xref: /freebsd/sys/netinet/ip_input.c (revision 09e8dea79366f1e5b3a73e8a271b26e4b6bf2e6a)
1 /*
2  * Copyright (c) 1982, 1986, 1988, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
34  * $FreeBSD$
35  */
36 
37 #define	_IP_VHL
38 
39 #include "opt_bootp.h"
40 #include "opt_ipfw.h"
41 #include "opt_ipdn.h"
42 #include "opt_ipdivert.h"
43 #include "opt_ipfilter.h"
44 #include "opt_ipstealth.h"
45 #include "opt_ipsec.h"
46 #include "opt_pfil_hooks.h"
47 #include "opt_random_ip_id.h"
48 
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/mbuf.h>
52 #include <sys/malloc.h>
53 #include <sys/domain.h>
54 #include <sys/protosw.h>
55 #include <sys/socket.h>
56 #include <sys/time.h>
57 #include <sys/kernel.h>
58 #include <sys/syslog.h>
59 #include <sys/sysctl.h>
60 
61 #include <net/pfil.h>
62 #include <net/if.h>
63 #include <net/if_types.h>
64 #include <net/if_var.h>
65 #include <net/if_dl.h>
66 #include <net/route.h>
67 #include <net/netisr.h>
68 #include <net/intrq.h>
69 
70 #include <netinet/in.h>
71 #include <netinet/in_systm.h>
72 #include <netinet/in_var.h>
73 #include <netinet/ip.h>
74 #include <netinet/in_pcb.h>
75 #include <netinet/ip_var.h>
76 #include <netinet/ip_icmp.h>
77 #include <machine/in_cksum.h>
78 
79 #include <sys/socketvar.h>
80 
81 #include <netinet/ip_fw.h>
82 #include <netinet/ip_dummynet.h>
83 
84 #ifdef IPSEC
85 #include <netinet6/ipsec.h>
86 #include <netkey/key.h>
87 #endif
88 
89 int rsvp_on = 0;
90 
91 int	ipforwarding = 0;
92 SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
93     &ipforwarding, 0, "Enable IP forwarding between interfaces");
94 
95 static int	ipsendredirects = 1; /* XXX */
96 SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
97     &ipsendredirects, 0, "Enable sending IP redirects");
98 
99 int	ip_defttl = IPDEFTTL;
100 SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
101     &ip_defttl, 0, "Maximum TTL on IP packets");
102 
103 static int	ip_dosourceroute = 0;
104 SYSCTL_INT(_net_inet_ip, IPCTL_SOURCEROUTE, sourceroute, CTLFLAG_RW,
105     &ip_dosourceroute, 0, "Enable forwarding source routed IP packets");
106 
107 static int	ip_acceptsourceroute = 0;
108 SYSCTL_INT(_net_inet_ip, IPCTL_ACCEPTSOURCEROUTE, accept_sourceroute,
109     CTLFLAG_RW, &ip_acceptsourceroute, 0,
110     "Enable accepting source routed IP packets");
111 
112 static int	ip_keepfaith = 0;
113 SYSCTL_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
114 	&ip_keepfaith,	0,
115 	"Enable packet capture for FAITH IPv4->IPv6 translater daemon");
116 
117 static int	ip_nfragpackets = 0;
118 static int	ip_maxfragpackets;	/* initialized in ip_init() */
119 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragpackets, CTLFLAG_RW,
120 	&ip_maxfragpackets, 0,
121 	"Maximum number of IPv4 fragment reassembly queue entries");
122 
123 /*
124  * XXX - Setting ip_checkinterface mostly implements the receive side of
125  * the Strong ES model described in RFC 1122, but since the routing table
126  * and transmit implementation do not implement the Strong ES model,
127  * setting this to 1 results in an odd hybrid.
128  *
129  * XXX - ip_checkinterface currently must be disabled if you use ipnat
130  * to translate the destination address to another local interface.
131  *
132  * XXX - ip_checkinterface must be disabled if you add IP aliases
133  * to the loopback interface instead of the interface where the
134  * packets for those addresses are received.
