xref: /freebsd/sys/netinet/ip_input.c (revision 0f2bd1e89db1a2f09268edea21e0ead329e092df)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_bootp.h"
36 #include "opt_ipfw.h"
37 #include "opt_ipstealth.h"
38 #include "opt_ipsec.h"
39 #include "opt_route.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/callout.h>
44 #include <sys/mbuf.h>
45 #include <sys/malloc.h>
46 #include <sys/domain.h>
47 #include <sys/protosw.h>
48 #include <sys/socket.h>
49 #include <sys/time.h>
50 #include <sys/kernel.h>
51 #include <sys/lock.h>
52 #include <sys/rwlock.h>
53 #include <sys/syslog.h>
54 #include <sys/sysctl.h>
55 
56 #include <net/pfil.h>
57 #include <net/if.h>
58 #include <net/if_types.h>
59 #include <net/if_var.h>
60 #include <net/if_dl.h>
61 #include <net/route.h>
62 #include <net/netisr.h>
63 #include <net/vnet.h>
64 #include <net/flowtable.h>
65 
66 #include <netinet/in.h>
67 #include <netinet/in_systm.h>
68 #include <netinet/in_var.h>
69 #include <netinet/ip.h>
70 #include <netinet/in_pcb.h>
71 #include <netinet/ip_var.h>
72 #include <netinet/ip_fw.h>
73 #include <netinet/ip_icmp.h>
74 #include <netinet/ip_options.h>
75 #include <machine/in_cksum.h>
76 #include <netinet/ip_carp.h>
77 #ifdef IPSEC
78 #include <netinet/ip_ipsec.h>
79 #endif /* IPSEC */
80 
81 #include <sys/socketvar.h>
82 
83 #include <security/mac/mac_framework.h>
84 
85 #ifdef CTASSERT
86 CTASSERT(sizeof(struct ip) == 20);
87 #endif
88 
89 struct	rwlock in_ifaddr_lock;
90 RW_SYSINIT(in_ifaddr_lock, &in_ifaddr_lock, "in_ifaddr_lock");
91 
92 VNET_DEFINE(int, rsvp_on);
93 
94 VNET_DEFINE(int, ipforwarding);
95 SYSCTL_VNET_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
96     &VNET_NAME(ipforwarding), 0,
97     "Enable IP forwarding between interfaces");
98 
99 static VNET_DEFINE(int, ipsendredirects) = 1;	/* XXX */
100 #define	V_ipsendredirects	VNET(ipsendredirects)
101 SYSCTL_VNET_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
102     &VNET_NAME(ipsendredirects), 0,
103     "Enable sending IP redirects");
104 
105 VNET_DEFINE(int, ip_defttl) = IPDEFTTL;
106 SYSCTL_VNET_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
107     &VNET_NAME(ip_defttl), 0,
108     "Maximum TTL on IP packets");
109 
110 static VNET_DEFINE(int, ip_keepfaith);
111 #define	V_ip_keepfaith		VNET(ip_keepfaith)
112 SYSCTL_VNET_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
113     &VNET_NAME(ip_keepfaith), 0,
114     "Enable packet capture for FAITH IPv4->IPv6 translater daemon");
115 
116 static VNET_DEFINE(int, ip_sendsourcequench);
117 #define	V_ip_sendsourcequench	VNET(ip_sendsourcequench)
118 SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW,
119     &VNET_NAME(ip_sendsourcequench), 0,
120     "Enable the transmission of source quench packets");
121 
122 VNET_DEFINE(int, ip_do_randomid);
123 SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, random_id, CTLFLAG_RW,
124     &VNET_NAME(ip_do_randomid), 0,
125     "Assign random ip_id values");
126 
127 /*
128  * XXX - Setting ip_checkinterface mostly implements the receive side of
129  * the Strong ES model described in RFC 1122, but since the routing table
130  * and transmit implementation do not implement the Strong ES model,
131  * setting this to 1 results in an odd hybrid.
132  *
133  * XXX - ip_checkinterface currently must be disabled if you use ipnat
134  * to translate the destination address to another local interface.
135  *
136  * XXX - ip_checkinterface must be disabled if you add IP aliases
137  * to the loopback interface instead of the interface where the
138  * packets for those addresses are received.
139  */
140 static VNET_DEFINE(int, ip_checkinterface);
141 #define	V_ip_checkinterface	VNET(ip_checkinterface)
142 SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
143     &VNET_NAME(ip_checkinterface), 0,
144     "Verify packet arrives on correct interface");
145 
146 VNET_DEFINE(struct pfil_head, inet_pfil_hook);	/* Packet filter hooks */
147 
148 static struct netisr_handler ip_nh = {
149 	.nh_name = "ip",
150 	.nh_handler = ip_input,
151 	.nh_proto = NETISR_IP,
152 	.nh_policy = NETISR_POLICY_FLOW,
153 };
154 
155 extern	struct domain inetdomain;
156 extern	struct protosw inetsw[];
157 u_char	ip_protox[IPPROTO_MAX];
158 VNET_DEFINE(struct in_ifaddrhead, in_ifaddrhead);  /* first inet address */
159 VNET_DEFINE(struct in_ifaddrhashhead *, in_ifaddrhashtbl); /* inet addr hash table  */
160 VNET_DEFINE(u_long, in_ifaddrhmask);		/* mask for hash table */
161 
162 VNET_DEFINE(struct ipstat, ipstat);
163 SYSCTL_VNET_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RW,
164     &VNET_NAME(ipstat), ipstat,
165     "IP statistics (struct ipstat, netinet/ip_var.h)");
166 
167 static VNET_DEFINE(uma_zone_t, ipq_zone);
168 static VNET_DEFINE(TAILQ_HEAD(ipqhead, ipq), ipq[IPREASS_NHASH]);
169 static struct mtx ipqlock;
170 
171 #define	V_ipq_zone		VNET(ipq_zone)
172 #define	V_ipq			VNET(ipq)
173 
174 #define	IPQ_LOCK()	mtx_lock(&ipqlock)
175 #define	IPQ_UNLOCK()	mtx_unlock(&ipqlock)
176 #define	IPQ_LOCK_INIT()	mtx_init(&ipqlock, "ipqlock", NULL, MTX_DEF)
177 #define	IPQ_LOCK_ASSERT()	mtx_assert(&ipqlock, MA_OWNED)
178 
179 static void	maxnipq_update(void);
180 static void	ipq_zone_change(void *);
181 static void	ip_drain_locked(void);
182 
183 static VNET_DEFINE(int, maxnipq);  /* Administrative limit on # reass queues. */
184 static VNET_DEFINE(int, nipq);			/* Total # of reass queues */
185 #define	V_maxnipq		VNET(maxnipq)
186 #define	V_nipq			VNET(nipq)
187 SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, fragpackets, CTLFLAG_RD,
188     &VNET_NAME(nipq), 0,
189     "Current number of IPv4 fragment reassembly queue entries");
190 
191 static VNET_DEFINE(int, maxfragsperpacket);
192 #define	V_maxfragsperpacket	VNET(maxfragsperpacket)
193 SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_RW,
194     &VNET_NAME(maxfragsperpacket), 0,
195     "Maximum number of IPv4 fragments allowed per packet");
196 
197 struct callout	ipport_tick_callout;
198 
199 #ifdef IPCTL_DEFMTU
200 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
201     &ip_mtu, 0, "Default MTU");
202 #endif
203 
204 #ifdef IPSTEALTH
205 VNET_DEFINE(int, ipstealth);
206 SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW,
207     &VNET_NAME(ipstealth), 0,
208     "IP stealth mode, no TTL decrementation on forwarding");
209 #endif
210 
211 #ifdef FLOWTABLE
212 static VNET_DEFINE(int, ip_output_flowtable_size) = 2048;
213 VNET_DEFINE(struct flowtable *, ip_ft);
214 #define	V_ip_output_flowtable_size	VNET(ip_output_flowtable_size)
215 
216 SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, output_flowtable_size, CTLFLAG_RDTUN,
217     &VNET_NAME(ip_output_flowtable_size), 2048,
218     "number of entries in the per-cpu output flow caches");
219 #endif
220 
221 VNET_DEFINE(int, fw_one_pass) = 1;
222 
223 static void	ip_freef(struct ipqhead *, struct ipq *);
224 
225 /*
226  * Kernel module interface for updating ipstat.  The argument is an index
227  * into ipstat treated as an array of u_long.  While this encodes the general
228  * layout of ipstat into the caller, it doesn't encode its location, so that
229  * future changes to add, for example, per-CPU stats support won't cause
230  * binary compatibility problems for kernel modules.
