1 /* 2 * Copyright (c) 1982, 1986, 1988, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. All advertising materials mentioning features or use of this software 14 * must display the following acknowledgement: 15 * This product includes software developed by the University of 16 * California, Berkeley and its contributors. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * @(#)ip_input.c 8.2 (Berkeley) 1/4/94 34 * $FreeBSD$ 35 */ 36 37 #define _IP_VHL 38 39 #include "opt_bootp.h" 40 #include "opt_ipfw.h" 41 #include "opt_ipdn.h" 42 #include "opt_ipdivert.h" 43 #include "opt_ipfilter.h" 44 #include "opt_ipstealth.h" 45 #include "opt_ipsec.h" 46 #include "opt_mac.h" 47 #include "opt_pfil_hooks.h" 48 #include "opt_random_ip_id.h" 49 50 #include <sys/param.h> 51 #include <sys/systm.h> 52 #include <sys/mac.h> 53 #include <sys/mbuf.h> 54 #include <sys/malloc.h> 55 #include <sys/domain.h> 56 #include <sys/protosw.h> 57 #include <sys/socket.h> 58 #include <sys/time.h> 59 #include <sys/kernel.h> 60 #include <sys/syslog.h> 61 #include <sys/sysctl.h> 62 63 #include <net/pfil.h> 64 #include <net/if.h> 65 #include <net/if_types.h> 66 #include <net/if_var.h> 67 #include <net/if_dl.h> 68 #include <net/route.h> 69 #include <net/netisr.h> 70 #include <net/intrq.h> 71 72 #include <netinet/in.h> 73 #include <netinet/in_systm.h> 74 #include <netinet/in_var.h> 75 #include <netinet/ip.h> 76 #include <netinet/in_pcb.h> 77 #include <netinet/ip_var.h> 78 #include <netinet/ip_icmp.h> 79 #include <machine/in_cksum.h> 80 81 #include <sys/socketvar.h> 82 83 #include <netinet/ip_fw.h> 84 #include <netinet/ip_dummynet.h> 85 86 #ifdef IPSEC 87 #include <netinet6/ipsec.h> 88 #include <netkey/key.h> 89 #endif 90 91 int rsvp_on = 0; 92 93 int ipforwarding = 0; 94 SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW, 95 &ipforwarding, 0, "Enable IP forwarding between interfaces"); 96 97 static int ipsendredirects = 1; /* XXX */ 98 SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW, 99 &ipsendredirects, 0, "Enable sending IP redirects"); 100 101 int ip_defttl = IPDEFTTL; 102 SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW, 103 &ip_defttl, 0, "Maximum TTL on IP packets"); 104 105 static int ip_dosourceroute = 0; 106 SYSCTL_INT(_net_inet_ip, IPCTL_SOURCEROUTE, sourceroute, CTLFLAG_RW, 107 &ip_dosourceroute, 0, "Enable forwarding source routed IP packets"); 108 109 static int ip_acceptsourceroute = 0; 110 SYSCTL_INT(_net_inet_ip, IPCTL_ACCEPTSOURCEROUTE, accept_sourceroute, 111 CTLFLAG_RW, &ip_acceptsourceroute, 0, 112 "Enable accepting source routed IP packets"); 113 114 static int ip_keepfaith = 0; 115 SYSCTL_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW, 116 &ip_keepfaith, 0, 117 "Enable packet capture for FAITH IPv4->IPv6 translater daemon"); 118 119 static int ip_nfragpackets = 0; 120 static int ip_maxfragpackets; /* initialized in ip_init() */ 121 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragpackets, CTLFLAG_RW, 122 &ip_maxfragpackets, 0, 123 "Maximum number of IPv4 fragment reassembly queue entries"); 124 125 /* 126 * XXX - Setting ip_checkinterface mostly implements the receive side of 127 * the Strong ES model described in RFC 1122, but since the routing table 128 * and transmit implementation do not implement the Strong ES model, 129 * setting this to 1 results in an odd hybrid. 130 * 131 * XXX - ip_checkinterface currently must be disabled if you use ipnat 132 * to translate the destination address to another local interface. 133 * 134 * XXX - ip_checkinterface must be disabled if you add IP aliases 135 * to the loopback interface instead of the interface where the 136 * packets for those addresses are received. 137 */ 138 static int ip_checkinterface = 1; 139 SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW, 140 &ip_checkinterface, 0, "Verify packet arrives on correct interface"); 141 142 #ifdef DIAGNOSTIC 143 static int ipprintfs = 0; 144 #endif 145 146 static int ipqmaxlen = IFQ_MAXLEN; 147 148 extern struct domain inetdomain; 149 extern struct protosw inetsw[]; 150 u_char ip_protox[IPPROTO_MAX]; 151 struct in_ifaddrhead in_ifaddrhead; /* first inet address */ 152 struct in_ifaddrhashhead *in_ifaddrhashtbl; /* inet addr hash table */ 153 u_long in_ifaddrhmask; /* mask for hash table */ 154 155 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen, CTLFLAG_RW, 156 &ipintrq.ifq_maxlen, 0, "Maximum size of the IP input queue"); 157 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops, CTLFLAG_RD, 158 &ipintrq.ifq_drops, 0, "Number of packets dropped from the IP input queue"); 159 160 struct ipstat ipstat; 161 SYSCTL_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RW, 162 &ipstat, ipstat, "IP statistics (struct ipstat, netinet/ip_var.h)"); 163 164 /* Packet reassembly stuff */ 165 #define IPREASS_NHASH_LOG2 6 166 #define IPREASS_NHASH (1 << IPREASS_NHASH_LOG2) 167 #define IPREASS_HMASK (IPREASS_NHASH - 1) 168 #define IPREASS_HASH(x,y) \ 169 (((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK) 170 171 static TAILQ_HEAD(ipqhead, ipq) ipq[IPREASS_NHASH]; 172 static int nipq = 0; /* total # of reass queues */ 173 static int maxnipq; 174 175 #ifdef IPCTL_DEFMTU 176 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW, 177 &ip_mtu, 0, "Default MTU"); 178 #endif 179 180 #ifdef IPSTEALTH 181 static int ipstealth = 0; 182 SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW, 183 &ipstealth, 0, ""); 184 #endif 185 186 187 /* Firewall hooks */ 188 ip_fw_chk_t *ip_fw_chk_ptr; 189 int fw_enable = 1 ; 190 191 /* Dummynet hooks */ 192 ip_dn_io_t *ip_dn_io_ptr; 193 194 195 /* 196 * XXX this is ugly -- the following two global variables are 197 * used to store packet state while it travels through the stack. 198 * Note that the code even makes assumptions on the size and 199 * alignment of fields inside struct ip_srcrt so e.g. adding some 200 * fields will break the code. This needs to be fixed. 201 * 202 * We need to save the IP options in case a protocol wants to respond 203 * to an incoming packet over the same route if the packet got here 204 * using IP source routing. This allows connection establishment and 205 * maintenance when the remote end is on a network that is not known 206 * to us. 207 */ 208 static int ip_nhops = 0; 209 static struct ip_srcrt { 210 struct in_addr dst; /* final destination */ 211 char nop; /* one NOP to align */ 212 char srcopt[IPOPT_OFFSET + 1]; /* OPTVAL, OLEN and OFFSET */ 213 struct in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)]; 214 } ip_srcrt; 215 216 static void save_rte(u_char *, struct in_addr); 217 static int ip_dooptions(struct mbuf *m, int, 218 struct sockaddr_in *next_hop); 219 static void ip_forward(struct mbuf *m, int srcrt, 220 struct sockaddr_in *next_hop); 221 static void ip_freef(struct ipqhead *, struct ipq *); 222 static struct mbuf *ip_reass(struct mbuf *, struct ipqhead *, 223 struct ipq *, u_int32_t *, u_int16_t *); 224 static void ipintr(void); 225 226 /* 227 * IP initialization: fill in IP protocol switch table. 