xref: /freebsd/sys/netinet/ip_input.c (revision 262e143bd46171a6415a5b28af260a5efa2a3db8)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
30  * $FreeBSD$
31  */
32 
33 #include "opt_bootp.h"
34 #include "opt_ipfw.h"
35 #include "opt_ipstealth.h"
36 #include "opt_ipsec.h"
37 #include "opt_mac.h"
38 #include "opt_carp.h"
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/callout.h>
43 #include <sys/mac.h>
44 #include <sys/mbuf.h>
45 #include <sys/malloc.h>
46 #include <sys/domain.h>
47 #include <sys/protosw.h>
48 #include <sys/socket.h>
49 #include <sys/time.h>
50 #include <sys/kernel.h>
51 #include <sys/syslog.h>
52 #include <sys/sysctl.h>
53 
54 #include <net/pfil.h>
55 #include <net/if.h>
56 #include <net/if_types.h>
57 #include <net/if_var.h>
58 #include <net/if_dl.h>
59 #include <net/route.h>
60 #include <net/netisr.h>
61 
62 #include <netinet/in.h>
63 #include <netinet/in_systm.h>
64 #include <netinet/in_var.h>
65 #include <netinet/ip.h>
66 #include <netinet/in_pcb.h>
67 #include <netinet/ip_var.h>
68 #include <netinet/ip_icmp.h>
69 #include <netinet/ip_options.h>
70 #include <machine/in_cksum.h>
71 #ifdef DEV_CARP
72 #include <netinet/ip_carp.h>
73 #endif
74 
75 #include <sys/socketvar.h>
76 
77 /* XXX: Temporary until ipfw_ether and ipfw_bridge are converted. */
78 #include <netinet/ip_fw.h>
79 #include <netinet/ip_dummynet.h>
80 
81 #ifdef IPSEC
82 #include <netinet6/ipsec.h>
83 #include <netkey/key.h>
84 #endif
85 
86 #ifdef FAST_IPSEC
87 #include <netipsec/ipsec.h>
88 #include <netipsec/key.h>
89 #endif
90 
91 int rsvp_on = 0;
92 
93 int	ipforwarding = 0;
94 SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
95     &ipforwarding, 0, "Enable IP forwarding between interfaces");
96 
97 static int	ipsendredirects = 1; /* XXX */
98 SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
99     &ipsendredirects, 0, "Enable sending IP redirects");
100 
101 int	ip_defttl = IPDEFTTL;
102 SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
103     &ip_defttl, 0, "Maximum TTL on IP packets");
104 
105 static int	ip_keepfaith = 0;
106 SYSCTL_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
107 	&ip_keepfaith,	0,
108 	"Enable packet capture for FAITH IPv4->IPv6 translater daemon");
109 
110 static int    nipq = 0;         /* total # of reass queues */
111 static int    maxnipq;
112 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragpackets, CTLFLAG_RW,
113 	&maxnipq, 0,
114 	"Maximum number of IPv4 fragment reassembly queue entries");
115 
116 static int    maxfragsperpacket;
117 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_RW,
118 	&maxfragsperpacket, 0,
119 	"Maximum number of IPv4 fragments allowed per packet");
120 
121 static int	ip_sendsourcequench = 0;
122 SYSCTL_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW,
123 	&ip_sendsourcequench, 0,
124 	"Enable the transmission of source quench packets");
125 
126 int	ip_do_randomid = 0;
127 SYSCTL_INT(_net_inet_ip, OID_AUTO, random_id, CTLFLAG_RW,
128 	&ip_do_randomid, 0,
129 	"Assign random ip_id values");
130 
131 /*
132  * XXX - Setting ip_checkinterface mostly implements the receive side of
133  * the Strong ES model described in RFC 1122, but since the routing table
134  * and transmit implementation do not implement the Strong ES model,
135  * setting this to 1 results in an odd hybrid.
136  *
137  * XXX - ip_checkinterface currently must be disabled if you use ipnat
138  * to translate the destination address to another local interface.
139  *
140  * XXX - ip_checkinterface must be disabled if you add IP aliases
141  * to the loopback interface instead of the interface where the
142  * packets for those addresses are received.
143  */
144 static int	ip_checkinterface = 0;
145 SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
146     &ip_checkinterface, 0, "Verify packet arrives on correct interface");
147 
148 struct pfil_head inet_pfil_hook;	/* Packet filter hooks */
149 
150 static struct	ifqueue ipintrq;
151 static int	ipqmaxlen = IFQ_MAXLEN;
152 
153 extern	struct domain inetdomain;
154 extern	struct protosw inetsw[];
155 u_char	ip_protox[IPPROTO_MAX];
156 struct	in_ifaddrhead in_ifaddrhead; 		/* first inet address */
157 struct	in_ifaddrhashhead *in_ifaddrhashtbl;	/* inet addr hash table  */
158 u_long 	in_ifaddrhmask;				/* mask for hash table */
159 
160 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen, CTLFLAG_RW,
161     &ipintrq.ifq_maxlen, 0, "Maximum size of the IP input queue");
162 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops, CTLFLAG_RD,
163     &ipintrq.ifq_drops, 0, "Number of packets dropped from the IP input queue");
164 
165 struct ipstat ipstat;
166 SYSCTL_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RW,
167     &ipstat, ipstat, "IP statistics (struct ipstat, netinet/ip_var.h)");
168 
169 /* Packet reassembly stuff */
170 #define IPREASS_NHASH_LOG2      6
171 #define IPREASS_NHASH           (1 << IPREASS_NHASH_LOG2)
172 #define IPREASS_HMASK           (IPREASS_NHASH - 1)
173 #define IPREASS_HASH(x,y) \
174 	(((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
175 
176 static TAILQ_HEAD(ipqhead, ipq) ipq[IPREASS_NHASH];
177 struct mtx ipqlock;
178 struct callout ipport_tick_callout;
179 
180 #define	IPQ_LOCK()	mtx_lock(&ipqlock)
181 #define	IPQ_UNLOCK()	mtx_unlock(&ipqlock)
182 #define	IPQ_LOCK_INIT()	mtx_init(&ipqlock, "ipqlock", NULL, MTX_DEF)
183 #define	IPQ_LOCK_ASSERT()	mtx_assert(&ipqlock, MA_OWNED)
184 
185 #ifdef IPCTL_DEFMTU
186 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
187     &ip_mtu, 0, "Default MTU");
188 #endif
189 
190 #ifdef IPSTEALTH
191 int	ipstealth = 0;
192 SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW,
193     &ipstealth, 0, "");
194 #endif
195 
196 /*
197  * ipfw_ether and ipfw_bridge hooks.
198  * XXX: Temporary until those are converted to pfil_hooks as well.
199  */
200 ip_fw_chk_t *ip_fw_chk_ptr = NULL;
201 ip_dn_io_t *ip_dn_io_ptr = NULL;
202 int fw_enable = 1;
203 int fw_one_pass = 1;
204 
205 static void	ip_freef(struct ipqhead *, struct ipq *);
206 
207 /*
208  * IP initialization: fill in IP protocol switch table.
209  * All protocols not implemented in kernel go to raw IP protocol handler.
210  */
211 void
212 ip_init()
213 {
214 	register struct protosw *pr;
215 	register int i;
216 
217 	TAILQ_INIT(&in_ifaddrhead);
218 	in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &in_ifaddrhmask);
219 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
220 	if (pr == NULL)
221 		panic("ip_init: PF_INET not found");
222 
223 	/* Initialize the entire ip_protox[] array to IPPROTO_RAW. */
224 	for (i = 0; i < IPPROTO_MAX; i++)
225 		ip_protox[i] = pr - inetsw;
226 	/*
227 	 * Cycle through IP protocols and put them into the appropriate place
228 	 * in ip_protox[].
