1 /* 2 * Copyright (c) 1982, 1986, 1988, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. All advertising materials mentioning features or use of this software 14 * must display the following acknowledgement: 15 * This product includes software developed by the University of 16 * California, Berkeley and its contributors. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * @(#)ip_input.c 8.2 (Berkeley) 1/4/94 34 * $Id: ip_input.c,v 1.96 1998/07/08 08:49:51 dg Exp $ 35 * $ANA: ip_input.c,v 1.5 1996/09/18 14:34:59 wollman Exp $ 36 */ 37 38 #define _IP_VHL 39 40 #include "opt_bootp.h" 41 #include "opt_ipfw.h" 42 #include "opt_ipdivert.h" 43 #include "opt_ipfilter.h" 44 45 #include <stddef.h> 46 47 #include <sys/param.h> 48 #include <sys/systm.h> 49 #include <sys/mbuf.h> 50 #include <sys/domain.h> 51 #include <sys/protosw.h> 52 #include <sys/socket.h> 53 #include <sys/time.h> 54 #include <sys/kernel.h> 55 #include <sys/syslog.h> 56 #include <sys/sysctl.h> 57 58 #include <net/if.h> 59 #include <net/if_var.h> 60 #include <net/if_dl.h> 61 #include <net/route.h> 62 #include <net/netisr.h> 63 64 #include <netinet/in.h> 65 #include <netinet/in_systm.h> 66 #include <netinet/in_var.h> 67 #include <netinet/ip.h> 68 #include <netinet/in_pcb.h> 69 #include <netinet/ip_var.h> 70 #include <netinet/ip_icmp.h> 71 #include <machine/in_cksum.h> 72 73 #include <sys/socketvar.h> 74 75 #ifdef IPFIREWALL 76 #include <netinet/ip_fw.h> 77 #endif 78 79 int rsvp_on = 0; 80 static int ip_rsvp_on; 81 struct socket *ip_rsvpd; 82 83 int ipforwarding = 0; 84 SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW, 85 &ipforwarding, 0, ""); 86 87 static int ipsendredirects = 1; /* XXX */ 88 SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW, 89 &ipsendredirects, 0, ""); 90 91 int ip_defttl = IPDEFTTL; 92 SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW, 93 &ip_defttl, 0, ""); 94 95 static int ip_dosourceroute = 0; 96 SYSCTL_INT(_net_inet_ip, IPCTL_SOURCEROUTE, sourceroute, CTLFLAG_RW, 97 &ip_dosourceroute, 0, ""); 98 99 static int ip_acceptsourceroute = 0; 100 SYSCTL_INT(_net_inet_ip, IPCTL_ACCEPTSOURCEROUTE, accept_sourceroute, 101 CTLFLAG_RW, &ip_acceptsourceroute, 0, ""); 102 #ifdef DIAGNOSTIC 103 static int ipprintfs = 0; 104 #endif 105 106 extern struct domain inetdomain; 107 extern struct protosw inetsw[]; 108 u_char ip_protox[IPPROTO_MAX]; 109 static int ipqmaxlen = IFQ_MAXLEN; 110 struct in_ifaddrhead in_ifaddrhead; /* first inet address */ 111 struct ifqueue ipintrq; 112 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen, CTLFLAG_RD, 113 &ipintrq.ifq_maxlen, 0, ""); 114 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops, CTLFLAG_RD, 115 &ipintrq.ifq_drops, 0, ""); 116 117 struct ipstat ipstat; 118 SYSCTL_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RD, 119 &ipstat, ipstat, ""); 120 121 /* Packet reassembly stuff */ 122 #define IPREASS_NHASH_LOG2 6 123 #define IPREASS_NHASH (1 << IPREASS_NHASH_LOG2) 124 #define IPREASS_HMASK (IPREASS_NHASH - 1) 125 #define IPREASS_HASH(x,y) \ 126 ((((x) & 0xF | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK) 127 128 static struct ipq ipq[IPREASS_NHASH]; 129 static int nipq = 0; /* total # of reass queues */ 130 static int maxnipq; 131 132 #ifdef IPCTL_DEFMTU 133 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW, 134 &ip_mtu, 0, ""); 135 #endif 136 137 #if !defined(COMPAT_IPFW) || COMPAT_IPFW == 1 138 #undef COMPAT_IPFW 139 #define COMPAT_IPFW 1 140 #else 141 #undef COMPAT_IPFW 142 #endif 143 144 #ifdef COMPAT_IPFW 145 /* Firewall hooks */ 146 ip_fw_chk_t *ip_fw_chk_ptr; 147 ip_fw_ctl_t *ip_fw_ctl_ptr; 148 149 /* IP Network Address Translation (NAT) hooks */ 150 ip_nat_t *ip_nat_ptr; 151 ip_nat_ctl_t *ip_nat_ctl_ptr; 152 #endif 153 154 #if defined(IPFILTER_LKM) || defined(IPFILTER) 155 int iplattach __P((void)); 156 int (*fr_checkp) __P((struct ip *, int, struct ifnet *, int, struct mbuf **)) = NULL; 157 #endif 158 159 160 /* 161 * We need to save the IP options in case a protocol wants to respond 162 * to an incoming packet over the same route if the packet got here 163 * using IP source routing. This allows connection establishment and 164 * maintenance when the remote end is on a network that is not known 165 * to us. 166 */ 167 static int ip_nhops = 0; 168 static struct ip_srcrt { 169 struct in_addr dst; /* final destination */ 170 char nop; /* one NOP to align */ 171 char srcopt[IPOPT_OFFSET + 1]; /* OPTVAL, OLEN and OFFSET */ 172 struct in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)]; 173 } ip_srcrt; 174 175 #ifdef IPDIVERT 176 /* 177 * Shared variable between ip_input() and ip_reass() to communicate 178 * about which packets, once assembled from fragments, get diverted, 179 * and to which port. 180 */ 181 static u_short frag_divert_port; 182 #endif 183 184 struct sockaddr_in *ip_fw_fwd_addr; 185 186 static void save_rte __P((u_char *, struct in_addr)); 187 static void ip_deq __P((struct ipasfrag *)); 188 static int ip_dooptions __P((struct mbuf *)); 189 static void ip_enq __P((struct ipasfrag *, struct ipasfrag *)); 190 static void ip_forward __P((struct mbuf *, int)); 191 static void ip_freef __P((struct ipq *)); 192 static struct ip * 193 ip_reass __P((struct ipasfrag *, struct ipq *, struct ipq *)); 194 static struct in_ifaddr * 195 ip_rtaddr __P((struct in_addr)); 196 static void ipintr __P((void)); 197 /* 198 * IP initialization: fill in IP protocol switch table. 