xref: /freebsd/sys/netinet/ip_input.c (revision 33b77e2decd50e53798014b70bf7ca3bdc4c0c7e)
1 /*
2  * Copyright (c) 1982, 1986, 1988, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
34  * $Id: ip_input.c,v 1.72 1997/11/13 22:57:57 julian Exp $
35  *	$ANA: ip_input.c,v 1.5 1996/09/18 14:34:59 wollman Exp $
36  */
37 
38 #define	_IP_VHL
39 
40 #include "opt_bootp.h"
41 #include "opt_ipfw.h"
42 #include "opt_ipdivert.h"
43 
44 #include <stddef.h>
45 
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/mbuf.h>
49 #include <sys/domain.h>
50 #include <sys/protosw.h>
51 #include <sys/socket.h>
52 #include <sys/time.h>
53 #include <sys/kernel.h>
54 #include <sys/syslog.h>
55 #include <sys/sysctl.h>
56 
57 #include <net/if.h>
58 #include <net/if_var.h>
59 #include <net/if_dl.h>
60 #include <net/route.h>
61 #include <net/netisr.h>
62 
63 #include <netinet/in.h>
64 #include <netinet/in_systm.h>
65 #include <netinet/in_var.h>
66 #include <netinet/ip.h>
67 #include <netinet/in_pcb.h>
68 #include <netinet/ip_var.h>
69 #include <netinet/ip_icmp.h>
70 #include <machine/in_cksum.h>
71 
72 #include <sys/socketvar.h>
73 
74 #ifdef IPFIREWALL
75 #include <netinet/ip_fw.h>
76 #endif
77 
78 int rsvp_on = 0;
79 static int ip_rsvp_on;
80 struct socket *ip_rsvpd;
81 
82 static int	ipforwarding = 0;
83 SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
84 	&ipforwarding, 0, "");
85 
86 static int	ipsendredirects = 1; /* XXX */
87 SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
88 	&ipsendredirects, 0, "");
89 
90 int	ip_defttl = IPDEFTTL;
91 SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
92 	&ip_defttl, 0, "");
93 
94 static int	ip_dosourceroute = 0;
95 SYSCTL_INT(_net_inet_ip, IPCTL_SOURCEROUTE, sourceroute, CTLFLAG_RW,
96 	&ip_dosourceroute, 0, "");
97 #ifdef DIAGNOSTIC
98 static int	ipprintfs = 0;
99 #endif
100 
101 extern	struct domain inetdomain;
102 extern	struct protosw inetsw[];
103 u_char	ip_protox[IPPROTO_MAX];
104 static int	ipqmaxlen = IFQ_MAXLEN;
105 struct	in_ifaddrhead in_ifaddrhead; /* first inet address */
106 struct	ifqueue ipintrq;
107 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen, CTLFLAG_RD,
108 	&ipintrq.ifq_maxlen, 0, "");
109 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops, CTLFLAG_RD,
110 	&ipintrq.ifq_drops, 0, "");
111 
112 struct ipstat ipstat;
113 SYSCTL_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RD,
114 	&ipstat, ipstat, "");
115 
116 /* Packet reassembly stuff */
117 #define IPREASS_NHASH_LOG2      6
118 #define IPREASS_NHASH           (1 << IPREASS_NHASH_LOG2)
119 #define IPREASS_HMASK           (IPREASS_NHASH - 1)
120 #define IPREASS_HASH(x,y) \
121 	((((x) & 0xF | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
122 
123 static struct ipq ipq[IPREASS_NHASH];
124 static int    nipq = 0;         /* total # of reass queues */
125 static int    maxnipq;
126 
127 #ifdef IPCTL_DEFMTU
128 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
129 	&ip_mtu, 0, "");
130 #endif
131 
132 #if !defined(COMPAT_IPFW) || COMPAT_IPFW == 1
133 #undef COMPAT_IPFW
134 #define COMPAT_IPFW 1
135 #else
136 #undef COMPAT_IPFW
137 #endif
138 
139 #ifdef COMPAT_IPFW
140 /* Firewall hooks */
141 ip_fw_chk_t *ip_fw_chk_ptr;
142 ip_fw_ctl_t *ip_fw_ctl_ptr;
143 
144 /* IP Network Address Translation (NAT) hooks */
145 ip_nat_t *ip_nat_ptr;
146 ip_nat_ctl_t *ip_nat_ctl_ptr;
147 #endif
148 
149 #if defined(IPFILTER_LKM) || defined(IPFILTER)
150 int fr_check __P((struct ip *, int, struct ifnet *, int, struct mbuf **));
151 int (*fr_checkp) __P((struct ip *, int, struct ifnet *, int, struct mbuf **)) = NULL;
152 #endif
153 
154 
155 /*
156  * We need to save the IP options in case a protocol wants to respond
157  * to an incoming packet over the same route if the packet got here
158  * using IP source routing.  This allows connection establishment and
159  * maintenance when the remote end is on a network that is not known
160  * to us.
161  */
162 static int	ip_nhops = 0;
163 static	struct ip_srcrt {
164 	struct	in_addr dst;			/* final destination */
165 	char	nop;				/* one NOP to align */
166 	char	srcopt[IPOPT_OFFSET + 1];	/* OPTVAL, OLEN and OFFSET */
167 	struct	in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
168 } ip_srcrt;
169 
170 #ifdef IPDIVERT
171 /*
172  * Shared variable between ip_input() and ip_reass() to communicate
173  * about which packets, once assembled from fragments, get diverted,
174  * and to which port.
175  */
176 static u_short	frag_divert_port;
177 #endif
178 
179 static void save_rte __P((u_char *, struct in_addr));
180 static void	 ip_deq __P((struct ipasfrag *));
181 static int	 ip_dooptions __P((struct mbuf *));
182 static void	 ip_enq __P((struct ipasfrag *, struct ipasfrag *));
183 static void	 ip_forward __P((struct mbuf *, int));
184 static void	 ip_freef __P((struct ipq *));
185 static struct ip *
186 	 ip_reass __P((struct ipasfrag *, struct ipq *, struct ipq *));
187 static struct in_ifaddr *
188 	 ip_rtaddr __P((struct in_addr));
189 static void	ipintr __P((void));
190 /*
191  * IP initialization: fill in IP protocol switch table.
192  * All protocols not implemented in kernel go to raw IP protocol handler.