228 * All protocols not implemented in kernel go to raw IP protocol handler. 229 */ 230 void 231 ip_init() 232 { 233 register struct protosw *pr; 234 register int i; 235 236 TAILQ_INIT(&in_ifaddrhead); 237 in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &in_ifaddrhmask); 238 pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW); 239 if (pr == 0) 240 panic("ip_init"); 241 for (i = 0; i < IPPROTO_MAX; i++) 242 ip_protox[i] = pr - inetsw; 243 for (pr = inetdomain.dom_protosw; 244 pr < inetdomain.dom_protoswNPROTOSW; pr++) 245 if (pr->pr_domain->dom_family == PF_INET && 246 pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW) 247 ip_protox[pr->pr_protocol] = pr - inetsw; 248 249 for (i = 0; i < IPREASS_NHASH; i++) 250 TAILQ_INIT(&ipq[i]); 251 252 maxnipq = nmbclusters / 4; 253 ip_maxfragpackets = nmbclusters / 4; 254 255 #ifndef RANDOM_IP_ID 256 ip_id = time_second & 0xffff; 257 #endif 258 ipintrq.ifq_maxlen = ipqmaxlen; 259 mtx_init(&ipintrq.ifq_mtx, "ip_inq", NULL, MTX_DEF); 260 ipintrq_present = 1; 261 262 register_netisr(NETISR_IP, ipintr); 263 } 264 265 /* 266 * XXX watch out this one. It is perhaps used as a cache for 267 * the most recently used route ? it is cleared in in_addroute() 268 * when a new route is successfully created. 269 */ 270 struct route ipforward_rt; 271 272 /* 273 * Ip input routine. Checksum and byte swap header. If fragmented 274 * try to reassemble. Process options. Pass to next level. 275 */ 276 void 277 ip_input(struct mbuf *m) 278 { 279 struct ip *ip; 280 struct ipq *fp; 281 struct in_ifaddr *ia = NULL; 282 struct ifaddr *ifa; 283 int i, hlen, checkif; 284 u_short sum; 285 struct in_addr pkt_dst; 286 u_int32_t divert_info = 0; /* packet divert/tee info */ 287 struct ip_fw_args args; 288 #ifdef PFIL_HOOKS 289 struct packet_filter_hook *pfh; 290 struct mbuf *m0; 291 int rv; 292 #endif /* PFIL_HOOKS */ 293 294 args.eh = NULL; 295 args.oif = NULL; 296 args.rule = NULL; 297 args.divert_rule = 0; /* divert cookie */ 298 args.next_hop = NULL; 299 300 /* Grab info from MT_TAG mbufs prepended to the chain. */ 301 for (; m && m->m_type == MT_TAG; m = m->m_next) { 302 switch(m->m_tag_id) { 303 default: 304 printf("ip_input: unrecognised MT_TAG tag %d\n", 305 m->m_tag_id); 306 break; 307 308 case PACKET_TAG_DUMMYNET: 309 args.rule = ((struct dn_pkt *)m)->rule; 310 break; 311 312 case PACKET_TAG_DIVERT: 313 args.divert_rule = (intptr_t)m->m_hdr.mh_data & 0xffff; 314 break; 315 316 case PACKET_TAG_IPFORWARD: 317 args.next_hop = (struct sockaddr_in *)m->m_hdr.mh_data; 318 break; 319 } 320 } 321 322 KASSERT(m != NULL && (m->m_flags & M_PKTHDR) != 0, 323 ("ip_input: no HDR")); 324 325 if (args.rule) { /* dummynet already filtered us */ 326 ip = mtod(m, struct ip *); 327 hlen = IP_VHL_HL(ip->ip_vhl) << 2; 328 goto iphack ; 329 } 330 331 ipstat.ips_total++; 332 333 if (m->m_pkthdr.len < sizeof(struct ip)) 334 goto tooshort; 335 336 if (m->m_len < sizeof (struct ip) && 337 (m = m_pullup(m, sizeof (struct ip))) == 0) { 338 ipstat.ips_toosmall++; 339 return; 340 } 341 ip = mtod(m, struct ip *); 342 343 if (IP_VHL_V(ip->ip_vhl) != IPVERSION) { 344 ipstat.ips_badvers++; 345 goto bad; 346 } 347 348 hlen = IP_VHL_HL(ip->ip_vhl) << 2; 349 if (hlen < sizeof(struct ip)) { /* minimum header length */ 350 ipstat.ips_badhlen++; 351 goto bad; 352 } 353 if (hlen > m->m_len) { 354 if ((m = m_pullup(m, hlen)) == 0) { 355 ipstat.ips_badhlen++; 356 return; 357 } 358 ip = mtod(m, struct ip *); 359 } 360 361 /* 127/8 must not appear on wire - RFC1122 */ 362 if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET || 363 (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) { 364 if ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) { 365 ipstat.ips_badaddr++; 366 goto bad; 367 } 368 } 369 370 if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) { 371 sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID); 372 } else { 373 if (hlen == sizeof(struct ip)) { 374 sum = in_cksum_hdr(ip); 375 } else { 376 sum = in_cksum(m, hlen); 377 } 378 } 379 if (sum) { 380 ipstat.ips_badsum++; 381 goto bad; 382 } 383 384 /* 385 * Convert fields to host representation. 386 */ 387 ip->ip_len = ntohs(ip->ip_len); 388 if (ip->ip_len < hlen) { 389 ipstat.ips_badlen++; 390 goto bad; 391 } 392 ip->ip_off = ntohs(ip->ip_off); 393 394 /* 395 * Check that the amount of data in the buffers 396 * is as at least much as the IP header would have us expect. 397 * Trim mbufs if longer than we expect. 398 * Drop packet if shorter than we expect. 399 */ 400 if (m->m_pkthdr.len < ip->ip_len) { 401 tooshort: 402 ipstat.ips_tooshort++; 403 goto bad; 404 } 405 if (m->m_pkthdr.len > ip->ip_len) { 406 if (m->m_len == m->m_pkthdr.len) { 407 m->m_len = ip->ip_len; 408 m->m_pkthdr.len = ip->ip_len; 409 } else 410 m_adj(m, ip->ip_len - m->m_pkthdr.len); 411 } 412 413 #ifdef IPSEC 414 if (ipsec_gethist(m, NULL)) 415 goto pass; 416 #endif 417 418 /* 419 * IpHack's section. 420 * Right now when no processing on packet has done 421 * and it is still fresh out of network we do our black 422 * deals with it. 423 * - Firewall: deny/allow/divert 424 * - Xlate: translate packet's addr/port (NAT). 425 * - Pipe: pass pkt through dummynet. 426 * - Wrap: fake packet's addr/port <unimpl.> 427 * - Encapsulate: put it in another IP and send out. <unimp.> 428 */ 429 430 iphack: 431 432 #ifdef PFIL_HOOKS 433 /* 434 * Run through list of hooks for input packets. If there are any 435 * filters which require that additional packets in the flow are 436 * not fast-forwarded, they must clear the M_CANFASTFWD flag. 437 * Note that filters must _never_ set this flag, as another filter 438 * in the list may have previously cleared it. 439 */ 440 m0 = m; 441 pfh = pfil_hook_get(PFIL_IN, &inetsw[ip_protox[IPPROTO_IP]].pr_pfh); 442 for (; pfh; pfh = TAILQ_NEXT(pfh, pfil_link)) 443 if (pfh->pfil_func) { 444 rv = pfh->pfil_func(ip, hlen, 445 m->m_pkthdr.rcvif, 0, &m0); 446 if (rv) 447 return; 448 m = m0; 449 if (m == NULL) 450 return; 451 ip = mtod(m, struct ip *); 452 } 453 #endif /* PFIL_HOOKS */ 454 455 if (fw_enable && IPFW_LOADED) { 456 /* 457 * If we've been forwarded from the output side, then 458 * skip the firewall a second time 459 */ 460 if (args.next_hop) 461 goto ours; 462 463 args.m = m; 464 i = ip_fw_chk_ptr(&args); 465 m = args.m; 466 467 if ( (i & IP_FW_PORT_DENY_FLAG) || m == NULL) { /* drop */ 468 if (m) 469 m_freem(m); 470 return; 471 } 472 ip = mtod(m, struct ip *); /* just in case m changed */ 473 if (i == 0 && args.next_hop == NULL) /* common case */ 474 goto pass; 475 if (DUMMYNET_LOADED && (i & IP_FW_PORT_DYNT_FLAG) != 0) { 476 /* Send packet to the appropriate pipe */ 477 ip_dn_io_ptr(m, i&0xffff, DN_TO_IP_IN, &args); 478 return; 479 } 480 #ifdef IPDIVERT 481 if (i != 0 && (i & IP_FW_PORT_DYNT_FLAG) == 0) { 482 /* Divert or tee packet */ 483 divert_info = i; 484 goto ours; 485 } 486 #endif 487 if (i == 0 && args.next_hop != NULL) 488 goto pass; 489 /* 490 * if we get here, the packet must be dropped 491 */ 492 m_freem(m); 493 return; 494 } 495 pass: 496 497 /* 498 * Process options and, if not destined for us, 499 * ship it on. ip_dooptions returns 1 when an 500 * error was detected (causing an icmp message 501 * to be sent and the original packet to be freed). 