extern	struct domain inetdomain;
170 extern	struct protosw inetsw[];
171 u_char	ip_protox[IPPROTO_MAX];
172 struct	in_ifaddrhead in_ifaddrhead; 		/* first inet address */
173 struct	in_ifaddrhashhead *in_ifaddrhashtbl;	/* inet addr hash table  */
174 u_long 	in_ifaddrhmask;				/* mask for hash table */
175 
176 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen, CTLFLAG_RW,
177     &ipintrq.ifq_maxlen, 0, "Maximum size of the IP input queue");
178 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops, CTLFLAG_RD,
179     &ipintrq.ifq_drops, 0, "Number of packets dropped from the IP input queue");
180 
181 struct ipstat ipstat;
182 SYSCTL_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RW,
183     &ipstat, ipstat, "IP statistics (struct ipstat, netinet/ip_var.h)");
184 
185 /* Packet reassembly stuff */
186 #define IPREASS_NHASH_LOG2      6
187 #define IPREASS_NHASH           (1 << IPREASS_NHASH_LOG2)
188 #define IPREASS_HMASK           (IPREASS_NHASH - 1)
189 #define IPREASS_HASH(x,y) \
190 	(((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
191 
192 static TAILQ_HEAD(ipqhead, ipq) ipq[IPREASS_NHASH];
193 struct mtx ipqlock;
194 struct callout ipport_tick_callout;
195 
196 #define	IPQ_LOCK()	mtx_lock(&ipqlock)
197 #define	IPQ_UNLOCK()	mtx_unlock(&ipqlock)
198 #define	IPQ_LOCK_INIT()	mtx_init(&ipqlock, "ipqlock", NULL, MTX_DEF)
199 #define	IPQ_LOCK_ASSERT()	mtx_assert(&ipqlock, MA_OWNED)
200 
201 #ifdef IPCTL_DEFMTU
202 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
203     &ip_mtu, 0, "Default MTU");
204 #endif
205 
206 #ifdef IPSTEALTH
207 int	ipstealth = 0;
208 SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW,
209     &ipstealth, 0, "");
210 #endif
211 
212 /*
213  * ipfw_ether and ipfw_bridge hooks.
214  * XXX: Temporary until those are converted to pfil_hooks as well.
215  */
216 ip_fw_chk_t *ip_fw_chk_ptr = NULL;
217 ip_dn_io_t *ip_dn_io_ptr = NULL;
218 int fw_enable = 1;
219 int fw_one_pass = 1;
220 
221 /*
222  * XXX this is ugly.  IP options source routing magic.
223  */
224 struct ipoptrt {
225 	struct	in_addr dst;			/* final destination */
226 	char	nop;				/* one NOP to align */
227 	char	srcopt[IPOPT_OFFSET + 1];	/* OPTVAL, OLEN and OFFSET */
228 	struct	in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
229 };
230 
231 struct ipopt_tag {
232 	struct	m_tag tag;
233 	int	ip_nhops;
234 	struct	ipoptrt ip_srcrt;
235 };
236 
237 static void	save_rte(struct mbuf *, u_char *, struct in_addr);
238 static int	ip_dooptions(struct mbuf *m, int);
239 static void	ip_forward(struct mbuf *m, int srcrt);
240 static void	ip_freef(struct ipqhead *, struct ipq *);
241 
242 /*
243  * IP initialization: fill in IP protocol switch table.
244  * All protocols not implemented in kernel go to raw IP protocol handler.
245  */
246 void
247 ip_init()
248 {
249 	register struct protosw *pr;
250 	register int i;
251 
252 	TAILQ_INIT(&in_ifaddrhead);
253 	in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &in_ifaddrhmask);
254 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
255 	if (pr == NULL)
256 		panic("ip_init: PF_INET not found");
257 
258 	/* Initialize the entire ip_protox[] array to IPPROTO_RAW. */
259 	for (i = 0; i < IPPROTO_MAX; i++)
260 		ip_protox[i] = pr - inetsw;
261 	/*
262 	 * Cycle through IP protocols and put them into the appropriate place
263 	 * in ip_protox[].
264 	 */
265 	for (pr = inetdomain.dom_protosw;
266 	    pr < inetdomain.dom_protoswNPROTOSW; pr++)
267 		if (pr->pr_domain->dom_family == PF_INET &&
268 		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW) {
269 			/* Be careful to only index valid IP protocols. */
270 			if (pr->pr_protocol < IPPROTO_MAX)
271 				ip_protox[pr->pr_protocol] = pr - inetsw;
272 		}
273 
274 	/* Initialize packet filter hooks. */
275 	inet_pfil_hook.ph_type = PFIL_TYPE_AF;
276 	inet_pfil_hook.ph_af = AF_INET;
277 	if ((i = pfil_head_register(&inet_pfil_hook)) != 0)
278 		printf("%s: WARNING: unable to register pfil hook, "
279 			"error %d\n", __func__, i);
280 
281 	/* Initialize IP reassembly queue. */
282 	IPQ_LOCK_INIT();
283 	for (i = 0; i < IPREASS_NHASH; i++)
284 	    TAILQ_INIT(&ipq[i]);
285 	maxnipq = nmbclusters / 32;
286 	maxfragsperpacket = 16;
287 
288 	/* Start ipport_tick. */
289 	callout_init(&ipport_tick_callout, CALLOUT_MPSAFE);
290 	ipport_tick(NULL);
291 	EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL,
292 		SHUTDOWN_PRI_DEFAULT);
293 
294 	/* Initialize various other remaining things. */
295 	ip_id = time_second & 0xffff;
296 	ipintrq.ifq_maxlen = ipqmaxlen;
297 	mtx_init(&ipintrq.ifq_mtx, "ip_inq", NULL, MTX_DEF);
298 	netisr_register(NETISR_IP, ip_input, &ipintrq, NETISR_MPSAFE);
299 }
300 
301 void ip_fini(xtp)
302 	void *xtp;
303 {
304 	callout_stop(&ipport_tick_callout);
305 }
306 
307 /*
308  * Ip input routine.  Checksum and byte swap header.  If fragmented
309  * try to reassemble.  Process options.  Pass to next level.
310  */
311 void
312 ip_input(struct mbuf *m)
313 {
314 	struct ip *ip = NULL;
315 	struct in_ifaddr *ia = NULL;
316 	struct ifaddr *ifa;
317 	int    checkif, hlen = 0;
318 	u_short sum;
319 	int dchg = 0;				/* dest changed after fw */
320 	struct in_addr odst;			/* original dst address */
321 #ifdef FAST_IPSEC
322 	struct m_tag *mtag;
323 	struct tdb_ident *tdbi;
324 	struct secpolicy *sp;
325 	int s, error;
326 #endif /* FAST_IPSEC */
327 
328   	M_ASSERTPKTHDR(m);
329 
330 	if (m->m_flags & M_FASTFWD_OURS) {
331 		/*
332 		 * Firewall or NAT changed destination to local.
333 		 * We expect ip_len and ip_off to be in host byte order.
334 		 */
335 		m->m_flags &= ~M_FASTFWD_OURS;
336 		/* Set up some basics that will be used later. */
337 		ip = mtod(m, struct ip *);
338 		hlen = ip->ip_hl << 2;
339   		goto ours;
340   	}
341 
342 	ipstat.ips_total++;
343 
344 	if (m->m_pkthdr.len < sizeof(struct ip))
345 		goto tooshort;
346 
347 	if (m->m_len < sizeof (struct ip) &&
348 	    (m = m_pullup(m, sizeof (struct ip))) == NULL) {
349 		ipstat.ips_toosmall++;
350 		return;
351 	}
352 	ip = mtod(m, struct ip *);
353 
354 	if (ip->ip_v != IPVERSION) {
355 		ipstat.ips_badvers++;
356 		goto bad;
357 	}
358 
359 	hlen = ip->ip_hl << 2;
360 	if (hlen < sizeof(struct ip)) {	/* minimum header length */
361 		ipstat.ips_badhlen++;
362 		goto bad;
363 	}
364 	if (hlen > m->m_len) {
365 		if ((m = m_pullup(m, hlen)) == NULL) {
366 			ipstat.ips_badhlen++;
367 			return;
368 		}
369 		ip = mtod(m, struct ip *);
370 	}
371 
372 	/* 127/8 must not appear on wire - RFC1122 */
373 	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
374 	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
375 		if ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) {
376 			ipstat.ips_badaddr++;
377 			goto bad;
378 		}
379 	}
380 
381 	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
382 		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
383 	} else {
384 		if (hlen == sizeof(struct ip)) {
385 			sum = in_cksum_hdr(ip);
386 		} else {
387 			sum = in_cksum(m, hlen);
388 		}
389 	}
390 	if (sum) {
391 		ipstat.ips_badsum++;
392 		goto bad;
393 	}
394 
395 #ifdef ALTQ
396 	if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0)
397 		/* packet is dropped by traffic conditioner */
398 		return;
399 #endif
400 
401 	/*
402 	 * Convert fields to host representation.
