1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1988, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)ip_input.c 8.2 (Berkeley) 1/4/94 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_bootp.h" 38 #include "opt_ipstealth.h" 39 #include "opt_ipsec.h" 40 #include "opt_route.h" 41 #include "opt_rss.h" 42 43 #include <sys/param.h> 44 #include <sys/systm.h> 45 #include <sys/hhook.h> 46 #include <sys/mbuf.h> 47 #include <sys/malloc.h> 48 #include <sys/domain.h> 49 #include <sys/protosw.h> 50 #include <sys/socket.h> 51 #include <sys/time.h> 52 #include <sys/kernel.h> 53 #include <sys/lock.h> 54 #include <sys/rmlock.h> 55 #include <sys/rwlock.h> 56 #include <sys/sdt.h> 57 #include <sys/syslog.h> 58 #include <sys/sysctl.h> 59 60 #include <net/pfil.h> 61 #include <net/if.h> 62 #include <net/if_types.h> 63 #include <net/if_var.h> 64 #include <net/if_dl.h> 65 #include <net/route.h> 66 #include <net/netisr.h> 67 #include <net/rss_config.h> 68 #include <net/vnet.h> 69 70 #include <netinet/in.h> 71 #include <netinet/in_kdtrace.h> 72 #include <netinet/in_systm.h> 73 #include <netinet/in_var.h> 74 #include <netinet/ip.h> 75 #include <netinet/in_pcb.h> 76 #include <netinet/ip_var.h> 77 #include <netinet/ip_fw.h> 78 #include <netinet/ip_icmp.h> 79 #include <netinet/ip_options.h> 80 #include <machine/in_cksum.h> 81 #include <netinet/ip_carp.h> 82 #include <netinet/in_rss.h> 83 84 #include <netipsec/ipsec_support.h> 85 86 #include <sys/socketvar.h> 87 88 #include <security/mac/mac_framework.h> 89 90 #ifdef CTASSERT 91 CTASSERT(sizeof(struct ip) == 20); 92 #endif 93 94 /* IP reassembly functions are defined in ip_reass.c. */ 95 extern void ipreass_init(void); 96 extern void ipreass_drain(void); 97 extern void ipreass_slowtimo(void); 98 #ifdef VIMAGE 99 extern void ipreass_destroy(void); 100 #endif 101 102 struct rmlock in_ifaddr_lock; 103 RM_SYSINIT(in_ifaddr_lock, &in_ifaddr_lock, "in_ifaddr_lock"); 104 105 VNET_DEFINE(int, rsvp_on); 106 107 VNET_DEFINE(int, ipforwarding); 108 SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_VNET | CTLFLAG_RW, 109 &VNET_NAME(ipforwarding), 0, 110 "Enable IP forwarding between interfaces"); 111 112 VNET_DEFINE_STATIC(int, ipsendredirects) = 1; /* XXX */ 113 #define V_ipsendredirects VNET(ipsendredirects) 114 SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_VNET | CTLFLAG_RW, 115 &VNET_NAME(ipsendredirects), 0, 116 "Enable sending IP redirects"); 117 118 /* 119 * XXX - Setting ip_checkinterface mostly implements the receive side of 120 * the Strong ES model described in RFC 1122, but since the routing table 121 * and transmit implementation do not implement the Strong ES model, 122 * setting this to 1 results in an odd hybrid. 123 * 124 * XXX - ip_checkinterface currently must be disabled if you use ipnat 125 * to translate the destination address to another local interface. 126 * 127 * XXX - ip_checkinterface must be disabled if you add IP aliases 128 * to the loopback interface instead of the interface where the 129 * packets for those addresses are received. 130 */ 131 VNET_DEFINE_STATIC(int, ip_checkinterface); 132 #define V_ip_checkinterface VNET(ip_checkinterface) 133 SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_VNET | CTLFLAG_RW, 134 &VNET_NAME(ip_checkinterface), 0, 135 "Verify packet arrives on correct interface"); 136 137 VNET_DEFINE(struct pfil_head, inet_pfil_hook); /* Packet filter hooks */ 138 139 static struct netisr_handler ip_nh = { 140 .nh_name = "ip", 141 .nh_handler = ip_input, 142 .nh_proto = NETISR_IP, 143 #ifdef RSS 144 .nh_m2cpuid = rss_soft_m2cpuid_v4, 145 .nh_policy = NETISR_POLICY_CPU, 146 .nh_dispatch = NETISR_DISPATCH_HYBRID, 147 #else 148 .nh_policy = NETISR_POLICY_FLOW, 149 #endif 150 }; 151 152 #ifdef RSS 153 /* 154 * Directly dispatched frames are currently assumed 155 * to have a flowid already calculated. 156 * 157 * It should likely have something that assert it 158 * actually has valid flow details. 159 */ 160 static struct netisr_handler ip_direct_nh = { 161 .nh_name = "ip_direct", 162 .nh_handler = ip_direct_input, 163 .nh_proto = NETISR_IP_DIRECT, 164 .nh_m2cpuid = rss_soft_m2cpuid_v4, 165 .nh_policy = NETISR_POLICY_CPU, 166 .nh_dispatch = NETISR_DISPATCH_HYBRID, 167 }; 168 #endif 169 170 extern struct domain inetdomain; 171 extern struct protosw inetsw[]; 172 u_char ip_protox[IPPROTO_MAX]; 173 VNET_DEFINE(struct in_ifaddrhead, in_ifaddrhead); /* first inet address */ 174 VNET_DEFINE(struct in_ifaddrhashhead *, in_ifaddrhashtbl); /* inet addr hash table */ 175 VNET_DEFINE(u_long, in_ifaddrhmask); /* mask for hash table */ 176 177 #ifdef IPCTL_DEFMTU 178 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW, 179 &ip_mtu, 0, "Default MTU"); 180 #endif 181 182 #ifdef IPSTEALTH 183 VNET_DEFINE(int, ipstealth); 184 SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_VNET | CTLFLAG_RW, 185 &VNET_NAME(ipstealth), 0, 186 "IP stealth mode, no TTL decrementation on forwarding"); 187 #endif 188 189 /* 190 * IP statistics are stored in the "array" of counter(9)s. 191 */ 192 VNET_PCPUSTAT_DEFINE(struct ipstat, ipstat); 193 VNET_PCPUSTAT_SYSINIT(ipstat); 194 SYSCTL_VNET_PCPUSTAT(_net_inet_ip, IPCTL_STATS, stats, struct ipstat, ipstat, 195 "IP statistics (struct ipstat, netinet/ip_var.h)"); 196 197 #ifdef VIMAGE 198 VNET_PCPUSTAT_SYSUNINIT(ipstat); 199 #endif /* VIMAGE */ 200 201 /* 202 * Kernel module interface for updating ipstat. The argument is an index 203 * into ipstat treated as an array. 