193  */
194 void
195 ip_init()
196 {
197 	register struct protosw *pr;
198 	register int i;
199 
200 	TAILQ_INIT(&in_ifaddrhead);
201 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
202 	if (pr == 0)
203 		panic("ip_init");
204 	for (i = 0; i < IPPROTO_MAX; i++)
205 		ip_protox[i] = pr - inetsw;
206 	for (pr = inetdomain.dom_protosw;
207 	    pr < inetdomain.dom_protoswNPROTOSW; pr++)
208 		if (pr->pr_domain->dom_family == PF_INET &&
209 		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
210 			ip_protox[pr->pr_protocol] = pr - inetsw;
211 
212 	for (i = 0; i < IPREASS_NHASH; i++)
213 	    ipq[i].next = ipq[i].prev = &ipq[i];
214 
215 	maxnipq = nmbclusters/4;
216 
217 	ip_id = time.tv_sec & 0xffff;
218 	ipintrq.ifq_maxlen = ipqmaxlen;
219 #ifdef IPFIREWALL
220 	ip_fw_init();
221 #endif
222 #ifdef IPNAT
223         ip_nat_init();
224 #endif
225 
226 }
227 
228 static struct	sockaddr_in ipaddr = { sizeof(ipaddr), AF_INET };
229 static struct	route ipforward_rt;
230 
231 /*
232  * Ip input routine.  Checksum and byte swap header.  If fragmented
233  * try to reassemble.  Process options.  Pass to next level.
234  */
235 void
236 ip_input(struct mbuf *m)
237 {
238 	struct ip *ip;
239 	struct ipq *fp;
240 	struct in_ifaddr *ia;
241 	int    i, hlen;
242 	u_short sum;
243 
244 #ifdef	DIAGNOSTIC
245 	if ((m->m_flags & M_PKTHDR) == 0)
246 		panic("ip_input no HDR");
247 #endif
248 	/*
249 	 * If no IP addresses have been set yet but the interfaces
250 	 * are receiving, can't do anything with incoming packets yet.
251 	 * XXX This is broken! We should be able to receive broadcasts
252 	 * and multicasts even without any local addresses configured.
253 	 */
254 	if (TAILQ_EMPTY(&in_ifaddrhead))
255 		goto bad;
256 	ipstat.ips_total++;
257 
258 	if (m->m_pkthdr.len < sizeof(struct ip))
259 		goto tooshort;
260 
261 #ifdef	DIAGNOSTIC
262 	if (m->m_len < sizeof(struct ip))
263 		panic("ipintr mbuf too short");
264 #endif
265 
266 	if (m->m_len < sizeof (struct ip) &&
267 	    (m = m_pullup(m, sizeof (struct ip))) == 0) {
268 		ipstat.ips_toosmall++;
269 		return;
270 	}
271 	ip = mtod(m, struct ip *);
272 
273 	if (IP_VHL_V(ip->ip_vhl) != IPVERSION) {
274 		ipstat.ips_badvers++;
275 		goto bad;
276 	}
277 
278 	hlen = IP_VHL_HL(ip->ip_vhl) << 2;
279 	if (hlen < sizeof(struct ip)) {	/* minimum header length */
280 		ipstat.ips_badhlen++;
281 		goto bad;
282 	}
283 	if (hlen > m->m_len) {
284 		if ((m = m_pullup(m, hlen)) == 0) {
285 			ipstat.ips_badhlen++;
286 			return;
287 		}
288 		ip = mtod(m, struct ip *);
289 	}
290 	if (hlen == sizeof(struct ip)) {
291 		sum = in_cksum_hdr(ip);
292 	} else {
293 		sum = in_cksum(m, hlen);
294 	}
295 	if (sum) {
296 		ipstat.ips_badsum++;
297 		goto bad;
298 	}
299 
300 	/*
301 	 * Convert fields to host representation.
302 	 */
303 	NTOHS(ip->ip_len);
304 	if (ip->ip_len < hlen) {
305 		ipstat.ips_badlen++;
306 		goto bad;
307 	}
308 	NTOHS(ip->ip_id);
309 	NTOHS(ip->ip_off);
310 
311 	/*
312 	 * Check that the amount of data in the buffers
313 	 * is as at least much as the IP header would have us expect.
314 	 * Trim mbufs if longer than we expect.
315 	 * Drop packet if shorter than we expect.
316 	 */
317 	if (m->m_pkthdr.len < ip->ip_len) {
318 tooshort:
319 		ipstat.ips_tooshort++;
320 		goto bad;
321 	}
322 	if (m->m_pkthdr.len > ip->ip_len) {
323 		if (m->m_len == m->m_pkthdr.len) {
324 			m->m_len = ip->ip_len;
325 			m->m_pkthdr.len = ip->ip_len;
326 		} else
327 			m_adj(m, ip->ip_len - m->m_pkthdr.len);
328 	}
329 	/*
330 	 * IpHack's section.
331 	 * Right now when no processing on packet has done
332 	 * and it is still fresh out of network we do our black
333 	 * deals with it.
334 	 * - Firewall: deny/allow/divert
335 	 * - Xlate: translate packet's addr/port (NAT).
336 	 * - Wrap: fake packet's addr/port <unimpl.>
337 	 * - Encapsulate: put it in another IP and send out. <unimp.>
338  	 */
339 #if defined(IPFILTER) || defined(IPFILTER_LKM)
340 	/*
341 	 * Check if we want to allow this packet to be processed.
342 	 * Consider it to be bad if not.
343 	 */
344 	if (fr_check) {
345 		struct	mbuf	*m1 = m;
346 
347 		if ((*fr_checkp)(ip, hlen, m->m_pkthdr.rcvif, 0, &m1) || !m1)
348 			return;
349 		ip = mtod(m = m1, struct ip *);
350 	}
351 #endif
352 #ifdef COMPAT_IPFW
353 	if (ip_fw_chk_ptr) {
354 #ifdef IPDIVERT
355 		u_short port;
356 
357 		port = (*ip_fw_chk_ptr)(&ip, hlen, NULL, ip_divert_ignore, &m);
358 		ip_divert_ignore = 0;
359 		if (port) {			/* Divert packet */
360 			frag_divert_port = port;
361 			goto ours;
362 		}
363 #else
364 		/* If ipfw says divert, we have to just drop packet */
365 		if ((*ip_fw_chk_ptr)(&ip, hlen, NULL, 0, &m)) {
366 			m_freem(m);
367 			m = NULL;
368 		}
369 #endif
370 		if (!m)
371 			return;
372 	}
373 
374         if (ip_nat_ptr && !(*ip_nat_ptr)(&ip, &m, m->m_pkthdr.rcvif, IP_NAT_IN))
375 		return;
376 #endif
377 
378 	/*
379 	 * Process options and, if not destined for us,
380 	 * ship it on.  ip_dooptions returns 1 when an
381 	 * error was detected (causing an icmp message
382 	 * to be sent and the original packet to be freed).