231  */
232 void
233 kmod_ipstat_inc(int statnum)
234 {
235 
236 	(*((u_long *)&V_ipstat + statnum))++;
237 }
238 
239 void
240 kmod_ipstat_dec(int statnum)
241 {
242 
243 	(*((u_long *)&V_ipstat + statnum))--;
244 }
245 
246 static int
247 sysctl_netinet_intr_queue_maxlen(SYSCTL_HANDLER_ARGS)
248 {
249 	int error, qlimit;
250 
251 	netisr_getqlimit(&ip_nh, &qlimit);
252 	error = sysctl_handle_int(oidp, &qlimit, 0, req);
253 	if (error || !req->newptr)
254 		return (error);
255 	if (qlimit < 1)
256 		return (EINVAL);
257 	return (netisr_setqlimit(&ip_nh, qlimit));
258 }
259 SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen,
260     CTLTYPE_INT|CTLFLAG_RW, 0, 0, sysctl_netinet_intr_queue_maxlen, "I",
261     "Maximum size of the IP input queue");
262 
263 static int
264 sysctl_netinet_intr_queue_drops(SYSCTL_HANDLER_ARGS)
265 {
266 	u_int64_t qdrops_long;
267 	int error, qdrops;
268 
269 	netisr_getqdrops(&ip_nh, &qdrops_long);
270 	qdrops = qdrops_long;
271 	error = sysctl_handle_int(oidp, &qdrops, 0, req);
272 	if (error || !req->newptr)
273 		return (error);
274 	if (qdrops != 0)
275 		return (EINVAL);
276 	netisr_clearqdrops(&ip_nh);
277 	return (0);
278 }
279 
280 SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops,
281     CTLTYPE_INT|CTLFLAG_RD, 0, 0, sysctl_netinet_intr_queue_drops, "I",
282     "Number of packets dropped from the IP input queue");
283 
284 /*
285  * IP initialization: fill in IP protocol switch table.
286  * All protocols not implemented in kernel go to raw IP protocol handler.
287  */
288 void
289 ip_init(void)
290 {
291 	struct protosw *pr;
292 	int i;
293 
294 	V_ip_id = time_second & 0xffff;
295 
296 	TAILQ_INIT(&V_in_ifaddrhead);
297 	V_in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &V_in_ifaddrhmask);
298 
299 	/* Initialize IP reassembly queue. */
300 	for (i = 0; i < IPREASS_NHASH; i++)
301 		TAILQ_INIT(&V_ipq[i]);
302 	V_maxnipq = nmbclusters / 32;
303 	V_maxfragsperpacket = 16;
304 	V_ipq_zone = uma_zcreate("ipq", sizeof(struct ipq), NULL, NULL, NULL,
305 	    NULL, UMA_ALIGN_PTR, 0);
306 	maxnipq_update();
307 
308 	/* Initialize packet filter hooks. */
309 	V_inet_pfil_hook.ph_type = PFIL_TYPE_AF;
310 	V_inet_pfil_hook.ph_af = AF_INET;
311 	if ((i = pfil_head_register(&V_inet_pfil_hook)) != 0)
312 		printf("%s: WARNING: unable to register pfil hook, "
313 			"error %d\n", __func__, i);
314 
315 #ifdef FLOWTABLE
316 	if (TUNABLE_INT_FETCH("net.inet.ip.output_flowtable_size",
317 		&V_ip_output_flowtable_size)) {
318 		if (V_ip_output_flowtable_size < 256)
319 			V_ip_output_flowtable_size = 256;
320 		if (!powerof2(V_ip_output_flowtable_size)) {
321 			printf("flowtable must be power of 2 size\n");
322 			V_ip_output_flowtable_size = 2048;
323 		}
324 	} else {
325 		/*
326 		 * round up to the next power of 2
327 		 */
328 		V_ip_output_flowtable_size = 1 << fls((1024 + maxusers * 64)-1);
329 	}
330 	V_ip_ft = flowtable_alloc("ipv4", V_ip_output_flowtable_size, FL_PCPU);
331 #endif
332 
333 	/* Skip initialization of globals for non-default instances. */
334 	if (!IS_DEFAULT_VNET(curvnet))
335 		return;
336 
337 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
338 	if (pr == NULL)
339 		panic("ip_init: PF_INET not found");
340 
341 	/* Initialize the entire ip_protox[] array to IPPROTO_RAW. */
342 	for (i = 0; i < IPPROTO_MAX; i++)
343 		ip_protox[i] = pr - inetsw;
344 	/*
345 	 * Cycle through IP protocols and put them into the appropriate place
346 	 * in ip_protox[].
347 	 */
348 	for (pr = inetdomain.dom_protosw;
349 	    pr < inetdomain.dom_protoswNPROTOSW; pr++)
350 		if (pr->pr_domain->dom_family == PF_INET &&
351 		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW) {
352 			/* Be careful to only index valid IP protocols. */
353 			if (pr->pr_protocol < IPPROTO_MAX)
354 				ip_protox[pr->pr_protocol] = pr - inetsw;
355 		}
356 
357 	/* Start ipport_tick. */
358 	callout_init(&ipport_tick_callout, CALLOUT_MPSAFE);
359 	callout_reset(&ipport_tick_callout, 1, ipport_tick, NULL);
360 	EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL,
361 		SHUTDOWN_PRI_DEFAULT);
362 	EVENTHANDLER_REGISTER(nmbclusters_change, ipq_zone_change,
363 		NULL, EVENTHANDLER_PRI_ANY);
364 
365 	/* Initialize various other remaining things. */
366 	IPQ_LOCK_INIT();
367 	netisr_register(&ip_nh);
368 }
369 
370 #ifdef VIMAGE
371 void
372 ip_destroy(void)
373 {
374 
375 	/* Cleanup in_ifaddr hash table; should be empty. */
376 	hashdestroy(V_in_ifaddrhashtbl, M_IFADDR, V_in_ifaddrhmask);
377 
378 	IPQ_LOCK();
379 	ip_drain_locked();
380 	IPQ_UNLOCK();
381 
382 	uma_zdestroy(V_ipq_zone);
383 }
384 #endif
385 
386 void
387 ip_fini(void *xtp)
388 {
389 
390 	callout_stop(&ipport_tick_callout);
391 }
392 
393 /*
394  * Ip input routine.  Checksum and byte swap header.  If fragmented
395  * try to reassemble.  Process options.  Pass to next level.
396  */
397 void
398 ip_input(struct mbuf *m)
399 {
400 	struct ip *ip = NULL;
401 	struct in_ifaddr *ia = NULL;
402 	struct ifaddr *ifa;
403 	struct ifnet *ifp;
404 	int    checkif, hlen = 0;
405 	u_short sum;
406 	int dchg = 0;				/* dest changed after fw */
407 	struct in_addr odst;			/* original dst address */
408 
409 	M_ASSERTPKTHDR(m);
410 
411 	if (m->m_flags & M_FASTFWD_OURS) {
412 		/*
413 		 * Firewall or NAT changed destination to local.
414 		 * We expect ip_len and ip_off to be in host byte order.
415 		 */
416 		m->m_flags &= ~M_FASTFWD_OURS;
417 		/* Set up some basics that will be used later. */
418 		ip = mtod(m, struct ip *);
419 		hlen = ip->ip_hl << 2;
420 		goto ours;
421 	}
422 
423 	IPSTAT_INC(ips_total);
424 
425 	if (m->m_pkthdr.len < sizeof(struct ip))
426 		goto tooshort;
427 
428 	if (m->m_len < sizeof (struct ip) &&
429 	    (m = m_pullup(m, sizeof (struct ip))) == NULL) {
430 		IPSTAT_INC(ips_toosmall);
431 		return;
432 	}
433 	ip = mtod(m, struct ip *);
434 
435 	if (ip->ip_v != IPVERSION) {
436 		IPSTAT_INC(ips_badvers);
437 		goto bad;
438 	}
439 
440 	hlen = ip->ip_hl << 2;
441 	if (hlen < sizeof(struct ip)) {	/* minimum header length */
442 		IPSTAT_INC(ips_badhlen);
443 		goto bad;
444 	}
445 	if (hlen > m->m_len) {
446 		if ((m = m_pullup(m, hlen)) == NULL) {
447 			IPSTAT_INC(ips_badhlen);
448 			return;
449 		}
450 		ip = mtod(m, struct ip *);
451 	}
452 
453 	/* 127/8 must not appear on wire - RFC1122 */
454 	ifp = m->m_pkthdr.rcvif;
455 	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
456 	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
457 		if ((ifp->if_flags & IFF_LOOPBACK) == 0) {
458 			IPSTAT_INC(ips_badaddr);
459 			goto bad;
460 		}
461 	}
462 
463 	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
464 		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
465 	} else {
466 		if (hlen == sizeof(struct ip)) {
467 			sum = in_cksum_hdr(ip);
468 		} else {
469 			sum = in_cksum(m, hlen);
470 		}
471 	}
472 	if (sum) {
473 		IPSTAT_INC(ips_badsum);
474 		goto bad;
475 	}
476 
477 #ifdef ALTQ
478 	if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0)
479 		/* packet is dropped by traffic conditioner */
480 		return;
481 #endif
482 
483 	/*
484 	 * Convert fields to host representation.
