xref: /freebsd/sys/netinet/ip_input.c (revision 1e413cf93298b5b97441a21d9a50fdcd0ee9945e)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_bootp.h"
36 #include "opt_ipfw.h"
37 #include "opt_ipstealth.h"
38 #include "opt_ipsec.h"
39 #include "opt_mac.h"
40 #include "opt_carp.h"
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/callout.h>
45 #include <sys/mbuf.h>
46 #include <sys/malloc.h>
47 #include <sys/domain.h>
48 #include <sys/protosw.h>
49 #include <sys/socket.h>
50 #include <sys/time.h>
51 #include <sys/kernel.h>
52 #include <sys/syslog.h>
53 #include <sys/sysctl.h>
54 
55 #include <net/pfil.h>
56 #include <net/if.h>
57 #include <net/if_types.h>
58 #include <net/if_var.h>
59 #include <net/if_dl.h>
60 #include <net/route.h>
61 #include <net/netisr.h>
62 
63 #include <netinet/in.h>
64 #include <netinet/in_systm.h>
65 #include <netinet/in_var.h>
66 #include <netinet/ip.h>
67 #include <netinet/in_pcb.h>
68 #include <netinet/ip_var.h>
69 #include <netinet/ip_icmp.h>
70 #include <netinet/ip_options.h>
71 #include <machine/in_cksum.h>
72 #ifdef DEV_CARP
73 #include <netinet/ip_carp.h>
74 #endif
75 #ifdef IPSEC
76 #include <netinet/ip_ipsec.h>
77 #endif /* IPSEC */
78 
79 #include <sys/socketvar.h>
80 
81 /* XXX: Temporary until ipfw_ether and ipfw_bridge are converted. */
82 #include <netinet/ip_fw.h>
83 #include <netinet/ip_dummynet.h>
84 
85 #include <security/mac/mac_framework.h>
86 
87 int rsvp_on = 0;
88 
89 int	ipforwarding = 0;
90 SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
91     &ipforwarding, 0, "Enable IP forwarding between interfaces");
92 
93 static int	ipsendredirects = 1; /* XXX */
94 SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
95     &ipsendredirects, 0, "Enable sending IP redirects");
96 
97 int	ip_defttl = IPDEFTTL;
98 SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
99     &ip_defttl, 0, "Maximum TTL on IP packets");
100 
101 static int	ip_keepfaith = 0;
102 SYSCTL_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
103     &ip_keepfaith,	0,
104     "Enable packet capture for FAITH IPv4->IPv6 translater daemon");
105 
106 static int	ip_sendsourcequench = 0;
107 SYSCTL_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW,
108     &ip_sendsourcequench, 0,
109     "Enable the transmission of source quench packets");
110 
111 int	ip_do_randomid = 0;
112 SYSCTL_INT(_net_inet_ip, OID_AUTO, random_id, CTLFLAG_RW,
113     &ip_do_randomid, 0,
114     "Assign random ip_id values");
115 
116 /*
117  * XXX - Setting ip_checkinterface mostly implements the receive side of
118  * the Strong ES model described in RFC 1122, but since the routing table
119  * and transmit implementation do not implement the Strong ES model,
120  * setting this to 1 results in an odd hybrid.
121  *
122  * XXX - ip_checkinterface currently must be disabled if you use ipnat
123  * to translate the destination address to another local interface.
124  *
125  * XXX - ip_checkinterface must be disabled if you add IP aliases
126  * to the loopback interface instead of the interface where the
127  * packets for those addresses are received.
128  */
129 static int	ip_checkinterface = 0;
130 SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
131     &ip_checkinterface, 0, "Verify packet arrives on correct interface");
132 
133 struct pfil_head inet_pfil_hook;	/* Packet filter hooks */
134 
135 static struct	ifqueue ipintrq;
136 static int	ipqmaxlen = IFQ_MAXLEN;
137 
138 extern	struct domain inetdomain;
139 extern	struct protosw inetsw[];
140 u_char	ip_protox[IPPROTO_MAX];
141 struct	in_ifaddrhead in_ifaddrhead; 		/* first inet address */
142 struct	in_ifaddrhashhead *in_ifaddrhashtbl;	/* inet addr hash table  */
143 u_long 	in_ifaddrhmask;				/* mask for hash table */
144 
145 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen, CTLFLAG_RW,
146     &ipintrq.ifq_maxlen, 0, "Maximum size of the IP input queue");
147 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops, CTLFLAG_RD,
148     &ipintrq.ifq_drops, 0,
149     "Number of packets dropped from the IP input queue");
150 
151 struct ipstat ipstat;
152 SYSCTL_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RW,
153     &ipstat, ipstat, "IP statistics (struct ipstat, netinet/ip_var.h)");
154 
155 /*
156  * IP datagram reassembly.
157  */
158 #define IPREASS_NHASH_LOG2      6
159 #define IPREASS_NHASH           (1 << IPREASS_NHASH_LOG2)
160 #define IPREASS_HMASK           (IPREASS_NHASH - 1)
161 #define IPREASS_HASH(x,y) \
162 	(((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
163 
164 static uma_zone_t ipq_zone;
165 static TAILQ_HEAD(ipqhead, ipq) ipq[IPREASS_NHASH];
166 static struct mtx ipqlock;
167 
168 #define	IPQ_LOCK()	mtx_lock(&ipqlock)
169 #define	IPQ_UNLOCK()	mtx_unlock(&ipqlock)
170 #define	IPQ_LOCK_INIT()	mtx_init(&ipqlock, "ipqlock", NULL, MTX_DEF)
171 #define	IPQ_LOCK_ASSERT()	mtx_assert(&ipqlock, MA_OWNED)
172 
173 static void	maxnipq_update(void);
174 static void	ipq_zone_change(void *);
175 
176 static int	maxnipq;	/* Administrative limit on # reass queues. */
177 static int	nipq = 0;	/* Total # of reass queues */
178 SYSCTL_INT(_net_inet_ip, OID_AUTO, fragpackets, CTLFLAG_RD,
179     &nipq, 0, "Current number of IPv4 fragment reassembly queue entries");
180 
181 static int	maxfragsperpacket;
182 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_RW,
183     &maxfragsperpacket, 0,
184     "Maximum number of IPv4 fragments allowed per packet");
185 
186 struct callout	ipport_tick_callout;
187 
188 #ifdef IPCTL_DEFMTU
189 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
190     &ip_mtu, 0, "Default MTU");
191 #endif
192 
193 #ifdef IPSTEALTH
194 int	ipstealth = 0;
195 SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW,
196     &ipstealth, 0, "IP stealth mode, no TTL decrementation on forwarding");
197 #endif
198 
199 /*
200  * ipfw_ether and ipfw_bridge hooks.
201  * XXX: Temporary until those are converted to pfil_hooks as well.
202  */
203 ip_fw_chk_t *ip_fw_chk_ptr = NULL;
204 ip_dn_io_t *ip_dn_io_ptr = NULL;
205 int fw_one_pass = 1;
206 
207 static void	ip_freef(struct ipqhead *, struct ipq *);
208 
209 /*
210  * IP initialization: fill in IP protocol switch table.
211  * All protocols not implemented in kernel go to raw IP protocol handler.