403 	 */
404 	ip->ip_len = ntohs(ip->ip_len);
405 	if (ip->ip_len < hlen) {
406 		ipstat.ips_badlen++;
407 		goto bad;
408 	}
409 	ip->ip_off = ntohs(ip->ip_off);
410 
411 	/*
412 	 * Check that the amount of data in the buffers
413 	 * is as at least much as the IP header would have us expect.
414 	 * Trim mbufs if longer than we expect.
415 	 * Drop packet if shorter than we expect.
416 	 */
417 	if (m->m_pkthdr.len < ip->ip_len) {
418 tooshort:
419 		ipstat.ips_tooshort++;
420 		goto bad;
421 	}
422 	if (m->m_pkthdr.len > ip->ip_len) {
423 		if (m->m_len == m->m_pkthdr.len) {
424 			m->m_len = ip->ip_len;
425 			m->m_pkthdr.len = ip->ip_len;
426 		} else
427 			m_adj(m, ip->ip_len - m->m_pkthdr.len);
428 	}
429 #if defined(IPSEC) && !defined(IPSEC_FILTERGIF)
430 	/*
431 	 * Bypass packet filtering for packets from a tunnel (gif).
432 	 */
433 	if (ipsec_getnhist(m))
434 		goto passin;
435 #endif
436 #if defined(FAST_IPSEC) && !defined(IPSEC_FILTERGIF)
437 	/*
438 	 * Bypass packet filtering for packets from a tunnel (gif).
439 	 */
440 	if (m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL) != NULL)
441 		goto passin;
442 #endif
443 
444 	/*
445 	 * Run through list of hooks for input packets.
446 	 *
447 	 * NB: Beware of the destination address changing (e.g.
448 	 *     by NAT rewriting).  When this happens, tell
449 	 *     ip_forward to do the right thing.
450 	 */
451 
452 	/* Jump over all PFIL processing if hooks are not active. */
453 	if (inet_pfil_hook.ph_busy_count == -1)
454 		goto passin;
455 
456 	odst = ip->ip_dst;
457 	if (pfil_run_hooks(&inet_pfil_hook, &m, m->m_pkthdr.rcvif,
458 	    PFIL_IN, NULL) != 0)
459 		return;
460 	if (m == NULL)			/* consumed by filter */
461 		return;
462 
463 	ip = mtod(m, struct ip *);
464 	dchg = (odst.s_addr != ip->ip_dst.s_addr);
465 
466 #ifdef IPFIREWALL_FORWARD
467 	if (m->m_flags & M_FASTFWD_OURS) {
468 		m->m_flags &= ~M_FASTFWD_OURS;
469 		goto ours;
470 	}
471 #ifndef IPFIREWALL_FORWARD_EXTENDED
472 	dchg = (m_tag_find(m, PACKET_TAG_IPFORWARD, NULL) != NULL);
473 #else
474 	if ((dchg = (m_tag_find(m, PACKET_TAG_IPFORWARD, NULL) != NULL)) != 0) {
475 		/*
476 		 * Directly ship on the packet.  This allows to forward packets
477 		 * that were destined for us to some other directly connected
478 		 * host.
479 		 */
480 		ip_forward(m, dchg);
481 		return;
482 	}
483 #endif /* IPFIREWALL_FORWARD_EXTENDED */
484 #endif /* IPFIREWALL_FORWARD */
485 
486 passin:
487 	/*
488 	 * Process options and, if not destined for us,
489 	 * ship it on.  ip_dooptions returns 1 when an
490 	 * error was detected (causing an icmp message
491 	 * to be sent and the original packet to be freed).
492 	 */
493 	if (hlen > sizeof (struct ip) && ip_dooptions(m, 0))
494 		return;
495 
496         /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
497          * matter if it is destined to another node, or whether it is
498          * a multicast one, RSVP wants it! and prevents it from being forwarded
499          * anywhere else. Also checks if the rsvp daemon is running before
500 	 * grabbing the packet.
501          */
502 	if (rsvp_on && ip->ip_p==IPPROTO_RSVP)
503 		goto ours;
504 
505 	/*
506 	 * Check our list of addresses, to see if the packet is for us.
507 	 * If we don't have any addresses, assume any unicast packet
508 	 * we receive might be for us (and let the upper layers deal
509 	 * with it).
510 	 */
511 	if (TAILQ_EMPTY(&in_ifaddrhead) &&
512 	    (m->m_flags & (M_MCAST|M_BCAST)) == 0)
513 		goto ours;
514 
515 	/*
516 	 * Enable a consistency check between the destination address
517 	 * and the arrival interface for a unicast packet (the RFC 1122
518 	 * strong ES model) if IP forwarding is disabled and the packet
519 	 * is not locally generated and the packet is not subject to
520 	 * 'ipfw fwd'.
521 	 *
522 	 * XXX - Checking also should be disabled if the destination
523 	 * address is ipnat'ed to a different interface.
524 	 *
525 	 * XXX - Checking is incompatible with IP aliases added
526 	 * to the loopback interface instead of the interface where
527 	 * the packets are received.
528 	 *
529 	 * XXX - This is the case for carp vhost IPs as well so we
530 	 * insert a workaround. If the packet got here, we already
531 	 * checked with carp_iamatch() and carp_forus().
532 	 */
533 	checkif = ip_checkinterface && (ipforwarding == 0) &&
534 	    m->m_pkthdr.rcvif != NULL &&
535 	    ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) &&
536 #ifdef DEV_CARP
537 	    !m->m_pkthdr.rcvif->if_carp &&
538 #endif
539 	    (dchg == 0);
540 
541 	/*
542 	 * Check for exact addresses in the hash bucket.
543 	 */
544 	LIST_FOREACH(ia, INADDR_HASH(ip->ip_dst.s_addr), ia_hash) {
545 		/*
546 		 * If the address matches, verify that the packet
547 		 * arrived via the correct interface if checking is
548 		 * enabled.
549 		 */
550 		if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr &&
551 		    (!checkif || ia->ia_ifp == m->m_pkthdr.rcvif))
552 			goto ours;
553 	}
554 	/*
555 	 * Check for broadcast addresses.
556 	 *
557 	 * Only accept broadcast packets that arrive via the matching
558 	 * interface.  Reception of forwarded directed broadcasts would
559 	 * be handled via ip_forward() and ether_output() with the loopback
560 	 * into the stack for SIMPLEX interfaces handled by ether_output().
561 	 */
562 	if (m->m_pkthdr.rcvif != NULL &&
563 	    m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
564 	        TAILQ_FOREACH(ifa, &m->m_pkthdr.rcvif->if_addrhead, ifa_link) {
565 			if (ifa->ifa_addr->sa_family != AF_INET)
566 				continue;
567 			ia = ifatoia(ifa);
568 			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
569 			    ip->ip_dst.s_addr)
570 				goto ours;
571 			if (ia->ia_netbroadcast.s_addr == ip->ip_dst.s_addr)
572 				goto ours;
573 #ifdef BOOTP_COMPAT
574 			if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY)
575 				goto ours;
576 #endif
577 		}
578 	}
579 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
580 		struct in_multi *inm;
581 		if (ip_mrouter) {
582 			/*
583 			 * If we are acting as a multicast router, all
584 			 * incoming multicast packets are passed to the
585 			 * kernel-level multicast forwarding function.
586 			 * The packet is returned (relatively) intact; if
587 			 * ip_mforward() returns a non-zero value, the packet
588 			 * must be discarded, else it may be accepted below.
589 			 */
590 			if (ip_mforward &&
591 			    ip_mforward(ip, m->m_pkthdr.rcvif, m, 0) != 0) {
592 				ipstat.ips_cantforward++;
593 				m_freem(m);
594 				return;
595 			}
596 
597 			/*
598 			 * The process-level routing daemon needs to receive
599 			 * all multicast IGMP packets, whether or not this
600 			 * host belongs to their destination groups.
601 			 */
602 			if (ip->ip_p == IPPROTO_IGMP)
603 				goto ours;
604 			ipstat.ips_forward++;
605 		}
606 		/*
607 		 * See if we belong to the destination multicast group on the
608 		 * arrival interface.
609 		 */
610 		IN_MULTI_LOCK();
611 		IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
612 		IN_MULTI_UNLOCK();
613 		if (inm == NULL) {
614 			ipstat.ips_notmember++;
615 			m_freem(m);
616 			return;
617 		}
618 		goto ours;
619 	}
620 	if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
621 		goto ours;
622 	if (ip->ip_dst.s_addr == INADDR_ANY)
623 		goto ours;
624 
625 	/*
626 	 * FAITH(Firewall Aided Internet Translator)
627 	 */
628 	if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
629 		if (ip_keepfaith) {
630 			if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
631 				goto ours;
632 		}
633 		m_freem(m);
634 		return;
635 	}
636 
637 	/*
638 	 * Not for us; forward if possible and desirable.
639 	 */
640 	if (ipforwarding == 0) {
641 		ipstat.ips_cantforward++;
642 		m_freem(m);
643 	} else {
644 #ifdef IPSEC
645 		/*
646 		 * Enforce inbound IPsec SPD.
