1 /*- 2 * Copyright (c) 1982, 1986, 1988, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)ip_input.c 8.2 (Berkeley) 1/4/94 30 * $FreeBSD$ 31 */ 32 33 #include "opt_bootp.h" 34 #include "opt_ipfw.h" 35 #include "opt_ipstealth.h" 36 #include "opt_ipsec.h" 37 #include "opt_mac.h" 38 #include "opt_carp.h" 39 40 #include <sys/param.h> 41 #include <sys/systm.h> 42 #include <sys/callout.h> 43 #include <sys/mac.h> 44 #include <sys/mbuf.h> 45 #include <sys/malloc.h> 46 #include <sys/domain.h> 47 #include <sys/protosw.h> 48 #include <sys/socket.h> 49 #include <sys/time.h> 50 #include <sys/kernel.h> 51 #include <sys/syslog.h> 52 #include <sys/sysctl.h> 53 54 #include <net/pfil.h> 55 #include <net/if.h> 56 #include <net/if_types.h> 57 #include <net/if_var.h> 58 #include <net/if_dl.h> 59 #include <net/route.h> 60 #include <net/netisr.h> 61 62 #include <netinet/in.h> 63 #include <netinet/in_systm.h> 64 #include <netinet/in_var.h> 65 #include <netinet/ip.h> 66 #include <netinet/in_pcb.h> 67 #include <netinet/ip_var.h> 68 #include <netinet/ip_icmp.h> 69 #include <netinet/ip_options.h> 70 #include <machine/in_cksum.h> 71 #ifdef DEV_CARP 72 #include <netinet/ip_carp.h> 73 #endif 74 75 #include <sys/socketvar.h> 76 77 /* XXX: Temporary until ipfw_ether and ipfw_bridge are converted. */ 78 #include <netinet/ip_fw.h> 79 #include <netinet/ip_dummynet.h> 80 81 #ifdef IPSEC 82 #include <netinet6/ipsec.h> 83 #include <netkey/key.h> 84 #endif 85 86 #ifdef FAST_IPSEC 87 #include <netipsec/ipsec.h> 88 #include <netipsec/key.h> 89 #endif 90 91 int rsvp_on = 0; 92 93 int ipforwarding = 0; 94 SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW, 95 &ipforwarding, 0, "Enable IP forwarding between interfaces"); 96 97 static int ipsendredirects = 1; /* XXX */ 98 SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW, 99 &ipsendredirects, 0, "Enable sending IP redirects"); 100 101 int ip_defttl = IPDEFTTL; 102 SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW, 103 &ip_defttl, 0, "Maximum TTL on IP packets"); 104 105 static int ip_keepfaith = 0; 106 SYSCTL_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW, 107 &ip_keepfaith, 0, 108 "Enable packet capture for FAITH IPv4->IPv6 translater daemon"); 109 110 static int nipq = 0; /* total # of reass queues */ 111 static int maxnipq; 112 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragpackets, CTLFLAG_RW, 113 &maxnipq, 0, 114 "Maximum number of IPv4 fragment reassembly queue entries"); 115 116 static int maxfragsperpacket; 117 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_RW, 118 &maxfragsperpacket, 0, 119 "Maximum number of IPv4 fragments allowed per packet"); 120 121 static int ip_sendsourcequench = 0; 122 SYSCTL_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW, 123 &ip_sendsourcequench, 0, 124 "Enable the transmission of source quench packets"); 125 126 int ip_do_randomid = 0; 127 SYSCTL_INT(_net_inet_ip, OID_AUTO, random_id, CTLFLAG_RW, 128 &ip_do_randomid, 0, 129 "Assign random ip_id values"); 130 131 /* 132 * XXX - Setting ip_checkinterface mostly implements the receive side of 133 * the Strong ES model described in RFC 1122, but since the routing table 134 * and transmit implementation do not implement the Strong ES model, 135 * setting this to 1 results in an odd hybrid. 136 * 137 * XXX - ip_checkinterface currently must be disabled if you use ipnat 138 * to translate the destination address to another local interface. 139 * 140 * XXX - ip_checkinterface must be disabled if you add IP aliases 141 * to the loopback interface instead of the interface where the 142 * packets for those addresses are received. 143 */ 144 static int ip_checkinterface = 0; 145 SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW, 146 &ip_checkinterface, 0, "Verify packet arrives on correct interface"); 147 148 struct pfil_head inet_pfil_hook; /* Packet filter hooks */ 149 150 static struct ifqueue ipintrq; 151 static int ipqmaxlen = IFQ_MAXLEN; 152 153 extern struct domain inetdomain; 154 extern struct protosw inetsw[]; 155 u_char ip_protox[IPPROTO_MAX]; 156 struct in_ifaddrhead in_ifaddrhead; /* first inet address */ 157 struct in_ifaddrhashhead *in_ifaddrhashtbl; /* inet addr hash table */ 158 u_long in_ifaddrhmask; /* mask for hash table */ 159 160 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen, CTLFLAG_RW, 161 &ipintrq.ifq_maxlen, 0, "Maximum size of the IP input queue"); 162 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops, CTLFLAG_RD, 163 &ipintrq.ifq_drops, 0, "Number of packets dropped from the IP input queue"); 164 165 struct ipstat ipstat; 166 SYSCTL_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RW, 167 &ipstat, ipstat, "IP statistics (struct ipstat, netinet/ip_var.h)"); 168 169 /* Packet reassembly stuff */ 170 #define IPREASS_NHASH_LOG2 6 171 #define IPREASS_NHASH (1 << IPREASS_NHASH_LOG2) 172 #define IPREASS_HMASK (IPREASS_NHASH - 1) 173 #define IPREASS_HASH(x,y) \ 174 (((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK) 175 176 static TAILQ_HEAD(ipqhead, ipq) ipq[IPREASS_NHASH]; 177 struct mtx ipqlock; 178 struct callout ipport_tick_callout; 179 180 #define IPQ_LOCK() mtx_lock(&ipqlock) 181 #define IPQ_UNLOCK() mtx_unlock(&ipqlock) 182 #define IPQ_LOCK_INIT() mtx_init(&ipqlock, "ipqlock", NULL, MTX_DEF) 183 #define IPQ_LOCK_ASSERT() mtx_assert(&ipqlock, MA_OWNED) 184 185 #ifdef IPCTL_DEFMTU 186 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW, 187 &ip_mtu, 0, "Default MTU"); 188 #endif 189 190 #ifdef IPSTEALTH 191 int ipstealth = 0; 192 SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW, 193 &ipstealth, 0, ""); 194 #endif 195 196 /* 197 * ipfw_ether and ipfw_bridge hooks. 