xref: /freebsd/sys/netinet/ip_input.c (revision 215431deb0b1d83c7ecece6588e1fd7f519e404f)
1 /*
2  * Copyright (c) 1982, 1986, 1988, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
30  * $FreeBSD$
31  */
32 
33 #include "opt_bootp.h"
34 #include "opt_ipfw.h"
35 #include "opt_ipdn.h"
36 #include "opt_ipdivert.h"
37 #include "opt_ipfilter.h"
38 #include "opt_ipstealth.h"
39 #include "opt_ipsec.h"
40 #include "opt_mac.h"
41 #include "opt_pfil_hooks.h"
42 #include "opt_random_ip_id.h"
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/mac.h>
47 #include <sys/mbuf.h>
48 #include <sys/malloc.h>
49 #include <sys/domain.h>
50 #include <sys/protosw.h>
51 #include <sys/socket.h>
52 #include <sys/time.h>
53 #include <sys/kernel.h>
54 #include <sys/syslog.h>
55 #include <sys/sysctl.h>
56 
57 #include <net/pfil.h>
58 #include <net/if.h>
59 #include <net/if_types.h>
60 #include <net/if_var.h>
61 #include <net/if_dl.h>
62 #include <net/route.h>
63 #include <net/netisr.h>
64 
65 #include <netinet/in.h>
66 #include <netinet/in_systm.h>
67 #include <netinet/in_var.h>
68 #include <netinet/ip.h>
69 #include <netinet/in_pcb.h>
70 #include <netinet/ip_var.h>
71 #include <netinet/ip_icmp.h>
72 #include <machine/in_cksum.h>
73 
74 #include <sys/socketvar.h>
75 
76 #include <netinet/ip_fw.h>
77 #include <netinet/ip_divert.h>
78 #include <netinet/ip_dummynet.h>
79 
80 #ifdef IPSEC
81 #include <netinet6/ipsec.h>
82 #include <netkey/key.h>
83 #endif
84 
85 #ifdef FAST_IPSEC
86 #include <netipsec/ipsec.h>
87 #include <netipsec/key.h>
88 #endif
89 
90 int rsvp_on = 0;
91 
92 int	ipforwarding = 0;
93 SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
94     &ipforwarding, 0, "Enable IP forwarding between interfaces");
95 
96 static int	ipsendredirects = 1; /* XXX */
97 SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
98     &ipsendredirects, 0, "Enable sending IP redirects");
99 
100 int	ip_defttl = IPDEFTTL;
101 SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
102     &ip_defttl, 0, "Maximum TTL on IP packets");
103 
104 static int	ip_dosourceroute = 0;
105 SYSCTL_INT(_net_inet_ip, IPCTL_SOURCEROUTE, sourceroute, CTLFLAG_RW,
106     &ip_dosourceroute, 0, "Enable forwarding source routed IP packets");
107 
108 static int	ip_acceptsourceroute = 0;
109 SYSCTL_INT(_net_inet_ip, IPCTL_ACCEPTSOURCEROUTE, accept_sourceroute,
110     CTLFLAG_RW, &ip_acceptsourceroute, 0,
111     "Enable accepting source routed IP packets");
112 
113 int		ip_doopts = 1;	/* 0 = ignore, 1 = process, 2 = reject */
114 SYSCTL_INT(_net_inet_ip, OID_AUTO, process_options, CTLFLAG_RW,
115     &ip_doopts, 0, "Enable IP options processing ([LS]SRR, RR, TS)");
116 
117 static int	ip_keepfaith = 0;
118 SYSCTL_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
119 	&ip_keepfaith,	0,
120 	"Enable packet capture for FAITH IPv4->IPv6 translater daemon");
121 
122 static int    nipq = 0;         /* total # of reass queues */
123 static int    maxnipq;
124 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragpackets, CTLFLAG_RW,
125 	&maxnipq, 0,
126 	"Maximum number of IPv4 fragment reassembly queue entries");
127 
128 static int    maxfragsperpacket;
129 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_RW,
130 	&maxfragsperpacket, 0,
131 	"Maximum number of IPv4 fragments allowed per packet");
132 
133 static int	ip_sendsourcequench = 0;
134 SYSCTL_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW,
135 	&ip_sendsourcequench, 0,
136 	"Enable the transmission of source quench packets");
137 
138 /*
139  * XXX - Setting ip_checkinterface mostly implements the receive side of
140  * the Strong ES model described in RFC 1122, but since the routing table
141  * and transmit implementation do not implement the Strong ES model,
142  * setting this to 1 results in an odd hybrid.
143  *
144  * XXX - ip_checkinterface currently must be disabled if you use ipnat
145  * to translate the destination address to another local interface.
146  *
147  * XXX - ip_checkinterface must be disabled if you add IP aliases
148  * to the loopback interface instead of the interface where the
149  * packets for those addresses are received.
150  */
151 static int	ip_checkinterface = 1;
152 SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
153     &ip_checkinterface, 0, "Verify packet arrives on correct interface");
154 
155 #ifdef DIAGNOSTIC
156 static int	ipprintfs = 0;
157 #endif
158 #ifdef PFIL_HOOKS
159 struct pfil_head inet_pfil_hook;
160 #endif
161 
162 static struct	ifqueue ipintrq;
163 static int	ipqmaxlen = IFQ_MAXLEN;
164 
165 extern	struct domain inetdomain;
166 extern	struct protosw inetsw[];
167 u_char	ip_protox[IPPROTO_MAX];
168 struct	in_ifaddrhead in_ifaddrhead; 		/* first inet address */
169 struct	in_ifaddrhashhead *in_ifaddrhashtbl;	/* inet addr hash table  */
170 u_long 	in_ifaddrhmask;				/* mask for hash table */
171 
172 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen, CTLFLAG_RW,
173     &ipintrq.ifq_maxlen, 0, "Maximum size of the IP input queue");
174 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops, CTLFLAG_RD,
175     &ipintrq.ifq_drops, 0, "Number of packets dropped from the IP input queue");
176 
177 struct ipstat ipstat;
178 SYSCTL_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RW,
179     &ipstat, ipstat, "IP statistics (struct ipstat, netinet/ip_var.h)");
180 
181 /* Packet reassembly stuff */
182 #define IPREASS_NHASH_LOG2      6
183 #define IPREASS_NHASH           (1 << IPREASS_NHASH_LOG2)
184 #define IPREASS_HMASK           (IPREASS_NHASH - 1)
185 #define IPREASS_HASH(x,y) \
186 	(((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
187 
188 static TAILQ_HEAD(ipqhead, ipq) ipq[IPREASS_NHASH];
189 struct mtx ipqlock;
190 
191 #define	IPQ_LOCK()	mtx_lock(&ipqlock)
192 #define	IPQ_UNLOCK()	mtx_unlock(&ipqlock)
193 #define	IPQ_LOCK_INIT()	mtx_init(&ipqlock, "ipqlock", NULL, MTX_DEF)
194 #define	IPQ_LOCK_ASSERT()	mtx_assert(&ipqlock, MA_OWNED)
195 
196 #ifdef IPCTL_DEFMTU
197 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
198     &ip_mtu, 0, "Default MTU");
199 #endif
200 
201 #ifdef IPSTEALTH
202 int	ipstealth = 0;
203 SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW,
204     &ipstealth, 0, "");
205 #endif
206 
207 
208 /* Firewall hooks */
209 ip_fw_chk_t *ip_fw_chk_ptr;
210 int fw_enable = 1 ;
211 int fw_one_pass = 1;
212 
213 /* Dummynet hooks */
214 ip_dn_io_t *ip_dn_io_ptr;
215 
216 /*
217  * XXX this is ugly -- the following two global variables are
218  * used to store packet state while it travels through the stack.
219  * Note that the code even makes assumptions on the size and
220  * alignment of fields inside struct ip_srcrt so e.g. adding some
221  * fields will break the code. This needs to be fixed.
222  *
223  * We need to save the IP options in case a protocol wants to respond
224  * to an incoming packet over the same route if the packet got here
225  * using IP source routing.  This allows connection establishment and
226  * maintenance when the remote end is on a network that is not known
227  * to us.
228  * XXX: Broken on SMP and possibly preemption!
229  */
230 static int	ip_nhops = 0;
231 static	struct ip_srcrt {
232 	struct	in_addr dst;			/* final destination */
233 	char	nop;				/* one NOP to align */
234 	char	srcopt[IPOPT_OFFSET + 1];	/* OPTVAL, OLEN and OFFSET */
235 	struct	in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
236 } ip_srcrt;
237 
238 static void	save_rte(u_char *, struct in_addr);
239 static int	ip_dooptions(struct mbuf *m, int,
240 			struct sockaddr_in *next_hop);
241 static void	ip_forward(struct mbuf *m, int srcrt,
242 			struct sockaddr_in *next_hop);
243 static void	ip_freef(struct ipqhead *, struct ipq *);
244 static struct	mbuf *ip_reass(struct mbuf *);
245 
246 /*
247  * IP initialization: fill in IP protocol switch table.
248  * All protocols not implemented in kernel go to raw IP protocol handler.
