xref: /freebsd/sys/netinet/ip_input.c (revision 0fa02ea5f786ef02befd46f8f083f48c8cd9630b)
1 /*
2  * Copyright (c) 1982, 1986, 1988, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
34  * $FreeBSD$
35  */
36 
37 #include "opt_bootp.h"
38 #include "opt_ipfw.h"
39 #include "opt_ipdn.h"
40 #include "opt_ipdivert.h"
41 #include "opt_ipfilter.h"
42 #include "opt_ipstealth.h"
43 #include "opt_ipsec.h"
44 #include "opt_mac.h"
45 #include "opt_pfil_hooks.h"
46 #include "opt_random_ip_id.h"
47 
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/mac.h>
51 #include <sys/mbuf.h>
52 #include <sys/malloc.h>
53 #include <sys/domain.h>
54 #include <sys/protosw.h>
55 #include <sys/socket.h>
56 #include <sys/time.h>
57 #include <sys/kernel.h>
58 #include <sys/syslog.h>
59 #include <sys/sysctl.h>
60 
61 #include <net/pfil.h>
62 #include <net/if.h>
63 #include <net/if_types.h>
64 #include <net/if_var.h>
65 #include <net/if_dl.h>
66 #include <net/route.h>
67 #include <net/netisr.h>
68 
69 #include <netinet/in.h>
70 #include <netinet/in_systm.h>
71 #include <netinet/in_var.h>
72 #include <netinet/ip.h>
73 #include <netinet/in_pcb.h>
74 #include <netinet/ip_var.h>
75 #include <netinet/ip_icmp.h>
76 #include <machine/in_cksum.h>
77 
78 #include <sys/socketvar.h>
79 
80 #include <netinet/ip_fw.h>
81 #include <netinet/ip_dummynet.h>
82 
83 #ifdef IPSEC
84 #include <netinet6/ipsec.h>
85 #include <netkey/key.h>
86 #endif
87 
88 #ifdef FAST_IPSEC
89 #include <netipsec/ipsec.h>
90 #include <netipsec/key.h>
91 #endif
92 
93 int rsvp_on = 0;
94 
95 int	ipforwarding = 0;
96 SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
97     &ipforwarding, 0, "Enable IP forwarding between interfaces");
98 
99 static int	ipsendredirects = 1; /* XXX */
100 SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
101     &ipsendredirects, 0, "Enable sending IP redirects");
102 
103 int	ip_defttl = IPDEFTTL;
104 SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
105     &ip_defttl, 0, "Maximum TTL on IP packets");
106 
107 static int	ip_dosourceroute = 0;
108 SYSCTL_INT(_net_inet_ip, IPCTL_SOURCEROUTE, sourceroute, CTLFLAG_RW,
109     &ip_dosourceroute, 0, "Enable forwarding source routed IP packets");
110 
111 static int	ip_acceptsourceroute = 0;
112 SYSCTL_INT(_net_inet_ip, IPCTL_ACCEPTSOURCEROUTE, accept_sourceroute,
113     CTLFLAG_RW, &ip_acceptsourceroute, 0,
114     "Enable accepting source routed IP packets");
115 
116 static int	ip_keepfaith = 0;
117 SYSCTL_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
118 	&ip_keepfaith,	0,
119 	"Enable packet capture for FAITH IPv4->IPv6 translater daemon");
120 
121 static int    nipq = 0;         /* total # of reass queues */
122 static int    maxnipq;
123 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragpackets, CTLFLAG_RW,
124 	&maxnipq, 0,
125 	"Maximum number of IPv4 fragment reassembly queue entries");
126 
127 static int    maxfragsperpacket;
128 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_RW,
129 	&maxfragsperpacket, 0,
130 	"Maximum number of IPv4 fragments allowed per packet");
131 
132 static int	ip_sendsourcequench = 0;
133 SYSCTL_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW,
134 	&ip_sendsourcequench, 0,
135 	"Enable the transmission of source quench packets");
136 
137 /*
138  * XXX - Setting ip_checkinterface mostly implements the receive side of
139  * the Strong ES model described in RFC 1122, but since the routing table
140  * and transmit implementation do not implement the Strong ES model,
141  * setting this to 1 results in an odd hybrid.
142  *
143  * XXX - ip_checkinterface currently must be disabled if you use ipnat
144  * to translate the destination address to another local interface.
145  *
146  * XXX - ip_checkinterface must be disabled if you add IP aliases
147  * to the loopback interface instead of the interface where the
148  * packets for those addresses are received.
149  */
150 static int	ip_checkinterface = 1;
151 SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
152     &ip_checkinterface, 0, "Verify packet arrives on correct interface");
153 
154 #ifdef DIAGNOSTIC
155 static int	ipprintfs = 0;
156 #endif
157 #ifdef PFIL_HOOKS
158 struct pfil_head inet_pfil_hook;
159 #endif
160 
161 static struct	ifqueue ipintrq;
162 static int	ipqmaxlen = IFQ_MAXLEN;
163 
164 extern	struct domain inetdomain;
165 extern	struct protosw inetsw[];
166 u_char	ip_protox[IPPROTO_MAX];
167 struct	in_ifaddrhead in_ifaddrhead; 		/* first inet address */
168 struct	in_ifaddrhashhead *in_ifaddrhashtbl;	/* inet addr hash table  */
169 u_long 	in_ifaddrhmask;				/* mask for hash table */
170 
171 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen, CTLFLAG_RW,
172     &ipintrq.ifq_maxlen, 0, "Maximum size of the IP input queue");
173 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops, CTLFLAG_RD,
174     &ipintrq.ifq_drops, 0, "Number of packets dropped from the IP input queue");
175 
176 struct ipstat ipstat;
177 SYSCTL_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RW,
178     &ipstat, ipstat, "IP statistics (struct ipstat, netinet/ip_var.h)");
179 
180 /* Packet reassembly stuff */
181 #define IPREASS_NHASH_LOG2      6
182 #define IPREASS_NHASH           (1 << IPREASS_NHASH_LOG2)
183 #define IPREASS_HMASK           (IPREASS_NHASH - 1)
184 #define IPREASS_HASH(x,y) \
185 	(((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
186 
187 static TAILQ_HEAD(ipqhead, ipq) ipq[IPREASS_NHASH];
188 struct mtx ipqlock;
189 
190 #define	IPQ_LOCK()	mtx_lock(&ipqlock)
191 #define	IPQ_UNLOCK()	mtx_unlock(&ipqlock)
192 #define	IPQ_LOCK_INIT()	mtx_init(&ipqlock, "ipqlock", NULL, MTX_DEF)
193 #define	IPQ_LOCK_ASSERT()	mtx_assert(&ipqlock, MA_OWNED)
194 
195 #ifdef IPCTL_DEFMTU
196 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
197     &ip_mtu, 0, "Default MTU");
198 #endif
199 
200 #ifdef IPSTEALTH
201 int	ipstealth = 0;
202 SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW,
203     &ipstealth, 0, "");
204 #endif
205 
206 
207 /* Firewall hooks */
208 ip_fw_chk_t *ip_fw_chk_ptr;
209 int fw_enable = 1 ;
210 int fw_one_pass = 1;
211 
212 /* Dummynet hooks */
213 ip_dn_io_t *ip_dn_io_ptr;
214 
215 /*
216  * XXX this is ugly -- the following two global variables are
217  * used to store packet state while it travels through the stack.
218  * Note that the code even makes assumptions on the size and
219  * alignment of fields inside struct ip_srcrt so e.g. adding some
220  * fields will break the code. This needs to be fixed.
221  *
222  * We need to save the IP options in case a protocol wants to respond
223  * to an incoming packet over the same route if the packet got here
224  * using IP source routing.  This allows connection establishment and
225  * maintenance when the remote end is on a network that is not known
226  * to us.
227  */
228 static int	ip_nhops = 0;
229 static	struct ip_srcrt {
230 	struct	in_addr dst;			/* final destination */
231 	char	nop;				/* one NOP to align */
232 	char	srcopt[IPOPT_OFFSET + 1];	/* OPTVAL, OLEN and OFFSET */
233 	struct	in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
234 } ip_srcrt;
235 
236 static void	save_rte(u_char *, struct in_addr);
237 static int	ip_dooptions(struct mbuf *m, int,
238 			struct sockaddr_in *next_hop);
239 static void	ip_forward(struct mbuf *m, int srcrt,
240 			struct sockaddr_in *next_hop);
241 static void	ip_freef(struct ipqhead *, struct ipq *);
242 static struct	mbuf *ip_reass(struct mbuf *, struct ipqhead *,
243 		struct ipq *, u_int32_t *, u_int16_t *);
244 
245 /*
246  * IP initialization: fill in IP protocol switch table.
247  * All protocols not implemented in kernel go to raw IP protocol handler.
248  */
249 void
250 ip_init()
251 {
252 	register struct protosw *pr;
253 	register int i;
254 
255 	TAILQ_INIT(&in_ifaddrhead);
256 	in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &in_ifaddrhmask);
257 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
258 	if (pr == 0)
259 		panic("ip_init");
260 	for (i = 0; i < IPPROTO_MAX; i++)
261 		ip_protox[i] = pr - inetsw;
262 	for (pr = inetdomain.dom_protosw;
263 	    pr < inetdomain.dom_protoswNPROTOSW; pr++)
264 		if (pr->pr_domain->dom_family == PF_INET &&
265 		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
266 			ip_protox[pr->pr_protocol] = pr - inetsw;
267 
268 #ifdef PFIL_HOOKS
269 	inet_pfil_hook.ph_type = PFIL_TYPE_AF;
270 	inet_pfil_hook.ph_af = AF_INET;
271 	if ((i = pfil_head_register(&inet_pfil_hook)) != 0)
272 		printf("%s: WARNING: unable to register pfil hook, "
273 			"error %d\n", __func__, i);
274 #endif /* PFIL_HOOKS */
275 
276 	IPQ_LOCK_INIT();
277 	for (i = 0; i < IPREASS_NHASH; i++)
278 	    TAILQ_INIT(&ipq[i]);
279 
280 	maxnipq = nmbclusters / 32;
281 	maxfragsperpacket = 16;
282 
283 #ifndef RANDOM_IP_ID
284 	ip_id = time_second & 0xffff;
285 #endif
286 	ipintrq.ifq_maxlen = ipqmaxlen;
287 	mtx_init(&ipintrq.ifq_mtx, "ip_inq", NULL, MTX_DEF);
288 	netisr_register(NETISR_IP, ip_input, &ipintrq, NETISR_MPSAFE);
289 }
290 
291 /*
292  * Ip input routine.  Checksum and byte swap header.  If fragmented
293  * try to reassemble.  Process options.  Pass to next level.