383 	 */
384 	ip_nhops = 0;		/* for source routed packets */
385 	if (hlen > sizeof (struct ip) && ip_dooptions(m))
386 		return;
387 
388         /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
389          * matter if it is destined to another node, or whether it is
390          * a multicast one, RSVP wants it! and prevents it from being forwarded
391          * anywhere else. Also checks if the rsvp daemon is running before
392 	 * grabbing the packet.
393          */
394 	if (rsvp_on && ip->ip_p==IPPROTO_RSVP)
395 		goto ours;
396 
397 	/*
398 	 * Check our list of addresses, to see if the packet is for us.
399 	 */
400 	for (ia = in_ifaddrhead.tqh_first; ia; ia = ia->ia_link.tqe_next) {
401 #define	satosin(sa)	((struct sockaddr_in *)(sa))
402 
403 		if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr)
404 			goto ours;
405 #ifdef BOOTP_COMPAT
406 		if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY)
407 			goto ours;
408 #endif
409 		if (ia->ia_ifp && ia->ia_ifp->if_flags & IFF_BROADCAST) {
410 			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
411 			    ip->ip_dst.s_addr)
412 				goto ours;
413 			if (ip->ip_dst.s_addr == ia->ia_netbroadcast.s_addr)
414 				goto ours;
415 		}
416 	}
417 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
418 		struct in_multi *inm;
419 		if (ip_mrouter) {
420 			/*
421 			 * If we are acting as a multicast router, all
422 			 * incoming multicast packets are passed to the
423 			 * kernel-level multicast forwarding function.
424 			 * The packet is returned (relatively) intact; if
425 			 * ip_mforward() returns a non-zero value, the packet
426 			 * must be discarded, else it may be accepted below.
427 			 *
428 			 * (The IP ident field is put in the same byte order
429 			 * as expected when ip_mforward() is called from
430 			 * ip_output().)
431 			 */
432 			ip->ip_id = htons(ip->ip_id);
433 			if (ip_mforward(ip, m->m_pkthdr.rcvif, m, 0) != 0) {
434 				ipstat.ips_cantforward++;
435 				m_freem(m);
436 				return;
437 			}
438 			ip->ip_id = ntohs(ip->ip_id);
439 
440 			/*
441 			 * The process-level routing demon needs to receive
442 			 * all multicast IGMP packets, whether or not this
443 			 * host belongs to their destination groups.
444 			 */
445 			if (ip->ip_p == IPPROTO_IGMP)
446 				goto ours;
447 			ipstat.ips_forward++;
448 		}
449 		/*
450 		 * See if we belong to the destination multicast group on the
451 		 * arrival interface.
452 		 */
453 		IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
454 		if (inm == NULL) {
455 			ipstat.ips_notmember++;
456 			m_freem(m);
457 			return;
458 		}
459 		goto ours;
460 	}
461 	if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
462 		goto ours;
463 	if (ip->ip_dst.s_addr == INADDR_ANY)
464 		goto ours;
465 
466 	/*
467 	 * Not for us; forward if possible and desirable.
468 	 */
469 	if (ipforwarding == 0) {
470 		ipstat.ips_cantforward++;
471 		m_freem(m);
472 	} else
473 		ip_forward(m, 0);
474 	return;
475 
476 ours:
477 
478 	/*
479 	 * If offset or IP_MF are set, must reassemble.
480 	 * Otherwise, nothing need be done.
481 	 * (We could look in the reassembly queue to see
482 	 * if the packet was previously fragmented,
483 	 * but it's not worth the time; just let them time out.)
484 	 */
485 	if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
486 		if (m->m_flags & M_EXT) {		/* XXX */
487 			if ((m = m_pullup(m, sizeof (struct ip))) == 0) {
488 				ipstat.ips_toosmall++;
489 #ifdef IPDIVERT
490 				frag_divert_port = 0;
491 #endif
492 				return;
493 			}
494 			ip = mtod(m, struct ip *);
495 		}
496 		sum = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
497 		/*
498 		 * Look for queue of fragments
499 		 * of this datagram.
500 		 */
501 		for (fp = ipq[sum].next; fp != &ipq[sum]; fp = fp->next)
502 			if (ip->ip_id == fp->ipq_id &&
503 			    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
504 			    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
505 			    ip->ip_p == fp->ipq_p)
506 				goto found;
507 
508 		fp = 0;
509 
510 		/* check if there's a place for the new queue */
511 		if (nipq > maxnipq) {
512 		    /*
513 		     * drop something from the tail of the current queue
514 		     * before proceeding further
515 		     */
516 		    if (ipq[sum].prev == &ipq[sum]) {   /* gak */
517 			for (i = 0; i < IPREASS_NHASH; i++) {
518 			    if (ipq[i].prev != &ipq[i]) {
519 				ip_freef(ipq[i].prev);
520 				break;
521 			    }
522 			}
523 		    } else
524 			ip_freef(ipq[sum].prev);
525 		}
526 found:
527 		/*
528 		 * Adjust ip_len to not reflect header,
529 		 * set ip_mff if more fragments are expected,
530 		 * convert offset of this to bytes.
531 		 */
532 		ip->ip_len -= hlen;
533 		((struct ipasfrag *)ip)->ipf_mff &= ~1;
534 		if (ip->ip_off & IP_MF)
535 			((struct ipasfrag *)ip)->ipf_mff |= 1;
536 		ip->ip_off <<= 3;
537 
538 		/*
539 		 * If datagram marked as having more fragments
540 		 * or if this is not the first fragment,
541 		 * attempt reassembly; if it succeeds, proceed.
542 		 */
543 		if (((struct ipasfrag *)ip)->ipf_mff & 1 || ip->ip_off) {
544 			ipstat.ips_fragments++;
545 			ip = ip_reass((struct ipasfrag *)ip, fp, &ipq[sum]);
546 			if (ip == 0)
547 				return;
548 			ipstat.ips_reassembled++;
549 			m = dtom(ip);
550 #ifdef IPDIVERT
551 			if (frag_divert_port) {
552 				ip->ip_len += hlen;
553 				HTONS(ip->ip_len);
554 				HTONS(ip->ip_off);
555 				HTONS(ip->ip_id);
556 				ip->ip_sum = 0;
557 				ip->ip_sum = in_cksum_hdr(ip);
558 				NTOHS(ip->ip_id);
559 				NTOHS(ip->ip_off);
560 				NTOHS(ip->ip_len);
561 				ip->ip_len -= hlen;
562 			}
563 #endif
564 		} else
565 			if (fp)
566 				ip_freef(fp);
567 	} else
568 		ip->ip_len -= hlen;
569 
570 #ifdef IPDIVERT
571 	/*
572 	 * Divert reassembled packets to the divert protocol if required
573 	 */
574 	if (frag_divert_port) {
575 		ipstat.ips_delivered++;
576 		ip_divert_port = frag_divert_port;
577 		frag_divert_port = 0;
578 		(*inetsw[ip_protox[IPPROTO_DIVERT]].pr_input)(m, hlen);
579 		return;
580 	}
581 
582 	/* Don't let packets divert themselves */
583 	if (ip->ip_p == IPPROTO_DIVERT) {
584 		ipstat.ips_noproto++;
585 		goto bad;
586 	}
587 #endif
588 
589 	/*
590 	 * Switch out to protocol's input routine.