199 * All protocols not implemented in kernel go to raw IP protocol handler. 200 */ 201 void 202 ip_init() 203 { 204 register struct protosw *pr; 205 register int i; 206 207 TAILQ_INIT(&in_ifaddrhead); 208 pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW); 209 if (pr == 0) 210 panic("ip_init"); 211 for (i = 0; i < IPPROTO_MAX; i++) 212 ip_protox[i] = pr - inetsw; 213 for (pr = inetdomain.dom_protosw; 214 pr < inetdomain.dom_protoswNPROTOSW; pr++) 215 if (pr->pr_domain->dom_family == PF_INET && 216 pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW) 217 ip_protox[pr->pr_protocol] = pr - inetsw; 218 219 for (i = 0; i < IPREASS_NHASH; i++) 220 ipq[i].next = ipq[i].prev = &ipq[i]; 221 222 maxnipq = nmbclusters/4; 223 224 ip_id = time_second & 0xffff; 225 ipintrq.ifq_maxlen = ipqmaxlen; 226 #ifdef IPFIREWALL 227 ip_fw_init(); 228 #endif 229 #ifdef IPNAT 230 ip_nat_init(); 231 #endif 232 #ifdef IPFILTER 233 iplattach(); 234 #endif 235 236 } 237 238 static struct sockaddr_in ipaddr = { sizeof(ipaddr), AF_INET }; 239 static struct route ipforward_rt; 240 241 /* 242 * Ip input routine. Checksum and byte swap header. If fragmented 243 * try to reassemble. Process options. Pass to next level. 244 */ 245 void 246 ip_input(struct mbuf *m) 247 { 248 struct ip *ip; 249 struct ipq *fp; 250 struct in_ifaddr *ia; 251 int i, hlen; 252 u_short sum; 253 254 #ifdef DIAGNOSTIC 255 if (m == NULL || (m->m_flags & M_PKTHDR) == 0) 256 panic("ip_input no HDR"); 257 #endif 258 /* 259 * If no IP addresses have been set yet but the interfaces 260 * are receiving, can't do anything with incoming packets yet. 261 * XXX This is broken! We should be able to receive broadcasts 262 * and multicasts even without any local addresses configured. 263 */ 264 if (TAILQ_EMPTY(&in_ifaddrhead)) 265 goto bad; 266 ipstat.ips_total++; 267 268 if (m->m_pkthdr.len < sizeof(struct ip)) 269 goto tooshort; 270 271 if (m->m_len < sizeof (struct ip) && 272 (m = m_pullup(m, sizeof (struct ip))) == 0) { 273 ipstat.ips_toosmall++; 274 return; 275 } 276 ip = mtod(m, struct ip *); 277 278 if (IP_VHL_V(ip->ip_vhl) != IPVERSION) { 279 ipstat.ips_badvers++; 280 goto bad; 281 } 282 283 hlen = IP_VHL_HL(ip->ip_vhl) << 2; 284 if (hlen < sizeof(struct ip)) { /* minimum header length */ 285 ipstat.ips_badhlen++; 286 goto bad; 287 } 288 if (hlen > m->m_len) { 289 if ((m = m_pullup(m, hlen)) == 0) { 290 ipstat.ips_badhlen++; 291 return; 292 } 293 ip = mtod(m, struct ip *); 294 } 295 if (hlen == sizeof(struct ip)) { 296 sum = in_cksum_hdr(ip); 297 } else { 298 sum = in_cksum(m, hlen); 299 } 300 if (sum) { 301 ipstat.ips_badsum++; 302 goto bad; 303 } 304 305 /* 306 * Convert fields to host representation. 307 */ 308 NTOHS(ip->ip_len); 309 if (ip->ip_len < hlen) { 310 ipstat.ips_badlen++; 311 goto bad; 312 } 313 NTOHS(ip->ip_id); 314 NTOHS(ip->ip_off); 315 316 /* 317 * Check that the amount of data in the buffers 318 * is as at least much as the IP header would have us expect. 319 * Trim mbufs if longer than we expect. 320 * Drop packet if shorter than we expect. 321 */ 322 if (m->m_pkthdr.len < ip->ip_len) { 323 tooshort: 324 ipstat.ips_tooshort++; 325 goto bad; 326 } 327 if (m->m_pkthdr.len > ip->ip_len) { 328 if (m->m_len == m->m_pkthdr.len) { 329 m->m_len = ip->ip_len; 330 m->m_pkthdr.len = ip->ip_len; 331 } else 332 m_adj(m, ip->ip_len - m->m_pkthdr.len); 333 } 334 /* 335 * IpHack's section. 336 * Right now when no processing on packet has done 337 * and it is still fresh out of network we do our black 338 * deals with it. 339 * - Firewall: deny/allow/divert 340 * - Xlate: translate packet's addr/port (NAT). 341 * - Wrap: fake packet's addr/port <unimpl.> 342 * - Encapsulate: put it in another IP and send out. <unimp.> 343 */ 344 #if defined(IPFILTER) || defined(IPFILTER_LKM) 345 /* 346 * Check if we want to allow this packet to be processed. 347 * Consider it to be bad if not. 348 */ 349 if (fr_checkp) { 350 struct mbuf *m1 = m; 351 352 if ((*fr_checkp)(ip, hlen, m->m_pkthdr.rcvif, 0, &m1) || !m1) 353 return; 354 ip = mtod(m = m1, struct ip *); 355 } 356 #endif 357 #ifdef COMPAT_IPFW 358 if (ip_fw_chk_ptr) { 359 u_int16_t port; 360 361 #ifdef IPFIREWALL_FORWARD 362 /* 363 * If we've been forwarded from the output side, then 364 * skip the firewall a second time 365 */ 366 if (ip_fw_fwd_addr) 367 goto ours; 368 #endif /* IPFIREWALL_FORWARD */ 369 #ifdef IPDIVERT 370 port = (*ip_fw_chk_ptr)(&ip, hlen, NULL, &ip_divert_cookie, 371 &m, &ip_fw_fwd_addr); 372 if (port) { 373 /* Divert packet */ 374 frag_divert_port = port; 375 goto ours; 376 } 377 #else /* !DIVERT */ 378 /* 379 * If ipfw says divert, we have to just drop packet 380 * Use port as a dummy argument. 381 */ 382 port = 0; 383 if ((*ip_fw_chk_ptr)(&ip, hlen, NULL, &port, 384 &m, &ip_fw_fwd_addr)) { 385 m_freem(m); 386 m = NULL; 387 } 388 #endif /* !DIVERT */ 389 if (!m) 390 return; 391 } 392 393 if (ip_nat_ptr && !(*ip_nat_ptr)(&ip, &m, m->m_pkthdr.rcvif, IP_NAT_IN)) 394 return; 395 #endif /* !COMPAT_IPFW */ 396 397 /* 398 * Process options and, if not destined for us, 399 * ship it on. ip_dooptions returns 1 when an 400 * error was detected (causing an icmp message 401 * to be sent and the original packet to be freed). 