294  */
295 void
296 ip_input(struct mbuf *m)
297 {
298 	struct ip *ip = NULL;
299 	struct ipq *fp;
300 	struct in_ifaddr *ia = NULL;
301 	struct ifaddr *ifa;
302 	int    i, checkif, hlen = 0;
303 	int    ours = 0;
304 	u_short sum;
305 	struct in_addr pkt_dst;
306 	u_int32_t divert_info = 0;		/* packet divert/tee info */
307 	struct ip_fw_args args;
308 	int dchg = 0;				/* dest changed after fw */
309 #ifdef PFIL_HOOKS
310 	struct in_addr odst;			/* original dst address */
311 #endif
312 #ifdef FAST_IPSEC
313 	struct m_tag *mtag;
314 	struct tdb_ident *tdbi;
315 	struct secpolicy *sp;
316 	int s, error;
317 #endif /* FAST_IPSEC */
318 
319 	args.eh = NULL;
320 	args.oif = NULL;
321 	args.rule = NULL;
322 	args.divert_rule = 0;			/* divert cookie */
323 	args.next_hop = NULL;
324 
325 	/*
326 	 * Grab info from MT_TAG mbufs prepended to the chain.
327 	 *
328 	 * XXX: This is ugly. These pseudo mbuf prepend tags should really
329 	 * be real m_tags.  Before these have always been allocated on the
330 	 * callers stack, so we didn't have to free them.  Now with
331 	 * ip_fastforward they are true mbufs and we have to free them
332 	 * otherwise we have a leak.  Must rewrite ipfw to use m_tags.
333 	 */
334 	for (; m && m->m_type == MT_TAG;) {
335 		struct mbuf *m0;
336 
337 		switch(m->_m_tag_id) {
338 		default:
339 			printf("ip_input: unrecognised MT_TAG tag %d\n",
340 			    m->_m_tag_id);
341 			break;
342 
343 		case PACKET_TAG_DUMMYNET:
344 			args.rule = ((struct dn_pkt *)m)->rule;
345 			break;
346 
347 		case PACKET_TAG_DIVERT:
348 			args.divert_rule = (intptr_t)m->m_hdr.mh_data & 0xffff;
349 			break;
350 
351 		case PACKET_TAG_IPFORWARD:
352 			args.next_hop = (struct sockaddr_in *)m->m_hdr.mh_data;
353 			break;
354 
355 		case PACKET_TAG_IPFASTFWD_OURS:
356 			ours = 1;
357 			break;
358 		}
359 
360 		m0 = m;
361 		m = m->m_next;
362 		/* XXX: This is set by ip_fastforward */
363 		if (m0->m_nextpkt == (struct mbuf *)1)
364 			m_free(m0);
365 	}
366 
367 	M_ASSERTPKTHDR(m);
368 
369 	if (ours)		/* ip_fastforward firewall changed dest to local */
370 		goto ours;
371 
372 	if (args.rule) {	/* dummynet already filtered us */
373 		ip = mtod(m, struct ip *);
374 		hlen = ip->ip_hl << 2;
375 		goto iphack ;
376 	}
377 
378 	ipstat.ips_total++;
379 
380 	if (m->m_pkthdr.len < sizeof(struct ip))
381 		goto tooshort;
382 
383 	if (m->m_len < sizeof (struct ip) &&
384 	    (m = m_pullup(m, sizeof (struct ip))) == 0) {
385 		ipstat.ips_toosmall++;
386 		return;
387 	}
388 	ip = mtod(m, struct ip *);
389 
390 	if (ip->ip_v != IPVERSION) {
391 		ipstat.ips_badvers++;
392 		goto bad;
393 	}
394 
395 	hlen = ip->ip_hl << 2;
396 	if (hlen < sizeof(struct ip)) {	/* minimum header length */
397 		ipstat.ips_badhlen++;
398 		goto bad;
399 	}
400 	if (hlen > m->m_len) {
401 		if ((m = m_pullup(m, hlen)) == 0) {
402 			ipstat.ips_badhlen++;
403 			return;
404 		}
405 		ip = mtod(m, struct ip *);
406 	}
407 
408 	/* 127/8 must not appear on wire - RFC1122 */
409 	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
410 	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
411 		if ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) {
412 			ipstat.ips_badaddr++;
413 			goto bad;
414 		}
415 	}
416 
417 	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
418 		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
419 	} else {
420 		if (hlen == sizeof(struct ip)) {
421 			sum = in_cksum_hdr(ip);
422 		} else {
423 			sum = in_cksum(m, hlen);
424 		}
425 	}
426 	if (sum) {
427 		ipstat.ips_badsum++;
428 		goto bad;
429 	}
430 
431 	/*
432 	 * Convert fields to host representation.
433 	 */
434 	ip->ip_len = ntohs(ip->ip_len);
435 	if (ip->ip_len < hlen) {
436 		ipstat.ips_badlen++;
437 		goto bad;
438 	}
439 	ip->ip_off = ntohs(ip->ip_off);
440 
441 	/*
442 	 * Check that the amount of data in the buffers
443 	 * is as at least much as the IP header would have us expect.
444 	 * Trim mbufs if longer than we expect.
445 	 * Drop packet if shorter than we expect.
446 	 */
447 	if (m->m_pkthdr.len < ip->ip_len) {
448 tooshort:
449 		ipstat.ips_tooshort++;
450 		goto bad;
451 	}
452 	if (m->m_pkthdr.len > ip->ip_len) {
453 		if (m->m_len == m->m_pkthdr.len) {
454 			m->m_len = ip->ip_len;
455 			m->m_pkthdr.len = ip->ip_len;
456 		} else
457 			m_adj(m, ip->ip_len - m->m_pkthdr.len);
458 	}
459 #if defined(IPSEC) && !defined(IPSEC_FILTERGIF)
460 	/*
461 	 * Bypass packet filtering for packets from a tunnel (gif).
462 	 */
463 	if (ipsec_getnhist(m))
464 		goto pass;
465 #endif
466 #if defined(FAST_IPSEC) && !defined(IPSEC_FILTERGIF)
467 	/*
468 	 * Bypass packet filtering for packets from a tunnel (gif).
469 	 */
470 	if (m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL) != NULL)
471 		goto pass;
472 #endif
473 
474 	/*
475 	 * IpHack's section.
476 	 * Right now when no processing on packet has done
477 	 * and it is still fresh out of network we do our black
478 	 * deals with it.
479 	 * - Firewall: deny/allow/divert
480 	 * - Xlate: translate packet's addr/port (NAT).
481 	 * - Pipe: pass pkt through dummynet.
482 	 * - Wrap: fake packet's addr/port <unimpl.>
483 	 * - Encapsulate: put it in another IP and send out. <unimp.>
484  	 */
485 
486 iphack:
487 
488 #ifdef PFIL_HOOKS
489 	/*
490 	 * Run through list of hooks for input packets.
491 	 *
492 	 * NB: Beware of the destination address changing (e.g.
493 	 *     by NAT rewriting).  When this happens, tell
494 	 *     ip_forward to do the right thing.
495 	 */
496 	odst = ip->ip_dst;
497 	if (pfil_run_hooks(&inet_pfil_hook, &m, m->m_pkthdr.rcvif,
498 	    PFIL_IN) != 0)
499 		return;
500 	if (m == NULL)			/* consumed by filter */
501 		return;
502 	ip = mtod(m, struct ip *);
503 	dchg = (odst.s_addr != ip->ip_dst.s_addr);
504 #endif /* PFIL_HOOKS */
505 
506 	if (fw_enable && IPFW_LOADED) {
507 		/*
508 		 * If we've been forwarded from the output side, then
509 		 * skip the firewall a second time
510 		 */
511 		if (args.next_hop)
512 			goto ours;
513 
514 		args.m = m;
515 		i = ip_fw_chk_ptr(&args);
516 		m = args.m;
517 
518 		if ( (i & IP_FW_PORT_DENY_FLAG) || m == NULL) { /* drop */
519 			if (m)
520 				m_freem(m);
521 			return;
522 		}
523 		ip = mtod(m, struct ip *); /* just in case m changed */
524 		if (i == 0 && args.next_hop == NULL)	/* common case */
525 			goto pass;
526                 if (DUMMYNET_LOADED && (i & IP_FW_PORT_DYNT_FLAG) != 0) {
527 			/* Send packet to the appropriate pipe */
528 			ip_dn_io_ptr(m, i&0xffff, DN_TO_IP_IN, &args);
529 			return;
530 		}
531 #ifdef IPDIVERT
532 		if (i != 0 && (i & IP_FW_PORT_DYNT_FLAG) == 0) {
533 			/* Divert or tee packet */
534 			divert_info = i;
535 			goto ours;
536 		}
537 #endif
538 		if (i == 0 && args.next_hop != NULL)
539 			goto pass;
540 		/*
541 		 * if we get here, the packet must be dropped
542 		 */
543 		m_freem(m);
544 		return;
545 	}
546 pass:
547 
548 	/*
549 	 * Process options and, if not destined for us,
550 	 * ship it on.  ip_dooptions returns 1 when an
551 	 * error was detected (causing an icmp message
552 	 * to be sent and the original packet to be freed).
553 	 */
554 	ip_nhops = 0;		/* for source routed packets */
555 	if (hlen > sizeof (struct ip) && ip_dooptions(m, 0, args.next_hop))
556 		return;
557 
558         /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
559          * matter if it is destined to another node, or whether it is
560          * a multicast one, RSVP wants it! and prevents it from being forwarded
561          * anywhere else. Also checks if the rsvp daemon is running before
562 	 * grabbing the packet.
