xref: /freebsd/sys/netinet/ip_input.c (revision 13014ca04aad1931d41958b56f71a2c65b9a7a2c)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_bootp.h"
36 #include "opt_ipfw.h"
37 #include "opt_ipstealth.h"
38 #include "opt_ipsec.h"
39 #include "opt_mac.h"
40 #include "opt_carp.h"
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/callout.h>
45 #include <sys/mbuf.h>
46 #include <sys/malloc.h>
47 #include <sys/domain.h>
48 #include <sys/protosw.h>
49 #include <sys/socket.h>
50 #include <sys/time.h>
51 #include <sys/kernel.h>
52 #include <sys/syslog.h>
53 #include <sys/sysctl.h>
54 #include <sys/vimage.h>
55 
56 #include <net/pfil.h>
57 #include <net/if.h>
58 #include <net/if_types.h>
59 #include <net/if_var.h>
60 #include <net/if_dl.h>
61 #include <net/route.h>
62 #include <net/netisr.h>
63 
64 #include <netinet/in.h>
65 #include <netinet/in_systm.h>
66 #include <netinet/in_var.h>
67 #include <netinet/ip.h>
68 #include <netinet/in_pcb.h>
69 #include <netinet/ip_var.h>
70 #include <netinet/ip_icmp.h>
71 #include <netinet/ip_options.h>
72 #include <machine/in_cksum.h>
73 #ifdef DEV_CARP
74 #include <netinet/ip_carp.h>
75 #endif
76 #ifdef IPSEC
77 #include <netinet/ip_ipsec.h>
78 #endif /* IPSEC */
79 
80 #include <sys/socketvar.h>
81 
82 /* XXX: Temporary until ipfw_ether and ipfw_bridge are converted. */
83 #include <netinet/ip_fw.h>
84 #include <netinet/ip_dummynet.h>
85 
86 #include <security/mac/mac_framework.h>
87 
88 #ifdef CTASSERT
89 CTASSERT(sizeof(struct ip) == 20);
90 #endif
91 
92 int rsvp_on = 0;
93 
94 int	ipforwarding = 0;
95 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip, IPCTL_FORWARDING,
96     forwarding, CTLFLAG_RW, ipforwarding, 0,
97     "Enable IP forwarding between interfaces");
98 
99 static int	ipsendredirects = 1; /* XXX */
100 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip, IPCTL_SENDREDIRECTS,
101     redirect, CTLFLAG_RW, ipsendredirects, 0,
102     "Enable sending IP redirects");
103 
104 int	ip_defttl = IPDEFTTL;
105 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip, IPCTL_DEFTTL,
106     ttl, CTLFLAG_RW, ip_defttl, 0, "Maximum TTL on IP packets");
107 
108 static int	ip_keepfaith = 0;
109 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip, IPCTL_KEEPFAITH,
110     keepfaith, CTLFLAG_RW, ip_keepfaith,	0,
111     "Enable packet capture for FAITH IPv4->IPv6 translater daemon");
112 
113 static int	ip_sendsourcequench = 0;
114 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip, OID_AUTO,
115     sendsourcequench, CTLFLAG_RW, ip_sendsourcequench, 0,
116     "Enable the transmission of source quench packets");
117 
118 int	ip_do_randomid = 0;
119 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip, OID_AUTO, random_id,
120     CTLFLAG_RW, ip_do_randomid, 0, "Assign random ip_id values");
121 
122 /*
123  * XXX - Setting ip_checkinterface mostly implements the receive side of
124  * the Strong ES model described in RFC 1122, but since the routing table
125  * and transmit implementation do not implement the Strong ES model,
126  * setting this to 1 results in an odd hybrid.
127  *
128  * XXX - ip_checkinterface currently must be disabled if you use ipnat
129  * to translate the destination address to another local interface.
130  *
131  * XXX - ip_checkinterface must be disabled if you add IP aliases
132  * to the loopback interface instead of the interface where the
133  * packets for those addresses are received.
134  */
135 static int	ip_checkinterface = 0;
136 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip, OID_AUTO,
137     check_interface, CTLFLAG_RW, ip_checkinterface, 0,
138     "Verify packet arrives on correct interface");
139 
140 struct pfil_head inet_pfil_hook;	/* Packet filter hooks */
141 
142 static struct	ifqueue ipintrq;
143 static int	ipqmaxlen = IFQ_MAXLEN;
144 
145 extern	struct domain inetdomain;
146 extern	struct protosw inetsw[];
147 u_char	ip_protox[IPPROTO_MAX];
148 struct	in_ifaddrhead in_ifaddrhead; 		/* first inet address */
149 struct	in_ifaddrhashhead *in_ifaddrhashtbl;	/* inet addr hash table  */
150 u_long 	in_ifaddrhmask;				/* mask for hash table */
151 
152 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen, CTLFLAG_RW,
153     &ipintrq.ifq_maxlen, 0, "Maximum size of the IP input queue");
154 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops, CTLFLAG_RD,
155     &ipintrq.ifq_drops, 0,
156     "Number of packets dropped from the IP input queue");
157 
158 struct ipstat ipstat;
159 SYSCTL_V_STRUCT(V_NET, vnet_inet, _net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RW,
160     ipstat, ipstat, "IP statistics (struct ipstat, netinet/ip_var.h)");
161 
162 /*
163  * IP datagram reassembly.
164  */
165 #define IPREASS_NHASH_LOG2      6
166 #define IPREASS_NHASH           (1 << IPREASS_NHASH_LOG2)
167 #define IPREASS_HMASK           (IPREASS_NHASH - 1)
168 #define IPREASS_HASH(x,y) \
169 	(((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
170 
171 static uma_zone_t ipq_zone;
172 static TAILQ_HEAD(ipqhead, ipq) ipq[IPREASS_NHASH];
173 static struct mtx ipqlock;
174 
175 #define	IPQ_LOCK()	mtx_lock(&ipqlock)
176 #define	IPQ_UNLOCK()	mtx_unlock(&ipqlock)
177 #define	IPQ_LOCK_INIT()	mtx_init(&ipqlock, "ipqlock", NULL, MTX_DEF)
178 #define	IPQ_LOCK_ASSERT()	mtx_assert(&ipqlock, MA_OWNED)
179 
180 static void	maxnipq_update(void);
181 static void	ipq_zone_change(void *);
182 
183 static int	maxnipq;	/* Administrative limit on # reass queues. */
184 static int	nipq = 0;	/* Total # of reass queues */
185 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip, OID_AUTO, fragpackets,
186     CTLFLAG_RD, nipq, 0,
187     "Current number of IPv4 fragment reassembly queue entries");
188 
189 static int	maxfragsperpacket;
190 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip, OID_AUTO, maxfragsperpacket,
191     CTLFLAG_RW, maxfragsperpacket, 0,
192     "Maximum number of IPv4 fragments allowed per packet");
193 
194 struct callout	ipport_tick_callout;
195 
196 #ifdef IPCTL_DEFMTU
197 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
198     &ip_mtu, 0, "Default MTU");
199 #endif
200 
201 #ifdef IPSTEALTH
202 int	ipstealth = 0;
203 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW,
204     ipstealth, 0, "IP stealth mode, no TTL decrementation on forwarding");
205 #endif
206 
207 /*
208  * ipfw_ether and ipfw_bridge hooks.
209  * XXX: Temporary until those are converted to pfil_hooks as well.
210  */
211 ip_fw_chk_t *ip_fw_chk_ptr = NULL;
212 ip_dn_io_t *ip_dn_io_ptr = NULL;
213 int fw_one_pass = 1;
214 
215 static void	ip_freef(struct ipqhead *, struct ipq *);
216 
217 /*
218  * IP initialization: fill in IP protocol switch table.