402 */ 403 ip_nhops = 0; /* for source routed packets */ 404 if (hlen > sizeof (struct ip) && ip_dooptions(m)) 405 return; 406 407 /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no 408 * matter if it is destined to another node, or whether it is 409 * a multicast one, RSVP wants it! and prevents it from being forwarded 410 * anywhere else. Also checks if the rsvp daemon is running before 411 * grabbing the packet. 412 */ 413 if (rsvp_on && ip->ip_p==IPPROTO_RSVP) 414 goto ours; 415 416 /* 417 * Check our list of addresses, to see if the packet is for us. 418 */ 419 for (ia = TAILQ_FIRST(&in_ifaddrhead); ia; 420 ia = TAILQ_NEXT(ia, ia_link)) { 421 #define satosin(sa) ((struct sockaddr_in *)(sa)) 422 423 if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr) 424 goto ours; 425 #ifdef BOOTP_COMPAT 426 if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY) 427 goto ours; 428 #endif 429 #ifdef IPFIREWALL_FORWARD 430 /* 431 * If the addr to forward to is one of ours, we pretend to 432 * be the destination for this packet. 433 */ 434 if (ip_fw_fwd_addr != NULL && 435 IA_SIN(ia)->sin_addr.s_addr == 436 ip_fw_fwd_addr->sin_addr.s_addr) 437 goto ours; 438 #endif 439 if (ia->ia_ifp && ia->ia_ifp->if_flags & IFF_BROADCAST) { 440 if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr == 441 ip->ip_dst.s_addr) 442 goto ours; 443 if (ip->ip_dst.s_addr == ia->ia_netbroadcast.s_addr) 444 goto ours; 445 } 446 } 447 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) { 448 struct in_multi *inm; 449 if (ip_mrouter) { 450 /* 451 * If we are acting as a multicast router, all 452 * incoming multicast packets are passed to the 453 * kernel-level multicast forwarding function. 454 * The packet is returned (relatively) intact; if 455 * ip_mforward() returns a non-zero value, the packet 456 * must be discarded, else it may be accepted below. 457 * 458 * (The IP ident field is put in the same byte order 459 * as expected when ip_mforward() is called from 460 * ip_output().) 461 */ 462 ip->ip_id = htons(ip->ip_id); 463 if (ip_mforward(ip, m->m_pkthdr.rcvif, m, 0) != 0) { 464 ipstat.ips_cantforward++; 465 m_freem(m); 466 return; 467 } 468 ip->ip_id = ntohs(ip->ip_id); 469 470 /* 471 * The process-level routing demon needs to receive 472 * all multicast IGMP packets, whether or not this 473 * host belongs to their destination groups. 474 */ 475 if (ip->ip_p == IPPROTO_IGMP) 476 goto ours; 477 ipstat.ips_forward++; 478 } 479 /* 480 * See if we belong to the destination multicast group on the 481 * arrival interface. 482 */ 483 IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm); 484 if (inm == NULL) { 485 ipstat.ips_notmember++; 486 m_freem(m); 487 return; 488 } 489 goto ours; 490 } 491 if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST) 492 goto ours; 493 if (ip->ip_dst.s_addr == INADDR_ANY) 494 goto ours; 495 496 /* 497 * Not for us; forward if possible and desirable. 498 */ 499 if (ipforwarding == 0) { 500 ipstat.ips_cantforward++; 501 m_freem(m); 502 } else 503 ip_forward(m, 0); 504 return; 505 506 ours: 507 508 /* 509 * If offset or IP_MF are set, must reassemble. 510 * Otherwise, nothing need be done. 511 * (We could look in the reassembly queue to see 512 * if the packet was previously fragmented, 513 * but it's not worth the time; just let them time out.) 514 */ 515 if (ip->ip_off & (IP_MF | IP_OFFMASK | IP_RF)) { 516 if (m->m_flags & M_EXT) { /* XXX */ 517 if ((m = m_pullup(m, sizeof (struct ip))) == 0) { 518 ipstat.ips_toosmall++; 519 #ifdef IPDIVERT 520 frag_divert_port = 0; 521 ip_divert_cookie = 0; 522 #endif 523 return; 524 } 525 ip = mtod(m, struct ip *); 526 } 527 sum = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id); 528 /* 529 * Look for queue of fragments 530 * of this datagram. 531 */ 532 for (fp = ipq[sum].next; fp != &ipq[sum]; fp = fp->next) 533 if (ip->ip_id == fp->ipq_id && 534 ip->ip_src.s_addr == fp->ipq_src.s_addr && 535 ip->ip_dst.s_addr == fp->ipq_dst.s_addr && 536 ip->ip_p == fp->ipq_p) 537 goto found; 538 539 fp = 0; 540 541 /* check if there's a place for the new queue */ 542 if (nipq > maxnipq) { 543 /* 544 * drop something from the tail of the current queue 545 * before proceeding further 546 */ 547 if (ipq[sum].prev == &ipq[sum]) { /* gak */ 548 for (i = 0; i < IPREASS_NHASH; i++) { 549 if (ipq[i].prev != &ipq[i]) { 550 ip_freef(ipq[i].prev); 551 break; 552 } 553 } 554 } else 555 ip_freef(ipq[sum].prev); 556 } 557 found: 558 /* 559 * Adjust ip_len to not reflect header, 560 * set ip_mff if more fragments are expected, 561 * convert offset of this to bytes. 562 */ 563 ip->ip_len -= hlen; 564 ((struct ipasfrag *)ip)->ipf_mff &= ~1; 565 if (ip->ip_off & IP_MF) 566 ((struct ipasfrag *)ip)->ipf_mff |= 1; 567 ip->ip_off <<= 3; 568 569 /* 570 * If datagram marked as having more fragments 571 * or if this is not the first fragment, 572 * attempt reassembly; if it succeeds, proceed. 