198 * XXX: Temporary until those are converted to pfil_hooks as well. 199 */ 200 ip_fw_chk_t *ip_fw_chk_ptr = NULL; 201 ip_dn_io_t *ip_dn_io_ptr = NULL; 202 int fw_enable = 1; 203 int fw_one_pass = 1; 204 205 static void ip_freef(struct ipqhead *, struct ipq *); 206 207 /* 208 * IP initialization: fill in IP protocol switch table. 209 * All protocols not implemented in kernel go to raw IP protocol handler. 210 */ 211 void 212 ip_init() 213 { 214 register struct protosw *pr; 215 register int i; 216 217 TAILQ_INIT(&in_ifaddrhead); 218 in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &in_ifaddrhmask); 219 pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW); 220 if (pr == NULL) 221 panic("ip_init: PF_INET not found"); 222 223 /* Initialize the entire ip_protox[] array to IPPROTO_RAW. */ 224 for (i = 0; i < IPPROTO_MAX; i++) 225 ip_protox[i] = pr - inetsw; 226 /* 227 * Cycle through IP protocols and put them into the appropriate place 228 * in ip_protox[]. 229 */ 230 for (pr = inetdomain.dom_protosw; 231 pr < inetdomain.dom_protoswNPROTOSW; pr++) 232 if (pr->pr_domain->dom_family == PF_INET && 233 pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW) { 234 /* Be careful to only index valid IP protocols. */ 235 if (pr->pr_protocol < IPPROTO_MAX) 236 ip_protox[pr->pr_protocol] = pr - inetsw; 237 } 238 239 /* Initialize packet filter hooks. */ 240 inet_pfil_hook.ph_type = PFIL_TYPE_AF; 241 inet_pfil_hook.ph_af = AF_INET; 242 if ((i = pfil_head_register(&inet_pfil_hook)) != 0) 243 printf("%s: WARNING: unable to register pfil hook, " 244 "error %d\n", __func__, i); 245 246 /* Initialize IP reassembly queue. */ 247 IPQ_LOCK_INIT(); 248 for (i = 0; i < IPREASS_NHASH; i++) 249 TAILQ_INIT(&ipq[i]); 250 maxnipq = nmbclusters / 32; 251 maxfragsperpacket = 16; 252 253 /* Start ipport_tick. */ 254 callout_init(&ipport_tick_callout, CALLOUT_MPSAFE); 255 ipport_tick(NULL); 256 EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL, 257 SHUTDOWN_PRI_DEFAULT); 258 259 /* Initialize various other remaining things. */ 260 ip_id = time_second & 0xffff; 261 ipintrq.ifq_maxlen = ipqmaxlen; 262 mtx_init(&ipintrq.ifq_mtx, "ip_inq", NULL, MTX_DEF); 263 netisr_register(NETISR_IP, ip_input, &ipintrq, NETISR_MPSAFE); 264 } 265 266 void ip_fini(xtp) 267 void *xtp; 268 { 269 callout_stop(&ipport_tick_callout); 270 } 271 272 /* 273 * Ip input routine. Checksum and byte swap header. If fragmented 274 * try to reassemble. Process options. Pass to next level. 275 */ 276 void 277 ip_input(struct mbuf *m) 278 { 279 struct ip *ip = NULL; 280 struct in_ifaddr *ia = NULL; 281 struct ifaddr *ifa; 282 int checkif, hlen = 0; 283 u_short sum; 284 int dchg = 0; /* dest changed after fw */ 285 struct in_addr odst; /* original dst address */ 286 #ifdef FAST_IPSEC 287 struct m_tag *mtag; 288 struct tdb_ident *tdbi; 289 struct secpolicy *sp; 290 int s, error; 291 #endif /* FAST_IPSEC */ 292 293 M_ASSERTPKTHDR(m); 294 295 if (m->m_flags & M_FASTFWD_OURS) { 296 /* 297 * Firewall or NAT changed destination to local. 298 * We expect ip_len and ip_off to be in host byte order. 299 */ 300 m->m_flags &= ~M_FASTFWD_OURS; 301 /* Set up some basics that will be used later. */ 302 ip = mtod(m, struct ip *); 303 hlen = ip->ip_hl << 2; 304 goto ours; 305 } 306 307 ipstat.ips_total++; 308 309 if (m->m_pkthdr.len < sizeof(struct ip)) 310 goto tooshort; 311 312 if (m->m_len < sizeof (struct ip) && 313 (m = m_pullup(m, sizeof (struct ip))) == NULL) { 314 ipstat.ips_toosmall++; 315 return; 316 } 317 ip = mtod(m, struct ip *); 318 319 if (ip->ip_v != IPVERSION) { 320 ipstat.ips_badvers++; 321 goto bad; 322 } 323 324 hlen = ip->ip_hl << 2; 325 if (hlen < sizeof(struct ip)) { /* minimum header length */ 326 ipstat.ips_badhlen++; 327 goto bad; 328 } 329 if (hlen > m->m_len) { 330 if ((m = m_pullup(m, hlen)) == NULL) { 331 ipstat.ips_badhlen++; 332 return; 333 } 334 ip = mtod(m, struct ip *); 335 } 336 337 /* 127/8 must not appear on wire - RFC1122 */ 338 if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET || 339 (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) { 340 if ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) { 341 ipstat.ips_badaddr++; 342 goto bad; 343 } 344 } 345 346 if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) { 347 sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID); 348 } else { 349 if (hlen == sizeof(struct ip)) { 350 sum = in_cksum_hdr(ip); 351 } else { 352 sum = in_cksum(m, hlen); 353 } 354 } 355 if (sum) { 356 ipstat.ips_badsum++; 357 goto bad; 358 } 359 360 #ifdef ALTQ 361 if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0) 362 /* packet is dropped by traffic conditioner */ 363 return; 364 #endif 365 366 /* 367 * Convert fields to host representation. 368 */ 369 ip->ip_len = ntohs(ip->ip_len); 370 if (ip->ip_len < hlen) { 371 ipstat.ips_badlen++; 372 goto bad; 373 } 374 ip->ip_off = ntohs(ip->ip_off); 375 376 /* 377 * Check that the amount of data in the buffers 378 * is as at least much as the IP header would have us expect. 379 * Trim mbufs if longer than we expect. 380 * Drop packet if shorter than we expect. 381 */ 382 if (m->m_pkthdr.len < ip->ip_len) { 383 tooshort: 384 ipstat.ips_tooshort++; 385 goto bad; 386 } 387 if (m->m_pkthdr.len > ip->ip_len) { 388 if (m->m_len == m->m_pkthdr.len) { 389 m->m_len = ip->ip_len; 390 m->m_pkthdr.len = ip->ip_len; 391 } else 392 m_adj(m, ip->ip_len - m->m_pkthdr.len); 393 } 394 #if defined(IPSEC) && !defined(IPSEC_FILTERGIF) 395 /* 396 * Bypass packet filtering for packets from a tunnel (gif). 397 */ 398 if (ipsec_getnhist(m)) 399 goto passin; 400 #endif 401 #if defined(FAST_IPSEC) && !defined(IPSEC_FILTERGIF) 402 /* 403 * Bypass packet filtering for packets from a tunnel (gif). 404 */ 405 if (m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL) != NULL) 406 goto passin; 407 #endif 408 409 /* 410 * Run through list of hooks for input packets. 