219  * All protocols not implemented in kernel go to raw IP protocol handler.
220  */
221 void
222 ip_init(void)
223 {
224 	INIT_VNET_INET(curvnet);
225 	struct protosw *pr;
226 	int i;
227 
228 	TAILQ_INIT(&V_in_ifaddrhead);
229 	V_in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &V_in_ifaddrhmask);
230 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
231 	if (pr == NULL)
232 		panic("ip_init: PF_INET not found");
233 
234 	/* Initialize the entire ip_protox[] array to IPPROTO_RAW. */
235 	for (i = 0; i < IPPROTO_MAX; i++)
236 		ip_protox[i] = pr - inetsw;
237 	/*
238 	 * Cycle through IP protocols and put them into the appropriate place
239 	 * in ip_protox[].
240 	 */
241 	for (pr = inetdomain.dom_protosw;
242 	    pr < inetdomain.dom_protoswNPROTOSW; pr++)
243 		if (pr->pr_domain->dom_family == PF_INET &&
244 		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW) {
245 			/* Be careful to only index valid IP protocols. */
246 			if (pr->pr_protocol < IPPROTO_MAX)
247 				ip_protox[pr->pr_protocol] = pr - inetsw;
248 		}
249 
250 	/* Initialize packet filter hooks. */
251 	inet_pfil_hook.ph_type = PFIL_TYPE_AF;
252 	inet_pfil_hook.ph_af = AF_INET;
253 	if ((i = pfil_head_register(&inet_pfil_hook)) != 0)
254 		printf("%s: WARNING: unable to register pfil hook, "
255 			"error %d\n", __func__, i);
256 
257 	/* Initialize IP reassembly queue. */
258 	IPQ_LOCK_INIT();
259 	for (i = 0; i < IPREASS_NHASH; i++)
260 	    TAILQ_INIT(&V_ipq[i]);
261 	V_maxnipq = nmbclusters / 32;
262 	V_maxfragsperpacket = 16;
263 	V_ipq_zone = uma_zcreate("ipq", sizeof(struct ipq), NULL, NULL, NULL,
264 	    NULL, UMA_ALIGN_PTR, 0);
265 	maxnipq_update();
266 
267 	/* Start ipport_tick. */
268 	callout_init(&ipport_tick_callout, CALLOUT_MPSAFE);
269 	ipport_tick(NULL);
270 	EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL,
271 		SHUTDOWN_PRI_DEFAULT);
272 	EVENTHANDLER_REGISTER(nmbclusters_change, ipq_zone_change,
273 		NULL, EVENTHANDLER_PRI_ANY);
274 
275 	/* Initialize various other remaining things. */
276 	V_ip_id = time_second & 0xffff;
277 	ipintrq.ifq_maxlen = ipqmaxlen;
278 	mtx_init(&ipintrq.ifq_mtx, "ip_inq", NULL, MTX_DEF);
279 	netisr_register(NETISR_IP, ip_input, &ipintrq, 0);
280 }
281 
282 void
283 ip_fini(void *xtp)
284 {
285 
286 	callout_stop(&ipport_tick_callout);
287 }
288 
289 /*
290  * Ip input routine.  Checksum and byte swap header.  If fragmented
291  * try to reassemble.  Process options.  Pass to next level.
292  */
293 void
294 ip_input(struct mbuf *m)
295 {
296 	INIT_VNET_INET(curvnet);
297 	struct ip *ip = NULL;
298 	struct in_ifaddr *ia = NULL;
299 	struct ifaddr *ifa;
300 	int    checkif, hlen = 0;
301 	u_short sum;
302 	int dchg = 0;				/* dest changed after fw */
303 	struct in_addr odst;			/* original dst address */
304 
305 	M_ASSERTPKTHDR(m);
306 
307 	if (m->m_flags & M_FASTFWD_OURS) {
308 		/*
309 		 * Firewall or NAT changed destination to local.
310 		 * We expect ip_len and ip_off to be in host byte order.
311 		 */
312 		m->m_flags &= ~M_FASTFWD_OURS;
313 		/* Set up some basics that will be used later. */
314 		ip = mtod(m, struct ip *);
315 		hlen = ip->ip_hl << 2;
316 		goto ours;
317 	}
318 
319 	V_ipstat.ips_total++;
320 
321 	if (m->m_pkthdr.len < sizeof(struct ip))
322 		goto tooshort;
323 
324 	if (m->m_len < sizeof (struct ip) &&
325 	    (m = m_pullup(m, sizeof (struct ip))) == NULL) {
326 		V_ipstat.ips_toosmall++;
327 		return;
328 	}
329 	ip = mtod(m, struct ip *);
330 
331 	if (ip->ip_v != IPVERSION) {
332 		V_ipstat.ips_badvers++;
333 		goto bad;
334 	}
335 
336 	hlen = ip->ip_hl << 2;
337 	if (hlen < sizeof(struct ip)) {	/* minimum header length */
338 		V_ipstat.ips_badhlen++;
339 		goto bad;
340 	}
341 	if (hlen > m->m_len) {
342 		if ((m = m_pullup(m, hlen)) == NULL) {
343 			V_ipstat.ips_badhlen++;
344 			return;
345 		}
346 		ip = mtod(m, struct ip *);
347 	}
348 
349 	/* 127/8 must not appear on wire - RFC1122 */
350 	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
351 	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
352 		if ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) {
353 			V_ipstat.ips_badaddr++;
354 			goto bad;
355 		}
356 	}
357 
358 	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
359 		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
360 	} else {
361 		if (hlen == sizeof(struct ip)) {
362 			sum = in_cksum_hdr(ip);
363 		} else {
364 			sum = in_cksum(m, hlen);
365 		}
366 	}
367 	if (sum) {
368 		V_ipstat.ips_badsum++;
369 		goto bad;
370 	}
371 
372 #ifdef ALTQ
373 	if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0)
374 		/* packet is dropped by traffic conditioner */
375 		return;
376 #endif
377 
378 	/*
379 	 * Convert fields to host representation.
380 	 */
381 	ip->ip_len = ntohs(ip->ip_len);
382 	if (ip->ip_len < hlen) {
383 		V_ipstat.ips_badlen++;
384 		goto bad;
385 	}
386 	ip->ip_off = ntohs(ip->ip_off);
387 
388 	/*
389 	 * Check that the amount of data in the buffers
390 	 * is as at least much as the IP header would have us expect.
391 	 * Trim mbufs if longer than we expect.
392 	 * Drop packet if shorter than we expect.
393 	 */
394 	if (m->m_pkthdr.len < ip->ip_len) {
395 tooshort:
396 		V_ipstat.ips_tooshort++;
397 		goto bad;
398 	}
399 	if (m->m_pkthdr.len > ip->ip_len) {
400 		if (m->m_len == m->m_pkthdr.len) {
401 			m->m_len = ip->ip_len;
402 			m->m_pkthdr.len = ip->ip_len;
403 		} else
404 			m_adj(m, ip->ip_len - m->m_pkthdr.len);
405 	}
406 #ifdef IPSEC
407 	/*
408 	 * Bypass packet filtering for packets from a tunnel (gif).
409 	 */
410 	if (ip_ipsec_filtertunnel(m))
411 		goto passin;
412 #endif /* IPSEC */
413 
414 	/*
415 	 * Run through list of hooks for input packets.
416 	 *
417 	 * NB: Beware of the destination address changing (e.g.
418 	 *     by NAT rewriting).  When this happens, tell
419 	 *     ip_forward to do the right thing.