229 	 */
230 	for (pr = inetdomain.dom_protosw;
231 	    pr < inetdomain.dom_protoswNPROTOSW; pr++)
232 		if (pr->pr_domain->dom_family == PF_INET &&
233 		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW) {
234 			/* Be careful to only index valid IP protocols. */
235 			if (pr->pr_protocol < IPPROTO_MAX)
236 				ip_protox[pr->pr_protocol] = pr - inetsw;
237 		}
238 
239 	/* Initialize packet filter hooks. */
240 	inet_pfil_hook.ph_type = PFIL_TYPE_AF;
241 	inet_pfil_hook.ph_af = AF_INET;
242 	if ((i = pfil_head_register(&inet_pfil_hook)) != 0)
243 		printf("%s: WARNING: unable to register pfil hook, "
244 			"error %d\n", __func__, i);
245 
246 	/* Initialize IP reassembly queue. */
247 	IPQ_LOCK_INIT();
248 	for (i = 0; i < IPREASS_NHASH; i++)
249 	    TAILQ_INIT(&ipq[i]);
250 	maxnipq = nmbclusters / 32;
251 	maxfragsperpacket = 16;
252 
253 	/* Start ipport_tick. */
254 	callout_init(&ipport_tick_callout, CALLOUT_MPSAFE);
255 	ipport_tick(NULL);
256 	EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL,
257 		SHUTDOWN_PRI_DEFAULT);
258 
259 	/* Initialize various other remaining things. */
260 	ip_id = time_second & 0xffff;
261 	ipintrq.ifq_maxlen = ipqmaxlen;
262 	mtx_init(&ipintrq.ifq_mtx, "ip_inq", NULL, MTX_DEF);
263 	netisr_register(NETISR_IP, ip_input, &ipintrq, NETISR_MPSAFE);
264 }
265 
266 void ip_fini(xtp)
267 	void *xtp;
268 {
269 	callout_stop(&ipport_tick_callout);
270 }
271 
272 /*
273  * Ip input routine.  Checksum and byte swap header.  If fragmented
274  * try to reassemble.  Process options.  Pass to next level.
275  */
276 void
277 ip_input(struct mbuf *m)
278 {
279 	struct ip *ip = NULL;
280 	struct in_ifaddr *ia = NULL;
281 	struct ifaddr *ifa;
282 	int    checkif, hlen = 0;
283 	u_short sum;
284 	int dchg = 0;				/* dest changed after fw */
285 	struct in_addr odst;			/* original dst address */
286 #ifdef FAST_IPSEC
287 	struct m_tag *mtag;
288 	struct tdb_ident *tdbi;
289 	struct secpolicy *sp;
290 	int s, error;
291 #endif /* FAST_IPSEC */
292 
293   	M_ASSERTPKTHDR(m);
294 
295 	if (m->m_flags & M_FASTFWD_OURS) {
296 		/*
297 		 * Firewall or NAT changed destination to local.
298 		 * We expect ip_len and ip_off to be in host byte order.
299 		 */
300 		m->m_flags &= ~M_FASTFWD_OURS;
301 		/* Set up some basics that will be used later. */
302 		ip = mtod(m, struct ip *);
303 		hlen = ip->ip_hl << 2;
304   		goto ours;
305   	}
306 
307 	ipstat.ips_total++;
308 
309 	if (m->m_pkthdr.len < sizeof(struct ip))
310 		goto tooshort;
311 
312 	if (m->m_len < sizeof (struct ip) &&
313 	    (m = m_pullup(m, sizeof (struct ip))) == NULL) {
314 		ipstat.ips_toosmall++;
315 		return;
316 	}
317 	ip = mtod(m, struct ip *);
318 
319 	if (ip->ip_v != IPVERSION) {
320 		ipstat.ips_badvers++;
321 		goto bad;
322 	}
323 
324 	hlen = ip->ip_hl << 2;
325 	if (hlen < sizeof(struct ip)) {	/* minimum header length */
326 		ipstat.ips_badhlen++;
327 		goto bad;
328 	}
329 	if (hlen > m->m_len) {
330 		if ((m = m_pullup(m, hlen)) == NULL) {
331 			ipstat.ips_badhlen++;
332 			return;
333 		}
334 		ip = mtod(m, struct ip *);
335 	}
336 
337 	/* 127/8 must not appear on wire - RFC1122 */
338 	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
339 	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
340 		if ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) {
341 			ipstat.ips_badaddr++;
342 			goto bad;
343 		}
344 	}
345 
346 	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
347 		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
348 	} else {
349 		if (hlen == sizeof(struct ip)) {
350 			sum = in_cksum_hdr(ip);
351 		} else {
352 			sum = in_cksum(m, hlen);
353 		}
354 	}
355 	if (sum) {
356 		ipstat.ips_badsum++;
357 		goto bad;
358 	}
359 
360 #ifdef ALTQ
361 	if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0)
362 		/* packet is dropped by traffic conditioner */
363 		return;
364 #endif
365 
366 	/*
367 	 * Convert fields to host representation.
368 	 */
369 	ip->ip_len = ntohs(ip->ip_len);
370 	if (ip->ip_len < hlen) {
371 		ipstat.ips_badlen++;
372 		goto bad;
373 	}
374 	ip->ip_off = ntohs(ip->ip_off);
375 
376 	/*
377 	 * Check that the amount of data in the buffers
378 	 * is as at least much as the IP header would have us expect.
379 	 * Trim mbufs if longer than we expect.
380 	 * Drop packet if shorter than we expect.
381 	 */
382 	if (m->m_pkthdr.len < ip->ip_len) {
383 tooshort:
384 		ipstat.ips_tooshort++;
385 		goto bad;
386 	}
387 	if (m->m_pkthdr.len > ip->ip_len) {
388 		if (m->m_len == m->m_pkthdr.len) {
389 			m->m_len = ip->ip_len;
390 			m->m_pkthdr.len = ip->ip_len;
391 		} else
392 			m_adj(m, ip->ip_len - m->m_pkthdr.len);
393 	}
394 #if defined(IPSEC) && !defined(IPSEC_FILTERGIF)
395 	/*
396 	 * Bypass packet filtering for packets from a tunnel (gif).
397 	 */
398 	if (ipsec_getnhist(m))
399 		goto passin;
400 #endif
401 #if defined(FAST_IPSEC) && !defined(IPSEC_FILTERGIF)
402 	/*
403 	 * Bypass packet filtering for packets from a tunnel (gif).
404 	 */
405 	if (m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL) != NULL)
406 		goto passin;
407 #endif
408 
409 	/*
410 	 * Run through list of hooks for input packets.
411 	 *
412 	 * NB: Beware of the destination address changing (e.g.
413 	 *     by NAT rewriting).  When this happens, tell
414 	 *     ip_forward to do the right thing.