502 */ 503 ip_nhops = 0; /* for source routed packets */ 504 if (hlen > sizeof (struct ip) && ip_dooptions(m, 0, args.next_hop)) 505 return; 506 507 /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no 508 * matter if it is destined to another node, or whether it is 509 * a multicast one, RSVP wants it! and prevents it from being forwarded 510 * anywhere else. Also checks if the rsvp daemon is running before 511 * grabbing the packet. 512 */ 513 if (rsvp_on && ip->ip_p==IPPROTO_RSVP) 514 goto ours; 515 516 /* 517 * Check our list of addresses, to see if the packet is for us. 518 * If we don't have any addresses, assume any unicast packet 519 * we receive might be for us (and let the upper layers deal 520 * with it). 521 */ 522 if (TAILQ_EMPTY(&in_ifaddrhead) && 523 (m->m_flags & (M_MCAST|M_BCAST)) == 0) 524 goto ours; 525 526 /* 527 * Cache the destination address of the packet; this may be 528 * changed by use of 'ipfw fwd'. 529 */ 530 pkt_dst = args.next_hop ? args.next_hop->sin_addr : ip->ip_dst; 531 532 /* 533 * Enable a consistency check between the destination address 534 * and the arrival interface for a unicast packet (the RFC 1122 535 * strong ES model) if IP forwarding is disabled and the packet 536 * is not locally generated and the packet is not subject to 537 * 'ipfw fwd'. 538 * 539 * XXX - Checking also should be disabled if the destination 540 * address is ipnat'ed to a different interface. 541 * 542 * XXX - Checking is incompatible with IP aliases added 543 * to the loopback interface instead of the interface where 544 * the packets are received. 545 */ 546 checkif = ip_checkinterface && (ipforwarding == 0) && 547 m->m_pkthdr.rcvif != NULL && 548 ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) && 549 (args.next_hop == NULL); 550 551 /* 552 * Check for exact addresses in the hash bucket. 553 */ 554 LIST_FOREACH(ia, INADDR_HASH(pkt_dst.s_addr), ia_hash) { 555 /* 556 * If the address matches, verify that the packet 557 * arrived via the correct interface if checking is 558 * enabled. 559 */ 560 if (IA_SIN(ia)->sin_addr.s_addr == pkt_dst.s_addr && 561 (!checkif || ia->ia_ifp == m->m_pkthdr.rcvif)) 562 goto ours; 563 } 564 /* 565 * Check for broadcast addresses. 566 * 567 * Only accept broadcast packets that arrive via the matching 568 * interface. Reception of forwarded directed broadcasts would 569 * be handled via ip_forward() and ether_output() with the loopback 570 * into the stack for SIMPLEX interfaces handled by ether_output(). 571 */ 572 if (m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) { 573 TAILQ_FOREACH(ifa, &m->m_pkthdr.rcvif->if_addrhead, ifa_link) { 574 if (ifa->ifa_addr->sa_family != AF_INET) 575 continue; 576 ia = ifatoia(ifa); 577 if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr == 578 pkt_dst.s_addr) 579 goto ours; 580 if (ia->ia_netbroadcast.s_addr == pkt_dst.s_addr) 581 goto ours; 582 #ifdef BOOTP_COMPAT 583 if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY) 584 goto ours; 585 #endif 586 } 587 } 588 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) { 589 struct in_multi *inm; 590 if (ip_mrouter) { 591 /* 592 * If we are acting as a multicast router, all 593 * incoming multicast packets are passed to the 594 * kernel-level multicast forwarding function. 595 * The packet is returned (relatively) intact; if 596 * ip_mforward() returns a non-zero value, the packet 597 * must be discarded, else it may be accepted below. 598 */ 599 if (ip_mforward(ip, m->m_pkthdr.rcvif, m, 0) != 0) { 600 ipstat.ips_cantforward++; 601 m_freem(m); 602 return; 603 } 604 605 /* 606 * The process-level routing daemon needs to receive 607 * all multicast IGMP packets, whether or not this 608 * host belongs to their destination groups. 609 */ 610 if (ip->ip_p == IPPROTO_IGMP) 611 goto ours; 612 ipstat.ips_forward++; 613 } 614 /* 615 * See if we belong to the destination multicast group on the 616 * arrival interface. 617 */ 618 IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm); 619 if (inm == NULL) { 620 ipstat.ips_notmember++; 621 m_freem(m); 622 return; 623 } 624 goto ours; 625 } 626 if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST) 627 goto ours; 628 if (ip->ip_dst.s_addr == INADDR_ANY) 629 goto ours; 630 631 /* 632 * FAITH(Firewall Aided Internet Translator) 633 */ 634 if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) { 635 if (ip_keepfaith) { 636 if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP) 637 goto ours; 638 } 639 m_freem(m); 640 return; 641 } 642 643 /* 644 * Not for us; forward if possible and desirable. 645 */ 646 if (ipforwarding == 0) { 647 ipstat.ips_cantforward++; 648 m_freem(m); 649 } else { 650 #ifdef IPSEC 651 /* 652 * Enforce inbound IPsec SPD. 653 */ 654 if (ipsec4_in_reject(m, NULL)) { 655 ipsecstat.in_polvio++; 656 goto bad; 657 } 658 #endif /* IPSEC */ 659 ip_forward(m, 0, args.next_hop); 660 } 661 return; 662 663 ours: 664 #ifdef IPSTEALTH 665 /* 666 * IPSTEALTH: Process non-routing options only 667 * if the packet is destined for us. 668 */ 669 if (ipstealth && hlen > sizeof (struct ip) && 670 ip_dooptions(m, 1, args.next_hop)) 671 return; 672 #endif /* IPSTEALTH */ 673 674 /* Count the packet in the ip address stats */ 675 if (ia != NULL) { 676 ia->ia_ifa.if_ipackets++; 677 ia->ia_ifa.if_ibytes += m->m_pkthdr.len; 678 } 679 680 /* 681 * If offset or IP_MF are set, must reassemble. 682 * Otherwise, nothing need be done. 683 * (We could look in the reassembly queue to see 684 * if the packet was previously fragmented, 685 * but it's not worth the time; just let them time out.) 686 */ 687 if (ip->ip_off & (IP_MF | IP_OFFMASK)) { 688 689 sum = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id); 690 /* 691 * Look for queue of fragments 692 * of this datagram. 693 */ 694 TAILQ_FOREACH(fp, &ipq[sum], ipq_list) 695 if (ip->ip_id == fp->ipq_id && 696 ip->ip_src.s_addr == fp->ipq_src.s_addr && 697 ip->ip_dst.s_addr == fp->ipq_dst.s_addr && 698 #ifdef MAC 699 mac_fragment_match(m, fp) && 700 #endif 701 ip->ip_p == fp->ipq_p) 702 goto found; 703 704 fp = 0; 705 706 /* check if there's a place for the new queue */ 707 if (nipq > maxnipq) { 708 /* 709 * drop something from the tail of the current queue 710 * before proceeding further 711 */ 712 struct ipq *q = TAILQ_LAST(&ipq[sum], ipqhead); 713 if (q == NULL) { /* gak */ 714 for (i = 0; i < IPREASS_NHASH; i++) { 715 struct ipq *r = TAILQ_LAST(&ipq[i], ipqhead); 716 if (r) { 717 ip_freef(&ipq[i], r); 718 break; 719 } 720 } 721 } else 722 ip_freef(&ipq[sum], q); 723 } 724 found: 725 /* 726 * Adjust ip_len to not reflect header, 727 * convert offset of this to bytes. 