420 	 */
421 
422 	/* Jump over all PFIL processing if hooks are not active. */
423 	if (!PFIL_HOOKED(&inet_pfil_hook))
424 		goto passin;
425 
426 	odst = ip->ip_dst;
427 	if (pfil_run_hooks(&inet_pfil_hook, &m, m->m_pkthdr.rcvif,
428 	    PFIL_IN, NULL) != 0)
429 		return;
430 	if (m == NULL)			/* consumed by filter */
431 		return;
432 
433 	ip = mtod(m, struct ip *);
434 	dchg = (odst.s_addr != ip->ip_dst.s_addr);
435 
436 #ifdef IPFIREWALL_FORWARD
437 	if (m->m_flags & M_FASTFWD_OURS) {
438 		m->m_flags &= ~M_FASTFWD_OURS;
439 		goto ours;
440 	}
441 	if ((dchg = (m_tag_find(m, PACKET_TAG_IPFORWARD, NULL) != NULL)) != 0) {
442 		/*
443 		 * Directly ship on the packet.  This allows to forward packets
444 		 * that were destined for us to some other directly connected
445 		 * host.
446 		 */
447 		ip_forward(m, dchg);
448 		return;
449 	}
450 #endif /* IPFIREWALL_FORWARD */
451 
452 passin:
453 	/*
454 	 * Process options and, if not destined for us,
455 	 * ship it on.  ip_dooptions returns 1 when an
456 	 * error was detected (causing an icmp message
457 	 * to be sent and the original packet to be freed).
458 	 */
459 	if (hlen > sizeof (struct ip) && ip_dooptions(m, 0))
460 		return;
461 
462         /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
463          * matter if it is destined to another node, or whether it is
464          * a multicast one, RSVP wants it! and prevents it from being forwarded
465          * anywhere else. Also checks if the rsvp daemon is running before
466 	 * grabbing the packet.
467          */
468 	if (V_rsvp_on && ip->ip_p==IPPROTO_RSVP)
469 		goto ours;
470 
471 	/*
472 	 * Check our list of addresses, to see if the packet is for us.
473 	 * If we don't have any addresses, assume any unicast packet
474 	 * we receive might be for us (and let the upper layers deal
475 	 * with it).
476 	 */
477 	if (TAILQ_EMPTY(&V_in_ifaddrhead) &&
478 	    (m->m_flags & (M_MCAST|M_BCAST)) == 0)
479 		goto ours;
480 
481 	/*
482 	 * Enable a consistency check between the destination address
483 	 * and the arrival interface for a unicast packet (the RFC 1122
484 	 * strong ES model) if IP forwarding is disabled and the packet
485 	 * is not locally generated and the packet is not subject to
486 	 * 'ipfw fwd'.
487 	 *
488 	 * XXX - Checking also should be disabled if the destination
489 	 * address is ipnat'ed to a different interface.
490 	 *
491 	 * XXX - Checking is incompatible with IP aliases added
492 	 * to the loopback interface instead of the interface where
493 	 * the packets are received.
494 	 *
495 	 * XXX - This is the case for carp vhost IPs as well so we
496 	 * insert a workaround. If the packet got here, we already
497 	 * checked with carp_iamatch() and carp_forus().
498 	 */
499 	checkif = V_ip_checkinterface && (V_ipforwarding == 0) &&
500 	    m->m_pkthdr.rcvif != NULL &&
501 	    ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) &&
502 #ifdef DEV_CARP
503 	    !m->m_pkthdr.rcvif->if_carp &&
504 #endif
505 	    (dchg == 0);
506 
507 	/*
508 	 * Check for exact addresses in the hash bucket.
509 	 */
510 	LIST_FOREACH(ia, INADDR_HASH(ip->ip_dst.s_addr), ia_hash) {
511 		/*
512 		 * If the address matches, verify that the packet
513 		 * arrived via the correct interface if checking is
514 		 * enabled.
515 		 */
516 		if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr &&
517 		    (!checkif || ia->ia_ifp == m->m_pkthdr.rcvif))
518 			goto ours;
519 	}
520 	/*
521 	 * Check for broadcast addresses.
522 	 *
523 	 * Only accept broadcast packets that arrive via the matching
524 	 * interface.  Reception of forwarded directed broadcasts would
525 	 * be handled via ip_forward() and ether_output() with the loopback
526 	 * into the stack for SIMPLEX interfaces handled by ether_output().
527 	 */
528 	if (m->m_pkthdr.rcvif != NULL &&
529 	    m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
530 	        TAILQ_FOREACH(ifa, &m->m_pkthdr.rcvif->if_addrhead, ifa_link) {
531 			if (ifa->ifa_addr->sa_family != AF_INET)
532 				continue;
533 			ia = ifatoia(ifa);
534 			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
535 			    ip->ip_dst.s_addr)
536 				goto ours;
537 			if (ia->ia_netbroadcast.s_addr == ip->ip_dst.s_addr)
538 				goto ours;
539 #ifdef BOOTP_COMPAT
540 			if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY)
541 				goto ours;
542 #endif
543 		}
544 	}
545 	/* RFC 3927 2.7: Do not forward datagrams for 169.254.0.0/16. */
546 	if (IN_LINKLOCAL(ntohl(ip->ip_dst.s_addr))) {
547 		V_ipstat.ips_cantforward++;
548 		m_freem(m);
549 		return;
550 	}
551 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
552 		struct in_multi *inm;
553 		if (V_ip_mrouter) {
554 			/*
555 			 * If we are acting as a multicast router, all
556 			 * incoming multicast packets are passed to the
557 			 * kernel-level multicast forwarding function.
558 			 * The packet is returned (relatively) intact; if
559 			 * ip_mforward() returns a non-zero value, the packet
560 			 * must be discarded, else it may be accepted below.
561 			 */
562 			if (ip_mforward &&
563 			    ip_mforward(ip, m->m_pkthdr.rcvif, m, 0) != 0) {
564 				V_ipstat.ips_cantforward++;
565 				m_freem(m);
566 				return;
567 			}
568 
569 			/*
570 			 * The process-level routing daemon needs to receive
571 			 * all multicast IGMP packets, whether or not this
572 			 * host belongs to their destination groups.
573 			 */
574 			if (ip->ip_p == IPPROTO_IGMP)
575 				goto ours;
576 			V_ipstat.ips_forward++;
577 		}
578 		/*
579 		 * See if we belong to the destination multicast group on the
580 		 * arrival interface.
581 		 */
582 		IN_MULTI_LOCK();
583 		IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
584 		IN_MULTI_UNLOCK();
585 		if (inm == NULL) {
586 			V_ipstat.ips_notmember++;
587 			m_freem(m);
588 			return;
589 		}
590 		goto ours;
591 	}
592 	if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
593 		goto ours;
594 	if (ip->ip_dst.s_addr == INADDR_ANY)
595 		goto ours;
596 
597 	/*
598 	 * FAITH(Firewall Aided Internet Translator)
599 	 */
600 	if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
601 		if (V_ip_keepfaith) {
602 			if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
603 				goto ours;
604 		}
605 		m_freem(m);
606 		return;
607 	}
608 
609 	/*
610 	 * Not for us; forward if possible and desirable.
611 	 */
612 	if (V_ipforwarding == 0) {
613 		V_ipstat.ips_cantforward++;
614 		m_freem(m);
615 	} else {
616 #ifdef IPSEC
617 		if (ip_ipsec_fwd(m))
618 			goto bad;
619 #endif /* IPSEC */
620 		ip_forward(m, dchg);
621 	}
622 	return;
623 
624 ours:
625 #ifdef IPSTEALTH
626 	/*
627 	 * IPSTEALTH: Process non-routing options only
628 	 * if the packet is destined for us.
629 	 */
630 	if (V_ipstealth && hlen > sizeof (struct ip) &&
631 	    ip_dooptions(m, 1))
632 		return;
633 #endif /* IPSTEALTH */
634 
635 	/* Count the packet in the ip address stats */
636 	if (ia != NULL) {
637 		ia->ia_ifa.if_ipackets++;
638 		ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
639 	}
640 
641 	/*
642 	 * Attempt reassembly; if it succeeds, proceed.