485 	 */
486 	ip->ip_len = ntohs(ip->ip_len);
487 	if (ip->ip_len < hlen) {
488 		IPSTAT_INC(ips_badlen);
489 		goto bad;
490 	}
491 	ip->ip_off = ntohs(ip->ip_off);
492 
493 	/*
494 	 * Check that the amount of data in the buffers
495 	 * is as at least much as the IP header would have us expect.
496 	 * Trim mbufs if longer than we expect.
497 	 * Drop packet if shorter than we expect.
498 	 */
499 	if (m->m_pkthdr.len < ip->ip_len) {
500 tooshort:
501 		IPSTAT_INC(ips_tooshort);
502 		goto bad;
503 	}
504 	if (m->m_pkthdr.len > ip->ip_len) {
505 		if (m->m_len == m->m_pkthdr.len) {
506 			m->m_len = ip->ip_len;
507 			m->m_pkthdr.len = ip->ip_len;
508 		} else
509 			m_adj(m, ip->ip_len - m->m_pkthdr.len);
510 	}
511 #ifdef IPSEC
512 	/*
513 	 * Bypass packet filtering for packets from a tunnel (gif).
514 	 */
515 	if (ip_ipsec_filtertunnel(m))
516 		goto passin;
517 #endif /* IPSEC */
518 
519 	/*
520 	 * Run through list of hooks for input packets.
521 	 *
522 	 * NB: Beware of the destination address changing (e.g.
523 	 *     by NAT rewriting).  When this happens, tell
524 	 *     ip_forward to do the right thing.
525 	 */
526 
527 	/* Jump over all PFIL processing if hooks are not active. */
528 	if (!PFIL_HOOKED(&V_inet_pfil_hook))
529 		goto passin;
530 
531 	odst = ip->ip_dst;
532 	if (pfil_run_hooks(&V_inet_pfil_hook, &m, ifp, PFIL_IN, NULL) != 0)
533 		return;
534 	if (m == NULL)			/* consumed by filter */
535 		return;
536 
537 	ip = mtod(m, struct ip *);
538 	dchg = (odst.s_addr != ip->ip_dst.s_addr);
539 	ifp = m->m_pkthdr.rcvif;
540 
541 #ifdef IPFIREWALL_FORWARD
542 	if (m->m_flags & M_FASTFWD_OURS) {
543 		m->m_flags &= ~M_FASTFWD_OURS;
544 		goto ours;
545 	}
546 	if ((dchg = (m_tag_find(m, PACKET_TAG_IPFORWARD, NULL) != NULL)) != 0) {
547 		/*
548 		 * Directly ship the packet on.  This allows forwarding
549 		 * packets originally destined to us to some other directly
550 		 * connected host.
551 		 */
552 		ip_forward(m, dchg);
553 		return;
554 	}
555 #endif /* IPFIREWALL_FORWARD */
556 
557 passin:
558 	/*
559 	 * Process options and, if not destined for us,
560 	 * ship it on.  ip_dooptions returns 1 when an
561 	 * error was detected (causing an icmp message
562 	 * to be sent and the original packet to be freed).
563 	 */
564 	if (hlen > sizeof (struct ip) && ip_dooptions(m, 0))
565 		return;
566 
567         /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
568          * matter if it is destined to another node, or whether it is
569          * a multicast one, RSVP wants it! and prevents it from being forwarded
570          * anywhere else. Also checks if the rsvp daemon is running before
571 	 * grabbing the packet.
572          */
573 	if (V_rsvp_on && ip->ip_p==IPPROTO_RSVP)
574 		goto ours;
575 
576 	/*
577 	 * Check our list of addresses, to see if the packet is for us.
578 	 * If we don't have any addresses, assume any unicast packet
579 	 * we receive might be for us (and let the upper layers deal
580 	 * with it).
581 	 */
582 	if (TAILQ_EMPTY(&V_in_ifaddrhead) &&
583 	    (m->m_flags & (M_MCAST|M_BCAST)) == 0)
584 		goto ours;
585 
586 	/*
587 	 * Enable a consistency check between the destination address
588 	 * and the arrival interface for a unicast packet (the RFC 1122
589 	 * strong ES model) if IP forwarding is disabled and the packet
590 	 * is not locally generated and the packet is not subject to
591 	 * 'ipfw fwd'.
592 	 *
593 	 * XXX - Checking also should be disabled if the destination
594 	 * address is ipnat'ed to a different interface.
595 	 *
596 	 * XXX - Checking is incompatible with IP aliases added
597 	 * to the loopback interface instead of the interface where
598 	 * the packets are received.
599 	 *
600 	 * XXX - This is the case for carp vhost IPs as well so we
601 	 * insert a workaround. If the packet got here, we already
602 	 * checked with carp_iamatch() and carp_forus().
603 	 */
604 	checkif = V_ip_checkinterface && (V_ipforwarding == 0) &&
605 	    ifp != NULL && ((ifp->if_flags & IFF_LOOPBACK) == 0) &&
606 	    ifp->if_carp == NULL && (dchg == 0);
607 
608 	/*
609 	 * Check for exact addresses in the hash bucket.
610 	 */
611 	/* IN_IFADDR_RLOCK(); */
612 	LIST_FOREACH(ia, INADDR_HASH(ip->ip_dst.s_addr), ia_hash) {
613 		/*
614 		 * If the address matches, verify that the packet
615 		 * arrived via the correct interface if checking is
616 		 * enabled.
617 		 */
618 		if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr &&
619 		    (!checkif || ia->ia_ifp == ifp)) {
620 			ifa_ref(&ia->ia_ifa);
621 			/* IN_IFADDR_RUNLOCK(); */
622 			goto ours;
623 		}
624 	}
625 	/* IN_IFADDR_RUNLOCK(); */
626 
627 	/*
628 	 * Check for broadcast addresses.
629 	 *
630 	 * Only accept broadcast packets that arrive via the matching
631 	 * interface.  Reception of forwarded directed broadcasts would
632 	 * be handled via ip_forward() and ether_output() with the loopback
633 	 * into the stack for SIMPLEX interfaces handled by ether_output().
634 	 */
635 	if (ifp != NULL && ifp->if_flags & IFF_BROADCAST) {
636 		IF_ADDR_LOCK(ifp);
637 	        TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
638 			if (ifa->ifa_addr->sa_family != AF_INET)
639 				continue;
640 			ia = ifatoia(ifa);
641 			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
642 			    ip->ip_dst.s_addr) {
643 				ifa_ref(ifa);
644 				IF_ADDR_UNLOCK(ifp);
645 				goto ours;
646 			}
647 			if (ia->ia_netbroadcast.s_addr == ip->ip_dst.s_addr) {
648 				ifa_ref(ifa);
649 				IF_ADDR_UNLOCK(ifp);
650 				goto ours;
651 			}
652 #ifdef BOOTP_COMPAT
653 			if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY) {
654 				ifa_ref(ifa);
655 				IF_ADDR_UNLOCK(ifp);
656 				goto ours;
657 			}
658 #endif
659 		}
660 		IF_ADDR_UNLOCK(ifp);
661 		ia = NULL;
662 	}
663 	/* RFC 3927 2.7: Do not forward datagrams for 169.254.0.0/16. */
664 	if (IN_LINKLOCAL(ntohl(ip->ip_dst.s_addr))) {
665 		IPSTAT_INC(ips_cantforward);
666 		m_freem(m);
667 		return;
668 	}
669 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
670 		if (V_ip_mrouter) {
671 			/*
672 			 * If we are acting as a multicast router, all
673 			 * incoming multicast packets are passed to the
674 			 * kernel-level multicast forwarding function.