647 		 */
648 		if (ipsec4_in_reject(m, NULL)) {
649 			ipsecstat.in_polvio++;
650 			goto bad;
651 		}
652 #endif /* IPSEC */
653 #ifdef FAST_IPSEC
654 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
655 		s = splnet();
656 		if (mtag != NULL) {
657 			tdbi = (struct tdb_ident *)(mtag + 1);
658 			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
659 		} else {
660 			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
661 						   IP_FORWARDING, &error);
662 		}
663 		if (sp == NULL) {	/* NB: can happen if error */
664 			splx(s);
665 			/*XXX error stat???*/
666 			DPRINTF(("ip_input: no SP for forwarding\n"));	/*XXX*/
667 			goto bad;
668 		}
669 
670 		/*
671 		 * Check security policy against packet attributes.
672 		 */
673 		error = ipsec_in_reject(sp, m);
674 		KEY_FREESP(&sp);
675 		splx(s);
676 		if (error) {
677 			ipstat.ips_cantforward++;
678 			goto bad;
679 		}
680 #endif /* FAST_IPSEC */
681 		ip_forward(m, dchg);
682 	}
683 	return;
684 
685 ours:
686 #ifdef IPSTEALTH
687 	/*
688 	 * IPSTEALTH: Process non-routing options only
689 	 * if the packet is destined for us.
690 	 */
691 	if (ipstealth && hlen > sizeof (struct ip) &&
692 	    ip_dooptions(m, 1))
693 		return;
694 #endif /* IPSTEALTH */
695 
696 	/* Count the packet in the ip address stats */
697 	if (ia != NULL) {
698 		ia->ia_ifa.if_ipackets++;
699 		ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
700 	}
701 
702 	/*
703 	 * Attempt reassembly; if it succeeds, proceed.
704 	 * ip_reass() will return a different mbuf.
705 	 */
706 	if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
707 		m = ip_reass(m);
708 		if (m == NULL)
709 			return;
710 		ip = mtod(m, struct ip *);
711 		/* Get the header length of the reassembled packet */
712 		hlen = ip->ip_hl << 2;
713 	}
714 
715 	/*
716 	 * Further protocols expect the packet length to be w/o the
717 	 * IP header.
718 	 */
719 	ip->ip_len -= hlen;
720 
721 #ifdef IPSEC
722 	/*
723 	 * enforce IPsec policy checking if we are seeing last header.
724 	 * note that we do not visit this with protocols with pcb layer
725 	 * code - like udp/tcp/raw ip.
726 	 */
727 	if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0 &&
728 	    ipsec4_in_reject(m, NULL)) {
729 		ipsecstat.in_polvio++;
730 		goto bad;
731 	}
732 #endif
733 #if FAST_IPSEC
734 	/*
735 	 * enforce IPsec policy checking if we are seeing last header.
736 	 * note that we do not visit this with protocols with pcb layer
737 	 * code - like udp/tcp/raw ip.
738 	 */
739 	if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0) {
740 		/*
741 		 * Check if the packet has already had IPsec processing
742 		 * done.  If so, then just pass it along.  This tag gets
743 		 * set during AH, ESP, etc. input handling, before the
744 		 * packet is returned to the ip input queue for delivery.
745 		 */
746 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
747 		s = splnet();
748 		if (mtag != NULL) {
749 			tdbi = (struct tdb_ident *)(mtag + 1);
750 			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
751 		} else {
752 			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
753 						   IP_FORWARDING, &error);
754 		}
755 		if (sp != NULL) {
756 			/*
757 			 * Check security policy against packet attributes.
758 			 */
759 			error = ipsec_in_reject(sp, m);
760 			KEY_FREESP(&sp);
761 		} else {
762 			/* XXX error stat??? */
763 			error = EINVAL;
764 DPRINTF(("ip_input: no SP, packet discarded\n"));/*XXX*/
765 			goto bad;
766 		}
767 		splx(s);
768 		if (error)
769 			goto bad;
770 	}
771 #endif /* FAST_IPSEC */
772 
773 	/*
774 	 * Switch out to protocol's input routine.
775 	 */
776 	ipstat.ips_delivered++;
777 
778 	(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
779 	return;
780 bad:
781 	m_freem(m);
782 }
783 
784 /*
785  * Take incoming datagram fragment and try to reassemble it into
786  * whole datagram.  If the argument is the first fragment or one
787  * in between the function will return NULL and store the mbuf
788  * in the fragment chain.  If the argument is the last fragment
789  * the packet will be reassembled and the pointer to the new
790  * mbuf returned for further processing.  Only m_tags attached
791  * to the first packet/fragment are preserved.
792  * The IP header is *NOT* adjusted out of iplen.
793  */
794 
795 struct mbuf *
796 ip_reass(struct mbuf *m)
797 {
798 	struct ip *ip;
799 	struct mbuf *p, *q, *nq, *t;
800 	struct ipq *fp = NULL;
801 	struct ipqhead *head;
802 	int i, hlen, next;
803 	u_int8_t ecn, ecn0;
804 	u_short hash;
805 
806 	/* If maxnipq or maxfragsperpacket are 0, never accept fragments. */
807 	if (maxnipq == 0 || maxfragsperpacket == 0) {
808 		ipstat.ips_fragments++;
809 		ipstat.ips_fragdropped++;
810 		m_freem(m);
811 		return (NULL);
812 	}
813 
814 	ip = mtod(m, struct ip *);
815 	hlen = ip->ip_hl << 2;
816 
817 	hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
818 	head = &ipq[hash];
819 	IPQ_LOCK();
820 
821 	/*
822 	 * Look for queue of fragments
823 	 * of this datagram.
824 	 */
825 	TAILQ_FOREACH(fp, head, ipq_list)
826 		if (ip->ip_id == fp->ipq_id &&
827 		    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
828 		    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
829 #ifdef MAC
830 		    mac_fragment_match(m, fp) &&
831 #endif
832 		    ip->ip_p == fp->ipq_p)
833 			goto found;
834 
835 	fp = NULL;
836 
837 	/*
838 	 * Enforce upper bound on number of fragmented packets
839 	 * for which we attempt reassembly;
840 	 * If maxnipq is -1, accept all fragments without limitation.
841 	 */
842 	if ((nipq > maxnipq) && (maxnipq > 0)) {
843 		/*
844 		 * drop something from the tail of the current queue
845 		 * before proceeding further
846 		 */
847 		struct ipq *q = TAILQ_LAST(head, ipqhead);
848 		if (q == NULL) {   /* gak */
849 			for (i = 0; i < IPREASS_NHASH; i++) {
850 				struct ipq *r = TAILQ_LAST(&ipq[i], ipqhead);
851 				if (r) {
852 					ipstat.ips_fragtimeout += r->ipq_nfrags;
853 					ip_freef(&ipq[i], r);
854 					break;
855 				}
856 			}
857 		} else {
858 			ipstat.ips_fragtimeout += q->ipq_nfrags;
859 			ip_freef(head, q);
860 		}
861 	}
862 
863 found:
864 	/*
865 	 * Adjust ip_len to not reflect header,
866 	 * convert offset of this to bytes.
867 	 */
868 	ip->ip_len -= hlen;
869 	if (ip->ip_off & IP_MF) {
870 		/*
871 		 * Make sure that fragments have a data length
872 		 * that's a non-zero multiple of 8 bytes.
873 		 */
874 		if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
875 			ipstat.ips_toosmall++; /* XXX */
876 			goto dropfrag;
877 		}
878 		m->m_flags |= M_FRAG;
879 	} else
880 		m->m_flags &= ~M_FRAG;
881 	ip->ip_off <<= 3;
882 
883 
884 	/*
885 	 * Attempt reassembly; if it succeeds, proceed.
886 	 * ip_reass() will return a different mbuf.
887 	 */
888 	ipstat.ips_fragments++;
889 	m->m_pkthdr.header = ip;
890 
891 	/* Previous ip_reass() started here. */
892 	/*
893 	 * Presence of header sizes in mbufs
894 	 * would confuse code below.
895 	 */
896 	m->m_data += hlen;
897 	m->m_len -= hlen;
898 
899 	/*
900 	 * If first fragment to arrive, create a reassembly queue.
901 	 */
902 	if (fp == NULL) {
903 		if ((t = m_get(M_DONTWAIT, MT_FTABLE)) == NULL)
904 			goto dropfrag;
905 		fp = mtod(t, struct ipq *);
906 #ifdef MAC
907 		if (mac_init_ipq(fp, M_NOWAIT) != 0) {
908 			m_free(t);
909 			goto dropfrag;
910 		}
911 		mac_create_ipq(m, fp);
912 #endif
913 		TAILQ_INSERT_HEAD(head, fp, ipq_list);
914 		nipq++;
915 		fp->ipq_nfrags = 1;
916 		fp->ipq_ttl = IPFRAGTTL;
917 		fp->ipq_p = ip->ip_p;
918 		fp->ipq_id = ip->ip_id;
919 		fp->ipq_src = ip->ip_src;
920 		fp->ipq_dst = ip->ip_dst;
921 		fp->ipq_frags = m;
922 		m->m_nextpkt = NULL;
923 		goto done;
924 	} else {
925 		fp->ipq_nfrags++;
926 #ifdef MAC
927 		mac_update_ipq(m, fp);
928 #endif
929 	}
930 
931 #define GETIP(m)	((struct ip*)((m)->m_pkthdr.header))
932 
933 	/*
934 	 * Handle ECN by comparing this segment with the first one;
935 	 * if CE is set, do not lose CE.