643 	 * ip_reass() will return a different mbuf.
644 	 */
645 	if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
646 		m = ip_reass(m);
647 		if (m == NULL)
648 			return;
649 		ip = mtod(m, struct ip *);
650 		/* Get the header length of the reassembled packet */
651 		hlen = ip->ip_hl << 2;
652 	}
653 
654 	/*
655 	 * Further protocols expect the packet length to be w/o the
656 	 * IP header.
657 	 */
658 	ip->ip_len -= hlen;
659 
660 #ifdef IPSEC
661 	/*
662 	 * enforce IPsec policy checking if we are seeing last header.
663 	 * note that we do not visit this with protocols with pcb layer
664 	 * code - like udp/tcp/raw ip.
665 	 */
666 	if (ip_ipsec_input(m))
667 		goto bad;
668 #endif /* IPSEC */
669 
670 	/*
671 	 * Switch out to protocol's input routine.
672 	 */
673 	V_ipstat.ips_delivered++;
674 
675 	(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
676 	return;
677 bad:
678 	m_freem(m);
679 }
680 
681 /*
682  * After maxnipq has been updated, propagate the change to UMA.  The UMA zone
683  * max has slightly different semantics than the sysctl, for historical
684  * reasons.
685  */
686 static void
687 maxnipq_update(void)
688 {
689 	INIT_VNET_INET(curvnet);
690 
691 	/*
692 	 * -1 for unlimited allocation.
693 	 */
694 	if (V_maxnipq < 0)
695 		uma_zone_set_max(V_ipq_zone, 0);
696 	/*
697 	 * Positive number for specific bound.
698 	 */
699 	if (V_maxnipq > 0)
700 		uma_zone_set_max(V_ipq_zone, V_maxnipq);
701 	/*
702 	 * Zero specifies no further fragment queue allocation -- set the
703 	 * bound very low, but rely on implementation elsewhere to actually
704 	 * prevent allocation and reclaim current queues.
705 	 */
706 	if (V_maxnipq == 0)
707 		uma_zone_set_max(V_ipq_zone, 1);
708 }
709 
710 static void
711 ipq_zone_change(void *tag)
712 {
713 	INIT_VNET_INET(curvnet);
714 
715 	if (V_maxnipq > 0 && V_maxnipq < (nmbclusters / 32)) {
716 		V_maxnipq = nmbclusters / 32;
717 		maxnipq_update();
718 	}
719 }
720 
721 static int
722 sysctl_maxnipq(SYSCTL_HANDLER_ARGS)
723 {
724 	INIT_VNET_INET(curvnet);
725 	int error, i;
726 
727 	i = V_maxnipq;
728 	error = sysctl_handle_int(oidp, &i, 0, req);
729 	if (error || !req->newptr)
730 		return (error);
731 
732 	/*
733 	 * XXXRW: Might be a good idea to sanity check the argument and place
734 	 * an extreme upper bound.
735 	 */
736 	if (i < -1)
737 		return (EINVAL);
738 	V_maxnipq = i;
739 	maxnipq_update();
740 	return (0);
741 }
742 
743 SYSCTL_PROC(_net_inet_ip, OID_AUTO, maxfragpackets, CTLTYPE_INT|CTLFLAG_RW,
744     NULL, 0, sysctl_maxnipq, "I",
745     "Maximum number of IPv4 fragment reassembly queue entries");
746 
747 /*
748  * Take incoming datagram fragment and try to reassemble it into
749  * whole datagram.  If the argument is the first fragment or one
750  * in between the function will return NULL and store the mbuf
751  * in the fragment chain.  If the argument is the last fragment
752  * the packet will be reassembled and the pointer to the new
753  * mbuf returned for further processing.  Only m_tags attached
754  * to the first packet/fragment are preserved.
755  * The IP header is *NOT* adjusted out of iplen.
756  */
757 struct mbuf *
758 ip_reass(struct mbuf *m)
759 {
760 	INIT_VNET_INET(curvnet);
761 	struct ip *ip;
762 	struct mbuf *p, *q, *nq, *t;
763 	struct ipq *fp = NULL;
764 	struct ipqhead *head;
765 	int i, hlen, next;
766 	u_int8_t ecn, ecn0;
767 	u_short hash;
768 
769 	/* If maxnipq or maxfragsperpacket are 0, never accept fragments. */
770 	if (V_maxnipq == 0 || V_maxfragsperpacket == 0) {
771 		V_ipstat.ips_fragments++;
772 		V_ipstat.ips_fragdropped++;
773 		m_freem(m);
774 		return (NULL);
775 	}
776 
777 	ip = mtod(m, struct ip *);
778 	hlen = ip->ip_hl << 2;
779 
780 	hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
781 	head = &V_ipq[hash];
782 	IPQ_LOCK();
783 
784 	/*
785 	 * Look for queue of fragments
786 	 * of this datagram.
787 	 */
788 	TAILQ_FOREACH(fp, head, ipq_list)
789 		if (ip->ip_id == fp->ipq_id &&
790 		    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
791 		    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
792 #ifdef MAC
793 		    mac_ipq_match(m, fp) &&
794 #endif
795 		    ip->ip_p == fp->ipq_p)
796 			goto found;
797 
798 	fp = NULL;
799 
800 	/*
801 	 * Attempt to trim the number of allocated fragment queues if it
802 	 * exceeds the administrative limit.
803 	 */
804 	if ((V_nipq > V_maxnipq) && (V_maxnipq > 0)) {
805 		/*
806 		 * drop something from the tail of the current queue
807 		 * before proceeding further
808 		 */
809 		struct ipq *q = TAILQ_LAST(head, ipqhead);
810 		if (q == NULL) {   /* gak */
811 			for (i = 0; i < IPREASS_NHASH; i++) {
812 				struct ipq *r = TAILQ_LAST(&V_ipq[i], ipqhead);
813 				if (r) {
814 					V_ipstat.ips_fragtimeout +=
815 					    r->ipq_nfrags;
816 					ip_freef(&V_ipq[i], r);
817 					break;
818 				}
819 			}
820 		} else {
821 			V_ipstat.ips_fragtimeout += q->ipq_nfrags;
822 			ip_freef(head, q);
823 		}
824 	}
825 
826 found:
827 	/*
828 	 * Adjust ip_len to not reflect header,
829 	 * convert offset of this to bytes.
830 	 */
831 	ip->ip_len -= hlen;
832 	if (ip->ip_off & IP_MF) {
833 		/*
834 		 * Make sure that fragments have a data length
835 		 * that's a non-zero multiple of 8 bytes.
836 		 */
837 		if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
838 			V_ipstat.ips_toosmall++; /* XXX */
839 			goto dropfrag;
840 		}
841 		m->m_flags |= M_FRAG;
842 	} else
843 		m->m_flags &= ~M_FRAG;
844 	ip->ip_off <<= 3;
845 
846 
847 	/*
848 	 * Attempt reassembly; if it succeeds, proceed.
849 	 * ip_reass() will return a different mbuf.
850 	 */
851 	V_ipstat.ips_fragments++;
852 	m->m_pkthdr.header = ip;
853 
854 	/* Previous ip_reass() started here. */
855 	/*
856 	 * Presence of header sizes in mbufs
857 	 * would confuse code below.
858 	 */
859 	m->m_data += hlen;
860 	m->m_len -= hlen;
861 
862 	/*
863 	 * If first fragment to arrive, create a reassembly queue.