415 	 */
416 
417 	/* Jump over all PFIL processing if hooks are not active. */
418 	if (inet_pfil_hook.ph_busy_count == -1)
419 		goto passin;
420 
421 	odst = ip->ip_dst;
422 	if (pfil_run_hooks(&inet_pfil_hook, &m, m->m_pkthdr.rcvif,
423 	    PFIL_IN, NULL) != 0)
424 		return;
425 	if (m == NULL)			/* consumed by filter */
426 		return;
427 
428 	ip = mtod(m, struct ip *);
429 	dchg = (odst.s_addr != ip->ip_dst.s_addr);
430 
431 #ifdef IPFIREWALL_FORWARD
432 	if (m->m_flags & M_FASTFWD_OURS) {
433 		m->m_flags &= ~M_FASTFWD_OURS;
434 		goto ours;
435 	}
436 #ifndef IPFIREWALL_FORWARD_EXTENDED
437 	dchg = (m_tag_find(m, PACKET_TAG_IPFORWARD, NULL) != NULL);
438 #else
439 	if ((dchg = (m_tag_find(m, PACKET_TAG_IPFORWARD, NULL) != NULL)) != 0) {
440 		/*
441 		 * Directly ship on the packet.  This allows to forward packets
442 		 * that were destined for us to some other directly connected
443 		 * host.
444 		 */
445 		ip_forward(m, dchg);
446 		return;
447 	}
448 #endif /* IPFIREWALL_FORWARD_EXTENDED */
449 #endif /* IPFIREWALL_FORWARD */
450 
451 passin:
452 	/*
453 	 * Process options and, if not destined for us,
454 	 * ship it on.  ip_dooptions returns 1 when an
455 	 * error was detected (causing an icmp message
456 	 * to be sent and the original packet to be freed).
457 	 */
458 	if (hlen > sizeof (struct ip) && ip_dooptions(m, 0))
459 		return;
460 
461         /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
462          * matter if it is destined to another node, or whether it is
463          * a multicast one, RSVP wants it! and prevents it from being forwarded
464          * anywhere else. Also checks if the rsvp daemon is running before
465 	 * grabbing the packet.
466          */
467 	if (rsvp_on && ip->ip_p==IPPROTO_RSVP)
468 		goto ours;
469 
470 	/*
471 	 * Check our list of addresses, to see if the packet is for us.
472 	 * If we don't have any addresses, assume any unicast packet
473 	 * we receive might be for us (and let the upper layers deal
474 	 * with it).
475 	 */
476 	if (TAILQ_EMPTY(&in_ifaddrhead) &&
477 	    (m->m_flags & (M_MCAST|M_BCAST)) == 0)
478 		goto ours;
479 
480 	/*
481 	 * Enable a consistency check between the destination address
482 	 * and the arrival interface for a unicast packet (the RFC 1122
483 	 * strong ES model) if IP forwarding is disabled and the packet
484 	 * is not locally generated and the packet is not subject to
485 	 * 'ipfw fwd'.
486 	 *
487 	 * XXX - Checking also should be disabled if the destination
488 	 * address is ipnat'ed to a different interface.
489 	 *
490 	 * XXX - Checking is incompatible with IP aliases added
491 	 * to the loopback interface instead of the interface where
492 	 * the packets are received.
493 	 *
494 	 * XXX - This is the case for carp vhost IPs as well so we
495 	 * insert a workaround. If the packet got here, we already
496 	 * checked with carp_iamatch() and carp_forus().
497 	 */
498 	checkif = ip_checkinterface && (ipforwarding == 0) &&
499 	    m->m_pkthdr.rcvif != NULL &&
500 	    ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) &&
501 #ifdef DEV_CARP
502 	    !m->m_pkthdr.rcvif->if_carp &&
503 #endif
504 	    (dchg == 0);
505 
506 	/*
507 	 * Check for exact addresses in the hash bucket.
508 	 */
509 	LIST_FOREACH(ia, INADDR_HASH(ip->ip_dst.s_addr), ia_hash) {
510 		/*
511 		 * If the address matches, verify that the packet
512 		 * arrived via the correct interface if checking is
513 		 * enabled.
514 		 */
515 		if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr &&
516 		    (!checkif || ia->ia_ifp == m->m_pkthdr.rcvif))
517 			goto ours;
518 	}
519 	/*
520 	 * Check for broadcast addresses.
521 	 *
522 	 * Only accept broadcast packets that arrive via the matching
523 	 * interface.  Reception of forwarded directed broadcasts would
524 	 * be handled via ip_forward() and ether_output() with the loopback
525 	 * into the stack for SIMPLEX interfaces handled by ether_output().
526 	 */
527 	if (m->m_pkthdr.rcvif != NULL &&
528 	    m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
529 	        TAILQ_FOREACH(ifa, &m->m_pkthdr.rcvif->if_addrhead, ifa_link) {
530 			if (ifa->ifa_addr->sa_family != AF_INET)
531 				continue;
532 			ia = ifatoia(ifa);
533 			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
534 			    ip->ip_dst.s_addr)
535 				goto ours;
536 			if (ia->ia_netbroadcast.s_addr == ip->ip_dst.s_addr)
537 				goto ours;
538 #ifdef BOOTP_COMPAT
539 			if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY)
540 				goto ours;
541 #endif
542 		}
543 	}
544 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
545 		struct in_multi *inm;
546 		if (ip_mrouter) {
547 			/*
548 			 * If we are acting as a multicast router, all
549 			 * incoming multicast packets are passed to the
550 			 * kernel-level multicast forwarding function.
551 			 * The packet is returned (relatively) intact; if
552 			 * ip_mforward() returns a non-zero value, the packet
553 			 * must be discarded, else it may be accepted below.
554 			 */
555 			if (ip_mforward &&
556 			    ip_mforward(ip, m->m_pkthdr.rcvif, m, 0) != 0) {
557 				ipstat.ips_cantforward++;
558 				m_freem(m);
559 				return;
560 			}
561 
562 			/*
563 			 * The process-level routing daemon needs to receive
564 			 * all multicast IGMP packets, whether or not this
565 			 * host belongs to their destination groups.
566 			 */
567 			if (ip->ip_p == IPPROTO_IGMP)
568 				goto ours;
569 			ipstat.ips_forward++;
570 		}
571 		/*
572 		 * See if we belong to the destination multicast group on the
573 		 * arrival interface.
574 		 */
575 		IN_MULTI_LOCK();
576 		IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
577 		IN_MULTI_UNLOCK();
578 		if (inm == NULL) {
579 			ipstat.ips_notmember++;
580 			m_freem(m);
581 			return;
582 		}
583 		goto ours;
584 	}
585 	if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
586 		goto ours;
587 	if (ip->ip_dst.s_addr == INADDR_ANY)
588 		goto ours;
589 
590 	/*
591 	 * FAITH(Firewall Aided Internet Translator)
592 	 */
593 	if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
594 		if (ip_keepfaith) {
595 			if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
596 				goto ours;
597 		}
598 		m_freem(m);
599 		return;
600 	}
601 
602 	/*
603 	 * Not for us; forward if possible and desirable.
604 	 */
605 	if (ipforwarding == 0) {
606 		ipstat.ips_cantforward++;
607 		m_freem(m);
608 	} else {
609 #ifdef IPSEC
610 		/*
611 		 * Enforce inbound IPsec SPD.
612 		 */
613 		if (ipsec4_in_reject(m, NULL)) {
614 			ipsecstat.in_polvio++;
615 			goto bad;
616 		}
617 #endif /* IPSEC */
618 #ifdef FAST_IPSEC
619 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
620 		s = splnet();
621 		if (mtag != NULL) {
622 			tdbi = (struct tdb_ident *)(mtag + 1);
623 			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
624 		} else {
625 			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
626 						   IP_FORWARDING, &error);
627 		}
628 		if (sp == NULL) {	/* NB: can happen if error */
629 			splx(s);
630 			/*XXX error stat???*/
631 			DPRINTF(("ip_input: no SP for forwarding\n"));	/*XXX*/
632 			goto bad;
633 		}
634 
635 		/*
636 		 * Check security policy against packet attributes.