204 */ 205 void 206 kmod_ipstat_inc(int statnum) 207 { 208 209 counter_u64_add(VNET(ipstat)[statnum], 1); 210 } 211 212 void 213 kmod_ipstat_dec(int statnum) 214 { 215 216 counter_u64_add(VNET(ipstat)[statnum], -1); 217 } 218 219 static int 220 sysctl_netinet_intr_queue_maxlen(SYSCTL_HANDLER_ARGS) 221 { 222 int error, qlimit; 223 224 netisr_getqlimit(&ip_nh, &qlimit); 225 error = sysctl_handle_int(oidp, &qlimit, 0, req); 226 if (error || !req->newptr) 227 return (error); 228 if (qlimit < 1) 229 return (EINVAL); 230 return (netisr_setqlimit(&ip_nh, qlimit)); 231 } 232 SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen, 233 CTLTYPE_INT|CTLFLAG_RW, 0, 0, sysctl_netinet_intr_queue_maxlen, "I", 234 "Maximum size of the IP input queue"); 235 236 static int 237 sysctl_netinet_intr_queue_drops(SYSCTL_HANDLER_ARGS) 238 { 239 u_int64_t qdrops_long; 240 int error, qdrops; 241 242 netisr_getqdrops(&ip_nh, &qdrops_long); 243 qdrops = qdrops_long; 244 error = sysctl_handle_int(oidp, &qdrops, 0, req); 245 if (error || !req->newptr) 246 return (error); 247 if (qdrops != 0) 248 return (EINVAL); 249 netisr_clearqdrops(&ip_nh); 250 return (0); 251 } 252 253 SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops, 254 CTLTYPE_INT|CTLFLAG_RD, 0, 0, sysctl_netinet_intr_queue_drops, "I", 255 "Number of packets dropped from the IP input queue"); 256 257 #ifdef RSS 258 static int 259 sysctl_netinet_intr_direct_queue_maxlen(SYSCTL_HANDLER_ARGS) 260 { 261 int error, qlimit; 262 263 netisr_getqlimit(&ip_direct_nh, &qlimit); 264 error = sysctl_handle_int(oidp, &qlimit, 0, req); 265 if (error || !req->newptr) 266 return (error); 267 if (qlimit < 1) 268 return (EINVAL); 269 return (netisr_setqlimit(&ip_direct_nh, qlimit)); 270 } 271 SYSCTL_PROC(_net_inet_ip, IPCTL_INTRDQMAXLEN, intr_direct_queue_maxlen, 272 CTLTYPE_INT|CTLFLAG_RW, 0, 0, sysctl_netinet_intr_direct_queue_maxlen, 273 "I", "Maximum size of the IP direct input queue"); 274 275 static int 276 sysctl_netinet_intr_direct_queue_drops(SYSCTL_HANDLER_ARGS) 277 { 278 u_int64_t qdrops_long; 279 int error, qdrops; 280 281 netisr_getqdrops(&ip_direct_nh, &qdrops_long); 282 qdrops = qdrops_long; 283 error = sysctl_handle_int(oidp, &qdrops, 0, req); 284 if (error || !req->newptr) 285 return (error); 286 if (qdrops != 0) 287 return (EINVAL); 288 netisr_clearqdrops(&ip_direct_nh); 289 return (0); 290 } 291 292 SYSCTL_PROC(_net_inet_ip, IPCTL_INTRDQDROPS, intr_direct_queue_drops, 293 CTLTYPE_INT|CTLFLAG_RD, 0, 0, sysctl_netinet_intr_direct_queue_drops, "I", 294 "Number of packets dropped from the IP direct input queue"); 295 #endif /* RSS */ 296 297 /* 298 * IP initialization: fill in IP protocol switch table. 299 * All protocols not implemented in kernel go to raw IP protocol handler. 300 */ 301 void 302 ip_init(void) 303 { 304 struct protosw *pr; 305 int i; 306 307 CK_STAILQ_INIT(&V_in_ifaddrhead); 308 V_in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &V_in_ifaddrhmask); 309 310 /* Initialize IP reassembly queue. */ 311 ipreass_init(); 312 313 /* Initialize packet filter hooks. */ 314 V_inet_pfil_hook.ph_type = PFIL_TYPE_AF; 315 V_inet_pfil_hook.ph_af = AF_INET; 316 if ((i = pfil_head_register(&V_inet_pfil_hook)) != 0) 317 printf("%s: WARNING: unable to register pfil hook, " 318 "error %d\n", __func__, i); 319 320 if (hhook_head_register(HHOOK_TYPE_IPSEC_IN, AF_INET, 321 &V_ipsec_hhh_in[HHOOK_IPSEC_INET], 322 HHOOK_WAITOK | HHOOK_HEADISINVNET) != 0) 323 printf("%s: WARNING: unable to register input helper hook\n", 324 __func__); 325 if (hhook_head_register(HHOOK_TYPE_IPSEC_OUT, AF_INET, 326 &V_ipsec_hhh_out[HHOOK_IPSEC_INET], 327 HHOOK_WAITOK | HHOOK_HEADISINVNET) != 0) 328 printf("%s: WARNING: unable to register output helper hook\n", 329 __func__); 330 331 /* Skip initialization of globals for non-default instances. */ 332 #ifdef VIMAGE 333 if (!IS_DEFAULT_VNET(curvnet)) { 334 netisr_register_vnet(&ip_nh); 335 #ifdef RSS 336 netisr_register_vnet(&ip_direct_nh); 337 #endif 338 return; 339 } 340 #endif 341 342 pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW); 343 if (pr == NULL) 344 panic("ip_init: PF_INET not found"); 345 346 /* Initialize the entire ip_protox[] array to IPPROTO_RAW. */ 347 for (i = 0; i < IPPROTO_MAX; i++) 348 ip_protox[i] = pr - inetsw; 349 /* 350 * Cycle through IP protocols and put them into the appropriate place 351 * in ip_protox[]. 