591 	 */
592 	ipstat.ips_delivered++;
593 	(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
594 	return;
595 bad:
596 	m_freem(m);
597 }
598 
599 /*
600  * IP software interrupt routine - to go away sometime soon
601  */
602 static void
603 ipintr(void)
604 {
605 	int s;
606 	struct mbuf *m;
607 
608 	while(1) {
609 		s = splimp();
610 		IF_DEQUEUE(&ipintrq, m);
611 		splx(s);
612 		if (m == 0)
613 			return;
614 		ip_input(m);
615 	}
616 }
617 
618 NETISR_SET(NETISR_IP, ipintr);
619 
620 /*
621  * Take incoming datagram fragment and try to
622  * reassemble it into whole datagram.  If a chain for
623  * reassembly of this datagram already exists, then it
624  * is given as fp; otherwise have to make a chain.
625  */
626 static struct ip *
627 ip_reass(ip, fp, where)
628 	register struct ipasfrag *ip;
629 	register struct ipq *fp;
630 	struct   ipq    *where;
631 {
632 	register struct mbuf *m = dtom(ip);
633 	register struct ipasfrag *q;
634 	struct mbuf *t;
635 	int hlen = ip->ip_hl << 2;
636 	int i, next;
637 
638 	/*
639 	 * Presence of header sizes in mbufs
640 	 * would confuse code below.
641 	 */
642 	m->m_data += hlen;
643 	m->m_len -= hlen;
644 
645 	/*
646 	 * If first fragment to arrive, create a reassembly queue.
647 	 */
648 	if (fp == 0) {
649 		if ((t = m_get(M_DONTWAIT, MT_FTABLE)) == NULL)
650 			goto dropfrag;
651 		fp = mtod(t, struct ipq *);
652 		insque(fp, where);
653 		nipq++;
654 		fp->ipq_ttl = IPFRAGTTL;
655 		fp->ipq_p = ip->ip_p;
656 		fp->ipq_id = ip->ip_id;
657 		fp->ipq_next = fp->ipq_prev = (struct ipasfrag *)fp;
658 		fp->ipq_src = ((struct ip *)ip)->ip_src;
659 		fp->ipq_dst = ((struct ip *)ip)->ip_dst;
660 #ifdef IPDIVERT
661 		fp->ipq_divert = 0;
662 #endif
663 		q = (struct ipasfrag *)fp;
664 		goto insert;
665 	}
666 
667 	/*
668 	 * Find a segment which begins after this one does.
669 	 */
670 	for (q = fp->ipq_next; q != (struct ipasfrag *)fp; q = q->ipf_next)
671 		if (q->ip_off > ip->ip_off)
672 			break;
673 
674 	/*
675 	 * If there is a preceding segment, it may provide some of
676 	 * our data already.  If so, drop the data from the incoming
677 	 * segment.  If it provides all of our data, drop us.
678 	 */
679 	if (q->ipf_prev != (struct ipasfrag *)fp) {
680 		i = q->ipf_prev->ip_off + q->ipf_prev->ip_len - ip->ip_off;
681 		if (i > 0) {
682 			if (i >= ip->ip_len)
683 				goto dropfrag;
684 			m_adj(dtom(ip), i);
685 			ip->ip_off += i;
686 			ip->ip_len -= i;
687 		}
688 	}
689 
690 	/*
691 	 * While we overlap succeeding segments trim them or,
692 	 * if they are completely covered, dequeue them.
693 	 */
694 	while (q != (struct ipasfrag *)fp && ip->ip_off + ip->ip_len > q->ip_off) {
695 		struct mbuf *m0;
696 
697 		i = (ip->ip_off + ip->ip_len) - q->ip_off;
698 		if (i < q->ip_len) {
699 			q->ip_len -= i;
700 			q->ip_off += i;
701 			m_adj(dtom(q), i);
702 			break;
703 		}
704 		m0 = dtom(q);
705 		q = q->ipf_next;
706 		ip_deq(q->ipf_prev);
707 		m_freem(m0);
708 	}
709 
710 insert:
711 
712 #ifdef IPDIVERT
713 	/*
714 	 * Any fragment diverting causes the whole packet to divert
715 	 */
716 	if (frag_divert_port != 0)
717 		fp->ipq_divert = frag_divert_port;
718 	frag_divert_port = 0;
719 #endif
720 
721 	/*
722 	 * Stick new segment in its place;
723 	 * check for complete reassembly.
724 	 */
725 	ip_enq(ip, q->ipf_prev);
726 	next = 0;
727 	for (q = fp->ipq_next; q != (struct ipasfrag *)fp; q = q->ipf_next) {
728 		if (q->ip_off != next)
729 			return (0);
730 		next += q->ip_len;
731 	}
732 	if (q->ipf_prev->ipf_mff & 1)
733 		return (0);
734 
735 	/*
736 	 * Reassembly is complete.  Make sure the packet is a sane size.
737 	 */
738 	if (next + (IP_VHL_HL(((struct ip *)fp->ipq_next)->ip_vhl) << 2)
739 							> IP_MAXPACKET) {
740 		ipstat.ips_toolong++;
741 		ip_freef(fp);
742 		return (0);
743 	}
744 
745 	/*
746 	 * Concatenate fragments.
747 	 */
748 	q = fp->ipq_next;
749 	m = dtom(q);
750 	t = m->m_next;
751 	m->m_next = 0;
752 	m_cat(m, t);
753 	q = q->ipf_next;
754 	while (q != (struct ipasfrag *)fp) {
755 		t = dtom(q);
756 		q = q->ipf_next;
757 		m_cat(m, t);
758 	}
759 
760 #ifdef IPDIVERT
761 	/*
762 	 * Record divert port for packet, if any
763 	 */
764 	frag_divert_port = fp->ipq_divert;
765 #endif
766 
767 	/*
768 	 * Create header for new ip packet by
769 	 * modifying header of first packet;
770 	 * dequeue and discard fragment reassembly header.
771 	 * Make header visible.