249  */
250 void
251 ip_init()
252 {
253 	register struct protosw *pr;
254 	register int i;
255 
256 	TAILQ_INIT(&in_ifaddrhead);
257 	in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &in_ifaddrhmask);
258 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
259 	if (pr == 0)
260 		panic("ip_init");
261 	for (i = 0; i < IPPROTO_MAX; i++)
262 		ip_protox[i] = pr - inetsw;
263 	for (pr = inetdomain.dom_protosw;
264 	    pr < inetdomain.dom_protoswNPROTOSW; pr++)
265 		if (pr->pr_domain->dom_family == PF_INET &&
266 		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
267 			ip_protox[pr->pr_protocol] = pr - inetsw;
268 
269 #ifdef PFIL_HOOKS
270 	inet_pfil_hook.ph_type = PFIL_TYPE_AF;
271 	inet_pfil_hook.ph_af = AF_INET;
272 	if ((i = pfil_head_register(&inet_pfil_hook)) != 0)
273 		printf("%s: WARNING: unable to register pfil hook, "
274 			"error %d\n", __func__, i);
275 #endif /* PFIL_HOOKS */
276 
277 	IPQ_LOCK_INIT();
278 	for (i = 0; i < IPREASS_NHASH; i++)
279 	    TAILQ_INIT(&ipq[i]);
280 
281 	maxnipq = nmbclusters / 32;
282 	maxfragsperpacket = 16;
283 
284 #ifndef RANDOM_IP_ID
285 	ip_id = time_second & 0xffff;
286 #endif
287 	ipintrq.ifq_maxlen = ipqmaxlen;
288 	mtx_init(&ipintrq.ifq_mtx, "ip_inq", NULL, MTX_DEF);
289 	netisr_register(NETISR_IP, ip_input, &ipintrq, NETISR_MPSAFE);
290 }
291 
292 /*
293  * Ip input routine.  Checksum and byte swap header.  If fragmented
294  * try to reassemble.  Process options.  Pass to next level.
295  */
296 void
297 ip_input(struct mbuf *m)
298 {
299 	struct ip *ip = NULL;
300 	struct in_ifaddr *ia = NULL;
301 	struct ifaddr *ifa;
302 	int    i, checkif, hlen = 0;
303 	u_short sum;
304 	struct in_addr pkt_dst;
305 #ifdef IPDIVERT
306 	u_int32_t divert_info;			/* packet divert/tee info */
307 #endif
308 	struct ip_fw_args args;
309 	int dchg = 0;				/* dest changed after fw */
310 #ifdef PFIL_HOOKS
311 	struct in_addr odst;			/* original dst address */
312 #endif
313 #ifdef FAST_IPSEC
314 	struct m_tag *mtag;
315 	struct tdb_ident *tdbi;
316 	struct secpolicy *sp;
317 	int s, error;
318 #endif /* FAST_IPSEC */
319 
320 	args.eh = NULL;
321 	args.oif = NULL;
322 
323   	M_ASSERTPKTHDR(m);
324 
325 	args.next_hop = m_claim_next(m, PACKET_TAG_IPFORWARD);
326 	args.rule = ip_dn_claim_rule(m);
327 
328 	if (m->m_flags & M_FASTFWD_OURS) {
329 		/* ip_fastforward firewall changed dest to local */
330 		m->m_flags &= ~M_FASTFWD_OURS;	/* for reflected mbufs */
331   		goto ours;
332   	}
333 
334   	if (args.rule) {	/* dummynet already filtered us */
335   		ip = mtod(m, struct ip *);
336   		hlen = ip->ip_hl << 2;
337 		goto iphack ;
338 	}
339 
340 	ipstat.ips_total++;
341 
342 	if (m->m_pkthdr.len < sizeof(struct ip))
343 		goto tooshort;
344 
345 	if (m->m_len < sizeof (struct ip) &&
346 	    (m = m_pullup(m, sizeof (struct ip))) == NULL) {
347 		ipstat.ips_toosmall++;
348 		return;
349 	}
350 	ip = mtod(m, struct ip *);
351 
352 	if (ip->ip_v != IPVERSION) {
353 		ipstat.ips_badvers++;
354 		goto bad;
355 	}
356 
357 	hlen = ip->ip_hl << 2;
358 	if (hlen < sizeof(struct ip)) {	/* minimum header length */
359 		ipstat.ips_badhlen++;
360 		goto bad;
361 	}
362 	if (hlen > m->m_len) {
363 		if ((m = m_pullup(m, hlen)) == NULL) {
364 			ipstat.ips_badhlen++;
365 			return;
366 		}
367 		ip = mtod(m, struct ip *);
368 	}
369 
370 	/* 127/8 must not appear on wire - RFC1122 */
371 	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
372 	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
373 		if ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) {
374 			ipstat.ips_badaddr++;
375 			goto bad;
376 		}
377 	}
378 
379 	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
380 		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
381 	} else {
382 		if (hlen == sizeof(struct ip)) {
383 			sum = in_cksum_hdr(ip);
384 		} else {
385 			sum = in_cksum(m, hlen);
386 		}
387 	}
388 	if (sum) {
389 		ipstat.ips_badsum++;
390 		goto bad;
391 	}
392 
393 #ifdef ALTQ
394 	if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0)
395 		/* packet is dropped by traffic conditioner */
396 		return;
397 #endif
398 
399 	/*
400 	 * Convert fields to host representation.
401 	 */
402 	ip->ip_len = ntohs(ip->ip_len);
403 	if (ip->ip_len < hlen) {
404 		ipstat.ips_badlen++;
405 		goto bad;
406 	}
407 	ip->ip_off = ntohs(ip->ip_off);
408 
409 	/*
410 	 * Check that the amount of data in the buffers
411 	 * is as at least much as the IP header would have us expect.
412 	 * Trim mbufs if longer than we expect.
413 	 * Drop packet if shorter than we expect.
414 	 */
415 	if (m->m_pkthdr.len < ip->ip_len) {
416 tooshort:
417 		ipstat.ips_tooshort++;
418 		goto bad;
419 	}
420 	if (m->m_pkthdr.len > ip->ip_len) {
421 		if (m->m_len == m->m_pkthdr.len) {
422 			m->m_len = ip->ip_len;
423 			m->m_pkthdr.len = ip->ip_len;
424 		} else
425 			m_adj(m, ip->ip_len - m->m_pkthdr.len);
426 	}
427 #if defined(IPSEC) && !defined(IPSEC_FILTERGIF)
428 	/*
429 	 * Bypass packet filtering for packets from a tunnel (gif).
430 	 */
431 	if (ipsec_getnhist(m))
432 		goto pass;
433 #endif
434 #if defined(FAST_IPSEC) && !defined(IPSEC_FILTERGIF)
435 	/*
436 	 * Bypass packet filtering for packets from a tunnel (gif).
437 	 */
438 	if (m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL) != NULL)
439 		goto pass;
440 #endif
441 
442 	/*
443 	 * IpHack's section.
444 	 * Right now when no processing on packet has done
445 	 * and it is still fresh out of network we do our black
446 	 * deals with it.
447 	 * - Firewall: deny/allow/divert
448 	 * - Xlate: translate packet's addr/port (NAT).
449 	 * - Pipe: pass pkt through dummynet.
450 	 * - Wrap: fake packet's addr/port <unimpl.>
451 	 * - Encapsulate: put it in another IP and send out. <unimp.>
452  	 */
453 
454 iphack:
455 
456 #ifdef PFIL_HOOKS
457 	/*
458 	 * Run through list of hooks for input packets.
459 	 *
460 	 * NB: Beware of the destination address changing (e.g.
461 	 *     by NAT rewriting).  When this happens, tell
462 	 *     ip_forward to do the right thing.
463 	 */
464 	odst = ip->ip_dst;
465 	if (pfil_run_hooks(&inet_pfil_hook, &m, m->m_pkthdr.rcvif,
466 	    PFIL_IN) != 0)
467 		return;
468 	if (m == NULL)			/* consumed by filter */
469 		return;
470 	ip = mtod(m, struct ip *);
471 	dchg = (odst.s_addr != ip->ip_dst.s_addr);
472 #endif /* PFIL_HOOKS */
473 
474 	if (fw_enable && IPFW_LOADED) {
475 		/*
476 		 * If we've been forwarded from the output side, then
477 		 * skip the firewall a second time
478 		 */
479 		if (args.next_hop)
480 			goto ours;
481 
482 		args.m = m;
483 		i = ip_fw_chk_ptr(&args);
484 		m = args.m;
485 
486 		if ( (i & IP_FW_PORT_DENY_FLAG) || m == NULL) { /* drop */
487 			if (m)
488 				m_freem(m);
489 			return;
490 		}
491 		ip = mtod(m, struct ip *); /* just in case m changed */
492 		if (i == 0 && args.next_hop == NULL)	/* common case */
493 			goto pass;
494                 if (DUMMYNET_LOADED && (i & IP_FW_PORT_DYNT_FLAG) != 0) {
495 			/* Send packet to the appropriate pipe */
496 			ip_dn_io_ptr(m, i&0xffff, DN_TO_IP_IN, &args);
497 			return;
498 		}
499 #ifdef IPDIVERT
500 		if (i != 0 && (i & IP_FW_PORT_DYNT_FLAG) == 0) {
501 			/* Divert or tee packet */
502 			goto ours;
503 		}
504 #endif
505 		if (i == 0 && args.next_hop != NULL)
506 			goto pass;
507 		/*
508 		 * if we get here, the packet must be dropped
509 		 */
510 		m_freem(m);
511 		return;
512 	}
513 pass:
514 
515 	/*
516 	 * Process options and, if not destined for us,
517 	 * ship it on.  ip_dooptions returns 1 when an
518 	 * error was detected (causing an icmp message
519 	 * to be sent and the original packet to be freed).
520 	 */
521 	ip_nhops = 0;		/* for source routed packets */
522 	if (hlen > sizeof (struct ip) && ip_dooptions(m, 0, args.next_hop))
523 		return;
524 
525         /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
526          * matter if it is destined to another node, or whether it is
527          * a multicast one, RSVP wants it! and prevents it from being forwarded
528          * anywhere else. Also checks if the rsvp daemon is running before
529 	 * grabbing the packet.
530          */
531 	if (rsvp_on && ip->ip_p==IPPROTO_RSVP)
532 		goto ours;
533 
534 	/*
535 	 * Check our list of addresses, to see if the packet is for us.
536 	 * If we don't have any addresses, assume any unicast packet
537 	 * we receive might be for us (and let the upper layers deal
538 	 * with it).
539 	 */
540 	if (TAILQ_EMPTY(&in_ifaddrhead) &&
541 	    (m->m_flags & (M_MCAST|M_BCAST)) == 0)
542 		goto ours;
543 
544 	/*
545 	 * Cache the destination address of the packet; this may be
546 	 * changed by use of 'ipfw fwd'.