352 */ 353 for (pr = inetdomain.dom_protosw; 354 pr < inetdomain.dom_protoswNPROTOSW; pr++) 355 if (pr->pr_domain->dom_family == PF_INET && 356 pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW) { 357 /* Be careful to only index valid IP protocols. */ 358 if (pr->pr_protocol < IPPROTO_MAX) 359 ip_protox[pr->pr_protocol] = pr - inetsw; 360 } 361 362 netisr_register(&ip_nh); 363 #ifdef RSS 364 netisr_register(&ip_direct_nh); 365 #endif 366 } 367 368 #ifdef VIMAGE 369 static void 370 ip_destroy(void *unused __unused) 371 { 372 struct ifnet *ifp; 373 int error; 374 375 #ifdef RSS 376 netisr_unregister_vnet(&ip_direct_nh); 377 #endif 378 netisr_unregister_vnet(&ip_nh); 379 380 if ((error = pfil_head_unregister(&V_inet_pfil_hook)) != 0) 381 printf("%s: WARNING: unable to unregister pfil hook, " 382 "error %d\n", __func__, error); 383 384 error = hhook_head_deregister(V_ipsec_hhh_in[HHOOK_IPSEC_INET]); 385 if (error != 0) { 386 printf("%s: WARNING: unable to deregister input helper hook " 387 "type HHOOK_TYPE_IPSEC_IN, id HHOOK_IPSEC_INET: " 388 "error %d returned\n", __func__, error); 389 } 390 error = hhook_head_deregister(V_ipsec_hhh_out[HHOOK_IPSEC_INET]); 391 if (error != 0) { 392 printf("%s: WARNING: unable to deregister output helper hook " 393 "type HHOOK_TYPE_IPSEC_OUT, id HHOOK_IPSEC_INET: " 394 "error %d returned\n", __func__, error); 395 } 396 397 /* Remove the IPv4 addresses from all interfaces. */ 398 in_ifscrub_all(); 399 400 /* Make sure the IPv4 routes are gone as well. */ 401 IFNET_RLOCK(); 402 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) 403 rt_flushifroutes_af(ifp, AF_INET); 404 IFNET_RUNLOCK(); 405 406 /* Destroy IP reassembly queue. */ 407 ipreass_destroy(); 408 409 /* Cleanup in_ifaddr hash table; should be empty. */ 410 hashdestroy(V_in_ifaddrhashtbl, M_IFADDR, V_in_ifaddrhmask); 411 } 412 413 VNET_SYSUNINIT(ip, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, ip_destroy, NULL); 414 #endif 415 416 #ifdef RSS 417 /* 418 * IP direct input routine. 419 * 420 * This is called when reinjecting completed fragments where 421 * all of the previous checking and book-keeping has been done. 422 */ 423 void 424 ip_direct_input(struct mbuf *m) 425 { 426 struct ip *ip; 427 int hlen; 428 429 ip = mtod(m, struct ip *); 430 hlen = ip->ip_hl << 2; 431 432 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 433 if (IPSEC_ENABLED(ipv4)) { 434 if (IPSEC_INPUT(ipv4, m, hlen, ip->ip_p) != 0) 435 return; 436 } 437 #endif /* IPSEC */ 438 IPSTAT_INC(ips_delivered); 439 (*inetsw[ip_protox[ip->ip_p]].pr_input)(&m, &hlen, ip->ip_p); 440 return; 441 } 442 #endif 443 444 /* 445 * Ip input routine. Checksum and byte swap header. If fragmented 446 * try to reassemble. Process options. Pass to next level. 447 */ 448 void 449 ip_input(struct mbuf *m) 450 { 451 struct rm_priotracker in_ifa_tracker; 452 struct ip *ip = NULL; 453 struct in_ifaddr *ia = NULL; 454 struct ifaddr *ifa; 455 struct ifnet *ifp; 456 int checkif, hlen = 0; 457 uint16_t sum, ip_len; 458 int dchg = 0; /* dest changed after fw */ 459 struct in_addr odst; /* original dst address */ 460 461 M_ASSERTPKTHDR(m); 462 463 if (m->m_flags & M_FASTFWD_OURS) { 464 m->m_flags &= ~M_FASTFWD_OURS; 465 /* Set up some basics that will be used later. */ 466 ip = mtod(m, struct ip *); 467 hlen = ip->ip_hl << 2; 468 ip_len = ntohs(ip->ip_len); 469 goto ours; 470 } 471 472 IPSTAT_INC(ips_total); 473 474 if (m->m_pkthdr.len < sizeof(struct ip)) 475 goto tooshort; 476 477 if (m->m_len < sizeof (struct ip) && 478 (m = m_pullup(m, sizeof (struct ip))) == NULL) { 479 IPSTAT_INC(ips_toosmall); 480 return; 481 } 482 ip = mtod(m, struct ip *); 483 484 if (ip->ip_v != IPVERSION) { 485 IPSTAT_INC(ips_badvers); 486 goto bad; 487 } 488 489 hlen = ip->ip_hl << 2; 490 if (hlen < sizeof(struct ip)) { /* minimum header length */ 491 IPSTAT_INC(ips_badhlen); 492 goto bad; 493 } 494 if (hlen > m->m_len) { 495 if ((m = m_pullup(m, hlen)) == NULL) { 496 IPSTAT_INC(ips_badhlen); 497 return; 498 } 499 ip = mtod(m, struct ip *); 500 } 501 502 IP_PROBE(receive, NULL, NULL, ip, m->m_pkthdr.rcvif, ip, NULL); 503 504 /* 127/8 must not appear on wire - RFC1122 */ 505 ifp = m->m_pkthdr.rcvif; 506 if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET || 507 (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) { 508 if ((ifp->if_flags & IFF_LOOPBACK) == 0) { 509 IPSTAT_INC(ips_badaddr); 510 goto bad; 511 } 512 } 513 514 if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) { 515 sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID); 516 } else { 517 if (hlen == sizeof(struct ip)) { 518 sum = in_cksum_hdr(ip); 519 } else { 520 sum = in_cksum(m, hlen); 521 } 522 } 523 if (sum) { 524 IPSTAT_INC(ips_badsum); 525 goto bad; 526 } 527 528 #ifdef ALTQ 529 if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0) 530 /* packet is dropped by traffic conditioner */ 531 return; 532 #endif 533 534 ip_len = ntohs(ip->ip_len); 535 if (ip_len < hlen) { 536 IPSTAT_INC(ips_badlen); 537 goto bad; 538 } 539 540 /* 541 * Check that the amount of data in the buffers 542 * is as at least much as the IP header would have us expect. 543 * Trim mbufs if longer than we expect. 544 * Drop packet if shorter than we expect. 