675 			 * The packet is returned (relatively) intact; if
676 			 * ip_mforward() returns a non-zero value, the packet
677 			 * must be discarded, else it may be accepted below.
678 			 */
679 			if (ip_mforward && ip_mforward(ip, ifp, m, 0) != 0) {
680 				IPSTAT_INC(ips_cantforward);
681 				m_freem(m);
682 				return;
683 			}
684 
685 			/*
686 			 * The process-level routing daemon needs to receive
687 			 * all multicast IGMP packets, whether or not this
688 			 * host belongs to their destination groups.
689 			 */
690 			if (ip->ip_p == IPPROTO_IGMP)
691 				goto ours;
692 			IPSTAT_INC(ips_forward);
693 		}
694 		/*
695 		 * Assume the packet is for us, to avoid prematurely taking
696 		 * a lock on the in_multi hash. Protocols must perform
697 		 * their own filtering and update statistics accordingly.
698 		 */
699 		goto ours;
700 	}
701 	if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
702 		goto ours;
703 	if (ip->ip_dst.s_addr == INADDR_ANY)
704 		goto ours;
705 
706 	/*
707 	 * FAITH(Firewall Aided Internet Translator)
708 	 */
709 	if (ifp && ifp->if_type == IFT_FAITH) {
710 		if (V_ip_keepfaith) {
711 			if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
712 				goto ours;
713 		}
714 		m_freem(m);
715 		return;
716 	}
717 
718 	/*
719 	 * Not for us; forward if possible and desirable.
720 	 */
721 	if (V_ipforwarding == 0) {
722 		IPSTAT_INC(ips_cantforward);
723 		m_freem(m);
724 	} else {
725 #ifdef IPSEC
726 		if (ip_ipsec_fwd(m))
727 			goto bad;
728 #endif /* IPSEC */
729 		ip_forward(m, dchg);
730 	}
731 	return;
732 
733 ours:
734 #ifdef IPSTEALTH
735 	/*
736 	 * IPSTEALTH: Process non-routing options only
737 	 * if the packet is destined for us.
738 	 */
739 	if (V_ipstealth && hlen > sizeof (struct ip) && ip_dooptions(m, 1)) {
740 		if (ia != NULL)
741 			ifa_free(&ia->ia_ifa);
742 		return;
743 	}
744 #endif /* IPSTEALTH */
745 
746 	/* Count the packet in the ip address stats */
747 	if (ia != NULL) {
748 		ia->ia_ifa.if_ipackets++;
749 		ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
750 		ifa_free(&ia->ia_ifa);
751 	}
752 
753 	/*
754 	 * Attempt reassembly; if it succeeds, proceed.
755 	 * ip_reass() will return a different mbuf.
756 	 */
757 	if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
758 		m = ip_reass(m);
759 		if (m == NULL)
760 			return;
761 		ip = mtod(m, struct ip *);
762 		/* Get the header length of the reassembled packet */
763 		hlen = ip->ip_hl << 2;
764 	}
765 
766 	/*
767 	 * Further protocols expect the packet length to be w/o the
768 	 * IP header.
769 	 */
770 	ip->ip_len -= hlen;
771 
772 #ifdef IPSEC
773 	/*
774 	 * enforce IPsec policy checking if we are seeing last header.
775 	 * note that we do not visit this with protocols with pcb layer
776 	 * code - like udp/tcp/raw ip.
777 	 */
778 	if (ip_ipsec_input(m))
779 		goto bad;
780 #endif /* IPSEC */
781 
782 	/*
783 	 * Switch out to protocol's input routine.
784 	 */
785 	IPSTAT_INC(ips_delivered);
786 
787 	(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
788 	return;
789 bad:
790 	m_freem(m);
791 }
792 
793 /*
794  * After maxnipq has been updated, propagate the change to UMA.  The UMA zone
795  * max has slightly different semantics than the sysctl, for historical
796  * reasons.
797  */
798 static void
799 maxnipq_update(void)
800 {
801 
802 	/*
803 	 * -1 for unlimited allocation.
804 	 */
805 	if (V_maxnipq < 0)
806 		uma_zone_set_max(V_ipq_zone, 0);
807 	/*
808 	 * Positive number for specific bound.
809 	 */
810 	if (V_maxnipq > 0)
811 		uma_zone_set_max(V_ipq_zone, V_maxnipq);
812 	/*
813 	 * Zero specifies no further fragment queue allocation -- set the
814 	 * bound very low, but rely on implementation elsewhere to actually
815 	 * prevent allocation and reclaim current queues.
816 	 */
817 	if (V_maxnipq == 0)
818 		uma_zone_set_max(V_ipq_zone, 1);
819 }
820 
821 static void
822 ipq_zone_change(void *tag)
823 {
824 
825 	if (V_maxnipq > 0 && V_maxnipq < (nmbclusters / 32)) {
826 		V_maxnipq = nmbclusters / 32;
827 		maxnipq_update();
828 	}
829 }
830 
831 static int
832 sysctl_maxnipq(SYSCTL_HANDLER_ARGS)
833 {
834 	int error, i;
835 
836 	i = V_maxnipq;
837 	error = sysctl_handle_int(oidp, &i, 0, req);
838 	if (error || !req->newptr)
839 		return (error);
840 
841 	/*
842 	 * XXXRW: Might be a good idea to sanity check the argument and place
843 	 * an extreme upper bound.
844 	 */
845 	if (i < -1)
846 		return (EINVAL);
847 	V_maxnipq = i;
848 	maxnipq_update();
849 	return (0);
850 }
851 
852 SYSCTL_PROC(_net_inet_ip, OID_AUTO, maxfragpackets, CTLTYPE_INT|CTLFLAG_RW,
853     NULL, 0, sysctl_maxnipq, "I",
854     "Maximum number of IPv4 fragment reassembly queue entries");
855 
856 /*
857  * Take incoming datagram fragment and try to reassemble it into
858  * whole datagram.  If the argument is the first fragment or one
859  * in between the function will return NULL and store the mbuf
860  * in the fragment chain.  If the argument is the last fragment
861  * the packet will be reassembled and the pointer to the new
862  * mbuf returned for further processing.  Only m_tags attached
863  * to the first packet/fragment are preserved.
864  * The IP header is *NOT* adjusted out of iplen.
865  */
866 struct mbuf *
867 ip_reass(struct mbuf *m)
868 {
869 	struct ip *ip;
870 	struct mbuf *p, *q, *nq, *t;
871 	struct ipq *fp = NULL;
872 	struct ipqhead *head;
873 	int i, hlen, next;
874 	u_int8_t ecn, ecn0;
875 	u_short hash;
876 
877 	/* If maxnipq or maxfragsperpacket are 0, never accept fragments. */
878 	if (V_maxnipq == 0 || V_maxfragsperpacket == 0) {
879 		IPSTAT_INC(ips_fragments);
880 		IPSTAT_INC(ips_fragdropped);
881 		m_freem(m);
882 		return (NULL);
883 	}
884 
885 	ip = mtod(m, struct ip *);
886 	hlen = ip->ip_hl << 2;
887 
888 	hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
889 	head = &V_ipq[hash];
890 	IPQ_LOCK();
891 
892 	/*
893 	 * Look for queue of fragments
894 	 * of this datagram.
895 	 */
896 	TAILQ_FOREACH(fp, head, ipq_list)
897 		if (ip->ip_id == fp->ipq_id &&
898 		    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
899 		    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
900 #ifdef MAC
901 		    mac_ipq_match(m, fp) &&
902 #endif
903 		    ip->ip_p == fp->ipq_p)
904 			goto found;
905 
906 	fp = NULL;
907 
908 	/*
909 	 * Attempt to trim the number of allocated fragment queues if it
910 	 * exceeds the administrative limit.