212  */
213 void
214 ip_init(void)
215 {
216 	struct protosw *pr;
217 	int i;
218 
219 	TAILQ_INIT(&in_ifaddrhead);
220 	in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &in_ifaddrhmask);
221 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
222 	if (pr == NULL)
223 		panic("ip_init: PF_INET not found");
224 
225 	/* Initialize the entire ip_protox[] array to IPPROTO_RAW. */
226 	for (i = 0; i < IPPROTO_MAX; i++)
227 		ip_protox[i] = pr - inetsw;
228 	/*
229 	 * Cycle through IP protocols and put them into the appropriate place
230 	 * in ip_protox[].
231 	 */
232 	for (pr = inetdomain.dom_protosw;
233 	    pr < inetdomain.dom_protoswNPROTOSW; pr++)
234 		if (pr->pr_domain->dom_family == PF_INET &&
235 		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW) {
236 			/* Be careful to only index valid IP protocols. */
237 			if (pr->pr_protocol < IPPROTO_MAX)
238 				ip_protox[pr->pr_protocol] = pr - inetsw;
239 		}
240 
241 	/* Initialize packet filter hooks. */
242 	inet_pfil_hook.ph_type = PFIL_TYPE_AF;
243 	inet_pfil_hook.ph_af = AF_INET;
244 	if ((i = pfil_head_register(&inet_pfil_hook)) != 0)
245 		printf("%s: WARNING: unable to register pfil hook, "
246 			"error %d\n", __func__, i);
247 
248 	/* Initialize IP reassembly queue. */
249 	IPQ_LOCK_INIT();
250 	for (i = 0; i < IPREASS_NHASH; i++)
251 	    TAILQ_INIT(&ipq[i]);
252 	maxnipq = nmbclusters / 32;
253 	maxfragsperpacket = 16;
254 	ipq_zone = uma_zcreate("ipq", sizeof(struct ipq), NULL, NULL, NULL,
255 	    NULL, UMA_ALIGN_PTR, 0);
256 	maxnipq_update();
257 
258 	/* Start ipport_tick. */
259 	callout_init(&ipport_tick_callout, CALLOUT_MPSAFE);
260 	ipport_tick(NULL);
261 	EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL,
262 		SHUTDOWN_PRI_DEFAULT);
263 	EVENTHANDLER_REGISTER(nmbclusters_change, ipq_zone_change,
264 		NULL, EVENTHANDLER_PRI_ANY);
265 
266 	/* Initialize various other remaining things. */
267 	ip_id = time_second & 0xffff;
268 	ipintrq.ifq_maxlen = ipqmaxlen;
269 	mtx_init(&ipintrq.ifq_mtx, "ip_inq", NULL, MTX_DEF);
270 	netisr_register(NETISR_IP, ip_input, &ipintrq, NETISR_MPSAFE);
271 }
272 
273 void
274 ip_fini(void *xtp)
275 {
276 
277 	callout_stop(&ipport_tick_callout);
278 }
279 
280 /*
281  * Ip input routine.  Checksum and byte swap header.  If fragmented
282  * try to reassemble.  Process options.  Pass to next level.
283  */
284 void
285 ip_input(struct mbuf *m)
286 {
287 	struct ip *ip = NULL;
288 	struct in_ifaddr *ia = NULL;
289 	struct ifaddr *ifa;
290 	int    checkif, hlen = 0;
291 	u_short sum;
292 	int dchg = 0;				/* dest changed after fw */
293 	struct in_addr odst;			/* original dst address */
294 
295 	M_ASSERTPKTHDR(m);
296 
297 	if (m->m_flags & M_FASTFWD_OURS) {
298 		/*
299 		 * Firewall or NAT changed destination to local.
300 		 * We expect ip_len and ip_off to be in host byte order.
301 		 */
302 		m->m_flags &= ~M_FASTFWD_OURS;
303 		/* Set up some basics that will be used later. */
304 		ip = mtod(m, struct ip *);
305 		hlen = ip->ip_hl << 2;
306 		goto ours;
307 	}
308 
309 	ipstat.ips_total++;
310 
311 	if (m->m_pkthdr.len < sizeof(struct ip))
312 		goto tooshort;
313 
314 	if (m->m_len < sizeof (struct ip) &&
315 	    (m = m_pullup(m, sizeof (struct ip))) == NULL) {
316 		ipstat.ips_toosmall++;
317 		return;
318 	}
319 	ip = mtod(m, struct ip *);
320 
321 	if (ip->ip_v != IPVERSION) {
322 		ipstat.ips_badvers++;
323 		goto bad;
324 	}
325 
326 	hlen = ip->ip_hl << 2;
327 	if (hlen < sizeof(struct ip)) {	/* minimum header length */
328 		ipstat.ips_badhlen++;
329 		goto bad;
330 	}
331 	if (hlen > m->m_len) {
332 		if ((m = m_pullup(m, hlen)) == NULL) {
333 			ipstat.ips_badhlen++;
334 			return;
335 		}
336 		ip = mtod(m, struct ip *);
337 	}
338 
339 	/* 127/8 must not appear on wire - RFC1122 */
340 	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
341 	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
342 		if ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) {
343 			ipstat.ips_badaddr++;
344 			goto bad;
345 		}
346 	}
347 
348 	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
349 		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
350 	} else {
351 		if (hlen == sizeof(struct ip)) {
352 			sum = in_cksum_hdr(ip);
353 		} else {
354 			sum = in_cksum(m, hlen);
355 		}
356 	}
357 	if (sum) {
358 		ipstat.ips_badsum++;
359 		goto bad;
360 	}
361 
362 #ifdef ALTQ
363 	if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0)
364 		/* packet is dropped by traffic conditioner */
365 		return;
366 #endif
367 
368 	/*
369 	 * Convert fields to host representation.
370 	 */
371 	ip->ip_len = ntohs(ip->ip_len);
372 	if (ip->ip_len < hlen) {
373 		ipstat.ips_badlen++;
374 		goto bad;
375 	}
376 	ip->ip_off = ntohs(ip->ip_off);
377 
378 	/*
379 	 * Check that the amount of data in the buffers
380 	 * is as at least much as the IP header would have us expect.
381 	 * Trim mbufs if longer than we expect.
382 	 * Drop packet if shorter than we expect.
383 	 */
384 	if (m->m_pkthdr.len < ip->ip_len) {
385 tooshort:
386 		ipstat.ips_tooshort++;
387 		goto bad;
388 	}
389 	if (m->m_pkthdr.len > ip->ip_len) {
390 		if (m->m_len == m->m_pkthdr.len) {
391 			m->m_len = ip->ip_len;
392 			m->m_pkthdr.len = ip->ip_len;
393 		} else
394 			m_adj(m, ip->ip_len - m->m_pkthdr.len);
395 	}
396 #ifdef IPSEC
397 	/*
398 	 * Bypass packet filtering for packets from a tunnel (gif).
399 	 */
400 	if (ip_ipsec_filtertunnel(m))
401 		goto passin;
402 #endif /* IPSEC */
403 
404 	/*
405 	 * Run through list of hooks for input packets.
406 	 *
407 	 * NB: Beware of the destination address changing (e.g.
408 	 *     by NAT rewriting).  When this happens, tell
409 	 *     ip_forward to do the right thing.