547 	 */
548 	pkt_dst = args.next_hop ? args.next_hop->sin_addr : ip->ip_dst;
549 
550 	/*
551 	 * Enable a consistency check between the destination address
552 	 * and the arrival interface for a unicast packet (the RFC 1122
553 	 * strong ES model) if IP forwarding is disabled and the packet
554 	 * is not locally generated and the packet is not subject to
555 	 * 'ipfw fwd'.
556 	 *
557 	 * XXX - Checking also should be disabled if the destination
558 	 * address is ipnat'ed to a different interface.
559 	 *
560 	 * XXX - Checking is incompatible with IP aliases added
561 	 * to the loopback interface instead of the interface where
562 	 * the packets are received.
563 	 */
564 	checkif = ip_checkinterface && (ipforwarding == 0) &&
565 	    m->m_pkthdr.rcvif != NULL &&
566 	    ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) &&
567 	    (args.next_hop == NULL) && (dchg == 0);
568 
569 	/*
570 	 * Check for exact addresses in the hash bucket.
571 	 */
572 	LIST_FOREACH(ia, INADDR_HASH(pkt_dst.s_addr), ia_hash) {
573 		/*
574 		 * If the address matches, verify that the packet
575 		 * arrived via the correct interface if checking is
576 		 * enabled.
577 		 */
578 		if (IA_SIN(ia)->sin_addr.s_addr == pkt_dst.s_addr &&
579 		    (!checkif || ia->ia_ifp == m->m_pkthdr.rcvif))
580 			goto ours;
581 	}
582 	/*
583 	 * Check for broadcast addresses.
584 	 *
585 	 * Only accept broadcast packets that arrive via the matching
586 	 * interface.  Reception of forwarded directed broadcasts would
587 	 * be handled via ip_forward() and ether_output() with the loopback
588 	 * into the stack for SIMPLEX interfaces handled by ether_output().
589 	 */
590 	if (m->m_pkthdr.rcvif != NULL &&
591 	    m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
592 	        TAILQ_FOREACH(ifa, &m->m_pkthdr.rcvif->if_addrhead, ifa_link) {
593 			if (ifa->ifa_addr->sa_family != AF_INET)
594 				continue;
595 			ia = ifatoia(ifa);
596 			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
597 			    pkt_dst.s_addr)
598 				goto ours;
599 			if (ia->ia_netbroadcast.s_addr == pkt_dst.s_addr)
600 				goto ours;
601 #ifdef BOOTP_COMPAT
602 			if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY)
603 				goto ours;
604 #endif
605 		}
606 	}
607 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
608 		struct in_multi *inm;
609 		if (ip_mrouter) {
610 			/*
611 			 * If we are acting as a multicast router, all
612 			 * incoming multicast packets are passed to the
613 			 * kernel-level multicast forwarding function.
614 			 * The packet is returned (relatively) intact; if
615 			 * ip_mforward() returns a non-zero value, the packet
616 			 * must be discarded, else it may be accepted below.
617 			 */
618 			if (ip_mforward &&
619 			    ip_mforward(ip, m->m_pkthdr.rcvif, m, 0) != 0) {
620 				ipstat.ips_cantforward++;
621 				m_freem(m);
622 				return;
623 			}
624 
625 			/*
626 			 * The process-level routing daemon needs to receive
627 			 * all multicast IGMP packets, whether or not this
628 			 * host belongs to their destination groups.
629 			 */
630 			if (ip->ip_p == IPPROTO_IGMP)
631 				goto ours;
632 			ipstat.ips_forward++;
633 		}
634 		/*
635 		 * See if we belong to the destination multicast group on the
636 		 * arrival interface.
637 		 */
638 		IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
639 		if (inm == NULL) {
640 			ipstat.ips_notmember++;
641 			m_freem(m);
642 			return;
643 		}
644 		goto ours;
645 	}
646 	if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
647 		goto ours;
648 	if (ip->ip_dst.s_addr == INADDR_ANY)
649 		goto ours;
650 
651 	/*
652 	 * FAITH(Firewall Aided Internet Translator)
653 	 */
654 	if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
655 		if (ip_keepfaith) {
656 			if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
657 				goto ours;
658 		}
659 		m_freem(m);
660 		return;
661 	}
662 
663 	/*
664 	 * Not for us; forward if possible and desirable.
665 	 */
666 	if (ipforwarding == 0) {
667 		ipstat.ips_cantforward++;
668 		m_freem(m);
669 	} else {
670 #ifdef IPSEC
671 		/*
672 		 * Enforce inbound IPsec SPD.
673 		 */
674 		if (ipsec4_in_reject(m, NULL)) {
675 			ipsecstat.in_polvio++;
676 			goto bad;
677 		}
678 #endif /* IPSEC */
679 #ifdef FAST_IPSEC
680 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
681 		s = splnet();
682 		if (mtag != NULL) {
683 			tdbi = (struct tdb_ident *)(mtag + 1);
684 			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
685 		} else {
686 			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
687 						   IP_FORWARDING, &error);
688 		}
689 		if (sp == NULL) {	/* NB: can happen if error */
690 			splx(s);
691 			/*XXX error stat???*/
692 			DPRINTF(("ip_input: no SP for forwarding\n"));	/*XXX*/
693 			goto bad;
694 		}
695 
696 		/*
697 		 * Check security policy against packet attributes.
698 		 */
699 		error = ipsec_in_reject(sp, m);
700 		KEY_FREESP(&sp);
701 		splx(s);
702 		if (error) {
703 			ipstat.ips_cantforward++;
704 			goto bad;
705 		}
706 #endif /* FAST_IPSEC */
707 		ip_forward(m, dchg, args.next_hop);
708 	}
709 	return;
710 
711 ours:
712 #ifdef IPSTEALTH
713 	/*
714 	 * IPSTEALTH: Process non-routing options only
715 	 * if the packet is destined for us.
716 	 */
717 	if (ipstealth && hlen > sizeof (struct ip) &&
718 	    ip_dooptions(m, 1, args.next_hop))
719 		return;
720 #endif /* IPSTEALTH */
721 
722 	/* Count the packet in the ip address stats */
723 	if (ia != NULL) {
724 		ia->ia_ifa.if_ipackets++;
725 		ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
726 	}
727 
728 	/*
729 	 * Attempt reassembly; if it succeeds, proceed.
730 	 * ip_reass() will return a different mbuf.
731 	 */
732 	if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
733 		m = ip_reass(m);
734 		if (m == NULL)
735 			return;
736 		ip = mtod(m, struct ip *);
737 		/* Get the header length of the reassembled packet */
738 		hlen = ip->ip_hl << 2;
739 #ifdef IPDIVERT
740 		/* Restore original checksum before diverting packet */
741 		if (divert_find_info(m) != 0) {
742 			ip->ip_len = htons(ip->ip_len);
743 			ip->ip_off = htons(ip->ip_off);
744 			ip->ip_sum = 0;
745 			if (hlen == sizeof(struct ip))
746 				ip->ip_sum = in_cksum_hdr(ip);
747 			else
748 				ip->ip_sum = in_cksum(m, hlen);
749 			ip->ip_off = ntohs(ip->ip_off);
750 			ip->ip_len = ntohs(ip->ip_len);
751 		}
752 #endif
753 	}
754 
755 	/*
756 	 * Further protocols expect the packet length to be w/o the
757 	 * IP header.
758 	 */
759 	ip->ip_len -= hlen;
760 
761 #ifdef IPDIVERT
762 	/*
763 	 * Divert or tee packet to the divert protocol if required.
764 	 */
765 	divert_info = divert_find_info(m);
766 	if (divert_info != 0) {
767 		struct mbuf *clone;
768 
769 		/* Clone packet if we're doing a 'tee' */
770 		if ((divert_info & IP_FW_PORT_TEE_FLAG) != 0)
771 			clone = divert_clone(m);
772 		else
773 			clone = NULL;
774 
775 		/* Restore packet header fields to original values */
776 		ip->ip_len += hlen;
777 		ip->ip_len = htons(ip->ip_len);
778 		ip->ip_off = htons(ip->ip_off);
779 
780 		/* Deliver packet to divert input routine */
781 		divert_packet(m, 1);
782 		ipstat.ips_delivered++;
783 
784 		/* If 'tee', continue with original packet */
785 		if (clone == NULL)
786 			return;
787 		m = clone;
788 		ip = mtod(m, struct ip *);
789 		ip->ip_len += hlen;
790 		/*
791 		 * Jump backwards to complete processing of the
792 		 * packet.  We do not need to clear args.next_hop
793 		 * as that will not be used again and the cloned packet
794 		 * doesn't contain a divert packet tag so we won't
795 		 * re-entry this block.
796 		 */
797 		goto pass;
798 	}
799 #endif
800 
801 #ifdef IPSEC
802 	/*
803 	 * enforce IPsec policy checking if we are seeing last header.
804 	 * note that we do not visit this with protocols with pcb layer
805 	 * code - like udp/tcp/raw ip.
806 	 */
807 	if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0 &&
808 	    ipsec4_in_reject(m, NULL)) {
809 		ipsecstat.in_polvio++;
810 		goto bad;
811 	}
812 #endif
813 #if FAST_IPSEC
814 	/*
815 	 * enforce IPsec policy checking if we are seeing last header.
816 	 * note that we do not visit this with protocols with pcb layer
817 	 * code - like udp/tcp/raw ip.
818 	 */
819 	if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0) {
820 		/*
821 		 * Check if the packet has already had IPsec processing
822 		 * done.  If so, then just pass it along.  This tag gets
823 		 * set during AH, ESP, etc. input handling, before the
824 		 * packet is returned to the ip input queue for delivery.
825 		 */
826 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
827 		s = splnet();
828 		if (mtag != NULL) {
829 			tdbi = (struct tdb_ident *)(mtag + 1);
830 			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
831 		} else {
832 			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
833 						   IP_FORWARDING, &error);
834 		}
835 		if (sp != NULL) {
836 			/*
837 			 * Check security policy against packet attributes.