573 */ 574 if (((struct ipasfrag *)ip)->ipf_mff & 1 || ip->ip_off) { 575 ipstat.ips_fragments++; 576 ip = ip_reass((struct ipasfrag *)ip, fp, &ipq[sum]); 577 if (ip == 0) { 578 #ifdef IPFIREWALL_FORWARD 579 ip_fw_fwd_addr = NULL; 580 #endif 581 return; 582 } 583 /* Get the length of the reassembled packets header */ 584 hlen = IP_VHL_HL(ip->ip_vhl) << 2; 585 ipstat.ips_reassembled++; 586 m = dtom(ip); 587 #ifdef IPDIVERT 588 if (frag_divert_port) { 589 ip->ip_len += hlen; 590 HTONS(ip->ip_len); 591 HTONS(ip->ip_off); 592 HTONS(ip->ip_id); 593 ip->ip_sum = 0; 594 ip->ip_sum = in_cksum_hdr(ip); 595 NTOHS(ip->ip_id); 596 NTOHS(ip->ip_off); 597 NTOHS(ip->ip_len); 598 ip->ip_len -= hlen; 599 } 600 #endif 601 } else 602 if (fp) 603 ip_freef(fp); 604 } else 605 ip->ip_len -= hlen; 606 607 #ifdef IPDIVERT 608 /* 609 * Divert reassembled packets to the divert protocol if required 610 * If divert port is null then cookie should be too, 611 * so we shouldn't need to clear them here. Assume ip_divert does so. 612 */ 613 if (frag_divert_port) { 614 ipstat.ips_delivered++; 615 ip_divert_port = frag_divert_port; 616 frag_divert_port = 0; 617 (*inetsw[ip_protox[IPPROTO_DIVERT]].pr_input)(m, hlen); 618 return; 619 } 620 621 /* Don't let packets divert themselves */ 622 if (ip->ip_p == IPPROTO_DIVERT) { 623 ipstat.ips_noproto++; 624 goto bad; 625 } 626 627 #endif 628 629 /* 630 * Switch out to protocol's input routine. 631 */ 632 ipstat.ips_delivered++; 633 (*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen); 634 #ifdef IPFIREWALL_FORWARD 635 ip_fw_fwd_addr = NULL; /* tcp needed it */ 636 #endif 637 return; 638 bad: 639 #ifdef IPFIREWALL_FORWARD 640 ip_fw_fwd_addr = NULL; 641 #endif 642 m_freem(m); 643 } 644 645 /* 646 * IP software interrupt routine - to go away sometime soon 647 */ 648 static void 649 ipintr(void) 650 { 651 int s; 652 struct mbuf *m; 653 654 while(1) { 655 s = splimp(); 656 IF_DEQUEUE(&ipintrq, m); 657 splx(s); 658 if (m == 0) 659 return; 660 ip_input(m); 661 } 662 } 663 664 NETISR_SET(NETISR_IP, ipintr); 665 666 /* 667 * Take incoming datagram fragment and try to 668 * reassemble it into whole datagram. If a chain for 669 * reassembly of this datagram already exists, then it 670 * is given as fp; otherwise have to make a chain. 671 */ 672 static struct ip * 673 ip_reass(ip, fp, where) 674 register struct ipasfrag *ip; 675 register struct ipq *fp; 676 struct ipq *where; 677 { 678 register struct mbuf *m = dtom(ip); 679 register struct ipasfrag *q; 680 struct mbuf *t; 681 int hlen = ip->ip_hl << 2; 682 int i, next; 683 684 /* 685 * Presence of header sizes in mbufs 686 * would confuse code below. 687 */ 688 m->m_data += hlen; 689 m->m_len -= hlen; 690 691 /* 692 * If first fragment to arrive, create a reassembly queue. 693 */ 694 if (fp == 0) { 695 if ((t = m_get(M_DONTWAIT, MT_FTABLE)) == NULL) 696 goto dropfrag; 697 fp = mtod(t, struct ipq *); 698 insque(fp, where); 699 nipq++; 700 fp->ipq_ttl = IPFRAGTTL; 701 fp->ipq_p = ip->ip_p; 702 fp->ipq_id = ip->ip_id; 703 fp->ipq_next = fp->ipq_prev = (struct ipasfrag *)fp; 704 fp->ipq_src = ((struct ip *)ip)->ip_src; 705 fp->ipq_dst = ((struct ip *)ip)->ip_dst; 706 #ifdef IPDIVERT 707 fp->ipq_divert = 0; 708 fp->ipq_div_cookie = 0; 709 #endif 710 q = (struct ipasfrag *)fp; 711 goto insert; 712 } 713 714 /* 715 * Find a segment which begins after this one does. 716 */ 717 for (q = fp->ipq_next; q != (struct ipasfrag *)fp; q = q->ipf_next) 718 if (q->ip_off > ip->ip_off) 719 break; 720 721 /* 722 * If there is a preceding segment, it may provide some of 723 * our data already. If so, drop the data from the incoming 724 * segment. If it provides all of our data, drop us. 725 */ 726 if (q->ipf_prev != (struct ipasfrag *)fp) { 727 i = q->ipf_prev->ip_off + q->ipf_prev->ip_len - ip->ip_off; 728 if (i > 0) { 729 if (i >= ip->ip_len) 730 goto dropfrag; 731 m_adj(dtom(ip), i); 732 ip->ip_off += i; 733 ip->ip_len -= i; 734 } 735 } 736 737 /* 738 * While we overlap succeeding segments trim them or, 739 * if they are completely covered, dequeue them. 740 */ 741 while (q != (struct ipasfrag *)fp && 742 ip->ip_off + ip->ip_len > q->ip_off) { 743 struct mbuf *m0; 744 745 i = (ip->ip_off + ip->ip_len) - q->ip_off; 746 if (i < q->ip_len) { 747 q->ip_len -= i; 748 q->ip_off += i; 749 m_adj(dtom(q), i); 750 break; 751 } 752 m0 = dtom(q); 753 q = q->ipf_next; 754 ip_deq(q->ipf_prev); 755 m_freem(m0); 756 } 757 758 insert: 759 760 #ifdef IPDIVERT 761 /* 762 * Any fragment diverting causes the whole packet to divert 763 */ 764 if (frag_divert_port) { 765 fp->ipq_divert = frag_divert_port; 766 fp->ipq_div_cookie = ip_divert_cookie; 767 } 768 frag_divert_port = 0; 769 ip_divert_cookie = 0; 770 #endif 771 772 /* 773 * Stick new segment in its place; 774 * check for complete reassembly. 775 */ 776 ip_enq(ip, q->ipf_prev); 777 next = 0; 778 for (q = fp->ipq_next; q != (struct ipasfrag *)fp; q = q->ipf_next) { 779 if (q->ip_off != next) 780 return (0); 781 next += q->ip_len; 782 } 783 if (q->ipf_prev->ipf_mff & 1) 784 return (0); 785 786 /* 787 * Reassembly is complete. Make sure the packet is a sane size. 788 */ 789 if (next + (IP_VHL_HL(((struct ip *)fp->ipq_next)->ip_vhl) << 2) 790 > IP_MAXPACKET) { 791 ipstat.ips_toolong++; 792 ip_freef(fp); 793 return (0); 794 } 795 796 /* 797 * Concatenate fragments. 