637 		 */
638 		error = ipsec_in_reject(sp, m);
639 		KEY_FREESP(&sp);
640 		splx(s);
641 		if (error) {
642 			ipstat.ips_cantforward++;
643 			goto bad;
644 		}
645 #endif /* FAST_IPSEC */
646 		ip_forward(m, dchg);
647 	}
648 	return;
649 
650 ours:
651 #ifdef IPSTEALTH
652 	/*
653 	 * IPSTEALTH: Process non-routing options only
654 	 * if the packet is destined for us.
655 	 */
656 	if (ipstealth && hlen > sizeof (struct ip) &&
657 	    ip_dooptions(m, 1))
658 		return;
659 #endif /* IPSTEALTH */
660 
661 	/* Count the packet in the ip address stats */
662 	if (ia != NULL) {
663 		ia->ia_ifa.if_ipackets++;
664 		ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
665 	}
666 
667 	/*
668 	 * Attempt reassembly; if it succeeds, proceed.
669 	 * ip_reass() will return a different mbuf.
670 	 */
671 	if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
672 		m = ip_reass(m);
673 		if (m == NULL)
674 			return;
675 		ip = mtod(m, struct ip *);
676 		/* Get the header length of the reassembled packet */
677 		hlen = ip->ip_hl << 2;
678 	}
679 
680 	/*
681 	 * Further protocols expect the packet length to be w/o the
682 	 * IP header.
683 	 */
684 	ip->ip_len -= hlen;
685 
686 #ifdef IPSEC
687 	/*
688 	 * enforce IPsec policy checking if we are seeing last header.
689 	 * note that we do not visit this with protocols with pcb layer
690 	 * code - like udp/tcp/raw ip.
691 	 */
692 	if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0 &&
693 	    ipsec4_in_reject(m, NULL)) {
694 		ipsecstat.in_polvio++;
695 		goto bad;
696 	}
697 #endif
698 #ifdef FAST_IPSEC
699 	/*
700 	 * enforce IPsec policy checking if we are seeing last header.
701 	 * note that we do not visit this with protocols with pcb layer
702 	 * code - like udp/tcp/raw ip.
703 	 */
704 	if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0) {
705 		/*
706 		 * Check if the packet has already had IPsec processing
707 		 * done.  If so, then just pass it along.  This tag gets
708 		 * set during AH, ESP, etc. input handling, before the
709 		 * packet is returned to the ip input queue for delivery.
710 		 */
711 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
712 		s = splnet();
713 		if (mtag != NULL) {
714 			tdbi = (struct tdb_ident *)(mtag + 1);
715 			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
716 		} else {
717 			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
718 						   IP_FORWARDING, &error);
719 		}
720 		if (sp != NULL) {
721 			/*
722 			 * Check security policy against packet attributes.
723 			 */
724 			error = ipsec_in_reject(sp, m);
725 			KEY_FREESP(&sp);
726 		} else {
727 			/* XXX error stat??? */
728 			error = EINVAL;
729 DPRINTF(("ip_input: no SP, packet discarded\n"));/*XXX*/
730 			goto bad;
731 		}
732 		splx(s);
733 		if (error)
734 			goto bad;
735 	}
736 #endif /* FAST_IPSEC */
737 
738 	/*
739 	 * Switch out to protocol's input routine.
740 	 */
741 	ipstat.ips_delivered++;
742 
743 	(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
744 	return;
745 bad:
746 	m_freem(m);
747 }
748 
749 /*
750  * Take incoming datagram fragment and try to reassemble it into
751  * whole datagram.  If the argument is the first fragment or one
752  * in between the function will return NULL and store the mbuf
753  * in the fragment chain.  If the argument is the last fragment
754  * the packet will be reassembled and the pointer to the new
755  * mbuf returned for further processing.  Only m_tags attached
756  * to the first packet/fragment are preserved.
757  * The IP header is *NOT* adjusted out of iplen.
758  */
759 
760 struct mbuf *
761 ip_reass(struct mbuf *m)
762 {
763 	struct ip *ip;
764 	struct mbuf *p, *q, *nq, *t;
765 	struct ipq *fp = NULL;
766 	struct ipqhead *head;
767 	int i, hlen, next;
768 	u_int8_t ecn, ecn0;
769 	u_short hash;
770 
771 	/* If maxnipq or maxfragsperpacket are 0, never accept fragments. */
772 	if (maxnipq == 0 || maxfragsperpacket == 0) {
773 		ipstat.ips_fragments++;
774 		ipstat.ips_fragdropped++;
775 		m_freem(m);
776 		return (NULL);
777 	}
778 
779 	ip = mtod(m, struct ip *);
780 	hlen = ip->ip_hl << 2;
781 
782 	hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
783 	head = &ipq[hash];
784 	IPQ_LOCK();
785 
786 	/*
787 	 * Look for queue of fragments
788 	 * of this datagram.
789 	 */
790 	TAILQ_FOREACH(fp, head, ipq_list)
791 		if (ip->ip_id == fp->ipq_id &&
792 		    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
793 		    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
794 #ifdef MAC
795 		    mac_fragment_match(m, fp) &&
796 #endif
797 		    ip->ip_p == fp->ipq_p)
798 			goto found;
799 
800 	fp = NULL;
801 
802 	/*
803 	 * Enforce upper bound on number of fragmented packets
804 	 * for which we attempt reassembly;
805 	 * If maxnipq is -1, accept all fragments without limitation.
806 	 */
807 	if ((nipq > maxnipq) && (maxnipq > 0)) {
808 		/*
809 		 * drop something from the tail of the current queue
810 		 * before proceeding further
811 		 */
812 		struct ipq *q = TAILQ_LAST(head, ipqhead);
813 		if (q == NULL) {   /* gak */
814 			for (i = 0; i < IPREASS_NHASH; i++) {
815 				struct ipq *r = TAILQ_LAST(&ipq[i], ipqhead);
816 				if (r) {
817 					ipstat.ips_fragtimeout += r->ipq_nfrags;
818 					ip_freef(&ipq[i], r);
819 					break;
820 				}
821 			}
822 		} else {
823 			ipstat.ips_fragtimeout += q->ipq_nfrags;
824 			ip_freef(head, q);
825 		}
826 	}
827 
828 found:
829 	/*
830 	 * Adjust ip_len to not reflect header,
831 	 * convert offset of this to bytes.
832 	 */
833 	ip->ip_len -= hlen;
834 	if (ip->ip_off & IP_MF) {
835 		/*
836 		 * Make sure that fragments have a data length
837 		 * that's a non-zero multiple of 8 bytes.
838 		 */
839 		if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
840 			ipstat.ips_toosmall++; /* XXX */
841 			goto dropfrag;
842 		}
843 		m->m_flags |= M_FRAG;
844 	} else
845 		m->m_flags &= ~M_FRAG;
846 	ip->ip_off <<= 3;
847 
848 
849 	/*
850 	 * Attempt reassembly; if it succeeds, proceed.
851 	 * ip_reass() will return a different mbuf.
852 	 */
853 	ipstat.ips_fragments++;
854 	m->m_pkthdr.header = ip;
855 
856 	/* Previous ip_reass() started here. */
857 	/*
858 	 * Presence of header sizes in mbufs
859 	 * would confuse code below.
860 	 */
861 	m->m_data += hlen;
862 	m->m_len -= hlen;
863 
864 	/*
865 	 * If first fragment to arrive, create a reassembly queue.