411 * 412 * NB: Beware of the destination address changing (e.g. 413 * by NAT rewriting). When this happens, tell 414 * ip_forward to do the right thing. 415 */ 416 417 /* Jump over all PFIL processing if hooks are not active. */ 418 if (inet_pfil_hook.ph_busy_count == -1) 419 goto passin; 420 421 odst = ip->ip_dst; 422 if (pfil_run_hooks(&inet_pfil_hook, &m, m->m_pkthdr.rcvif, 423 PFIL_IN, NULL) != 0) 424 return; 425 if (m == NULL) /* consumed by filter */ 426 return; 427 428 ip = mtod(m, struct ip *); 429 dchg = (odst.s_addr != ip->ip_dst.s_addr); 430 431 #ifdef IPFIREWALL_FORWARD 432 if (m->m_flags & M_FASTFWD_OURS) { 433 m->m_flags &= ~M_FASTFWD_OURS; 434 goto ours; 435 } 436 #ifndef IPFIREWALL_FORWARD_EXTENDED 437 dchg = (m_tag_find(m, PACKET_TAG_IPFORWARD, NULL) != NULL); 438 #else 439 if ((dchg = (m_tag_find(m, PACKET_TAG_IPFORWARD, NULL) != NULL)) != 0) { 440 /* 441 * Directly ship on the packet. This allows to forward packets 442 * that were destined for us to some other directly connected 443 * host. 444 */ 445 ip_forward(m, dchg); 446 return; 447 } 448 #endif /* IPFIREWALL_FORWARD_EXTENDED */ 449 #endif /* IPFIREWALL_FORWARD */ 450 451 passin: 452 /* 453 * Process options and, if not destined for us, 454 * ship it on. ip_dooptions returns 1 when an 455 * error was detected (causing an icmp message 456 * to be sent and the original packet to be freed). 457 */ 458 if (hlen > sizeof (struct ip) && ip_dooptions(m, 0)) 459 return; 460 461 /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no 462 * matter if it is destined to another node, or whether it is 463 * a multicast one, RSVP wants it! and prevents it from being forwarded 464 * anywhere else. Also checks if the rsvp daemon is running before 465 * grabbing the packet. 466 */ 467 if (rsvp_on && ip->ip_p==IPPROTO_RSVP) 468 goto ours; 469 470 /* 471 * Check our list of addresses, to see if the packet is for us. 472 * If we don't have any addresses, assume any unicast packet 473 * we receive might be for us (and let the upper layers deal 474 * with it). 475 */ 476 if (TAILQ_EMPTY(&in_ifaddrhead) && 477 (m->m_flags & (M_MCAST|M_BCAST)) == 0) 478 goto ours; 479 480 /* 481 * Enable a consistency check between the destination address 482 * and the arrival interface for a unicast packet (the RFC 1122 483 * strong ES model) if IP forwarding is disabled and the packet 484 * is not locally generated and the packet is not subject to 485 * 'ipfw fwd'. 486 * 487 * XXX - Checking also should be disabled if the destination 488 * address is ipnat'ed to a different interface. 489 * 490 * XXX - Checking is incompatible with IP aliases added 491 * to the loopback interface instead of the interface where 492 * the packets are received. 493 * 494 * XXX - This is the case for carp vhost IPs as well so we 495 * insert a workaround. If the packet got here, we already 496 * checked with carp_iamatch() and carp_forus(). 497 */ 498 checkif = ip_checkinterface && (ipforwarding == 0) && 499 m->m_pkthdr.rcvif != NULL && 500 ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) && 501 #ifdef DEV_CARP 502 !m->m_pkthdr.rcvif->if_carp && 503 #endif 504 (dchg == 0); 505 506 /* 507 * Check for exact addresses in the hash bucket. 508 */ 509 LIST_FOREACH(ia, INADDR_HASH(ip->ip_dst.s_addr), ia_hash) { 510 /* 511 * If the address matches, verify that the packet 512 * arrived via the correct interface if checking is 513 * enabled. 514 */ 515 if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr && 516 (!checkif || ia->ia_ifp == m->m_pkthdr.rcvif)) 517 goto ours; 518 } 519 /* 520 * Check for broadcast addresses. 521 * 522 * Only accept broadcast packets that arrive via the matching 523 * interface. Reception of forwarded directed broadcasts would 524 * be handled via ip_forward() and ether_output() with the loopback 525 * into the stack for SIMPLEX interfaces handled by ether_output(). 526 */ 527 if (m->m_pkthdr.rcvif != NULL && 528 m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) { 529 TAILQ_FOREACH(ifa, &m->m_pkthdr.rcvif->if_addrhead, ifa_link) { 530 if (ifa->ifa_addr->sa_family != AF_INET) 531 continue; 532 ia = ifatoia(ifa); 533 if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr == 534 ip->ip_dst.s_addr) 535 goto ours; 536 if (ia->ia_netbroadcast.s_addr == ip->ip_dst.s_addr) 537 goto ours; 538 #ifdef BOOTP_COMPAT 539 if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY) 540 goto ours; 541 #endif 542 } 543 } 544 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) { 545 struct in_multi *inm; 546 if (ip_mrouter) { 547 /* 548 * If we are acting as a multicast router, all 549 * incoming multicast packets are passed to the 550 * kernel-level multicast forwarding function. 551 * The packet is returned (relatively) intact; if 552 * ip_mforward() returns a non-zero value, the packet 553 * must be discarded, else it may be accepted below. 554 */ 555 if (ip_mforward && 556 ip_mforward(ip, m->m_pkthdr.rcvif, m, 0) != 0) { 557 ipstat.ips_cantforward++; 558 m_freem(m); 559 return; 560 } 561 562 /* 563 * The process-level routing daemon needs to receive 564 * all multicast IGMP packets, whether or not this 565 * host belongs to their destination groups. 566 */ 567 if (ip->ip_p == IPPROTO_IGMP) 568 goto ours; 569 ipstat.ips_forward++; 570 } 571 /* 572 * See if we belong to the destination multicast group on the 573 * arrival interface. 574 */ 575 IN_MULTI_LOCK(); 576 IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm); 577 IN_MULTI_UNLOCK(); 578 if (inm == NULL) { 579 ipstat.ips_notmember++; 580 m_freem(m); 581 return; 582 } 583 goto ours; 584 } 585 if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST) 586 goto ours; 587 if (ip->ip_dst.s_addr == INADDR_ANY) 588 goto ours; 589 590 /* 591 * FAITH(Firewall Aided Internet Translator) 592 */ 593 if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) { 594 if (ip_keepfaith) { 595 if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP) 596 goto ours; 597 } 598 m_freem(m); 599 return; 600 } 601 602 /* 603 * Not for us; forward if possible and desirable. 