728 */ 729 ip->ip_len -= hlen; 730 if (ip->ip_off & IP_MF) { 731 /* 732 * Make sure that fragments have a data length 733 * that's a non-zero multiple of 8 bytes. 734 */ 735 if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) { 736 ipstat.ips_toosmall++; /* XXX */ 737 goto bad; 738 } 739 m->m_flags |= M_FRAG; 740 } else 741 m->m_flags &= ~M_FRAG; 742 ip->ip_off <<= 3; 743 744 /* 745 * Attempt reassembly; if it succeeds, proceed. 746 * ip_reass() will return a different mbuf, and update 747 * the divert info in divert_info and args.divert_rule. 748 */ 749 ipstat.ips_fragments++; 750 m->m_pkthdr.header = ip; 751 m = ip_reass(m, 752 &ipq[sum], fp, &divert_info, &args.divert_rule); 753 if (m == 0) 754 return; 755 ipstat.ips_reassembled++; 756 ip = mtod(m, struct ip *); 757 /* Get the header length of the reassembled packet */ 758 hlen = IP_VHL_HL(ip->ip_vhl) << 2; 759 #ifdef IPDIVERT 760 /* Restore original checksum before diverting packet */ 761 if (divert_info != 0) { 762 ip->ip_len += hlen; 763 ip->ip_len = htons(ip->ip_len); 764 ip->ip_off = htons(ip->ip_off); 765 ip->ip_sum = 0; 766 if (hlen == sizeof(struct ip)) 767 ip->ip_sum = in_cksum_hdr(ip); 768 else 769 ip->ip_sum = in_cksum(m, hlen); 770 ip->ip_off = ntohs(ip->ip_off); 771 ip->ip_len = ntohs(ip->ip_len); 772 ip->ip_len -= hlen; 773 } 774 #endif 775 } else 776 ip->ip_len -= hlen; 777 778 #ifdef IPDIVERT 779 /* 780 * Divert or tee packet to the divert protocol if required. 781 */ 782 if (divert_info != 0) { 783 struct mbuf *clone = NULL; 784 785 /* Clone packet if we're doing a 'tee' */ 786 if ((divert_info & IP_FW_PORT_TEE_FLAG) != 0) 787 clone = m_dup(m, M_DONTWAIT); 788 789 /* Restore packet header fields to original values */ 790 ip->ip_len += hlen; 791 ip->ip_len = htons(ip->ip_len); 792 ip->ip_off = htons(ip->ip_off); 793 794 /* Deliver packet to divert input routine */ 795 divert_packet(m, 1, divert_info & 0xffff, args.divert_rule); 796 ipstat.ips_delivered++; 797 798 /* If 'tee', continue with original packet */ 799 if (clone == NULL) 800 return; 801 m = clone; 802 ip = mtod(m, struct ip *); 803 ip->ip_len += hlen; 804 /* 805 * Jump backwards to complete processing of the 806 * packet. But first clear divert_info to avoid 807 * entering this block again. 808 * We do not need to clear args.divert_rule 809 * or args.next_hop as they will not be used. 810 */ 811 divert_info = 0; 812 goto pass; 813 } 814 #endif 815 816 #ifdef IPSEC 817 /* 818 * enforce IPsec policy checking if we are seeing last header. 819 * note that we do not visit this with protocols with pcb layer 820 * code - like udp/tcp/raw ip. 821 */ 822 if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0 && 823 ipsec4_in_reject(m, NULL)) { 824 ipsecstat.in_polvio++; 825 goto bad; 826 } 827 #endif 828 829 /* 830 * Switch out to protocol's input routine. 831 */ 832 ipstat.ips_delivered++; 833 if (args.next_hop && ip->ip_p == IPPROTO_TCP) { 834 /* TCP needs IPFORWARD info if available */ 835 struct m_hdr tag; 836 837 tag.mh_type = MT_TAG; 838 tag.mh_flags = PACKET_TAG_IPFORWARD; 839 tag.mh_data = (caddr_t)args.next_hop; 840 tag.mh_next = m; 841 842 (*inetsw[ip_protox[ip->ip_p]].pr_input)( 843 (struct mbuf *)&tag, hlen); 844 } else 845 (*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen); 846 return; 847 bad: 848 m_freem(m); 849 } 850 851 /* 852 * IP software interrupt routine - to go away sometime soon 853 */ 854 static void 855 ipintr(void) 856 { 857 struct mbuf *m; 858 859 while (1) { 860 IF_DEQUEUE(&ipintrq, m); 861 if (m == 0) 862 return; 863 ip_input(m); 864 } 865 } 866 867 /* 868 * Take incoming datagram fragment and try to reassemble it into 869 * whole datagram. If a chain for reassembly of this datagram already 870 * exists, then it is given as fp; otherwise have to make a chain. 871 * 872 * When IPDIVERT enabled, keep additional state with each packet that 873 * tells us if we need to divert or tee the packet we're building. 874 * In particular, *divinfo includes the port and TEE flag, 875 * *divert_rule is the number of the matching rule. 876 */ 877 878 static struct mbuf * 879 ip_reass(struct mbuf *m, struct ipqhead *head, struct ipq *fp, 880 u_int32_t *divinfo, u_int16_t *divert_rule) 881 { 882 struct ip *ip = mtod(m, struct ip *); 883 register struct mbuf *p, *q, *nq; 884 struct mbuf *t; 885 int hlen = IP_VHL_HL(ip->ip_vhl) << 2; 886 int i, next; 887 888 /* 889 * Presence of header sizes in mbufs 890 * would confuse code below. 891 */ 892 m->m_data += hlen; 893 m->m_len -= hlen; 894 895 /* 896 * If first fragment to arrive, create a reassembly queue. 897 */ 898 if (fp == 0) { 899 /* 900 * Enforce upper bound on number of fragmented packets 901 * for which we attempt reassembly; 902 * If maxfrag is 0, never accept fragments. 903 * If maxfrag is -1, accept all fragments without limitation. 904 */ 905 if ((ip_maxfragpackets >= 0) && (ip_nfragpackets >= ip_maxfragpackets)) 906 goto dropfrag; 907 ip_nfragpackets++; 908 if ((t = m_get(M_DONTWAIT, MT_FTABLE)) == NULL) 909 goto dropfrag; 910 fp = mtod(t, struct ipq *); 911 #ifdef MAC 912 mac_init_ipq(fp); 913 mac_create_ipq(m, fp); 914 #endif 915 TAILQ_INSERT_HEAD(head, fp, ipq_list); 916 nipq++; 917 fp->ipq_ttl = IPFRAGTTL; 918 fp->ipq_p = ip->ip_p; 919 fp->ipq_id = ip->ip_id; 920 fp->ipq_src = ip->ip_src; 921 fp->ipq_dst = ip->ip_dst; 922 fp->ipq_frags = m; 923 m->m_nextpkt = NULL; 924 #ifdef IPDIVERT 925 fp->ipq_div_info = 0; 926 fp->ipq_div_cookie = 0; 927 #endif 928 goto inserted; 929 } else { 930 #ifdef MAC 931 mac_update_ipq(m, fp); 932 #endif 933 } 934 935 #define GETIP(m) ((struct ip*)((m)->m_pkthdr.header)) 936 937 /* 938 * Find a segment which begins after this one does. 939 */ 940 for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) 941 if (GETIP(q)->ip_off > ip->ip_off) 942 break; 943 944 /* 945 * If there is a preceding segment, it may provide some of 946 * our data already. If so, drop the data from the incoming 947 * segment. If it provides all of our data, drop us, otherwise 948 * stick new segment in the proper place. 949 * 950 * If some of the data is dropped from the the preceding 951 * segment, then it's checksum is invalidated. 