866 	 */
867 	if (fp == NULL) {
868 		if ((t = m_get(M_DONTWAIT, MT_FTABLE)) == NULL)
869 			goto dropfrag;
870 		fp = mtod(t, struct ipq *);
871 #ifdef MAC
872 		if (mac_init_ipq(fp, M_NOWAIT) != 0) {
873 			m_free(t);
874 			goto dropfrag;
875 		}
876 		mac_create_ipq(m, fp);
877 #endif
878 		TAILQ_INSERT_HEAD(head, fp, ipq_list);
879 		nipq++;
880 		fp->ipq_nfrags = 1;
881 		fp->ipq_ttl = IPFRAGTTL;
882 		fp->ipq_p = ip->ip_p;
883 		fp->ipq_id = ip->ip_id;
884 		fp->ipq_src = ip->ip_src;
885 		fp->ipq_dst = ip->ip_dst;
886 		fp->ipq_frags = m;
887 		m->m_nextpkt = NULL;
888 		goto done;
889 	} else {
890 		fp->ipq_nfrags++;
891 #ifdef MAC
892 		mac_update_ipq(m, fp);
893 #endif
894 	}
895 
896 #define GETIP(m)	((struct ip*)((m)->m_pkthdr.header))
897 
898 	/*
899 	 * Handle ECN by comparing this segment with the first one;
900 	 * if CE is set, do not lose CE.
901 	 * drop if CE and not-ECT are mixed for the same packet.
902 	 */
903 	ecn = ip->ip_tos & IPTOS_ECN_MASK;
904 	ecn0 = GETIP(fp->ipq_frags)->ip_tos & IPTOS_ECN_MASK;
905 	if (ecn == IPTOS_ECN_CE) {
906 		if (ecn0 == IPTOS_ECN_NOTECT)
907 			goto dropfrag;
908 		if (ecn0 != IPTOS_ECN_CE)
909 			GETIP(fp->ipq_frags)->ip_tos |= IPTOS_ECN_CE;
910 	}
911 	if (ecn == IPTOS_ECN_NOTECT && ecn0 != IPTOS_ECN_NOTECT)
912 		goto dropfrag;
913 
914 	/*
915 	 * Find a segment which begins after this one does.
916 	 */
917 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
918 		if (GETIP(q)->ip_off > ip->ip_off)
919 			break;
920 
921 	/*
922 	 * If there is a preceding segment, it may provide some of
923 	 * our data already.  If so, drop the data from the incoming
924 	 * segment.  If it provides all of our data, drop us, otherwise
925 	 * stick new segment in the proper place.
926 	 *
927 	 * If some of the data is dropped from the the preceding
928 	 * segment, then it's checksum is invalidated.
929 	 */
930 	if (p) {
931 		i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
932 		if (i > 0) {
933 			if (i >= ip->ip_len)
934 				goto dropfrag;
935 			m_adj(m, i);
936 			m->m_pkthdr.csum_flags = 0;
937 			ip->ip_off += i;
938 			ip->ip_len -= i;
939 		}
940 		m->m_nextpkt = p->m_nextpkt;
941 		p->m_nextpkt = m;
942 	} else {
943 		m->m_nextpkt = fp->ipq_frags;
944 		fp->ipq_frags = m;
945 	}
946 
947 	/*
948 	 * While we overlap succeeding segments trim them or,
949 	 * if they are completely covered, dequeue them.
950 	 */
951 	for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
952 	     q = nq) {
953 		i = (ip->ip_off + ip->ip_len) - GETIP(q)->ip_off;
954 		if (i < GETIP(q)->ip_len) {
955 			GETIP(q)->ip_len -= i;
956 			GETIP(q)->ip_off += i;
957 			m_adj(q, i);
958 			q->m_pkthdr.csum_flags = 0;
959 			break;
960 		}
961 		nq = q->m_nextpkt;
962 		m->m_nextpkt = nq;
963 		ipstat.ips_fragdropped++;
964 		fp->ipq_nfrags--;
965 		m_freem(q);
966 	}
967 
968 	/*
969 	 * Check for complete reassembly and perform frag per packet
970 	 * limiting.
971 	 *
972 	 * Frag limiting is performed here so that the nth frag has
973 	 * a chance to complete the packet before we drop the packet.
974 	 * As a result, n+1 frags are actually allowed per packet, but
975 	 * only n will ever be stored. (n = maxfragsperpacket.)
976 	 *
977 	 */
978 	next = 0;
979 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
980 		if (GETIP(q)->ip_off != next) {
981 			if (fp->ipq_nfrags > maxfragsperpacket) {
982 				ipstat.ips_fragdropped += fp->ipq_nfrags;
983 				ip_freef(head, fp);
984 			}
985 			goto done;
986 		}
987 		next += GETIP(q)->ip_len;
988 	}
989 	/* Make sure the last packet didn't have the IP_MF flag */
990 	if (p->m_flags & M_FRAG) {
991 		if (fp->ipq_nfrags > maxfragsperpacket) {
992 			ipstat.ips_fragdropped += fp->ipq_nfrags;
993 			ip_freef(head, fp);
994 		}
995 		goto done;
996 	}
997 
998 	/*
999 	 * Reassembly is complete.  Make sure the packet is a sane size.
1000 	 */
1001 	q = fp->ipq_frags;
1002 	ip = GETIP(q);
1003 	if (next + (ip->ip_hl << 2) > IP_MAXPACKET) {
1004 		ipstat.ips_toolong++;
1005 		ipstat.ips_fragdropped += fp->ipq_nfrags;
1006 		ip_freef(head, fp);
1007 		goto done;
1008 	}
1009 
1010 	/*
1011 	 * Concatenate fragments.
1012 	 */
1013 	m = q;
1014 	t = m->m_next;
1015 	m->m_next = NULL;
1016 	m_cat(m, t);
1017 	nq = q->m_nextpkt;
1018 	q->m_nextpkt = NULL;
1019 	for (q = nq; q != NULL; q = nq) {
1020 		nq = q->m_nextpkt;
1021 		q->m_nextpkt = NULL;
1022 		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1023 		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1024 		m_cat(m, q);
1025 	}
1026 #ifdef MAC
1027 	mac_create_datagram_from_ipq(fp, m);
1028 	mac_destroy_ipq(fp);
1029 #endif
1030 
1031 	/*
1032 	 * Create header for new ip packet by modifying header of first
1033 	 * packet;  dequeue and discard fragment reassembly header.
1034 	 * Make header visible.
1035 	 */
1036 	ip->ip_len = (ip->ip_hl << 2) + next;
1037 	ip->ip_src = fp->ipq_src;
1038 	ip->ip_dst = fp->ipq_dst;
1039 	TAILQ_REMOVE(head, fp, ipq_list);
1040 	nipq--;
1041 	(void) m_free(dtom(fp));
1042 	m->m_len += (ip->ip_hl << 2);
1043 	m->m_data -= (ip->ip_hl << 2);
1044 	/* some debugging cruft by sklower, below, will go away soon */
1045 	if (m->m_flags & M_PKTHDR)	/* XXX this should be done elsewhere */
1046 		m_fixhdr(m);
1047 	ipstat.ips_reassembled++;
1048 	IPQ_UNLOCK();
1049 	return (m);
1050 
1051 dropfrag:
1052 	ipstat.ips_fragdropped++;
1053 	if (fp != NULL)
1054 		fp->ipq_nfrags--;
1055 	m_freem(m);
1056 done:
1057 	IPQ_UNLOCK();
1058 	return (NULL);
1059 
1060 #undef GETIP
1061 }
1062 
1063 /*
1064  * Free a fragment reassembly header and all
1065  * associated datagrams.