410 	 */
411 
412 	/* Jump over all PFIL processing if hooks are not active. */
413 	if (!PFIL_HOOKED(&inet_pfil_hook))
414 		goto passin;
415 
416 	odst = ip->ip_dst;
417 	if (pfil_run_hooks(&inet_pfil_hook, &m, m->m_pkthdr.rcvif,
418 	    PFIL_IN, NULL) != 0)
419 		return;
420 	if (m == NULL)			/* consumed by filter */
421 		return;
422 
423 	ip = mtod(m, struct ip *);
424 	dchg = (odst.s_addr != ip->ip_dst.s_addr);
425 
426 #ifdef IPFIREWALL_FORWARD
427 	if (m->m_flags & M_FASTFWD_OURS) {
428 		m->m_flags &= ~M_FASTFWD_OURS;
429 		goto ours;
430 	}
431 	if ((dchg = (m_tag_find(m, PACKET_TAG_IPFORWARD, NULL) != NULL)) != 0) {
432 		/*
433 		 * Directly ship on the packet.  This allows to forward packets
434 		 * that were destined for us to some other directly connected
435 		 * host.
436 		 */
437 		ip_forward(m, dchg);
438 		return;
439 	}
440 #endif /* IPFIREWALL_FORWARD */
441 
442 passin:
443 	/*
444 	 * Process options and, if not destined for us,
445 	 * ship it on.  ip_dooptions returns 1 when an
446 	 * error was detected (causing an icmp message
447 	 * to be sent and the original packet to be freed).
448 	 */
449 	if (hlen > sizeof (struct ip) && ip_dooptions(m, 0))
450 		return;
451 
452         /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
453          * matter if it is destined to another node, or whether it is
454          * a multicast one, RSVP wants it! and prevents it from being forwarded
455          * anywhere else. Also checks if the rsvp daemon is running before
456 	 * grabbing the packet.
457          */
458 	if (rsvp_on && ip->ip_p==IPPROTO_RSVP)
459 		goto ours;
460 
461 	/*
462 	 * Check our list of addresses, to see if the packet is for us.
463 	 * If we don't have any addresses, assume any unicast packet
464 	 * we receive might be for us (and let the upper layers deal
465 	 * with it).
466 	 */
467 	if (TAILQ_EMPTY(&in_ifaddrhead) &&
468 	    (m->m_flags & (M_MCAST|M_BCAST)) == 0)
469 		goto ours;
470 
471 	/*
472 	 * Enable a consistency check between the destination address
473 	 * and the arrival interface for a unicast packet (the RFC 1122
474 	 * strong ES model) if IP forwarding is disabled and the packet
475 	 * is not locally generated and the packet is not subject to
476 	 * 'ipfw fwd'.
477 	 *
478 	 * XXX - Checking also should be disabled if the destination
479 	 * address is ipnat'ed to a different interface.
480 	 *
481 	 * XXX - Checking is incompatible with IP aliases added
482 	 * to the loopback interface instead of the interface where
483 	 * the packets are received.
484 	 *
485 	 * XXX - This is the case for carp vhost IPs as well so we
486 	 * insert a workaround. If the packet got here, we already
487 	 * checked with carp_iamatch() and carp_forus().
488 	 */
489 	checkif = ip_checkinterface && (ipforwarding == 0) &&
490 	    m->m_pkthdr.rcvif != NULL &&
491 	    ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) &&
492 #ifdef DEV_CARP
493 	    !m->m_pkthdr.rcvif->if_carp &&
494 #endif
495 	    (dchg == 0);
496 
497 	/*
498 	 * Check for exact addresses in the hash bucket.
499 	 */
500 	LIST_FOREACH(ia, INADDR_HASH(ip->ip_dst.s_addr), ia_hash) {
501 		/*
502 		 * If the address matches, verify that the packet
503 		 * arrived via the correct interface if checking is
504 		 * enabled.
505 		 */
506 		if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr &&
507 		    (!checkif || ia->ia_ifp == m->m_pkthdr.rcvif))
508 			goto ours;
509 	}
510 	/*
511 	 * Check for broadcast addresses.
512 	 *
513 	 * Only accept broadcast packets that arrive via the matching
514 	 * interface.  Reception of forwarded directed broadcasts would
515 	 * be handled via ip_forward() and ether_output() with the loopback
516 	 * into the stack for SIMPLEX interfaces handled by ether_output().
517 	 */
518 	if (m->m_pkthdr.rcvif != NULL &&
519 	    m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
520 	        TAILQ_FOREACH(ifa, &m->m_pkthdr.rcvif->if_addrhead, ifa_link) {
521 			if (ifa->ifa_addr->sa_family != AF_INET)
522 				continue;
523 			ia = ifatoia(ifa);
524 			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
525 			    ip->ip_dst.s_addr)
526 				goto ours;
527 			if (ia->ia_netbroadcast.s_addr == ip->ip_dst.s_addr)
528 				goto ours;
529 #ifdef BOOTP_COMPAT
530 			if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY)
531 				goto ours;
532 #endif
533 		}
534 	}
535 	/* RFC 3927 2.7: Do not forward datagrams for 169.254.0.0/16. */
536 	if (IN_LINKLOCAL(ntohl(ip->ip_dst.s_addr))) {
537 		ipstat.ips_cantforward++;
538 		m_freem(m);
539 		return;
540 	}
541 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
542 		struct in_multi *inm;
543 		if (ip_mrouter) {
544 			/*
545 			 * If we are acting as a multicast router, all
546 			 * incoming multicast packets are passed to the
547 			 * kernel-level multicast forwarding function.
548 			 * The packet is returned (relatively) intact; if
549 			 * ip_mforward() returns a non-zero value, the packet
550 			 * must be discarded, else it may be accepted below.
551 			 */
552 			if (ip_mforward &&
553 			    ip_mforward(ip, m->m_pkthdr.rcvif, m, 0) != 0) {
554 				ipstat.ips_cantforward++;
555 				m_freem(m);
556 				return;
557 			}
558 
559 			/*
560 			 * The process-level routing daemon needs to receive
561 			 * all multicast IGMP packets, whether or not this
562 			 * host belongs to their destination groups.
563 			 */
564 			if (ip->ip_p == IPPROTO_IGMP)
565 				goto ours;
566 			ipstat.ips_forward++;
567 		}
568 		/*
569 		 * See if we belong to the destination multicast group on the
570 		 * arrival interface.
571 		 */
572 		IN_MULTI_LOCK();
573 		IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
574 		IN_MULTI_UNLOCK();
575 		if (inm == NULL) {
576 			ipstat.ips_notmember++;
577 			m_freem(m);
578 			return;
579 		}
580 		goto ours;
581 	}
582 	if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
583 		goto ours;
584 	if (ip->ip_dst.s_addr == INADDR_ANY)
585 		goto ours;
586 
587 	/*
588 	 * FAITH(Firewall Aided Internet Translator)
589 	 */
590 	if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
591 		if (ip_keepfaith) {
592 			if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
593 				goto ours;
594 		}
595 		m_freem(m);
596 		return;
597 	}
598 
599 	/*
600 	 * Not for us; forward if possible and desirable.