135  */
136 static int	ip_checkinterface = 1;
137 SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
138     &ip_checkinterface, 0, "Verify packet arrives on correct interface");
139 
140 #ifdef DIAGNOSTIC
141 static int	ipprintfs = 0;
142 #endif
143 
144 static int	ipqmaxlen = IFQ_MAXLEN;
145 
146 extern	struct domain inetdomain;
147 extern	struct protosw inetsw[];
148 u_char	ip_protox[IPPROTO_MAX];
149 struct	in_ifaddrhead in_ifaddrhead; 		/* first inet address */
150 struct	in_ifaddrhashhead *in_ifaddrhashtbl;	/* inet addr hash table  */
151 u_long 	in_ifaddrhmask;				/* mask for hash table */
152 
153 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen, CTLFLAG_RW,
154     &ipintrq.ifq_maxlen, 0, "Maximum size of the IP input queue");
155 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops, CTLFLAG_RD,
156     &ipintrq.ifq_drops, 0, "Number of packets dropped from the IP input queue");
157 
158 struct ipstat ipstat;
159 SYSCTL_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RW,
160     &ipstat, ipstat, "IP statistics (struct ipstat, netinet/ip_var.h)");
161 
162 /* Packet reassembly stuff */
163 #define IPREASS_NHASH_LOG2      6
164 #define IPREASS_NHASH           (1 << IPREASS_NHASH_LOG2)
165 #define IPREASS_HMASK           (IPREASS_NHASH - 1)
166 #define IPREASS_HASH(x,y) \
167 	(((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
168 
169 static TAILQ_HEAD(ipqhead, ipq) ipq[IPREASS_NHASH];
170 static int    nipq = 0;         /* total # of reass queues */
171 static int    maxnipq;
172 
173 #ifdef IPCTL_DEFMTU
174 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
175     &ip_mtu, 0, "Default MTU");
176 #endif
177 
178 #ifdef IPSTEALTH
179 static int	ipstealth = 0;
180 SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW,
181     &ipstealth, 0, "");
182 #endif
183 
184 
185 /* Firewall hooks */
186 ip_fw_chk_t *ip_fw_chk_ptr;
187 int fw_enable = 1 ;
188 
189 /* Dummynet hooks */
190 ip_dn_io_t *ip_dn_io_ptr;
191 
192 
193 /*
194  * XXX this is ugly -- the following two global variables are
195  * used to store packet state while it travels through the stack.
196  * Note that the code even makes assumptions on the size and
197  * alignment of fields inside struct ip_srcrt so e.g. adding some
198  * fields will break the code. This needs to be fixed.
199  *
200  * We need to save the IP options in case a protocol wants to respond
201  * to an incoming packet over the same route if the packet got here
202  * using IP source routing.  This allows connection establishment and
203  * maintenance when the remote end is on a network that is not known
204  * to us.
205  */
206 static int	ip_nhops = 0;
207 static	struct ip_srcrt {
208 	struct	in_addr dst;			/* final destination */
209 	char	nop;				/* one NOP to align */
210 	char	srcopt[IPOPT_OFFSET + 1];	/* OPTVAL, OLEN and OFFSET */
211 	struct	in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
212 } ip_srcrt;
213 
214 static void	save_rte(u_char *, struct in_addr);
215 static int	ip_dooptions(struct mbuf *m, int,
216 			struct sockaddr_in *next_hop);
217 static void	ip_forward(struct mbuf *m, int srcrt,
218 			struct sockaddr_in *next_hop);
219 static void	ip_freef(struct ipqhead *, struct ipq *);
220 static struct	mbuf *ip_reass(struct mbuf *, struct ipqhead *,
221 		struct ipq *, u_int32_t *, u_int16_t *);
222 static void	ipintr(void);
223 
224 /*
225  * IP initialization: fill in IP protocol switch table.
226  * All protocols not implemented in kernel go to raw IP protocol handler.