1066  */
1067 static void
1068 ip_freef(fhp, fp)
1069 	struct ipqhead *fhp;
1070 	struct ipq *fp;
1071 {
1072 	register struct mbuf *q;
1073 
1074 	IPQ_LOCK_ASSERT();
1075 
1076 	while (fp->ipq_frags) {
1077 		q = fp->ipq_frags;
1078 		fp->ipq_frags = q->m_nextpkt;
1079 		m_freem(q);
1080 	}
1081 	TAILQ_REMOVE(fhp, fp, ipq_list);
1082 	(void) m_free(dtom(fp));
1083 	nipq--;
1084 }
1085 
1086 /*
1087  * IP timer processing;
1088  * if a timer expires on a reassembly
1089  * queue, discard it.
1090  */
1091 void
1092 ip_slowtimo()
1093 {
1094 	register struct ipq *fp;
1095 	int i;
1096 
1097 	IPQ_LOCK();
1098 	for (i = 0; i < IPREASS_NHASH; i++) {
1099 		for(fp = TAILQ_FIRST(&ipq[i]); fp;) {
1100 			struct ipq *fpp;
1101 
1102 			fpp = fp;
1103 			fp = TAILQ_NEXT(fp, ipq_list);
1104 			if(--fpp->ipq_ttl == 0) {
1105 				ipstat.ips_fragtimeout += fpp->ipq_nfrags;
1106 				ip_freef(&ipq[i], fpp);
1107 			}
1108 		}
1109 	}
1110 	/*
1111 	 * If we are over the maximum number of fragments
1112 	 * (due to the limit being lowered), drain off
1113 	 * enough to get down to the new limit.
1114 	 */
1115 	if (maxnipq >= 0 && nipq > maxnipq) {
1116 		for (i = 0; i < IPREASS_NHASH; i++) {
1117 			while (nipq > maxnipq && !TAILQ_EMPTY(&ipq[i])) {
1118 				ipstat.ips_fragdropped +=
1119 				    TAILQ_FIRST(&ipq[i])->ipq_nfrags;
1120 				ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i]));
1121 			}
1122 		}
1123 	}
1124 	IPQ_UNLOCK();
1125 }
1126 
1127 /*
1128  * Drain off all datagram fragments.
1129  */
1130 void
1131 ip_drain()
1132 {
1133 	int     i;
1134 
1135 	IPQ_LOCK();
1136 	for (i = 0; i < IPREASS_NHASH; i++) {
1137 		while(!TAILQ_EMPTY(&ipq[i])) {
1138 			ipstat.ips_fragdropped +=
1139 			    TAILQ_FIRST(&ipq[i])->ipq_nfrags;
1140 			ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i]));
1141 		}
1142 	}
1143 	IPQ_UNLOCK();
1144 	in_rtqdrain();
1145 }
1146 
1147 /*
1148  * The protocol to be inserted into ip_protox[] must be already registered
1149  * in inetsw[], either statically or through pf_proto_register().
1150  */
1151 int
1152 ipproto_register(u_char ipproto)
1153 {
1154 	struct protosw *pr;
1155 
1156 	/* Sanity checks. */
1157 	if (ipproto == 0)
1158 		return (EPROTONOSUPPORT);
1159 
1160 	/*
1161 	 * The protocol slot must not be occupied by another protocol
1162 	 * already.  An index pointing to IPPROTO_RAW is unused.
1163 	 */
1164 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
1165 	if (pr == NULL)
1166 		return (EPFNOSUPPORT);
1167 	if (ip_protox[ipproto] != pr - inetsw)	/* IPPROTO_RAW */
1168 		return (EEXIST);
1169 
1170 	/* Find the protocol position in inetsw[] and set the index. */
1171 	for (pr = inetdomain.dom_protosw;
1172 	     pr < inetdomain.dom_protoswNPROTOSW; pr++) {
1173 		if (pr->pr_domain->dom_family == PF_INET &&
1174 		    pr->pr_protocol && pr->pr_protocol == ipproto) {
1175 			/* Be careful to only index valid IP protocols. */
1176 			if (pr->pr_protocol < IPPROTO_MAX) {
1177 				ip_protox[pr->pr_protocol] = pr - inetsw;
1178 				return (0);
1179 			} else
1180 				return (EINVAL);
1181 		}
1182 	}
1183 	return (EPROTONOSUPPORT);
1184 }
1185 
1186 int
1187 ipproto_unregister(u_char ipproto)
1188 {
1189 	struct protosw *pr;
1190 
1191 	/* Sanity checks. */
1192 	if (ipproto == 0)
1193 		return (EPROTONOSUPPORT);
1194 
1195 	/* Check if the protocol was indeed registered. */
1196 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
1197 	if (pr == NULL)
1198 		return (EPFNOSUPPORT);
1199 	if (ip_protox[ipproto] == pr - inetsw)  /* IPPROTO_RAW */
1200 		return (ENOENT);
1201 
1202 	/* Reset the protocol slot to IPPROTO_RAW. */
1203 	ip_protox[ipproto] = pr - inetsw;
1204 	return (0);
1205 }
1206 
1207 /*
1208  * Given address of next destination (final or next hop),
1209  * return internet address info of interface to be used to get there.
1210  */
1211 struct in_ifaddr *
1212 ip_rtaddr(dst)
1213 	struct in_addr dst;
1214 {
1215 	struct route sro;
1216 	struct sockaddr_in *sin;
1217 	struct in_ifaddr *ifa;
1218 
1219 	bzero(&sro, sizeof(sro));
1220 	sin = (struct sockaddr_in *)&sro.ro_dst;
1221 	sin->sin_family = AF_INET;
1222 	sin->sin_len = sizeof(*sin);
1223 	sin->sin_addr = dst;
1224 	rtalloc_ign(&sro, RTF_CLONING);
1225 
1226 	if (sro.ro_rt == NULL)
1227 		return (NULL);
1228 
1229 	ifa = ifatoia(sro.ro_rt->rt_ifa);
1230 	RTFREE(sro.ro_rt);
1231 	return (ifa);
1232 }
1233 
1234 u_char inetctlerrmap[PRC_NCMDS] = {
1235 	0,		0,		0,		0,
1236 	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1237 	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1238 	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1239 	0,		0,		EHOSTUNREACH,	0,
1240 	ENOPROTOOPT,	ECONNREFUSED
1241 };
1242 
1243 /*
1244  * Forward a packet.  If some error occurs return the sender
1245  * an icmp packet.  Note we can't always generate a meaningful
1246  * icmp message because icmp doesn't have a large enough repertoire
1247  * of codes and types.
1248  *
1249  * If not forwarding, just drop the packet.  This could be confusing
1250  * if ipforwarding was zero but some routing protocol was advancing
1251  * us as a gateway to somewhere.  However, we must let the routing
1252  * protocol deal with that.
1253  *
1254  * The srcrt parameter indicates whether the packet is being forwarded
1255  * via a source route.
1256  */
1257 void
1258 ip_forward(struct mbuf *m, int srcrt)
1259 {
1260 	struct ip *ip = mtod(m, struct ip *);
1261 	struct in_ifaddr *ia = NULL;
1262 	struct mbuf *mcopy;
1263 	struct in_addr dest;
1264 	int error, type = 0, code = 0, mtu = 0;
1265 
1266 	if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) {
1267 		ipstat.ips_cantforward++;
1268 		m_freem(m);
1269 		return;
1270 	}
1271 #ifdef IPSTEALTH
1272 	if (!ipstealth) {
1273 #endif
1274 		if (ip->ip_ttl <= IPTTLDEC) {
1275 			icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS,
1276 			    0, 0);
1277 			return;
1278 		}
1279 #ifdef IPSTEALTH
1280 	}
1281 #endif
1282 
1283 	if (!srcrt && (ia = ip_rtaddr(ip->ip_dst)) == NULL) {
1284 		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, 0, 0);
1285 		return;
1286 	}
1287 
1288 	/*
1289 	 * Save the IP header and at most 8 bytes of the payload,
1290 	 * in case we need to generate an ICMP message to the src.