798 */ 799 q = fp->ipq_next; 800 m = dtom(q); 801 t = m->m_next; 802 m->m_next = 0; 803 m_cat(m, t); 804 q = q->ipf_next; 805 while (q != (struct ipasfrag *)fp) { 806 t = dtom(q); 807 q = q->ipf_next; 808 m_cat(m, t); 809 } 810 811 #ifdef IPDIVERT 812 /* 813 * extract divert port for packet, if any 814 */ 815 frag_divert_port = fp->ipq_divert; 816 ip_divert_cookie = fp->ipq_div_cookie; 817 #endif 818 819 /* 820 * Create header for new ip packet by 821 * modifying header of first packet; 822 * dequeue and discard fragment reassembly header. 823 * Make header visible. 824 */ 825 ip = fp->ipq_next; 826 ip->ip_len = next; 827 ip->ipf_mff &= ~1; 828 ((struct ip *)ip)->ip_src = fp->ipq_src; 829 ((struct ip *)ip)->ip_dst = fp->ipq_dst; 830 remque(fp); 831 nipq--; 832 (void) m_free(dtom(fp)); 833 m = dtom(ip); 834 m->m_len += (ip->ip_hl << 2); 835 m->m_data -= (ip->ip_hl << 2); 836 /* some debugging cruft by sklower, below, will go away soon */ 837 if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */ 838 register int plen = 0; 839 for (t = m; m; m = m->m_next) 840 plen += m->m_len; 841 t->m_pkthdr.len = plen; 842 } 843 return ((struct ip *)ip); 844 845 dropfrag: 846 #ifdef IPDIVERT 847 frag_divert_port = 0; 848 ip_divert_cookie = 0; 849 #endif 850 ipstat.ips_fragdropped++; 851 m_freem(m); 852 return (0); 853 } 854 855 /* 856 * Free a fragment reassembly header and all 857 * associated datagrams. 858 */ 859 static void 860 ip_freef(fp) 861 struct ipq *fp; 862 { 863 register struct ipasfrag *q, *p; 864 865 for (q = fp->ipq_next; q != (struct ipasfrag *)fp; q = p) { 866 p = q->ipf_next; 867 ip_deq(q); 868 m_freem(dtom(q)); 869 } 870 remque(fp); 871 (void) m_free(dtom(fp)); 872 nipq--; 873 } 874 875 /* 876 * Put an ip fragment on a reassembly chain. 877 * Like insque, but pointers in middle of structure. 878 */ 879 static void 880 ip_enq(p, prev) 881 register struct ipasfrag *p, *prev; 882 { 883 884 p->ipf_prev = prev; 885 p->ipf_next = prev->ipf_next; 886 prev->ipf_next->ipf_prev = p; 887 prev->ipf_next = p; 888 } 889 890 /* 891 * To ip_enq as remque is to insque. 892 */ 893 static void 894 ip_deq(p) 895 register struct ipasfrag *p; 896 { 897 898 p->ipf_prev->ipf_next = p->ipf_next; 899 p->ipf_next->ipf_prev = p->ipf_prev; 900 } 901 902 /* 903 * IP timer processing; 904 * if a timer expires on a reassembly 905 * queue, discard it. 906 */ 907 void 908 ip_slowtimo() 909 { 910 register struct ipq *fp; 911 int s = splnet(); 912 int i; 913 914 for (i = 0; i < IPREASS_NHASH; i++) { 915 fp = ipq[i].next; 916 if (fp == 0) 917 continue; 918 while (fp != &ipq[i]) { 919 --fp->ipq_ttl; 920 fp = fp->next; 921 if (fp->prev->ipq_ttl == 0) { 922 ipstat.ips_fragtimeout++; 923 ip_freef(fp->prev); 924 } 925 } 926 } 927 ipflow_slowtimo(); 928 splx(s); 929 } 930 931 /* 932 * Drain off all datagram fragments. 933 */ 934 void 935 ip_drain() 936 { 937 int i; 938 939 for (i = 0; i < IPREASS_NHASH; i++) { 940 while (ipq[i].next != &ipq[i]) { 941 ipstat.ips_fragdropped++; 942 ip_freef(ipq[i].next); 943 } 944 } 945 in_rtqdrain(); 946 } 947 948 /* 949 * Do option processing on a datagram, 950 * possibly discarding it if bad options are encountered, 951 * or forwarding it if source-routed. 952 * Returns 1 if packet has been forwarded/freed, 953 * 0 if the packet should be processed further. 954 */ 955 static int 956 ip_dooptions(m) 957 struct mbuf *m; 958 { 959 register struct ip *ip = mtod(m, struct ip *); 960 register u_char *cp; 961 register struct ip_timestamp *ipt; 962 register struct in_ifaddr *ia; 963 int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0; 964 struct in_addr *sin, dst; 965 n_time ntime; 966 967 dst = ip->ip_dst; 968 cp = (u_char *)(ip + 1); 969 cnt = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof (struct ip); 970 for (; cnt > 0; cnt -= optlen, cp += optlen) { 971 opt = cp[IPOPT_OPTVAL]; 972 if (opt == IPOPT_EOL) 973 break; 974 if (opt == IPOPT_NOP) 975 optlen = 1; 976 else { 977 optlen = cp[IPOPT_OLEN]; 978 if (optlen <= 0 || optlen > cnt) { 979 code = &cp[IPOPT_OLEN] - (u_char *)ip; 980 goto bad; 981 } 982 } 983 switch (opt) { 984 985 default: 986 break; 987 988 /* 989 * Source routing with record. 990 * Find interface with current destination address. 991 * If none on this machine then drop if strictly routed, 992 * or do nothing if loosely routed. 993 * Record interface address and bring up next address 994 * component. If strictly routed make sure next 995 * address is on directly accessible net. 996 */ 997 case IPOPT_LSRR: 998 case IPOPT_SSRR: 999 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) { 1000 code = &cp[IPOPT_OFFSET] - (u_char *)ip; 1001 goto bad; 1002 } 1003 ipaddr.sin_addr = ip->ip_dst; 1004 ia = (struct in_ifaddr *) 1005 ifa_ifwithaddr((struct sockaddr *)&ipaddr); 1006 if (ia == 0) { 1007 if (opt == IPOPT_SSRR) { 1008 type = ICMP_UNREACH; 1009 code = ICMP_UNREACH_SRCFAIL; 1010 goto bad; 1011 } 1012 if (!ip_dosourceroute) 1013 goto nosourcerouting; 1014 /* 1015 * Loose routing, and not at next destination 1016 * yet; nothing to do except forward. 