911 	 */
912 	if ((V_nipq > V_maxnipq) && (V_maxnipq > 0)) {
913 		/*
914 		 * drop something from the tail of the current queue
915 		 * before proceeding further
916 		 */
917 		struct ipq *q = TAILQ_LAST(head, ipqhead);
918 		if (q == NULL) {   /* gak */
919 			for (i = 0; i < IPREASS_NHASH; i++) {
920 				struct ipq *r = TAILQ_LAST(&V_ipq[i], ipqhead);
921 				if (r) {
922 					IPSTAT_ADD(ips_fragtimeout,
923 					    r->ipq_nfrags);
924 					ip_freef(&V_ipq[i], r);
925 					break;
926 				}
927 			}
928 		} else {
929 			IPSTAT_ADD(ips_fragtimeout, q->ipq_nfrags);
930 			ip_freef(head, q);
931 		}
932 	}
933 
934 found:
935 	/*
936 	 * Adjust ip_len to not reflect header,
937 	 * convert offset of this to bytes.
938 	 */
939 	ip->ip_len -= hlen;
940 	if (ip->ip_off & IP_MF) {
941 		/*
942 		 * Make sure that fragments have a data length
943 		 * that's a non-zero multiple of 8 bytes.
944 		 */
945 		if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
946 			IPSTAT_INC(ips_toosmall); /* XXX */
947 			goto dropfrag;
948 		}
949 		m->m_flags |= M_FRAG;
950 	} else
951 		m->m_flags &= ~M_FRAG;
952 	ip->ip_off <<= 3;
953 
954 
955 	/*
956 	 * Attempt reassembly; if it succeeds, proceed.
957 	 * ip_reass() will return a different mbuf.
958 	 */
959 	IPSTAT_INC(ips_fragments);
960 	m->m_pkthdr.header = ip;
961 
962 	/* Previous ip_reass() started here. */
963 	/*
964 	 * Presence of header sizes in mbufs
965 	 * would confuse code below.
966 	 */
967 	m->m_data += hlen;
968 	m->m_len -= hlen;
969 
970 	/*
971 	 * If first fragment to arrive, create a reassembly queue.
972 	 */
973 	if (fp == NULL) {
974 		fp = uma_zalloc(V_ipq_zone, M_NOWAIT);
975 		if (fp == NULL)
976 			goto dropfrag;
977 #ifdef MAC
978 		if (mac_ipq_init(fp, M_NOWAIT) != 0) {
979 			uma_zfree(V_ipq_zone, fp);
980 			fp = NULL;
981 			goto dropfrag;
982 		}
983 		mac_ipq_create(m, fp);
984 #endif
985 		TAILQ_INSERT_HEAD(head, fp, ipq_list);
986 		V_nipq++;
987 		fp->ipq_nfrags = 1;
988 		fp->ipq_ttl = IPFRAGTTL;
989 		fp->ipq_p = ip->ip_p;
990 		fp->ipq_id = ip->ip_id;
991 		fp->ipq_src = ip->ip_src;
992 		fp->ipq_dst = ip->ip_dst;
993 		fp->ipq_frags = m;
994 		m->m_nextpkt = NULL;
995 		goto done;
996 	} else {
997 		fp->ipq_nfrags++;
998 #ifdef MAC
999 		mac_ipq_update(m, fp);
1000 #endif
1001 	}
1002 
1003 #define GETIP(m)	((struct ip*)((m)->m_pkthdr.header))
1004 
1005 	/*
1006 	 * Handle ECN by comparing this segment with the first one;
1007 	 * if CE is set, do not lose CE.
1008 	 * drop if CE and not-ECT are mixed for the same packet.
1009 	 */
1010 	ecn = ip->ip_tos & IPTOS_ECN_MASK;
1011 	ecn0 = GETIP(fp->ipq_frags)->ip_tos & IPTOS_ECN_MASK;
1012 	if (ecn == IPTOS_ECN_CE) {
1013 		if (ecn0 == IPTOS_ECN_NOTECT)
1014 			goto dropfrag;
1015 		if (ecn0 != IPTOS_ECN_CE)
1016 			GETIP(fp->ipq_frags)->ip_tos |= IPTOS_ECN_CE;
1017 	}
1018 	if (ecn == IPTOS_ECN_NOTECT && ecn0 != IPTOS_ECN_NOTECT)
1019 		goto dropfrag;
1020 
1021 	/*
1022 	 * Find a segment which begins after this one does.
1023 	 */
1024 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
1025 		if (GETIP(q)->ip_off > ip->ip_off)
1026 			break;
1027 
1028 	/*
1029 	 * If there is a preceding segment, it may provide some of
1030 	 * our data already.  If so, drop the data from the incoming
1031 	 * segment.  If it provides all of our data, drop us, otherwise
1032 	 * stick new segment in the proper place.
1033 	 *
1034 	 * If some of the data is dropped from the the preceding
1035 	 * segment, then it's checksum is invalidated.
1036 	 */
1037 	if (p) {
1038 		i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
1039 		if (i > 0) {
1040 			if (i >= ip->ip_len)
1041 				goto dropfrag;
1042 			m_adj(m, i);
1043 			m->m_pkthdr.csum_flags = 0;
1044 			ip->ip_off += i;
1045 			ip->ip_len -= i;
1046 		}
1047 		m->m_nextpkt = p->m_nextpkt;
1048 		p->m_nextpkt = m;
1049 	} else {
1050 		m->m_nextpkt = fp->ipq_frags;
1051 		fp->ipq_frags = m;
1052 	}
1053 
1054 	/*
1055 	 * While we overlap succeeding segments trim them or,
1056 	 * if they are completely covered, dequeue them.
1057 	 */
1058 	for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
1059 	     q = nq) {
1060 		i = (ip->ip_off + ip->ip_len) - GETIP(q)->ip_off;
1061 		if (i < GETIP(q)->ip_len) {
1062 			GETIP(q)->ip_len -= i;
1063 			GETIP(q)->ip_off += i;
1064 			m_adj(q, i);
1065 			q->m_pkthdr.csum_flags = 0;
1066 			break;
1067 		}
1068 		nq = q->m_nextpkt;
1069 		m->m_nextpkt = nq;
1070 		IPSTAT_INC(ips_fragdropped);
1071 		fp->ipq_nfrags--;
1072 		m_freem(q);
1073 	}
1074 
1075 	/*
1076 	 * Check for complete reassembly and perform frag per packet
1077 	 * limiting.
1078 	 *
1079 	 * Frag limiting is performed here so that the nth frag has
1080 	 * a chance to complete the packet before we drop the packet.
1081 	 * As a result, n+1 frags are actually allowed per packet, but
1082 	 * only n will ever be stored. (n = maxfragsperpacket.)
1083 	 *
1084 	 */
1085 	next = 0;
1086 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1087 		if (GETIP(q)->ip_off != next) {
1088 			if (fp->ipq_nfrags > V_maxfragsperpacket) {
1089 				IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
1090 				ip_freef(head, fp);
1091 			}
1092 			goto done;
1093 		}
1094 		next += GETIP(q)->ip_len;
1095 	}
1096 	/* Make sure the last packet didn't have the IP_MF flag */
1097 	if (p->m_flags & M_FRAG) {
1098 		if (fp->ipq_nfrags > V_maxfragsperpacket) {
1099 			IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
1100 			ip_freef(head, fp);
1101 		}
1102 		goto done;
1103 	}
1104 
1105 	/*
1106 	 * Reassembly is complete.  Make sure the packet is a sane size.
1107 	 */
1108 	q = fp->ipq_frags;
1109 	ip = GETIP(q);
1110 	if (next + (ip->ip_hl << 2) > IP_MAXPACKET) {
1111 		IPSTAT_INC(ips_toolong);
1112 		IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
1113 		ip_freef(head, fp);
1114 		goto done;
1115 	}
1116 
1117 	/*
1118 	 * Concatenate fragments.
1119 	 */
1120 	m = q;
1121 	t = m->m_next;
1122 	m->m_next = NULL;
1123 	m_cat(m, t);
1124 	nq = q->m_nextpkt;
1125 	q->m_nextpkt = NULL;
1126 	for (q = nq; q != NULL; q = nq) {
1127 		nq = q->m_nextpkt;
1128 		q->m_nextpkt = NULL;
1129 		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1130 		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1131 		m_cat(m, q);
1132 	}
1133 	/*
1134 	 * In order to do checksumming faster we do 'end-around carry' here
1135 	 * (and not in for{} loop), though it implies we are not going to
1136 	 * reassemble more than 64k fragments.