604 */ 605 if (ipforwarding == 0) { 606 ipstat.ips_cantforward++; 607 m_freem(m); 608 } else { 609 #ifdef IPSEC 610 /* 611 * Enforce inbound IPsec SPD. 612 */ 613 if (ipsec4_in_reject(m, NULL)) { 614 ipsecstat.in_polvio++; 615 goto bad; 616 } 617 #endif /* IPSEC */ 618 #ifdef FAST_IPSEC 619 mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL); 620 s = splnet(); 621 if (mtag != NULL) { 622 tdbi = (struct tdb_ident *)(mtag + 1); 623 sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND); 624 } else { 625 sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND, 626 IP_FORWARDING, &error); 627 } 628 if (sp == NULL) { /* NB: can happen if error */ 629 splx(s); 630 /*XXX error stat???*/ 631 DPRINTF(("ip_input: no SP for forwarding\n")); /*XXX*/ 632 goto bad; 633 } 634 635 /* 636 * Check security policy against packet attributes. 637 */ 638 error = ipsec_in_reject(sp, m); 639 KEY_FREESP(&sp); 640 splx(s); 641 if (error) { 642 ipstat.ips_cantforward++; 643 goto bad; 644 } 645 #endif /* FAST_IPSEC */ 646 ip_forward(m, dchg); 647 } 648 return; 649 650 ours: 651 #ifdef IPSTEALTH 652 /* 653 * IPSTEALTH: Process non-routing options only 654 * if the packet is destined for us. 655 */ 656 if (ipstealth && hlen > sizeof (struct ip) && 657 ip_dooptions(m, 1)) 658 return; 659 #endif /* IPSTEALTH */ 660 661 /* Count the packet in the ip address stats */ 662 if (ia != NULL) { 663 ia->ia_ifa.if_ipackets++; 664 ia->ia_ifa.if_ibytes += m->m_pkthdr.len; 665 } 666 667 /* 668 * Attempt reassembly; if it succeeds, proceed. 669 * ip_reass() will return a different mbuf. 670 */ 671 if (ip->ip_off & (IP_MF | IP_OFFMASK)) { 672 m = ip_reass(m); 673 if (m == NULL) 674 return; 675 ip = mtod(m, struct ip *); 676 /* Get the header length of the reassembled packet */ 677 hlen = ip->ip_hl << 2; 678 } 679 680 /* 681 * Further protocols expect the packet length to be w/o the 682 * IP header. 683 */ 684 ip->ip_len -= hlen; 685 686 #ifdef IPSEC 687 /* 688 * enforce IPsec policy checking if we are seeing last header. 689 * note that we do not visit this with protocols with pcb layer 690 * code - like udp/tcp/raw ip. 691 */ 692 if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0 && 693 ipsec4_in_reject(m, NULL)) { 694 ipsecstat.in_polvio++; 695 goto bad; 696 } 697 #endif 698 #ifdef FAST_IPSEC 699 /* 700 * enforce IPsec policy checking if we are seeing last header. 701 * note that we do not visit this with protocols with pcb layer 702 * code - like udp/tcp/raw ip. 703 */ 704 if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0) { 705 /* 706 * Check if the packet has already had IPsec processing 707 * done. If so, then just pass it along. This tag gets 708 * set during AH, ESP, etc. input handling, before the 709 * packet is returned to the ip input queue for delivery. 710 */ 711 mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL); 712 s = splnet(); 713 if (mtag != NULL) { 714 tdbi = (struct tdb_ident *)(mtag + 1); 715 sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND); 716 } else { 717 sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND, 718 IP_FORWARDING, &error); 719 } 720 if (sp != NULL) { 721 /* 722 * Check security policy against packet attributes. 723 */ 724 error = ipsec_in_reject(sp, m); 725 KEY_FREESP(&sp); 726 } else { 727 /* XXX error stat??? */ 728 error = EINVAL; 729 DPRINTF(("ip_input: no SP, packet discarded\n"));/*XXX*/ 730 goto bad; 731 } 732 splx(s); 733 if (error) 734 goto bad; 735 } 736 #endif /* FAST_IPSEC */ 737 738 /* 739 * Switch out to protocol's input routine. 740 */ 741 ipstat.ips_delivered++; 742 743 (*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen); 744 return; 745 bad: 746 m_freem(m); 747 } 748 749 /* 750 * Take incoming datagram fragment and try to reassemble it into 751 * whole datagram. If the argument is the first fragment or one 752 * in between the function will return NULL and store the mbuf 753 * in the fragment chain. If the argument is the last fragment 754 * the packet will be reassembled and the pointer to the new 755 * mbuf returned for further processing. Only m_tags attached 756 * to the first packet/fragment are preserved. 757 * The IP header is *NOT* adjusted out of iplen. 758 */ 759 760 struct mbuf * 761 ip_reass(struct mbuf *m) 762 { 763 struct ip *ip; 764 struct mbuf *p, *q, *nq, *t; 765 struct ipq *fp = NULL; 766 struct ipqhead *head; 767 int i, hlen, next; 768 u_int8_t ecn, ecn0; 769 u_short hash; 770 771 /* If maxnipq or maxfragsperpacket are 0, never accept fragments. */ 772 if (maxnipq == 0 || maxfragsperpacket == 0) { 773 ipstat.ips_fragments++; 774 ipstat.ips_fragdropped++; 775 m_freem(m); 776 return (NULL); 777 } 778 779 ip = mtod(m, struct ip *); 780 hlen = ip->ip_hl << 2; 781 782 hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id); 783 head = &ipq[hash]; 784 IPQ_LOCK(); 785 786 /* 787 * Look for queue of fragments 788 * of this datagram. 789 */ 790 TAILQ_FOREACH(fp, head, ipq_list) 791 if (ip->ip_id == fp->ipq_id && 792 ip->ip_src.s_addr == fp->ipq_src.s_addr && 793 ip->ip_dst.s_addr == fp->ipq_dst.s_addr && 794 #ifdef MAC 795 mac_fragment_match(m, fp) && 796 #endif 797 ip->ip_p == fp->ipq_p) 798 goto found; 799 800 fp = NULL; 801 802 /* 803 * Enforce upper bound on number of fragmented packets 804 * for which we attempt reassembly; 805 * If maxnipq is -1, accept all fragments without limitation. 