227  */
228 void
229 ip_init()
230 {
231 	register struct protosw *pr;
232 	register int i;
233 
234 	TAILQ_INIT(&in_ifaddrhead);
235 	in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &in_ifaddrhmask);
236 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
237 	if (pr == 0)
238 		panic("ip_init");
239 	for (i = 0; i < IPPROTO_MAX; i++)
240 		ip_protox[i] = pr - inetsw;
241 	for (pr = inetdomain.dom_protosw;
242 	    pr < inetdomain.dom_protoswNPROTOSW; pr++)
243 		if (pr->pr_domain->dom_family == PF_INET &&
244 		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
245 			ip_protox[pr->pr_protocol] = pr - inetsw;
246 
247 	for (i = 0; i < IPREASS_NHASH; i++)
248 	    TAILQ_INIT(&ipq[i]);
249 
250 	maxnipq = nmbclusters / 4;
251 	ip_maxfragpackets = nmbclusters / 4;
252 
253 #ifndef RANDOM_IP_ID
254 	ip_id = time_second & 0xffff;
255 #endif
256 	ipintrq.ifq_maxlen = ipqmaxlen;
257 	mtx_init(&ipintrq.ifq_mtx, "ip_inq", NULL, MTX_DEF);
258 	ipintrq_present = 1;
259 
260 	register_netisr(NETISR_IP, ipintr);
261 }
262 
263 /*
264  * XXX watch out this one. It is perhaps used as a cache for
265  * the most recently used route ? it is cleared in in_addroute()
266  * when a new route is successfully created.
267  */
268 struct	route ipforward_rt;
269 
270 /*
271  * Ip input routine.  Checksum and byte swap header.  If fragmented
272  * try to reassemble.  Process options.  Pass to next level.
273  */
274 void
275 ip_input(struct mbuf *m)
276 {
277 	struct ip *ip;
278 	struct ipq *fp;
279 	struct in_ifaddr *ia = NULL;
280 	struct ifaddr *ifa;
281 	int    i, hlen, checkif;
282 	u_short sum;
283 	struct in_addr pkt_dst;
284 	u_int32_t divert_info = 0;		/* packet divert/tee info */
285 	struct ip_fw_args args;
286 #ifdef PFIL_HOOKS
287 	struct packet_filter_hook *pfh;
288 	struct mbuf *m0;
289 	int rv;
290 #endif /* PFIL_HOOKS */
291 
292 	args.eh = NULL;
293 	args.oif = NULL;
294 	args.rule = NULL;
295 	args.divert_rule = 0;			/* divert cookie */
296 	args.next_hop = NULL;
297 
298 	/* Grab info from MT_TAG mbufs prepended to the chain.	*/
299 	for (; m && m->m_type == MT_TAG; m = m->m_next) {
300 		switch(m->m_tag_id) {
301 		default:
302 			printf("ip_input: unrecognised MT_TAG tag %d\n",
303 			    m->m_tag_id);
304 			break;
305 
306 		case PACKET_TAG_DUMMYNET:
307 			args.rule = ((struct dn_pkt *)m)->rule;
308 			break;
309 
310 		case PACKET_TAG_DIVERT:
311 			args.divert_rule = (int)m->m_hdr.mh_data & 0xffff;
312 			break;
313 
314 		case PACKET_TAG_IPFORWARD:
315 			args.next_hop = (struct sockaddr_in *)m->m_hdr.mh_data;
316 			break;
317 		}
318 	}
319 
320 	KASSERT(m != NULL && (m->m_flags & M_PKTHDR) != 0,
321 	    ("ip_input: no HDR"));
322 
323 	if (args.rule) {	/* dummynet already filtered us */
324 		ip = mtod(m, struct ip *);
325 		hlen = IP_VHL_HL(ip->ip_vhl) << 2;
326 		goto iphack ;
327 	}
328 
329 	ipstat.ips_total++;
330 
331 	if (m->m_pkthdr.len < sizeof(struct ip))
332 		goto tooshort;
333 
334 	if (m->m_len < sizeof (struct ip) &&
335 	    (m = m_pullup(m, sizeof (struct ip))) == 0) {
336 		ipstat.ips_toosmall++;
337 		return;
338 	}
339 	ip = mtod(m, struct ip *);
340 
341 	if (IP_VHL_V(ip->ip_vhl) != IPVERSION) {
342 		ipstat.ips_badvers++;
343 		goto bad;
344 	}
345 
346 	hlen = IP_VHL_HL(ip->ip_vhl) << 2;
347 	if (hlen < sizeof(struct ip)) {	/* minimum header length */
348 		ipstat.ips_badhlen++;
349 		goto bad;
350 	}
351 	if (hlen > m->m_len) {
352 		if ((m = m_pullup(m, hlen)) == 0) {
353 			ipstat.ips_badhlen++;
354 			return;
355 		}
356 		ip = mtod(m, struct ip *);
357 	}
358 
359 	/* 127/8 must not appear on wire - RFC1122 */
360 	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
361 	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
362 		if ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) {
363 			ipstat.ips_badaddr++;
364 			goto bad;
365 		}
366 	}
367 
368 	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
369 		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
370 	} else {
371 		if (hlen == sizeof(struct ip)) {
372 			sum = in_cksum_hdr(ip);
373 		} else {
374 			sum = in_cksum(m, hlen);
375 		}
376 	}
377 	if (sum) {
378 		ipstat.ips_badsum++;
379 		goto bad;
380 	}
381 
382 	/*
383 	 * Convert fields to host representation.