772 	 */
773 	ip = fp->ipq_next;
774 	ip->ip_len = next;
775 	ip->ipf_mff &= ~1;
776 	((struct ip *)ip)->ip_src = fp->ipq_src;
777 	((struct ip *)ip)->ip_dst = fp->ipq_dst;
778 	remque(fp);
779 	nipq--;
780 	(void) m_free(dtom(fp));
781 	m = dtom(ip);
782 	m->m_len += (ip->ip_hl << 2);
783 	m->m_data -= (ip->ip_hl << 2);
784 	/* some debugging cruft by sklower, below, will go away soon */
785 	if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
786 		register int plen = 0;
787 		for (t = m; m; m = m->m_next)
788 			plen += m->m_len;
789 		t->m_pkthdr.len = plen;
790 	}
791 	return ((struct ip *)ip);
792 
793 dropfrag:
794 	ipstat.ips_fragdropped++;
795 	m_freem(m);
796 	return (0);
797 }
798 
799 /*
800  * Free a fragment reassembly header and all
801  * associated datagrams.
802  */
803 static void
804 ip_freef(fp)
805 	struct ipq *fp;
806 {
807 	register struct ipasfrag *q, *p;
808 
809 	for (q = fp->ipq_next; q != (struct ipasfrag *)fp; q = p) {
810 		p = q->ipf_next;
811 		ip_deq(q);
812 		m_freem(dtom(q));
813 	}
814 	remque(fp);
815 	(void) m_free(dtom(fp));
816 	nipq--;
817 }
818 
819 /*
820  * Put an ip fragment on a reassembly chain.
821  * Like insque, but pointers in middle of structure.
822  */
823 static void
824 ip_enq(p, prev)
825 	register struct ipasfrag *p, *prev;
826 {
827 
828 	p->ipf_prev = prev;
829 	p->ipf_next = prev->ipf_next;
830 	prev->ipf_next->ipf_prev = p;
831 	prev->ipf_next = p;
832 }
833 
834 /*
835  * To ip_enq as remque is to insque.
836  */
837 static void
838 ip_deq(p)
839 	register struct ipasfrag *p;
840 {
841 
842 	p->ipf_prev->ipf_next = p->ipf_next;
843 	p->ipf_next->ipf_prev = p->ipf_prev;
844 }
845 
846 /*
847  * IP timer processing;
848  * if a timer expires on a reassembly
849  * queue, discard it.
850  */
851 void
852 ip_slowtimo()
853 {
854 	register struct ipq *fp;
855 	int s = splnet();
856 	int i;
857 
858 	for (i = 0; i < IPREASS_NHASH; i++) {
859 		fp = ipq[i].next;
860 		if (fp == 0)
861 			continue;
862 		while (fp != &ipq[i]) {
863 			--fp->ipq_ttl;
864 			fp = fp->next;
865 			if (fp->prev->ipq_ttl == 0) {
866 				ipstat.ips_fragtimeout++;
867 				ip_freef(fp->prev);
868 			}
869 		}
870 	}
871 	splx(s);
872 }
873 
874 /*
875  * Drain off all datagram fragments.
876  */
877 void
878 ip_drain()
879 {
880 	int     i;
881 
882 	for (i = 0; i < IPREASS_NHASH; i++) {
883 		while (ipq[i].next != &ipq[i]) {
884 			ipstat.ips_fragdropped++;
885 			ip_freef(ipq[i].next);
886 		}
887 	}
888 	in_rtqdrain();
889 }
890 
891 /*
892  * Do option processing on a datagram,
893  * possibly discarding it if bad options are encountered,
894  * or forwarding it if source-routed.
895  * Returns 1 if packet has been forwarded/freed,
896  * 0 if the packet should be processed further.
897  */
898 static int
899 ip_dooptions(m)
900 	struct mbuf *m;
901 {
902 	register struct ip *ip = mtod(m, struct ip *);
903 	register u_char *cp;
904 	register struct ip_timestamp *ipt;
905 	register struct in_ifaddr *ia;
906 	int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
907 	struct in_addr *sin, dst;
908 	n_time ntime;
909 
910 	dst = ip->ip_dst;
911 	cp = (u_char *)(ip + 1);
912 	cnt = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof (struct ip);
913 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
914 		opt = cp[IPOPT_OPTVAL];
915 		if (opt == IPOPT_EOL)
916 			break;
917 		if (opt == IPOPT_NOP)
918 			optlen = 1;
919 		else {
920 			optlen = cp[IPOPT_OLEN];
921 			if (optlen <= 0 || optlen > cnt) {
922 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
923 				goto bad;
924 			}
925 		}
926 		switch (opt) {
927 
928 		default:
929 			break;
930 
931 		/*
932 		 * Source routing with record.
933 		 * Find interface with current destination address.
934 		 * If none on this machine then drop if strictly routed,
935 		 * or do nothing if loosely routed.
936 		 * Record interface address and bring up next address
937 		 * component.  If strictly routed make sure next
938 		 * address is on directly accessible net.
939 		 */
940 		case IPOPT_LSRR:
941 		case IPOPT_SSRR:
942 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
943 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
944 				goto bad;
945 			}
946 			ipaddr.sin_addr = ip->ip_dst;
947 			ia = (struct in_ifaddr *)
948 				ifa_ifwithaddr((struct sockaddr *)&ipaddr);
949 			if (ia == 0) {
950 				if (opt == IPOPT_SSRR) {
951 					type = ICMP_UNREACH;
952 					code = ICMP_UNREACH_SRCFAIL;
953 					goto bad;
954 				}
955 				if (!ip_dosourceroute)
956 					goto nosourcerouting;
957 				/*
958 				 * Loose routing, and not at next destination
959 				 * yet; nothing to do except forward.
960 				 */
961 				break;
962 			}
963 			off--;			/* 0 origin */
964 			if (off > optlen - sizeof(struct in_addr)) {
965 				/*
966 				 * End of source route.  Should be for us.
967 				 */
968 				save_rte(cp, ip->ip_src);
969 				break;
970 			}
971 
972 			if (!ip_dosourceroute) {
973 				char buf[4*sizeof "123"];
974 
975 nosourcerouting:
976 				strcpy(buf, inet_ntoa(ip->ip_dst));
977 				log(LOG_WARNING,
978 				    "attempted source route from %s to %s\n",
979 				    inet_ntoa(ip->ip_src), buf);
980 				type = ICMP_UNREACH;
981 				code = ICMP_UNREACH_SRCFAIL;
982 				goto bad;
983 			}
984 
985 			/*
986 			 * locate outgoing interface
987 			 */
988 			(void)memcpy(&ipaddr.sin_addr, cp + off,
989 			    sizeof(ipaddr.sin_addr));
990 
991 			if (opt == IPOPT_SSRR) {
992 #define	INA	struct in_ifaddr *
993 #define	SA	struct sockaddr *
994 			    if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr)) == 0)
995 				ia = (INA)ifa_ifwithnet((SA)&ipaddr);
996 			} else
997 				ia = ip_rtaddr(ipaddr.sin_addr);
998 			if (ia == 0) {
999 				type = ICMP_UNREACH;
1000 				code = ICMP_UNREACH_SRCFAIL;
1001 				goto bad;
1002 			}
1003 			ip->ip_dst = ipaddr.sin_addr;
1004 			(void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr),
1005 			    sizeof(struct in_addr));
1006 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1007 			/*
1008 			 * Let ip_intr's mcast routing check handle mcast pkts
1009 			 */
1010 			forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr));
1011 			break;
1012 
1013 		case IPOPT_RR:
1014 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1015 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1016 				goto bad;
1017 			}
1018 			/*
1019 			 * If no space remains, ignore.