806 */ 807 if ((nipq > maxnipq) && (maxnipq > 0)) { 808 /* 809 * drop something from the tail of the current queue 810 * before proceeding further 811 */ 812 struct ipq *q = TAILQ_LAST(head, ipqhead); 813 if (q == NULL) { /* gak */ 814 for (i = 0; i < IPREASS_NHASH; i++) { 815 struct ipq *r = TAILQ_LAST(&ipq[i], ipqhead); 816 if (r) { 817 ipstat.ips_fragtimeout += r->ipq_nfrags; 818 ip_freef(&ipq[i], r); 819 break; 820 } 821 } 822 } else { 823 ipstat.ips_fragtimeout += q->ipq_nfrags; 824 ip_freef(head, q); 825 } 826 } 827 828 found: 829 /* 830 * Adjust ip_len to not reflect header, 831 * convert offset of this to bytes. 832 */ 833 ip->ip_len -= hlen; 834 if (ip->ip_off & IP_MF) { 835 /* 836 * Make sure that fragments have a data length 837 * that's a non-zero multiple of 8 bytes. 838 */ 839 if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) { 840 ipstat.ips_toosmall++; /* XXX */ 841 goto dropfrag; 842 } 843 m->m_flags |= M_FRAG; 844 } else 845 m->m_flags &= ~M_FRAG; 846 ip->ip_off <<= 3; 847 848 849 /* 850 * Attempt reassembly; if it succeeds, proceed. 851 * ip_reass() will return a different mbuf. 852 */ 853 ipstat.ips_fragments++; 854 m->m_pkthdr.header = ip; 855 856 /* Previous ip_reass() started here. */ 857 /* 858 * Presence of header sizes in mbufs 859 * would confuse code below. 860 */ 861 m->m_data += hlen; 862 m->m_len -= hlen; 863 864 /* 865 * If first fragment to arrive, create a reassembly queue. 866 */ 867 if (fp == NULL) { 868 if ((t = m_get(M_DONTWAIT, MT_FTABLE)) == NULL) 869 goto dropfrag; 870 fp = mtod(t, struct ipq *); 871 #ifdef MAC 872 if (mac_init_ipq(fp, M_NOWAIT) != 0) { 873 m_free(t); 874 goto dropfrag; 875 } 876 mac_create_ipq(m, fp); 877 #endif 878 TAILQ_INSERT_HEAD(head, fp, ipq_list); 879 nipq++; 880 fp->ipq_nfrags = 1; 881 fp->ipq_ttl = IPFRAGTTL; 882 fp->ipq_p = ip->ip_p; 883 fp->ipq_id = ip->ip_id; 884 fp->ipq_src = ip->ip_src; 885 fp->ipq_dst = ip->ip_dst; 886 fp->ipq_frags = m; 887 m->m_nextpkt = NULL; 888 goto done; 889 } else { 890 fp->ipq_nfrags++; 891 #ifdef MAC 892 mac_update_ipq(m, fp); 893 #endif 894 } 895 896 #define GETIP(m) ((struct ip*)((m)->m_pkthdr.header)) 897 898 /* 899 * Handle ECN by comparing this segment with the first one; 900 * if CE is set, do not lose CE. 901 * drop if CE and not-ECT are mixed for the same packet. 902 */ 903 ecn = ip->ip_tos & IPTOS_ECN_MASK; 904 ecn0 = GETIP(fp->ipq_frags)->ip_tos & IPTOS_ECN_MASK; 905 if (ecn == IPTOS_ECN_CE) { 906 if (ecn0 == IPTOS_ECN_NOTECT) 907 goto dropfrag; 908 if (ecn0 != IPTOS_ECN_CE) 909 GETIP(fp->ipq_frags)->ip_tos |= IPTOS_ECN_CE; 910 } 911 if (ecn == IPTOS_ECN_NOTECT && ecn0 != IPTOS_ECN_NOTECT) 912 goto dropfrag; 913 914 /* 915 * Find a segment which begins after this one does. 916 */ 917 for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) 918 if (GETIP(q)->ip_off > ip->ip_off) 919 break; 920 921 /* 922 * If there is a preceding segment, it may provide some of 923 * our data already. If so, drop the data from the incoming 924 * segment. If it provides all of our data, drop us, otherwise 925 * stick new segment in the proper place. 926 * 927 * If some of the data is dropped from the the preceding 928 * segment, then it's checksum is invalidated. 929 */ 930 if (p) { 931 i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off; 932 if (i > 0) { 933 if (i >= ip->ip_len) 934 goto dropfrag; 935 m_adj(m, i); 936 m->m_pkthdr.csum_flags = 0; 937 ip->ip_off += i; 938 ip->ip_len -= i; 939 } 940 m->m_nextpkt = p->m_nextpkt; 941 p->m_nextpkt = m; 942 } else { 943 m->m_nextpkt = fp->ipq_frags; 944 fp->ipq_frags = m; 945 } 946 947 /* 948 * While we overlap succeeding segments trim them or, 949 * if they are completely covered, dequeue them. 950 */ 951 for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off; 952 q = nq) { 953 i = (ip->ip_off + ip->ip_len) - GETIP(q)->ip_off; 954 if (i < GETIP(q)->ip_len) { 955 GETIP(q)->ip_len -= i; 956 GETIP(q)->ip_off += i; 957 m_adj(q, i); 958 q->m_pkthdr.csum_flags = 0; 959 break; 960 } 961 nq = q->m_nextpkt; 962 m->m_nextpkt = nq; 963 ipstat.ips_fragdropped++; 964 fp->ipq_nfrags--; 965 m_freem(q); 966 } 967 968 /* 969 * Check for complete reassembly and perform frag per packet 970 * limiting. 971 * 972 * Frag limiting is performed here so that the nth frag has 973 * a chance to complete the packet before we drop the packet. 974 * As a result, n+1 frags are actually allowed per packet, but 975 * only n will ever be stored. (n = maxfragsperpacket.) 976 * 977 */ 978 next = 0; 979 for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) { 980 if (GETIP(q)->ip_off != next) { 981 if (fp->ipq_nfrags > maxfragsperpacket) { 982 ipstat.ips_fragdropped += fp->ipq_nfrags; 983 ip_freef(head, fp); 984 } 985 goto done; 986 } 987 next += GETIP(q)->ip_len; 988 } 989 /* Make sure the last packet didn't have the IP_MF flag */ 990 if (p->m_flags & M_FRAG) { 991 if (fp->ipq_nfrags > maxfragsperpacket) { 992 ipstat.ips_fragdropped += fp->ipq_nfrags; 993 ip_freef(head, fp); 994 } 995 goto done; 996 } 997 998 /* 999 * Reassembly is complete. Make sure the packet is a sane size. 1000 */ 1001 q = fp->ipq_frags; 1002 ip = GETIP(q); 1003 if (next + (ip->ip_hl << 2) > IP_MAXPACKET) { 1004 ipstat.ips_toolong++; 1005 ipstat.ips_fragdropped += fp->ipq_nfrags; 1006 ip_freef(head, fp); 1007 goto done; 1008 } 1009 1010 /* 1011 * Concatenate fragments. 1012 */ 1013 m = q; 1014 t = m->m_next; 1015 m->m_next = NULL; 1016 m_cat(m, t); 1017 nq = q->m_nextpkt; 1018 q->m_nextpkt = NULL; 1019 for (q = nq; q != NULL; q = nq) { 1020 nq = q->m_nextpkt; 1021 q->m_nextpkt = NULL; 1022 m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags; 1023 m->m_pkthdr.csum_data += q->m_pkthdr.csum_data; 1024 m_cat(m, q); 1025 } 1026 #ifdef MAC 1027 mac_create_datagram_from_ipq(fp, m); 1028 mac_destroy_ipq(fp); 1029 #endif 1030 1031 /* 1032 * Create header for new ip packet by modifying header of first 1033 * packet; dequeue and discard fragment reassembly header. 