563          */
564 	if (rsvp_on && ip->ip_p==IPPROTO_RSVP)
565 		goto ours;
566 
567 	/*
568 	 * Check our list of addresses, to see if the packet is for us.
569 	 * If we don't have any addresses, assume any unicast packet
570 	 * we receive might be for us (and let the upper layers deal
571 	 * with it).
572 	 */
573 	if (TAILQ_EMPTY(&in_ifaddrhead) &&
574 	    (m->m_flags & (M_MCAST|M_BCAST)) == 0)
575 		goto ours;
576 
577 	/*
578 	 * Cache the destination address of the packet; this may be
579 	 * changed by use of 'ipfw fwd'.
580 	 */
581 	pkt_dst = args.next_hop ? args.next_hop->sin_addr : ip->ip_dst;
582 
583 	/*
584 	 * Enable a consistency check between the destination address
585 	 * and the arrival interface for a unicast packet (the RFC 1122
586 	 * strong ES model) if IP forwarding is disabled and the packet
587 	 * is not locally generated and the packet is not subject to
588 	 * 'ipfw fwd'.
589 	 *
590 	 * XXX - Checking also should be disabled if the destination
591 	 * address is ipnat'ed to a different interface.
592 	 *
593 	 * XXX - Checking is incompatible with IP aliases added
594 	 * to the loopback interface instead of the interface where
595 	 * the packets are received.
596 	 */
597 	checkif = ip_checkinterface && (ipforwarding == 0) &&
598 	    m->m_pkthdr.rcvif != NULL &&
599 	    ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) &&
600 	    (args.next_hop == NULL);
601 
602 	/*
603 	 * Check for exact addresses in the hash bucket.
604 	 */
605 	LIST_FOREACH(ia, INADDR_HASH(pkt_dst.s_addr), ia_hash) {
606 		/*
607 		 * If the address matches, verify that the packet
608 		 * arrived via the correct interface if checking is
609 		 * enabled.
610 		 */
611 		if (IA_SIN(ia)->sin_addr.s_addr == pkt_dst.s_addr &&
612 		    (!checkif || ia->ia_ifp == m->m_pkthdr.rcvif))
613 			goto ours;
614 	}
615 	/*
616 	 * Check for broadcast addresses.
617 	 *
618 	 * Only accept broadcast packets that arrive via the matching
619 	 * interface.  Reception of forwarded directed broadcasts would
620 	 * be handled via ip_forward() and ether_output() with the loopback
621 	 * into the stack for SIMPLEX interfaces handled by ether_output().
622 	 */
623 	if (m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
624 	        TAILQ_FOREACH(ifa, &m->m_pkthdr.rcvif->if_addrhead, ifa_link) {
625 			if (ifa->ifa_addr->sa_family != AF_INET)
626 				continue;
627 			ia = ifatoia(ifa);
628 			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
629 			    pkt_dst.s_addr)
630 				goto ours;
631 			if (ia->ia_netbroadcast.s_addr == pkt_dst.s_addr)
632 				goto ours;
633 #ifdef BOOTP_COMPAT
634 			if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY)
635 				goto ours;
636 #endif
637 		}
638 	}
639 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
640 		struct in_multi *inm;
641 		if (ip_mrouter) {
642 			/*
643 			 * If we are acting as a multicast router, all
644 			 * incoming multicast packets are passed to the
645 			 * kernel-level multicast forwarding function.
646 			 * The packet is returned (relatively) intact; if
647 			 * ip_mforward() returns a non-zero value, the packet
648 			 * must be discarded, else it may be accepted below.
649 			 */
650 			if (ip_mforward &&
651 			    ip_mforward(ip, m->m_pkthdr.rcvif, m, 0) != 0) {
652 				ipstat.ips_cantforward++;
653 				m_freem(m);
654 				return;
655 			}
656 
657 			/*
658 			 * The process-level routing daemon needs to receive
659 			 * all multicast IGMP packets, whether or not this
660 			 * host belongs to their destination groups.
661 			 */
662 			if (ip->ip_p == IPPROTO_IGMP)
663 				goto ours;
664 			ipstat.ips_forward++;
665 		}
666 		/*
667 		 * See if we belong to the destination multicast group on the
668 		 * arrival interface.
669 		 */
670 		IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
671 		if (inm == NULL) {
672 			ipstat.ips_notmember++;
673 			m_freem(m);
674 			return;
675 		}
676 		goto ours;
677 	}
678 	if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
679 		goto ours;
680 	if (ip->ip_dst.s_addr == INADDR_ANY)
681 		goto ours;
682 
683 	/*
684 	 * FAITH(Firewall Aided Internet Translator)
685 	 */
686 	if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
687 		if (ip_keepfaith) {
688 			if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
689 				goto ours;
690 		}
691 		m_freem(m);
692 		return;
693 	}
694 
695 	/*
696 	 * Not for us; forward if possible and desirable.
697 	 */
698 	if (ipforwarding == 0) {
699 		ipstat.ips_cantforward++;
700 		m_freem(m);
701 	} else {
702 #ifdef IPSEC
703 		/*
704 		 * Enforce inbound IPsec SPD.
705 		 */
706 		if (ipsec4_in_reject(m, NULL)) {
707 			ipsecstat.in_polvio++;
708 			goto bad;
709 		}
710 #endif /* IPSEC */
711 #ifdef FAST_IPSEC
712 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
713 		s = splnet();
714 		if (mtag != NULL) {
715 			tdbi = (struct tdb_ident *)(mtag + 1);
716 			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
717 		} else {
718 			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
719 						   IP_FORWARDING, &error);
720 		}
721 		if (sp == NULL) {	/* NB: can happen if error */
722 			splx(s);
723 			/*XXX error stat???*/
724 			DPRINTF(("ip_input: no SP for forwarding\n"));	/*XXX*/
725 			goto bad;
726 		}
727 
728 		/*
729 		 * Check security policy against packet attributes.
730 		 */
731 		error = ipsec_in_reject(sp, m);
732 		KEY_FREESP(&sp);
733 		splx(s);
734 		if (error) {
735 			ipstat.ips_cantforward++;
736 			goto bad;
737 		}
738 #endif /* FAST_IPSEC */
739 		ip_forward(m, dchg, args.next_hop);
740 	}
741 	return;
742 
743 ours:
744 #ifdef IPSTEALTH
745 	/*
746 	 * IPSTEALTH: Process non-routing options only
747 	 * if the packet is destined for us.
748 	 */
749 	if (ipstealth && hlen > sizeof (struct ip) &&
750 	    ip_dooptions(m, 1, args.next_hop))
751 		return;
752 #endif /* IPSTEALTH */
753 
754 	/* Count the packet in the ip address stats */
755 	if (ia != NULL) {
756 		ia->ia_ifa.if_ipackets++;
757 		ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
758 	}
759 
760 	/*
761 	 * If offset or IP_MF are set, must reassemble.
762 	 * Otherwise, nothing need be done.
763 	 * (We could look in the reassembly queue to see
764 	 * if the packet was previously fragmented,
765 	 * but it's not worth the time; just let them time out.)
766 	 */
767 	if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
768 
769 		/* If maxnipq is 0, never accept fragments. */
770 		if (maxnipq == 0) {
771                 	ipstat.ips_fragments++;
772 			ipstat.ips_fragdropped++;
773 			goto bad;
774 		}
775 
776 		sum = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
777 		IPQ_LOCK();
778 		/*
779 		 * Look for queue of fragments
780 		 * of this datagram.
781 		 */
782 		TAILQ_FOREACH(fp, &ipq[sum], ipq_list)
783 			if (ip->ip_id == fp->ipq_id &&
784 			    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
785 			    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
786 #ifdef MAC
787 			    mac_fragment_match(m, fp) &&
788 #endif
789 			    ip->ip_p == fp->ipq_p)
790 				goto found;
791 
792 		fp = NULL;
793 
794 		/*
795 		 * Enforce upper bound on number of fragmented packets
796 		 * for which we attempt reassembly;
797 		 * If maxnipq is -1, accept all fragments without limitation.
798 		 */
799 		if ((nipq > maxnipq) && (maxnipq > 0)) {
800 		    /*
801 		     * drop something from the tail of the current queue
802 		     * before proceeding further
803 		     */
804 		    struct ipq *q = TAILQ_LAST(&ipq[sum], ipqhead);
805 		    if (q == NULL) {   /* gak */
806 			for (i = 0; i < IPREASS_NHASH; i++) {
807 			    struct ipq *r = TAILQ_LAST(&ipq[i], ipqhead);
808 			    if (r) {
809 				ipstat.ips_fragtimeout += r->ipq_nfrags;
810 				ip_freef(&ipq[i], r);
811 				break;
812 			    }
813 			}
814 		    } else {
815 			ipstat.ips_fragtimeout += q->ipq_nfrags;
816 			ip_freef(&ipq[sum], q);
817 		    }
818 		}
819 found:
820 		/*
821 		 * Adjust ip_len to not reflect header,
822 		 * convert offset of this to bytes.
823 		 */
824 		ip->ip_len -= hlen;
825 		if (ip->ip_off & IP_MF) {
826 		        /*
827 		         * Make sure that fragments have a data length
828 			 * that's a non-zero multiple of 8 bytes.
829 		         */
830 			if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
831 				IPQ_UNLOCK();
832 				ipstat.ips_toosmall++; /* XXX */
833 				goto bad;
834 			}
835 			m->m_flags |= M_FRAG;
836 		} else
837 			m->m_flags &= ~M_FRAG;
838 		ip->ip_off <<= 3;
839 
840 		/*
841 		 * Attempt reassembly; if it succeeds, proceed.
842 		 * ip_reass() will return a different mbuf, and update
843 		 * the divert info in divert_info and args.divert_rule.