384 	 */
385 	ip->ip_len = ntohs(ip->ip_len);
386 	if (ip->ip_len < hlen) {
387 		ipstat.ips_badlen++;
388 		goto bad;
389 	}
390 	ip->ip_off = ntohs(ip->ip_off);
391 
392 	/*
393 	 * Check that the amount of data in the buffers
394 	 * is as at least much as the IP header would have us expect.
395 	 * Trim mbufs if longer than we expect.
396 	 * Drop packet if shorter than we expect.
397 	 */
398 	if (m->m_pkthdr.len < ip->ip_len) {
399 tooshort:
400 		ipstat.ips_tooshort++;
401 		goto bad;
402 	}
403 	if (m->m_pkthdr.len > ip->ip_len) {
404 		if (m->m_len == m->m_pkthdr.len) {
405 			m->m_len = ip->ip_len;
406 			m->m_pkthdr.len = ip->ip_len;
407 		} else
408 			m_adj(m, ip->ip_len - m->m_pkthdr.len);
409 	}
410 
411 #ifdef IPSEC
412 	if (ipsec_gethist(m, NULL))
413 		goto pass;
414 #endif
415 
416 	/*
417 	 * IpHack's section.
418 	 * Right now when no processing on packet has done
419 	 * and it is still fresh out of network we do our black
420 	 * deals with it.
421 	 * - Firewall: deny/allow/divert
422 	 * - Xlate: translate packet's addr/port (NAT).
423 	 * - Pipe: pass pkt through dummynet.
424 	 * - Wrap: fake packet's addr/port <unimpl.>
425 	 * - Encapsulate: put it in another IP and send out. <unimp.>
426  	 */
427 
428 iphack:
429 
430 #ifdef PFIL_HOOKS
431 	/*
432 	 * Run through list of hooks for input packets.  If there are any
433 	 * filters which require that additional packets in the flow are
434 	 * not fast-forwarded, they must clear the M_CANFASTFWD flag.
435 	 * Note that filters must _never_ set this flag, as another filter
436 	 * in the list may have previously cleared it.