545 */ 546 if (m->m_pkthdr.len < ip_len) { 547 tooshort: 548 IPSTAT_INC(ips_tooshort); 549 goto bad; 550 } 551 if (m->m_pkthdr.len > ip_len) { 552 if (m->m_len == m->m_pkthdr.len) { 553 m->m_len = ip_len; 554 m->m_pkthdr.len = ip_len; 555 } else 556 m_adj(m, ip_len - m->m_pkthdr.len); 557 } 558 559 /* 560 * Try to forward the packet, but if we fail continue. 561 * ip_tryforward() does not generate redirects, so fall 562 * through to normal processing if redirects are required. 563 * ip_tryforward() does inbound and outbound packet firewall 564 * processing. If firewall has decided that destination becomes 565 * our local address, it sets M_FASTFWD_OURS flag. In this 566 * case skip another inbound firewall processing and update 567 * ip pointer. 568 */ 569 if (V_ipforwarding != 0 && V_ipsendredirects == 0 570 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 571 && (!IPSEC_ENABLED(ipv4) || 572 IPSEC_CAPS(ipv4, m, IPSEC_CAP_OPERABLE) == 0) 573 #endif 574 ) { 575 if ((m = ip_tryforward(m)) == NULL) 576 return; 577 if (m->m_flags & M_FASTFWD_OURS) { 578 m->m_flags &= ~M_FASTFWD_OURS; 579 ip = mtod(m, struct ip *); 580 goto ours; 581 } 582 } 583 584 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 585 /* 586 * Bypass packet filtering for packets previously handled by IPsec. 587 */ 588 if (IPSEC_ENABLED(ipv4) && 589 IPSEC_CAPS(ipv4, m, IPSEC_CAP_BYPASS_FILTER) != 0) 590 goto passin; 591 #endif 592 593 /* 594 * Run through list of hooks for input packets. 595 * 596 * NB: Beware of the destination address changing (e.g. 597 * by NAT rewriting). When this happens, tell 598 * ip_forward to do the right thing. 599 */ 600 601 /* Jump over all PFIL processing if hooks are not active. */ 602 if (!PFIL_HOOKED(&V_inet_pfil_hook)) 603 goto passin; 604 605 odst = ip->ip_dst; 606 if (pfil_run_hooks(&V_inet_pfil_hook, &m, ifp, PFIL_IN, 0, NULL) != 0) 607 return; 608 if (m == NULL) /* consumed by filter */ 609 return; 610 611 ip = mtod(m, struct ip *); 612 dchg = (odst.s_addr != ip->ip_dst.s_addr); 613 ifp = m->m_pkthdr.rcvif; 614 615 if (m->m_flags & M_FASTFWD_OURS) { 616 m->m_flags &= ~M_FASTFWD_OURS; 617 goto ours; 618 } 619 if (m->m_flags & M_IP_NEXTHOP) { 620 if (m_tag_find(m, PACKET_TAG_IPFORWARD, NULL) != NULL) { 621 /* 622 * Directly ship the packet on. This allows 623 * forwarding packets originally destined to us 624 * to some other directly connected host. 625 */ 626 ip_forward(m, 1); 627 return; 628 } 629 } 630 passin: 631 632 /* 633 * Process options and, if not destined for us, 634 * ship it on. ip_dooptions returns 1 when an 635 * error was detected (causing an icmp message 636 * to be sent and the original packet to be freed). 637 */ 638 if (hlen > sizeof (struct ip) && ip_dooptions(m, 0)) 639 return; 640 641 /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no 642 * matter if it is destined to another node, or whether it is 643 * a multicast one, RSVP wants it! and prevents it from being forwarded 644 * anywhere else. Also checks if the rsvp daemon is running before 645 * grabbing the packet. 646 */ 647 if (V_rsvp_on && ip->ip_p==IPPROTO_RSVP) 648 goto ours; 649 650 /* 651 * Check our list of addresses, to see if the packet is for us. 652 * If we don't have any addresses, assume any unicast packet 653 * we receive might be for us (and let the upper layers deal 654 * with it). 655 */ 656 if (CK_STAILQ_EMPTY(&V_in_ifaddrhead) && 657 (m->m_flags & (M_MCAST|M_BCAST)) == 0) 658 goto ours; 659 660 /* 661 * Enable a consistency check between the destination address 662 * and the arrival interface for a unicast packet (the RFC 1122 663 * strong ES model) if IP forwarding is disabled and the packet 664 * is not locally generated and the packet is not subject to 665 * 'ipfw fwd'. 666 * 667 * XXX - Checking also should be disabled if the destination 668 * address is ipnat'ed to a different interface. 669 * 670 * XXX - Checking is incompatible with IP aliases added 671 * to the loopback interface instead of the interface where 672 * the packets are received. 673 * 674 * XXX - This is the case for carp vhost IPs as well so we 675 * insert a workaround. If the packet got here, we already 676 * checked with carp_iamatch() and carp_forus(). 677 */ 678 checkif = V_ip_checkinterface && (V_ipforwarding == 0) && 679 ifp != NULL && ((ifp->if_flags & IFF_LOOPBACK) == 0) && 680 ifp->if_carp == NULL && (dchg == 0); 681 682 /* 683 * Check for exact addresses in the hash bucket. 684 */ 685 IN_IFADDR_RLOCK(&in_ifa_tracker); 686 LIST_FOREACH(ia, INADDR_HASH(ip->ip_dst.s_addr), ia_hash) { 687 /* 688 * If the address matches, verify that the packet 689 * arrived via the correct interface if checking is 690 * enabled. 691 */ 692 if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr && 693 (!checkif || ia->ia_ifp == ifp)) { 694 counter_u64_add(ia->ia_ifa.ifa_ipackets, 1); 695 counter_u64_add(ia->ia_ifa.ifa_ibytes, 696 m->m_pkthdr.len); 697 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 698 goto ours; 699 } 700 } 701 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 702 703 /* 704 * Check for broadcast addresses. 