936 	 * drop if CE and not-ECT are mixed for the same packet.
937 	 */
938 	ecn = ip->ip_tos & IPTOS_ECN_MASK;
939 	ecn0 = GETIP(fp->ipq_frags)->ip_tos & IPTOS_ECN_MASK;
940 	if (ecn == IPTOS_ECN_CE) {
941 		if (ecn0 == IPTOS_ECN_NOTECT)
942 			goto dropfrag;
943 		if (ecn0 != IPTOS_ECN_CE)
944 			GETIP(fp->ipq_frags)->ip_tos |= IPTOS_ECN_CE;
945 	}
946 	if (ecn == IPTOS_ECN_NOTECT && ecn0 != IPTOS_ECN_NOTECT)
947 		goto dropfrag;
948 
949 	/*
950 	 * Find a segment which begins after this one does.
951 	 */
952 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
953 		if (GETIP(q)->ip_off > ip->ip_off)
954 			break;
955 
956 	/*
957 	 * If there is a preceding segment, it may provide some of
958 	 * our data already.  If so, drop the data from the incoming
959 	 * segment.  If it provides all of our data, drop us, otherwise
960 	 * stick new segment in the proper place.
961 	 *
962 	 * If some of the data is dropped from the the preceding
963 	 * segment, then it's checksum is invalidated.
964 	 */
965 	if (p) {
966 		i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
967 		if (i > 0) {
968 			if (i >= ip->ip_len)
969 				goto dropfrag;
970 			m_adj(m, i);
971 			m->m_pkthdr.csum_flags = 0;
972 			ip->ip_off += i;
973 			ip->ip_len -= i;
974 		}
975 		m->m_nextpkt = p->m_nextpkt;
976 		p->m_nextpkt = m;
977 	} else {
978 		m->m_nextpkt = fp->ipq_frags;
979 		fp->ipq_frags = m;
980 	}
981 
982 	/*
983 	 * While we overlap succeeding segments trim them or,
984 	 * if they are completely covered, dequeue them.
985 	 */
986 	for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
987 	     q = nq) {
988 		i = (ip->ip_off + ip->ip_len) - GETIP(q)->ip_off;
989 		if (i < GETIP(q)->ip_len) {
990 			GETIP(q)->ip_len -= i;
991 			GETIP(q)->ip_off += i;
992 			m_adj(q, i);
993 			q->m_pkthdr.csum_flags = 0;
994 			break;
995 		}
996 		nq = q->m_nextpkt;
997 		m->m_nextpkt = nq;
998 		ipstat.ips_fragdropped++;
999 		fp->ipq_nfrags--;
1000 		m_freem(q);
1001 	}
1002 
1003 	/*
1004 	 * Check for complete reassembly and perform frag per packet
1005 	 * limiting.
1006 	 *
1007 	 * Frag limiting is performed here so that the nth frag has
1008 	 * a chance to complete the packet before we drop the packet.
1009 	 * As a result, n+1 frags are actually allowed per packet, but
1010 	 * only n will ever be stored. (n = maxfragsperpacket.)
1011 	 *
1012 	 */
1013 	next = 0;
1014 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1015 		if (GETIP(q)->ip_off != next) {
1016 			if (fp->ipq_nfrags > maxfragsperpacket) {
1017 				ipstat.ips_fragdropped += fp->ipq_nfrags;
1018 				ip_freef(head, fp);
1019 			}
1020 			goto done;
1021 		}
1022 		next += GETIP(q)->ip_len;
1023 	}
1024 	/* Make sure the last packet didn't have the IP_MF flag */
1025 	if (p->m_flags & M_FRAG) {
1026 		if (fp->ipq_nfrags > maxfragsperpacket) {
1027 			ipstat.ips_fragdropped += fp->ipq_nfrags;
1028 			ip_freef(head, fp);
1029 		}
1030 		goto done;
1031 	}
1032 
1033 	/*
1034 	 * Reassembly is complete.  Make sure the packet is a sane size.
1035 	 */
1036 	q = fp->ipq_frags;
1037 	ip = GETIP(q);
1038 	if (next + (ip->ip_hl << 2) > IP_MAXPACKET) {
1039 		ipstat.ips_toolong++;
1040 		ipstat.ips_fragdropped += fp->ipq_nfrags;
1041 		ip_freef(head, fp);
1042 		goto done;
1043 	}
1044 
1045 	/*
1046 	 * Concatenate fragments.
1047 	 */
1048 	m = q;
1049 	t = m->m_next;
1050 	m->m_next = NULL;
1051 	m_cat(m, t);
1052 	nq = q->m_nextpkt;
1053 	q->m_nextpkt = NULL;
1054 	for (q = nq; q != NULL; q = nq) {
1055 		nq = q->m_nextpkt;
1056 		q->m_nextpkt = NULL;
1057 		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1058 		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1059 		m_cat(m, q);
1060 	}
1061 #ifdef MAC
1062 	mac_create_datagram_from_ipq(fp, m);
1063 	mac_destroy_ipq(fp);
1064 #endif
1065 
1066 	/*
1067 	 * Create header for new ip packet by modifying header of first
1068 	 * packet;  dequeue and discard fragment reassembly header.
1069 	 * Make header visible.
1070 	 */
1071 	ip->ip_len = (ip->ip_hl << 2) + next;
1072 	ip->ip_src = fp->ipq_src;
1073 	ip->ip_dst = fp->ipq_dst;
1074 	TAILQ_REMOVE(head, fp, ipq_list);
1075 	nipq--;
1076 	(void) m_free(dtom(fp));
1077 	m->m_len += (ip->ip_hl << 2);
1078 	m->m_data -= (ip->ip_hl << 2);
1079 	/* some debugging cruft by sklower, below, will go away soon */
1080 	if (m->m_flags & M_PKTHDR)	/* XXX this should be done elsewhere */
1081 		m_fixhdr(m);
1082 	ipstat.ips_reassembled++;
1083 	IPQ_UNLOCK();
1084 	return (m);
1085 
1086 dropfrag:
1087 	ipstat.ips_fragdropped++;
1088 	if (fp != NULL)
1089 		fp->ipq_nfrags--;
1090 	m_freem(m);
1091 done:
1092 	IPQ_UNLOCK();
1093 	return (NULL);
1094 
1095 #undef GETIP
1096 }
1097 
1098 /*
1099  * Free a fragment reassembly header and all
1100  * associated datagrams.
1101  */
1102 static void
1103 ip_freef(fhp, fp)
1104 	struct ipqhead *fhp;
1105 	struct ipq *fp;
1106 {
1107 	register struct mbuf *q;
1108 
1109 	IPQ_LOCK_ASSERT();
1110 
1111 	while (fp->ipq_frags) {
1112 		q = fp->ipq_frags;
1113 		fp->ipq_frags = q->m_nextpkt;
1114 		m_freem(q);
1115 	}
1116 	TAILQ_REMOVE(fhp, fp, ipq_list);
1117 	(void) m_free(dtom(fp));
1118 	nipq--;
1119 }
1120 
1121 /*
1122  * IP timer processing;
1123  * if a timer expires on a reassembly
1124  * queue, discard it.
1125  */
1126 void
1127 ip_slowtimo()
1128 {
1129 	register struct ipq *fp;
1130 	int i;
1131 
1132 	IPQ_LOCK();
1133 	for (i = 0; i < IPREASS_NHASH; i++) {
1134 		for(fp = TAILQ_FIRST(&ipq[i]); fp;) {
1135 			struct ipq *fpp;
1136 
1137 			fpp = fp;
1138 			fp = TAILQ_NEXT(fp, ipq_list);
1139 			if(--fpp->ipq_ttl == 0) {
1140 				ipstat.ips_fragtimeout += fpp->ipq_nfrags;
1141 				ip_freef(&ipq[i], fpp);
1142 			}
1143 		}
1144 	}
1145 	/*
1146 	 * If we are over the maximum number of fragments
1147 	 * (due to the limit being lowered), drain off
1148 	 * enough to get down to the new limit.
1149 	 */
1150 	if (maxnipq >= 0 && nipq > maxnipq) {
1151 		for (i = 0; i < IPREASS_NHASH; i++) {
1152 			while (nipq > maxnipq && !TAILQ_EMPTY(&ipq[i])) {
1153 				ipstat.ips_fragdropped +=
1154 				    TAILQ_FIRST(&ipq[i])->ipq_nfrags;
1155 				ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i]));
1156 			}
1157 		}
1158 	}
1159 	IPQ_UNLOCK();
1160 }
1161 
1162 /*
1163  * Drain off all datagram fragments.