1020 			 */
1021 			off--;			/* 0 origin */
1022 			if (off > optlen - sizeof(struct in_addr))
1023 				break;
1024 			(void)memcpy(&ipaddr.sin_addr, &ip->ip_dst,
1025 			    sizeof(ipaddr.sin_addr));
1026 			/*
1027 			 * locate outgoing interface; if we're the destination,
1028 			 * use the incoming interface (should be same).
1029 			 */
1030 			if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == 0 &&
1031 			    (ia = ip_rtaddr(ipaddr.sin_addr)) == 0) {
1032 				type = ICMP_UNREACH;
1033 				code = ICMP_UNREACH_HOST;
1034 				goto bad;
1035 			}
1036 			(void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr),
1037 			    sizeof(struct in_addr));
1038 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1039 			break;
1040 
1041 		case IPOPT_TS:
1042 			code = cp - (u_char *)ip;
1043 			ipt = (struct ip_timestamp *)cp;
1044 			if (ipt->ipt_len < 5)
1045 				goto bad;
1046 			if (ipt->ipt_ptr > ipt->ipt_len - sizeof (long)) {
1047 				if (++ipt->ipt_oflw == 0)
1048 					goto bad;
1049 				break;
1050 			}
1051 			sin = (struct in_addr *)(cp + ipt->ipt_ptr - 1);
1052 			switch (ipt->ipt_flg) {
1053 
1054 			case IPOPT_TS_TSONLY:
1055 				break;
1056 
1057 			case IPOPT_TS_TSANDADDR:
1058 				if (ipt->ipt_ptr + sizeof(n_time) +
1059 				    sizeof(struct in_addr) > ipt->ipt_len)
1060 					goto bad;
1061 				ipaddr.sin_addr = dst;
1062 				ia = (INA)ifaof_ifpforaddr((SA)&ipaddr,
1063 							    m->m_pkthdr.rcvif);
1064 				if (ia == 0)
1065 					continue;
1066 				(void)memcpy(sin, &IA_SIN(ia)->sin_addr,
1067 				    sizeof(struct in_addr));
1068 				ipt->ipt_ptr += sizeof(struct in_addr);
1069 				break;
1070 
1071 			case IPOPT_TS_PRESPEC:
1072 				if (ipt->ipt_ptr + sizeof(n_time) +
1073 				    sizeof(struct in_addr) > ipt->ipt_len)
1074 					goto bad;
1075 				(void)memcpy(&ipaddr.sin_addr, sin,
1076 				    sizeof(struct in_addr));
1077 				if (ifa_ifwithaddr((SA)&ipaddr) == 0)
1078 					continue;
1079 				ipt->ipt_ptr += sizeof(struct in_addr);
1080 				break;
1081 
1082 			default:
1083 				goto bad;
1084 			}
1085 			ntime = iptime();
1086 			(void)memcpy(cp + ipt->ipt_ptr - 1, &ntime,
1087 			    sizeof(n_time));
1088 			ipt->ipt_ptr += sizeof(n_time);
1089 		}
1090 	}
1091 	if (forward) {
1092 		ip_forward(m, 1);
1093 		return (1);
1094 	}
1095 	return (0);
1096 bad:
1097 	ip->ip_len -= IP_VHL_HL(ip->ip_vhl) << 2;   /* XXX icmp_error adds in hdr length */
1098 	icmp_error(m, type, code, 0, 0);
1099 	ipstat.ips_badoptions++;
1100 	return (1);
1101 }
1102 
1103 /*
1104  * Given address of next destination (final or next hop),
1105  * return internet address info of interface to be used to get there.
1106  */
1107 static struct in_ifaddr *
1108 ip_rtaddr(dst)
1109 	 struct in_addr dst;
1110 {
1111 	register struct sockaddr_in *sin;
1112 
1113 	sin = (struct sockaddr_in *) &ipforward_rt.ro_dst;
1114 
1115 	if (ipforward_rt.ro_rt == 0 || dst.s_addr != sin->sin_addr.s_addr) {
1116 		if (ipforward_rt.ro_rt) {
1117 			RTFREE(ipforward_rt.ro_rt);
1118 			ipforward_rt.ro_rt = 0;
1119 		}
1120 		sin->sin_family = AF_INET;
1121 		sin->sin_len = sizeof(*sin);
1122 		sin->sin_addr = dst;
1123 
1124 		rtalloc_ign(&ipforward_rt, RTF_PRCLONING);
1125 	}
1126 	if (ipforward_rt.ro_rt == 0)
1127 		return ((struct in_ifaddr *)0);
1128 	return ((struct in_ifaddr *) ipforward_rt.ro_rt->rt_ifa);
1129 }
1130 
1131 /*
1132  * Save incoming source route for use in replies,
1133  * to be picked up later by ip_srcroute if the receiver is interested.
1134  */
1135 void
1136 save_rte(option, dst)
1137 	u_char *option;
1138 	struct in_addr dst;
1139 {
1140 	unsigned olen;
1141 
1142 	olen = option[IPOPT_OLEN];
1143 #ifdef DIAGNOSTIC
1144 	if (ipprintfs)
1145 		printf("save_rte: olen %d\n", olen);
1146 #endif
1147 	if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
1148 		return;
1149 	bcopy(option, ip_srcrt.srcopt, olen);
1150 	ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
1151 	ip_srcrt.dst = dst;
1152 }
1153 
1154 /*
1155  * Retrieve incoming source route for use in replies,
1156  * in the same form used by setsockopt.
1157  * The first hop is placed before the options, will be removed later.