838 			 */
839 			error = ipsec_in_reject(sp, m);
840 			KEY_FREESP(&sp);
841 		} else {
842 			/* XXX error stat??? */
843 			error = EINVAL;
844 DPRINTF(("ip_input: no SP, packet discarded\n"));/*XXX*/
845 			goto bad;
846 		}
847 		splx(s);
848 		if (error)
849 			goto bad;
850 	}
851 #endif /* FAST_IPSEC */
852 
853 	/*
854 	 * Switch out to protocol's input routine.
855 	 */
856 	ipstat.ips_delivered++;
857 	if (args.next_hop && ip->ip_p == IPPROTO_TCP) {
858 		/* attach next hop info for TCP */
859 		struct m_tag *mtag = m_tag_get(PACKET_TAG_IPFORWARD,
860 		    sizeof(struct sockaddr_in *), M_NOWAIT);
861 		if (mtag == NULL)
862 			goto bad;
863 		*(struct sockaddr_in **)(mtag+1) = args.next_hop;
864 		m_tag_prepend(m, mtag);
865 	}
866 	(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
867 	return;
868 bad:
869 	m_freem(m);
870 }
871 
872 /*
873  * Take incoming datagram fragment and try to reassemble it into
874  * whole datagram.  If the argument is the first fragment or one
875  * in between the function will return NULL and store the mbuf
876  * in the fragment chain.  If the argument is the last fragment
877  * the packet will be reassembled and the pointer to the new
878  * mbuf returned for further processing.  Only m_tags attached
879  * to the first packet/fragment are preserved.
880  * The IP header is *NOT* adjusted out of iplen.
881  */
882 
883 struct mbuf *
884 ip_reass(struct mbuf *m)
885 {
886 	struct ip *ip;
887 	struct mbuf *p, *q, *nq, *t;
888 	struct ipq *fp = NULL;
889 	struct ipqhead *head;
890 	int i, hlen, next;
891 	u_int8_t ecn, ecn0;
892 	u_short hash;
893 
894 	/* If maxnipq is 0, never accept fragments. */
895 	if (maxnipq == 0) {
896 		ipstat.ips_fragments++;
897 		ipstat.ips_fragdropped++;
898 		m_freem(m);
899 		return (NULL);
900 	}
901 
902 	ip = mtod(m, struct ip *);
903 	hlen = ip->ip_hl << 2;
904 
905 	hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
906 	head = &ipq[hash];
907 	IPQ_LOCK();
908 
909 	/*
910 	 * Look for queue of fragments
911 	 * of this datagram.
912 	 */
913 	TAILQ_FOREACH(fp, head, ipq_list)
914 		if (ip->ip_id == fp->ipq_id &&
915 		    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
916 		    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
917 #ifdef MAC
918 		    mac_fragment_match(m, fp) &&
919 #endif
920 		    ip->ip_p == fp->ipq_p)
921 			goto found;
922 
923 	fp = NULL;
924 
925 	/*
926 	 * Enforce upper bound on number of fragmented packets
927 	 * for which we attempt reassembly;
928 	 * If maxnipq is -1, accept all fragments without limitation.
929 	 */
930 	if ((nipq > maxnipq) && (maxnipq > 0)) {
931 		/*
932 		 * drop something from the tail of the current queue
933 		 * before proceeding further
934 		 */
935 		struct ipq *q = TAILQ_LAST(head, ipqhead);
936 		if (q == NULL) {   /* gak */
937 			for (i = 0; i < IPREASS_NHASH; i++) {
938 				struct ipq *r = TAILQ_LAST(&ipq[i], ipqhead);
939 				if (r) {
940 					ipstat.ips_fragtimeout += r->ipq_nfrags;
941 					ip_freef(&ipq[i], r);
942 					break;
943 				}
944 			}
945 		} else {
946 			ipstat.ips_fragtimeout += q->ipq_nfrags;
947 			ip_freef(head, q);
948 		}
949 	}
950 
951 found:
952 	/*
953 	 * Adjust ip_len to not reflect header,
954 	 * convert offset of this to bytes.
955 	 */
956 	ip->ip_len -= hlen;
957 	if (ip->ip_off & IP_MF) {
958 		/*
959 		 * Make sure that fragments have a data length
960 		 * that's a non-zero multiple of 8 bytes.
961 		 */
962 		if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
963 			ipstat.ips_toosmall++; /* XXX */
964 			goto dropfrag;
965 		}
966 		m->m_flags |= M_FRAG;
967 	} else
968 		m->m_flags &= ~M_FRAG;
969 	ip->ip_off <<= 3;
970 
971 
972 	/*
973 	 * Attempt reassembly; if it succeeds, proceed.
974 	 * ip_reass() will return a different mbuf.
975 	 */
976 	ipstat.ips_fragments++;
977 	m->m_pkthdr.header = ip;
978 
979 	/* Previous ip_reass() started here. */
980 	/*
981 	 * Presence of header sizes in mbufs
982 	 * would confuse code below.
983 	 */
984 	m->m_data += hlen;
985 	m->m_len -= hlen;
986 
987 	/*
988 	 * If first fragment to arrive, create a reassembly queue.
989 	 */
990 	if (fp == NULL) {
991 		if ((t = m_get(M_DONTWAIT, MT_FTABLE)) == NULL)
992 			goto dropfrag;
993 		fp = mtod(t, struct ipq *);
994 #ifdef MAC
995 		if (mac_init_ipq(fp, M_NOWAIT) != 0) {
996 			m_free(t);
997 			goto dropfrag;
998 		}
999 		mac_create_ipq(m, fp);
1000 #endif
1001 		TAILQ_INSERT_HEAD(head, fp, ipq_list);
1002 		nipq++;
1003 		fp->ipq_nfrags = 1;
1004 		fp->ipq_ttl = IPFRAGTTL;
1005 		fp->ipq_p = ip->ip_p;
1006 		fp->ipq_id = ip->ip_id;
1007 		fp->ipq_src = ip->ip_src;
1008 		fp->ipq_dst = ip->ip_dst;
1009 		fp->ipq_frags = m;
1010 		m->m_nextpkt = NULL;
1011 		goto inserted;
1012 	} else {
1013 		fp->ipq_nfrags++;
1014 #ifdef MAC
1015 		mac_update_ipq(m, fp);
1016 #endif
1017 	}
1018 
1019 #define GETIP(m)	((struct ip*)((m)->m_pkthdr.header))
1020 
1021 	/*
1022 	 * Handle ECN by comparing this segment with the first one;
1023 	 * if CE is set, do not lose CE.
1024 	 * drop if CE and not-ECT are mixed for the same packet.
1025 	 */
1026 	ecn = ip->ip_tos & IPTOS_ECN_MASK;
1027 	ecn0 = GETIP(fp->ipq_frags)->ip_tos & IPTOS_ECN_MASK;
1028 	if (ecn == IPTOS_ECN_CE) {
1029 		if (ecn0 == IPTOS_ECN_NOTECT)
1030 			goto dropfrag;
1031 		if (ecn0 != IPTOS_ECN_CE)
1032 			GETIP(fp->ipq_frags)->ip_tos |= IPTOS_ECN_CE;
1033 	}
1034 	if (ecn == IPTOS_ECN_NOTECT && ecn0 != IPTOS_ECN_NOTECT)
1035 		goto dropfrag;
1036 
1037 	/*
1038 	 * Find a segment which begins after this one does.
1039 	 */
1040 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
1041 		if (GETIP(q)->ip_off > ip->ip_off)
1042 			break;
1043 
1044 	/*
1045 	 * If there is a preceding segment, it may provide some of
1046 	 * our data already.  If so, drop the data from the incoming
1047 	 * segment.  If it provides all of our data, drop us, otherwise
1048 	 * stick new segment in the proper place.
1049 	 *
1050 	 * If some of the data is dropped from the the preceding
1051 	 * segment, then it's checksum is invalidated.
1052 	 */
1053 	if (p) {
1054 		i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
1055 		if (i > 0) {
1056 			if (i >= ip->ip_len)
1057 				goto dropfrag;
1058 			m_adj(m, i);
1059 			m->m_pkthdr.csum_flags = 0;
1060 			ip->ip_off += i;
1061 			ip->ip_len -= i;
1062 		}
1063 		m->m_nextpkt = p->m_nextpkt;
1064 		p->m_nextpkt = m;
1065 	} else {
1066 		m->m_nextpkt = fp->ipq_frags;
1067 		fp->ipq_frags = m;
1068 	}
1069 
1070 	/*
1071 	 * While we overlap succeeding segments trim them or,
1072 	 * if they are completely covered, dequeue them.
1073 	 */
1074 	for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
1075 	     q = nq) {
1076 		i = (ip->ip_off + ip->ip_len) - GETIP(q)->ip_off;
1077 		if (i < GETIP(q)->ip_len) {
1078 			GETIP(q)->ip_len -= i;
1079 			GETIP(q)->ip_off += i;
1080 			m_adj(q, i);
1081 			q->m_pkthdr.csum_flags = 0;
1082 			break;
1083 		}
1084 		nq = q->m_nextpkt;
1085 		m->m_nextpkt = nq;
1086 		ipstat.ips_fragdropped++;
1087 		fp->ipq_nfrags--;
1088 		m_freem(q);
1089 	}
1090 
1091 inserted:
1092 
1093 #ifdef IPDIVERT
1094 	if (ip->ip_off != 0) {
1095 		/*
1096 		 * Strip any divert information; only the info
1097 		 * on the first fragment is used/kept.
1098 		 */
1099 		struct m_tag *mtag = m_tag_find(m, PACKET_TAG_DIVERT, NULL);
1100 		if (mtag)
1101 			m_tag_delete(m, mtag);
1102 	}
1103 #endif
1104 
1105 	/*
1106 	 * Check for complete reassembly and perform frag per packet
1107 	 * limiting.