601 	 */
602 	if (ipforwarding == 0) {
603 		ipstat.ips_cantforward++;
604 		m_freem(m);
605 	} else {
606 #ifdef IPSEC
607 		if (ip_ipsec_fwd(m))
608 			goto bad;
609 #endif /* IPSEC */
610 		ip_forward(m, dchg);
611 	}
612 	return;
613 
614 ours:
615 #ifdef IPSTEALTH
616 	/*
617 	 * IPSTEALTH: Process non-routing options only
618 	 * if the packet is destined for us.
619 	 */
620 	if (ipstealth && hlen > sizeof (struct ip) &&
621 	    ip_dooptions(m, 1))
622 		return;
623 #endif /* IPSTEALTH */
624 
625 	/* Count the packet in the ip address stats */
626 	if (ia != NULL) {
627 		ia->ia_ifa.if_ipackets++;
628 		ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
629 	}
630 
631 	/*
632 	 * Attempt reassembly; if it succeeds, proceed.
633 	 * ip_reass() will return a different mbuf.
634 	 */
635 	if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
636 		m = ip_reass(m);
637 		if (m == NULL)
638 			return;
639 		ip = mtod(m, struct ip *);
640 		/* Get the header length of the reassembled packet */
641 		hlen = ip->ip_hl << 2;
642 	}
643 
644 	/*
645 	 * Further protocols expect the packet length to be w/o the
646 	 * IP header.
647 	 */
648 	ip->ip_len -= hlen;
649 
650 #ifdef IPSEC
651 	/*
652 	 * enforce IPsec policy checking if we are seeing last header.
653 	 * note that we do not visit this with protocols with pcb layer
654 	 * code - like udp/tcp/raw ip.
655 	 */
656 	if (ip_ipsec_input(m))
657 		goto bad;
658 #endif /* IPSEC */
659 
660 	/*
661 	 * Switch out to protocol's input routine.
662 	 */
663 	ipstat.ips_delivered++;
664 
665 	(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
666 	return;
667 bad:
668 	m_freem(m);
669 }
670 
671 /*
672  * After maxnipq has been updated, propagate the change to UMA.  The UMA zone
673  * max has slightly different semantics than the sysctl, for historical
674  * reasons.
675  */
676 static void
677 maxnipq_update(void)
678 {
679 
680 	/*
681 	 * -1 for unlimited allocation.
682 	 */
683 	if (maxnipq < 0)
684 		uma_zone_set_max(ipq_zone, 0);
685 	/*
686 	 * Positive number for specific bound.
687 	 */
688 	if (maxnipq > 0)
689 		uma_zone_set_max(ipq_zone, maxnipq);
690 	/*
691 	 * Zero specifies no further fragment queue allocation -- set the
692 	 * bound very low, but rely on implementation elsewhere to actually
693 	 * prevent allocation and reclaim current queues.
694 	 */
695 	if (maxnipq == 0)
696 		uma_zone_set_max(ipq_zone, 1);
697 }
698 
699 static void
700 ipq_zone_change(void *tag)
701 {
702 
703 	if (maxnipq > 0 && maxnipq < (nmbclusters / 32)) {
704 		maxnipq = nmbclusters / 32;
705 		maxnipq_update();
706 	}
707 }
708 
709 static int
710 sysctl_maxnipq(SYSCTL_HANDLER_ARGS)
711 {
712 	int error, i;
713 
714 	i = maxnipq;
715 	error = sysctl_handle_int(oidp, &i, 0, req);
716 	if (error || !req->newptr)
717 		return (error);
718 
719 	/*
720 	 * XXXRW: Might be a good idea to sanity check the argument and place
721 	 * an extreme upper bound.
722 	 */
723 	if (i < -1)
724 		return (EINVAL);
725 	maxnipq = i;
726 	maxnipq_update();
727 	return (0);
728 }
729 
730 SYSCTL_PROC(_net_inet_ip, OID_AUTO, maxfragpackets, CTLTYPE_INT|CTLFLAG_RW,
731     NULL, 0, sysctl_maxnipq, "I",
732     "Maximum number of IPv4 fragment reassembly queue entries");
733 
734 /*
735  * Take incoming datagram fragment and try to reassemble it into
736  * whole datagram.  If the argument is the first fragment or one
737  * in between the function will return NULL and store the mbuf
738  * in the fragment chain.  If the argument is the last fragment
739  * the packet will be reassembled and the pointer to the new
740  * mbuf returned for further processing.  Only m_tags attached
741  * to the first packet/fragment are preserved.
742  * The IP header is *NOT* adjusted out of iplen.
743  */
744 struct mbuf *
745 ip_reass(struct mbuf *m)
746 {
747 	struct ip *ip;
748 	struct mbuf *p, *q, *nq, *t;
749 	struct ipq *fp = NULL;
750 	struct ipqhead *head;
751 	int i, hlen, next;
752 	u_int8_t ecn, ecn0;
753 	u_short hash;
754 
755 	/* If maxnipq or maxfragsperpacket are 0, never accept fragments. */
756 	if (maxnipq == 0 || maxfragsperpacket == 0) {
757 		ipstat.ips_fragments++;
758 		ipstat.ips_fragdropped++;
759 		m_freem(m);
760 		return (NULL);
761 	}
762 
763 	ip = mtod(m, struct ip *);
764 	hlen = ip->ip_hl << 2;
765 
766 	hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
767 	head = &ipq[hash];
768 	IPQ_LOCK();
769 
770 	/*
771 	 * Look for queue of fragments
772 	 * of this datagram.
773 	 */
774 	TAILQ_FOREACH(fp, head, ipq_list)
775 		if (ip->ip_id == fp->ipq_id &&
776 		    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
777 		    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
778 #ifdef MAC
779 		    mac_ipq_match(m, fp) &&
780 #endif
781 		    ip->ip_p == fp->ipq_p)
782 			goto found;
783 
784 	fp = NULL;
785 
786 	/*
787 	 * Attempt to trim the number of allocated fragment queues if it
788 	 * exceeds the administrative limit.
789 	 */
790 	if ((nipq > maxnipq) && (maxnipq > 0)) {
791 		/*
792 		 * drop something from the tail of the current queue
793 		 * before proceeding further
794 		 */
795 		struct ipq *q = TAILQ_LAST(head, ipqhead);
796 		if (q == NULL) {   /* gak */
797 			for (i = 0; i < IPREASS_NHASH; i++) {
798 				struct ipq *r = TAILQ_LAST(&ipq[i], ipqhead);
799 				if (r) {
800 					ipstat.ips_fragtimeout += r->ipq_nfrags;
801 					ip_freef(&ipq[i], r);
802 					break;
803 				}
804 			}
805 		} else {
806 			ipstat.ips_fragtimeout += q->ipq_nfrags;
807 			ip_freef(head, q);
808 		}
809 	}
810 
811 found:
812 	/*
813 	 * Adjust ip_len to not reflect header,
814 	 * convert offset of this to bytes.
815 	 */
816 	ip->ip_len -= hlen;
817 	if (ip->ip_off & IP_MF) {
818 		/*
819 		 * Make sure that fragments have a data length
820 		 * that's a non-zero multiple of 8 bytes.
821 		 */
822 		if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
823 			ipstat.ips_toosmall++; /* XXX */
824 			goto dropfrag;
825 		}
826 		m->m_flags |= M_FRAG;
827 	} else
828 		m->m_flags &= ~M_FRAG;
829 	ip->ip_off <<= 3;
830 
831 
832 	/*
833 	 * Attempt reassembly; if it succeeds, proceed.