437 	 */
438 	m0 = m;
439 	pfh = pfil_hook_get(PFIL_IN, &inetsw[ip_protox[IPPROTO_IP]].pr_pfh);
440 	for (; pfh; pfh = TAILQ_NEXT(pfh, pfil_link))
441 		if (pfh->pfil_func) {
442 			rv = pfh->pfil_func(ip, hlen,
443 					    m->m_pkthdr.rcvif, 0, &m0);
444 			if (rv)
445 				return;
446 			m = m0;
447 			if (m == NULL)
448 				return;
449 			ip = mtod(m, struct ip *);
450 		}
451 #endif /* PFIL_HOOKS */
452 
453 	if (fw_enable && IPFW_LOADED) {
454 		/*
455 		 * If we've been forwarded from the output side, then
456 		 * skip the firewall a second time
457 		 */
458 		if (args.next_hop)
459 			goto ours;
460 
461 		args.m = m;
462 		i = ip_fw_chk_ptr(&args);
463 		m = args.m;
464 
465 		if ( (i & IP_FW_PORT_DENY_FLAG) || m == NULL) { /* drop */
466 			if (m)
467 				m_freem(m);
468 			return;
469 		}
470 		ip = mtod(m, struct ip *); /* just in case m changed */
471 		if (i == 0 && args.next_hop == NULL)	/* common case */
472 			goto pass;
473                 if (DUMMYNET_LOADED && (i & IP_FW_PORT_DYNT_FLAG) != 0) {
474 			/* Send packet to the appropriate pipe */
475 			ip_dn_io_ptr(m, i&0xffff, DN_TO_IP_IN, &args);
476 			return;
477 		}
478 #ifdef IPDIVERT
479 		if (i != 0 && (i & IP_FW_PORT_DYNT_FLAG) == 0) {
480 			/* Divert or tee packet */
481 			divert_info = i;
482 			goto ours;
483 		}
484 #endif
485 		if (i == 0 && args.next_hop != NULL)
486 			goto pass;
487 		/*
488 		 * if we get here, the packet must be dropped
489 		 */
490 		m_freem(m);
491 		return;
492 	}
493 pass:
494 
495 	/*
496 	 * Process options and, if not destined for us,
497 	 * ship it on.  ip_dooptions returns 1 when an
498 	 * error was detected (causing an icmp message
499 	 * to be sent and the original packet to be freed).
500 	 */
501 	ip_nhops = 0;		/* for source routed packets */
502 	if (hlen > sizeof (struct ip) && ip_dooptions(m, 0, args.next_hop))
503 		return;
504 
505         /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
506          * matter if it is destined to another node, or whether it is
507          * a multicast one, RSVP wants it! and prevents it from being forwarded
508          * anywhere else. Also checks if the rsvp daemon is running before
509 	 * grabbing the packet.
510          */
511 	if (rsvp_on && ip->ip_p==IPPROTO_RSVP)
512 		goto ours;
513 
514 	/*
515 	 * Check our list of addresses, to see if the packet is for us.
516 	 * If we don't have any addresses, assume any unicast packet
517 	 * we receive might be for us (and let the upper layers deal
518 	 * with it).
519 	 */
520 	if (TAILQ_EMPTY(&in_ifaddrhead) &&
521 	    (m->m_flags & (M_MCAST|M_BCAST)) == 0)
522 		goto ours;
523 
524 	/*
525 	 * Cache the destination address of the packet; this may be
526 	 * changed by use of 'ipfw fwd'.
527 	 */
528 	pkt_dst = args.next_hop ? args.next_hop->sin_addr : ip->ip_dst;
529 
530 	/*
531 	 * Enable a consistency check between the destination address
532 	 * and the arrival interface for a unicast packet (the RFC 1122
533 	 * strong ES model) if IP forwarding is disabled and the packet
534 	 * is not locally generated and the packet is not subject to
535 	 * 'ipfw fwd'.
536 	 *
537 	 * XXX - Checking also should be disabled if the destination
538 	 * address is ipnat'ed to a different interface.
539 	 *
540 	 * XXX - Checking is incompatible with IP aliases added
541 	 * to the loopback interface instead of the interface where
542 	 * the packets are received.
543 	 */
544 	checkif = ip_checkinterface && (ipforwarding == 0) &&
545 	    m->m_pkthdr.rcvif != NULL &&
546 	    ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) &&
547 	    (args.next_hop == NULL);
548 
549 	/*
550 	 * Check for exact addresses in the hash bucket.
551 	 */
552 	LIST_FOREACH(ia, INADDR_HASH(pkt_dst.s_addr), ia_hash) {
553 		/*
554 		 * If the address matches, verify that the packet
555 		 * arrived via the correct interface if checking is
556 		 * enabled.
557 		 */
558 		if (IA_SIN(ia)->sin_addr.s_addr == pkt_dst.s_addr &&
559 		    (!checkif || ia->ia_ifp == m->m_pkthdr.rcvif))
560 			goto ours;
561 	}
562 	/*
563 	 * Check for broadcast addresses.