844 		 */
845 		ipstat.ips_fragments++;
846 		m->m_pkthdr.header = ip;
847 		m = ip_reass(m,
848 		    &ipq[sum], fp, &divert_info, &args.divert_rule);
849 		IPQ_UNLOCK();
850 		if (m == 0)
851 			return;
852 		ipstat.ips_reassembled++;
853 		ip = mtod(m, struct ip *);
854 		/* Get the header length of the reassembled packet */
855 		hlen = ip->ip_hl << 2;
856 #ifdef IPDIVERT
857 		/* Restore original checksum before diverting packet */
858 		if (divert_info != 0) {
859 			ip->ip_len += hlen;
860 			ip->ip_len = htons(ip->ip_len);
861 			ip->ip_off = htons(ip->ip_off);
862 			ip->ip_sum = 0;
863 			if (hlen == sizeof(struct ip))
864 				ip->ip_sum = in_cksum_hdr(ip);
865 			else
866 				ip->ip_sum = in_cksum(m, hlen);
867 			ip->ip_off = ntohs(ip->ip_off);
868 			ip->ip_len = ntohs(ip->ip_len);
869 			ip->ip_len -= hlen;
870 		}
871 #endif
872 	} else
873 		ip->ip_len -= hlen;
874 
875 #ifdef IPDIVERT
876 	/*
877 	 * Divert or tee packet to the divert protocol if required.
878 	 */
879 	if (divert_info != 0) {
880 		struct mbuf *clone = NULL;
881 
882 		/* Clone packet if we're doing a 'tee' */
883 		if ((divert_info & IP_FW_PORT_TEE_FLAG) != 0)
884 			clone = m_dup(m, M_DONTWAIT);
885 
886 		/* Restore packet header fields to original values */
887 		ip->ip_len += hlen;
888 		ip->ip_len = htons(ip->ip_len);
889 		ip->ip_off = htons(ip->ip_off);
890 
891 		/* Deliver packet to divert input routine */
892 		divert_packet(m, 1, divert_info & 0xffff, args.divert_rule);
893 		ipstat.ips_delivered++;
894 
895 		/* If 'tee', continue with original packet */
896 		if (clone == NULL)
897 			return;
898 		m = clone;
899 		ip = mtod(m, struct ip *);
900 		ip->ip_len += hlen;
901 		/*
902 		 * Jump backwards to complete processing of the
903 		 * packet. But first clear divert_info to avoid
904 		 * entering this block again.
905 		 * We do not need to clear args.divert_rule
906 		 * or args.next_hop as they will not be used.
907 		 */
908 		divert_info = 0;
909 		goto pass;
910 	}
911 #endif
912 
913 #ifdef IPSEC
914 	/*
915 	 * enforce IPsec policy checking if we are seeing last header.
916 	 * note that we do not visit this with protocols with pcb layer
917 	 * code - like udp/tcp/raw ip.
918 	 */
919 	if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0 &&
920 	    ipsec4_in_reject(m, NULL)) {
921 		ipsecstat.in_polvio++;
922 		goto bad;
923 	}
924 #endif
925 #if FAST_IPSEC
926 	/*
927 	 * enforce IPsec policy checking if we are seeing last header.
928 	 * note that we do not visit this with protocols with pcb layer
929 	 * code - like udp/tcp/raw ip.
930 	 */
931 	if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0) {
932 		/*
933 		 * Check if the packet has already had IPsec processing
934 		 * done.  If so, then just pass it along.  This tag gets
935 		 * set during AH, ESP, etc. input handling, before the
936 		 * packet is returned to the ip input queue for delivery.
937 		 */
938 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
939 		s = splnet();
940 		if (mtag != NULL) {
941 			tdbi = (struct tdb_ident *)(mtag + 1);
942 			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
943 		} else {
944 			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
945 						   IP_FORWARDING, &error);
946 		}
947 		if (sp != NULL) {
948 			/*
949 			 * Check security policy against packet attributes.
950 			 */
951 			error = ipsec_in_reject(sp, m);
952 			KEY_FREESP(&sp);
953 		} else {
954 			/* XXX error stat??? */
955 			error = EINVAL;
956 DPRINTF(("ip_input: no SP, packet discarded\n"));/*XXX*/
957 			goto bad;
958 		}
959 		splx(s);
960 		if (error)
961 			goto bad;
962 	}
963 #endif /* FAST_IPSEC */
964 
965 	/*
966 	 * Switch out to protocol's input routine.
967 	 */
968 	ipstat.ips_delivered++;
969 	NET_PICKUP_GIANT();
970 	if (args.next_hop && ip->ip_p == IPPROTO_TCP) {
971 		/* TCP needs IPFORWARD info if available */
972 		struct m_hdr tag;
973 
974 		tag.mh_type = MT_TAG;
975 		tag.mh_flags = PACKET_TAG_IPFORWARD;
976 		tag.mh_data = (caddr_t)args.next_hop;
977 		tag.mh_next = m;
978 		tag.mh_nextpkt = NULL;
979 
980 		(*inetsw[ip_protox[ip->ip_p]].pr_input)(
981 			(struct mbuf *)&tag, hlen);
982 	} else
983 		(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
984 	NET_DROP_GIANT();
985 	return;
986 bad:
987 	m_freem(m);
988 }
989 
990 /*
991  * Take incoming datagram fragment and try to reassemble it into
992  * whole datagram.  If a chain for reassembly of this datagram already
993  * exists, then it is given as fp; otherwise have to make a chain.
994  *
995  * When IPDIVERT enabled, keep additional state with each packet that
996  * tells us if we need to divert or tee the packet we're building.
997  * In particular, *divinfo includes the port and TEE flag,
998  * *divert_rule is the number of the matching rule.
999  */
1000 
1001 static struct mbuf *
1002 ip_reass(struct mbuf *m, struct ipqhead *head, struct ipq *fp,
1003 	u_int32_t *divinfo, u_int16_t *divert_rule)
1004 {
1005 	struct ip *ip = mtod(m, struct ip *);
1006 	register struct mbuf *p, *q, *nq;
1007 	struct mbuf *t;
1008 	int hlen = ip->ip_hl << 2;
1009 	int i, next;
1010 	u_int8_t ecn, ecn0;
1011 
1012 	IPQ_LOCK_ASSERT();
1013 
1014 	/*
1015 	 * Presence of header sizes in mbufs
1016 	 * would confuse code below.
1017 	 */
1018 	m->m_data += hlen;
1019 	m->m_len -= hlen;
1020 
1021 	/*
1022 	 * If first fragment to arrive, create a reassembly queue.
1023 	 */
1024 	if (fp == NULL) {
1025 		if ((t = m_get(M_DONTWAIT, MT_FTABLE)) == NULL)
1026 			goto dropfrag;
1027 		fp = mtod(t, struct ipq *);
1028 #ifdef MAC
1029 		if (mac_init_ipq(fp, M_NOWAIT) != 0) {
1030 			m_free(t);
1031 			goto dropfrag;
1032 		}
1033 		mac_create_ipq(m, fp);
1034 #endif
1035 		TAILQ_INSERT_HEAD(head, fp, ipq_list);
1036 		nipq++;
1037 		fp->ipq_nfrags = 1;
1038 		fp->ipq_ttl = IPFRAGTTL;
1039 		fp->ipq_p = ip->ip_p;
1040 		fp->ipq_id = ip->ip_id;
1041 		fp->ipq_src = ip->ip_src;
1042 		fp->ipq_dst = ip->ip_dst;
1043 		fp->ipq_frags = m;
1044 		m->m_nextpkt = NULL;
1045 #ifdef IPDIVERT
1046 		fp->ipq_div_info = 0;
1047 		fp->ipq_div_cookie = 0;
1048 #endif
1049 		goto inserted;
1050 	} else {
1051 		fp->ipq_nfrags++;
1052 #ifdef MAC
1053 		mac_update_ipq(m, fp);
1054 #endif
1055 	}
1056 
1057 #define GETIP(m)	((struct ip*)((m)->m_pkthdr.header))
1058 
1059 	/*
1060 	 * Handle ECN by comparing this segment with the first one;
1061 	 * if CE is set, do not lose CE.
1062 	 * drop if CE and not-ECT are mixed for the same packet.
1063 	 */
1064 	ecn = ip->ip_tos & IPTOS_ECN_MASK;
1065 	ecn0 = GETIP(fp->ipq_frags)->ip_tos & IPTOS_ECN_MASK;
1066 	if (ecn == IPTOS_ECN_CE) {
1067 		if (ecn0 == IPTOS_ECN_NOTECT)
1068 			goto dropfrag;
1069 		if (ecn0 != IPTOS_ECN_CE)
1070 			GETIP(fp->ipq_frags)->ip_tos |= IPTOS_ECN_CE;
1071 	}
1072 	if (ecn == IPTOS_ECN_NOTECT && ecn0 != IPTOS_ECN_NOTECT)
1073 		goto dropfrag;
1074 
1075 	/*
1076 	 * Find a segment which begins after this one does.
1077 	 */
1078 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
1079 		if (GETIP(q)->ip_off > ip->ip_off)
1080 			break;
1081 
1082 	/*
1083 	 * If there is a preceding segment, it may provide some of
1084 	 * our data already.  If so, drop the data from the incoming
1085 	 * segment.  If it provides all of our data, drop us, otherwise
1086 	 * stick new segment in the proper place.
1087 	 *
1088 	 * If some of the data is dropped from the the preceding
1089 	 * segment, then it's checksum is invalidated.
1090 	 */
1091 	if (p) {
1092 		i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
1093 		if (i > 0) {
1094 			if (i >= ip->ip_len)
1095 				goto dropfrag;
1096 			m_adj(m, i);
1097 			m->m_pkthdr.csum_flags = 0;
1098 			ip->ip_off += i;
1099 			ip->ip_len -= i;
1100 		}
1101 		m->m_nextpkt = p->m_nextpkt;
1102 		p->m_nextpkt = m;
1103 	} else {
1104 		m->m_nextpkt = fp->ipq_frags;
1105 		fp->ipq_frags = m;
1106 	}
1107 
1108 	/*
1109 	 * While we overlap succeeding segments trim them or,
1110 	 * if they are completely covered, dequeue them.