834 	 * ip_reass() will return a different mbuf.
835 	 */
836 	ipstat.ips_fragments++;
837 	m->m_pkthdr.header = ip;
838 
839 	/* Previous ip_reass() started here. */
840 	/*
841 	 * Presence of header sizes in mbufs
842 	 * would confuse code below.
843 	 */
844 	m->m_data += hlen;
845 	m->m_len -= hlen;
846 
847 	/*
848 	 * If first fragment to arrive, create a reassembly queue.
849 	 */
850 	if (fp == NULL) {
851 		fp = uma_zalloc(ipq_zone, M_NOWAIT);
852 		if (fp == NULL)
853 			goto dropfrag;
854 #ifdef MAC
855 		if (mac_ipq_init(fp, M_NOWAIT) != 0) {
856 			uma_zfree(ipq_zone, fp);
857 			fp = NULL;
858 			goto dropfrag;
859 		}
860 		mac_ipq_create(m, fp);
861 #endif
862 		TAILQ_INSERT_HEAD(head, fp, ipq_list);
863 		nipq++;
864 		fp->ipq_nfrags = 1;
865 		fp->ipq_ttl = IPFRAGTTL;
866 		fp->ipq_p = ip->ip_p;
867 		fp->ipq_id = ip->ip_id;
868 		fp->ipq_src = ip->ip_src;
869 		fp->ipq_dst = ip->ip_dst;
870 		fp->ipq_frags = m;
871 		m->m_nextpkt = NULL;
872 		goto done;
873 	} else {
874 		fp->ipq_nfrags++;
875 #ifdef MAC
876 		mac_ipq_update(m, fp);
877 #endif
878 	}
879 
880 #define GETIP(m)	((struct ip*)((m)->m_pkthdr.header))
881 
882 	/*
883 	 * Handle ECN by comparing this segment with the first one;
884 	 * if CE is set, do not lose CE.
885 	 * drop if CE and not-ECT are mixed for the same packet.
886 	 */
887 	ecn = ip->ip_tos & IPTOS_ECN_MASK;
888 	ecn0 = GETIP(fp->ipq_frags)->ip_tos & IPTOS_ECN_MASK;
889 	if (ecn == IPTOS_ECN_CE) {
890 		if (ecn0 == IPTOS_ECN_NOTECT)
891 			goto dropfrag;
892 		if (ecn0 != IPTOS_ECN_CE)
893 			GETIP(fp->ipq_frags)->ip_tos |= IPTOS_ECN_CE;
894 	}
895 	if (ecn == IPTOS_ECN_NOTECT && ecn0 != IPTOS_ECN_NOTECT)
896 		goto dropfrag;
897 
898 	/*
899 	 * Find a segment which begins after this one does.
900 	 */
901 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
902 		if (GETIP(q)->ip_off > ip->ip_off)
903 			break;
904 
905 	/*
906 	 * If there is a preceding segment, it may provide some of
907 	 * our data already.  If so, drop the data from the incoming
908 	 * segment.  If it provides all of our data, drop us, otherwise
909 	 * stick new segment in the proper place.
910 	 *
911 	 * If some of the data is dropped from the the preceding
912 	 * segment, then it's checksum is invalidated.
913 	 */
914 	if (p) {
915 		i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
916 		if (i > 0) {
917 			if (i >= ip->ip_len)
918 				goto dropfrag;
919 			m_adj(m, i);
920 			m->m_pkthdr.csum_flags = 0;
921 			ip->ip_off += i;
922 			ip->ip_len -= i;
923 		}
924 		m->m_nextpkt = p->m_nextpkt;
925 		p->m_nextpkt = m;
926 	} else {
927 		m->m_nextpkt = fp->ipq_frags;
928 		fp->ipq_frags = m;
929 	}
930 
931 	/*
932 	 * While we overlap succeeding segments trim them or,
933 	 * if they are completely covered, dequeue them.
934 	 */
935 	for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
936 	     q = nq) {
937 		i = (ip->ip_off + ip->ip_len) - GETIP(q)->ip_off;
938 		if (i < GETIP(q)->ip_len) {
939 			GETIP(q)->ip_len -= i;
940 			GETIP(q)->ip_off += i;
941 			m_adj(q, i);
942 			q->m_pkthdr.csum_flags = 0;
943 			break;
944 		}
945 		nq = q->m_nextpkt;
946 		m->m_nextpkt = nq;
947 		ipstat.ips_fragdropped++;
948 		fp->ipq_nfrags--;
949 		m_freem(q);
950 	}
951 
952 	/*
953 	 * Check for complete reassembly and perform frag per packet
954 	 * limiting.
955 	 *
956 	 * Frag limiting is performed here so that the nth frag has
957 	 * a chance to complete the packet before we drop the packet.
958 	 * As a result, n+1 frags are actually allowed per packet, but
959 	 * only n will ever be stored. (n = maxfragsperpacket.)
960 	 *
961 	 */
962 	next = 0;
963 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
964 		if (GETIP(q)->ip_off != next) {
965 			if (fp->ipq_nfrags > maxfragsperpacket) {
966 				ipstat.ips_fragdropped += fp->ipq_nfrags;
967 				ip_freef(head, fp);
968 			}
969 			goto done;
970 		}
971 		next += GETIP(q)->ip_len;
972 	}
973 	/* Make sure the last packet didn't have the IP_MF flag */
974 	if (p->m_flags & M_FRAG) {
975 		if (fp->ipq_nfrags > maxfragsperpacket) {
976 			ipstat.ips_fragdropped += fp->ipq_nfrags;
977 			ip_freef(head, fp);
978 		}
979 		goto done;
980 	}
981 
982 	/*
983 	 * Reassembly is complete.  Make sure the packet is a sane size.
984 	 */
985 	q = fp->ipq_frags;
986 	ip = GETIP(q);
987 	if (next + (ip->ip_hl << 2) > IP_MAXPACKET) {
988 		ipstat.ips_toolong++;
989 		ipstat.ips_fragdropped += fp->ipq_nfrags;
990 		ip_freef(head, fp);
991 		goto done;
992 	}
993 
994 	/*
995 	 * Concatenate fragments.
996 	 */
997 	m = q;
998 	t = m->m_next;
999 	m->m_next = NULL;
1000 	m_cat(m, t);
1001 	nq = q->m_nextpkt;
1002 	q->m_nextpkt = NULL;
1003 	for (q = nq; q != NULL; q = nq) {
1004 		nq = q->m_nextpkt;
1005 		q->m_nextpkt = NULL;
1006 		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1007 		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1008 		m_cat(m, q);
1009 	}
1010 	/*
1011 	 * In order to do checksumming faster we do 'end-around carry' here
1012 	 * (and not in for{} loop), though it implies we are not going to
1013 	 * reassemble more than 64k fragments.
1014 	 */
1015 	m->m_pkthdr.csum_data =
1016 	    (m->m_pkthdr.csum_data & 0xffff) + (m->m_pkthdr.csum_data >> 16);
1017 #ifdef MAC
1018 	mac_ipq_reassemble(fp, m);
1019 	mac_ipq_destroy(fp);
1020 #endif
1021 
1022 	/*
1023 	 * Create header for new ip packet by modifying header of first
1024 	 * packet;  dequeue and discard fragment reassembly header.