564 	 *
565 	 * Only accept broadcast packets that arrive via the matching
566 	 * interface.  Reception of forwarded directed broadcasts would
567 	 * be handled via ip_forward() and ether_output() with the loopback
568 	 * into the stack for SIMPLEX interfaces handled by ether_output().
569 	 */
570 	if (m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
571 	        TAILQ_FOREACH(ifa, &m->m_pkthdr.rcvif->if_addrhead, ifa_link) {
572 			if (ifa->ifa_addr->sa_family != AF_INET)
573 				continue;
574 			ia = ifatoia(ifa);
575 			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
576 			    pkt_dst.s_addr)
577 				goto ours;
578 			if (ia->ia_netbroadcast.s_addr == pkt_dst.s_addr)
579 				goto ours;
580 #ifdef BOOTP_COMPAT
581 			if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY)
582 				goto ours;
583 #endif
584 		}
585 	}
586 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
587 		struct in_multi *inm;
588 		if (ip_mrouter) {
589 			/*
590 			 * If we are acting as a multicast router, all
591 			 * incoming multicast packets are passed to the
592 			 * kernel-level multicast forwarding function.
593 			 * The packet is returned (relatively) intact; if
594 			 * ip_mforward() returns a non-zero value, the packet
595 			 * must be discarded, else it may be accepted below.
596 			 */
597 			if (ip_mforward(ip, m->m_pkthdr.rcvif, m, 0) != 0) {
598 				ipstat.ips_cantforward++;
599 				m_freem(m);
600 				return;
601 			}
602 
603 			/*
604 			 * The process-level routing daemon needs to receive
605 			 * all multicast IGMP packets, whether or not this
606 			 * host belongs to their destination groups.
607 			 */
608 			if (ip->ip_p == IPPROTO_IGMP)
609 				goto ours;
610 			ipstat.ips_forward++;
611 		}
612 		/*
613 		 * See if we belong to the destination multicast group on the
614 		 * arrival interface.
615 		 */
616 		IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
617 		if (inm == NULL) {
618 			ipstat.ips_notmember++;
619 			m_freem(m);
620 			return;
621 		}
622 		goto ours;
623 	}
624 	if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
625 		goto ours;
626 	if (ip->ip_dst.s_addr == INADDR_ANY)
627 		goto ours;
628 
629 	/*
630 	 * FAITH(Firewall Aided Internet Translator)
631 	 */
632 	if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
633 		if (ip_keepfaith) {
634 			if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
635 				goto ours;
636 		}
637 		m_freem(m);
638 		return;
639 	}
640 
641 	/*
642 	 * Not for us; forward if possible and desirable.
643 	 */
644 	if (ipforwarding == 0) {
645 		ipstat.ips_cantforward++;
646 		m_freem(m);
647 	} else {
648 #ifdef IPSEC
649 		/*
650 		 * Enforce inbound IPsec SPD.
651 		 */
652 		if (ipsec4_in_reject(m, NULL)) {
653 			ipsecstat.in_polvio++;
654 			goto bad;
655 		}
656 #endif /* IPSEC */
657 		ip_forward(m, 0, args.next_hop);
658 	}
659 	return;
660 
661 ours:
662 #ifdef IPSTEALTH
663 	/*
664 	 * IPSTEALTH: Process non-routing options only
665 	 * if the packet is destined for us.
666 	 */
667 	if (ipstealth && hlen > sizeof (struct ip) &&
668 	    ip_dooptions(m, 1, args.next_hop))
669 		return;
670 #endif /* IPSTEALTH */
671 
672 	/* Count the packet in the ip address stats */
673 	if (ia != NULL) {
674 		ia->ia_ifa.if_ipackets++;
675 		ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
676 	}
677 
678 	/*
679 	 * If offset or IP_MF are set, must reassemble.
680 	 * Otherwise, nothing need be done.
681 	 * (We could look in the reassembly queue to see
682 	 * if the packet was previously fragmented,
683 	 * but it's not worth the time; just let them time out.)
684 	 */
685 	if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
686 
687 		sum = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
688 		/*
689 		 * Look for queue of fragments
690 		 * of this datagram.