1137 	 */
1138 	m->m_pkthdr.csum_data =
1139 	    (m->m_pkthdr.csum_data & 0xffff) + (m->m_pkthdr.csum_data >> 16);
1140 #ifdef MAC
1141 	mac_ipq_reassemble(fp, m);
1142 	mac_ipq_destroy(fp);
1143 #endif
1144 
1145 	/*
1146 	 * Create header for new ip packet by modifying header of first
1147 	 * packet;  dequeue and discard fragment reassembly header.
1148 	 * Make header visible.
1149 	 */
1150 	ip->ip_len = (ip->ip_hl << 2) + next;
1151 	ip->ip_src = fp->ipq_src;
1152 	ip->ip_dst = fp->ipq_dst;
1153 	TAILQ_REMOVE(head, fp, ipq_list);
1154 	V_nipq--;
1155 	uma_zfree(V_ipq_zone, fp);
1156 	m->m_len += (ip->ip_hl << 2);
1157 	m->m_data -= (ip->ip_hl << 2);
1158 	/* some debugging cruft by sklower, below, will go away soon */
1159 	if (m->m_flags & M_PKTHDR)	/* XXX this should be done elsewhere */
1160 		m_fixhdr(m);
1161 	IPSTAT_INC(ips_reassembled);
1162 	IPQ_UNLOCK();
1163 	return (m);
1164 
1165 dropfrag:
1166 	IPSTAT_INC(ips_fragdropped);
1167 	if (fp != NULL)
1168 		fp->ipq_nfrags--;
1169 	m_freem(m);
1170 done:
1171 	IPQ_UNLOCK();
1172 	return (NULL);
1173 
1174 #undef GETIP
1175 }
1176 
1177 /*
1178  * Free a fragment reassembly header and all
1179  * associated datagrams.
1180  */
1181 static void
1182 ip_freef(struct ipqhead *fhp, struct ipq *fp)
1183 {
1184 	struct mbuf *q;
1185 
1186 	IPQ_LOCK_ASSERT();
1187 
1188 	while (fp->ipq_frags) {
1189 		q = fp->ipq_frags;
1190 		fp->ipq_frags = q->m_nextpkt;
1191 		m_freem(q);
1192 	}
1193 	TAILQ_REMOVE(fhp, fp, ipq_list);
1194 	uma_zfree(V_ipq_zone, fp);
1195 	V_nipq--;
1196 }
1197 
1198 /*
1199  * IP timer processing;
1200  * if a timer expires on a reassembly
1201  * queue, discard it.
1202  */
1203 void
1204 ip_slowtimo(void)
1205 {
1206 	VNET_ITERATOR_DECL(vnet_iter);
1207 	struct ipq *fp;
1208 	int i;
1209 
1210 	VNET_LIST_RLOCK_NOSLEEP();
1211 	IPQ_LOCK();
1212 	VNET_FOREACH(vnet_iter) {
1213 		CURVNET_SET(vnet_iter);
1214 		for (i = 0; i < IPREASS_NHASH; i++) {
1215 			for(fp = TAILQ_FIRST(&V_ipq[i]); fp;) {
1216 				struct ipq *fpp;
1217 
1218 				fpp = fp;
1219 				fp = TAILQ_NEXT(fp, ipq_list);
1220 				if(--fpp->ipq_ttl == 0) {
1221 					IPSTAT_ADD(ips_fragtimeout,
1222 					    fpp->ipq_nfrags);
1223 					ip_freef(&V_ipq[i], fpp);
1224 				}
1225 			}
1226 		}
1227 		/*
1228 		 * If we are over the maximum number of fragments
1229 		 * (due to the limit being lowered), drain off
1230 		 * enough to get down to the new limit.
1231 		 */
1232 		if (V_maxnipq >= 0 && V_nipq > V_maxnipq) {
1233 			for (i = 0; i < IPREASS_NHASH; i++) {
1234 				while (V_nipq > V_maxnipq &&
1235 				    !TAILQ_EMPTY(&V_ipq[i])) {
1236 					IPSTAT_ADD(ips_fragdropped,
1237 					    TAILQ_FIRST(&V_ipq[i])->ipq_nfrags);
1238 					ip_freef(&V_ipq[i],
1239 					    TAILQ_FIRST(&V_ipq[i]));
1240 				}
1241 			}
1242 		}
1243 		CURVNET_RESTORE();
1244 	}
1245 	IPQ_UNLOCK();
1246 	VNET_LIST_RUNLOCK_NOSLEEP();
1247 }
1248 
1249 /*
1250  * Drain off all datagram fragments.
1251  */
1252 static void
1253 ip_drain_locked(void)
1254 {
1255 	int     i;
1256 
1257 	IPQ_LOCK_ASSERT();
1258 
1259 	for (i = 0; i < IPREASS_NHASH; i++) {
1260 		while(!TAILQ_EMPTY(&V_ipq[i])) {
1261 			IPSTAT_ADD(ips_fragdropped,
1262 			    TAILQ_FIRST(&V_ipq[i])->ipq_nfrags);
1263 			ip_freef(&V_ipq[i], TAILQ_FIRST(&V_ipq[i]));
1264 		}
1265 	}
1266 }
1267 
1268 void
1269 ip_drain(void)
1270 {
1271 	VNET_ITERATOR_DECL(vnet_iter);
1272 
1273 	VNET_LIST_RLOCK_NOSLEEP();
1274 	IPQ_LOCK();
1275 	VNET_FOREACH(vnet_iter) {
1276 		CURVNET_SET(vnet_iter);
1277 		ip_drain_locked();
1278 		CURVNET_RESTORE();
1279 	}
1280 	IPQ_UNLOCK();
1281 	VNET_LIST_RUNLOCK_NOSLEEP();
1282 	in_rtqdrain();
1283 }
1284 
1285 /*
1286  * The protocol to be inserted into ip_protox[] must be already registered
1287  * in inetsw[], either statically or through pf_proto_register().
1288  */
1289 int
1290 ipproto_register(u_char ipproto)
1291 {
1292 	struct protosw *pr;
1293 
1294 	/* Sanity checks. */
1295 	if (ipproto == 0)
1296 		return (EPROTONOSUPPORT);
1297 
1298 	/*
1299 	 * The protocol slot must not be occupied by another protocol
1300 	 * already.  An index pointing to IPPROTO_RAW is unused.
1301 	 */
1302 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
1303 	if (pr == NULL)
1304 		return (EPFNOSUPPORT);
1305 	if (ip_protox[ipproto] != pr - inetsw)	/* IPPROTO_RAW */
1306 		return (EEXIST);
1307 
1308 	/* Find the protocol position in inetsw[] and set the index. */
1309 	for (pr = inetdomain.dom_protosw;
1310 	     pr < inetdomain.dom_protoswNPROTOSW; pr++) {
1311 		if (pr->pr_domain->dom_family == PF_INET &&
1312 		    pr->pr_protocol && pr->pr_protocol == ipproto) {
1313 			/* Be careful to only index valid IP protocols. */
1314 			if (pr->pr_protocol < IPPROTO_MAX) {
1315 				ip_protox[pr->pr_protocol] = pr - inetsw;
1316 				return (0);
1317 			} else
1318 				return (EINVAL);
1319 		}
1320 	}
1321 	return (EPROTONOSUPPORT);
1322 }
1323 
1324 int
1325 ipproto_unregister(u_char ipproto)
1326 {
1327 	struct protosw *pr;
1328 
1329 	/* Sanity checks. */
1330 	if (ipproto == 0)
1331 		return (EPROTONOSUPPORT);
1332 
1333 	/* Check if the protocol was indeed registered. */
1334 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
1335 	if (pr == NULL)
1336 		return (EPFNOSUPPORT);
1337 	if (ip_protox[ipproto] == pr - inetsw)  /* IPPROTO_RAW */
1338 		return (ENOENT);
1339 
1340 	/* Reset the protocol slot to IPPROTO_RAW. */
1341 	ip_protox[ipproto] = pr - inetsw;
1342 	return (0);
1343 }
1344 
1345 /*
1346  * Given address of next destination (final or next hop), return (referenced)
1347  * internet address info of interface to be used to get there.