864 	 */
865 	if (fp == NULL) {
866 		fp = uma_zalloc(V_ipq_zone, M_NOWAIT);
867 		if (fp == NULL)
868 			goto dropfrag;
869 #ifdef MAC
870 		if (mac_ipq_init(fp, M_NOWAIT) != 0) {
871 			uma_zfree(V_ipq_zone, fp);
872 			fp = NULL;
873 			goto dropfrag;
874 		}
875 		mac_ipq_create(m, fp);
876 #endif
877 		TAILQ_INSERT_HEAD(head, fp, ipq_list);
878 		V_nipq++;
879 		fp->ipq_nfrags = 1;
880 		fp->ipq_ttl = IPFRAGTTL;
881 		fp->ipq_p = ip->ip_p;
882 		fp->ipq_id = ip->ip_id;
883 		fp->ipq_src = ip->ip_src;
884 		fp->ipq_dst = ip->ip_dst;
885 		fp->ipq_frags = m;
886 		m->m_nextpkt = NULL;
887 		goto done;
888 	} else {
889 		fp->ipq_nfrags++;
890 #ifdef MAC
891 		mac_ipq_update(m, fp);
892 #endif
893 	}
894 
895 #define GETIP(m)	((struct ip*)((m)->m_pkthdr.header))
896 
897 	/*
898 	 * Handle ECN by comparing this segment with the first one;
899 	 * if CE is set, do not lose CE.
900 	 * drop if CE and not-ECT are mixed for the same packet.
901 	 */
902 	ecn = ip->ip_tos & IPTOS_ECN_MASK;
903 	ecn0 = GETIP(fp->ipq_frags)->ip_tos & IPTOS_ECN_MASK;
904 	if (ecn == IPTOS_ECN_CE) {
905 		if (ecn0 == IPTOS_ECN_NOTECT)
906 			goto dropfrag;
907 		if (ecn0 != IPTOS_ECN_CE)
908 			GETIP(fp->ipq_frags)->ip_tos |= IPTOS_ECN_CE;
909 	}
910 	if (ecn == IPTOS_ECN_NOTECT && ecn0 != IPTOS_ECN_NOTECT)
911 		goto dropfrag;
912 
913 	/*
914 	 * Find a segment which begins after this one does.
915 	 */
916 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
917 		if (GETIP(q)->ip_off > ip->ip_off)
918 			break;
919 
920 	/*
921 	 * If there is a preceding segment, it may provide some of
922 	 * our data already.  If so, drop the data from the incoming
923 	 * segment.  If it provides all of our data, drop us, otherwise
924 	 * stick new segment in the proper place.
925 	 *
926 	 * If some of the data is dropped from the the preceding
927 	 * segment, then it's checksum is invalidated.
928 	 */
929 	if (p) {
930 		i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
931 		if (i > 0) {
932 			if (i >= ip->ip_len)
933 				goto dropfrag;
934 			m_adj(m, i);
935 			m->m_pkthdr.csum_flags = 0;
936 			ip->ip_off += i;
937 			ip->ip_len -= i;
938 		}
939 		m->m_nextpkt = p->m_nextpkt;
940 		p->m_nextpkt = m;
941 	} else {
942 		m->m_nextpkt = fp->ipq_frags;
943 		fp->ipq_frags = m;
944 	}
945 
946 	/*
947 	 * While we overlap succeeding segments trim them or,
948 	 * if they are completely covered, dequeue them.
949 	 */
950 	for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
951 	     q = nq) {
952 		i = (ip->ip_off + ip->ip_len) - GETIP(q)->ip_off;
953 		if (i < GETIP(q)->ip_len) {
954 			GETIP(q)->ip_len -= i;
955 			GETIP(q)->ip_off += i;
956 			m_adj(q, i);
957 			q->m_pkthdr.csum_flags = 0;
958 			break;
959 		}
960 		nq = q->m_nextpkt;
961 		m->m_nextpkt = nq;
962 		V_ipstat.ips_fragdropped++;
963 		fp->ipq_nfrags--;
964 		m_freem(q);
965 	}
966 
967 	/*
968 	 * Check for complete reassembly and perform frag per packet
969 	 * limiting.
970 	 *
971 	 * Frag limiting is performed here so that the nth frag has
972 	 * a chance to complete the packet before we drop the packet.
973 	 * As a result, n+1 frags are actually allowed per packet, but
974 	 * only n will ever be stored. (n = maxfragsperpacket.)
975 	 *
976 	 */
977 	next = 0;
978 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
979 		if (GETIP(q)->ip_off != next) {
980 			if (fp->ipq_nfrags > V_maxfragsperpacket) {
981 				V_ipstat.ips_fragdropped += fp->ipq_nfrags;
982 				ip_freef(head, fp);
983 			}
984 			goto done;
985 		}
986 		next += GETIP(q)->ip_len;
987 	}
988 	/* Make sure the last packet didn't have the IP_MF flag */
989 	if (p->m_flags & M_FRAG) {
990 		if (fp->ipq_nfrags > V_maxfragsperpacket) {
991 			V_ipstat.ips_fragdropped += fp->ipq_nfrags;
992 			ip_freef(head, fp);
993 		}
994 		goto done;
995 	}
996 
997 	/*
998 	 * Reassembly is complete.  Make sure the packet is a sane size.
999 	 */
1000 	q = fp->ipq_frags;
1001 	ip = GETIP(q);
1002 	if (next + (ip->ip_hl << 2) > IP_MAXPACKET) {
1003 		V_ipstat.ips_toolong++;
1004 		V_ipstat.ips_fragdropped += fp->ipq_nfrags;
1005 		ip_freef(head, fp);
1006 		goto done;
1007 	}
1008 
1009 	/*
1010 	 * Concatenate fragments.
1011 	 */
1012 	m = q;
1013 	t = m->m_next;
1014 	m->m_next = NULL;
1015 	m_cat(m, t);
1016 	nq = q->m_nextpkt;
1017 	q->m_nextpkt = NULL;
1018 	for (q = nq; q != NULL; q = nq) {
1019 		nq = q->m_nextpkt;
1020 		q->m_nextpkt = NULL;
1021 		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1022 		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1023 		m_cat(m, q);
1024 	}
1025 	/*
1026 	 * In order to do checksumming faster we do 'end-around carry' here
1027 	 * (and not in for{} loop), though it implies we are not going to
1028 	 * reassemble more than 64k fragments.
1029 	 */
1030 	m->m_pkthdr.csum_data =
1031 	    (m->m_pkthdr.csum_data & 0xffff) + (m->m_pkthdr.csum_data >> 16);
1032 #ifdef MAC
1033 	mac_ipq_reassemble(fp, m);
1034 	mac_ipq_destroy(fp);
1035 #endif
1036 
1037 	/*
1038 	 * Create header for new ip packet by modifying header of first
1039 	 * packet;  dequeue and discard fragment reassembly header.
1040 	 * Make header visible.
1041 	 */
1042 	ip->ip_len = (ip->ip_hl << 2) + next;
1043 	ip->ip_src = fp->ipq_src;
1044 	ip->ip_dst = fp->ipq_dst;
1045 	TAILQ_REMOVE(head, fp, ipq_list);
1046 	V_nipq--;
1047 	uma_zfree(V_ipq_zone, fp);
1048 	m->m_len += (ip->ip_hl << 2);
1049 	m->m_data -= (ip->ip_hl << 2);
1050 	/* some debugging cruft by sklower, below, will go away soon */
1051 	if (m->m_flags & M_PKTHDR)	/* XXX this should be done elsewhere */
1052 		m_fixhdr(m);
1053 	V_ipstat.ips_reassembled++;
1054 	IPQ_UNLOCK();
1055 	return (m);
1056 
1057 dropfrag:
1058 	V_ipstat.ips_fragdropped++;
1059 	if (fp != NULL)
1060 		fp->ipq_nfrags--;
1061 	m_freem(m);
1062 done:
1063 	IPQ_UNLOCK();
1064 	return (NULL);
1065 
1066 #undef GETIP
1067 }
1068 
1069 /*
1070  * Free a fragment reassembly header and all
1071  * associated datagrams.