1111 	 */
1112 	for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
1113 	     q = nq) {
1114 		i = (ip->ip_off + ip->ip_len) - GETIP(q)->ip_off;
1115 		if (i < GETIP(q)->ip_len) {
1116 			GETIP(q)->ip_len -= i;
1117 			GETIP(q)->ip_off += i;
1118 			m_adj(q, i);
1119 			q->m_pkthdr.csum_flags = 0;
1120 			break;
1121 		}
1122 		nq = q->m_nextpkt;
1123 		m->m_nextpkt = nq;
1124 		ipstat.ips_fragdropped++;
1125 		fp->ipq_nfrags--;
1126 		m_freem(q);
1127 	}
1128 
1129 inserted:
1130 
1131 #ifdef IPDIVERT
1132 	/*
1133 	 * Transfer firewall instructions to the fragment structure.
1134 	 * Only trust info in the fragment at offset 0.
1135 	 */
1136 	if (ip->ip_off == 0) {
1137 		fp->ipq_div_info = *divinfo;
1138 		fp->ipq_div_cookie = *divert_rule;
1139 	}
1140 	*divinfo = 0;
1141 	*divert_rule = 0;
1142 #endif
1143 
1144 	/*
1145 	 * Check for complete reassembly and perform frag per packet
1146 	 * limiting.
1147 	 *
1148 	 * Frag limiting is performed here so that the nth frag has
1149 	 * a chance to complete the packet before we drop the packet.
1150 	 * As a result, n+1 frags are actually allowed per packet, but
1151 	 * only n will ever be stored. (n = maxfragsperpacket.)
1152 	 *
1153 	 */
1154 	next = 0;
1155 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1156 		if (GETIP(q)->ip_off != next) {
1157 			if (fp->ipq_nfrags > maxfragsperpacket) {
1158 				ipstat.ips_fragdropped += fp->ipq_nfrags;
1159 				ip_freef(head, fp);
1160 			}
1161 			return (0);
1162 		}
1163 		next += GETIP(q)->ip_len;
1164 	}
1165 	/* Make sure the last packet didn't have the IP_MF flag */
1166 	if (p->m_flags & M_FRAG) {
1167 		if (fp->ipq_nfrags > maxfragsperpacket) {
1168 			ipstat.ips_fragdropped += fp->ipq_nfrags;
1169 			ip_freef(head, fp);
1170 		}
1171 		return (0);
1172 	}
1173 
1174 	/*
1175 	 * Reassembly is complete.  Make sure the packet is a sane size.
1176 	 */
1177 	q = fp->ipq_frags;
1178 	ip = GETIP(q);
1179 	if (next + (ip->ip_hl << 2) > IP_MAXPACKET) {
1180 		ipstat.ips_toolong++;
1181 		ipstat.ips_fragdropped += fp->ipq_nfrags;
1182 		ip_freef(head, fp);
1183 		return (0);
1184 	}
1185 
1186 	/*
1187 	 * Concatenate fragments.
1188 	 */
1189 	m = q;
1190 	t = m->m_next;
1191 	m->m_next = 0;
1192 	m_cat(m, t);
1193 	nq = q->m_nextpkt;
1194 	q->m_nextpkt = 0;
1195 	for (q = nq; q != NULL; q = nq) {
1196 		nq = q->m_nextpkt;
1197 		q->m_nextpkt = NULL;
1198 		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1199 		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1200 		m_cat(m, q);
1201 	}
1202 #ifdef MAC
1203 	mac_create_datagram_from_ipq(fp, m);
1204 	mac_destroy_ipq(fp);
1205 #endif
1206 
1207 #ifdef IPDIVERT
1208 	/*
1209 	 * Extract firewall instructions from the fragment structure.
1210 	 */
1211 	*divinfo = fp->ipq_div_info;
1212 	*divert_rule = fp->ipq_div_cookie;
1213 #endif
1214 
1215 	/*
1216 	 * Create header for new ip packet by
1217 	 * modifying header of first packet;
1218 	 * dequeue and discard fragment reassembly header.
1219 	 * Make header visible.
1220 	 */
1221 	ip->ip_len = next;
1222 	ip->ip_src = fp->ipq_src;
1223 	ip->ip_dst = fp->ipq_dst;
1224 	TAILQ_REMOVE(head, fp, ipq_list);
1225 	nipq--;
1226 	(void) m_free(dtom(fp));
1227 	m->m_len += (ip->ip_hl << 2);
1228 	m->m_data -= (ip->ip_hl << 2);
1229 	/* some debugging cruft by sklower, below, will go away soon */
1230 	if (m->m_flags & M_PKTHDR)	/* XXX this should be done elsewhere */
1231 		m_fixhdr(m);
1232 	return (m);
1233 
1234 dropfrag:
1235 #ifdef IPDIVERT
1236 	*divinfo = 0;
1237 	*divert_rule = 0;
1238 #endif
1239 	ipstat.ips_fragdropped++;
1240 	if (fp != NULL)
1241 		fp->ipq_nfrags--;
1242 	m_freem(m);
1243 	return (0);
1244 
1245 #undef GETIP
1246 }
1247 
1248 /*
1249  * Free a fragment reassembly header and all
1250  * associated datagrams.
1251  */
1252 static void
1253 ip_freef(fhp, fp)
1254 	struct ipqhead *fhp;
1255 	struct ipq *fp;
1256 {
1257 	register struct mbuf *q;
1258 
1259 	IPQ_LOCK_ASSERT();
1260 
1261 	while (fp->ipq_frags) {
1262 		q = fp->ipq_frags;
1263 		fp->ipq_frags = q->m_nextpkt;
1264 		m_freem(q);
1265 	}
1266 	TAILQ_REMOVE(fhp, fp, ipq_list);
1267 	(void) m_free(dtom(fp));
1268 	nipq--;
1269 }
1270 
1271 /*
1272  * IP timer processing;
1273  * if a timer expires on a reassembly
1274  * queue, discard it.
1275  */
1276 void
1277 ip_slowtimo()
1278 {
1279 	register struct ipq *fp;
1280 	int s = splnet();
1281 	int i;
1282 
1283 	IPQ_LOCK();
1284 	for (i = 0; i < IPREASS_NHASH; i++) {
1285 		for(fp = TAILQ_FIRST(&ipq[i]); fp;) {
1286 			struct ipq *fpp;
1287 
1288 			fpp = fp;
1289 			fp = TAILQ_NEXT(fp, ipq_list);
1290 			if(--fpp->ipq_ttl == 0) {
1291 				ipstat.ips_fragtimeout += fpp->ipq_nfrags;
1292 				ip_freef(&ipq[i], fpp);
1293 			}
1294 		}
1295 	}
1296 	/*
1297 	 * If we are over the maximum number of fragments
1298 	 * (due to the limit being lowered), drain off
1299 	 * enough to get down to the new limit.
1300 	 */
1301 	if (maxnipq >= 0 && nipq > maxnipq) {
1302 		for (i = 0; i < IPREASS_NHASH; i++) {
1303 			while (nipq > maxnipq && !TAILQ_EMPTY(&ipq[i])) {
1304 				ipstat.ips_fragdropped +=
1305 				    TAILQ_FIRST(&ipq[i])->ipq_nfrags;
1306 				ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i]));
1307 			}
1308 		}
1309 	}
1310 	IPQ_UNLOCK();
1311 	splx(s);
1312 }
1313 
1314 /*
1315  * Drain off all datagram fragments.
1316  */
1317 void
1318 ip_drain()
1319 {
1320 	int     i;
1321 
1322 	IPQ_LOCK();
1323 	for (i = 0; i < IPREASS_NHASH; i++) {
1324 		while(!TAILQ_EMPTY(&ipq[i])) {
1325 			ipstat.ips_fragdropped +=
1326 			    TAILQ_FIRST(&ipq[i])->ipq_nfrags;
1327 			ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i]));
1328 		}
1329 	}
1330 	IPQ_UNLOCK();
1331 	in_rtqdrain();
1332 }
1333 
1334 /*
1335  * Do option processing on a datagram,
1336  * possibly discarding it if bad options are encountered,
1337  * or forwarding it if source-routed.
1338  * The pass argument is used when operating in the IPSTEALTH
1339  * mode to tell what options to process:
1340  * [LS]SRR (pass 0) or the others (pass 1).
1341  * The reason for as many as two passes is that when doing IPSTEALTH,
1342  * non-routing options should be processed only if the packet is for us.
1343  * Returns 1 if packet has been forwarded/freed,
1344  * 0 if the packet should be processed further.
1345  */
1346 static int
1347 ip_dooptions(struct mbuf *m, int pass, struct sockaddr_in *next_hop)
1348 {
1349 	struct ip *ip = mtod(m, struct ip *);
1350 	u_char *cp;
1351 	struct in_ifaddr *ia;
1352 	int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
1353 	struct in_addr *sin, dst;
1354 	n_time ntime;
1355 	struct	sockaddr_in ipaddr = { sizeof(ipaddr), AF_INET };
1356 
1357 	dst = ip->ip_dst;
1358 	cp = (u_char *)(ip + 1);
1359 	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1360 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1361 		opt = cp[IPOPT_OPTVAL];
1362 		if (opt == IPOPT_EOL)
1363 			break;
1364 		if (opt == IPOPT_NOP)
1365 			optlen = 1;
1366 		else {
1367 			if (cnt < IPOPT_OLEN + sizeof(*cp)) {
1368 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1369 				goto bad;
1370 			}
1371 			optlen = cp[IPOPT_OLEN];
1372 			if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
1373 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1374 				goto bad;
1375 			}
1376 		}
1377 		switch (opt) {
1378 
1379 		default:
1380 			break;
1381 
1382 		/*
1383 		 * Source routing with record.
1384 		 * Find interface with current destination address.
1385 		 * If none on this machine then drop if strictly routed,
1386 		 * or do nothing if loosely routed.
1387 		 * Record interface address and bring up next address
1388 		 * component.  If strictly routed make sure next
1389 		 * address is on directly accessible net.