1034 * Make header visible. 1035 */ 1036 ip->ip_len = (ip->ip_hl << 2) + next; 1037 ip->ip_src = fp->ipq_src; 1038 ip->ip_dst = fp->ipq_dst; 1039 TAILQ_REMOVE(head, fp, ipq_list); 1040 nipq--; 1041 (void) m_free(dtom(fp)); 1042 m->m_len += (ip->ip_hl << 2); 1043 m->m_data -= (ip->ip_hl << 2); 1044 /* some debugging cruft by sklower, below, will go away soon */ 1045 if (m->m_flags & M_PKTHDR) /* XXX this should be done elsewhere */ 1046 m_fixhdr(m); 1047 ipstat.ips_reassembled++; 1048 IPQ_UNLOCK(); 1049 return (m); 1050 1051 dropfrag: 1052 ipstat.ips_fragdropped++; 1053 if (fp != NULL) 1054 fp->ipq_nfrags--; 1055 m_freem(m); 1056 done: 1057 IPQ_UNLOCK(); 1058 return (NULL); 1059 1060 #undef GETIP 1061 } 1062 1063 /* 1064 * Free a fragment reassembly header and all 1065 * associated datagrams. 1066 */ 1067 static void 1068 ip_freef(fhp, fp) 1069 struct ipqhead *fhp; 1070 struct ipq *fp; 1071 { 1072 register struct mbuf *q; 1073 1074 IPQ_LOCK_ASSERT(); 1075 1076 while (fp->ipq_frags) { 1077 q = fp->ipq_frags; 1078 fp->ipq_frags = q->m_nextpkt; 1079 m_freem(q); 1080 } 1081 TAILQ_REMOVE(fhp, fp, ipq_list); 1082 (void) m_free(dtom(fp)); 1083 nipq--; 1084 } 1085 1086 /* 1087 * IP timer processing; 1088 * if a timer expires on a reassembly 1089 * queue, discard it. 1090 */ 1091 void 1092 ip_slowtimo() 1093 { 1094 register struct ipq *fp; 1095 int i; 1096 1097 IPQ_LOCK(); 1098 for (i = 0; i < IPREASS_NHASH; i++) { 1099 for(fp = TAILQ_FIRST(&ipq[i]); fp;) { 1100 struct ipq *fpp; 1101 1102 fpp = fp; 1103 fp = TAILQ_NEXT(fp, ipq_list); 1104 if(--fpp->ipq_ttl == 0) { 1105 ipstat.ips_fragtimeout += fpp->ipq_nfrags; 1106 ip_freef(&ipq[i], fpp); 1107 } 1108 } 1109 } 1110 /* 1111 * If we are over the maximum number of fragments 1112 * (due to the limit being lowered), drain off 1113 * enough to get down to the new limit. 1114 */ 1115 if (maxnipq >= 0 && nipq > maxnipq) { 1116 for (i = 0; i < IPREASS_NHASH; i++) { 1117 while (nipq > maxnipq && !TAILQ_EMPTY(&ipq[i])) { 1118 ipstat.ips_fragdropped += 1119 TAILQ_FIRST(&ipq[i])->ipq_nfrags; 1120 ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i])); 1121 } 1122 } 1123 } 1124 IPQ_UNLOCK(); 1125 } 1126 1127 /* 1128 * Drain off all datagram fragments. 1129 */ 1130 void 1131 ip_drain() 1132 { 1133 int i; 1134 1135 IPQ_LOCK(); 1136 for (i = 0; i < IPREASS_NHASH; i++) { 1137 while(!TAILQ_EMPTY(&ipq[i])) { 1138 ipstat.ips_fragdropped += 1139 TAILQ_FIRST(&ipq[i])->ipq_nfrags; 1140 ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i])); 1141 } 1142 } 1143 IPQ_UNLOCK(); 1144 in_rtqdrain(); 1145 } 1146 1147 /* 1148 * The protocol to be inserted into ip_protox[] must be already registered 1149 * in inetsw[], either statically or through pf_proto_register(). 1150 */ 1151 int 1152 ipproto_register(u_char ipproto) 1153 { 1154 struct protosw *pr; 1155 1156 /* Sanity checks. */ 1157 if (ipproto == 0) 1158 return (EPROTONOSUPPORT); 1159 1160 /* 1161 * The protocol slot must not be occupied by another protocol 1162 * already. An index pointing to IPPROTO_RAW is unused. 1163 */ 1164 pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW); 1165 if (pr == NULL) 1166 return (EPFNOSUPPORT); 1167 if (ip_protox[ipproto] != pr - inetsw) /* IPPROTO_RAW */ 1168 return (EEXIST); 1169 1170 /* Find the protocol position in inetsw[] and set the index. */ 1171 for (pr = inetdomain.dom_protosw; 1172 pr < inetdomain.dom_protoswNPROTOSW; pr++) { 1173 if (pr->pr_domain->dom_family == PF_INET && 1174 pr->pr_protocol && pr->pr_protocol == ipproto) { 1175 /* Be careful to only index valid IP protocols. */ 1176 if (pr->pr_protocol < IPPROTO_MAX) { 1177 ip_protox[pr->pr_protocol] = pr - inetsw; 1178 return (0); 1179 } else 1180 return (EINVAL); 1181 } 1182 } 1183 return (EPROTONOSUPPORT); 1184 } 1185 1186 int 1187 ipproto_unregister(u_char ipproto) 1188 { 1189 struct protosw *pr; 1190 1191 /* Sanity checks. */ 1192 if (ipproto == 0) 1193 return (EPROTONOSUPPORT); 1194 1195 /* Check if the protocol was indeed registered. */ 1196 pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW); 1197 if (pr == NULL) 1198 return (EPFNOSUPPORT); 1199 if (ip_protox[ipproto] == pr - inetsw) /* IPPROTO_RAW */ 1200 return (ENOENT); 1201 1202 /* Reset the protocol slot to IPPROTO_RAW. */ 1203 ip_protox[ipproto] = pr - inetsw; 1204 return (0); 1205 } 1206 1207 /* 1208 * Given address of next destination (final or next hop), 1209 * return internet address info of interface to be used to get there. 1210 */ 1211 struct in_ifaddr * 1212 ip_rtaddr(dst) 1213 struct in_addr dst; 1214 { 1215 struct route sro; 1216 struct sockaddr_in *sin; 1217 struct in_ifaddr *ifa; 1218 1219 bzero(&sro, sizeof(sro)); 1220 sin = (struct sockaddr_in *)&sro.ro_dst; 1221 sin->sin_family = AF_INET; 1222 sin->sin_len = sizeof(*sin); 1223 sin->sin_addr = dst; 1224 rtalloc_ign(&sro, RTF_CLONING); 1225 1226 if (sro.ro_rt == NULL) 1227 return (NULL); 1228 1229 ifa = ifatoia(sro.ro_rt->rt_ifa); 1230 RTFREE(sro.ro_rt); 1231 return (ifa); 1232 } 1233 1234 u_char inetctlerrmap[PRC_NCMDS] = { 1235 0, 0, 0, 0, 1236 0, EMSGSIZE, EHOSTDOWN, EHOSTUNREACH, 1237 EHOSTUNREACH, EHOSTUNREACH, ECONNREFUSED, ECONNREFUSED, 1238 EMSGSIZE, EHOSTUNREACH, 0, 0, 1239 0, 0, EHOSTUNREACH, 0, 1240 ENOPROTOOPT, ECONNREFUSED 1241 }; 1242 1243 /* 1244 * Forward a packet. If some error occurs return the sender 1245 * an icmp packet. Note we can't always generate a meaningful 1246 * icmp message because icmp doesn't have a large enough repertoire 1247 * of codes and types. 1248 * 1249 * If not forwarding, just drop the packet. This could be confusing 1250 * if ipforwarding was zero but some routing protocol was advancing 1251 * us as a gateway to somewhere. However, we must let the routing 1252 * protocol deal with that. 1253 * 1254 * The srcrt parameter indicates whether the packet is being forwarded 1255 * via a source route. 