1072  */
1073 static void
1074 ip_freef(struct ipqhead *fhp, struct ipq *fp)
1075 {
1076 	INIT_VNET_INET(curvnet);
1077 	struct mbuf *q;
1078 
1079 	IPQ_LOCK_ASSERT();
1080 
1081 	while (fp->ipq_frags) {
1082 		q = fp->ipq_frags;
1083 		fp->ipq_frags = q->m_nextpkt;
1084 		m_freem(q);
1085 	}
1086 	TAILQ_REMOVE(fhp, fp, ipq_list);
1087 	uma_zfree(V_ipq_zone, fp);
1088 	V_nipq--;
1089 }
1090 
1091 /*
1092  * IP timer processing;
1093  * if a timer expires on a reassembly
1094  * queue, discard it.
1095  */
1096 void
1097 ip_slowtimo(void)
1098 {
1099 	VNET_ITERATOR_DECL(vnet_iter);
1100 	struct ipq *fp;
1101 	int i;
1102 
1103 	IPQ_LOCK();
1104 	VNET_LIST_RLOCK();
1105 	VNET_FOREACH(vnet_iter) {
1106 		CURVNET_SET(vnet_iter);
1107 		INIT_VNET_INET(vnet_iter);
1108 		for (i = 0; i < IPREASS_NHASH; i++) {
1109 			for(fp = TAILQ_FIRST(&V_ipq[i]); fp;) {
1110 				struct ipq *fpp;
1111 
1112 				fpp = fp;
1113 				fp = TAILQ_NEXT(fp, ipq_list);
1114 				if(--fpp->ipq_ttl == 0) {
1115 					V_ipstat.ips_fragtimeout +=
1116 					    fpp->ipq_nfrags;
1117 					ip_freef(&V_ipq[i], fpp);
1118 				}
1119 			}
1120 		}
1121 		/*
1122 		 * If we are over the maximum number of fragments
1123 		 * (due to the limit being lowered), drain off
1124 		 * enough to get down to the new limit.
1125 		 */
1126 		if (V_maxnipq >= 0 && V_nipq > V_maxnipq) {
1127 			for (i = 0; i < IPREASS_NHASH; i++) {
1128 				while (V_nipq > V_maxnipq &&
1129 				    !TAILQ_EMPTY(&V_ipq[i])) {
1130 					V_ipstat.ips_fragdropped +=
1131 					    TAILQ_FIRST(&V_ipq[i])->ipq_nfrags;
1132 					ip_freef(&V_ipq[i],
1133 					    TAILQ_FIRST(&V_ipq[i]));
1134 				}
1135 			}
1136 		}
1137 		CURVNET_RESTORE();
1138 	}
1139 	VNET_LIST_RUNLOCK();
1140 	IPQ_UNLOCK();
1141 }
1142 
1143 /*
1144  * Drain off all datagram fragments.
1145  */
1146 void
1147 ip_drain(void)
1148 {
1149 	VNET_ITERATOR_DECL(vnet_iter);
1150 	int     i;
1151 
1152 	IPQ_LOCK();
1153 	VNET_LIST_RLOCK();
1154 	VNET_FOREACH(vnet_iter) {
1155 		CURVNET_SET(vnet_iter);
1156 		INIT_VNET_INET(vnet_iter);
1157 		for (i = 0; i < IPREASS_NHASH; i++) {
1158 			while(!TAILQ_EMPTY(&V_ipq[i])) {
1159 				V_ipstat.ips_fragdropped +=
1160 				    TAILQ_FIRST(&V_ipq[i])->ipq_nfrags;
1161 				ip_freef(&V_ipq[i], TAILQ_FIRST(&V_ipq[i]));
1162 			}
1163 		}
1164 		CURVNET_RESTORE();
1165 	}
1166 	VNET_LIST_RUNLOCK();
1167 	IPQ_UNLOCK();
1168 	in_rtqdrain();
1169 }
1170 
1171 /*
1172  * The protocol to be inserted into ip_protox[] must be already registered
1173  * in inetsw[], either statically or through pf_proto_register().
1174  */
1175 int
1176 ipproto_register(u_char ipproto)
1177 {
1178 	struct protosw *pr;
1179 
1180 	/* Sanity checks. */
1181 	if (ipproto == 0)
1182 		return (EPROTONOSUPPORT);
1183 
1184 	/*
1185 	 * The protocol slot must not be occupied by another protocol
1186 	 * already.  An index pointing to IPPROTO_RAW is unused.
1187 	 */
1188 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
1189 	if (pr == NULL)
1190 		return (EPFNOSUPPORT);
1191 	if (ip_protox[ipproto] != pr - inetsw)	/* IPPROTO_RAW */
1192 		return (EEXIST);
1193 
1194 	/* Find the protocol position in inetsw[] and set the index. */
1195 	for (pr = inetdomain.dom_protosw;
1196 	     pr < inetdomain.dom_protoswNPROTOSW; pr++) {
1197 		if (pr->pr_domain->dom_family == PF_INET &&
1198 		    pr->pr_protocol && pr->pr_protocol == ipproto) {
1199 			/* Be careful to only index valid IP protocols. */
1200 			if (pr->pr_protocol < IPPROTO_MAX) {
1201 				ip_protox[pr->pr_protocol] = pr - inetsw;
1202 				return (0);
1203 			} else
1204 				return (EINVAL);
1205 		}
1206 	}
1207 	return (EPROTONOSUPPORT);
1208 }
1209 
1210 int
1211 ipproto_unregister(u_char ipproto)
1212 {
1213 	struct protosw *pr;
1214 
1215 	/* Sanity checks. */
1216 	if (ipproto == 0)
1217 		return (EPROTONOSUPPORT);
1218 
1219 	/* Check if the protocol was indeed registered. */
1220 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
1221 	if (pr == NULL)
1222 		return (EPFNOSUPPORT);
1223 	if (ip_protox[ipproto] == pr - inetsw)  /* IPPROTO_RAW */
1224 		return (ENOENT);
1225 
1226 	/* Reset the protocol slot to IPPROTO_RAW. */
1227 	ip_protox[ipproto] = pr - inetsw;
1228 	return (0);
1229 }
1230 
1231 /*
1232  * Given address of next destination (final or next hop),
1233  * return internet address info of interface to be used to get there.
1234  */
1235 struct in_ifaddr *
1236 ip_rtaddr(struct in_addr dst, u_int fibnum)
1237 {
1238 	struct route sro;
1239 	struct sockaddr_in *sin;
1240 	struct in_ifaddr *ifa;
1241 
1242 	bzero(&sro, sizeof(sro));
1243 	sin = (struct sockaddr_in *)&sro.ro_dst;
1244 	sin->sin_family = AF_INET;
1245 	sin->sin_len = sizeof(*sin);
1246 	sin->sin_addr = dst;
1247 	in_rtalloc_ign(&sro, RTF_CLONING, fibnum);
1248 
1249 	if (sro.ro_rt == NULL)
1250 		return (NULL);
1251 
1252 	ifa = ifatoia(sro.ro_rt->rt_ifa);
1253 	RTFREE(sro.ro_rt);
1254 	return (ifa);
1255 }
1256 
1257 u_char inetctlerrmap[PRC_NCMDS] = {
1258 	0,		0,		0,		0,
1259 	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1260 	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1261 	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1262 	0,		0,		EHOSTUNREACH,	0,
1263 	ENOPROTOOPT,	ECONNREFUSED
1264 };
1265 
1266 /*
1267  * Forward a packet.  If some error occurs return the sender
1268  * an icmp packet.  Note we can't always generate a meaningful
1269  * icmp message because icmp doesn't have a large enough repertoire
1270  * of codes and types.