1164  */
1165 void
1166 ip_drain()
1167 {
1168 	int     i;
1169 
1170 	IPQ_LOCK();
1171 	for (i = 0; i < IPREASS_NHASH; i++) {
1172 		while(!TAILQ_EMPTY(&ipq[i])) {
1173 			ipstat.ips_fragdropped +=
1174 			    TAILQ_FIRST(&ipq[i])->ipq_nfrags;
1175 			ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i]));
1176 		}
1177 	}
1178 	IPQ_UNLOCK();
1179 	in_rtqdrain();
1180 }
1181 
1182 /*
1183  * The protocol to be inserted into ip_protox[] must be already registered
1184  * in inetsw[], either statically or through pf_proto_register().
1185  */
1186 int
1187 ipproto_register(u_char ipproto)
1188 {
1189 	struct protosw *pr;
1190 
1191 	/* Sanity checks. */
1192 	if (ipproto == 0)
1193 		return (EPROTONOSUPPORT);
1194 
1195 	/*
1196 	 * The protocol slot must not be occupied by another protocol
1197 	 * already.  An index pointing to IPPROTO_RAW is unused.
1198 	 */
1199 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
1200 	if (pr == NULL)
1201 		return (EPFNOSUPPORT);
1202 	if (ip_protox[ipproto] != pr - inetsw)	/* IPPROTO_RAW */
1203 		return (EEXIST);
1204 
1205 	/* Find the protocol position in inetsw[] and set the index. */
1206 	for (pr = inetdomain.dom_protosw;
1207 	     pr < inetdomain.dom_protoswNPROTOSW; pr++) {
1208 		if (pr->pr_domain->dom_family == PF_INET &&
1209 		    pr->pr_protocol && pr->pr_protocol == ipproto) {
1210 			/* Be careful to only index valid IP protocols. */
1211 			if (pr->pr_protocol < IPPROTO_MAX) {
1212 				ip_protox[pr->pr_protocol] = pr - inetsw;
1213 				return (0);
1214 			} else
1215 				return (EINVAL);
1216 		}
1217 	}
1218 	return (EPROTONOSUPPORT);
1219 }
1220 
1221 int
1222 ipproto_unregister(u_char ipproto)
1223 {
1224 	struct protosw *pr;
1225 
1226 	/* Sanity checks. */
1227 	if (ipproto == 0)
1228 		return (EPROTONOSUPPORT);
1229 
1230 	/* Check if the protocol was indeed registered. */
1231 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
1232 	if (pr == NULL)
1233 		return (EPFNOSUPPORT);
1234 	if (ip_protox[ipproto] == pr - inetsw)  /* IPPROTO_RAW */
1235 		return (ENOENT);
1236 
1237 	/* Reset the protocol slot to IPPROTO_RAW. */
1238 	ip_protox[ipproto] = pr - inetsw;
1239 	return (0);
1240 }
1241 
1242 
1243 /*
1244  * Do option processing on a datagram,
1245  * possibly discarding it if bad options are encountered,
1246  * or forwarding it if source-routed.
1247  * The pass argument is used when operating in the IPSTEALTH
1248  * mode to tell what options to process:
1249  * [LS]SRR (pass 0) or the others (pass 1).
1250  * The reason for as many as two passes is that when doing IPSTEALTH,
1251  * non-routing options should be processed only if the packet is for us.
1252  * Returns 1 if packet has been forwarded/freed,
1253  * 0 if the packet should be processed further.
1254  */
1255 static int
1256 ip_dooptions(struct mbuf *m, int pass)
1257 {
1258 	struct ip *ip = mtod(m, struct ip *);
1259 	u_char *cp;
1260 	struct in_ifaddr *ia;
1261 	int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
1262 	struct in_addr *sin, dst;
1263 	n_time ntime;
1264 	struct	sockaddr_in ipaddr = { sizeof(ipaddr), AF_INET };
1265 
1266 	/* ignore or reject packets with IP options */
1267 	if (ip_doopts == 0)
1268 		return 0;
1269 	else if (ip_doopts == 2) {
1270 		type = ICMP_UNREACH;
1271 		code = ICMP_UNREACH_FILTER_PROHIB;
1272 		goto bad;
1273 	}
1274 
1275 	dst = ip->ip_dst;
1276 	cp = (u_char *)(ip + 1);
1277 	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1278 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1279 		opt = cp[IPOPT_OPTVAL];
1280 		if (opt == IPOPT_EOL)
1281 			break;
1282 		if (opt == IPOPT_NOP)
1283 			optlen = 1;
1284 		else {
1285 			if (cnt < IPOPT_OLEN + sizeof(*cp)) {
1286 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1287 				goto bad;
1288 			}
1289 			optlen = cp[IPOPT_OLEN];
1290 			if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
1291 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1292 				goto bad;
1293 			}
1294 		}
1295 		switch (opt) {
1296 
1297 		default:
1298 			break;
1299 
1300 		/*
1301 		 * Source routing with record.
1302 		 * Find interface with current destination address.
1303 		 * If none on this machine then drop if strictly routed,
1304 		 * or do nothing if loosely routed.
1305 		 * Record interface address and bring up next address
1306 		 * component.  If strictly routed make sure next
1307 		 * address is on directly accessible net.
1308 		 */
1309 		case IPOPT_LSRR:
1310 		case IPOPT_SSRR:
1311 #ifdef IPSTEALTH
1312 			if (ipstealth && pass > 0)
1313 				break;
1314 #endif
1315 			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1316 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1317 				goto bad;
1318 			}
1319 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1320 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1321 				goto bad;
1322 			}
1323 			ipaddr.sin_addr = ip->ip_dst;
1324 			ia = (struct in_ifaddr *)
1325 				ifa_ifwithaddr((struct sockaddr *)&ipaddr);
1326 			if (ia == NULL) {
1327 				if (opt == IPOPT_SSRR) {
1328 					type = ICMP_UNREACH;
1329 					code = ICMP_UNREACH_SRCFAIL;
1330 					goto bad;
1331 				}
1332 				if (!ip_dosourceroute)
1333 					goto nosourcerouting;
1334 				/*
1335 				 * Loose routing, and not at next destination
1336 				 * yet; nothing to do except forward.
1337 				 */
1338 				break;
1339 			}
1340 			off--;			/* 0 origin */
1341 			if (off > optlen - (int)sizeof(struct in_addr)) {
1342 				/*
1343 				 * End of source route.  Should be for us.
1344 				 */
1345 				if (!ip_acceptsourceroute)
1346 					goto nosourcerouting;
1347 				save_rte(m, cp, ip->ip_src);
1348 				break;
1349 			}
1350 #ifdef IPSTEALTH
1351 			if (ipstealth)
1352 				goto dropit;
1353 #endif
1354 			if (!ip_dosourceroute) {
1355 				if (ipforwarding) {
1356 					char buf[16]; /* aaa.bbb.ccc.ddd\0 */
1357 					/*
1358 					 * Acting as a router, so generate ICMP
1359 					 */
1360 nosourcerouting:
1361 					strcpy(buf, inet_ntoa(ip->ip_dst));
1362 					log(LOG_WARNING,
1363 					    "attempted source route from %s to %s\n",
1364 					    inet_ntoa(ip->ip_src), buf);
1365 					type = ICMP_UNREACH;
1366 					code = ICMP_UNREACH_SRCFAIL;
1367 					goto bad;
1368 				} else {
1369 					/*
1370 					 * Not acting as a router, so silently drop.
1371 					 */
1372 #ifdef IPSTEALTH
1373 dropit:
1374 #endif
1375 					ipstat.ips_cantforward++;
1376 					m_freem(m);
1377 					return (1);
1378 				}
1379 			}
1380 
1381 			/*
1382 			 * locate outgoing interface
1383 			 */
1384 			(void)memcpy(&ipaddr.sin_addr, cp + off,
1385 			    sizeof(ipaddr.sin_addr));
1386 
1387 			if (opt == IPOPT_SSRR) {
1388 #define	INA	struct in_ifaddr *
1389 #define	SA	struct sockaddr *
1390 			    if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr)) == NULL)
1391 				ia = (INA)ifa_ifwithnet((SA)&ipaddr);
1392 			} else
1393 				ia = ip_rtaddr(ipaddr.sin_addr);
1394 			if (ia == NULL) {
1395 				type = ICMP_UNREACH;
1396 				code = ICMP_UNREACH_SRCFAIL;
1397 				goto bad;
1398 			}
1399 			ip->ip_dst = ipaddr.sin_addr;
1400 			(void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr),
1401 			    sizeof(struct in_addr));
1402 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1403 			/*
1404 			 * Let ip_intr's mcast routing check handle mcast pkts
1405 			 */
1406 			forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr));
1407 			break;
1408 
1409 		case IPOPT_RR:
1410 #ifdef IPSTEALTH
1411 			if (ipstealth && pass == 0)
1412 				break;
1413 #endif
1414 			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1415 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1416 				goto bad;
1417 			}
1418 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1419 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1420 				goto bad;
1421 			}
1422 			/*
1423 			 * If no space remains, ignore.