1390 		 */
1391 		case IPOPT_LSRR:
1392 		case IPOPT_SSRR:
1393 #ifdef IPSTEALTH
1394 			if (ipstealth && pass > 0)
1395 				break;
1396 #endif
1397 			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1398 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1399 				goto bad;
1400 			}
1401 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1402 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1403 				goto bad;
1404 			}
1405 			ipaddr.sin_addr = ip->ip_dst;
1406 			ia = (struct in_ifaddr *)
1407 				ifa_ifwithaddr((struct sockaddr *)&ipaddr);
1408 			if (ia == 0) {
1409 				if (opt == IPOPT_SSRR) {
1410 					type = ICMP_UNREACH;
1411 					code = ICMP_UNREACH_SRCFAIL;
1412 					goto bad;
1413 				}
1414 				if (!ip_dosourceroute)
1415 					goto nosourcerouting;
1416 				/*
1417 				 * Loose routing, and not at next destination
1418 				 * yet; nothing to do except forward.
1419 				 */
1420 				break;
1421 			}
1422 			off--;			/* 0 origin */
1423 			if (off > optlen - (int)sizeof(struct in_addr)) {
1424 				/*
1425 				 * End of source route.  Should be for us.
1426 				 */
1427 				if (!ip_acceptsourceroute)
1428 					goto nosourcerouting;
1429 				save_rte(cp, ip->ip_src);
1430 				break;
1431 			}
1432 #ifdef IPSTEALTH
1433 			if (ipstealth)
1434 				goto dropit;
1435 #endif
1436 			if (!ip_dosourceroute) {
1437 				if (ipforwarding) {
1438 					char buf[16]; /* aaa.bbb.ccc.ddd\0 */
1439 					/*
1440 					 * Acting as a router, so generate ICMP
1441 					 */
1442 nosourcerouting:
1443 					strcpy(buf, inet_ntoa(ip->ip_dst));
1444 					log(LOG_WARNING,
1445 					    "attempted source route from %s to %s\n",
1446 					    inet_ntoa(ip->ip_src), buf);
1447 					type = ICMP_UNREACH;
1448 					code = ICMP_UNREACH_SRCFAIL;
1449 					goto bad;
1450 				} else {
1451 					/*
1452 					 * Not acting as a router, so silently drop.
1453 					 */
1454 #ifdef IPSTEALTH
1455 dropit:
1456 #endif
1457 					ipstat.ips_cantforward++;
1458 					m_freem(m);
1459 					return (1);
1460 				}
1461 			}
1462 
1463 			/*
1464 			 * locate outgoing interface
1465 			 */
1466 			(void)memcpy(&ipaddr.sin_addr, cp + off,
1467 			    sizeof(ipaddr.sin_addr));
1468 
1469 			if (opt == IPOPT_SSRR) {
1470 #define	INA	struct in_ifaddr *
1471 #define	SA	struct sockaddr *
1472 			    if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr)) == 0)
1473 				ia = (INA)ifa_ifwithnet((SA)&ipaddr);
1474 			} else
1475 				ia = ip_rtaddr(ipaddr.sin_addr);
1476 			if (ia == 0) {
1477 				type = ICMP_UNREACH;
1478 				code = ICMP_UNREACH_SRCFAIL;
1479 				goto bad;
1480 			}
1481 			ip->ip_dst = ipaddr.sin_addr;
1482 			(void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr),
1483 			    sizeof(struct in_addr));
1484 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1485 			/*
1486 			 * Let ip_intr's mcast routing check handle mcast pkts
1487 			 */
1488 			forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr));
1489 			break;
1490 
1491 		case IPOPT_RR:
1492 #ifdef IPSTEALTH
1493 			if (ipstealth && pass == 0)
1494 				break;
1495 #endif
1496 			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1497 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1498 				goto bad;
1499 			}
1500 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1501 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1502 				goto bad;
1503 			}
1504 			/*
1505 			 * If no space remains, ignore.
1506 			 */
1507 			off--;			/* 0 origin */
1508 			if (off > optlen - (int)sizeof(struct in_addr))
1509 				break;
1510 			(void)memcpy(&ipaddr.sin_addr, &ip->ip_dst,
1511 			    sizeof(ipaddr.sin_addr));
1512 			/*
1513 			 * locate outgoing interface; if we're the destination,
1514 			 * use the incoming interface (should be same).
1515 			 */
1516 			if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == 0 &&
1517 			    (ia = ip_rtaddr(ipaddr.sin_addr)) == 0) {
1518 				type = ICMP_UNREACH;
1519 				code = ICMP_UNREACH_HOST;
1520 				goto bad;
1521 			}
1522 			(void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr),
1523 			    sizeof(struct in_addr));
1524 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1525 			break;
1526 
1527 		case IPOPT_TS:
1528 #ifdef IPSTEALTH
1529 			if (ipstealth && pass == 0)
1530 				break;
1531 #endif
1532 			code = cp - (u_char *)ip;
1533 			if (optlen < 4 || optlen > 40) {
1534 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1535 				goto bad;
1536 			}
1537 			if ((off = cp[IPOPT_OFFSET]) < 5) {
1538 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1539 				goto bad;
1540 			}
1541 			if (off > optlen - (int)sizeof(int32_t)) {
1542 				cp[IPOPT_OFFSET + 1] += (1 << 4);
1543 				if ((cp[IPOPT_OFFSET + 1] & 0xf0) == 0) {
1544 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1545 					goto bad;
1546 				}
1547 				break;
1548 			}
1549 			off--;				/* 0 origin */
1550 			sin = (struct in_addr *)(cp + off);
1551 			switch (cp[IPOPT_OFFSET + 1] & 0x0f) {
1552 
1553 			case IPOPT_TS_TSONLY:
1554 				break;
1555 
1556 			case IPOPT_TS_TSANDADDR:
1557 				if (off + sizeof(n_time) +
1558 				    sizeof(struct in_addr) > optlen) {
1559 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1560 					goto bad;
1561 				}
1562 				ipaddr.sin_addr = dst;
1563 				ia = (INA)ifaof_ifpforaddr((SA)&ipaddr,
1564 							    m->m_pkthdr.rcvif);
1565 				if (ia == 0)
1566 					continue;
1567 				(void)memcpy(sin, &IA_SIN(ia)->sin_addr,
1568 				    sizeof(struct in_addr));
1569 				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1570 				off += sizeof(struct in_addr);
1571 				break;
1572 
1573 			case IPOPT_TS_PRESPEC:
1574 				if (off + sizeof(n_time) +
1575 				    sizeof(struct in_addr) > optlen) {
1576 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1577 					goto bad;
1578 				}
1579 				(void)memcpy(&ipaddr.sin_addr, sin,
1580 				    sizeof(struct in_addr));
1581 				if (ifa_ifwithaddr((SA)&ipaddr) == 0)
1582 					continue;
1583 				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1584 				off += sizeof(struct in_addr);
1585 				break;
1586 
1587 			default:
1588 				code = &cp[IPOPT_OFFSET + 1] - (u_char *)ip;
1589 				goto bad;
1590 			}
1591 			ntime = iptime();
1592 			(void)memcpy(cp + off, &ntime, sizeof(n_time));
1593 			cp[IPOPT_OFFSET] += sizeof(n_time);
1594 		}
1595 	}
1596 	if (forward && ipforwarding) {
1597 		ip_forward(m, 1, next_hop);
1598 		return (1);
1599 	}
1600 	return (0);
1601 bad:
1602 	icmp_error(m, type, code, 0, 0);
1603 	ipstat.ips_badoptions++;
1604 	return (1);
1605 }
1606 
1607 /*
1608  * Given address of next destination (final or next hop),
1609  * return internet address info of interface to be used to get there.
1610  */
1611 struct in_ifaddr *
1612 ip_rtaddr(dst)
1613 	struct in_addr dst;
1614 {
1615 	struct route sro;
1616 	struct sockaddr_in *sin;
1617 	struct in_ifaddr *ifa;
1618 
1619 	bzero(&sro, sizeof(sro));
1620 	sin = (struct sockaddr_in *)&sro.ro_dst;
1621 	sin->sin_family = AF_INET;
1622 	sin->sin_len = sizeof(*sin);
1623 	sin->sin_addr = dst;
1624 	rtalloc_ign(&sro, RTF_CLONING);
1625 
1626 	if (sro.ro_rt == NULL)
1627 		return ((struct in_ifaddr *)0);
1628 
1629 	ifa = ifatoia(sro.ro_rt->rt_ifa);
1630 	RTFREE(sro.ro_rt);
1631 	return ifa;
1632 }
1633 
1634 /*
1635  * Save incoming source route for use in replies,
1636  * to be picked up later by ip_srcroute if the receiver is interested.
1637  */
1638 static void
1639 save_rte(option, dst)
1640 	u_char *option;
1641 	struct in_addr dst;
1642 {
1643 	unsigned olen;
1644 
1645 	olen = option[IPOPT_OLEN];
1646 #ifdef DIAGNOSTIC
1647 	if (ipprintfs)
1648 		printf("save_rte: olen %d\n", olen);
1649 #endif
1650 	if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
1651 		return;
1652 	bcopy(option, ip_srcrt.srcopt, olen);
1653 	ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
1654 	ip_srcrt.dst = dst;
1655 }
1656 
1657 /*
1658  * Retrieve incoming source route for use in replies,
1659  * in the same form used by setsockopt.
1660  * The first hop is placed before the options, will be removed later.
1661  */
1662 struct mbuf *
1663 ip_srcroute()
1664 {
1665 	register struct in_addr *p, *q;
1666 	register struct mbuf *m;
1667 
1668 	if (ip_nhops == 0)
1669 		return ((struct mbuf *)0);
1670 	m = m_get(M_DONTWAIT, MT_HEADER);
1671 	if (m == 0)
1672 		return ((struct mbuf *)0);
1673 
1674 #define OPTSIZ	(sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
1675 
1676 	/* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1677 	m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
1678 	    OPTSIZ;
1679 #ifdef DIAGNOSTIC
1680 	if (ipprintfs)
1681 		printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
1682 #endif
1683 
1684 	/*
1685 	 * First save first hop for return route
1686 	 */
1687 	p = &ip_srcrt.route[ip_nhops - 1];
1688 	*(mtod(m, struct in_addr *)) = *p--;
1689 #ifdef DIAGNOSTIC
1690 	if (ipprintfs)
1691 		printf(" hops %lx", (u_long)ntohl(mtod(m, struct in_addr *)->s_addr));
1692 #endif
1693 
1694 	/*
1695 	 * Copy option fields and padding (nop) to mbuf.