1108 	 *
1109 	 * Frag limiting is performed here so that the nth frag has
1110 	 * a chance to complete the packet before we drop the packet.
1111 	 * As a result, n+1 frags are actually allowed per packet, but
1112 	 * only n will ever be stored. (n = maxfragsperpacket.)
1113 	 *
1114 	 */
1115 	next = 0;
1116 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1117 		if (GETIP(q)->ip_off != next) {
1118 			if (fp->ipq_nfrags > maxfragsperpacket) {
1119 				ipstat.ips_fragdropped += fp->ipq_nfrags;
1120 				ip_freef(head, fp);
1121 			}
1122 			goto done;
1123 		}
1124 		next += GETIP(q)->ip_len;
1125 	}
1126 	/* Make sure the last packet didn't have the IP_MF flag */
1127 	if (p->m_flags & M_FRAG) {
1128 		if (fp->ipq_nfrags > maxfragsperpacket) {
1129 			ipstat.ips_fragdropped += fp->ipq_nfrags;
1130 			ip_freef(head, fp);
1131 		}
1132 		goto done;
1133 	}
1134 
1135 	/*
1136 	 * Reassembly is complete.  Make sure the packet is a sane size.
1137 	 */
1138 	q = fp->ipq_frags;
1139 	ip = GETIP(q);
1140 	if (next + (ip->ip_hl << 2) > IP_MAXPACKET) {
1141 		ipstat.ips_toolong++;
1142 		ipstat.ips_fragdropped += fp->ipq_nfrags;
1143 		ip_freef(head, fp);
1144 		goto done;
1145 	}
1146 
1147 	/*
1148 	 * Concatenate fragments.
1149 	 */
1150 	m = q;
1151 	t = m->m_next;
1152 	m->m_next = 0;
1153 	m_cat(m, t);
1154 	nq = q->m_nextpkt;
1155 	q->m_nextpkt = 0;
1156 	for (q = nq; q != NULL; q = nq) {
1157 		nq = q->m_nextpkt;
1158 		q->m_nextpkt = NULL;
1159 		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1160 		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1161 		m_cat(m, q);
1162 	}
1163 #ifdef MAC
1164 	mac_create_datagram_from_ipq(fp, m);
1165 	mac_destroy_ipq(fp);
1166 #endif
1167 
1168 	/*
1169 	 * Create header for new ip packet by modifying header of first
1170 	 * packet;  dequeue and discard fragment reassembly header.
1171 	 * Make header visible.
1172 	 */
1173 	ip->ip_len = (ip->ip_hl << 2) + next;
1174 	ip->ip_src = fp->ipq_src;
1175 	ip->ip_dst = fp->ipq_dst;
1176 	TAILQ_REMOVE(head, fp, ipq_list);
1177 	nipq--;
1178 	(void) m_free(dtom(fp));
1179 	m->m_len += (ip->ip_hl << 2);
1180 	m->m_data -= (ip->ip_hl << 2);
1181 	/* some debugging cruft by sklower, below, will go away soon */
1182 	if (m->m_flags & M_PKTHDR)	/* XXX this should be done elsewhere */
1183 		m_fixhdr(m);
1184 	ipstat.ips_reassembled++;
1185 	IPQ_UNLOCK();
1186 	return (m);
1187 
1188 dropfrag:
1189 	ipstat.ips_fragdropped++;
1190 	if (fp != NULL)
1191 		fp->ipq_nfrags--;
1192 	m_freem(m);
1193 done:
1194 	IPQ_UNLOCK();
1195 	return (NULL);
1196 
1197 #undef GETIP
1198 }
1199 
1200 /*
1201  * Free a fragment reassembly header and all
1202  * associated datagrams.
1203  */
1204 static void
1205 ip_freef(fhp, fp)
1206 	struct ipqhead *fhp;
1207 	struct ipq *fp;
1208 {
1209 	register struct mbuf *q;
1210 
1211 	IPQ_LOCK_ASSERT();
1212 
1213 	while (fp->ipq_frags) {
1214 		q = fp->ipq_frags;
1215 		fp->ipq_frags = q->m_nextpkt;
1216 		m_freem(q);
1217 	}
1218 	TAILQ_REMOVE(fhp, fp, ipq_list);
1219 	(void) m_free(dtom(fp));
1220 	nipq--;
1221 }
1222 
1223 /*
1224  * IP timer processing;
1225  * if a timer expires on a reassembly
1226  * queue, discard it.
1227  */
1228 void
1229 ip_slowtimo()
1230 {
1231 	register struct ipq *fp;
1232 	int s = splnet();
1233 	int i;
1234 
1235 	IPQ_LOCK();
1236 	for (i = 0; i < IPREASS_NHASH; i++) {
1237 		for(fp = TAILQ_FIRST(&ipq[i]); fp;) {
1238 			struct ipq *fpp;
1239 
1240 			fpp = fp;
1241 			fp = TAILQ_NEXT(fp, ipq_list);
1242 			if(--fpp->ipq_ttl == 0) {
1243 				ipstat.ips_fragtimeout += fpp->ipq_nfrags;
1244 				ip_freef(&ipq[i], fpp);
1245 			}
1246 		}
1247 	}
1248 	/*
1249 	 * If we are over the maximum number of fragments
1250 	 * (due to the limit being lowered), drain off
1251 	 * enough to get down to the new limit.
1252 	 */
1253 	if (maxnipq >= 0 && nipq > maxnipq) {
1254 		for (i = 0; i < IPREASS_NHASH; i++) {
1255 			while (nipq > maxnipq && !TAILQ_EMPTY(&ipq[i])) {
1256 				ipstat.ips_fragdropped +=
1257 				    TAILQ_FIRST(&ipq[i])->ipq_nfrags;
1258 				ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i]));
1259 			}
1260 		}
1261 	}
1262 	IPQ_UNLOCK();
1263 	splx(s);
1264 }
1265 
1266 /*
1267  * Drain off all datagram fragments.
1268  */
1269 void
1270 ip_drain()
1271 {
1272 	int     i;
1273 
1274 	IPQ_LOCK();
1275 	for (i = 0; i < IPREASS_NHASH; i++) {
1276 		while(!TAILQ_EMPTY(&ipq[i])) {
1277 			ipstat.ips_fragdropped +=
1278 			    TAILQ_FIRST(&ipq[i])->ipq_nfrags;
1279 			ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i]));
1280 		}
1281 	}
1282 	IPQ_UNLOCK();
1283 	in_rtqdrain();
1284 }
1285 
1286 /*
1287  * Do option processing on a datagram,
1288  * possibly discarding it if bad options are encountered,
1289  * or forwarding it if source-routed.
1290  * The pass argument is used when operating in the IPSTEALTH
1291  * mode to tell what options to process:
1292  * [LS]SRR (pass 0) or the others (pass 1).
1293  * The reason for as many as two passes is that when doing IPSTEALTH,
1294  * non-routing options should be processed only if the packet is for us.
1295  * Returns 1 if packet has been forwarded/freed,
1296  * 0 if the packet should be processed further.
1297  */
1298 static int
1299 ip_dooptions(struct mbuf *m, int pass, struct sockaddr_in *next_hop)
1300 {
1301 	struct ip *ip = mtod(m, struct ip *);
1302 	u_char *cp;
1303 	struct in_ifaddr *ia;
1304 	int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
1305 	struct in_addr *sin, dst;
1306 	n_time ntime;
1307 	struct	sockaddr_in ipaddr = { sizeof(ipaddr), AF_INET };
1308 
1309 	/* ignore or reject packets with IP options */
1310 	if (ip_doopts == 0)
1311 		return 0;
1312 	else if (ip_doopts == 2) {
1313 		type = ICMP_UNREACH;
1314 		code = ICMP_UNREACH_FILTER_PROHIB;
1315 		goto bad;
1316 	}
1317 
1318 	dst = ip->ip_dst;
1319 	cp = (u_char *)(ip + 1);
1320 	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1321 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1322 		opt = cp[IPOPT_OPTVAL];
1323 		if (opt == IPOPT_EOL)
1324 			break;
1325 		if (opt == IPOPT_NOP)
1326 			optlen = 1;
1327 		else {
1328 			if (cnt < IPOPT_OLEN + sizeof(*cp)) {
1329 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1330 				goto bad;
1331 			}
1332 			optlen = cp[IPOPT_OLEN];
1333 			if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
1334 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1335 				goto bad;
1336 			}
1337 		}
1338 		switch (opt) {
1339 
1340 		default:
1341 			break;
1342 
1343 		/*
1344 		 * Source routing with record.
1345 		 * Find interface with current destination address.
1346 		 * If none on this machine then drop if strictly routed,
1347 		 * or do nothing if loosely routed.
1348 		 * Record interface address and bring up next address
1349 		 * component.  If strictly routed make sure next
1350 		 * address is on directly accessible net.
1351 		 */
1352 		case IPOPT_LSRR:
1353 		case IPOPT_SSRR:
1354 #ifdef IPSTEALTH
1355 			if (ipstealth && pass > 0)
1356 				break;
1357 #endif
1358 			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1359 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1360 				goto bad;
1361 			}
1362 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1363 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1364 				goto bad;
1365 			}
1366 			ipaddr.sin_addr = ip->ip_dst;
1367 			ia = (struct in_ifaddr *)
1368 				ifa_ifwithaddr((struct sockaddr *)&ipaddr);
1369 			if (ia == NULL) {
1370 				if (opt == IPOPT_SSRR) {
1371 					type = ICMP_UNREACH;
1372 					code = ICMP_UNREACH_SRCFAIL;
1373 					goto bad;
1374 				}
1375 				if (!ip_dosourceroute)
1376 					goto nosourcerouting;
1377 				/*
1378 				 * Loose routing, and not at next destination
1379 				 * yet; nothing to do except forward.
1380 				 */
1381 				break;
1382 			}
1383 			off--;			/* 0 origin */
1384 			if (off > optlen - (int)sizeof(struct in_addr)) {
1385 				/*
1386 				 * End of source route.  Should be for us.