952 */ 953 if (p) { 954 i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off; 955 if (i > 0) { 956 if (i >= ip->ip_len) 957 goto dropfrag; 958 m_adj(m, i); 959 m->m_pkthdr.csum_flags = 0; 960 ip->ip_off += i; 961 ip->ip_len -= i; 962 } 963 m->m_nextpkt = p->m_nextpkt; 964 p->m_nextpkt = m; 965 } else { 966 m->m_nextpkt = fp->ipq_frags; 967 fp->ipq_frags = m; 968 } 969 970 /* 971 * While we overlap succeeding segments trim them or, 972 * if they are completely covered, dequeue them. 973 */ 974 for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off; 975 q = nq) { 976 i = (ip->ip_off + ip->ip_len) - 977 GETIP(q)->ip_off; 978 if (i < GETIP(q)->ip_len) { 979 GETIP(q)->ip_len -= i; 980 GETIP(q)->ip_off += i; 981 m_adj(q, i); 982 q->m_pkthdr.csum_flags = 0; 983 break; 984 } 985 nq = q->m_nextpkt; 986 m->m_nextpkt = nq; 987 m_freem(q); 988 } 989 990 inserted: 991 992 #ifdef IPDIVERT 993 /* 994 * Transfer firewall instructions to the fragment structure. 995 * Only trust info in the fragment at offset 0. 996 */ 997 if (ip->ip_off == 0) { 998 fp->ipq_div_info = *divinfo; 999 fp->ipq_div_cookie = *divert_rule; 1000 } 1001 *divinfo = 0; 1002 *divert_rule = 0; 1003 #endif 1004 1005 /* 1006 * Check for complete reassembly. 1007 */ 1008 next = 0; 1009 for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) { 1010 if (GETIP(q)->ip_off != next) 1011 return (0); 1012 next += GETIP(q)->ip_len; 1013 } 1014 /* Make sure the last packet didn't have the IP_MF flag */ 1015 if (p->m_flags & M_FRAG) 1016 return (0); 1017 1018 /* 1019 * Reassembly is complete. Make sure the packet is a sane size. 1020 */ 1021 q = fp->ipq_frags; 1022 ip = GETIP(q); 1023 if (next + (IP_VHL_HL(ip->ip_vhl) << 2) > IP_MAXPACKET) { 1024 ipstat.ips_toolong++; 1025 ip_freef(head, fp); 1026 return (0); 1027 } 1028 1029 /* 1030 * Concatenate fragments. 1031 */ 1032 m = q; 1033 t = m->m_next; 1034 m->m_next = 0; 1035 m_cat(m, t); 1036 nq = q->m_nextpkt; 1037 q->m_nextpkt = 0; 1038 for (q = nq; q != NULL; q = nq) { 1039 nq = q->m_nextpkt; 1040 q->m_nextpkt = NULL; 1041 m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags; 1042 m->m_pkthdr.csum_data += q->m_pkthdr.csum_data; 1043 m_cat(m, q); 1044 } 1045 #ifdef MAC 1046 mac_create_datagram_from_ipq(fp, m); 1047 mac_destroy_ipq(fp); 1048 #endif 1049 1050 #ifdef IPDIVERT 1051 /* 1052 * Extract firewall instructions from the fragment structure. 1053 */ 1054 *divinfo = fp->ipq_div_info; 1055 *divert_rule = fp->ipq_div_cookie; 1056 #endif 1057 1058 /* 1059 * Create header for new ip packet by 1060 * modifying header of first packet; 1061 * dequeue and discard fragment reassembly header. 1062 * Make header visible. 1063 */ 1064 ip->ip_len = next; 1065 ip->ip_src = fp->ipq_src; 1066 ip->ip_dst = fp->ipq_dst; 1067 TAILQ_REMOVE(head, fp, ipq_list); 1068 nipq--; 1069 (void) m_free(dtom(fp)); 1070 ip_nfragpackets--; 1071 m->m_len += (IP_VHL_HL(ip->ip_vhl) << 2); 1072 m->m_data -= (IP_VHL_HL(ip->ip_vhl) << 2); 1073 /* some debugging cruft by sklower, below, will go away soon */ 1074 if (m->m_flags & M_PKTHDR) /* XXX this should be done elsewhere */ 1075 m_fixhdr(m); 1076 return (m); 1077 1078 dropfrag: 1079 #ifdef IPDIVERT 1080 *divinfo = 0; 1081 *divert_rule = 0; 1082 #endif 1083 ipstat.ips_fragdropped++; 1084 m_freem(m); 1085 return (0); 1086 1087 #undef GETIP 1088 } 1089 1090 /* 1091 * Free a fragment reassembly header and all 1092 * associated datagrams. 1093 */ 1094 static void 1095 ip_freef(fhp, fp) 1096 struct ipqhead *fhp; 1097 struct ipq *fp; 1098 { 1099 register struct mbuf *q; 1100 1101 while (fp->ipq_frags) { 1102 q = fp->ipq_frags; 1103 fp->ipq_frags = q->m_nextpkt; 1104 m_freem(q); 1105 } 1106 TAILQ_REMOVE(fhp, fp, ipq_list); 1107 (void) m_free(dtom(fp)); 1108 ip_nfragpackets--; 1109 nipq--; 1110 } 1111 1112 /* 1113 * IP timer processing; 1114 * if a timer expires on a reassembly 1115 * queue, discard it. 1116 */ 1117 void 1118 ip_slowtimo() 1119 { 1120 register struct ipq *fp; 1121 int s = splnet(); 1122 int i; 1123 1124 for (i = 0; i < IPREASS_NHASH; i++) { 1125 for(fp = TAILQ_FIRST(&ipq[i]); fp;) { 1126 struct ipq *fpp; 1127 1128 fpp = fp; 1129 fp = TAILQ_NEXT(fp, ipq_list); 1130 if(--fpp->ipq_ttl == 0) { 1131 ipstat.ips_fragtimeout++; 1132 ip_freef(&ipq[i], fpp); 1133 } 1134 } 1135 } 1136 /* 1137 * If we are over the maximum number of fragments 1138 * (due to the limit being lowered), drain off 1139 * enough to get down to the new limit. 1140 */ 1141 for (i = 0; i < IPREASS_NHASH; i++) { 1142 if (ip_maxfragpackets >= 0) { 1143 while (ip_nfragpackets > ip_maxfragpackets && 1144 !TAILQ_EMPTY(&ipq[i])) { 1145 ipstat.ips_fragdropped++; 1146 ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i])); 1147 } 1148 } 1149 } 1150 ipflow_slowtimo(); 1151 splx(s); 1152 } 1153 1154 /* 1155 * Drain off all datagram fragments. 1156 */ 1157 void 1158 ip_drain() 1159 { 1160 int i; 1161 1162 for (i = 0; i < IPREASS_NHASH; i++) { 1163 while(!TAILQ_EMPTY(&ipq[i])) { 1164 ipstat.ips_fragdropped++; 1165 ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i])); 1166 } 1167 } 1168 in_rtqdrain(); 1169 } 1170 1171 /* 1172 * Do option processing on a datagram, 1173 * possibly discarding it if bad options are encountered, 1174 * or forwarding it if source-routed. 1175 * The pass argument is used when operating in the IPSTEALTH 1176 * mode to tell what options to process: 1177 * [LS]SRR (pass 0) or the others (pass 1). 1178 * The reason for as many as two passes is that when doing IPSTEALTH, 1179 * non-routing options should be processed only if the packet is for us. 1180 * Returns 1 if packet has been forwarded/freed, 1181 * 0 if the packet should be processed further. 1182 */ 1183 static int 1184 ip_dooptions(struct mbuf *m, int pass, struct sockaddr_in *next_hop) 1185 { 1186 struct ip *ip = mtod(m, struct ip *); 1187 u_char *cp; 1188 struct in_ifaddr *ia; 1189 int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0; 1190 struct in_addr *sin, dst; 1191 n_time ntime; 1192 struct sockaddr_in ipaddr = { sizeof(ipaddr), AF_INET }; 1193 1194 dst = ip->ip_dst; 1195 cp = (u_char *)(ip + 1); 1196 cnt = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof (struct ip); 1197 for (; cnt > 0; cnt -= optlen, cp += optlen) { 1198 opt = cp[IPOPT_OPTVAL]; 1199 if (opt == IPOPT_EOL) 1200 break; 1201 if (opt == IPOPT_NOP) 1202 optlen = 1; 1203 else { 1204 if (cnt < IPOPT_OLEN + sizeof(*cp)) { 1205 code = &cp[IPOPT_OLEN] - (u_char *)ip; 1206 goto bad; 1207 } 1208 optlen = cp[IPOPT_OLEN]; 1209 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) { 1210 code = &cp[IPOPT_OLEN] - (u_char *)ip; 1211 goto bad; 1212 } 1213 } 1214 switch (opt) { 1215 1216 default: 1217 break; 1218 1219 /* 1220 * Source routing with record. 1221 * Find interface with current destination address. 1222 * If none on this machine then drop if strictly routed, 1223 * or do nothing if loosely routed. 