705 * 706 * Only accept broadcast packets that arrive via the matching 707 * interface. Reception of forwarded directed broadcasts would 708 * be handled via ip_forward() and ether_output() with the loopback 709 * into the stack for SIMPLEX interfaces handled by ether_output(). 710 */ 711 if (ifp != NULL && ifp->if_flags & IFF_BROADCAST) { 712 struct epoch_tracker et; 713 714 NET_EPOCH_ENTER(et); 715 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 716 if (ifa->ifa_addr->sa_family != AF_INET) 717 continue; 718 ia = ifatoia(ifa); 719 if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr == 720 ip->ip_dst.s_addr) { 721 counter_u64_add(ia->ia_ifa.ifa_ipackets, 1); 722 counter_u64_add(ia->ia_ifa.ifa_ibytes, 723 m->m_pkthdr.len); 724 NET_EPOCH_EXIT(et); 725 goto ours; 726 } 727 #ifdef BOOTP_COMPAT 728 if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY) { 729 counter_u64_add(ia->ia_ifa.ifa_ipackets, 1); 730 counter_u64_add(ia->ia_ifa.ifa_ibytes, 731 m->m_pkthdr.len); 732 NET_EPOCH_EXIT(et); 733 goto ours; 734 } 735 #endif 736 } 737 NET_EPOCH_EXIT(et); 738 ia = NULL; 739 } 740 /* RFC 3927 2.7: Do not forward datagrams for 169.254.0.0/16. */ 741 if (IN_LINKLOCAL(ntohl(ip->ip_dst.s_addr))) { 742 IPSTAT_INC(ips_cantforward); 743 m_freem(m); 744 return; 745 } 746 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) { 747 if (V_ip_mrouter) { 748 /* 749 * If we are acting as a multicast router, all 750 * incoming multicast packets are passed to the 751 * kernel-level multicast forwarding function. 752 * The packet is returned (relatively) intact; if 753 * ip_mforward() returns a non-zero value, the packet 754 * must be discarded, else it may be accepted below. 755 */ 756 if (ip_mforward && ip_mforward(ip, ifp, m, 0) != 0) { 757 IPSTAT_INC(ips_cantforward); 758 m_freem(m); 759 return; 760 } 761 762 /* 763 * The process-level routing daemon needs to receive 764 * all multicast IGMP packets, whether or not this 765 * host belongs to their destination groups. 766 */ 767 if (ip->ip_p == IPPROTO_IGMP) 768 goto ours; 769 IPSTAT_INC(ips_forward); 770 } 771 /* 772 * Assume the packet is for us, to avoid prematurely taking 773 * a lock on the in_multi hash. Protocols must perform 774 * their own filtering and update statistics accordingly. 775 */ 776 goto ours; 777 } 778 if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST) 779 goto ours; 780 if (ip->ip_dst.s_addr == INADDR_ANY) 781 goto ours; 782 783 /* 784 * Not for us; forward if possible and desirable. 785 */ 786 if (V_ipforwarding == 0) { 787 IPSTAT_INC(ips_cantforward); 788 m_freem(m); 789 } else { 790 ip_forward(m, dchg); 791 } 792 return; 793 794 ours: 795 #ifdef IPSTEALTH 796 /* 797 * IPSTEALTH: Process non-routing options only 798 * if the packet is destined for us. 799 */ 800 if (V_ipstealth && hlen > sizeof (struct ip) && ip_dooptions(m, 1)) 801 return; 802 #endif /* IPSTEALTH */ 803 804 /* 805 * Attempt reassembly; if it succeeds, proceed. 806 * ip_reass() will return a different mbuf. 807 */ 808 if (ip->ip_off & htons(IP_MF | IP_OFFMASK)) { 809 /* XXXGL: shouldn't we save & set m_flags? */ 810 m = ip_reass(m); 811 if (m == NULL) 812 return; 813 ip = mtod(m, struct ip *); 814 /* Get the header length of the reassembled packet */ 815 hlen = ip->ip_hl << 2; 816 } 817 818 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 819 if (IPSEC_ENABLED(ipv4)) { 820 if (IPSEC_INPUT(ipv4, m, hlen, ip->ip_p) != 0) 821 return; 822 } 823 #endif /* IPSEC */ 824 825 /* 826 * Switch out to protocol's input routine. 827 */ 828 IPSTAT_INC(ips_delivered); 829 830 (*inetsw[ip_protox[ip->ip_p]].pr_input)(&m, &hlen, ip->ip_p); 831 return; 832 bad: 833 m_freem(m); 834 } 835 836 /* 837 * IP timer processing; 838 * if a timer expires on a reassembly 839 * queue, discard it. 840 */ 841 void 842 ip_slowtimo(void) 843 { 844 VNET_ITERATOR_DECL(vnet_iter); 845 846 VNET_LIST_RLOCK_NOSLEEP(); 847 VNET_FOREACH(vnet_iter) { 848 CURVNET_SET(vnet_iter); 849 ipreass_slowtimo(); 850 CURVNET_RESTORE(); 851 } 852 VNET_LIST_RUNLOCK_NOSLEEP(); 853 } 854 855 void 856 ip_drain(void) 857 { 858 VNET_ITERATOR_DECL(vnet_iter); 859 860 VNET_LIST_RLOCK_NOSLEEP(); 861 VNET_FOREACH(vnet_iter) { 862 CURVNET_SET(vnet_iter); 863 ipreass_drain(); 864 CURVNET_RESTORE(); 865 } 866 VNET_LIST_RUNLOCK_NOSLEEP(); 867 } 868 869 /* 870 * The protocol to be inserted into ip_protox[] must be already registered 871 * in inetsw[], either statically or through pf_proto_register(). 872 */ 873 int 874 ipproto_register(short ipproto) 875 { 876 struct protosw *pr; 877 878 /* Sanity checks. */ 879 if (ipproto <= 0 || ipproto >= IPPROTO_MAX) 880 return (EPROTONOSUPPORT); 881 882 /* 883 * The protocol slot must not be occupied by another protocol 884 * already. An index pointing to IPPROTO_RAW is unused. 