1158  */
1159 struct mbuf *
1160 ip_srcroute()
1161 {
1162 	register struct in_addr *p, *q;
1163 	register struct mbuf *m;
1164 
1165 	if (ip_nhops == 0)
1166 		return ((struct mbuf *)0);
1167 	m = m_get(M_DONTWAIT, MT_SOOPTS);
1168 	if (m == 0)
1169 		return ((struct mbuf *)0);
1170 
1171 #define OPTSIZ	(sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
1172 
1173 	/* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1174 	m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
1175 	    OPTSIZ;
1176 #ifdef DIAGNOSTIC
1177 	if (ipprintfs)
1178 		printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
1179 #endif
1180 
1181 	/*
1182 	 * First save first hop for return route
1183 	 */
1184 	p = &ip_srcrt.route[ip_nhops - 1];
1185 	*(mtod(m, struct in_addr *)) = *p--;
1186 #ifdef DIAGNOSTIC
1187 	if (ipprintfs)
1188 		printf(" hops %lx", ntohl(mtod(m, struct in_addr *)->s_addr));
1189 #endif
1190 
1191 	/*
1192 	 * Copy option fields and padding (nop) to mbuf.
1193 	 */
1194 	ip_srcrt.nop = IPOPT_NOP;
1195 	ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
1196 	(void)memcpy(mtod(m, caddr_t) + sizeof(struct in_addr),
1197 	    &ip_srcrt.nop, OPTSIZ);
1198 	q = (struct in_addr *)(mtod(m, caddr_t) +
1199 	    sizeof(struct in_addr) + OPTSIZ);
1200 #undef OPTSIZ
1201 	/*
1202 	 * Record return path as an IP source route,
1203 	 * reversing the path (pointers are now aligned).
1204 	 */
1205 	while (p >= ip_srcrt.route) {
1206 #ifdef DIAGNOSTIC
1207 		if (ipprintfs)
1208 			printf(" %lx", ntohl(q->s_addr));
1209 #endif
1210 		*q++ = *p--;
1211 	}
1212 	/*
1213 	 * Last hop goes to final destination.
1214 	 */
1215 	*q = ip_srcrt.dst;
1216 #ifdef DIAGNOSTIC
1217 	if (ipprintfs)
1218 		printf(" %lx\n", ntohl(q->s_addr));
1219 #endif
1220 	return (m);
1221 }
1222 
1223 /*
1224  * Strip out IP options, at higher
1225  * level protocol in the kernel.
1226  * Second argument is buffer to which options
1227  * will be moved, and return value is their length.
1228  * XXX should be deleted; last arg currently ignored.
1229  */
1230 void
1231 ip_stripoptions(m, mopt)
1232 	register struct mbuf *m;
1233 	struct mbuf *mopt;
1234 {
1235 	register int i;
1236 	struct ip *ip = mtod(m, struct ip *);
1237 	register caddr_t opts;
1238 	int olen;
1239 
1240 	olen = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof (struct ip);
1241 	opts = (caddr_t)(ip + 1);
1242 	i = m->m_len - (sizeof (struct ip) + olen);
1243 	bcopy(opts + olen, opts, (unsigned)i);
1244 	m->m_len -= olen;
1245 	if (m->m_flags & M_PKTHDR)
1246 		m->m_pkthdr.len -= olen;
1247 	ip->ip_vhl = IP_MAKE_VHL(IPVERSION, sizeof(struct ip) >> 2);
1248 }
1249 
1250 u_char inetctlerrmap[PRC_NCMDS] = {
1251 	0,		0,		0,		0,
1252 	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1253 	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1254 	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1255 	0,		0,		0,		0,
1256 	ENOPROTOOPT
1257 };
1258 
1259 /*
1260  * Forward a packet.  If some error occurs return the sender
1261  * an icmp packet.  Note we can't always generate a meaningful
1262  * icmp message because icmp doesn't have a large enough repertoire
1263  * of codes and types.
1264  *
1265  * If not forwarding, just drop the packet.  This could be confusing
1266  * if ipforwarding was zero but some routing protocol was advancing
1267  * us as a gateway to somewhere.  However, we must let the routing
1268  * protocol deal with that.
1269  *
1270  * The srcrt parameter indicates whether the packet is being forwarded
1271  * via a source route.
1272  */
1273 static void
1274 ip_forward(m, srcrt)
1275 	struct mbuf *m;
1276 	int srcrt;
1277 {
1278 	register struct ip *ip = mtod(m, struct ip *);
1279 	register struct sockaddr_in *sin;
1280 	register struct rtentry *rt;
1281 	int error, type = 0, code = 0;
1282 	struct mbuf *mcopy;
1283 	n_long dest;
1284 	struct ifnet *destifp;
1285 
1286 	dest = 0;
1287 #ifdef DIAGNOSTIC
1288 	if (ipprintfs)
1289 		printf("forward: src %lx dst %lx ttl %x\n",
1290 			ip->ip_src.s_addr, ip->ip_dst.s_addr, ip->ip_ttl);
1291 #endif
1292 
1293 
1294 	if (m->m_flags & M_BCAST || in_canforward(ip->ip_dst) == 0) {
1295 		ipstat.ips_cantforward++;
1296 		m_freem(m);
1297 		return;
1298 	}
1299 	HTONS(ip->ip_id);
1300 	if (ip->ip_ttl <= IPTTLDEC) {
1301 		icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, dest, 0);
1302 		return;
1303 	}
1304 	ip->ip_ttl -= IPTTLDEC;
1305 
1306 	sin = (struct sockaddr_in *)&ipforward_rt.ro_dst;
1307 	if ((rt = ipforward_rt.ro_rt) == 0 ||
1308 	    ip->ip_dst.s_addr != sin->sin_addr.s_addr) {
1309 		if (ipforward_rt.ro_rt) {
1310 			RTFREE(ipforward_rt.ro_rt);
1311 			ipforward_rt.ro_rt = 0;
1312 		}
1313 		sin->sin_family = AF_INET;
1314 		sin->sin_len = sizeof(*sin);
1315 		sin->sin_addr = ip->ip_dst;
1316 
1317 		rtalloc_ign(&ipforward_rt, RTF_PRCLONING);
1318 		if (ipforward_rt.ro_rt == 0) {
1319 			icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0);
1320 			return;
1321 		}
1322 		rt = ipforward_rt.ro_rt;
1323 	}
1324 
1325 	/*
1326 	 * Save at most 64 bytes of the packet in case
1327 	 * we need to generate an ICMP message to the src.
1328 	 */
1329 	mcopy = m_copy(m, 0, imin((int)ip->ip_len, 64));
1330 
1331 	/*
1332 	 * If forwarding packet using same interface that it came in on,
1333 	 * perhaps should send a redirect to sender to shortcut a hop.
1334 	 * Only send redirect if source is sending directly to us,
1335 	 * and if packet was not source routed (or has any options).
1336 	 * Also, don't send redirect if forwarding using a default route
1337 	 * or a route modified by a redirect.