1224 * Record interface address and bring up next address 1225 * component. If strictly routed make sure next 1226 * address is on directly accessible net. 1227 */ 1228 case IPOPT_LSRR: 1229 case IPOPT_SSRR: 1230 #ifdef IPSTEALTH 1231 if (ipstealth && pass > 0) 1232 break; 1233 #endif 1234 if (optlen < IPOPT_OFFSET + sizeof(*cp)) { 1235 code = &cp[IPOPT_OLEN] - (u_char *)ip; 1236 goto bad; 1237 } 1238 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) { 1239 code = &cp[IPOPT_OFFSET] - (u_char *)ip; 1240 goto bad; 1241 } 1242 ipaddr.sin_addr = ip->ip_dst; 1243 ia = (struct in_ifaddr *) 1244 ifa_ifwithaddr((struct sockaddr *)&ipaddr); 1245 if (ia == 0) { 1246 if (opt == IPOPT_SSRR) { 1247 type = ICMP_UNREACH; 1248 code = ICMP_UNREACH_SRCFAIL; 1249 goto bad; 1250 } 1251 if (!ip_dosourceroute) 1252 goto nosourcerouting; 1253 /* 1254 * Loose routing, and not at next destination 1255 * yet; nothing to do except forward. 1256 */ 1257 break; 1258 } 1259 off--; /* 0 origin */ 1260 if (off > optlen - (int)sizeof(struct in_addr)) { 1261 /* 1262 * End of source route. Should be for us. 1263 */ 1264 if (!ip_acceptsourceroute) 1265 goto nosourcerouting; 1266 save_rte(cp, ip->ip_src); 1267 break; 1268 } 1269 #ifdef IPSTEALTH 1270 if (ipstealth) 1271 goto dropit; 1272 #endif 1273 if (!ip_dosourceroute) { 1274 if (ipforwarding) { 1275 char buf[16]; /* aaa.bbb.ccc.ddd\0 */ 1276 /* 1277 * Acting as a router, so generate ICMP 1278 */ 1279 nosourcerouting: 1280 strcpy(buf, inet_ntoa(ip->ip_dst)); 1281 log(LOG_WARNING, 1282 "attempted source route from %s to %s\n", 1283 inet_ntoa(ip->ip_src), buf); 1284 type = ICMP_UNREACH; 1285 code = ICMP_UNREACH_SRCFAIL; 1286 goto bad; 1287 } else { 1288 /* 1289 * Not acting as a router, so silently drop. 1290 */ 1291 #ifdef IPSTEALTH 1292 dropit: 1293 #endif 1294 ipstat.ips_cantforward++; 1295 m_freem(m); 1296 return (1); 1297 } 1298 } 1299 1300 /* 1301 * locate outgoing interface 1302 */ 1303 (void)memcpy(&ipaddr.sin_addr, cp + off, 1304 sizeof(ipaddr.sin_addr)); 1305 1306 if (opt == IPOPT_SSRR) { 1307 #define INA struct in_ifaddr * 1308 #define SA struct sockaddr * 1309 if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr)) == 0) 1310 ia = (INA)ifa_ifwithnet((SA)&ipaddr); 1311 } else 1312 ia = ip_rtaddr(ipaddr.sin_addr, &ipforward_rt); 1313 if (ia == 0) { 1314 type = ICMP_UNREACH; 1315 code = ICMP_UNREACH_SRCFAIL; 1316 goto bad; 1317 } 1318 ip->ip_dst = ipaddr.sin_addr; 1319 (void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr), 1320 sizeof(struct in_addr)); 1321 cp[IPOPT_OFFSET] += sizeof(struct in_addr); 1322 /* 1323 * Let ip_intr's mcast routing check handle mcast pkts 1324 */ 1325 forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr)); 1326 break; 1327 1328 case IPOPT_RR: 1329 #ifdef IPSTEALTH 1330 if (ipstealth && pass == 0) 1331 break; 1332 #endif 1333 if (optlen < IPOPT_OFFSET + sizeof(*cp)) { 1334 code = &cp[IPOPT_OFFSET] - (u_char *)ip; 1335 goto bad; 1336 } 1337 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) { 1338 code = &cp[IPOPT_OFFSET] - (u_char *)ip; 1339 goto bad; 1340 } 1341 /* 1342 * If no space remains, ignore. 1343 */ 1344 off--; /* 0 origin */ 1345 if (off > optlen - (int)sizeof(struct in_addr)) 1346 break; 1347 (void)memcpy(&ipaddr.sin_addr, &ip->ip_dst, 1348 sizeof(ipaddr.sin_addr)); 1349 /* 1350 * locate outgoing interface; if we're the destination, 1351 * use the incoming interface (should be same). 1352 */ 1353 if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == 0 && 1354 (ia = ip_rtaddr(ipaddr.sin_addr, 1355 &ipforward_rt)) == 0) { 1356 type = ICMP_UNREACH; 1357 code = ICMP_UNREACH_HOST; 1358 goto bad; 1359 } 1360 (void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr), 1361 sizeof(struct in_addr)); 1362 cp[IPOPT_OFFSET] += sizeof(struct in_addr); 1363 break; 1364 1365 case IPOPT_TS: 1366 #ifdef IPSTEALTH 1367 if (ipstealth && pass == 0) 1368 break; 1369 #endif 1370 code = cp - (u_char *)ip; 1371 if (optlen < 4 || optlen > 40) { 1372 code = &cp[IPOPT_OLEN] - (u_char *)ip; 1373 goto bad; 1374 } 1375 if ((off = cp[IPOPT_OFFSET]) < 5) { 1376 code = &cp[IPOPT_OLEN] - (u_char *)ip; 1377 goto bad; 1378 } 1379 if (off > optlen - (int)sizeof(int32_t)) { 1380 cp[IPOPT_OFFSET + 1] += (1 << 4); 1381 if ((cp[IPOPT_OFFSET + 1] & 0xf0) == 0) { 1382 code = &cp[IPOPT_OFFSET] - (u_char *)ip; 1383 goto bad; 1384 } 1385 break; 1386 } 1387 off--; /* 0 origin */ 1388 sin = (struct in_addr *)(cp + off); 1389 switch (cp[IPOPT_OFFSET + 1] & 0x0f) { 1390 1391 case IPOPT_TS_TSONLY: 1392 break; 1393 1394 case IPOPT_TS_TSANDADDR: 1395 if (off + sizeof(n_time) + 1396 sizeof(struct in_addr) > optlen) { 1397 code = &cp[IPOPT_OFFSET] - (u_char *)ip; 1398 goto bad; 1399 } 1400 ipaddr.sin_addr = dst; 1401 ia = (INA)ifaof_ifpforaddr((SA)&ipaddr, 1402 m->m_pkthdr.rcvif); 1403 if (ia == 0) 1404 continue; 1405 (void)memcpy(sin, &IA_SIN(ia)->sin_addr, 1406 sizeof(struct in_addr)); 1407 cp[IPOPT_OFFSET] += sizeof(struct in_addr); 1408 break; 1409 1410 case IPOPT_TS_PRESPEC: 1411 if (off + sizeof(n_time) + 1412 sizeof(struct in_addr) > optlen) { 1413 code = &cp[IPOPT_OFFSET] - (u_char *)ip; 1414 goto bad; 1415 } 1416 (void)memcpy(&ipaddr.sin_addr, sin, 1417 sizeof(struct in_addr)); 1418 if (ifa_ifwithaddr((SA)&ipaddr) == 0) 1419 continue; 1420 cp[IPOPT_OFFSET] += sizeof(struct in_addr); 1421 break; 1422 1423 default: 1424 code = &cp[IPOPT_OFFSET + 1] - (u_char *)ip; 1425 goto bad; 1426 } 1427 ntime = iptime(); 1428 (void)memcpy(cp + off, &ntime, sizeof(n_time)); 1429 cp[IPOPT_OFFSET] += sizeof(n_time); 1430 } 1431 } 1432 if (forward && ipforwarding) { 1433 ip_forward(m, 1, next_hop); 1434 return (1); 1435 } 1436 return (0); 1437 bad: 1438 icmp_error(m, type, code, 0, 0); 1439 ipstat.ips_badoptions++; 1440 return (1); 1441 } 1442 1443 /* 1444 * Given address of next destination (final or next hop), 1445 * return internet address info of interface to be used to get there. 1446 */ 1447 struct in_ifaddr * 1448 ip_rtaddr(dst, rt) 1449 struct in_addr dst; 1450 struct route *rt; 1451 { 1452 register struct sockaddr_in *sin; 1453 1454 sin = (struct sockaddr_in *)&rt->ro_dst; 1455 1456 if (rt->ro_rt == 0 || 1457 !(rt->ro_rt->rt_flags & RTF_UP) || 1458 dst.s_addr != sin->sin_addr.s_addr) { 1459 if (rt->ro_rt) { 1460 RTFREE(rt->ro_rt); 1461 rt->ro_rt = 0; 1462 } 1463 sin->sin_family = AF_INET; 1464 sin->sin_len = sizeof(*sin); 1465 sin->sin_addr = dst; 1466 1467 rtalloc_ign(rt, RTF_PRCLONING); 1468 } 1469 if (rt->ro_rt == 0) 1470 return ((struct in_ifaddr *)0); 1471 return (ifatoia(rt->ro_rt->rt_ifa)); 1472 } 1473 1474 /* 1475 * Save incoming source route for use in replies, 1476 * to be picked up later by ip_srcroute if the receiver is interested. 1477 */ 1478 void 1479 save_rte(option, dst) 1480 u_char *option; 1481 struct in_addr dst; 1482 { 1483 unsigned olen; 1484 1485 olen = option[IPOPT_OLEN]; 1486 #ifdef DIAGNOSTIC 1487 if (ipprintfs) 1488 printf("save_rte: olen %d\n", olen); 1489 #endif 1490 if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst))) 1491 return; 1492 bcopy(option, ip_srcrt.srcopt, olen); 1493 ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr); 1494 ip_srcrt.dst = dst; 1495 } 1496 1497 /* 1498 * Retrieve incoming source route for use in replies, 1499 * in the same form used by setsockopt. 