1025 	 * Make header visible.
1026 	 */
1027 	ip->ip_len = (ip->ip_hl << 2) + next;
1028 	ip->ip_src = fp->ipq_src;
1029 	ip->ip_dst = fp->ipq_dst;
1030 	TAILQ_REMOVE(head, fp, ipq_list);
1031 	nipq--;
1032 	uma_zfree(ipq_zone, fp);
1033 	m->m_len += (ip->ip_hl << 2);
1034 	m->m_data -= (ip->ip_hl << 2);
1035 	/* some debugging cruft by sklower, below, will go away soon */
1036 	if (m->m_flags & M_PKTHDR)	/* XXX this should be done elsewhere */
1037 		m_fixhdr(m);
1038 	ipstat.ips_reassembled++;
1039 	IPQ_UNLOCK();
1040 	return (m);
1041 
1042 dropfrag:
1043 	ipstat.ips_fragdropped++;
1044 	if (fp != NULL)
1045 		fp->ipq_nfrags--;
1046 	m_freem(m);
1047 done:
1048 	IPQ_UNLOCK();
1049 	return (NULL);
1050 
1051 #undef GETIP
1052 }
1053 
1054 /*
1055  * Free a fragment reassembly header and all
1056  * associated datagrams.
1057  */
1058 static void
1059 ip_freef(struct ipqhead *fhp, struct ipq *fp)
1060 {
1061 	struct mbuf *q;
1062 
1063 	IPQ_LOCK_ASSERT();
1064 
1065 	while (fp->ipq_frags) {
1066 		q = fp->ipq_frags;
1067 		fp->ipq_frags = q->m_nextpkt;
1068 		m_freem(q);
1069 	}
1070 	TAILQ_REMOVE(fhp, fp, ipq_list);
1071 	uma_zfree(ipq_zone, fp);
1072 	nipq--;
1073 }
1074 
1075 /*
1076  * IP timer processing;
1077  * if a timer expires on a reassembly
1078  * queue, discard it.
1079  */
1080 void
1081 ip_slowtimo(void)
1082 {
1083 	struct ipq *fp;
1084 	int i;
1085 
1086 	IPQ_LOCK();
1087 	for (i = 0; i < IPREASS_NHASH; i++) {
1088 		for(fp = TAILQ_FIRST(&ipq[i]); fp;) {
1089 			struct ipq *fpp;
1090 
1091 			fpp = fp;
1092 			fp = TAILQ_NEXT(fp, ipq_list);
1093 			if(--fpp->ipq_ttl == 0) {
1094 				ipstat.ips_fragtimeout += fpp->ipq_nfrags;
1095 				ip_freef(&ipq[i], fpp);
1096 			}
1097 		}
1098 	}
1099 	/*
1100 	 * If we are over the maximum number of fragments
1101 	 * (due to the limit being lowered), drain off
1102 	 * enough to get down to the new limit.
1103 	 */
1104 	if (maxnipq >= 0 && nipq > maxnipq) {
1105 		for (i = 0; i < IPREASS_NHASH; i++) {
1106 			while (nipq > maxnipq && !TAILQ_EMPTY(&ipq[i])) {
1107 				ipstat.ips_fragdropped +=
1108 				    TAILQ_FIRST(&ipq[i])->ipq_nfrags;
1109 				ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i]));
1110 			}
1111 		}
1112 	}
1113 	IPQ_UNLOCK();
1114 }
1115 
1116 /*
1117  * Drain off all datagram fragments.
1118  */
1119 void
1120 ip_drain(void)
1121 {
1122 	int     i;
1123 
1124 	IPQ_LOCK();
1125 	for (i = 0; i < IPREASS_NHASH; i++) {
1126 		while(!TAILQ_EMPTY(&ipq[i])) {
1127 			ipstat.ips_fragdropped +=
1128 			    TAILQ_FIRST(&ipq[i])->ipq_nfrags;
1129 			ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i]));
1130 		}
1131 	}
1132 	IPQ_UNLOCK();
1133 	in_rtqdrain();
1134 }
1135 
1136 /*
1137  * The protocol to be inserted into ip_protox[] must be already registered
1138  * in inetsw[], either statically or through pf_proto_register().
1139  */
1140 int
1141 ipproto_register(u_char ipproto)
1142 {
1143 	struct protosw *pr;
1144 
1145 	/* Sanity checks. */
1146 	if (ipproto == 0)
1147 		return (EPROTONOSUPPORT);
1148 
1149 	/*
1150 	 * The protocol slot must not be occupied by another protocol
1151 	 * already.  An index pointing to IPPROTO_RAW is unused.
1152 	 */
1153 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
1154 	if (pr == NULL)
1155 		return (EPFNOSUPPORT);
1156 	if (ip_protox[ipproto] != pr - inetsw)	/* IPPROTO_RAW */
1157 		return (EEXIST);
1158 
1159 	/* Find the protocol position in inetsw[] and set the index. */
1160 	for (pr = inetdomain.dom_protosw;
1161 	     pr < inetdomain.dom_protoswNPROTOSW; pr++) {
1162 		if (pr->pr_domain->dom_family == PF_INET &&
1163 		    pr->pr_protocol && pr->pr_protocol == ipproto) {
1164 			/* Be careful to only index valid IP protocols. */
1165 			if (pr->pr_protocol < IPPROTO_MAX) {
1166 				ip_protox[pr->pr_protocol] = pr - inetsw;
1167 				return (0);
1168 			} else
1169 				return (EINVAL);
1170 		}
1171 	}
1172 	return (EPROTONOSUPPORT);
1173 }
1174 
1175 int
1176 ipproto_unregister(u_char ipproto)
1177 {
1178 	struct protosw *pr;
1179 
1180 	/* Sanity checks. */
1181 	if (ipproto == 0)
1182 		return (EPROTONOSUPPORT);
1183 
1184 	/* Check if the protocol was indeed registered. */
1185 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
1186 	if (pr == NULL)
1187 		return (EPFNOSUPPORT);
1188 	if (ip_protox[ipproto] == pr - inetsw)  /* IPPROTO_RAW */
1189 		return (ENOENT);
1190 
1191 	/* Reset the protocol slot to IPPROTO_RAW. */
1192 	ip_protox[ipproto] = pr - inetsw;
1193 	return (0);
1194 }
1195 
1196 /*
1197  * Given address of next destination (final or next hop),
1198  * return internet address info of interface to be used to get there.
1199  */
1200 struct in_ifaddr *
1201 ip_rtaddr(struct in_addr dst)
1202 {
1203 	struct route sro;
1204 	struct sockaddr_in *sin;
1205 	struct in_ifaddr *ifa;
1206 
1207 	bzero(&sro, sizeof(sro));
1208 	sin = (struct sockaddr_in *)&sro.ro_dst;
1209 	sin->sin_family = AF_INET;
1210 	sin->sin_len = sizeof(*sin);
1211 	sin->sin_addr = dst;
1212 	rtalloc_ign(&sro, RTF_CLONING);
1213 
1214 	if (sro.ro_rt == NULL)
1215 		return (NULL);
1216 
1217 	ifa = ifatoia(sro.ro_rt->rt_ifa);
1218 	RTFREE(sro.ro_rt);
1219 	return (ifa);
1220 }
1221 
1222 u_char inetctlerrmap[PRC_NCMDS] = {
1223 	0,		0,		0,		0,
1224 	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1225 	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1226 	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1227 	0,		0,		EHOSTUNREACH,	0,
1228 	ENOPROTOOPT,	ECONNREFUSED
1229 };
1230 
1231 /*
1232  * Forward a packet.  If some error occurs return the sender
1233  * an icmp packet.  Note we can't always generate a meaningful
1234  * icmp message because icmp doesn't have a large enough repertoire
1235  * of codes and types.