1696 	 */
1697 	ip_srcrt.nop = IPOPT_NOP;
1698 	ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
1699 	(void)memcpy(mtod(m, caddr_t) + sizeof(struct in_addr),
1700 	    &ip_srcrt.nop, OPTSIZ);
1701 	q = (struct in_addr *)(mtod(m, caddr_t) +
1702 	    sizeof(struct in_addr) + OPTSIZ);
1703 #undef OPTSIZ
1704 	/*
1705 	 * Record return path as an IP source route,
1706 	 * reversing the path (pointers are now aligned).
1707 	 */
1708 	while (p >= ip_srcrt.route) {
1709 #ifdef DIAGNOSTIC
1710 		if (ipprintfs)
1711 			printf(" %lx", (u_long)ntohl(q->s_addr));
1712 #endif
1713 		*q++ = *p--;
1714 	}
1715 	/*
1716 	 * Last hop goes to final destination.
1717 	 */
1718 	*q = ip_srcrt.dst;
1719 #ifdef DIAGNOSTIC
1720 	if (ipprintfs)
1721 		printf(" %lx\n", (u_long)ntohl(q->s_addr));
1722 #endif
1723 	return (m);
1724 }
1725 
1726 /*
1727  * Strip out IP options, at higher
1728  * level protocol in the kernel.
1729  * Second argument is buffer to which options
1730  * will be moved, and return value is their length.
1731  * XXX should be deleted; last arg currently ignored.
1732  */
1733 void
1734 ip_stripoptions(m, mopt)
1735 	register struct mbuf *m;
1736 	struct mbuf *mopt;
1737 {
1738 	register int i;
1739 	struct ip *ip = mtod(m, struct ip *);
1740 	register caddr_t opts;
1741 	int olen;
1742 
1743 	olen = (ip->ip_hl << 2) - sizeof (struct ip);
1744 	opts = (caddr_t)(ip + 1);
1745 	i = m->m_len - (sizeof (struct ip) + olen);
1746 	bcopy(opts + olen, opts, (unsigned)i);
1747 	m->m_len -= olen;
1748 	if (m->m_flags & M_PKTHDR)
1749 		m->m_pkthdr.len -= olen;
1750 	ip->ip_v = IPVERSION;
1751 	ip->ip_hl = sizeof(struct ip) >> 2;
1752 }
1753 
1754 u_char inetctlerrmap[PRC_NCMDS] = {
1755 	0,		0,		0,		0,
1756 	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1757 	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1758 	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1759 	0,		0,		EHOSTUNREACH,	0,
1760 	ENOPROTOOPT,	ECONNREFUSED
1761 };
1762 
1763 /*
1764  * Forward a packet.  If some error occurs return the sender
1765  * an icmp packet.  Note we can't always generate a meaningful
1766  * icmp message because icmp doesn't have a large enough repertoire
1767  * of codes and types.
1768  *
1769  * If not forwarding, just drop the packet.  This could be confusing
1770  * if ipforwarding was zero but some routing protocol was advancing
1771  * us as a gateway to somewhere.  However, we must let the routing
1772  * protocol deal with that.
1773  *
1774  * The srcrt parameter indicates whether the packet is being forwarded
1775  * via a source route.
1776  */
1777 static void
1778 ip_forward(struct mbuf *m, int srcrt, struct sockaddr_in *next_hop)
1779 {
1780 	struct ip *ip = mtod(m, struct ip *);
1781 	struct in_ifaddr *ia;
1782 	int error, type = 0, code = 0;
1783 	struct mbuf *mcopy;
1784 	n_long dest;
1785 	struct in_addr pkt_dst;
1786 	struct ifnet *destifp;
1787 #if defined(IPSEC) || defined(FAST_IPSEC)
1788 	struct ifnet dummyifp;
1789 #endif
1790 
1791 	/*
1792 	 * Cache the destination address of the packet; this may be
1793 	 * changed by use of 'ipfw fwd'.
1794 	 */
1795 	pkt_dst = next_hop ? next_hop->sin_addr : ip->ip_dst;
1796 
1797 #ifdef DIAGNOSTIC
1798 	if (ipprintfs)
1799 		printf("forward: src %lx dst %lx ttl %x\n",
1800 		    (u_long)ip->ip_src.s_addr, (u_long)pkt_dst.s_addr,
1801 		    ip->ip_ttl);
1802 #endif
1803 
1804 
1805 	if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(pkt_dst) == 0) {
1806 		ipstat.ips_cantforward++;
1807 		m_freem(m);
1808 		return;
1809 	}
1810 #ifdef IPSTEALTH
1811 	if (!ipstealth) {
1812 #endif
1813 		if (ip->ip_ttl <= IPTTLDEC) {
1814 			icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS,
1815 			    0, 0);
1816 			return;
1817 		}
1818 #ifdef IPSTEALTH
1819 	}
1820 #endif
1821 
1822 	if ((ia = ip_rtaddr(pkt_dst)) == 0) {
1823 		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, 0, 0);
1824 		return;
1825 	}
1826 
1827 	/*
1828 	 * Save the IP header and at most 8 bytes of the payload,
1829 	 * in case we need to generate an ICMP message to the src.
1830 	 *
1831 	 * XXX this can be optimized a lot by saving the data in a local
1832 	 * buffer on the stack (72 bytes at most), and only allocating the
1833 	 * mbuf if really necessary. The vast majority of the packets
1834 	 * are forwarded without having to send an ICMP back (either
1835 	 * because unnecessary, or because rate limited), so we are
1836 	 * really we are wasting a lot of work here.
1837 	 *
1838 	 * We don't use m_copy() because it might return a reference
1839 	 * to a shared cluster. Both this function and ip_output()
1840 	 * assume exclusive access to the IP header in `m', so any
1841 	 * data in a cluster may change before we reach icmp_error().
1842 	 */
1843 	MGET(mcopy, M_DONTWAIT, m->m_type);
1844 	if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, M_DONTWAIT)) {
1845 		/*
1846 		 * It's probably ok if the pkthdr dup fails (because
1847 		 * the deep copy of the tag chain failed), but for now
1848 		 * be conservative and just discard the copy since
1849 		 * code below may some day want the tags.
1850 		 */
1851 		m_free(mcopy);
1852 		mcopy = NULL;
1853 	}
1854 	if (mcopy != NULL) {
1855 		mcopy->m_len = imin((ip->ip_hl << 2) + 8,
1856 		    (int)ip->ip_len);
1857 		m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
1858 	}
1859 
1860 #ifdef IPSTEALTH
1861 	if (!ipstealth) {
1862 #endif
1863 		ip->ip_ttl -= IPTTLDEC;
1864 #ifdef IPSTEALTH
1865 	}
1866 #endif
1867 
1868 	/*
1869 	 * If forwarding packet using same interface that it came in on,
1870 	 * perhaps should send a redirect to sender to shortcut a hop.
1871 	 * Only send redirect if source is sending directly to us,
1872 	 * and if packet was not source routed (or has any options).
1873 	 * Also, don't send redirect if forwarding using a default route
1874 	 * or a route modified by a redirect.
1875 	 */
1876 	dest = 0;
1877 	if (ipsendredirects && ia->ia_ifp == m->m_pkthdr.rcvif) {
1878 		struct sockaddr_in *sin;
1879 		struct route ro;
1880 		struct rtentry *rt;
1881 
1882 		bzero(&ro, sizeof(ro));
1883 		sin = (struct sockaddr_in *)&ro.ro_dst;
1884 		sin->sin_family = AF_INET;
1885 		sin->sin_len = sizeof(*sin);
1886 		sin->sin_addr = pkt_dst;
1887 		rtalloc_ign(&ro, RTF_CLONING);
1888 
1889 		rt = ro.ro_rt;
1890 
1891 		if (rt && (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1892 		    satosin(rt_key(rt))->sin_addr.s_addr != 0 &&
1893 		    ipsendredirects && !srcrt && !next_hop) {
1894 #define	RTA(rt)	((struct in_ifaddr *)(rt->rt_ifa))
1895 			u_long src = ntohl(ip->ip_src.s_addr);
1896 
1897 			if (RTA(rt) &&
1898 			    (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
1899 				if (rt->rt_flags & RTF_GATEWAY)
1900 					dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1901 				else
1902 					dest = pkt_dst.s_addr;
1903 				/* Router requirements says to only send host redirects */
1904 				type = ICMP_REDIRECT;
1905 				code = ICMP_REDIRECT_HOST;
1906 #ifdef DIAGNOSTIC
1907 				if (ipprintfs)
1908 					printf("redirect (%d) to %lx\n", code, (u_long)dest);
1909 #endif
1910 			}
1911 		}
1912 		if (rt)
1913 			RTFREE(rt);
1914 	}
1915 
1916     {
1917 	struct m_hdr tag;
1918 
1919 	if (next_hop) {
1920 		/* Pass IPFORWARD info if available */
1921 
1922 		tag.mh_type = MT_TAG;
1923 		tag.mh_flags = PACKET_TAG_IPFORWARD;
1924 		tag.mh_data = (caddr_t)next_hop;
1925 		tag.mh_next = m;
1926 		tag.mh_nextpkt = NULL;
1927 		m = (struct mbuf *)&tag;
1928 	}
1929 	error = ip_output(m, (struct mbuf *)0, NULL, IP_FORWARDING, 0, NULL);
1930     }
1931 	if (error)
1932 		ipstat.ips_cantforward++;
1933 	else {
1934 		ipstat.ips_forward++;
1935 		if (type)
1936 			ipstat.ips_redirectsent++;
1937 		else {
1938 			if (mcopy)
1939 				m_freem(mcopy);
1940 			return;
1941 		}
1942 	}
1943 	if (mcopy == NULL)
1944 		return;
1945 	destifp = NULL;
1946 
1947 	switch (error) {
1948 
1949 	case 0:				/* forwarded, but need redirect */
1950 		/* type, code set above */
1951 		break;
1952 
1953 	case ENETUNREACH:		/* shouldn't happen, checked above */
1954 	case EHOSTUNREACH:
1955 	case ENETDOWN:
1956 	case EHOSTDOWN:
1957 	default:
1958 		type = ICMP_UNREACH;
1959 		code = ICMP_UNREACH_HOST;
1960 		break;
1961 
1962 	case EMSGSIZE:
1963 		type = ICMP_UNREACH;
1964 		code = ICMP_UNREACH_NEEDFRAG;
1965 #if defined(IPSEC) || defined(FAST_IPSEC)
1966 		/*
1967 		 * If the packet is routed over IPsec tunnel, tell the
1968 		 * originator the tunnel MTU.