1500 * The first hop is placed before the options, will be removed later. 1501 */ 1502 struct mbuf * 1503 ip_srcroute() 1504 { 1505 register struct in_addr *p, *q; 1506 register struct mbuf *m; 1507 1508 if (ip_nhops == 0) 1509 return ((struct mbuf *)0); 1510 m = m_get(M_DONTWAIT, MT_HEADER); 1511 if (m == 0) 1512 return ((struct mbuf *)0); 1513 1514 #define OPTSIZ (sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt)) 1515 1516 /* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */ 1517 m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) + 1518 OPTSIZ; 1519 #ifdef DIAGNOSTIC 1520 if (ipprintfs) 1521 printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len); 1522 #endif 1523 1524 /* 1525 * First save first hop for return route 1526 */ 1527 p = &ip_srcrt.route[ip_nhops - 1]; 1528 *(mtod(m, struct in_addr *)) = *p--; 1529 #ifdef DIAGNOSTIC 1530 if (ipprintfs) 1531 printf(" hops %lx", (u_long)ntohl(mtod(m, struct in_addr *)->s_addr)); 1532 #endif 1533 1534 /* 1535 * Copy option fields and padding (nop) to mbuf. 1536 */ 1537 ip_srcrt.nop = IPOPT_NOP; 1538 ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF; 1539 (void)memcpy(mtod(m, caddr_t) + sizeof(struct in_addr), 1540 &ip_srcrt.nop, OPTSIZ); 1541 q = (struct in_addr *)(mtod(m, caddr_t) + 1542 sizeof(struct in_addr) + OPTSIZ); 1543 #undef OPTSIZ 1544 /* 1545 * Record return path as an IP source route, 1546 * reversing the path (pointers are now aligned). 1547 */ 1548 while (p >= ip_srcrt.route) { 1549 #ifdef DIAGNOSTIC 1550 if (ipprintfs) 1551 printf(" %lx", (u_long)ntohl(q->s_addr)); 1552 #endif 1553 *q++ = *p--; 1554 } 1555 /* 1556 * Last hop goes to final destination. 1557 */ 1558 *q = ip_srcrt.dst; 1559 #ifdef DIAGNOSTIC 1560 if (ipprintfs) 1561 printf(" %lx\n", (u_long)ntohl(q->s_addr)); 1562 #endif 1563 return (m); 1564 } 1565 1566 /* 1567 * Strip out IP options, at higher 1568 * level protocol in the kernel. 1569 * Second argument is buffer to which options 1570 * will be moved, and return value is their length. 1571 * XXX should be deleted; last arg currently ignored. 1572 */ 1573 void 1574 ip_stripoptions(m, mopt) 1575 register struct mbuf *m; 1576 struct mbuf *mopt; 1577 { 1578 register int i; 1579 struct ip *ip = mtod(m, struct ip *); 1580 register caddr_t opts; 1581 int olen; 1582 1583 olen = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof (struct ip); 1584 opts = (caddr_t)(ip + 1); 1585 i = m->m_len - (sizeof (struct ip) + olen); 1586 bcopy(opts + olen, opts, (unsigned)i); 1587 m->m_len -= olen; 1588 if (m->m_flags & M_PKTHDR) 1589 m->m_pkthdr.len -= olen; 1590 ip->ip_vhl = IP_MAKE_VHL(IPVERSION, sizeof(struct ip) >> 2); 1591 } 1592 1593 u_char inetctlerrmap[PRC_NCMDS] = { 1594 0, 0, 0, 0, 1595 0, EMSGSIZE, EHOSTDOWN, EHOSTUNREACH, 1596 EHOSTUNREACH, EHOSTUNREACH, ECONNREFUSED, ECONNREFUSED, 1597 EMSGSIZE, EHOSTUNREACH, 0, 0, 1598 0, 0, 0, 0, 1599 ENOPROTOOPT, ECONNREFUSED 1600 }; 1601 1602 /* 1603 * Forward a packet. If some error occurs return the sender 1604 * an icmp packet. Note we can't always generate a meaningful 1605 * icmp message because icmp doesn't have a large enough repertoire 1606 * of codes and types. 1607 * 1608 * If not forwarding, just drop the packet. This could be confusing 1609 * if ipforwarding was zero but some routing protocol was advancing 1610 * us as a gateway to somewhere. However, we must let the routing 1611 * protocol deal with that. 1612 * 1613 * The srcrt parameter indicates whether the packet is being forwarded 1614 * via a source route. 1615 */ 1616 static void 1617 ip_forward(struct mbuf *m, int srcrt, struct sockaddr_in *next_hop) 1618 { 1619 struct ip *ip = mtod(m, struct ip *); 1620 struct rtentry *rt; 1621 int error, type = 0, code = 0; 1622 struct mbuf *mcopy; 1623 n_long dest; 1624 struct in_addr pkt_dst; 1625 struct ifnet *destifp; 1626 #ifdef IPSEC 1627 struct ifnet dummyifp; 1628 #endif 1629 1630 dest = 0; 1631 /* 1632 * Cache the destination address of the packet; this may be 1633 * changed by use of 'ipfw fwd'. 1634 */ 1635 pkt_dst = next_hop ? next_hop->sin_addr : ip->ip_dst; 1636 1637 #ifdef DIAGNOSTIC 1638 if (ipprintfs) 1639 printf("forward: src %lx dst %lx ttl %x\n", 1640 (u_long)ip->ip_src.s_addr, (u_long)pkt_dst.s_addr, 1641 ip->ip_ttl); 1642 #endif 1643 1644 1645 if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(pkt_dst) == 0) { 1646 ipstat.ips_cantforward++; 1647 m_freem(m); 1648 return; 1649 } 1650 #ifdef IPSTEALTH 1651 if (!ipstealth) { 1652 #endif 1653 if (ip->ip_ttl <= IPTTLDEC) { 1654 icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, 1655 dest, 0); 1656 return; 1657 } 1658 #ifdef IPSTEALTH 1659 } 1660 #endif 1661 1662 if (ip_rtaddr(pkt_dst, &ipforward_rt) == 0) { 1663 icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0); 1664 return; 1665 } else 1666 rt = ipforward_rt.ro_rt; 1667 1668 /* 1669 * Save the IP header and at most 8 bytes of the payload, 1670 * in case we need to generate an ICMP message to the src. 1671 * 1672 * XXX this can be optimized a lot by saving the data in a local 1673 * buffer on the stack (72 bytes at most), and only allocating the 1674 * mbuf if really necessary. The vast majority of the packets 1675 * are forwarded without having to send an ICMP back (either 1676 * because unnecessary, or because rate limited), so we are 1677 * really we are wasting a lot of work here. 1678 * 1679 * We don't use m_copy() because it might return a reference 1680 * to a shared cluster. Both this function and ip_output() 1681 * assume exclusive access to the IP header in `m', so any 1682 * data in a cluster may change before we reach icmp_error(). 1683 */ 1684 MGET(mcopy, M_DONTWAIT, m->m_type); 1685 if (mcopy != NULL) { 1686 M_COPY_PKTHDR(mcopy, m); 1687 mcopy->m_len = imin((IP_VHL_HL(ip->ip_vhl) << 2) + 8, 1688 (int)ip->ip_len); 1689 m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t)); 1690 #ifdef MAC 1691 /* 1692 * XXXMAC: This will eventually become an explicit 1693 * labeling point. 1694 */ 1695 mac_create_mbuf_from_mbuf(m, mcopy); 1696 #endif 1697 } 1698 1699 #ifdef IPSTEALTH 1700 if (!ipstealth) { 1701 #endif 1702 ip->ip_ttl -= IPTTLDEC; 1703 #ifdef IPSTEALTH 1704 } 1705 #endif 1706 1707 /* 1708 * If forwarding packet using same interface that it came in on, 1709 * perhaps should send a redirect to sender to shortcut a hop. 1710 * Only send redirect if source is sending directly to us, 1711 * and if packet was not source routed (or has any options). 1712 * Also, don't send redirect if forwarding using a default route 1713 * or a route modified by a redirect. 