691 		 */
692 		TAILQ_FOREACH(fp, &ipq[sum], ipq_list)
693 			if (ip->ip_id == fp->ipq_id &&
694 			    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
695 			    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
696 			    ip->ip_p == fp->ipq_p)
697 				goto found;
698 
699 		fp = 0;
700 
701 		/* check if there's a place for the new queue */
702 		if (nipq > maxnipq) {
703 		    /*
704 		     * drop something from the tail of the current queue
705 		     * before proceeding further
706 		     */
707 		    struct ipq *q = TAILQ_LAST(&ipq[sum], ipqhead);
708 		    if (q == NULL) {   /* gak */
709 			for (i = 0; i < IPREASS_NHASH; i++) {
710 			    struct ipq *r = TAILQ_LAST(&ipq[i], ipqhead);
711 			    if (r) {
712 				ip_freef(&ipq[i], r);
713 				break;
714 			    }
715 			}
716 		    } else
717 			ip_freef(&ipq[sum], q);
718 		}
719 found:
720 		/*
721 		 * Adjust ip_len to not reflect header,
722 		 * convert offset of this to bytes.
723 		 */
724 		ip->ip_len -= hlen;
725 		if (ip->ip_off & IP_MF) {
726 		        /*
727 		         * Make sure that fragments have a data length
728 			 * that's a non-zero multiple of 8 bytes.
729 		         */
730 			if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
731 				ipstat.ips_toosmall++; /* XXX */
732 				goto bad;
733 			}
734 			m->m_flags |= M_FRAG;
735 		}
736 		ip->ip_off <<= 3;
737 
738 		/*
739 		 * Attempt reassembly; if it succeeds, proceed.
740 		 * ip_reass() will return a different mbuf, and update
741 		 * the divert info in divert_info and args.divert_rule.
742 		 */
743 		ipstat.ips_fragments++;
744 		m->m_pkthdr.header = ip;
745 		m = ip_reass(m,
746 		    &ipq[sum], fp, &divert_info, &args.divert_rule);
747 		if (m == 0)
748 			return;
749 		ipstat.ips_reassembled++;
750 		ip = mtod(m, struct ip *);
751 		/* Get the header length of the reassembled packet */
752 		hlen = IP_VHL_HL(ip->ip_vhl) << 2;
753 #ifdef IPDIVERT
754 		/* Restore original checksum before diverting packet */
755 		if (divert_info != 0) {
756 			ip->ip_len += hlen;
757 			ip->ip_len = htons(ip->ip_len);
758 			ip->ip_off = htons(ip->ip_off);
759 			ip->ip_sum = 0;
760 			if (hlen == sizeof(struct ip))
761 				ip->ip_sum = in_cksum_hdr(ip);
762 			else
763 				ip->ip_sum = in_cksum(m, hlen);
764 			ip->ip_off = ntohs(ip->ip_off);
765 			ip->ip_len = ntohs(ip->ip_len);
766 			ip->ip_len -= hlen;
767 		}
768 #endif
769 	} else
770 		ip->ip_len -= hlen;
771 
772 #ifdef IPDIVERT
773 	/*
774 	 * Divert or tee packet to the divert protocol if required.
775 	 */
776 	if (divert_info != 0) {
777 		struct mbuf *clone = NULL;
778 
779 		/* Clone packet if we're doing a 'tee' */
780 		if ((divert_info & IP_FW_PORT_TEE_FLAG) != 0)
781 			clone = m_dup(m, M_DONTWAIT);
782 
783 		/* Restore packet header fields to original values */
784 		ip->ip_len += hlen;
785 		ip->ip_len = htons(ip->ip_len);
786 		ip->ip_off = htons(ip->ip_off);
787 
788 		/* Deliver packet to divert input routine */
789 		divert_packet(m, 1, divert_info & 0xffff, args.divert_rule);
790 		ipstat.ips_delivered++;
791 
792 		/* If 'tee', continue with original packet */
793 		if (clone == NULL)
794 			return;
795 		m = clone;
796 		ip = mtod(m, struct ip *);
797 		ip->ip_len += hlen;
798 		/*
799 		 * Jump backwards to complete processing of the
800 		 * packet. But first clear divert_info to avoid
801 		 * entering this block again.