885 */ 886 pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW); 887 if (pr == NULL) 888 return (EPFNOSUPPORT); 889 if (ip_protox[ipproto] != pr - inetsw) /* IPPROTO_RAW */ 890 return (EEXIST); 891 892 /* Find the protocol position in inetsw[] and set the index. */ 893 for (pr = inetdomain.dom_protosw; 894 pr < inetdomain.dom_protoswNPROTOSW; pr++) { 895 if (pr->pr_domain->dom_family == PF_INET && 896 pr->pr_protocol && pr->pr_protocol == ipproto) { 897 ip_protox[pr->pr_protocol] = pr - inetsw; 898 return (0); 899 } 900 } 901 return (EPROTONOSUPPORT); 902 } 903 904 int 905 ipproto_unregister(short ipproto) 906 { 907 struct protosw *pr; 908 909 /* Sanity checks. */ 910 if (ipproto <= 0 || ipproto >= IPPROTO_MAX) 911 return (EPROTONOSUPPORT); 912 913 /* Check if the protocol was indeed registered. */ 914 pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW); 915 if (pr == NULL) 916 return (EPFNOSUPPORT); 917 if (ip_protox[ipproto] == pr - inetsw) /* IPPROTO_RAW */ 918 return (ENOENT); 919 920 /* Reset the protocol slot to IPPROTO_RAW. */ 921 ip_protox[ipproto] = pr - inetsw; 922 return (0); 923 } 924 925 u_char inetctlerrmap[PRC_NCMDS] = { 926 0, 0, 0, 0, 927 0, EMSGSIZE, EHOSTDOWN, EHOSTUNREACH, 928 EHOSTUNREACH, EHOSTUNREACH, ECONNREFUSED, ECONNREFUSED, 929 EMSGSIZE, EHOSTUNREACH, 0, 0, 930 0, 0, EHOSTUNREACH, 0, 931 ENOPROTOOPT, ECONNREFUSED 932 }; 933 934 /* 935 * Forward a packet. If some error occurs return the sender 936 * an icmp packet. Note we can't always generate a meaningful 937 * icmp message because icmp doesn't have a large enough repertoire 938 * of codes and types. 939 * 940 * If not forwarding, just drop the packet. This could be confusing 941 * if ipforwarding was zero but some routing protocol was advancing 942 * us as a gateway to somewhere. However, we must let the routing 943 * protocol deal with that. 944 * 945 * The srcrt parameter indicates whether the packet is being forwarded 946 * via a source route. 947 */ 948 void 949 ip_forward(struct mbuf *m, int srcrt) 950 { 951 struct ip *ip = mtod(m, struct ip *); 952 struct in_ifaddr *ia; 953 struct mbuf *mcopy; 954 struct sockaddr_in *sin; 955 struct in_addr dest; 956 struct route ro; 957 struct epoch_tracker et; 958 int error, type = 0, code = 0, mtu = 0; 959 960 if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) { 961 IPSTAT_INC(ips_cantforward); 962 m_freem(m); 963 return; 964 } 965 if ( 966 #ifdef IPSTEALTH 967 V_ipstealth == 0 && 968 #endif 969 ip->ip_ttl <= IPTTLDEC) { 970 icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, 0, 0); 971 return; 972 } 973 974 bzero(&ro, sizeof(ro)); 975 sin = (struct sockaddr_in *)&ro.ro_dst; 976 sin->sin_family = AF_INET; 977 sin->sin_len = sizeof(*sin); 978 sin->sin_addr = ip->ip_dst; 979 #ifdef RADIX_MPATH 980 rtalloc_mpath_fib(&ro, 981 ntohl(ip->ip_src.s_addr ^ ip->ip_dst.s_addr), 982 M_GETFIB(m)); 983 #else 984 in_rtalloc_ign(&ro, 0, M_GETFIB(m)); 985 #endif 986 NET_EPOCH_ENTER(et); 987 if (ro.ro_rt != NULL) { 988 ia = ifatoia(ro.ro_rt->rt_ifa); 989 } else 990 ia = NULL; 991 /* 992 * Save the IP header and at most 8 bytes of the payload, 993 * in case we need to generate an ICMP message to the src. 994 * 995 * XXX this can be optimized a lot by saving the data in a local 996 * buffer on the stack (72 bytes at most), and only allocating the 997 * mbuf if really necessary. The vast majority of the packets 998 * are forwarded without having to send an ICMP back (either 999 * because unnecessary, or because rate limited), so we are 1000 * really we are wasting a lot of work here. 1001 * 1002 * We don't use m_copym() because it might return a reference 1003 * to a shared cluster. Both this function and ip_output() 1004 * assume exclusive access to the IP header in `m', so any 1005 * data in a cluster may change before we reach icmp_error(). 1006 */ 1007 mcopy = m_gethdr(M_NOWAIT, m->m_type); 1008 if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, M_NOWAIT)) { 1009 /* 1010 * It's probably ok if the pkthdr dup fails (because 1011 * the deep copy of the tag chain failed), but for now 1012 * be conservative and just discard the copy since 1013 * code below may some day want the tags. 1014 */ 1015 m_free(mcopy); 1016 mcopy = NULL; 1017 } 1018 if (mcopy != NULL) { 1019 mcopy->m_len = min(ntohs(ip->ip_len), M_TRAILINGSPACE(mcopy)); 1020 mcopy->m_pkthdr.len = mcopy->m_len; 1021 m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t)); 1022 } 1023 #ifdef IPSTEALTH 1024 if (V_ipstealth == 0) 1025 #endif 1026 ip->ip_ttl -= IPTTLDEC; 1027 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1028 if (IPSEC_ENABLED(ipv4)) { 1029 if ((error = IPSEC_FORWARD(ipv4, m)) != 0) { 1030 /* mbuf consumed by IPsec */ 1031 m_freem(mcopy); 1032 if (error != EINPROGRESS) 1033 IPSTAT_INC(ips_cantforward); 1034 goto out; 1035 } 1036 /* No IPsec processing required */ 1037 } 1038 #endif /* IPSEC */ 1039 /* 1040 * If forwarding packet using same interface that it came in on, 1041 * perhaps should send a redirect to sender to shortcut a hop. 1042 * Only send redirect if source is sending directly to us, 1043 * and if packet was not source routed (or has any options). 1044 * Also, don't send redirect if forwarding using a default route 1045 * or a route modified by a redirect. 