1236  *
1237  * If not forwarding, just drop the packet.  This could be confusing
1238  * if ipforwarding was zero but some routing protocol was advancing
1239  * us as a gateway to somewhere.  However, we must let the routing
1240  * protocol deal with that.
1241  *
1242  * The srcrt parameter indicates whether the packet is being forwarded
1243  * via a source route.
1244  */
1245 void
1246 ip_forward(struct mbuf *m, int srcrt)
1247 {
1248 	struct ip *ip = mtod(m, struct ip *);
1249 	struct in_ifaddr *ia = NULL;
1250 	struct mbuf *mcopy;
1251 	struct in_addr dest;
1252 	int error, type = 0, code = 0, mtu = 0;
1253 
1254 	if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) {
1255 		ipstat.ips_cantforward++;
1256 		m_freem(m);
1257 		return;
1258 	}
1259 #ifdef IPSTEALTH
1260 	if (!ipstealth) {
1261 #endif
1262 		if (ip->ip_ttl <= IPTTLDEC) {
1263 			icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS,
1264 			    0, 0);
1265 			return;
1266 		}
1267 #ifdef IPSTEALTH
1268 	}
1269 #endif
1270 
1271 	ia = ip_rtaddr(ip->ip_dst);
1272 	if (!srcrt && ia == NULL) {
1273 		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, 0, 0);
1274 		return;
1275 	}
1276 
1277 	/*
1278 	 * Save the IP header and at most 8 bytes of the payload,
1279 	 * in case we need to generate an ICMP message to the src.
1280 	 *
1281 	 * XXX this can be optimized a lot by saving the data in a local
1282 	 * buffer on the stack (72 bytes at most), and only allocating the
1283 	 * mbuf if really necessary. The vast majority of the packets
1284 	 * are forwarded without having to send an ICMP back (either
1285 	 * because unnecessary, or because rate limited), so we are
1286 	 * really we are wasting a lot of work here.
1287 	 *
1288 	 * We don't use m_copy() because it might return a reference
1289 	 * to a shared cluster. Both this function and ip_output()
1290 	 * assume exclusive access to the IP header in `m', so any
1291 	 * data in a cluster may change before we reach icmp_error().
1292 	 */
1293 	MGETHDR(mcopy, M_DONTWAIT, m->m_type);
1294 	if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, M_DONTWAIT)) {
1295 		/*
1296 		 * It's probably ok if the pkthdr dup fails (because
1297 		 * the deep copy of the tag chain failed), but for now
1298 		 * be conservative and just discard the copy since
1299 		 * code below may some day want the tags.
1300 		 */
1301 		m_free(mcopy);
1302 		mcopy = NULL;
1303 	}
1304 	if (mcopy != NULL) {
1305 		mcopy->m_len = min(ip->ip_len, M_TRAILINGSPACE(mcopy));
1306 		mcopy->m_pkthdr.len = mcopy->m_len;
1307 		m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
1308 	}
1309 
1310 #ifdef IPSTEALTH
1311 	if (!ipstealth) {
1312 #endif
1313 		ip->ip_ttl -= IPTTLDEC;
1314 #ifdef IPSTEALTH
1315 	}
1316 #endif
1317 
1318 	/*
1319 	 * If forwarding packet using same interface that it came in on,
1320 	 * perhaps should send a redirect to sender to shortcut a hop.
1321 	 * Only send redirect if source is sending directly to us,
1322 	 * and if packet was not source routed (or has any options).
1323 	 * Also, don't send redirect if forwarding using a default route
1324 	 * or a route modified by a redirect.
1325 	 */
1326 	dest.s_addr = 0;
1327 	if (!srcrt && ipsendredirects && ia->ia_ifp == m->m_pkthdr.rcvif) {
1328 		struct sockaddr_in *sin;
1329 		struct route ro;
1330 		struct rtentry *rt;
1331 
1332 		bzero(&ro, sizeof(ro));
1333 		sin = (struct sockaddr_in *)&ro.ro_dst;
1334 		sin->sin_family = AF_INET;
1335 		sin->sin_len = sizeof(*sin);
1336 		sin->sin_addr = ip->ip_dst;
1337 		rtalloc_ign(&ro, RTF_CLONING);
1338 
1339 		rt = ro.ro_rt;
1340 
1341 		if (rt && (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1342 		    satosin(rt_key(rt))->sin_addr.s_addr != 0) {
1343 #define	RTA(rt)	((struct in_ifaddr *)(rt->rt_ifa))
1344 			u_long src = ntohl(ip->ip_src.s_addr);
1345 
1346 			if (RTA(rt) &&
1347 			    (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
1348 				if (rt->rt_flags & RTF_GATEWAY)
1349 					dest.s_addr = satosin(rt->rt_gateway)->sin_addr.s_addr;
1350 				else
1351 					dest.s_addr = ip->ip_dst.s_addr;
1352 				/* Router requirements says to only send host redirects */
1353 				type = ICMP_REDIRECT;
1354 				code = ICMP_REDIRECT_HOST;
1355 			}
1356 		}
1357 		if (rt)
1358 			RTFREE(rt);
1359 	}
1360 
1361 	error = ip_output(m, NULL, NULL, IP_FORWARDING, NULL, NULL);
1362 	if (error)
1363 		ipstat.ips_cantforward++;
1364 	else {
1365 		ipstat.ips_forward++;
1366 		if (type)
1367 			ipstat.ips_redirectsent++;
1368 		else {
1369 			if (mcopy)
1370 				m_freem(mcopy);
1371 			return;
1372 		}
1373 	}
1374 	if (mcopy == NULL)
1375 		return;
1376 
1377 	switch (error) {
1378 
1379 	case 0:				/* forwarded, but need redirect */
1380 		/* type, code set above */
1381 		break;
1382 
1383 	case ENETUNREACH:		/* shouldn't happen, checked above */
1384 	case EHOSTUNREACH:
1385 	case ENETDOWN:
1386 	case EHOSTDOWN:
1387 	default:
1388 		type = ICMP_UNREACH;
1389 		code = ICMP_UNREACH_HOST;
1390 		break;
1391 
1392 	case EMSGSIZE:
1393 		type = ICMP_UNREACH;
1394 		code = ICMP_UNREACH_NEEDFRAG;
1395 
1396 #ifdef IPSEC
1397 		mtu = ip_ipsec_mtu(m);
1398 #endif /* IPSEC */
1399 		/*
1400 		 * If the MTU wasn't set before use the interface mtu or
1401 		 * fall back to the next smaller mtu step compared to the
1402 		 * current packet size.