1017 */ 1018 break; 1019 } 1020 off--; /* 0 origin */ 1021 if (off > optlen - sizeof(struct in_addr)) { 1022 /* 1023 * End of source route. Should be for us. 1024 */ 1025 if (!ip_acceptsourceroute) 1026 goto nosourcerouting; 1027 save_rte(cp, ip->ip_src); 1028 break; 1029 } 1030 1031 if (!ip_dosourceroute) { 1032 if (ipforwarding) { 1033 char buf[16]; /* aaa.bbb.ccc.ddd\0 */ 1034 /* 1035 * Acting as a router, so generate ICMP 1036 */ 1037 nosourcerouting: 1038 strcpy(buf, inet_ntoa(ip->ip_dst)); 1039 log(LOG_WARNING, 1040 "attempted source route from %s to %s\n", 1041 inet_ntoa(ip->ip_src), buf); 1042 type = ICMP_UNREACH; 1043 code = ICMP_UNREACH_SRCFAIL; 1044 goto bad; 1045 } else { 1046 /* 1047 * Not acting as a router, so silently drop. 1048 */ 1049 ipstat.ips_cantforward++; 1050 m_freem(m); 1051 return (1); 1052 } 1053 } 1054 1055 /* 1056 * locate outgoing interface 1057 */ 1058 (void)memcpy(&ipaddr.sin_addr, cp + off, 1059 sizeof(ipaddr.sin_addr)); 1060 1061 if (opt == IPOPT_SSRR) { 1062 #define INA struct in_ifaddr * 1063 #define SA struct sockaddr * 1064 if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr)) == 0) 1065 ia = (INA)ifa_ifwithnet((SA)&ipaddr); 1066 } else 1067 ia = ip_rtaddr(ipaddr.sin_addr); 1068 if (ia == 0) { 1069 type = ICMP_UNREACH; 1070 code = ICMP_UNREACH_SRCFAIL; 1071 goto bad; 1072 } 1073 ip->ip_dst = ipaddr.sin_addr; 1074 (void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr), 1075 sizeof(struct in_addr)); 1076 cp[IPOPT_OFFSET] += sizeof(struct in_addr); 1077 /* 1078 * Let ip_intr's mcast routing check handle mcast pkts 1079 */ 1080 forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr)); 1081 break; 1082 1083 case IPOPT_RR: 1084 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) { 1085 code = &cp[IPOPT_OFFSET] - (u_char *)ip; 1086 goto bad; 1087 } 1088 /* 1089 * If no space remains, ignore. 1090 */ 1091 off--; /* 0 origin */ 1092 if (off > optlen - sizeof(struct in_addr)) 1093 break; 1094 (void)memcpy(&ipaddr.sin_addr, &ip->ip_dst, 1095 sizeof(ipaddr.sin_addr)); 1096 /* 1097 * locate outgoing interface; if we're the destination, 1098 * use the incoming interface (should be same). 1099 */ 1100 if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == 0 && 1101 (ia = ip_rtaddr(ipaddr.sin_addr)) == 0) { 1102 type = ICMP_UNREACH; 1103 code = ICMP_UNREACH_HOST; 1104 goto bad; 1105 } 1106 (void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr), 1107 sizeof(struct in_addr)); 1108 cp[IPOPT_OFFSET] += sizeof(struct in_addr); 1109 break; 1110 1111 case IPOPT_TS: 1112 code = cp - (u_char *)ip; 1113 ipt = (struct ip_timestamp *)cp; 1114 if (ipt->ipt_len < 5) 1115 goto bad; 1116 if (ipt->ipt_ptr > ipt->ipt_len - sizeof(int32_t)) { 1117 if (++ipt->ipt_oflw == 0) 1118 goto bad; 1119 break; 1120 } 1121 sin = (struct in_addr *)(cp + ipt->ipt_ptr - 1); 1122 switch (ipt->ipt_flg) { 1123 1124 case IPOPT_TS_TSONLY: 1125 break; 1126 1127 case IPOPT_TS_TSANDADDR: 1128 if (ipt->ipt_ptr - 1 + sizeof(n_time) + 1129 sizeof(struct in_addr) > ipt->ipt_len) 1130 goto bad; 1131 ipaddr.sin_addr = dst; 1132 ia = (INA)ifaof_ifpforaddr((SA)&ipaddr, 1133 m->m_pkthdr.rcvif); 1134 if (ia == 0) 1135 continue; 1136 (void)memcpy(sin, &IA_SIN(ia)->sin_addr, 1137 sizeof(struct in_addr)); 1138 ipt->ipt_ptr += sizeof(struct in_addr); 1139 break; 1140 1141 case IPOPT_TS_PRESPEC: 1142 if (ipt->ipt_ptr - 1 + sizeof(n_time) + 1143 sizeof(struct in_addr) > ipt->ipt_len) 1144 goto bad; 1145 (void)memcpy(&ipaddr.sin_addr, sin, 1146 sizeof(struct in_addr)); 1147 if (ifa_ifwithaddr((SA)&ipaddr) == 0) 1148 continue; 1149 ipt->ipt_ptr += sizeof(struct in_addr); 1150 break; 1151 1152 default: 1153 goto bad; 1154 } 1155 ntime = iptime(); 1156 (void)memcpy(cp + ipt->ipt_ptr - 1, &ntime, 1157 sizeof(n_time)); 1158 ipt->ipt_ptr += sizeof(n_time); 1159 } 1160 } 1161 if (forward && ipforwarding) { 1162 ip_forward(m, 1); 1163 return (1); 1164 } 1165 return (0); 1166 bad: 1167 ip->ip_len -= IP_VHL_HL(ip->ip_vhl) << 2; /* XXX icmp_error adds in hdr length */ 1168 icmp_error(m, type, code, 0, 0); 1169 ipstat.ips_badoptions++; 1170 return (1); 1171 } 1172 1173 /* 1174 * Given address of next destination (final or next hop), 1175 * return internet address info of interface to be used to get there. 1176 */ 1177 static struct in_ifaddr * 1178 ip_rtaddr(dst) 1179 struct in_addr dst; 1180 { 1181 register struct sockaddr_in *sin; 1182 1183 sin = (struct sockaddr_in *) &ipforward_rt.ro_dst; 1184 1185 if (ipforward_rt.ro_rt == 0 || dst.s_addr != sin->sin_addr.s_addr) { 1186 if (ipforward_rt.ro_rt) { 1187 RTFREE(ipforward_rt.ro_rt); 1188 ipforward_rt.ro_rt = 0; 1189 } 1190 sin->sin_family = AF_INET; 1191 sin->sin_len = sizeof(*sin); 1192 sin->sin_addr = dst; 1193 1194 rtalloc_ign(&ipforward_rt, RTF_PRCLONING); 1195 } 1196 if (ipforward_rt.ro_rt == 0) 1197 return ((struct in_ifaddr *)0); 1198 return ((struct in_ifaddr *) ipforward_rt.ro_rt->rt_ifa); 1199 } 1200 1201 /* 1202 * Save incoming source route for use in replies, 1203 * to be picked up later by ip_srcroute if the receiver is interested. 1204 */ 1205 void 1206 save_rte(option, dst) 1207 u_char *option; 1208 struct in_addr dst; 1209 { 1210 unsigned olen; 1211 1212 olen = option[IPOPT_OLEN]; 1213 #ifdef DIAGNOSTIC 1214 if (ipprintfs) 1215 printf("save_rte: olen %d\n", olen); 1216 #endif 1217 if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst))) 1218 return; 1219 bcopy(option, ip_srcrt.srcopt, olen); 1220 ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr); 1221 ip_srcrt.dst = dst; 1222 } 1223 1224 /* 1225 * Retrieve incoming source route for use in replies, 1226 * in the same form used by setsockopt. 