1348  */
1349 struct in_ifaddr *
1350 ip_rtaddr(struct in_addr dst, u_int fibnum)
1351 {
1352 	struct route sro;
1353 	struct sockaddr_in *sin;
1354 	struct in_ifaddr *ia;
1355 
1356 	bzero(&sro, sizeof(sro));
1357 	sin = (struct sockaddr_in *)&sro.ro_dst;
1358 	sin->sin_family = AF_INET;
1359 	sin->sin_len = sizeof(*sin);
1360 	sin->sin_addr = dst;
1361 	in_rtalloc_ign(&sro, 0, fibnum);
1362 
1363 	if (sro.ro_rt == NULL)
1364 		return (NULL);
1365 
1366 	ia = ifatoia(sro.ro_rt->rt_ifa);
1367 	ifa_ref(&ia->ia_ifa);
1368 	RTFREE(sro.ro_rt);
1369 	return (ia);
1370 }
1371 
1372 u_char inetctlerrmap[PRC_NCMDS] = {
1373 	0,		0,		0,		0,
1374 	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1375 	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1376 	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1377 	0,		0,		EHOSTUNREACH,	0,
1378 	ENOPROTOOPT,	ECONNREFUSED
1379 };
1380 
1381 /*
1382  * Forward a packet.  If some error occurs return the sender
1383  * an icmp packet.  Note we can't always generate a meaningful
1384  * icmp message because icmp doesn't have a large enough repertoire
1385  * of codes and types.
1386  *
1387  * If not forwarding, just drop the packet.  This could be confusing
1388  * if ipforwarding was zero but some routing protocol was advancing
1389  * us as a gateway to somewhere.  However, we must let the routing
1390  * protocol deal with that.
1391  *
1392  * The srcrt parameter indicates whether the packet is being forwarded
1393  * via a source route.
1394  */
1395 void
1396 ip_forward(struct mbuf *m, int srcrt)
1397 {
1398 	struct ip *ip = mtod(m, struct ip *);
1399 	struct in_ifaddr *ia;
1400 	struct mbuf *mcopy;
1401 	struct in_addr dest;
1402 	struct route ro;
1403 	int error, type = 0, code = 0, mtu = 0;
1404 
1405 	if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) {
1406 		IPSTAT_INC(ips_cantforward);
1407 		m_freem(m);
1408 		return;
1409 	}
1410 #ifdef IPSTEALTH
1411 	if (!V_ipstealth) {
1412 #endif
1413 		if (ip->ip_ttl <= IPTTLDEC) {
1414 			icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS,
1415 			    0, 0);
1416 			return;
1417 		}
1418 #ifdef IPSTEALTH
1419 	}
1420 #endif
1421 
1422 	ia = ip_rtaddr(ip->ip_dst, M_GETFIB(m));
1423 #ifndef IPSEC
1424 	/*
1425 	 * 'ia' may be NULL if there is no route for this destination.
1426 	 * In case of IPsec, Don't discard it just yet, but pass it to
1427 	 * ip_output in case of outgoing IPsec policy.
1428 	 */
1429 	if (!srcrt && ia == NULL) {
1430 		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, 0, 0);
1431 		return;
1432 	}
1433 #endif
1434 
1435 	/*
1436 	 * Save the IP header and at most 8 bytes of the payload,
1437 	 * in case we need to generate an ICMP message to the src.
1438 	 *
1439 	 * XXX this can be optimized a lot by saving the data in a local
1440 	 * buffer on the stack (72 bytes at most), and only allocating the
1441 	 * mbuf if really necessary. The vast majority of the packets
1442 	 * are forwarded without having to send an ICMP back (either
1443 	 * because unnecessary, or because rate limited), so we are
1444 	 * really we are wasting a lot of work here.
1445 	 *
1446 	 * We don't use m_copy() because it might return a reference
1447 	 * to a shared cluster. Both this function and ip_output()
1448 	 * assume exclusive access to the IP header in `m', so any
1449 	 * data in a cluster may change before we reach icmp_error().
1450 	 */
1451 	MGETHDR(mcopy, M_DONTWAIT, m->m_type);
1452 	if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, M_DONTWAIT)) {
1453 		/*
1454 		 * It's probably ok if the pkthdr dup fails (because
1455 		 * the deep copy of the tag chain failed), but for now
1456 		 * be conservative and just discard the copy since
1457 		 * code below may some day want the tags.
1458 		 */
1459 		m_free(mcopy);
1460 		mcopy = NULL;
1461 	}
1462 	if (mcopy != NULL) {
1463 		mcopy->m_len = min(ip->ip_len, M_TRAILINGSPACE(mcopy));
1464 		mcopy->m_pkthdr.len = mcopy->m_len;
1465 		m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
1466 	}
1467 
1468 #ifdef IPSTEALTH
1469 	if (!V_ipstealth) {
1470 #endif
1471 		ip->ip_ttl -= IPTTLDEC;
1472 #ifdef IPSTEALTH
1473 	}
1474 #endif
1475 
1476 	/*
1477 	 * If forwarding packet using same interface that it came in on,
1478 	 * perhaps should send a redirect to sender to shortcut a hop.
1479 	 * Only send redirect if source is sending directly to us,
1480 	 * and if packet was not source routed (or has any options).
1481 	 * Also, don't send redirect if forwarding using a default route
1482 	 * or a route modified by a redirect.
1483 	 */
1484 	dest.s_addr = 0;
1485 	if (!srcrt && V_ipsendredirects &&
1486 	    ia != NULL && ia->ia_ifp == m->m_pkthdr.rcvif) {
1487 		struct sockaddr_in *sin;
1488 		struct rtentry *rt;
1489 
1490 		bzero(&ro, sizeof(ro));
1491 		sin = (struct sockaddr_in *)&ro.ro_dst;
1492 		sin->sin_family = AF_INET;
1493 		sin->sin_len = sizeof(*sin);
1494 		sin->sin_addr = ip->ip_dst;
1495 		in_rtalloc_ign(&ro, 0, M_GETFIB(m));
1496 
1497 		rt = ro.ro_rt;
1498 
1499 		if (rt && (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1500 		    satosin(rt_key(rt))->sin_addr.s_addr != 0) {
1501 #define	RTA(rt)	((struct in_ifaddr *)(rt->rt_ifa))
1502 			u_long src = ntohl(ip->ip_src.s_addr);
1503 
1504 			if (RTA(rt) &&
1505 			    (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
1506 				if (rt->rt_flags & RTF_GATEWAY)
1507 					dest.s_addr = satosin(rt->rt_gateway)->sin_addr.s_addr;
1508 				else
1509 					dest.s_addr = ip->ip_dst.s_addr;
1510 				/* Router requirements says to only send host redirects */
1511 				type = ICMP_REDIRECT;
1512 				code = ICMP_REDIRECT_HOST;
1513 			}
1514 		}
1515 		if (rt)
1516 			RTFREE(rt);
1517 	}
1518 
1519 	/*
1520 	 * Try to cache the route MTU from ip_output so we can consider it for
1521 	 * the ICMP_UNREACH_NEEDFRAG "Next-Hop MTU" field described in RFC1191.
1522 	 */
1523 	bzero(&ro, sizeof(ro));
1524 
1525 	error = ip_output(m, NULL, &ro, IP_FORWARDING, NULL, NULL);
1526 
1527 	if (error == EMSGSIZE && ro.ro_rt)
1528 		mtu = ro.ro_rt->rt_rmx.rmx_mtu;
1529 	if (ro.ro_rt)
1530 		RTFREE(ro.ro_rt);
1531 
1532 	if (error)
1533 		IPSTAT_INC(ips_cantforward);
1534 	else {
1535 		IPSTAT_INC(ips_forward);
1536 		if (type)
1537 			IPSTAT_INC(ips_redirectsent);
1538 		else {
1539 			if (mcopy)
1540 				m_freem(mcopy);
1541 			if (ia != NULL)
1542 				ifa_free(&ia->ia_ifa);
1543 			return;
1544 		}
1545 	}
1546 	if (mcopy == NULL) {
1547 		if (ia != NULL)
1548 			ifa_free(&ia->ia_ifa);
1549 		return;
1550 	}
1551 
1552 	switch (error) {
1553 
1554 	case 0:				/* forwarded, but need redirect */
1555 		/* type, code set above */
1556 		break;
1557 
1558 	case ENETUNREACH:
1559 	case EHOSTUNREACH:
1560 	case ENETDOWN:
1561 	case EHOSTDOWN:
1562 	default:
1563 		type = ICMP_UNREACH;
1564 		code = ICMP_UNREACH_HOST;
1565 		break;
1566 
1567 	case EMSGSIZE:
1568 		type = ICMP_UNREACH;
1569 		code = ICMP_UNREACH_NEEDFRAG;
1570 
1571 #ifdef IPSEC
1572 		/*
1573 		 * If IPsec is configured for this path,
1574 		 * override any possibly mtu value set by ip_output.