1256 */ 1257 void 1258 ip_forward(struct mbuf *m, int srcrt) 1259 { 1260 struct ip *ip = mtod(m, struct ip *); 1261 struct in_ifaddr *ia = NULL; 1262 struct mbuf *mcopy; 1263 struct in_addr dest; 1264 int error, type = 0, code = 0, mtu = 0; 1265 1266 if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) { 1267 ipstat.ips_cantforward++; 1268 m_freem(m); 1269 return; 1270 } 1271 #ifdef IPSTEALTH 1272 if (!ipstealth) { 1273 #endif 1274 if (ip->ip_ttl <= IPTTLDEC) { 1275 icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, 1276 0, 0); 1277 return; 1278 } 1279 #ifdef IPSTEALTH 1280 } 1281 #endif 1282 1283 if (!srcrt && (ia = ip_rtaddr(ip->ip_dst)) == NULL) { 1284 icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, 0, 0); 1285 return; 1286 } 1287 1288 /* 1289 * Save the IP header and at most 8 bytes of the payload, 1290 * in case we need to generate an ICMP message to the src. 1291 * 1292 * XXX this can be optimized a lot by saving the data in a local 1293 * buffer on the stack (72 bytes at most), and only allocating the 1294 * mbuf if really necessary. The vast majority of the packets 1295 * are forwarded without having to send an ICMP back (either 1296 * because unnecessary, or because rate limited), so we are 1297 * really we are wasting a lot of work here. 1298 * 1299 * We don't use m_copy() because it might return a reference 1300 * to a shared cluster. Both this function and ip_output() 1301 * assume exclusive access to the IP header in `m', so any 1302 * data in a cluster may change before we reach icmp_error(). 1303 */ 1304 MGETHDR(mcopy, M_DONTWAIT, m->m_type); 1305 if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, M_DONTWAIT)) { 1306 /* 1307 * It's probably ok if the pkthdr dup fails (because 1308 * the deep copy of the tag chain failed), but for now 1309 * be conservative and just discard the copy since 1310 * code below may some day want the tags. 1311 */ 1312 m_free(mcopy); 1313 mcopy = NULL; 1314 } 1315 if (mcopy != NULL) { 1316 mcopy->m_len = min(ip->ip_len, M_TRAILINGSPACE(mcopy)); 1317 mcopy->m_pkthdr.len = mcopy->m_len; 1318 m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t)); 1319 } 1320 1321 #ifdef IPSTEALTH 1322 if (!ipstealth) { 1323 #endif 1324 ip->ip_ttl -= IPTTLDEC; 1325 #ifdef IPSTEALTH 1326 } 1327 #endif 1328 1329 /* 1330 * If forwarding packet using same interface that it came in on, 1331 * perhaps should send a redirect to sender to shortcut a hop. 1332 * Only send redirect if source is sending directly to us, 1333 * and if packet was not source routed (or has any options). 1334 * Also, don't send redirect if forwarding using a default route 1335 * or a route modified by a redirect. 1336 */ 1337 dest.s_addr = 0; 1338 if (!srcrt && ipsendredirects && ia->ia_ifp == m->m_pkthdr.rcvif) { 1339 struct sockaddr_in *sin; 1340 struct route ro; 1341 struct rtentry *rt; 1342 1343 bzero(&ro, sizeof(ro)); 1344 sin = (struct sockaddr_in *)&ro.ro_dst; 1345 sin->sin_family = AF_INET; 1346 sin->sin_len = sizeof(*sin); 1347 sin->sin_addr = ip->ip_dst; 1348 rtalloc_ign(&ro, RTF_CLONING); 1349 1350 rt = ro.ro_rt; 1351 1352 if (rt && (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 && 1353 satosin(rt_key(rt))->sin_addr.s_addr != 0) { 1354 #define RTA(rt) ((struct in_ifaddr *)(rt->rt_ifa)) 1355 u_long src = ntohl(ip->ip_src.s_addr); 1356 1357 if (RTA(rt) && 1358 (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) { 1359 if (rt->rt_flags & RTF_GATEWAY) 1360 dest.s_addr = satosin(rt->rt_gateway)->sin_addr.s_addr; 1361 else 1362 dest.s_addr = ip->ip_dst.s_addr; 1363 /* Router requirements says to only send host redirects */ 1364 type = ICMP_REDIRECT; 1365 code = ICMP_REDIRECT_HOST; 1366 } 1367 } 1368 if (rt) 1369 RTFREE(rt); 1370 } 1371 1372 error = ip_output(m, NULL, NULL, IP_FORWARDING, NULL, NULL); 1373 if (error) 1374 ipstat.ips_cantforward++; 1375 else { 1376 ipstat.ips_forward++; 1377 if (type) 1378 ipstat.ips_redirectsent++; 1379 else { 1380 if (mcopy) 1381 m_freem(mcopy); 1382 return; 1383 } 1384 } 1385 if (mcopy == NULL) 1386 return; 1387 1388 switch (error) { 1389 1390 case 0: /* forwarded, but need redirect */ 1391 /* type, code set above */ 1392 break; 1393 1394 case ENETUNREACH: /* shouldn't happen, checked above */ 1395 case EHOSTUNREACH: 1396 case ENETDOWN: 1397 case EHOSTDOWN: 1398 default: 1399 type = ICMP_UNREACH; 1400 code = ICMP_UNREACH_HOST; 1401 break; 1402 1403 case EMSGSIZE: 1404 type = ICMP_UNREACH; 1405 code = ICMP_UNREACH_NEEDFRAG; 1406 #if defined(IPSEC) || defined(FAST_IPSEC) 1407 /* 1408 * If the packet is routed over IPsec tunnel, tell the 1409 * originator the tunnel MTU. 1410 * tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz 1411 * XXX quickhack!!! 1412 */ 1413 { 1414 struct secpolicy *sp = NULL; 1415 int ipsecerror; 1416 int ipsechdr; 1417 struct route *ro; 1418 1419 #ifdef IPSEC 1420 sp = ipsec4_getpolicybyaddr(mcopy, 1421 IPSEC_DIR_OUTBOUND, 1422 IP_FORWARDING, 1423 &ipsecerror); 1424 #else /* FAST_IPSEC */ 1425 sp = ipsec_getpolicybyaddr(mcopy, 1426 IPSEC_DIR_OUTBOUND, 1427 IP_FORWARDING, 1428 &ipsecerror); 1429 #endif 1430 if (sp != NULL) { 1431 /* count IPsec header size */ 1432 ipsechdr = ipsec4_hdrsiz(mcopy, 1433 IPSEC_DIR_OUTBOUND, 1434 NULL); 1435 1436 /* 1437 * find the correct route for outer IPv4 1438 * header, compute tunnel MTU. 1439 */ 1440 if (sp->req != NULL 1441 && sp->req->sav != NULL 1442 && sp->req->sav->sah != NULL) { 1443 ro = &sp->req->sav->sah->sa_route; 1444 if (ro->ro_rt && ro->ro_rt->rt_ifp) { 1445 mtu = 1446 ro->ro_rt->rt_rmx.rmx_mtu ? 