1403 		 */
1404 		if (mtu == 0) {
1405 			if (ia != NULL)
1406 				mtu = ia->ia_ifp->if_mtu;
1407 			else
1408 				mtu = ip_next_mtu(ip->ip_len, 0);
1409 		}
1410 		ipstat.ips_cantfrag++;
1411 		break;
1412 
1413 	case ENOBUFS:
1414 		/*
1415 		 * A router should not generate ICMP_SOURCEQUENCH as
1416 		 * required in RFC1812 Requirements for IP Version 4 Routers.
1417 		 * Source quench could be a big problem under DoS attacks,
1418 		 * or if the underlying interface is rate-limited.
1419 		 * Those who need source quench packets may re-enable them
1420 		 * via the net.inet.ip.sendsourcequench sysctl.
1421 		 */
1422 		if (ip_sendsourcequench == 0) {
1423 			m_freem(mcopy);
1424 			return;
1425 		} else {
1426 			type = ICMP_SOURCEQUENCH;
1427 			code = 0;
1428 		}
1429 		break;
1430 
1431 	case EACCES:			/* ipfw denied packet */
1432 		m_freem(mcopy);
1433 		return;
1434 	}
1435 	icmp_error(mcopy, type, code, dest.s_addr, mtu);
1436 }
1437 
1438 void
1439 ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
1440     struct mbuf *m)
1441 {
1442 	if (inp->inp_socket->so_options & (SO_BINTIME | SO_TIMESTAMP)) {
1443 		struct bintime bt;
1444 
1445 		bintime(&bt);
1446 		if (inp->inp_socket->so_options & SO_BINTIME) {
1447 			*mp = sbcreatecontrol((caddr_t) &bt, sizeof(bt),
1448 			SCM_BINTIME, SOL_SOCKET);
1449 			if (*mp)
1450 				mp = &(*mp)->m_next;
1451 		}
1452 		if (inp->inp_socket->so_options & SO_TIMESTAMP) {
1453 			struct timeval tv;
1454 
1455 			bintime2timeval(&bt, &tv);
1456 			*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
1457 				SCM_TIMESTAMP, SOL_SOCKET);
1458 			if (*mp)
1459 				mp = &(*mp)->m_next;
1460 		}
1461 	}
1462 	if (inp->inp_flags & INP_RECVDSTADDR) {
1463 		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
1464 		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
1465 		if (*mp)
1466 			mp = &(*mp)->m_next;
1467 	}
1468 	if (inp->inp_flags & INP_RECVTTL) {
1469 		*mp = sbcreatecontrol((caddr_t) &ip->ip_ttl,
1470 		    sizeof(u_char), IP_RECVTTL, IPPROTO_IP);
1471 		if (*mp)
1472 			mp = &(*mp)->m_next;
1473 	}
1474 #ifdef notyet
1475 	/* XXX
1476 	 * Moving these out of udp_input() made them even more broken
1477 	 * than they already were.
1478 	 */
1479 	/* options were tossed already */
1480 	if (inp->inp_flags & INP_RECVOPTS) {
1481 		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
1482 		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
1483 		if (*mp)
1484 			mp = &(*mp)->m_next;
1485 	}
1486 	/* ip_srcroute doesn't do what we want here, need to fix */
1487 	if (inp->inp_flags & INP_RECVRETOPTS) {
1488 		*mp = sbcreatecontrol((caddr_t) ip_srcroute(m),
1489 		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
1490 		if (*mp)
1491 			mp = &(*mp)->m_next;
1492 	}
1493 #endif
1494 	if (inp->inp_flags & INP_RECVIF) {
1495 		struct ifnet *ifp;
1496 		struct sdlbuf {
1497 			struct sockaddr_dl sdl;
1498 			u_char	pad[32];
1499 		} sdlbuf;
1500 		struct sockaddr_dl *sdp;
1501 		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
1502 
1503 		if (((ifp = m->m_pkthdr.rcvif))
1504 		&& ( ifp->if_index && (ifp->if_index <= if_index))) {
1505 			sdp = (struct sockaddr_dl *)ifp->if_addr->ifa_addr;
1506 			/*
1507 			 * Change our mind and don't try copy.
1508 			 */
1509 			if ((sdp->sdl_family != AF_LINK)
1510 			|| (sdp->sdl_len > sizeof(sdlbuf))) {
1511 				goto makedummy;
1512 			}
1513 			bcopy(sdp, sdl2, sdp->sdl_len);
1514 		} else {
1515 makedummy:
1516 			sdl2->sdl_len
1517 				= offsetof(struct sockaddr_dl, sdl_data[0]);
1518 			sdl2->sdl_family = AF_LINK;
1519 			sdl2->sdl_index = 0;
1520 			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
1521 		}
1522 		*mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
1523 			IP_RECVIF, IPPROTO_IP);
1524 		if (*mp)
1525 			mp = &(*mp)->m_next;
1526 	}
1527 }
1528 
1529 /*
1530  * XXXRW: Multicast routing code in ip_mroute.c is generally MPSAFE, but the
1531  * ip_rsvp and ip_rsvp_on variables need to be interlocked with rsvp_on
1532  * locking.  This code remains in ip_input.c as ip_mroute.c is optionally
1533  * compiled.
1534  */
1535 static int ip_rsvp_on;
1536 struct socket *ip_rsvpd;
1537 int
1538 ip_rsvp_init(struct socket *so)
1539 {
1540 	if (so->so_type != SOCK_RAW ||
1541 	    so->so_proto->pr_protocol != IPPROTO_RSVP)
1542 		return EOPNOTSUPP;
1543 
1544 	if (ip_rsvpd != NULL)
1545 		return EADDRINUSE;
1546 
1547 	ip_rsvpd = so;
1548 	/*
1549 	 * This may seem silly, but we need to be sure we don't over-increment
1550 	 * the RSVP counter, in case something slips up.
1551 	 */
1552 	if (!ip_rsvp_on) {
1553 		ip_rsvp_on = 1;
1554 		rsvp_on++;
1555 	}
1556 
1557 	return 0;
1558 }
1559 
1560 int
1561 ip_rsvp_done(void)
1562 {
1563 	ip_rsvpd = NULL;
1564 	/*
1565 	 * This may seem silly, but we need to be sure we don't over-decrement
1566 	 * the RSVP counter, in case something slips up.
1567 	 */
1568 	if (ip_rsvp_on) {
1569 		ip_rsvp_on = 0;
1570 		rsvp_on--;
1571 	}
1572 	return 0;
1573 }
1574 
1575 void
1576 rsvp_input(struct mbuf *m, int off)	/* XXX must fixup manually */
1577 {
1578 	if (rsvp_input_p) { /* call the real one if loaded */
1579 		rsvp_input_p(m, off);
1580 		return;
1581 	}
1582 
1583 	/* Can still get packets with rsvp_on = 0 if there is a local member
1584 	 * of the group to which the RSVP packet is addressed.  But in this
1585 	 * case we want to throw the packet away.
1586 	 */
1587 
1588 	if (!rsvp_on) {
1589 		m_freem(m);
1590 		return;
1591 	}
1592 
1593 	if (ip_rsvpd != NULL) {
1594 		rip_input(m, off);
1595 		return;
1596 	}
1597 	/* Drop the packet */
1598 	m_freem(m);
1599 }
1600