1424 			 */
1425 			off--;			/* 0 origin */
1426 			if (off > optlen - (int)sizeof(struct in_addr))
1427 				break;
1428 			(void)memcpy(&ipaddr.sin_addr, &ip->ip_dst,
1429 			    sizeof(ipaddr.sin_addr));
1430 			/*
1431 			 * locate outgoing interface; if we're the destination,
1432 			 * use the incoming interface (should be same).
1433 			 */
1434 			if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == NULL &&
1435 			    (ia = ip_rtaddr(ipaddr.sin_addr)) == NULL) {
1436 				type = ICMP_UNREACH;
1437 				code = ICMP_UNREACH_HOST;
1438 				goto bad;
1439 			}
1440 			(void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr),
1441 			    sizeof(struct in_addr));
1442 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1443 			break;
1444 
1445 		case IPOPT_TS:
1446 #ifdef IPSTEALTH
1447 			if (ipstealth && pass == 0)
1448 				break;
1449 #endif
1450 			code = cp - (u_char *)ip;
1451 			if (optlen < 4 || optlen > 40) {
1452 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1453 				goto bad;
1454 			}
1455 			if ((off = cp[IPOPT_OFFSET]) < 5) {
1456 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1457 				goto bad;
1458 			}
1459 			if (off > optlen - (int)sizeof(int32_t)) {
1460 				cp[IPOPT_OFFSET + 1] += (1 << 4);
1461 				if ((cp[IPOPT_OFFSET + 1] & 0xf0) == 0) {
1462 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1463 					goto bad;
1464 				}
1465 				break;
1466 			}
1467 			off--;				/* 0 origin */
1468 			sin = (struct in_addr *)(cp + off);
1469 			switch (cp[IPOPT_OFFSET + 1] & 0x0f) {
1470 
1471 			case IPOPT_TS_TSONLY:
1472 				break;
1473 
1474 			case IPOPT_TS_TSANDADDR:
1475 				if (off + sizeof(n_time) +
1476 				    sizeof(struct in_addr) > optlen) {
1477 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1478 					goto bad;
1479 				}
1480 				ipaddr.sin_addr = dst;
1481 				ia = (INA)ifaof_ifpforaddr((SA)&ipaddr,
1482 							    m->m_pkthdr.rcvif);
1483 				if (ia == NULL)
1484 					continue;
1485 				(void)memcpy(sin, &IA_SIN(ia)->sin_addr,
1486 				    sizeof(struct in_addr));
1487 				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1488 				off += sizeof(struct in_addr);
1489 				break;
1490 
1491 			case IPOPT_TS_PRESPEC:
1492 				if (off + sizeof(n_time) +
1493 				    sizeof(struct in_addr) > optlen) {
1494 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1495 					goto bad;
1496 				}
1497 				(void)memcpy(&ipaddr.sin_addr, sin,
1498 				    sizeof(struct in_addr));
1499 				if (ifa_ifwithaddr((SA)&ipaddr) == NULL)
1500 					continue;
1501 				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1502 				off += sizeof(struct in_addr);
1503 				break;
1504 
1505 			default:
1506 				code = &cp[IPOPT_OFFSET + 1] - (u_char *)ip;
1507 				goto bad;
1508 			}
1509 			ntime = iptime();
1510 			(void)memcpy(cp + off, &ntime, sizeof(n_time));
1511 			cp[IPOPT_OFFSET] += sizeof(n_time);
1512 		}
1513 	}
1514 	if (forward && ipforwarding) {
1515 		ip_forward(m, 1);
1516 		return (1);
1517 	}
1518 	return (0);
1519 bad:
1520 	icmp_error(m, type, code, 0, 0);
1521 	ipstat.ips_badoptions++;
1522 	return (1);
1523 }
1524 
1525 /*
1526  * Given address of next destination (final or next hop),
1527  * return internet address info of interface to be used to get there.
1528  */
1529 struct in_ifaddr *
1530 ip_rtaddr(dst)
1531 	struct in_addr dst;
1532 {
1533 	struct route sro;
1534 	struct sockaddr_in *sin;
1535 	struct in_ifaddr *ifa;
1536 
1537 	bzero(&sro, sizeof(sro));
1538 	sin = (struct sockaddr_in *)&sro.ro_dst;
1539 	sin->sin_family = AF_INET;
1540 	sin->sin_len = sizeof(*sin);
1541 	sin->sin_addr = dst;
1542 	rtalloc_ign(&sro, RTF_CLONING);
1543 
1544 	if (sro.ro_rt == NULL)
1545 		return (NULL);
1546 
1547 	ifa = ifatoia(sro.ro_rt->rt_ifa);
1548 	RTFREE(sro.ro_rt);
1549 	return (ifa);
1550 }
1551 
1552 /*
1553  * Save incoming source route for use in replies,
1554  * to be picked up later by ip_srcroute if the receiver is interested.
1555  */
1556 static void
1557 save_rte(m, option, dst)
1558 	struct mbuf *m;
1559 	u_char *option;
1560 	struct in_addr dst;
1561 {
1562 	unsigned olen;
1563 	struct ipopt_tag *opts;
1564 
1565 	opts = (struct ipopt_tag *)m_tag_get(PACKET_TAG_IPOPTIONS,
1566 					sizeof(struct ipopt_tag), M_NOWAIT);
1567 	if (opts == NULL)
1568 		return;
1569 
1570 	olen = option[IPOPT_OLEN];
1571 #ifdef DIAGNOSTIC
1572 	if (ipprintfs)
1573 		printf("save_rte: olen %d\n", olen);
1574 #endif
1575 	if (olen > sizeof(opts->ip_srcrt) - (1 + sizeof(dst))) {
1576 		m_tag_free((struct m_tag *)opts);
1577 		return;
1578 	}
1579 	bcopy(option, opts->ip_srcrt.srcopt, olen);
1580 	opts->ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
1581 	opts->ip_srcrt.dst = dst;
1582 	m_tag_prepend(m, (struct m_tag *)opts);
1583 }
1584 
1585 /*
1586  * Retrieve incoming source route for use in replies,
1587  * in the same form used by setsockopt.
1588  * The first hop is placed before the options, will be removed later.
1589  */
1590 struct mbuf *
1591 ip_srcroute(m0)
1592 	struct mbuf *m0;
1593 {
1594 	register struct in_addr *p, *q;
1595 	register struct mbuf *m;
1596 	struct ipopt_tag *opts;
1597 
1598 	opts = (struct ipopt_tag *)m_tag_find(m0, PACKET_TAG_IPOPTIONS, NULL);
1599 	if (opts == NULL)
1600 		return (NULL);
1601 
1602 	if (opts->ip_nhops == 0)
1603 		return (NULL);
1604 	m = m_get(M_DONTWAIT, MT_DATA);
1605 	if (m == NULL)
1606 		return (NULL);
1607 
1608 #define OPTSIZ	(sizeof(opts->ip_srcrt.nop) + sizeof(opts->ip_srcrt.srcopt))
1609 
1610 	/* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1611 	m->m_len = opts->ip_nhops * sizeof(struct in_addr) +
1612 	    sizeof(struct in_addr) + OPTSIZ;
1613 #ifdef DIAGNOSTIC
1614 	if (ipprintfs)
1615 		printf("ip_srcroute: nhops %d mlen %d", opts->ip_nhops, m->m_len);
1616 #endif
1617 
1618 	/*
1619 	 * First save first hop for return route
1620 	 */
1621 	p = &(opts->ip_srcrt.route[opts->ip_nhops - 1]);
1622 	*(mtod(m, struct in_addr *)) = *p--;
1623 #ifdef DIAGNOSTIC
1624 	if (ipprintfs)
1625 		printf(" hops %lx", (u_long)ntohl(mtod(m, struct in_addr *)->s_addr));
1626 #endif
1627 
1628 	/*
1629 	 * Copy option fields and padding (nop) to mbuf.
1630 	 */
1631 	opts->ip_srcrt.nop = IPOPT_NOP;
1632 	opts->ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
1633 	(void)memcpy(mtod(m, caddr_t) + sizeof(struct in_addr),
1634 	    &(opts->ip_srcrt.nop), OPTSIZ);
1635 	q = (struct in_addr *)(mtod(m, caddr_t) +
1636 	    sizeof(struct in_addr) + OPTSIZ);
1637 #undef OPTSIZ
1638 	/*
1639 	 * Record return path as an IP source route,
1640 	 * reversing the path (pointers are now aligned).
1641 	 */
1642 	while (p >= opts->ip_srcrt.route) {
1643 #ifdef DIAGNOSTIC
1644 		if (ipprintfs)
1645 			printf(" %lx", (u_long)ntohl(q->s_addr));
1646 #endif
1647 		*q++ = *p--;
1648 	}
1649 	/*
1650 	 * Last hop goes to final destination.
1651 	 */
1652 	*q = opts->ip_srcrt.dst;
1653 #ifdef DIAGNOSTIC
1654 	if (ipprintfs)
1655 		printf(" %lx\n", (u_long)ntohl(q->s_addr));
1656 #endif
1657 	m_tag_delete(m0, (struct m_tag *)opts);
1658 	return (m);
1659 }
1660 
1661 /*
1662  * Strip out IP options, at higher
1663  * level protocol in the kernel.