1291 	 *
1292 	 * XXX this can be optimized a lot by saving the data in a local
1293 	 * buffer on the stack (72 bytes at most), and only allocating the
1294 	 * mbuf if really necessary. The vast majority of the packets
1295 	 * are forwarded without having to send an ICMP back (either
1296 	 * because unnecessary, or because rate limited), so we are
1297 	 * really we are wasting a lot of work here.
1298 	 *
1299 	 * We don't use m_copy() because it might return a reference
1300 	 * to a shared cluster. Both this function and ip_output()
1301 	 * assume exclusive access to the IP header in `m', so any
1302 	 * data in a cluster may change before we reach icmp_error().
1303 	 */
1304 	MGETHDR(mcopy, M_DONTWAIT, m->m_type);
1305 	if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, M_DONTWAIT)) {
1306 		/*
1307 		 * It's probably ok if the pkthdr dup fails (because
1308 		 * the deep copy of the tag chain failed), but for now
1309 		 * be conservative and just discard the copy since
1310 		 * code below may some day want the tags.
1311 		 */
1312 		m_free(mcopy);
1313 		mcopy = NULL;
1314 	}
1315 	if (mcopy != NULL) {
1316 		mcopy->m_len = min(ip->ip_len, M_TRAILINGSPACE(mcopy));
1317 		mcopy->m_pkthdr.len = mcopy->m_len;
1318 		m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
1319 	}
1320 
1321 #ifdef IPSTEALTH
1322 	if (!ipstealth) {
1323 #endif
1324 		ip->ip_ttl -= IPTTLDEC;
1325 #ifdef IPSTEALTH
1326 	}
1327 #endif
1328 
1329 	/*
1330 	 * If forwarding packet using same interface that it came in on,
1331 	 * perhaps should send a redirect to sender to shortcut a hop.
1332 	 * Only send redirect if source is sending directly to us,
1333 	 * and if packet was not source routed (or has any options).
1334 	 * Also, don't send redirect if forwarding using a default route
1335 	 * or a route modified by a redirect.
1336 	 */
1337 	dest.s_addr = 0;
1338 	if (!srcrt && ipsendredirects && ia->ia_ifp == m->m_pkthdr.rcvif) {
1339 		struct sockaddr_in *sin;
1340 		struct route ro;
1341 		struct rtentry *rt;
1342 
1343 		bzero(&ro, sizeof(ro));
1344 		sin = (struct sockaddr_in *)&ro.ro_dst;
1345 		sin->sin_family = AF_INET;
1346 		sin->sin_len = sizeof(*sin);
1347 		sin->sin_addr = ip->ip_dst;
1348 		rtalloc_ign(&ro, RTF_CLONING);
1349 
1350 		rt = ro.ro_rt;
1351 
1352 		if (rt && (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1353 		    satosin(rt_key(rt))->sin_addr.s_addr != 0) {
1354 #define	RTA(rt)	((struct in_ifaddr *)(rt->rt_ifa))
1355 			u_long src = ntohl(ip->ip_src.s_addr);
1356 
1357 			if (RTA(rt) &&
1358 			    (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
1359 				if (rt->rt_flags & RTF_GATEWAY)
1360 					dest.s_addr = satosin(rt->rt_gateway)->sin_addr.s_addr;
1361 				else
1362 					dest.s_addr = ip->ip_dst.s_addr;
1363 				/* Router requirements says to only send host redirects */
1364 				type = ICMP_REDIRECT;
1365 				code = ICMP_REDIRECT_HOST;
1366 			}
1367 		}
1368 		if (rt)
1369 			RTFREE(rt);
1370 	}
1371 
1372 	error = ip_output(m, NULL, NULL, IP_FORWARDING, NULL, NULL);
1373 	if (error)
1374 		ipstat.ips_cantforward++;
1375 	else {
1376 		ipstat.ips_forward++;
1377 		if (type)
1378 			ipstat.ips_redirectsent++;
1379 		else {
1380 			if (mcopy)
1381 				m_freem(mcopy);
1382 			return;
1383 		}
1384 	}
1385 	if (mcopy == NULL)
1386 		return;
1387 
1388 	switch (error) {
1389 
1390 	case 0:				/* forwarded, but need redirect */
1391 		/* type, code set above */
1392 		break;
1393 
1394 	case ENETUNREACH:		/* shouldn't happen, checked above */
1395 	case EHOSTUNREACH:
1396 	case ENETDOWN:
1397 	case EHOSTDOWN:
1398 	default:
1399 		type = ICMP_UNREACH;
1400 		code = ICMP_UNREACH_HOST;
1401 		break;
1402 
1403 	case EMSGSIZE:
1404 		type = ICMP_UNREACH;
1405 		code = ICMP_UNREACH_NEEDFRAG;
1406 #if defined(IPSEC) || defined(FAST_IPSEC)
1407 		/*
1408 		 * If the packet is routed over IPsec tunnel, tell the
1409 		 * originator the tunnel MTU.
1410 		 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
1411 		 * XXX quickhack!!!
1412 		 */
1413 		{
1414 			struct secpolicy *sp = NULL;
1415 			int ipsecerror;
1416 			int ipsechdr;
1417 			struct route *ro;
1418 
1419 #ifdef IPSEC
1420 			sp = ipsec4_getpolicybyaddr(mcopy,
1421 						    IPSEC_DIR_OUTBOUND,
1422 						    IP_FORWARDING,
1423 						    &ipsecerror);
1424 #else /* FAST_IPSEC */
1425 			sp = ipsec_getpolicybyaddr(mcopy,
1426 						   IPSEC_DIR_OUTBOUND,
1427 						   IP_FORWARDING,
1428 						   &ipsecerror);
1429 #endif
1430 			if (sp != NULL) {
1431 				/* count IPsec header size */
1432 				ipsechdr = ipsec4_hdrsiz(mcopy,
1433 							 IPSEC_DIR_OUTBOUND,
1434 							 NULL);
1435 
1436 				/*
1437 				 * find the correct route for outer IPv4
1438 				 * header, compute tunnel MTU.
1439 				 */
1440 				if (sp->req != NULL
1441 				 && sp->req->sav != NULL
1442 				 && sp->req->sav->sah != NULL) {
1443 					ro = &sp->req->sav->sah->sa_route;
1444 					if (ro->ro_rt && ro->ro_rt->rt_ifp) {
1445 						mtu =
1446 						    ro->ro_rt->rt_rmx.rmx_mtu ?
1447 						    ro->ro_rt->rt_rmx.rmx_mtu :
1448 						    ro->ro_rt->rt_ifp->if_mtu;
1449 						mtu -= ipsechdr;
1450 					}
1451 				}
1452 
1453 #ifdef IPSEC
1454 				key_freesp(sp);
1455 #else /* FAST_IPSEC */
1456 				KEY_FREESP(&sp);
1457 #endif
1458 				ipstat.ips_cantfrag++;
1459 				break;
1460 			} else
1461 #endif /*IPSEC || FAST_IPSEC*/
1462 		/*
1463 		 * When doing source routing 'ia' can be NULL.  Fall back
1464 		 * to the minimum guaranteed routeable packet size and use
1465 		 * the same hack as IPSEC to setup a dummyifp for icmp.