1387 				 */
1388 				if (!ip_acceptsourceroute)
1389 					goto nosourcerouting;
1390 				save_rte(cp, ip->ip_src);
1391 				break;
1392 			}
1393 #ifdef IPSTEALTH
1394 			if (ipstealth)
1395 				goto dropit;
1396 #endif
1397 			if (!ip_dosourceroute) {
1398 				if (ipforwarding) {
1399 					char buf[16]; /* aaa.bbb.ccc.ddd\0 */
1400 					/*
1401 					 * Acting as a router, so generate ICMP
1402 					 */
1403 nosourcerouting:
1404 					strcpy(buf, inet_ntoa(ip->ip_dst));
1405 					log(LOG_WARNING,
1406 					    "attempted source route from %s to %s\n",
1407 					    inet_ntoa(ip->ip_src), buf);
1408 					type = ICMP_UNREACH;
1409 					code = ICMP_UNREACH_SRCFAIL;
1410 					goto bad;
1411 				} else {
1412 					/*
1413 					 * Not acting as a router, so silently drop.
1414 					 */
1415 #ifdef IPSTEALTH
1416 dropit:
1417 #endif
1418 					ipstat.ips_cantforward++;
1419 					m_freem(m);
1420 					return (1);
1421 				}
1422 			}
1423 
1424 			/*
1425 			 * locate outgoing interface
1426 			 */
1427 			(void)memcpy(&ipaddr.sin_addr, cp + off,
1428 			    sizeof(ipaddr.sin_addr));
1429 
1430 			if (opt == IPOPT_SSRR) {
1431 #define	INA	struct in_ifaddr *
1432 #define	SA	struct sockaddr *
1433 			    if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr)) == NULL)
1434 				ia = (INA)ifa_ifwithnet((SA)&ipaddr);
1435 			} else
1436 				ia = ip_rtaddr(ipaddr.sin_addr);
1437 			if (ia == NULL) {
1438 				type = ICMP_UNREACH;
1439 				code = ICMP_UNREACH_SRCFAIL;
1440 				goto bad;
1441 			}
1442 			ip->ip_dst = ipaddr.sin_addr;
1443 			(void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr),
1444 			    sizeof(struct in_addr));
1445 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1446 			/*
1447 			 * Let ip_intr's mcast routing check handle mcast pkts
1448 			 */
1449 			forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr));
1450 			break;
1451 
1452 		case IPOPT_RR:
1453 #ifdef IPSTEALTH
1454 			if (ipstealth && pass == 0)
1455 				break;
1456 #endif
1457 			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1458 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1459 				goto bad;
1460 			}
1461 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1462 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1463 				goto bad;
1464 			}
1465 			/*
1466 			 * If no space remains, ignore.
1467 			 */
1468 			off--;			/* 0 origin */
1469 			if (off > optlen - (int)sizeof(struct in_addr))
1470 				break;
1471 			(void)memcpy(&ipaddr.sin_addr, &ip->ip_dst,
1472 			    sizeof(ipaddr.sin_addr));
1473 			/*
1474 			 * locate outgoing interface; if we're the destination,
1475 			 * use the incoming interface (should be same).
1476 			 */
1477 			if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == NULL &&
1478 			    (ia = ip_rtaddr(ipaddr.sin_addr)) == NULL) {
1479 				type = ICMP_UNREACH;
1480 				code = ICMP_UNREACH_HOST;
1481 				goto bad;
1482 			}
1483 			(void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr),
1484 			    sizeof(struct in_addr));
1485 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1486 			break;
1487 
1488 		case IPOPT_TS:
1489 #ifdef IPSTEALTH
1490 			if (ipstealth && pass == 0)
1491 				break;
1492 #endif
1493 			code = cp - (u_char *)ip;
1494 			if (optlen < 4 || optlen > 40) {
1495 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1496 				goto bad;
1497 			}
1498 			if ((off = cp[IPOPT_OFFSET]) < 5) {
1499 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1500 				goto bad;
1501 			}
1502 			if (off > optlen - (int)sizeof(int32_t)) {
1503 				cp[IPOPT_OFFSET + 1] += (1 << 4);
1504 				if ((cp[IPOPT_OFFSET + 1] & 0xf0) == 0) {
1505 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1506 					goto bad;
1507 				}
1508 				break;
1509 			}
1510 			off--;				/* 0 origin */
1511 			sin = (struct in_addr *)(cp + off);
1512 			switch (cp[IPOPT_OFFSET + 1] & 0x0f) {
1513 
1514 			case IPOPT_TS_TSONLY:
1515 				break;
1516 
1517 			case IPOPT_TS_TSANDADDR:
1518 				if (off + sizeof(n_time) +
1519 				    sizeof(struct in_addr) > optlen) {
1520 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1521 					goto bad;
1522 				}
1523 				ipaddr.sin_addr = dst;
1524 				ia = (INA)ifaof_ifpforaddr((SA)&ipaddr,
1525 							    m->m_pkthdr.rcvif);
1526 				if (ia == NULL)
1527 					continue;
1528 				(void)memcpy(sin, &IA_SIN(ia)->sin_addr,
1529 				    sizeof(struct in_addr));
1530 				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1531 				off += sizeof(struct in_addr);
1532 				break;
1533 
1534 			case IPOPT_TS_PRESPEC:
1535 				if (off + sizeof(n_time) +
1536 				    sizeof(struct in_addr) > optlen) {
1537 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1538 					goto bad;
1539 				}
1540 				(void)memcpy(&ipaddr.sin_addr, sin,
1541 				    sizeof(struct in_addr));
1542 				if (ifa_ifwithaddr((SA)&ipaddr) == NULL)
1543 					continue;
1544 				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1545 				off += sizeof(struct in_addr);
1546 				break;
1547 
1548 			default:
1549 				code = &cp[IPOPT_OFFSET + 1] - (u_char *)ip;
1550 				goto bad;
1551 			}
1552 			ntime = iptime();
1553 			(void)memcpy(cp + off, &ntime, sizeof(n_time));
1554 			cp[IPOPT_OFFSET] += sizeof(n_time);
1555 		}
1556 	}
1557 	if (forward && ipforwarding) {
1558 		ip_forward(m, 1, next_hop);
1559 		return (1);
1560 	}
1561 	return (0);
1562 bad:
1563 	icmp_error(m, type, code, 0, 0);
1564 	ipstat.ips_badoptions++;
1565 	return (1);
1566 }
1567 
1568 /*
1569  * Given address of next destination (final or next hop),
1570  * return internet address info of interface to be used to get there.
1571  */
1572 struct in_ifaddr *
1573 ip_rtaddr(dst)
1574 	struct in_addr dst;
1575 {
1576 	struct route sro;
1577 	struct sockaddr_in *sin;
1578 	struct in_ifaddr *ifa;
1579 
1580 	bzero(&sro, sizeof(sro));
1581 	sin = (struct sockaddr_in *)&sro.ro_dst;
1582 	sin->sin_family = AF_INET;
1583 	sin->sin_len = sizeof(*sin);
1584 	sin->sin_addr = dst;
1585 	rtalloc_ign(&sro, RTF_CLONING);
1586 
1587 	if (sro.ro_rt == NULL)
1588 		return ((struct in_ifaddr *)0);
1589 
1590 	ifa = ifatoia(sro.ro_rt->rt_ifa);
1591 	RTFREE(sro.ro_rt);
1592 	return ifa;
1593 }
1594 
1595 /*
1596  * Save incoming source route for use in replies,
1597  * to be picked up later by ip_srcroute if the receiver is interested.
1598  */
1599 static void
1600 save_rte(option, dst)
1601 	u_char *option;
1602 	struct in_addr dst;
1603 {
1604 	unsigned olen;
1605 
1606 	olen = option[IPOPT_OLEN];
1607 #ifdef DIAGNOSTIC
1608 	if (ipprintfs)
1609 		printf("save_rte: olen %d\n", olen);
1610 #endif
1611 	if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
1612 		return;
1613 	bcopy(option, ip_srcrt.srcopt, olen);
1614 	ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
1615 	ip_srcrt.dst = dst;
1616 }
1617 
1618 /*
1619  * Retrieve incoming source route for use in replies,
1620  * in the same form used by setsockopt.
1621  * The first hop is placed before the options, will be removed later.
1622  */
1623 struct mbuf *
1624 ip_srcroute()
1625 {
1626 	register struct in_addr *p, *q;
1627 	register struct mbuf *m;
1628 
1629 	if (ip_nhops == 0)
1630 		return ((struct mbuf *)0);
1631 	m = m_get(M_DONTWAIT, MT_HEADER);
1632 	if (m == NULL)
1633 		return ((struct mbuf *)0);
1634 
1635 #define OPTSIZ	(sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
1636 
1637 	/* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1638 	m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
1639 	    OPTSIZ;
1640 #ifdef DIAGNOSTIC
1641 	if (ipprintfs)
1642 		printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
1643 #endif
1644 
1645 	/*
1646 	 * First save first hop for return route
1647 	 */
1648 	p = &ip_srcrt.route[ip_nhops - 1];
1649 	*(mtod(m, struct in_addr *)) = *p--;
1650 #ifdef DIAGNOSTIC
1651 	if (ipprintfs)
1652 		printf(" hops %lx", (u_long)ntohl(mtod(m, struct in_addr *)->s_addr));
1653 #endif
1654 
1655 	/*
1656 	 * Copy option fields and padding (nop) to mbuf.
1657 	 */
1658 	ip_srcrt.nop = IPOPT_NOP;
1659 	ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
1660 	(void)memcpy(mtod(m, caddr_t) + sizeof(struct in_addr),
1661 	    &ip_srcrt.nop, OPTSIZ);
1662 	q = (struct in_addr *)(mtod(m, caddr_t) +
1663 	    sizeof(struct in_addr) + OPTSIZ);
1664 #undef OPTSIZ
1665 	/*
1666 	 * Record return path as an IP source route,
1667 	 * reversing the path (pointers are now aligned).