1271  *
1272  * If not forwarding, just drop the packet.  This could be confusing
1273  * if ipforwarding was zero but some routing protocol was advancing
1274  * us as a gateway to somewhere.  However, we must let the routing
1275  * protocol deal with that.
1276  *
1277  * The srcrt parameter indicates whether the packet is being forwarded
1278  * via a source route.
1279  */
1280 void
1281 ip_forward(struct mbuf *m, int srcrt)
1282 {
1283 	INIT_VNET_INET(curvnet);
1284 	struct ip *ip = mtod(m, struct ip *);
1285 	struct in_ifaddr *ia = NULL;
1286 	struct mbuf *mcopy;
1287 	struct in_addr dest;
1288 	struct route ro;
1289 	int error, type = 0, code = 0, mtu = 0;
1290 
1291 	if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) {
1292 		V_ipstat.ips_cantforward++;
1293 		m_freem(m);
1294 		return;
1295 	}
1296 #ifdef IPSTEALTH
1297 	if (!V_ipstealth) {
1298 #endif
1299 		if (ip->ip_ttl <= IPTTLDEC) {
1300 			icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS,
1301 			    0, 0);
1302 			return;
1303 		}
1304 #ifdef IPSTEALTH
1305 	}
1306 #endif
1307 
1308 	ia = ip_rtaddr(ip->ip_dst, M_GETFIB(m));
1309 	if (!srcrt && ia == NULL) {
1310 		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, 0, 0);
1311 		return;
1312 	}
1313 
1314 	/*
1315 	 * Save the IP header and at most 8 bytes of the payload,
1316 	 * in case we need to generate an ICMP message to the src.
1317 	 *
1318 	 * XXX this can be optimized a lot by saving the data in a local
1319 	 * buffer on the stack (72 bytes at most), and only allocating the
1320 	 * mbuf if really necessary. The vast majority of the packets
1321 	 * are forwarded without having to send an ICMP back (either
1322 	 * because unnecessary, or because rate limited), so we are
1323 	 * really we are wasting a lot of work here.
1324 	 *
1325 	 * We don't use m_copy() because it might return a reference
1326 	 * to a shared cluster. Both this function and ip_output()
1327 	 * assume exclusive access to the IP header in `m', so any
1328 	 * data in a cluster may change before we reach icmp_error().
1329 	 */
1330 	MGETHDR(mcopy, M_DONTWAIT, m->m_type);
1331 	if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, M_DONTWAIT)) {
1332 		/*
1333 		 * It's probably ok if the pkthdr dup fails (because
1334 		 * the deep copy of the tag chain failed), but for now
1335 		 * be conservative and just discard the copy since
1336 		 * code below may some day want the tags.
1337 		 */
1338 		m_free(mcopy);
1339 		mcopy = NULL;
1340 	}
1341 	if (mcopy != NULL) {
1342 		mcopy->m_len = min(ip->ip_len, M_TRAILINGSPACE(mcopy));
1343 		mcopy->m_pkthdr.len = mcopy->m_len;
1344 		m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
1345 	}
1346 
1347 #ifdef IPSTEALTH
1348 	if (!V_ipstealth) {
1349 #endif
1350 		ip->ip_ttl -= IPTTLDEC;
1351 #ifdef IPSTEALTH
1352 	}
1353 #endif
1354 
1355 	/*
1356 	 * If forwarding packet using same interface that it came in on,
1357 	 * perhaps should send a redirect to sender to shortcut a hop.
1358 	 * Only send redirect if source is sending directly to us,
1359 	 * and if packet was not source routed (or has any options).
1360 	 * Also, don't send redirect if forwarding using a default route
1361 	 * or a route modified by a redirect.
1362 	 */
1363 	dest.s_addr = 0;
1364 	if (!srcrt && V_ipsendredirects && ia->ia_ifp == m->m_pkthdr.rcvif) {
1365 		struct sockaddr_in *sin;
1366 		struct rtentry *rt;
1367 
1368 		bzero(&ro, sizeof(ro));
1369 		sin = (struct sockaddr_in *)&ro.ro_dst;
1370 		sin->sin_family = AF_INET;
1371 		sin->sin_len = sizeof(*sin);
1372 		sin->sin_addr = ip->ip_dst;
1373 		in_rtalloc_ign(&ro, RTF_CLONING, M_GETFIB(m));
1374 
1375 		rt = ro.ro_rt;
1376 
1377 		if (rt && (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1378 		    satosin(rt_key(rt))->sin_addr.s_addr != 0) {
1379 #define	RTA(rt)	((struct in_ifaddr *)(rt->rt_ifa))
1380 			u_long src = ntohl(ip->ip_src.s_addr);
1381 
1382 			if (RTA(rt) &&
1383 			    (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
1384 				if (rt->rt_flags & RTF_GATEWAY)
1385 					dest.s_addr = satosin(rt->rt_gateway)->sin_addr.s_addr;
1386 				else
1387 					dest.s_addr = ip->ip_dst.s_addr;
1388 				/* Router requirements says to only send host redirects */
1389 				type = ICMP_REDIRECT;
1390 				code = ICMP_REDIRECT_HOST;
1391 			}
1392 		}
1393 		if (rt)
1394 			RTFREE(rt);
1395 	}
1396 
1397 	/*
1398 	 * Try to cache the route MTU from ip_output so we can consider it for
1399 	 * the ICMP_UNREACH_NEEDFRAG "Next-Hop MTU" field described in RFC1191.
1400 	 */
1401 	bzero(&ro, sizeof(ro));
1402 
1403 	error = ip_output(m, NULL, &ro, IP_FORWARDING, NULL, NULL);
1404 
1405 	if (error == EMSGSIZE && ro.ro_rt)
1406 		mtu = ro.ro_rt->rt_rmx.rmx_mtu;
1407 	if (ro.ro_rt)
1408 		RTFREE(ro.ro_rt);
1409 
1410 	if (error)
1411 		V_ipstat.ips_cantforward++;
1412 	else {
1413 		V_ipstat.ips_forward++;
1414 		if (type)
1415 			V_ipstat.ips_redirectsent++;
1416 		else {
1417 			if (mcopy)
1418 				m_freem(mcopy);
1419 			return;
1420 		}
1421 	}
1422 	if (mcopy == NULL)
1423 		return;
1424 
1425 	switch (error) {
1426 
1427 	case 0:				/* forwarded, but need redirect */
1428 		/* type, code set above */
1429 		break;
1430 
1431 	case ENETUNREACH:		/* shouldn't happen, checked above */
1432 	case EHOSTUNREACH:
1433 	case ENETDOWN:
1434 	case EHOSTDOWN:
1435 	default:
1436 		type = ICMP_UNREACH;
1437 		code = ICMP_UNREACH_HOST;
1438 		break;
1439 
1440 	case EMSGSIZE:
1441 		type = ICMP_UNREACH;
1442 		code = ICMP_UNREACH_NEEDFRAG;
1443 
1444 #ifdef IPSEC
1445 		/*
1446 		 * If IPsec is configured for this path,
1447 		 * override any possibly mtu value set by ip_output.
1448 		 */
1449 		mtu = ip_ipsec_mtu(m, mtu);
1450 #endif /* IPSEC */
1451 		/*
1452 		 * If the MTU was set before make sure we are below the
1453 		 * interface MTU.
1454 		 * If the MTU wasn't set before use the interface mtu or
1455 		 * fall back to the next smaller mtu step compared to the
1456 		 * current packet size.