1714 */ 1715 if (rt->rt_ifp == m->m_pkthdr.rcvif && 1716 (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 && 1717 satosin(rt_key(rt))->sin_addr.s_addr != 0 && 1718 ipsendredirects && !srcrt && !next_hop) { 1719 #define RTA(rt) ((struct in_ifaddr *)(rt->rt_ifa)) 1720 u_long src = ntohl(ip->ip_src.s_addr); 1721 1722 if (RTA(rt) && 1723 (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) { 1724 if (rt->rt_flags & RTF_GATEWAY) 1725 dest = satosin(rt->rt_gateway)->sin_addr.s_addr; 1726 else 1727 dest = pkt_dst.s_addr; 1728 /* Router requirements says to only send host redirects */ 1729 type = ICMP_REDIRECT; 1730 code = ICMP_REDIRECT_HOST; 1731 #ifdef DIAGNOSTIC 1732 if (ipprintfs) 1733 printf("redirect (%d) to %lx\n", code, (u_long)dest); 1734 #endif 1735 } 1736 } 1737 1738 { 1739 struct m_hdr tag; 1740 1741 if (next_hop) { 1742 /* Pass IPFORWARD info if available */ 1743 1744 tag.mh_type = MT_TAG; 1745 tag.mh_flags = PACKET_TAG_IPFORWARD; 1746 tag.mh_data = (caddr_t)next_hop; 1747 tag.mh_next = m; 1748 m = (struct mbuf *)&tag; 1749 } 1750 error = ip_output(m, (struct mbuf *)0, &ipforward_rt, 1751 IP_FORWARDING, 0); 1752 } 1753 if (error) 1754 ipstat.ips_cantforward++; 1755 else { 1756 ipstat.ips_forward++; 1757 if (type) 1758 ipstat.ips_redirectsent++; 1759 else { 1760 if (mcopy) { 1761 ipflow_create(&ipforward_rt, mcopy); 1762 m_freem(mcopy); 1763 } 1764 return; 1765 } 1766 } 1767 if (mcopy == NULL) 1768 return; 1769 destifp = NULL; 1770 1771 switch (error) { 1772 1773 case 0: /* forwarded, but need redirect */ 1774 /* type, code set above */ 1775 break; 1776 1777 case ENETUNREACH: /* shouldn't happen, checked above */ 1778 case EHOSTUNREACH: 1779 case ENETDOWN: 1780 case EHOSTDOWN: 1781 default: 1782 type = ICMP_UNREACH; 1783 code = ICMP_UNREACH_HOST; 1784 break; 1785 1786 case EMSGSIZE: 1787 type = ICMP_UNREACH; 1788 code = ICMP_UNREACH_NEEDFRAG; 1789 #ifndef IPSEC 1790 if (ipforward_rt.ro_rt) 1791 destifp = ipforward_rt.ro_rt->rt_ifp; 1792 #else 1793 /* 1794 * If the packet is routed over IPsec tunnel, tell the 1795 * originator the tunnel MTU. 1796 * tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz 1797 * XXX quickhack!!! 1798 */ 1799 if (ipforward_rt.ro_rt) { 1800 struct secpolicy *sp = NULL; 1801 int ipsecerror; 1802 int ipsechdr; 1803 struct route *ro; 1804 1805 sp = ipsec4_getpolicybyaddr(mcopy, 1806 IPSEC_DIR_OUTBOUND, 1807 IP_FORWARDING, 1808 &ipsecerror); 1809 1810 if (sp == NULL) 1811 destifp = ipforward_rt.ro_rt->rt_ifp; 1812 else { 1813 /* count IPsec header size */ 1814 ipsechdr = ipsec4_hdrsiz(mcopy, 1815 IPSEC_DIR_OUTBOUND, 1816 NULL); 1817 1818 /* 1819 * find the correct route for outer IPv4 1820 * header, compute tunnel MTU. 1821 * 1822 * XXX BUG ALERT 1823 * The "dummyifp" code relies upon the fact 1824 * that icmp_error() touches only ifp->if_mtu. 1825 */ 1826 /*XXX*/ 1827 destifp = NULL; 1828 if (sp->req != NULL 1829 && sp->req->sav != NULL 1830 && sp->req->sav->sah != NULL) { 1831 ro = &sp->req->sav->sah->sa_route; 1832 if (ro->ro_rt && ro->ro_rt->rt_ifp) { 1833 dummyifp.if_mtu = 1834 ro->ro_rt->rt_ifp->if_mtu; 1835 dummyifp.if_mtu -= ipsechdr; 1836 destifp = &dummyifp; 1837 } 1838 } 1839 1840 key_freesp(sp); 1841 } 1842 } 1843 #endif /*IPSEC*/ 1844 ipstat.ips_cantfrag++; 1845 break; 1846 1847 case ENOBUFS: 1848 type = ICMP_SOURCEQUENCH; 1849 code = 0; 1850 break; 1851 1852 case EACCES: /* ipfw denied packet */ 1853 m_freem(mcopy); 1854 return; 1855 } 1856 icmp_error(mcopy, type, code, dest, destifp); 1857 } 1858 1859 void 1860 ip_savecontrol(inp, mp, ip, m) 1861 register struct inpcb *inp; 1862 register struct mbuf **mp; 1863 register struct ip *ip; 1864 register struct mbuf *m; 1865 { 1866 if (inp->inp_socket->so_options & SO_TIMESTAMP) { 1867 struct timeval tv; 1868 1869 microtime(&tv); 1870 *mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv), 1871 SCM_TIMESTAMP, SOL_SOCKET); 1872 if (*mp) 1873 mp = &(*mp)->m_next; 1874 } 1875 if (inp->inp_flags & INP_RECVDSTADDR) { 1876 *mp = sbcreatecontrol((caddr_t) &ip->ip_dst, 1877 sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP); 1878 if (*mp) 1879 mp = &(*mp)->m_next; 1880 } 1881 #ifdef notyet 1882 /* XXX 1883 * Moving these out of udp_input() made them even more broken 1884 * than they already were. 1885 */ 1886 /* options were tossed already */ 1887 if (inp->inp_flags & INP_RECVOPTS) { 1888 *mp = sbcreatecontrol((caddr_t) opts_deleted_above, 1889 sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP); 1890 if (*mp) 1891 mp = &(*mp)->m_next; 1892 } 1893 /* ip_srcroute doesn't do what we want here, need to fix */ 1894 if (inp->inp_flags & INP_RECVRETOPTS) { 1895 *mp = sbcreatecontrol((caddr_t) ip_srcroute(), 1896 sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP); 1897 if (*mp) 1898 mp = &(*mp)->m_next; 1899 } 1900 #endif 1901 if (inp->inp_flags & INP_RECVIF) { 1902 struct ifnet *ifp; 1903 struct sdlbuf { 1904 struct sockaddr_dl sdl; 1905 u_char pad[32]; 1906 } sdlbuf; 1907 struct sockaddr_dl *sdp; 1908 struct sockaddr_dl *sdl2 = &sdlbuf.sdl; 1909 1910 if (((ifp = m->m_pkthdr.rcvif)) 1911 && ( ifp->if_index && (ifp->if_index <= if_index))) { 1912 sdp = (struct sockaddr_dl *) 1913 (ifaddr_byindex(ifp->if_index)->ifa_addr); 1914 /* 1915 * Change our mind and don't try copy. 1916 */ 1917 if ((sdp->sdl_family != AF_LINK) 1918 || (sdp->sdl_len > sizeof(sdlbuf))) { 1919 goto makedummy; 1920 } 1921 bcopy(sdp, sdl2, sdp->sdl_len); 1922 } else { 1923 makedummy: 1924 sdl2->sdl_len 1925 = offsetof(struct sockaddr_dl, sdl_data[0]); 1926 sdl2->sdl_family = AF_LINK; 1927 sdl2->sdl_index = 0; 1928 sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0; 1929 } 1930 *mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len, 1931 IP_RECVIF, IPPROTO_IP); 1932 if (*mp) 1933 mp = &(*mp)->m_next; 1934 } 1935 } 1936 1937 /* 1938 * XXX these routines are called from the upper part of the kernel. 1939 * They need to be locked when we remove Giant. 1940 * 1941 * They could also be moved to ip_mroute.c, since all the RSVP 1942 * handling is done there already. 1943 */ 1944 static int ip_rsvp_on; 1945 struct socket *ip_rsvpd; 1946 int 1947 ip_rsvp_init(struct socket *so) 1948 { 1949 if (so->so_type != SOCK_RAW || 1950 so->so_proto->pr_protocol != IPPROTO_RSVP) 1951 return EOPNOTSUPP; 1952 1953 if (ip_rsvpd != NULL) 1954 return EADDRINUSE; 1955 1956 ip_rsvpd = so; 1957 /* 1958 * This may seem silly, but we need to be sure we don't over-increment 1959 * the RSVP counter, in case something slips up. 1960 */ 1961 if (!ip_rsvp_on) { 1962 ip_rsvp_on = 1; 1963 rsvp_on++; 1964 } 1965 1966 return 0; 1967 } 1968 1969 int 1970 ip_rsvp_done(void) 1971 { 1972 ip_rsvpd = NULL; 1973 /* 1974 * This may seem silly, but we need to be sure we don't over-decrement 1975 * the RSVP counter, in case something slips up. 1976 */ 1977 if (ip_rsvp_on) { 1978 ip_rsvp_on = 0; 1979 rsvp_on--; 1980 } 1981 return 0; 1982 } 1983