1668 	 */
1669 	while (p >= ip_srcrt.route) {
1670 #ifdef DIAGNOSTIC
1671 		if (ipprintfs)
1672 			printf(" %lx", (u_long)ntohl(q->s_addr));
1673 #endif
1674 		*q++ = *p--;
1675 	}
1676 	/*
1677 	 * Last hop goes to final destination.
1678 	 */
1679 	*q = ip_srcrt.dst;
1680 #ifdef DIAGNOSTIC
1681 	if (ipprintfs)
1682 		printf(" %lx\n", (u_long)ntohl(q->s_addr));
1683 #endif
1684 	return (m);
1685 }
1686 
1687 /*
1688  * Strip out IP options, at higher
1689  * level protocol in the kernel.
1690  * Second argument is buffer to which options
1691  * will be moved, and return value is their length.
1692  * XXX should be deleted; last arg currently ignored.
1693  */
1694 void
1695 ip_stripoptions(m, mopt)
1696 	register struct mbuf *m;
1697 	struct mbuf *mopt;
1698 {
1699 	register int i;
1700 	struct ip *ip = mtod(m, struct ip *);
1701 	register caddr_t opts;
1702 	int olen;
1703 
1704 	olen = (ip->ip_hl << 2) - sizeof (struct ip);
1705 	opts = (caddr_t)(ip + 1);
1706 	i = m->m_len - (sizeof (struct ip) + olen);
1707 	bcopy(opts + olen, opts, (unsigned)i);
1708 	m->m_len -= olen;
1709 	if (m->m_flags & M_PKTHDR)
1710 		m->m_pkthdr.len -= olen;
1711 	ip->ip_v = IPVERSION;
1712 	ip->ip_hl = sizeof(struct ip) >> 2;
1713 }
1714 
1715 u_char inetctlerrmap[PRC_NCMDS] = {
1716 	0,		0,		0,		0,
1717 	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1718 	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1719 	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1720 	0,		0,		EHOSTUNREACH,	0,
1721 	ENOPROTOOPT,	ECONNREFUSED
1722 };
1723 
1724 /*
1725  * Forward a packet.  If some error occurs return the sender
1726  * an icmp packet.  Note we can't always generate a meaningful
1727  * icmp message because icmp doesn't have a large enough repertoire
1728  * of codes and types.
1729  *
1730  * If not forwarding, just drop the packet.  This could be confusing
1731  * if ipforwarding was zero but some routing protocol was advancing
1732  * us as a gateway to somewhere.  However, we must let the routing
1733  * protocol deal with that.
1734  *
1735  * The srcrt parameter indicates whether the packet is being forwarded
1736  * via a source route.
1737  */
1738 static void
1739 ip_forward(struct mbuf *m, int srcrt, struct sockaddr_in *next_hop)
1740 {
1741 	struct ip *ip = mtod(m, struct ip *);
1742 	struct in_ifaddr *ia;
1743 	int error, type = 0, code = 0;
1744 	struct mbuf *mcopy;
1745 	n_long dest;
1746 	struct in_addr pkt_dst;
1747 	struct ifnet *destifp;
1748 #if defined(IPSEC) || defined(FAST_IPSEC)
1749 	struct ifnet dummyifp;
1750 #endif
1751 
1752 	/*
1753 	 * Cache the destination address of the packet; this may be
1754 	 * changed by use of 'ipfw fwd'.
1755 	 */
1756 	pkt_dst = next_hop ? next_hop->sin_addr : ip->ip_dst;
1757 
1758 #ifdef DIAGNOSTIC
1759 	if (ipprintfs)
1760 		printf("forward: src %lx dst %lx ttl %x\n",
1761 		    (u_long)ip->ip_src.s_addr, (u_long)pkt_dst.s_addr,
1762 		    ip->ip_ttl);
1763 #endif
1764 
1765 
1766 	if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(pkt_dst) == 0) {
1767 		ipstat.ips_cantforward++;
1768 		m_freem(m);
1769 		return;
1770 	}
1771 #ifdef IPSTEALTH
1772 	if (!ipstealth) {
1773 #endif
1774 		if (ip->ip_ttl <= IPTTLDEC) {
1775 			icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS,
1776 			    0, 0);
1777 			return;
1778 		}
1779 #ifdef IPSTEALTH
1780 	}
1781 #endif
1782 
1783 	if ((ia = ip_rtaddr(pkt_dst)) == NULL) {
1784 		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, 0, 0);
1785 		return;
1786 	}
1787 
1788 	/*
1789 	 * Save the IP header and at most 8 bytes of the payload,
1790 	 * in case we need to generate an ICMP message to the src.
1791 	 *
1792 	 * XXX this can be optimized a lot by saving the data in a local
1793 	 * buffer on the stack (72 bytes at most), and only allocating the
1794 	 * mbuf if really necessary. The vast majority of the packets
1795 	 * are forwarded without having to send an ICMP back (either
1796 	 * because unnecessary, or because rate limited), so we are
1797 	 * really we are wasting a lot of work here.
1798 	 *
1799 	 * We don't use m_copy() because it might return a reference
1800 	 * to a shared cluster. Both this function and ip_output()
1801 	 * assume exclusive access to the IP header in `m', so any
1802 	 * data in a cluster may change before we reach icmp_error().
1803 	 */
1804 	MGET(mcopy, M_DONTWAIT, m->m_type);
1805 	if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, M_DONTWAIT)) {
1806 		/*
1807 		 * It's probably ok if the pkthdr dup fails (because
1808 		 * the deep copy of the tag chain failed), but for now
1809 		 * be conservative and just discard the copy since
1810 		 * code below may some day want the tags.
1811 		 */
1812 		m_free(mcopy);
1813 		mcopy = NULL;
1814 	}
1815 	if (mcopy != NULL) {
1816 		mcopy->m_len = imin((ip->ip_hl << 2) + 8,
1817 		    (int)ip->ip_len);
1818 		mcopy->m_pkthdr.len = mcopy->m_len;
1819 		m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
1820 	}
1821 
1822 #ifdef IPSTEALTH
1823 	if (!ipstealth) {
1824 #endif
1825 		ip->ip_ttl -= IPTTLDEC;
1826 #ifdef IPSTEALTH
1827 	}
1828 #endif
1829 
1830 	/*
1831 	 * If forwarding packet using same interface that it came in on,
1832 	 * perhaps should send a redirect to sender to shortcut a hop.
1833 	 * Only send redirect if source is sending directly to us,
1834 	 * and if packet was not source routed (or has any options).
1835 	 * Also, don't send redirect if forwarding using a default route
1836 	 * or a route modified by a redirect.
1837 	 */
1838 	dest = 0;
1839 	if (ipsendredirects && ia->ia_ifp == m->m_pkthdr.rcvif) {
1840 		struct sockaddr_in *sin;
1841 		struct route ro;
1842 		struct rtentry *rt;
1843 
1844 		bzero(&ro, sizeof(ro));
1845 		sin = (struct sockaddr_in *)&ro.ro_dst;
1846 		sin->sin_family = AF_INET;
1847 		sin->sin_len = sizeof(*sin);
1848 		sin->sin_addr = pkt_dst;
1849 		rtalloc_ign(&ro, RTF_CLONING);
1850 
1851 		rt = ro.ro_rt;
1852 
1853 		if (rt && (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1854 		    satosin(rt_key(rt))->sin_addr.s_addr != 0 &&
1855 		    ipsendredirects && !srcrt && !next_hop) {
1856 #define	RTA(rt)	((struct in_ifaddr *)(rt->rt_ifa))
1857 			u_long src = ntohl(ip->ip_src.s_addr);
1858 
1859 			if (RTA(rt) &&
1860 			    (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
1861 				if (rt->rt_flags & RTF_GATEWAY)
1862 					dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1863 				else
1864 					dest = pkt_dst.s_addr;
1865 				/* Router requirements says to only send host redirects */
1866 				type = ICMP_REDIRECT;
1867 				code = ICMP_REDIRECT_HOST;
1868 #ifdef DIAGNOSTIC
1869 				if (ipprintfs)
1870 					printf("redirect (%d) to %lx\n", code, (u_long)dest);
1871 #endif
1872 			}
1873 		}
1874 		if (rt)
1875 			RTFREE(rt);
1876 	}
1877 
1878 	if (next_hop) {
1879 		struct m_tag *mtag = m_tag_get(PACKET_TAG_IPFORWARD,
1880 		    sizeof(struct sockaddr_in *), M_NOWAIT);
1881 		if (mtag == NULL) {
1882 			m_freem(m);
1883 			return;
1884 		}
1885 		*(struct sockaddr_in **)(mtag+1) = next_hop;
1886 		m_tag_prepend(m, mtag);
1887 	}
1888 	error = ip_output(m, (struct mbuf *)0, NULL, IP_FORWARDING, 0, NULL);
1889 	if (error)
1890 		ipstat.ips_cantforward++;
1891 	else {
1892 		ipstat.ips_forward++;
1893 		if (type)
1894 			ipstat.ips_redirectsent++;
1895 		else {
1896 			if (mcopy)
1897 				m_freem(mcopy);
1898 			return;
1899 		}
1900 	}
1901 	if (mcopy == NULL)
1902 		return;
1903 	destifp = NULL;
1904 
1905 	switch (error) {
1906 
1907 	case 0:				/* forwarded, but need redirect */
1908 		/* type, code set above */
1909 		break;
1910 
1911 	case ENETUNREACH:		/* shouldn't happen, checked above */
1912 	case EHOSTUNREACH:
1913 	case ENETDOWN:
1914 	case EHOSTDOWN:
1915 	default:
1916 		type = ICMP_UNREACH;
1917 		code = ICMP_UNREACH_HOST;
1918 		break;
1919 
1920 	case EMSGSIZE:
1921 		type = ICMP_UNREACH;
1922 		code = ICMP_UNREACH_NEEDFRAG;
1923 #if defined(IPSEC) || defined(FAST_IPSEC)
1924 		/*
1925 		 * If the packet is routed over IPsec tunnel, tell the
1926 		 * originator the tunnel MTU.