1575 		 */
1576 		mtu = ip_ipsec_mtu(mcopy, mtu);
1577 #endif /* IPSEC */
1578 		/*
1579 		 * If the MTU was set before make sure we are below the
1580 		 * interface MTU.
1581 		 * If the MTU wasn't set before use the interface mtu or
1582 		 * fall back to the next smaller mtu step compared to the
1583 		 * current packet size.
1584 		 */
1585 		if (mtu != 0) {
1586 			if (ia != NULL)
1587 				mtu = min(mtu, ia->ia_ifp->if_mtu);
1588 		} else {
1589 			if (ia != NULL)
1590 				mtu = ia->ia_ifp->if_mtu;
1591 			else
1592 				mtu = ip_next_mtu(ip->ip_len, 0);
1593 		}
1594 		IPSTAT_INC(ips_cantfrag);
1595 		break;
1596 
1597 	case ENOBUFS:
1598 		/*
1599 		 * A router should not generate ICMP_SOURCEQUENCH as
1600 		 * required in RFC1812 Requirements for IP Version 4 Routers.
1601 		 * Source quench could be a big problem under DoS attacks,
1602 		 * or if the underlying interface is rate-limited.
1603 		 * Those who need source quench packets may re-enable them
1604 		 * via the net.inet.ip.sendsourcequench sysctl.
1605 		 */
1606 		if (V_ip_sendsourcequench == 0) {
1607 			m_freem(mcopy);
1608 			if (ia != NULL)
1609 				ifa_free(&ia->ia_ifa);
1610 			return;
1611 		} else {
1612 			type = ICMP_SOURCEQUENCH;
1613 			code = 0;
1614 		}
1615 		break;
1616 
1617 	case EACCES:			/* ipfw denied packet */
1618 		m_freem(mcopy);
1619 		if (ia != NULL)
1620 			ifa_free(&ia->ia_ifa);
1621 		return;
1622 	}
1623 	if (ia != NULL)
1624 		ifa_free(&ia->ia_ifa);
1625 	icmp_error(mcopy, type, code, dest.s_addr, mtu);
1626 }
1627 
1628 void
1629 ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
1630     struct mbuf *m)
1631 {
1632 
1633 	if (inp->inp_socket->so_options & (SO_BINTIME | SO_TIMESTAMP)) {
1634 		struct bintime bt;
1635 
1636 		bintime(&bt);
1637 		if (inp->inp_socket->so_options & SO_BINTIME) {
1638 			*mp = sbcreatecontrol((caddr_t) &bt, sizeof(bt),
1639 			SCM_BINTIME, SOL_SOCKET);
1640 			if (*mp)
1641 				mp = &(*mp)->m_next;
1642 		}
1643 		if (inp->inp_socket->so_options & SO_TIMESTAMP) {
1644 			struct timeval tv;
1645 
1646 			bintime2timeval(&bt, &tv);
1647 			*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
1648 				SCM_TIMESTAMP, SOL_SOCKET);
1649 			if (*mp)
1650 				mp = &(*mp)->m_next;
1651 		}
1652 	}
1653 	if (inp->inp_flags & INP_RECVDSTADDR) {
1654 		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
1655 		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
1656 		if (*mp)
1657 			mp = &(*mp)->m_next;
1658 	}
1659 	if (inp->inp_flags & INP_RECVTTL) {
1660 		*mp = sbcreatecontrol((caddr_t) &ip->ip_ttl,
1661 		    sizeof(u_char), IP_RECVTTL, IPPROTO_IP);
1662 		if (*mp)
1663 			mp = &(*mp)->m_next;
1664 	}
1665 #ifdef notyet
1666 	/* XXX
1667 	 * Moving these out of udp_input() made them even more broken
1668 	 * than they already were.
1669 	 */
1670 	/* options were tossed already */
1671 	if (inp->inp_flags & INP_RECVOPTS) {
1672 		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
1673 		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
1674 		if (*mp)
1675 			mp = &(*mp)->m_next;
1676 	}
1677 	/* ip_srcroute doesn't do what we want here, need to fix */
1678 	if (inp->inp_flags & INP_RECVRETOPTS) {
1679 		*mp = sbcreatecontrol((caddr_t) ip_srcroute(m),
1680 		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
1681 		if (*mp)
1682 			mp = &(*mp)->m_next;
1683 	}
1684 #endif
1685 	if (inp->inp_flags & INP_RECVIF) {
1686 		struct ifnet *ifp;
1687 		struct sdlbuf {
1688 			struct sockaddr_dl sdl;
1689 			u_char	pad[32];
1690 		} sdlbuf;
1691 		struct sockaddr_dl *sdp;
1692 		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
1693 
1694 		if (((ifp = m->m_pkthdr.rcvif))
1695 		&& ( ifp->if_index && (ifp->if_index <= V_if_index))) {
1696 			sdp = (struct sockaddr_dl *)ifp->if_addr->ifa_addr;
1697 			/*
1698 			 * Change our mind and don't try copy.
1699 			 */
1700 			if ((sdp->sdl_family != AF_LINK)
1701 			|| (sdp->sdl_len > sizeof(sdlbuf))) {
1702 				goto makedummy;
1703 			}
1704 			bcopy(sdp, sdl2, sdp->sdl_len);
1705 		} else {
1706 makedummy:
1707 			sdl2->sdl_len
1708 				= offsetof(struct sockaddr_dl, sdl_data[0]);
1709 			sdl2->sdl_family = AF_LINK;
1710 			sdl2->sdl_index = 0;
1711 			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
1712 		}
1713 		*mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
1714 			IP_RECVIF, IPPROTO_IP);
1715 		if (*mp)
1716 			mp = &(*mp)->m_next;
1717 	}
1718 }
1719 
1720 /*
1721  * XXXRW: Multicast routing code in ip_mroute.c is generally MPSAFE, but the
1722  * ip_rsvp and ip_rsvp_on variables need to be interlocked with rsvp_on
1723  * locking.  This code remains in ip_input.c as ip_mroute.c is optionally
1724  * compiled.
1725  */
1726 static VNET_DEFINE(int, ip_rsvp_on);
1727 VNET_DEFINE(struct socket *, ip_rsvpd);
1728 
1729 #define	V_ip_rsvp_on		VNET(ip_rsvp_on)
1730 
1731 int
1732 ip_rsvp_init(struct socket *so)
1733 {
1734 
1735 	if (so->so_type != SOCK_RAW ||
1736 	    so->so_proto->pr_protocol != IPPROTO_RSVP)
1737 		return EOPNOTSUPP;
1738 
1739 	if (V_ip_rsvpd != NULL)
1740 		return EADDRINUSE;
1741 
1742 	V_ip_rsvpd = so;
1743 	/*
1744 	 * This may seem silly, but we need to be sure we don't over-increment
1745 	 * the RSVP counter, in case something slips up.
1746 	 */
1747 	if (!V_ip_rsvp_on) {
1748 		V_ip_rsvp_on = 1;
1749 		V_rsvp_on++;
1750 	}
1751 
1752 	return 0;
1753 }
1754 
1755 int
1756 ip_rsvp_done(void)
1757 {
1758 
1759 	V_ip_rsvpd = NULL;
1760 	/*
1761 	 * This may seem silly, but we need to be sure we don't over-decrement
1762 	 * the RSVP counter, in case something slips up.
1763 	 */
1764 	if (V_ip_rsvp_on) {
1765 		V_ip_rsvp_on = 0;
1766 		V_rsvp_on--;
1767 	}
1768 	return 0;
1769 }
1770 
1771 void
1772 rsvp_input(struct mbuf *m, int off)	/* XXX must fixup manually */
1773 {
1774 
1775 	if (rsvp_input_p) { /* call the real one if loaded */
1776 		rsvp_input_p(m, off);
1777 		return;
1778 	}
1779 
1780 	/* Can still get packets with rsvp_on = 0 if there is a local member
1781 	 * of the group to which the RSVP packet is addressed.  But in this
1782 	 * case we want to throw the packet away.
1783 	 */
1784 
1785 	if (!V_rsvp_on) {
1786 		m_freem(m);
1787 		return;
1788 	}
1789 
1790 	if (V_ip_rsvpd != NULL) {
1791 		rip_input(m, off);
1792 		return;
1793 	}
1794 	/* Drop the packet */
1795 	m_freem(m);
1796 }
1797