1969 		 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
1970 		 * XXX quickhack!!!
1971 		 */
1972 		{
1973 			struct secpolicy *sp = NULL;
1974 			int ipsecerror;
1975 			int ipsechdr;
1976 			struct route *ro;
1977 
1978 #ifdef IPSEC
1979 			sp = ipsec4_getpolicybyaddr(mcopy,
1980 						    IPSEC_DIR_OUTBOUND,
1981 						    IP_FORWARDING,
1982 						    &ipsecerror);
1983 #else /* FAST_IPSEC */
1984 			sp = ipsec_getpolicybyaddr(mcopy,
1985 						   IPSEC_DIR_OUTBOUND,
1986 						   IP_FORWARDING,
1987 						   &ipsecerror);
1988 #endif
1989 			if (sp != NULL) {
1990 				/* count IPsec header size */
1991 				ipsechdr = ipsec4_hdrsiz(mcopy,
1992 							 IPSEC_DIR_OUTBOUND,
1993 							 NULL);
1994 
1995 				/*
1996 				 * find the correct route for outer IPv4
1997 				 * header, compute tunnel MTU.
1998 				 *
1999 				 * XXX BUG ALERT
2000 				 * The "dummyifp" code relies upon the fact
2001 				 * that icmp_error() touches only ifp->if_mtu.
2002 				 */
2003 				/*XXX*/
2004 				destifp = NULL;
2005 				if (sp->req != NULL
2006 				 && sp->req->sav != NULL
2007 				 && sp->req->sav->sah != NULL) {
2008 					ro = &sp->req->sav->sah->sa_route;
2009 					if (ro->ro_rt && ro->ro_rt->rt_ifp) {
2010 						dummyifp.if_mtu =
2011 						    ro->ro_rt->rt_ifp->if_mtu;
2012 						dummyifp.if_mtu -= ipsechdr;
2013 						destifp = &dummyifp;
2014 					}
2015 				}
2016 
2017 #ifdef IPSEC
2018 				key_freesp(sp);
2019 #else /* FAST_IPSEC */
2020 				KEY_FREESP(&sp);
2021 #endif
2022 				ipstat.ips_cantfrag++;
2023 				break;
2024 			} else
2025 #endif /*IPSEC || FAST_IPSEC*/
2026 		destifp = ia->ia_ifp;
2027 #if defined(IPSEC) || defined(FAST_IPSEC)
2028 		}
2029 #endif /*IPSEC || FAST_IPSEC*/
2030 		ipstat.ips_cantfrag++;
2031 		break;
2032 
2033 	case ENOBUFS:
2034 		/*
2035 		 * A router should not generate ICMP_SOURCEQUENCH as
2036 		 * required in RFC1812 Requirements for IP Version 4 Routers.
2037 		 * Source quench could be a big problem under DoS attacks,
2038 		 * or if the underlying interface is rate-limited.
2039 		 * Those who need source quench packets may re-enable them
2040 		 * via the net.inet.ip.sendsourcequench sysctl.
2041 		 */
2042 		if (ip_sendsourcequench == 0) {
2043 			m_freem(mcopy);
2044 			return;
2045 		} else {
2046 			type = ICMP_SOURCEQUENCH;
2047 			code = 0;
2048 		}
2049 		break;
2050 
2051 	case EACCES:			/* ipfw denied packet */
2052 		m_freem(mcopy);
2053 		return;
2054 	}
2055 	icmp_error(mcopy, type, code, dest, destifp);
2056 }
2057 
2058 void
2059 ip_savecontrol(inp, mp, ip, m)
2060 	register struct inpcb *inp;
2061 	register struct mbuf **mp;
2062 	register struct ip *ip;
2063 	register struct mbuf *m;
2064 {
2065 	if (inp->inp_socket->so_options & SO_TIMESTAMP) {
2066 		struct timeval tv;
2067 
2068 		microtime(&tv);
2069 		*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
2070 			SCM_TIMESTAMP, SOL_SOCKET);
2071 		if (*mp)
2072 			mp = &(*mp)->m_next;
2073 	}
2074 	if (inp->inp_flags & INP_RECVDSTADDR) {
2075 		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
2076 		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
2077 		if (*mp)
2078 			mp = &(*mp)->m_next;
2079 	}
2080 	if (inp->inp_flags & INP_RECVTTL) {
2081 		*mp = sbcreatecontrol((caddr_t) &ip->ip_ttl,
2082 		    sizeof(u_char), IP_RECVTTL, IPPROTO_IP);
2083 		if (*mp)
2084 			mp = &(*mp)->m_next;
2085 	}
2086 #ifdef notyet
2087 	/* XXX
2088 	 * Moving these out of udp_input() made them even more broken
2089 	 * than they already were.
2090 	 */
2091 	/* options were tossed already */
2092 	if (inp->inp_flags & INP_RECVOPTS) {
2093 		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
2094 		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
2095 		if (*mp)
2096 			mp = &(*mp)->m_next;
2097 	}
2098 	/* ip_srcroute doesn't do what we want here, need to fix */
2099 	if (inp->inp_flags & INP_RECVRETOPTS) {
2100 		*mp = sbcreatecontrol((caddr_t) ip_srcroute(),
2101 		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
2102 		if (*mp)
2103 			mp = &(*mp)->m_next;
2104 	}
2105 #endif
2106 	if (inp->inp_flags & INP_RECVIF) {
2107 		struct ifnet *ifp;
2108 		struct sdlbuf {
2109 			struct sockaddr_dl sdl;
2110 			u_char	pad[32];
2111 		} sdlbuf;
2112 		struct sockaddr_dl *sdp;
2113 		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
2114 
2115 		if (((ifp = m->m_pkthdr.rcvif))
2116 		&& ( ifp->if_index && (ifp->if_index <= if_index))) {
2117 			sdp = (struct sockaddr_dl *)
2118 			    (ifaddr_byindex(ifp->if_index)->ifa_addr);
2119 			/*
2120 			 * Change our mind and don't try copy.
2121 			 */
2122 			if ((sdp->sdl_family != AF_LINK)
2123 			|| (sdp->sdl_len > sizeof(sdlbuf))) {
2124 				goto makedummy;
2125 			}
2126 			bcopy(sdp, sdl2, sdp->sdl_len);
2127 		} else {
2128 makedummy:
2129 			sdl2->sdl_len
2130 				= offsetof(struct sockaddr_dl, sdl_data[0]);
2131 			sdl2->sdl_family = AF_LINK;
2132 			sdl2->sdl_index = 0;
2133 			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
2134 		}
2135 		*mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
2136 			IP_RECVIF, IPPROTO_IP);
2137 		if (*mp)
2138 			mp = &(*mp)->m_next;
2139 	}
2140 }
2141 
2142 /*
2143  * XXX these routines are called from the upper part of the kernel.
2144  * They need to be locked when we remove Giant.
2145  *
2146  * They could also be moved to ip_mroute.c, since all the RSVP
2147  *  handling is done there already.
2148  */
2149 static int ip_rsvp_on;
2150 struct socket *ip_rsvpd;
2151 int
2152 ip_rsvp_init(struct socket *so)
2153 {
2154 	if (so->so_type != SOCK_RAW ||
2155 	    so->so_proto->pr_protocol != IPPROTO_RSVP)
2156 		return EOPNOTSUPP;
2157 
2158 	if (ip_rsvpd != NULL)
2159 		return EADDRINUSE;
2160 
2161 	ip_rsvpd = so;
2162 	/*
2163 	 * This may seem silly, but we need to be sure we don't over-increment
2164 	 * the RSVP counter, in case something slips up.
2165 	 */
2166 	if (!ip_rsvp_on) {
2167 		ip_rsvp_on = 1;
2168 		rsvp_on++;
2169 	}
2170 
2171 	return 0;
2172 }
2173 
2174 int
2175 ip_rsvp_done(void)
2176 {
2177 	ip_rsvpd = NULL;
2178 	/*
2179 	 * This may seem silly, but we need to be sure we don't over-decrement
2180 	 * the RSVP counter, in case something slips up.
2181 	 */
2182 	if (ip_rsvp_on) {
2183 		ip_rsvp_on = 0;
2184 		rsvp_on--;
2185 	}
2186 	return 0;
2187 }
2188 
2189 void
2190 rsvp_input(struct mbuf *m, int off)	/* XXX must fixup manually */
2191 {
2192 	if (rsvp_input_p) { /* call the real one if loaded */
2193 		rsvp_input_p(m, off);
2194 		return;
2195 	}
2196 
2197 	/* Can still get packets with rsvp_on = 0 if there is a local member
2198 	 * of the group to which the RSVP packet is addressed.  But in this
2199 	 * case we want to throw the packet away.
2200 	 */
2201 
2202 	if (!rsvp_on) {
2203 		m_freem(m);
2204 		return;
2205 	}
2206 
2207 	if (ip_rsvpd != NULL) {
2208 		rip_input(m, off);
2209 		return;
2210 	}
2211 	/* Drop the packet */
2212 	m_freem(m);
2213 }
2214