1927 		 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
1928 		 * XXX quickhack!!!
1929 		 */
1930 		{
1931 			struct secpolicy *sp = NULL;
1932 			int ipsecerror;
1933 			int ipsechdr;
1934 			struct route *ro;
1935 
1936 #ifdef IPSEC
1937 			sp = ipsec4_getpolicybyaddr(mcopy,
1938 						    IPSEC_DIR_OUTBOUND,
1939 						    IP_FORWARDING,
1940 						    &ipsecerror);
1941 #else /* FAST_IPSEC */
1942 			sp = ipsec_getpolicybyaddr(mcopy,
1943 						   IPSEC_DIR_OUTBOUND,
1944 						   IP_FORWARDING,
1945 						   &ipsecerror);
1946 #endif
1947 			if (sp != NULL) {
1948 				/* count IPsec header size */
1949 				ipsechdr = ipsec4_hdrsiz(mcopy,
1950 							 IPSEC_DIR_OUTBOUND,
1951 							 NULL);
1952 
1953 				/*
1954 				 * find the correct route for outer IPv4
1955 				 * header, compute tunnel MTU.
1956 				 *
1957 				 * XXX BUG ALERT
1958 				 * The "dummyifp" code relies upon the fact
1959 				 * that icmp_error() touches only ifp->if_mtu.
1960 				 */
1961 				/*XXX*/
1962 				destifp = NULL;
1963 				if (sp->req != NULL
1964 				 && sp->req->sav != NULL
1965 				 && sp->req->sav->sah != NULL) {
1966 					ro = &sp->req->sav->sah->sa_route;
1967 					if (ro->ro_rt && ro->ro_rt->rt_ifp) {
1968 						dummyifp.if_mtu =
1969 						    ro->ro_rt->rt_rmx.rmx_mtu ?
1970 						    ro->ro_rt->rt_rmx.rmx_mtu :
1971 						    ro->ro_rt->rt_ifp->if_mtu;
1972 						dummyifp.if_mtu -= ipsechdr;
1973 						destifp = &dummyifp;
1974 					}
1975 				}
1976 
1977 #ifdef IPSEC
1978 				key_freesp(sp);
1979 #else /* FAST_IPSEC */
1980 				KEY_FREESP(&sp);
1981 #endif
1982 				ipstat.ips_cantfrag++;
1983 				break;
1984 			} else
1985 #endif /*IPSEC || FAST_IPSEC*/
1986 		destifp = ia->ia_ifp;
1987 #if defined(IPSEC) || defined(FAST_IPSEC)
1988 		}
1989 #endif /*IPSEC || FAST_IPSEC*/
1990 		ipstat.ips_cantfrag++;
1991 		break;
1992 
1993 	case ENOBUFS:
1994 		/*
1995 		 * A router should not generate ICMP_SOURCEQUENCH as
1996 		 * required in RFC1812 Requirements for IP Version 4 Routers.
1997 		 * Source quench could be a big problem under DoS attacks,
1998 		 * or if the underlying interface is rate-limited.
1999 		 * Those who need source quench packets may re-enable them
2000 		 * via the net.inet.ip.sendsourcequench sysctl.
2001 		 */
2002 		if (ip_sendsourcequench == 0) {
2003 			m_freem(mcopy);
2004 			return;
2005 		} else {
2006 			type = ICMP_SOURCEQUENCH;
2007 			code = 0;
2008 		}
2009 		break;
2010 
2011 	case EACCES:			/* ipfw denied packet */
2012 		m_freem(mcopy);
2013 		return;
2014 	}
2015 	icmp_error(mcopy, type, code, dest, destifp);
2016 }
2017 
2018 void
2019 ip_savecontrol(inp, mp, ip, m)
2020 	register struct inpcb *inp;
2021 	register struct mbuf **mp;
2022 	register struct ip *ip;
2023 	register struct mbuf *m;
2024 {
2025 	if (inp->inp_socket->so_options & (SO_BINTIME | SO_TIMESTAMP)) {
2026 		struct bintime bt;
2027 
2028 		bintime(&bt);
2029 		if (inp->inp_socket->so_options & SO_BINTIME) {
2030 			*mp = sbcreatecontrol((caddr_t) &bt, sizeof(bt),
2031 			SCM_BINTIME, SOL_SOCKET);
2032 			if (*mp)
2033 				mp = &(*mp)->m_next;
2034 		}
2035 		if (inp->inp_socket->so_options & SO_TIMESTAMP) {
2036 			struct timeval tv;
2037 
2038 			bintime2timeval(&bt, &tv);
2039 			*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
2040 				SCM_TIMESTAMP, SOL_SOCKET);
2041 			if (*mp)
2042 				mp = &(*mp)->m_next;
2043 		}
2044 	}
2045 	if (inp->inp_flags & INP_RECVDSTADDR) {
2046 		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
2047 		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
2048 		if (*mp)
2049 			mp = &(*mp)->m_next;
2050 	}
2051 	if (inp->inp_flags & INP_RECVTTL) {
2052 		*mp = sbcreatecontrol((caddr_t) &ip->ip_ttl,
2053 		    sizeof(u_char), IP_RECVTTL, IPPROTO_IP);
2054 		if (*mp)
2055 			mp = &(*mp)->m_next;
2056 	}
2057 #ifdef notyet
2058 	/* XXX
2059 	 * Moving these out of udp_input() made them even more broken
2060 	 * than they already were.
2061 	 */
2062 	/* options were tossed already */
2063 	if (inp->inp_flags & INP_RECVOPTS) {
2064 		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
2065 		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
2066 		if (*mp)
2067 			mp = &(*mp)->m_next;
2068 	}
2069 	/* ip_srcroute doesn't do what we want here, need to fix */
2070 	if (inp->inp_flags & INP_RECVRETOPTS) {
2071 		*mp = sbcreatecontrol((caddr_t) ip_srcroute(),
2072 		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
2073 		if (*mp)
2074 			mp = &(*mp)->m_next;
2075 	}
2076 #endif
2077 	if (inp->inp_flags & INP_RECVIF) {
2078 		struct ifnet *ifp;
2079 		struct sdlbuf {
2080 			struct sockaddr_dl sdl;
2081 			u_char	pad[32];
2082 		} sdlbuf;
2083 		struct sockaddr_dl *sdp;
2084 		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
2085 
2086 		if (((ifp = m->m_pkthdr.rcvif))
2087 		&& ( ifp->if_index && (ifp->if_index <= if_index))) {
2088 			sdp = (struct sockaddr_dl *)
2089 			    (ifaddr_byindex(ifp->if_index)->ifa_addr);
2090 			/*
2091 			 * Change our mind and don't try copy.
2092 			 */
2093 			if ((sdp->sdl_family != AF_LINK)
2094 			|| (sdp->sdl_len > sizeof(sdlbuf))) {
2095 				goto makedummy;
2096 			}
2097 			bcopy(sdp, sdl2, sdp->sdl_len);
2098 		} else {
2099 makedummy:
2100 			sdl2->sdl_len
2101 				= offsetof(struct sockaddr_dl, sdl_data[0]);
2102 			sdl2->sdl_family = AF_LINK;
2103 			sdl2->sdl_index = 0;
2104 			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
2105 		}
2106 		*mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
2107 			IP_RECVIF, IPPROTO_IP);
2108 		if (*mp)
2109 			mp = &(*mp)->m_next;
2110 	}
2111 }
2112 
2113 /*
2114  * XXX these routines are called from the upper part of the kernel.
2115  * They need to be locked when we remove Giant.
2116  *
2117  * They could also be moved to ip_mroute.c, since all the RSVP
2118  *  handling is done there already.
2119  */
2120 static int ip_rsvp_on;
2121 struct socket *ip_rsvpd;
2122 int
2123 ip_rsvp_init(struct socket *so)
2124 {
2125 	if (so->so_type != SOCK_RAW ||
2126 	    so->so_proto->pr_protocol != IPPROTO_RSVP)
2127 		return EOPNOTSUPP;
2128 
2129 	if (ip_rsvpd != NULL)
2130 		return EADDRINUSE;
2131 
2132 	ip_rsvpd = so;
2133 	/*
2134 	 * This may seem silly, but we need to be sure we don't over-increment
2135 	 * the RSVP counter, in case something slips up.
2136 	 */
2137 	if (!ip_rsvp_on) {
2138 		ip_rsvp_on = 1;
2139 		rsvp_on++;
2140 	}
2141 
2142 	return 0;
2143 }
2144 
2145 int
2146 ip_rsvp_done(void)
2147 {
2148 	ip_rsvpd = NULL;
2149 	/*
2150 	 * This may seem silly, but we need to be sure we don't over-decrement
2151 	 * the RSVP counter, in case something slips up.
2152 	 */
2153 	if (ip_rsvp_on) {
2154 		ip_rsvp_on = 0;
2155 		rsvp_on--;
2156 	}
2157 	return 0;
2158 }
2159 
2160 void
2161 rsvp_input(struct mbuf *m, int off)	/* XXX must fixup manually */
2162 {
2163 	if (rsvp_input_p) { /* call the real one if loaded */
2164 		rsvp_input_p(m, off);
2165 		return;
2166 	}
2167 
2168 	/* Can still get packets with rsvp_on = 0 if there is a local member
2169 	 * of the group to which the RSVP packet is addressed.  But in this
2170 	 * case we want to throw the packet away.
2171 	 */
2172 
2173 	if (!rsvp_on) {
2174 		m_freem(m);
2175 		return;
2176 	}
2177 
2178 	if (ip_rsvpd != NULL) {
2179 		rip_input(m, off);
2180 		return;
2181 	}
2182 	/* Drop the packet */
2183 	m_freem(m);
2184 }
2185