1227 * The first hop is placed before the options, will be removed later. 1228 */ 1229 struct mbuf * 1230 ip_srcroute() 1231 { 1232 register struct in_addr *p, *q; 1233 register struct mbuf *m; 1234 1235 if (ip_nhops == 0) 1236 return ((struct mbuf *)0); 1237 m = m_get(M_DONTWAIT, MT_SOOPTS); 1238 if (m == 0) 1239 return ((struct mbuf *)0); 1240 1241 #define OPTSIZ (sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt)) 1242 1243 /* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */ 1244 m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) + 1245 OPTSIZ; 1246 #ifdef DIAGNOSTIC 1247 if (ipprintfs) 1248 printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len); 1249 #endif 1250 1251 /* 1252 * First save first hop for return route 1253 */ 1254 p = &ip_srcrt.route[ip_nhops - 1]; 1255 *(mtod(m, struct in_addr *)) = *p--; 1256 #ifdef DIAGNOSTIC 1257 if (ipprintfs) 1258 printf(" hops %lx", ntohl(mtod(m, struct in_addr *)->s_addr)); 1259 #endif 1260 1261 /* 1262 * Copy option fields and padding (nop) to mbuf. 1263 */ 1264 ip_srcrt.nop = IPOPT_NOP; 1265 ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF; 1266 (void)memcpy(mtod(m, caddr_t) + sizeof(struct in_addr), 1267 &ip_srcrt.nop, OPTSIZ); 1268 q = (struct in_addr *)(mtod(m, caddr_t) + 1269 sizeof(struct in_addr) + OPTSIZ); 1270 #undef OPTSIZ 1271 /* 1272 * Record return path as an IP source route, 1273 * reversing the path (pointers are now aligned). 1274 */ 1275 while (p >= ip_srcrt.route) { 1276 #ifdef DIAGNOSTIC 1277 if (ipprintfs) 1278 printf(" %lx", ntohl(q->s_addr)); 1279 #endif 1280 *q++ = *p--; 1281 } 1282 /* 1283 * Last hop goes to final destination. 1284 */ 1285 *q = ip_srcrt.dst; 1286 #ifdef DIAGNOSTIC 1287 if (ipprintfs) 1288 printf(" %lx\n", ntohl(q->s_addr)); 1289 #endif 1290 return (m); 1291 } 1292 1293 /* 1294 * Strip out IP options, at higher 1295 * level protocol in the kernel. 1296 * Second argument is buffer to which options 1297 * will be moved, and return value is their length. 1298 * XXX should be deleted; last arg currently ignored. 1299 */ 1300 void 1301 ip_stripoptions(m, mopt) 1302 register struct mbuf *m; 1303 struct mbuf *mopt; 1304 { 1305 register int i; 1306 struct ip *ip = mtod(m, struct ip *); 1307 register caddr_t opts; 1308 int olen; 1309 1310 olen = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof (struct ip); 1311 opts = (caddr_t)(ip + 1); 1312 i = m->m_len - (sizeof (struct ip) + olen); 1313 bcopy(opts + olen, opts, (unsigned)i); 1314 m->m_len -= olen; 1315 if (m->m_flags & M_PKTHDR) 1316 m->m_pkthdr.len -= olen; 1317 ip->ip_vhl = IP_MAKE_VHL(IPVERSION, sizeof(struct ip) >> 2); 1318 } 1319 1320 u_char inetctlerrmap[PRC_NCMDS] = { 1321 0, 0, 0, 0, 1322 0, EMSGSIZE, EHOSTDOWN, EHOSTUNREACH, 1323 EHOSTUNREACH, EHOSTUNREACH, ECONNREFUSED, ECONNREFUSED, 1324 EMSGSIZE, EHOSTUNREACH, 0, 0, 1325 0, 0, 0, 0, 1326 ENOPROTOOPT 1327 }; 1328 1329 /* 1330 * Forward a packet. If some error occurs return the sender 1331 * an icmp packet. Note we can't always generate a meaningful 1332 * icmp message because icmp doesn't have a large enough repertoire 1333 * of codes and types. 1334 * 1335 * If not forwarding, just drop the packet. This could be confusing 1336 * if ipforwarding was zero but some routing protocol was advancing 1337 * us as a gateway to somewhere. However, we must let the routing 1338 * protocol deal with that. 1339 * 1340 * The srcrt parameter indicates whether the packet is being forwarded 1341 * via a source route. 1342 */ 1343 static void 1344 ip_forward(m, srcrt) 1345 struct mbuf *m; 1346 int srcrt; 1347 { 1348 register struct ip *ip = mtod(m, struct ip *); 1349 register struct sockaddr_in *sin; 1350 register struct rtentry *rt; 1351 int error, type = 0, code = 0; 1352 struct mbuf *mcopy; 1353 n_long dest; 1354 struct ifnet *destifp; 1355 1356 dest = 0; 1357 #ifdef DIAGNOSTIC 1358 if (ipprintfs) 1359 printf("forward: src %lx dst %lx ttl %x\n", 1360 ip->ip_src.s_addr, ip->ip_dst.s_addr, ip->ip_ttl); 1361 #endif 1362 1363 1364 if (m->m_flags & M_BCAST || in_canforward(ip->ip_dst) == 0) { 1365 ipstat.ips_cantforward++; 1366 m_freem(m); 1367 return; 1368 } 1369 HTONS(ip->ip_id); 1370 if (ip->ip_ttl <= IPTTLDEC) { 1371 icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, dest, 0); 1372 return; 1373 } 1374 ip->ip_ttl -= IPTTLDEC; 1375 1376 sin = (struct sockaddr_in *)&ipforward_rt.ro_dst; 1377 if ((rt = ipforward_rt.ro_rt) == 0 || 1378 ip->ip_dst.s_addr != sin->sin_addr.s_addr) { 1379 if (ipforward_rt.ro_rt) { 1380 RTFREE(ipforward_rt.ro_rt); 1381 ipforward_rt.ro_rt = 0; 1382 } 1383 sin->sin_family = AF_INET; 1384 sin->sin_len = sizeof(*sin); 1385 sin->sin_addr = ip->ip_dst; 1386 1387 rtalloc_ign(&ipforward_rt, RTF_PRCLONING); 1388 if (ipforward_rt.ro_rt == 0) { 1389 icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0); 1390 return; 1391 } 1392 rt = ipforward_rt.ro_rt; 1393 } 1394 1395 /* 1396 * Save at most 64 bytes of the packet in case 1397 * we need to generate an ICMP message to the src. 1398 */ 1399 mcopy = m_copy(m, 0, imin((int)ip->ip_len, 64)); 1400 1401 /* 1402 * If forwarding packet using same interface that it came in on, 1403 * perhaps should send a redirect to sender to shortcut a hop. 1404 * Only send redirect if source is sending directly to us, 1405 * and if packet was not source routed (or has any options). 