1664  * Second argument is buffer to which options
1665  * will be moved, and return value is their length.
1666  * XXX should be deleted; last arg currently ignored.
1667  */
1668 void
1669 ip_stripoptions(m, mopt)
1670 	register struct mbuf *m;
1671 	struct mbuf *mopt;
1672 {
1673 	register int i;
1674 	struct ip *ip = mtod(m, struct ip *);
1675 	register caddr_t opts;
1676 	int olen;
1677 
1678 	olen = (ip->ip_hl << 2) - sizeof (struct ip);
1679 	opts = (caddr_t)(ip + 1);
1680 	i = m->m_len - (sizeof (struct ip) + olen);
1681 	bcopy(opts + olen, opts, (unsigned)i);
1682 	m->m_len -= olen;
1683 	if (m->m_flags & M_PKTHDR)
1684 		m->m_pkthdr.len -= olen;
1685 	ip->ip_v = IPVERSION;
1686 	ip->ip_hl = sizeof(struct ip) >> 2;
1687 }
1688 
1689 u_char inetctlerrmap[PRC_NCMDS] = {
1690 	0,		0,		0,		0,
1691 	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1692 	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1693 	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1694 	0,		0,		EHOSTUNREACH,	0,
1695 	ENOPROTOOPT,	ECONNREFUSED
1696 };
1697 
1698 /*
1699  * Forward a packet.  If some error occurs return the sender
1700  * an icmp packet.  Note we can't always generate a meaningful
1701  * icmp message because icmp doesn't have a large enough repertoire
1702  * of codes and types.
1703  *
1704  * If not forwarding, just drop the packet.  This could be confusing
1705  * if ipforwarding was zero but some routing protocol was advancing
1706  * us as a gateway to somewhere.  However, we must let the routing
1707  * protocol deal with that.
1708  *
1709  * The srcrt parameter indicates whether the packet is being forwarded
1710  * via a source route.
1711  */
1712 void
1713 ip_forward(struct mbuf *m, int srcrt)
1714 {
1715 	struct ip *ip = mtod(m, struct ip *);
1716 	struct in_ifaddr *ia = NULL;
1717 	struct mbuf *mcopy;
1718 	struct in_addr dest;
1719 	int error, type = 0, code = 0, mtu = 0;
1720 
1721 #ifdef DIAGNOSTIC
1722 	if (ipprintfs)
1723 		printf("forward: src %lx dst %lx ttl %x\n",
1724 		    (u_long)ip->ip_src.s_addr, (u_long)ip->ip_dst.s_addr,
1725 		    ip->ip_ttl);
1726 #endif
1727 
1728 
1729 	if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) {
1730 		ipstat.ips_cantforward++;
1731 		m_freem(m);
1732 		return;
1733 	}
1734 #ifdef IPSTEALTH
1735 	if (!ipstealth) {
1736 #endif
1737 		if (ip->ip_ttl <= IPTTLDEC) {
1738 			icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS,
1739 			    0, 0);
1740 			return;
1741 		}
1742 #ifdef IPSTEALTH
1743 	}
1744 #endif
1745 
1746 	if (!srcrt && (ia = ip_rtaddr(ip->ip_dst)) == NULL) {
1747 		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, 0, 0);
1748 		return;
1749 	}
1750 
1751 	/*
1752 	 * Save the IP header and at most 8 bytes of the payload,
1753 	 * in case we need to generate an ICMP message to the src.
1754 	 *
1755 	 * XXX this can be optimized a lot by saving the data in a local
1756 	 * buffer on the stack (72 bytes at most), and only allocating the
1757 	 * mbuf if really necessary. The vast majority of the packets
1758 	 * are forwarded without having to send an ICMP back (either
1759 	 * because unnecessary, or because rate limited), so we are
1760 	 * really we are wasting a lot of work here.
1761 	 *
1762 	 * We don't use m_copy() because it might return a reference
1763 	 * to a shared cluster. Both this function and ip_output()
1764 	 * assume exclusive access to the IP header in `m', so any
1765 	 * data in a cluster may change before we reach icmp_error().
1766 	 */
1767 	MGET(mcopy, M_DONTWAIT, m->m_type);
1768 	if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, M_DONTWAIT)) {
1769 		/*
1770 		 * It's probably ok if the pkthdr dup fails (because
1771 		 * the deep copy of the tag chain failed), but for now
1772 		 * be conservative and just discard the copy since
1773 		 * code below may some day want the tags.
1774 		 */
1775 		m_free(mcopy);
1776 		mcopy = NULL;
1777 	}
1778 	if (mcopy != NULL) {
1779 		mcopy->m_len = imin((ip->ip_hl << 2) + 8,
1780 		    (int)ip->ip_len);
1781 		mcopy->m_pkthdr.len = mcopy->m_len;
1782 		m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
1783 	}
1784 
1785 #ifdef IPSTEALTH
1786 	if (!ipstealth) {
1787 #endif
1788 		ip->ip_ttl -= IPTTLDEC;
1789 #ifdef IPSTEALTH
1790 	}
1791 #endif
1792 
1793 	/*
1794 	 * If forwarding packet using same interface that it came in on,
1795 	 * perhaps should send a redirect to sender to shortcut a hop.
1796 	 * Only send redirect if source is sending directly to us,
1797 	 * and if packet was not source routed (or has any options).
1798 	 * Also, don't send redirect if forwarding using a default route
1799 	 * or a route modified by a redirect.
1800 	 */
1801 	dest.s_addr = 0;
1802 	if (!srcrt && ipsendredirects && ia->ia_ifp == m->m_pkthdr.rcvif) {
1803 		struct sockaddr_in *sin;
1804 		struct route ro;
1805 		struct rtentry *rt;
1806 
1807 		bzero(&ro, sizeof(ro));
1808 		sin = (struct sockaddr_in *)&ro.ro_dst;
1809 		sin->sin_family = AF_INET;
1810 		sin->sin_len = sizeof(*sin);
1811 		sin->sin_addr = ip->ip_dst;
1812 		rtalloc_ign(&ro, RTF_CLONING);
1813 
1814 		rt = ro.ro_rt;
1815 
1816 		if (rt && (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1817 		    satosin(rt_key(rt))->sin_addr.s_addr != 0) {
1818 #define	RTA(rt)	((struct in_ifaddr *)(rt->rt_ifa))
1819 			u_long src = ntohl(ip->ip_src.s_addr);
1820 
1821 			if (RTA(rt) &&
1822 			    (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
1823 				if (rt->rt_flags & RTF_GATEWAY)
1824 					dest.s_addr = satosin(rt->rt_gateway)->sin_addr.s_addr;
1825 				else
1826 					dest.s_addr = ip->ip_dst.s_addr;
1827 				/* Router requirements says to only send host redirects */
1828 				type = ICMP_REDIRECT;
1829 				code = ICMP_REDIRECT_HOST;
1830 #ifdef DIAGNOSTIC
1831 				if (ipprintfs)
1832 					printf("redirect (%d) to %lx\n", code, (u_long)dest.s_addr);
1833 #endif
1834 			}
1835 		}
1836 		if (rt)
1837 			RTFREE(rt);
1838 	}
1839 
1840 	error = ip_output(m, NULL, NULL, IP_FORWARDING, NULL, NULL);
1841 	if (error)
1842 		ipstat.ips_cantforward++;
1843 	else {
1844 		ipstat.ips_forward++;
1845 		if (type)
1846 			ipstat.ips_redirectsent++;
1847 		else {
1848 			if (mcopy)
1849 				m_freem(mcopy);
1850 			return;
1851 		}
1852 	}
1853 	if (mcopy == NULL)
1854 		return;
1855 
1856 	switch (error) {
1857 
1858 	case 0:				/* forwarded, but need redirect */
1859 		/* type, code set above */
1860 		break;
1861 
1862 	case ENETUNREACH:		/* shouldn't happen, checked above */
1863 	case EHOSTUNREACH:
1864 	case ENETDOWN:
1865 	case EHOSTDOWN:
1866 	default:
1867 		type = ICMP_UNREACH;
1868 		code = ICMP_UNREACH_HOST;
1869 		break;
1870 
1871 	case EMSGSIZE:
1872 		type = ICMP_UNREACH;
1873 		code = ICMP_UNREACH_NEEDFRAG;
1874 #if defined(IPSEC) || defined(FAST_IPSEC)
1875 		/*
1876 		 * If the packet is routed over IPsec tunnel, tell the
1877 		 * originator the tunnel MTU.
1878 		 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
1879 		 * XXX quickhack!!!
1880 		 */
1881 		{
1882 			struct secpolicy *sp = NULL;
1883 			int ipsecerror;
1884 			int ipsechdr;
1885 			struct route *ro;
1886 
1887 #ifdef IPSEC
1888 			sp = ipsec4_getpolicybyaddr(mcopy,
1889 						    IPSEC_DIR_OUTBOUND,
1890 						    IP_FORWARDING,
1891 						    &ipsecerror);
1892 #else /* FAST_IPSEC */
1893 			sp = ipsec_getpolicybyaddr(mcopy,
1894 						   IPSEC_DIR_OUTBOUND,
1895 						   IP_FORWARDING,
1896 						   &ipsecerror);
1897 #endif
1898 			if (sp != NULL) {
1899 				/* count IPsec header size */
1900 				ipsechdr = ipsec4_hdrsiz(mcopy,
1901 							 IPSEC_DIR_OUTBOUND,
1902 							 NULL);
1903 
1904 				/*
1905 				 * find the correct route for outer IPv4
1906 				 * header, compute tunnel MTU.