1457 		 */
1458 		if (mtu != 0) {
1459 			if (ia != NULL)
1460 				mtu = min(mtu, ia->ia_ifp->if_mtu);
1461 		} else {
1462 			if (ia != NULL)
1463 				mtu = ia->ia_ifp->if_mtu;
1464 			else
1465 				mtu = ip_next_mtu(ip->ip_len, 0);
1466 		}
1467 		V_ipstat.ips_cantfrag++;
1468 		break;
1469 
1470 	case ENOBUFS:
1471 		/*
1472 		 * A router should not generate ICMP_SOURCEQUENCH as
1473 		 * required in RFC1812 Requirements for IP Version 4 Routers.
1474 		 * Source quench could be a big problem under DoS attacks,
1475 		 * or if the underlying interface is rate-limited.
1476 		 * Those who need source quench packets may re-enable them
1477 		 * via the net.inet.ip.sendsourcequench sysctl.
1478 		 */
1479 		if (V_ip_sendsourcequench == 0) {
1480 			m_freem(mcopy);
1481 			return;
1482 		} else {
1483 			type = ICMP_SOURCEQUENCH;
1484 			code = 0;
1485 		}
1486 		break;
1487 
1488 	case EACCES:			/* ipfw denied packet */
1489 		m_freem(mcopy);
1490 		return;
1491 	}
1492 	icmp_error(mcopy, type, code, dest.s_addr, mtu);
1493 }
1494 
1495 void
1496 ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
1497     struct mbuf *m)
1498 {
1499 	INIT_VNET_NET(inp->inp_vnet);
1500 
1501 	if (inp->inp_socket->so_options & (SO_BINTIME | SO_TIMESTAMP)) {
1502 		struct bintime bt;
1503 
1504 		bintime(&bt);
1505 		if (inp->inp_socket->so_options & SO_BINTIME) {
1506 			*mp = sbcreatecontrol((caddr_t) &bt, sizeof(bt),
1507 			SCM_BINTIME, SOL_SOCKET);
1508 			if (*mp)
1509 				mp = &(*mp)->m_next;
1510 		}
1511 		if (inp->inp_socket->so_options & SO_TIMESTAMP) {
1512 			struct timeval tv;
1513 
1514 			bintime2timeval(&bt, &tv);
1515 			*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
1516 				SCM_TIMESTAMP, SOL_SOCKET);
1517 			if (*mp)
1518 				mp = &(*mp)->m_next;
1519 		}
1520 	}
1521 	if (inp->inp_flags & INP_RECVDSTADDR) {
1522 		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
1523 		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
1524 		if (*mp)
1525 			mp = &(*mp)->m_next;
1526 	}
1527 	if (inp->inp_flags & INP_RECVTTL) {
1528 		*mp = sbcreatecontrol((caddr_t) &ip->ip_ttl,
1529 		    sizeof(u_char), IP_RECVTTL, IPPROTO_IP);
1530 		if (*mp)
1531 			mp = &(*mp)->m_next;
1532 	}
1533 #ifdef notyet
1534 	/* XXX
1535 	 * Moving these out of udp_input() made them even more broken
1536 	 * than they already were.
1537 	 */
1538 	/* options were tossed already */
1539 	if (inp->inp_flags & INP_RECVOPTS) {
1540 		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
1541 		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
1542 		if (*mp)
1543 			mp = &(*mp)->m_next;
1544 	}
1545 	/* ip_srcroute doesn't do what we want here, need to fix */
1546 	if (inp->inp_flags & INP_RECVRETOPTS) {
1547 		*mp = sbcreatecontrol((caddr_t) ip_srcroute(m),
1548 		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
1549 		if (*mp)
1550 			mp = &(*mp)->m_next;
1551 	}
1552 #endif
1553 	if (inp->inp_flags & INP_RECVIF) {
1554 		struct ifnet *ifp;
1555 		struct sdlbuf {
1556 			struct sockaddr_dl sdl;
1557 			u_char	pad[32];
1558 		} sdlbuf;
1559 		struct sockaddr_dl *sdp;
1560 		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
1561 
1562 		if (((ifp = m->m_pkthdr.rcvif))
1563 		&& ( ifp->if_index && (ifp->if_index <= V_if_index))) {
1564 			sdp = (struct sockaddr_dl *)ifp->if_addr->ifa_addr;
1565 			/*
1566 			 * Change our mind and don't try copy.
1567 			 */
1568 			if ((sdp->sdl_family != AF_LINK)
1569 			|| (sdp->sdl_len > sizeof(sdlbuf))) {
1570 				goto makedummy;
1571 			}
1572 			bcopy(sdp, sdl2, sdp->sdl_len);
1573 		} else {
1574 makedummy:
1575 			sdl2->sdl_len
1576 				= offsetof(struct sockaddr_dl, sdl_data[0]);
1577 			sdl2->sdl_family = AF_LINK;
1578 			sdl2->sdl_index = 0;
1579 			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
1580 		}
1581 		*mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
1582 			IP_RECVIF, IPPROTO_IP);
1583 		if (*mp)
1584 			mp = &(*mp)->m_next;
1585 	}
1586 }
1587 
1588 /*
1589  * XXXRW: Multicast routing code in ip_mroute.c is generally MPSAFE, but the
1590  * ip_rsvp and ip_rsvp_on variables need to be interlocked with rsvp_on
1591  * locking.  This code remains in ip_input.c as ip_mroute.c is optionally
1592  * compiled.
1593  */
1594 static int ip_rsvp_on;
1595 struct socket *ip_rsvpd;
1596 int
1597 ip_rsvp_init(struct socket *so)
1598 {
1599 	INIT_VNET_INET(so->so_vnet);
1600 
1601 	if (so->so_type != SOCK_RAW ||
1602 	    so->so_proto->pr_protocol != IPPROTO_RSVP)
1603 		return EOPNOTSUPP;
1604 
1605 	if (V_ip_rsvpd != NULL)
1606 		return EADDRINUSE;
1607 
1608 	V_ip_rsvpd = so;
1609 	/*
1610 	 * This may seem silly, but we need to be sure we don't over-increment
1611 	 * the RSVP counter, in case something slips up.
1612 	 */
1613 	if (!V_ip_rsvp_on) {
1614 		V_ip_rsvp_on = 1;
1615 		V_rsvp_on++;
1616 	}
1617 
1618 	return 0;
1619 }
1620 
1621 int
1622 ip_rsvp_done(void)
1623 {
1624 	INIT_VNET_INET(curvnet);
1625 
1626 	V_ip_rsvpd = NULL;
1627 	/*
1628 	 * This may seem silly, but we need to be sure we don't over-decrement
1629 	 * the RSVP counter, in case something slips up.
1630 	 */
1631 	if (V_ip_rsvp_on) {
1632 		V_ip_rsvp_on = 0;
1633 		V_rsvp_on--;
1634 	}
1635 	return 0;
1636 }
1637 
1638 void
1639 rsvp_input(struct mbuf *m, int off)	/* XXX must fixup manually */
1640 {
1641 	INIT_VNET_INET(curvnet);
1642 
1643 	if (rsvp_input_p) { /* call the real one if loaded */
1644 		rsvp_input_p(m, off);
1645 		return;
1646 	}
1647 
1648 	/* Can still get packets with rsvp_on = 0 if there is a local member
1649 	 * of the group to which the RSVP packet is addressed.  But in this
1650 	 * case we want to throw the packet away.
1651 	 */
1652 
1653 	if (!V_rsvp_on) {
1654 		m_freem(m);
1655 		return;
1656 	}
1657 
1658 	if (V_ip_rsvpd != NULL) {
1659 		rip_input(m, off);
1660 		return;
1661 	}
1662 	/* Drop the packet */
1663 	m_freem(m);
1664 }
1665