1466 		 */
1467 		if (ia == NULL)
1468 			mtu = IP_MSS;
1469 		else
1470 			mtu = ia->ia_ifp->if_mtu;
1471 #if defined(IPSEC) || defined(FAST_IPSEC)
1472 		}
1473 #endif /*IPSEC || FAST_IPSEC*/
1474 		ipstat.ips_cantfrag++;
1475 		break;
1476 
1477 	case ENOBUFS:
1478 		/*
1479 		 * A router should not generate ICMP_SOURCEQUENCH as
1480 		 * required in RFC1812 Requirements for IP Version 4 Routers.
1481 		 * Source quench could be a big problem under DoS attacks,
1482 		 * or if the underlying interface is rate-limited.
1483 		 * Those who need source quench packets may re-enable them
1484 		 * via the net.inet.ip.sendsourcequench sysctl.
1485 		 */
1486 		if (ip_sendsourcequench == 0) {
1487 			m_freem(mcopy);
1488 			return;
1489 		} else {
1490 			type = ICMP_SOURCEQUENCH;
1491 			code = 0;
1492 		}
1493 		break;
1494 
1495 	case EACCES:			/* ipfw denied packet */
1496 		m_freem(mcopy);
1497 		return;
1498 	}
1499 	icmp_error(mcopy, type, code, dest.s_addr, mtu);
1500 }
1501 
1502 void
1503 ip_savecontrol(inp, mp, ip, m)
1504 	register struct inpcb *inp;
1505 	register struct mbuf **mp;
1506 	register struct ip *ip;
1507 	register struct mbuf *m;
1508 {
1509 	if (inp->inp_socket->so_options & (SO_BINTIME | SO_TIMESTAMP)) {
1510 		struct bintime bt;
1511 
1512 		bintime(&bt);
1513 		if (inp->inp_socket->so_options & SO_BINTIME) {
1514 			*mp = sbcreatecontrol((caddr_t) &bt, sizeof(bt),
1515 			SCM_BINTIME, SOL_SOCKET);
1516 			if (*mp)
1517 				mp = &(*mp)->m_next;
1518 		}
1519 		if (inp->inp_socket->so_options & SO_TIMESTAMP) {
1520 			struct timeval tv;
1521 
1522 			bintime2timeval(&bt, &tv);
1523 			*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
1524 				SCM_TIMESTAMP, SOL_SOCKET);
1525 			if (*mp)
1526 				mp = &(*mp)->m_next;
1527 		}
1528 	}
1529 	if (inp->inp_flags & INP_RECVDSTADDR) {
1530 		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
1531 		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
1532 		if (*mp)
1533 			mp = &(*mp)->m_next;
1534 	}
1535 	if (inp->inp_flags & INP_RECVTTL) {
1536 		*mp = sbcreatecontrol((caddr_t) &ip->ip_ttl,
1537 		    sizeof(u_char), IP_RECVTTL, IPPROTO_IP);
1538 		if (*mp)
1539 			mp = &(*mp)->m_next;
1540 	}
1541 #ifdef notyet
1542 	/* XXX
1543 	 * Moving these out of udp_input() made them even more broken
1544 	 * than they already were.
1545 	 */
1546 	/* options were tossed already */
1547 	if (inp->inp_flags & INP_RECVOPTS) {
1548 		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
1549 		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
1550 		if (*mp)
1551 			mp = &(*mp)->m_next;
1552 	}
1553 	/* ip_srcroute doesn't do what we want here, need to fix */
1554 	if (inp->inp_flags & INP_RECVRETOPTS) {
1555 		*mp = sbcreatecontrol((caddr_t) ip_srcroute(m),
1556 		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
1557 		if (*mp)
1558 			mp = &(*mp)->m_next;
1559 	}
1560 #endif
1561 	if (inp->inp_flags & INP_RECVIF) {
1562 		struct ifnet *ifp;
1563 		struct sdlbuf {
1564 			struct sockaddr_dl sdl;
1565 			u_char	pad[32];
1566 		} sdlbuf;
1567 		struct sockaddr_dl *sdp;
1568 		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
1569 
1570 		if (((ifp = m->m_pkthdr.rcvif))
1571 		&& ( ifp->if_index && (ifp->if_index <= if_index))) {
1572 			sdp = (struct sockaddr_dl *)ifp->if_addr->ifa_addr;
1573 			/*
1574 			 * Change our mind and don't try copy.
1575 			 */
1576 			if ((sdp->sdl_family != AF_LINK)
1577 			|| (sdp->sdl_len > sizeof(sdlbuf))) {
1578 				goto makedummy;
1579 			}
1580 			bcopy(sdp, sdl2, sdp->sdl_len);
1581 		} else {
1582 makedummy:
1583 			sdl2->sdl_len
1584 				= offsetof(struct sockaddr_dl, sdl_data[0]);
1585 			sdl2->sdl_family = AF_LINK;
1586 			sdl2->sdl_index = 0;
1587 			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
1588 		}
1589 		*mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
1590 			IP_RECVIF, IPPROTO_IP);
1591 		if (*mp)
1592 			mp = &(*mp)->m_next;
1593 	}
1594 }
1595 
1596 /*
1597  * XXX these routines are called from the upper part of the kernel.
1598  * They need to be locked when we remove Giant.
1599  *
1600  * They could also be moved to ip_mroute.c, since all the RSVP
1601  *  handling is done there already.
1602  */
1603 static int ip_rsvp_on;
1604 struct socket *ip_rsvpd;
1605 int
1606 ip_rsvp_init(struct socket *so)
1607 {
1608 	if (so->so_type != SOCK_RAW ||
1609 	    so->so_proto->pr_protocol != IPPROTO_RSVP)
1610 		return EOPNOTSUPP;
1611 
1612 	if (ip_rsvpd != NULL)
1613 		return EADDRINUSE;
1614 
1615 	ip_rsvpd = so;
1616 	/*
1617 	 * This may seem silly, but we need to be sure we don't over-increment
1618 	 * the RSVP counter, in case something slips up.
1619 	 */
1620 	if (!ip_rsvp_on) {
1621 		ip_rsvp_on = 1;
1622 		rsvp_on++;
1623 	}
1624 
1625 	return 0;
1626 }
1627 
1628 int
1629 ip_rsvp_done(void)
1630 {
1631 	ip_rsvpd = NULL;
1632 	/*
1633 	 * This may seem silly, but we need to be sure we don't over-decrement
1634 	 * the RSVP counter, in case something slips up.
1635 	 */
1636 	if (ip_rsvp_on) {
1637 		ip_rsvp_on = 0;
1638 		rsvp_on--;
1639 	}
1640 	return 0;
1641 }
1642 
1643 void
1644 rsvp_input(struct mbuf *m, int off)	/* XXX must fixup manually */
1645 {
1646 	if (rsvp_input_p) { /* call the real one if loaded */
1647 		rsvp_input_p(m, off);
1648 		return;
1649 	}
1650 
1651 	/* Can still get packets with rsvp_on = 0 if there is a local member
1652 	 * of the group to which the RSVP packet is addressed.  But in this
1653 	 * case we want to throw the packet away.
1654 	 */
1655 
1656 	if (!rsvp_on) {
1657 		m_freem(m);
1658 		return;
1659 	}
1660 
1661 	if (ip_rsvpd != NULL) {
1662 		rip_input(m, off);
1663 		return;
1664 	}
1665 	/* Drop the packet */
1666 	m_freem(m);
1667 }
1668