1447 ro->ro_rt->rt_rmx.rmx_mtu : 1448 ro->ro_rt->rt_ifp->if_mtu; 1449 mtu -= ipsechdr; 1450 } 1451 } 1452 1453 #ifdef IPSEC 1454 key_freesp(sp); 1455 #else /* FAST_IPSEC */ 1456 KEY_FREESP(&sp); 1457 #endif 1458 ipstat.ips_cantfrag++; 1459 break; 1460 } else 1461 #endif /*IPSEC || FAST_IPSEC*/ 1462 /* 1463 * When doing source routing 'ia' can be NULL. Fall back 1464 * to the minimum guaranteed routeable packet size and use 1465 * the same hack as IPSEC to setup a dummyifp for icmp. 1466 */ 1467 if (ia == NULL) 1468 mtu = IP_MSS; 1469 else 1470 mtu = ia->ia_ifp->if_mtu; 1471 #if defined(IPSEC) || defined(FAST_IPSEC) 1472 } 1473 #endif /*IPSEC || FAST_IPSEC*/ 1474 ipstat.ips_cantfrag++; 1475 break; 1476 1477 case ENOBUFS: 1478 /* 1479 * A router should not generate ICMP_SOURCEQUENCH as 1480 * required in RFC1812 Requirements for IP Version 4 Routers. 1481 * Source quench could be a big problem under DoS attacks, 1482 * or if the underlying interface is rate-limited. 1483 * Those who need source quench packets may re-enable them 1484 * via the net.inet.ip.sendsourcequench sysctl. 1485 */ 1486 if (ip_sendsourcequench == 0) { 1487 m_freem(mcopy); 1488 return; 1489 } else { 1490 type = ICMP_SOURCEQUENCH; 1491 code = 0; 1492 } 1493 break; 1494 1495 case EACCES: /* ipfw denied packet */ 1496 m_freem(mcopy); 1497 return; 1498 } 1499 icmp_error(mcopy, type, code, dest.s_addr, mtu); 1500 } 1501 1502 void 1503 ip_savecontrol(inp, mp, ip, m) 1504 register struct inpcb *inp; 1505 register struct mbuf **mp; 1506 register struct ip *ip; 1507 register struct mbuf *m; 1508 { 1509 if (inp->inp_socket->so_options & (SO_BINTIME | SO_TIMESTAMP)) { 1510 struct bintime bt; 1511 1512 bintime(&bt); 1513 if (inp->inp_socket->so_options & SO_BINTIME) { 1514 *mp = sbcreatecontrol((caddr_t) &bt, sizeof(bt), 1515 SCM_BINTIME, SOL_SOCKET); 1516 if (*mp) 1517 mp = &(*mp)->m_next; 1518 } 1519 if (inp->inp_socket->so_options & SO_TIMESTAMP) { 1520 struct timeval tv; 1521 1522 bintime2timeval(&bt, &tv); 1523 *mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv), 1524 SCM_TIMESTAMP, SOL_SOCKET); 1525 if (*mp) 1526 mp = &(*mp)->m_next; 1527 } 1528 } 1529 if (inp->inp_flags & INP_RECVDSTADDR) { 1530 *mp = sbcreatecontrol((caddr_t) &ip->ip_dst, 1531 sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP); 1532 if (*mp) 1533 mp = &(*mp)->m_next; 1534 } 1535 if (inp->inp_flags & INP_RECVTTL) { 1536 *mp = sbcreatecontrol((caddr_t) &ip->ip_ttl, 1537 sizeof(u_char), IP_RECVTTL, IPPROTO_IP); 1538 if (*mp) 1539 mp = &(*mp)->m_next; 1540 } 1541 #ifdef notyet 1542 /* XXX 1543 * Moving these out of udp_input() made them even more broken 1544 * than they already were. 1545 */ 1546 /* options were tossed already */ 1547 if (inp->inp_flags & INP_RECVOPTS) { 1548 *mp = sbcreatecontrol((caddr_t) opts_deleted_above, 1549 sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP); 1550 if (*mp) 1551 mp = &(*mp)->m_next; 1552 } 1553 /* ip_srcroute doesn't do what we want here, need to fix */ 1554 if (inp->inp_flags & INP_RECVRETOPTS) { 1555 *mp = sbcreatecontrol((caddr_t) ip_srcroute(m), 1556 sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP); 1557 if (*mp) 1558 mp = &(*mp)->m_next; 1559 } 1560 #endif 1561 if (inp->inp_flags & INP_RECVIF) { 1562 struct ifnet *ifp; 1563 struct sdlbuf { 1564 struct sockaddr_dl sdl; 1565 u_char pad[32]; 1566 } sdlbuf; 1567 struct sockaddr_dl *sdp; 1568 struct sockaddr_dl *sdl2 = &sdlbuf.sdl; 1569 1570 if (((ifp = m->m_pkthdr.rcvif)) 1571 && ( ifp->if_index && (ifp->if_index <= if_index))) { 1572 sdp = (struct sockaddr_dl *)ifp->if_addr->ifa_addr; 1573 /* 1574 * Change our mind and don't try copy. 1575 */ 1576 if ((sdp->sdl_family != AF_LINK) 1577 || (sdp->sdl_len > sizeof(sdlbuf))) { 1578 goto makedummy; 1579 } 1580 bcopy(sdp, sdl2, sdp->sdl_len); 1581 } else { 1582 makedummy: 1583 sdl2->sdl_len 1584 = offsetof(struct sockaddr_dl, sdl_data[0]); 1585 sdl2->sdl_family = AF_LINK; 1586 sdl2->sdl_index = 0; 1587 sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0; 1588 } 1589 *mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len, 1590 IP_RECVIF, IPPROTO_IP); 1591 if (*mp) 1592 mp = &(*mp)->m_next; 1593 } 1594 } 1595 1596 /* 1597 * XXX these routines are called from the upper part of the kernel. 1598 * They need to be locked when we remove Giant. 1599 * 1600 * They could also be moved to ip_mroute.c, since all the RSVP 1601 * handling is done there already. 1602 */ 1603 static int ip_rsvp_on; 1604 struct socket *ip_rsvpd; 1605 int 1606 ip_rsvp_init(struct socket *so) 1607 { 1608 if (so->so_type != SOCK_RAW || 1609 so->so_proto->pr_protocol != IPPROTO_RSVP) 1610 return EOPNOTSUPP; 1611 1612 if (ip_rsvpd != NULL) 1613 return EADDRINUSE; 1614 1615 ip_rsvpd = so; 1616 /* 1617 * This may seem silly, but we need to be sure we don't over-increment 1618 * the RSVP counter, in case something slips up. 1619 */ 1620 if (!ip_rsvp_on) { 1621 ip_rsvp_on = 1; 1622 rsvp_on++; 1623 } 1624 1625 return 0; 1626 } 1627 1628 int 1629 ip_rsvp_done(void) 1630 { 1631 ip_rsvpd = NULL; 1632 /* 1633 * This may seem silly, but we need to be sure we don't over-decrement 1634 * the RSVP counter, in case something slips up. 1635 */ 1636 if (ip_rsvp_on) { 1637 ip_rsvp_on = 0; 1638 rsvp_on--; 1639 } 1640 return 0; 1641 } 1642 1643 void 1644 rsvp_input(struct mbuf *m, int off) /* XXX must fixup manually */ 1645 { 1646 if (rsvp_input_p) { /* call the real one if loaded */ 1647 rsvp_input_p(m, off); 1648 return; 1649 } 1650 1651 /* Can still get packets with rsvp_on = 0 if there is a local member 1652 * of the group to which the RSVP packet is addressed. But in this 1653 * case we want to throw the packet away. 1654 */ 1655 1656 if (!rsvp_on) { 1657 m_freem(m); 1658 return; 1659 } 1660 1661 if (ip_rsvpd != NULL) { 1662 rip_input(m, off); 1663 return; 1664 } 1665 /* Drop the packet */ 1666 m_freem(m); 1667 } 1668