1046 */ 1047 dest.s_addr = 0; 1048 if (!srcrt && V_ipsendredirects && 1049 ia != NULL && ia->ia_ifp == m->m_pkthdr.rcvif) { 1050 struct rtentry *rt; 1051 1052 rt = ro.ro_rt; 1053 1054 if (rt && (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 && 1055 satosin(rt_key(rt))->sin_addr.s_addr != 0) { 1056 #define RTA(rt) ((struct in_ifaddr *)(rt->rt_ifa)) 1057 u_long src = ntohl(ip->ip_src.s_addr); 1058 1059 if (RTA(rt) && 1060 (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) { 1061 if (rt->rt_flags & RTF_GATEWAY) 1062 dest.s_addr = satosin(rt->rt_gateway)->sin_addr.s_addr; 1063 else 1064 dest.s_addr = ip->ip_dst.s_addr; 1065 /* Router requirements says to only send host redirects */ 1066 type = ICMP_REDIRECT; 1067 code = ICMP_REDIRECT_HOST; 1068 } 1069 } 1070 } 1071 1072 error = ip_output(m, NULL, &ro, IP_FORWARDING, NULL, NULL); 1073 1074 if (error == EMSGSIZE && ro.ro_rt) 1075 mtu = ro.ro_rt->rt_mtu; 1076 RO_RTFREE(&ro); 1077 1078 if (error) 1079 IPSTAT_INC(ips_cantforward); 1080 else { 1081 IPSTAT_INC(ips_forward); 1082 if (type) 1083 IPSTAT_INC(ips_redirectsent); 1084 else { 1085 if (mcopy) 1086 m_freem(mcopy); 1087 goto out; 1088 } 1089 } 1090 if (mcopy == NULL) 1091 goto out; 1092 1093 1094 switch (error) { 1095 1096 case 0: /* forwarded, but need redirect */ 1097 /* type, code set above */ 1098 break; 1099 1100 case ENETUNREACH: 1101 case EHOSTUNREACH: 1102 case ENETDOWN: 1103 case EHOSTDOWN: 1104 default: 1105 type = ICMP_UNREACH; 1106 code = ICMP_UNREACH_HOST; 1107 break; 1108 1109 case EMSGSIZE: 1110 type = ICMP_UNREACH; 1111 code = ICMP_UNREACH_NEEDFRAG; 1112 /* 1113 * If the MTU was set before make sure we are below the 1114 * interface MTU. 1115 * If the MTU wasn't set before use the interface mtu or 1116 * fall back to the next smaller mtu step compared to the 1117 * current packet size. 1118 */ 1119 if (mtu != 0) { 1120 if (ia != NULL) 1121 mtu = min(mtu, ia->ia_ifp->if_mtu); 1122 } else { 1123 if (ia != NULL) 1124 mtu = ia->ia_ifp->if_mtu; 1125 else 1126 mtu = ip_next_mtu(ntohs(ip->ip_len), 0); 1127 } 1128 IPSTAT_INC(ips_cantfrag); 1129 break; 1130 1131 case ENOBUFS: 1132 case EACCES: /* ipfw denied packet */ 1133 m_freem(mcopy); 1134 goto out; 1135 } 1136 icmp_error(mcopy, type, code, dest.s_addr, mtu); 1137 out: 1138 NET_EPOCH_EXIT(et); 1139 } 1140 1141 #define CHECK_SO_CT(sp, ct) \ 1142 (((sp->so_options & SO_TIMESTAMP) && (sp->so_ts_clock == ct)) ? 1 : 0) 1143 1144 void 1145 ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip, 1146 struct mbuf *m) 1147 { 1148 bool stamped; 1149 1150 stamped = false; 1151 if ((inp->inp_socket->so_options & SO_BINTIME) || 1152 CHECK_SO_CT(inp->inp_socket, SO_TS_BINTIME)) { 1153 struct bintime boottimebin, bt; 1154 struct timespec ts1; 1155 1156 if ((m->m_flags & (M_PKTHDR | M_TSTMP)) == (M_PKTHDR | 1157 M_TSTMP)) { 1158 mbuf_tstmp2timespec(m, &ts1); 1159 timespec2bintime(&ts1, &bt); 1160 getboottimebin(&boottimebin); 1161 bintime_add(&bt, &boottimebin); 1162 } else { 1163 bintime(&bt); 1164 } 1165 *mp = sbcreatecontrol((caddr_t)&bt, sizeof(bt), 1166 SCM_BINTIME, SOL_SOCKET); 1167 if (*mp != NULL) { 1168 mp = &(*mp)->m_next; 1169 stamped = true; 1170 } 1171 } 1172 if (CHECK_SO_CT(inp->inp_socket, SO_TS_REALTIME_MICRO)) { 1173 struct bintime boottimebin, bt1; 1174 struct timespec ts1;; 1175 struct timeval tv; 1176 1177 if ((m->m_flags & (M_PKTHDR | M_TSTMP)) == (M_PKTHDR | 1178 M_TSTMP)) { 1179 mbuf_tstmp2timespec(m, &ts1); 1180 timespec2bintime(&ts1, &bt1); 1181 getboottimebin(&boottimebin); 1182 bintime_add(&bt1, &boottimebin); 1183 bintime2timeval(&bt1, &tv); 1184 } else { 1185 microtime(&tv); 1186 } 1187 *mp = sbcreatecontrol((caddr_t)&tv, sizeof(tv), 1188 SCM_TIMESTAMP, SOL_SOCKET); 1189 if (*mp != NULL) { 1190 mp = &(*mp)->m_next; 1191 stamped = true; 1192 } 1193 } else if (CHECK_SO_CT(inp->inp_socket, SO_TS_REALTIME)) { 1194 struct bintime boottimebin; 1195 struct timespec ts, ts1; 1196 1197 if ((m->m_flags & (M_PKTHDR | M_TSTMP)) == (M_PKTHDR | 1198 M_TSTMP)) { 1199 mbuf_tstmp2timespec(m, &ts); 1200 getboottimebin(&boottimebin); 1201 bintime2timespec(&boottimebin, &ts1); 1202 timespecadd(&ts, &ts1, &ts); 1203 } else { 1204 nanotime(&ts); 1205 } 1206 *mp = sbcreatecontrol((caddr_t)&ts, sizeof(ts), 1207 SCM_REALTIME, SOL_SOCKET); 1208 if (*mp != NULL) { 1209 mp = &(*mp)->m_next; 1210 stamped = true; 1211 } 1212 } else if (CHECK_SO_CT(inp->inp_socket, SO_TS_MONOTONIC)) { 1213 struct timespec ts; 1214 1215 if ((m->m_flags & (M_PKTHDR | M_TSTMP)) == (M_PKTHDR | 1216 M_TSTMP)) 1217 mbuf_tstmp2timespec(m, &ts); 1218 else 1219 nanouptime(&ts); 1220 *mp = sbcreatecontrol((caddr_t)&ts, sizeof(ts), 1221 SCM_MONOTONIC, SOL_SOCKET); 1222 if (*mp != NULL) { 1223 mp = &(*mp)->m_next; 1224 stamped = true; 1225 } 1226 } 1227 if (stamped && (m->m_flags & (M_PKTHDR | M_TSTMP)) == (M_PKTHDR | 1228 M_TSTMP)) { 1229 struct sock_timestamp_info sti; 1230 1231 bzero(&sti, sizeof(sti)); 1232 sti.st_info_flags = ST_INFO_HW; 1233 if ((m->m_flags & M_TSTMP_HPREC) != 0) 1234 sti.st_info_flags |= ST_INFO_HW_HPREC; 1235 *mp = sbcreatecontrol((caddr_t)&sti, sizeof(sti), SCM_TIME_INFO, 1236 SOL_SOCKET); 1237 if (*mp != NULL) 1238 mp = &(*mp)->m_next; 1239 } 1240 if (inp->inp_flags & INP_RECVDSTADDR) { 1241 *mp = sbcreatecontrol((caddr_t)&ip->ip_dst, 