1907 				 */
1908 				if (sp->req != NULL
1909 				 && sp->req->sav != NULL
1910 				 && sp->req->sav->sah != NULL) {
1911 					ro = &sp->req->sav->sah->sa_route;
1912 					if (ro->ro_rt && ro->ro_rt->rt_ifp) {
1913 						mtu =
1914 						    ro->ro_rt->rt_rmx.rmx_mtu ?
1915 						    ro->ro_rt->rt_rmx.rmx_mtu :
1916 						    ro->ro_rt->rt_ifp->if_mtu;
1917 						mtu -= ipsechdr;
1918 					}
1919 				}
1920 
1921 #ifdef IPSEC
1922 				key_freesp(sp);
1923 #else /* FAST_IPSEC */
1924 				KEY_FREESP(&sp);
1925 #endif
1926 				ipstat.ips_cantfrag++;
1927 				break;
1928 			} else
1929 #endif /*IPSEC || FAST_IPSEC*/
1930 		/*
1931 		 * When doing source routing 'ia' can be NULL.  Fall back
1932 		 * to the minimum guaranteed routeable packet size and use
1933 		 * the same hack as IPSEC to setup a dummyifp for icmp.
1934 		 */
1935 		if (ia == NULL)
1936 			mtu = IP_MSS;
1937 		else
1938 			mtu = ia->ia_ifp->if_mtu;
1939 #if defined(IPSEC) || defined(FAST_IPSEC)
1940 		}
1941 #endif /*IPSEC || FAST_IPSEC*/
1942 		ipstat.ips_cantfrag++;
1943 		break;
1944 
1945 	case ENOBUFS:
1946 		/*
1947 		 * A router should not generate ICMP_SOURCEQUENCH as
1948 		 * required in RFC1812 Requirements for IP Version 4 Routers.
1949 		 * Source quench could be a big problem under DoS attacks,
1950 		 * or if the underlying interface is rate-limited.
1951 		 * Those who need source quench packets may re-enable them
1952 		 * via the net.inet.ip.sendsourcequench sysctl.
1953 		 */
1954 		if (ip_sendsourcequench == 0) {
1955 			m_freem(mcopy);
1956 			return;
1957 		} else {
1958 			type = ICMP_SOURCEQUENCH;
1959 			code = 0;
1960 		}
1961 		break;
1962 
1963 	case EACCES:			/* ipfw denied packet */
1964 		m_freem(mcopy);
1965 		return;
1966 	}
1967 	icmp_error(mcopy, type, code, dest.s_addr, mtu);
1968 }
1969 
1970 void
1971 ip_savecontrol(inp, mp, ip, m)
1972 	register struct inpcb *inp;
1973 	register struct mbuf **mp;
1974 	register struct ip *ip;
1975 	register struct mbuf *m;
1976 {
1977 	if (inp->inp_socket->so_options & (SO_BINTIME | SO_TIMESTAMP)) {
1978 		struct bintime bt;
1979 
1980 		bintime(&bt);
1981 		if (inp->inp_socket->so_options & SO_BINTIME) {
1982 			*mp = sbcreatecontrol((caddr_t) &bt, sizeof(bt),
1983 			SCM_BINTIME, SOL_SOCKET);
1984 			if (*mp)
1985 				mp = &(*mp)->m_next;
1986 		}
1987 		if (inp->inp_socket->so_options & SO_TIMESTAMP) {
1988 			struct timeval tv;
1989 
1990 			bintime2timeval(&bt, &tv);
1991 			*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
1992 				SCM_TIMESTAMP, SOL_SOCKET);
1993 			if (*mp)
1994 				mp = &(*mp)->m_next;
1995 		}
1996 	}
1997 	if (inp->inp_flags & INP_RECVDSTADDR) {
1998 		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
1999 		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
2000 		if (*mp)
2001 			mp = &(*mp)->m_next;
2002 	}
2003 	if (inp->inp_flags & INP_RECVTTL) {
2004 		*mp = sbcreatecontrol((caddr_t) &ip->ip_ttl,
2005 		    sizeof(u_char), IP_RECVTTL, IPPROTO_IP);
2006 		if (*mp)
2007 			mp = &(*mp)->m_next;
2008 	}
2009 #ifdef notyet
2010 	/* XXX
2011 	 * Moving these out of udp_input() made them even more broken
2012 	 * than they already were.
2013 	 */
2014 	/* options were tossed already */
2015 	if (inp->inp_flags & INP_RECVOPTS) {
2016 		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
2017 		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
2018 		if (*mp)
2019 			mp = &(*mp)->m_next;
2020 	}
2021 	/* ip_srcroute doesn't do what we want here, need to fix */
2022 	if (inp->inp_flags & INP_RECVRETOPTS) {
2023 		*mp = sbcreatecontrol((caddr_t) ip_srcroute(m),
2024 		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
2025 		if (*mp)
2026 			mp = &(*mp)->m_next;
2027 	}
2028 #endif
2029 	if (inp->inp_flags & INP_RECVIF) {
2030 		struct ifnet *ifp;
2031 		struct sdlbuf {
2032 			struct sockaddr_dl sdl;
2033 			u_char	pad[32];
2034 		} sdlbuf;
2035 		struct sockaddr_dl *sdp;
2036 		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
2037 
2038 		if (((ifp = m->m_pkthdr.rcvif))
2039 		&& ( ifp->if_index && (ifp->if_index <= if_index))) {
2040 			sdp = (struct sockaddr_dl *)
2041 			    (ifaddr_byindex(ifp->if_index)->ifa_addr);
2042 			/*
2043 			 * Change our mind and don't try copy.
2044 			 */
2045 			if ((sdp->sdl_family != AF_LINK)
2046 			|| (sdp->sdl_len > sizeof(sdlbuf))) {
2047 				goto makedummy;
2048 			}
2049 			bcopy(sdp, sdl2, sdp->sdl_len);
2050 		} else {
2051 makedummy:
2052 			sdl2->sdl_len
2053 				= offsetof(struct sockaddr_dl, sdl_data[0]);
2054 			sdl2->sdl_family = AF_LINK;
2055 			sdl2->sdl_index = 0;
2056 			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
2057 		}
2058 		*mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
2059 			IP_RECVIF, IPPROTO_IP);
2060 		if (*mp)
2061 			mp = &(*mp)->m_next;
2062 	}
2063 }
2064 
2065 /*
2066  * XXX these routines are called from the upper part of the kernel.
2067  * They need to be locked when we remove Giant.
2068  *
2069  * They could also be moved to ip_mroute.c, since all the RSVP
2070  *  handling is done there already.
2071  */
2072 static int ip_rsvp_on;
2073 struct socket *ip_rsvpd;
2074 int
2075 ip_rsvp_init(struct socket *so)
2076 {
2077 	if (so->so_type != SOCK_RAW ||
2078 	    so->so_proto->pr_protocol != IPPROTO_RSVP)
2079 		return EOPNOTSUPP;
2080 
2081 	if (ip_rsvpd != NULL)
2082 		return EADDRINUSE;
2083 
2084 	ip_rsvpd = so;
2085 	/*
2086 	 * This may seem silly, but we need to be sure we don't over-increment
2087 	 * the RSVP counter, in case something slips up.
2088 	 */
2089 	if (!ip_rsvp_on) {
2090 		ip_rsvp_on = 1;
2091 		rsvp_on++;
2092 	}
2093 
2094 	return 0;
2095 }
2096 
2097 int
2098 ip_rsvp_done(void)
2099 {
2100 	ip_rsvpd = NULL;
2101 	/*
2102 	 * This may seem silly, but we need to be sure we don't over-decrement
2103 	 * the RSVP counter, in case something slips up.
2104 	 */
2105 	if (ip_rsvp_on) {
2106 		ip_rsvp_on = 0;
2107 		rsvp_on--;
2108 	}
2109 	return 0;
2110 }
2111 
2112 void
2113 rsvp_input(struct mbuf *m, int off)	/* XXX must fixup manually */
2114 {
2115 	if (rsvp_input_p) { /* call the real one if loaded */
2116 		rsvp_input_p(m, off);
2117 		return;
2118 	}
2119 
2120 	/* Can still get packets with rsvp_on = 0 if there is a local member
2121 	 * of the group to which the RSVP packet is addressed.  But in this
2122 	 * case we want to throw the packet away.
2123 	 */
2124 
2125 	if (!rsvp_on) {
2126 		m_freem(m);
2127 		return;
2128 	}
2129 
2130 	if (ip_rsvpd != NULL) {
2131 		rip_input(m, off);
2132 		return;
2133 	}
2134 	/* Drop the packet */
2135 	m_freem(m);
2136 }
2137