1338 	 */
1339 #define	satosin(sa)	((struct sockaddr_in *)(sa))
1340 	if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1341 	    (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1342 	    satosin(rt_key(rt))->sin_addr.s_addr != 0 &&
1343 	    ipsendredirects && !srcrt) {
1344 #define	RTA(rt)	((struct in_ifaddr *)(rt->rt_ifa))
1345 		u_long src = ntohl(ip->ip_src.s_addr);
1346 
1347 		if (RTA(rt) &&
1348 		    (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
1349 		    if (rt->rt_flags & RTF_GATEWAY)
1350 			dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1351 		    else
1352 			dest = ip->ip_dst.s_addr;
1353 		    /* Router requirements says to only send host redirects */
1354 		    type = ICMP_REDIRECT;
1355 		    code = ICMP_REDIRECT_HOST;
1356 #ifdef DIAGNOSTIC
1357 		    if (ipprintfs)
1358 		        printf("redirect (%d) to %lx\n", code, (u_long)dest);
1359 #endif
1360 		}
1361 	}
1362 
1363 	error = ip_output(m, (struct mbuf *)0, &ipforward_rt,
1364 			  IP_FORWARDING, 0);
1365 	if (error)
1366 		ipstat.ips_cantforward++;
1367 	else {
1368 		ipstat.ips_forward++;
1369 		if (type)
1370 			ipstat.ips_redirectsent++;
1371 		else {
1372 			if (mcopy)
1373 				m_freem(mcopy);
1374 			return;
1375 		}
1376 	}
1377 	if (mcopy == NULL)
1378 		return;
1379 	destifp = NULL;
1380 
1381 	switch (error) {
1382 
1383 	case 0:				/* forwarded, but need redirect */
1384 		/* type, code set above */
1385 		break;
1386 
1387 	case ENETUNREACH:		/* shouldn't happen, checked above */
1388 	case EHOSTUNREACH:
1389 	case ENETDOWN:
1390 	case EHOSTDOWN:
1391 	default:
1392 		type = ICMP_UNREACH;
1393 		code = ICMP_UNREACH_HOST;
1394 		break;
1395 
1396 	case EMSGSIZE:
1397 		type = ICMP_UNREACH;
1398 		code = ICMP_UNREACH_NEEDFRAG;
1399 		if (ipforward_rt.ro_rt)
1400 			destifp = ipforward_rt.ro_rt->rt_ifp;
1401 		ipstat.ips_cantfrag++;
1402 		break;
1403 
1404 	case ENOBUFS:
1405 		type = ICMP_SOURCEQUENCH;
1406 		code = 0;
1407 		break;
1408 	}
1409 	icmp_error(mcopy, type, code, dest, destifp);
1410 }
1411 
1412 void
1413 ip_savecontrol(inp, mp, ip, m)
1414 	register struct inpcb *inp;
1415 	register struct mbuf **mp;
1416 	register struct ip *ip;
1417 	register struct mbuf *m;
1418 {
1419 	if (inp->inp_socket->so_options & SO_TIMESTAMP) {
1420 		struct timeval tv;
1421 
1422 		microtime(&tv);
1423 		*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
1424 			SCM_TIMESTAMP, SOL_SOCKET);
1425 		if (*mp)
1426 			mp = &(*mp)->m_next;
1427 	}
1428 	if (inp->inp_flags & INP_RECVDSTADDR) {
1429 		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
1430 		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
1431 		if (*mp)
1432 			mp = &(*mp)->m_next;
1433 	}
1434 #ifdef notyet
1435 	/* XXX
1436 	 * Moving these out of udp_input() made them even more broken
1437 	 * than they already were.
1438 	 */
1439 	/* options were tossed already */
1440 	if (inp->inp_flags & INP_RECVOPTS) {
1441 		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
1442 		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
1443 		if (*mp)
1444 			mp = &(*mp)->m_next;
1445 	}
1446 	/* ip_srcroute doesn't do what we want here, need to fix */
1447 	if (inp->inp_flags & INP_RECVRETOPTS) {
1448 		*mp = sbcreatecontrol((caddr_t) ip_srcroute(),
1449 		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
1450 		if (*mp)
1451 			mp = &(*mp)->m_next;
1452 	}
1453 #endif
1454 	if (inp->inp_flags & INP_RECVIF) {
1455 		struct ifnet *ifp;
1456 		struct sdlbuf {
1457 			struct sockaddr_dl sdl;
1458 			u_char	pad[32];
1459 		} sdlbuf;
1460 		struct sockaddr_dl *sdp;
1461 		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
1462 
1463 		if (((ifp = m->m_pkthdr.rcvif))
1464 		&& ( ifp->if_index && (ifp->if_index <= if_index))) {
1465 			sdp = (struct sockaddr_dl *)(ifnet_addrs
1466 					[ifp->if_index - 1]->ifa_addr);
1467 			/*
1468 			 * Change our mind and don't try copy.
1469 			 */
1470 			if ((sdp->sdl_family != AF_LINK)
1471 			|| (sdp->sdl_len > sizeof(sdlbuf))) {
1472 				goto makedummy;
1473 			}
1474 			bcopy(sdp, sdl2, sdp->sdl_len);
1475 		} else {
1476 makedummy:
1477 			sdl2->sdl_len
1478 				= offsetof(struct sockaddr_dl, sdl_data[0]);
1479 			sdl2->sdl_family = AF_LINK;
1480 			sdl2->sdl_index = 0;
1481 			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
1482 		}
1483 		*mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
1484 			IP_RECVIF, IPPROTO_IP);
1485 		if (*mp)
1486 			mp = &(*mp)->m_next;
1487 	}
1488 }
1489 
1490 int
1491 ip_rsvp_init(struct socket *so)
1492 {
1493 	if (so->so_type != SOCK_RAW ||
1494 	    so->so_proto->pr_protocol != IPPROTO_RSVP)
1495 	  return EOPNOTSUPP;
1496 
1497 	if (ip_rsvpd != NULL)
1498 	  return EADDRINUSE;
1499 
1500 	ip_rsvpd = so;
1501 	/*
1502 	 * This may seem silly, but we need to be sure we don't over-increment
1503 	 * the RSVP counter, in case something slips up.
1504 	 */
1505 	if (!ip_rsvp_on) {
1506 		ip_rsvp_on = 1;
1507 		rsvp_on++;
1508 	}
1509 
1510 	return 0;
1511 }
1512 
1513 int
1514 ip_rsvp_done(void)
1515 {
1516 	ip_rsvpd = NULL;
1517 	/*
1518 	 * This may seem silly, but we need to be sure we don't over-decrement
1519 	 * the RSVP counter, in case something slips up.
1520 	 */
1521 	if (ip_rsvp_on) {
1522 		ip_rsvp_on = 0;
1523 		rsvp_on--;
1524 	}
1525 	return 0;
1526 }
1527