1406 * Also, don't send redirect if forwarding using a default route 1407 * or a route modified by a redirect. 1408 */ 1409 #define satosin(sa) ((struct sockaddr_in *)(sa)) 1410 if (rt->rt_ifp == m->m_pkthdr.rcvif && 1411 (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 && 1412 satosin(rt_key(rt))->sin_addr.s_addr != 0 && 1413 ipsendredirects && !srcrt) { 1414 #define RTA(rt) ((struct in_ifaddr *)(rt->rt_ifa)) 1415 u_long src = ntohl(ip->ip_src.s_addr); 1416 1417 if (RTA(rt) && 1418 (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) { 1419 if (rt->rt_flags & RTF_GATEWAY) 1420 dest = satosin(rt->rt_gateway)->sin_addr.s_addr; 1421 else 1422 dest = ip->ip_dst.s_addr; 1423 /* Router requirements says to only send host redirects */ 1424 type = ICMP_REDIRECT; 1425 code = ICMP_REDIRECT_HOST; 1426 #ifdef DIAGNOSTIC 1427 if (ipprintfs) 1428 printf("redirect (%d) to %lx\n", code, (u_long)dest); 1429 #endif 1430 } 1431 } 1432 1433 error = ip_output(m, (struct mbuf *)0, &ipforward_rt, 1434 IP_FORWARDING, 0); 1435 if (error) 1436 ipstat.ips_cantforward++; 1437 else { 1438 ipstat.ips_forward++; 1439 if (type) 1440 ipstat.ips_redirectsent++; 1441 else { 1442 if (mcopy) { 1443 ipflow_create(&ipforward_rt, mcopy); 1444 m_freem(mcopy); 1445 } 1446 return; 1447 } 1448 } 1449 if (mcopy == NULL) 1450 return; 1451 destifp = NULL; 1452 1453 switch (error) { 1454 1455 case 0: /* forwarded, but need redirect */ 1456 /* type, code set above */ 1457 break; 1458 1459 case ENETUNREACH: /* shouldn't happen, checked above */ 1460 case EHOSTUNREACH: 1461 case ENETDOWN: 1462 case EHOSTDOWN: 1463 default: 1464 type = ICMP_UNREACH; 1465 code = ICMP_UNREACH_HOST; 1466 break; 1467 1468 case EMSGSIZE: 1469 type = ICMP_UNREACH; 1470 code = ICMP_UNREACH_NEEDFRAG; 1471 if (ipforward_rt.ro_rt) 1472 destifp = ipforward_rt.ro_rt->rt_ifp; 1473 ipstat.ips_cantfrag++; 1474 break; 1475 1476 case ENOBUFS: 1477 type = ICMP_SOURCEQUENCH; 1478 code = 0; 1479 break; 1480 } 1481 icmp_error(mcopy, type, code, dest, destifp); 1482 } 1483 1484 void 1485 ip_savecontrol(inp, mp, ip, m) 1486 register struct inpcb *inp; 1487 register struct mbuf **mp; 1488 register struct ip *ip; 1489 register struct mbuf *m; 1490 { 1491 if (inp->inp_socket->so_options & SO_TIMESTAMP) { 1492 struct timeval tv; 1493 1494 microtime(&tv); 1495 *mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv), 1496 SCM_TIMESTAMP, SOL_SOCKET); 1497 if (*mp) 1498 mp = &(*mp)->m_next; 1499 } 1500 if (inp->inp_flags & INP_RECVDSTADDR) { 1501 *mp = sbcreatecontrol((caddr_t) &ip->ip_dst, 1502 sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP); 1503 if (*mp) 1504 mp = &(*mp)->m_next; 1505 } 1506 #ifdef notyet 1507 /* XXX 1508 * Moving these out of udp_input() made them even more broken 1509 * than they already were. 1510 */ 1511 /* options were tossed already */ 1512 if (inp->inp_flags & INP_RECVOPTS) { 1513 *mp = sbcreatecontrol((caddr_t) opts_deleted_above, 1514 sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP); 1515 if (*mp) 1516 mp = &(*mp)->m_next; 1517 } 1518 /* ip_srcroute doesn't do what we want here, need to fix */ 1519 if (inp->inp_flags & INP_RECVRETOPTS) { 1520 *mp = sbcreatecontrol((caddr_t) ip_srcroute(), 1521 sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP); 1522 if (*mp) 1523 mp = &(*mp)->m_next; 1524 } 1525 #endif 1526 if (inp->inp_flags & INP_RECVIF) { 1527 struct ifnet *ifp; 1528 struct sdlbuf { 1529 struct sockaddr_dl sdl; 1530 u_char pad[32]; 1531 } sdlbuf; 1532 struct sockaddr_dl *sdp; 1533 struct sockaddr_dl *sdl2 = &sdlbuf.sdl; 1534 1535 if (((ifp = m->m_pkthdr.rcvif)) 1536 && ( ifp->if_index && (ifp->if_index <= if_index))) { 1537 sdp = (struct sockaddr_dl *)(ifnet_addrs 1538 [ifp->if_index - 1]->ifa_addr); 1539 /* 1540 * Change our mind and don't try copy. 1541 */ 1542 if ((sdp->sdl_family != AF_LINK) 1543 || (sdp->sdl_len > sizeof(sdlbuf))) { 1544 goto makedummy; 1545 } 1546 bcopy(sdp, sdl2, sdp->sdl_len); 1547 } else { 1548 makedummy: 1549 sdl2->sdl_len 1550 = offsetof(struct sockaddr_dl, sdl_data[0]); 1551 sdl2->sdl_family = AF_LINK; 1552 sdl2->sdl_index = 0; 1553 sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0; 1554 } 1555 *mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len, 1556 IP_RECVIF, IPPROTO_IP); 1557 if (*mp) 1558 mp = &(*mp)->m_next; 1559 } 1560 } 1561 1562 int 1563 ip_rsvp_init(struct socket *so) 1564 { 1565 if (so->so_type != SOCK_RAW || 1566 so->so_proto->pr_protocol != IPPROTO_RSVP) 1567 return EOPNOTSUPP; 1568 1569 if (ip_rsvpd != NULL) 1570 return EADDRINUSE; 1571 1572 ip_rsvpd = so; 1573 /* 1574 * This may seem silly, but we need to be sure we don't over-increment 1575 * the RSVP counter, in case something slips up. 1576 */ 1577 if (!ip_rsvp_on) { 1578 ip_rsvp_on = 1; 1579 rsvp_on++; 1580 } 1581 1582 return 0; 1583 } 1584 1585 int 1586 ip_rsvp_done(void) 1587 { 1588 ip_rsvpd = NULL; 1589 /* 1590 * This may seem silly, but we need to be sure we don't over-decrement 1591 * the RSVP counter, in case something slips up. 1592 */ 1593 if (ip_rsvp_on) { 1594 ip_rsvp_on = 0; 1595 rsvp_on--; 1596 } 1597 return 0; 1598 } 1599