1242 sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP); 1243 if (*mp) 1244 mp = &(*mp)->m_next; 1245 } 1246 if (inp->inp_flags & INP_RECVTTL) { 1247 *mp = sbcreatecontrol((caddr_t)&ip->ip_ttl, 1248 sizeof(u_char), IP_RECVTTL, IPPROTO_IP); 1249 if (*mp) 1250 mp = &(*mp)->m_next; 1251 } 1252 #ifdef notyet 1253 /* XXX 1254 * Moving these out of udp_input() made them even more broken 1255 * than they already were. 1256 */ 1257 /* options were tossed already */ 1258 if (inp->inp_flags & INP_RECVOPTS) { 1259 *mp = sbcreatecontrol((caddr_t)opts_deleted_above, 1260 sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP); 1261 if (*mp) 1262 mp = &(*mp)->m_next; 1263 } 1264 /* ip_srcroute doesn't do what we want here, need to fix */ 1265 if (inp->inp_flags & INP_RECVRETOPTS) { 1266 *mp = sbcreatecontrol((caddr_t)ip_srcroute(m), 1267 sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP); 1268 if (*mp) 1269 mp = &(*mp)->m_next; 1270 } 1271 #endif 1272 if (inp->inp_flags & INP_RECVIF) { 1273 struct ifnet *ifp; 1274 struct sdlbuf { 1275 struct sockaddr_dl sdl; 1276 u_char pad[32]; 1277 } sdlbuf; 1278 struct sockaddr_dl *sdp; 1279 struct sockaddr_dl *sdl2 = &sdlbuf.sdl; 1280 1281 if ((ifp = m->m_pkthdr.rcvif) && 1282 ifp->if_index && ifp->if_index <= V_if_index) { 1283 sdp = (struct sockaddr_dl *)ifp->if_addr->ifa_addr; 1284 /* 1285 * Change our mind and don't try copy. 1286 */ 1287 if (sdp->sdl_family != AF_LINK || 1288 sdp->sdl_len > sizeof(sdlbuf)) { 1289 goto makedummy; 1290 } 1291 bcopy(sdp, sdl2, sdp->sdl_len); 1292 } else { 1293 makedummy: 1294 sdl2->sdl_len = 1295 offsetof(struct sockaddr_dl, sdl_data[0]); 1296 sdl2->sdl_family = AF_LINK; 1297 sdl2->sdl_index = 0; 1298 sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0; 1299 } 1300 *mp = sbcreatecontrol((caddr_t)sdl2, sdl2->sdl_len, 1301 IP_RECVIF, IPPROTO_IP); 1302 if (*mp) 1303 mp = &(*mp)->m_next; 1304 } 1305 if (inp->inp_flags & INP_RECVTOS) { 1306 *mp = sbcreatecontrol((caddr_t)&ip->ip_tos, 1307 sizeof(u_char), IP_RECVTOS, IPPROTO_IP); 1308 if (*mp) 1309 mp = &(*mp)->m_next; 1310 } 1311 1312 if (inp->inp_flags2 & INP_RECVFLOWID) { 1313 uint32_t flowid, flow_type; 1314 1315 flowid = m->m_pkthdr.flowid; 1316 flow_type = M_HASHTYPE_GET(m); 1317 1318 /* 1319 * XXX should handle the failure of one or the 1320 * other - don't populate both? 1321 */ 1322 *mp = sbcreatecontrol((caddr_t) &flowid, 1323 sizeof(uint32_t), IP_FLOWID, IPPROTO_IP); 1324 if (*mp) 1325 mp = &(*mp)->m_next; 1326 *mp = sbcreatecontrol((caddr_t) &flow_type, 1327 sizeof(uint32_t), IP_FLOWTYPE, IPPROTO_IP); 1328 if (*mp) 1329 mp = &(*mp)->m_next; 1330 } 1331 1332 #ifdef RSS 1333 if (inp->inp_flags2 & INP_RECVRSSBUCKETID) { 1334 uint32_t flowid, flow_type; 1335 uint32_t rss_bucketid; 1336 1337 flowid = m->m_pkthdr.flowid; 1338 flow_type = M_HASHTYPE_GET(m); 1339 1340 if (rss_hash2bucket(flowid, flow_type, &rss_bucketid) == 0) { 1341 *mp = sbcreatecontrol((caddr_t) &rss_bucketid, 1342 sizeof(uint32_t), IP_RSSBUCKETID, IPPROTO_IP); 1343 if (*mp) 1344 mp = &(*mp)->m_next; 1345 } 1346 } 1347 #endif 1348 } 1349 1350 /* 1351 * XXXRW: Multicast routing code in ip_mroute.c is generally MPSAFE, but the 1352 * ip_rsvp and ip_rsvp_on variables need to be interlocked with rsvp_on 1353 * locking. This code remains in ip_input.c as ip_mroute.c is optionally 1354 * compiled. 1355 */ 1356 VNET_DEFINE_STATIC(int, ip_rsvp_on); 1357 VNET_DEFINE(struct socket *, ip_rsvpd); 1358 1359 #define V_ip_rsvp_on VNET(ip_rsvp_on) 1360 1361 int 1362 ip_rsvp_init(struct socket *so) 1363 { 1364 1365 if (so->so_type != SOCK_RAW || 1366 so->so_proto->pr_protocol != IPPROTO_RSVP) 1367 return EOPNOTSUPP; 1368 1369 if (V_ip_rsvpd != NULL) 1370 return EADDRINUSE; 1371 1372 V_ip_rsvpd = so; 1373 /* 1374 * This may seem silly, but we need to be sure we don't over-increment 1375 * the RSVP counter, in case something slips up. 1376 */ 1377 if (!V_ip_rsvp_on) { 1378 V_ip_rsvp_on = 1; 1379 V_rsvp_on++; 1380 } 1381 1382 return 0; 1383 } 1384 1385 int 1386 ip_rsvp_done(void) 1387 { 1388 1389 V_ip_rsvpd = NULL; 1390 /* 1391 * This may seem silly, but we need to be sure we don't over-decrement 1392 * the RSVP counter, in case something slips up. 1393 */ 1394 if (V_ip_rsvp_on) { 1395 V_ip_rsvp_on = 0; 1396 V_rsvp_on--; 1397 } 1398 return 0; 1399 } 1400 1401 int 1402 rsvp_input(struct mbuf **mp, int *offp, int proto) 1403 { 1404 struct mbuf *m; 1405 1406 m = *mp; 1407 *mp = NULL; 1408 1409 if (rsvp_input_p) { /* call the real one if loaded */ 1410 *mp = m; 1411 rsvp_input_p(mp, offp, proto); 1412 return (IPPROTO_DONE); 1413 } 1414 1415 /* Can still get packets with rsvp_on = 0 if there is a local member 1416 * of the group to which the RSVP packet is addressed. But in this 1417 * case we want to throw the packet away. 1418 */ 1419 1420 if (!V_rsvp_on) { 1421 m_freem(m); 1422 return (IPPROTO_DONE); 1423 } 1424 1425 if (V_ip_rsvpd != NULL) { 1426 *mp = m; 1427 rip_input(mp, offp, proto); 1428 return (IPPROTO_DONE); 1429 } 1430 /* Drop the packet */ 1431 m_freem(m); 1432 return (IPPROTO_DONE); 1433 } 1434