802 		 * We do not need to clear args.divert_rule
803 		 * or args.next_hop as they will not be used.
804 		 */
805 		divert_info = 0;
806 		goto pass;
807 	}
808 #endif
809 
810 #ifdef IPSEC
811 	/*
812 	 * enforce IPsec policy checking if we are seeing last header.
813 	 * note that we do not visit this with protocols with pcb layer
814 	 * code - like udp/tcp/raw ip.
815 	 */
816 	if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0 &&
817 	    ipsec4_in_reject(m, NULL)) {
818 		ipsecstat.in_polvio++;
819 		goto bad;
820 	}
821 #endif
822 
823 	/*
824 	 * Switch out to protocol's input routine.
825 	 */
826 	ipstat.ips_delivered++;
827 	if (args.next_hop && ip->ip_p == IPPROTO_TCP) {
828 		/* TCP needs IPFORWARD info if available */
829 		struct m_hdr tag;
830 
831 		tag.mh_type = MT_TAG;
832 		tag.mh_flags = PACKET_TAG_IPFORWARD;
833 		tag.mh_data = (caddr_t)args.next_hop;
834 		tag.mh_next = m;
835 
836 		(*inetsw[ip_protox[ip->ip_p]].pr_input)(
837 			(struct mbuf *)&tag, hlen);
838 	} else
839 		(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
840 	return;
841 bad:
842 	m_freem(m);
843 }
844 
845 /*
846  * IP software interrupt routine - to go away sometime soon
847  */
848 static void
849 ipintr(void)
850 {
851 	struct mbuf *m;
852 
853 	while (1) {
854 		IF_DEQUEUE(&ipintrq, m);
855 		if (m == 0)
856 			return;
857 		ip_input(m);
858 	}
859 }
860 
861 /*
862  * Take incoming datagram fragment and try to reassemble it into
863  * whole datagram.  If a chain for reassembly of this datagram already
864  * exists, then it is given as fp; otherwise have to make a chain.
865  *
866  * When IPDIVERT enabled, keep additional state with each packet that
867  * tells us if we need to divert or tee the packet we're building.
868  * In particular, *divinfo includes the port and TEE flag,
869  * *divert_rule is the number of the matching rule.
870  */
871 
872 static struct mbuf *
873 ip_reass(struct mbuf *m, struct ipqhead *head, struct ipq *fp,
874 	u_int32_t *divinfo, u_int16_t *divert_rule)
875 {
876 	struct ip *ip = mtod(m, struct ip *);
877 	register struct mbuf *p, *q, *nq;
878 	struct mbuf *t;
879 	int hlen = IP_VHL_HL(ip->ip_vhl) << 2;
880 	int i, next;
881 
882 	/*
883 	 * Presence of header sizes in mbufs
884 	 * would confuse code below.
885 	 */
886 	m->m_data += hlen;
887 	m->m_len -= hlen;
888 
889 	/*
890 	 * If first fragment to arrive, create a reassembly queue.
891 	 */
892 	if (fp == 0) {
893 		/*
894 		 * Enforce upper bound on number of fragmented packets
895 		 * for which we attempt reassembly;
896 		 * If maxfrag is 0, never accept fragments.
897 		 * If maxfrag is -1, accept all fragments without limitation.
898 		 */
899 		if ((ip_maxfragpackets >= 0) && (ip_nfragpackets >= ip_maxfragpackets))
900 			goto dropfrag;
901 		ip_nfragpackets++;
902 		if ((t = m_get(M_DONTWAIT, MT_FTABLE)) == NULL)
903 			goto dropfrag;
904 		fp = mtod(t, struct ipq *);
905 		TAILQ_INSERT_HEAD(head, fp, ipq_list);
906 		nipq++;
907 		fp->ipq_ttl = IPFRAGTTL;
908 		fp->ipq_p = ip->ip_p;
909 		fp->ipq_id = ip->ip_id;
910 		fp->ipq_src = ip->ip_src;
911 		fp->ipq_dst = ip->ip_dst;
912 		fp->ipq_frags = m;
913 		m->m_nextpkt = NULL;
914 #ifdef IPDIVERT
915 		fp->ipq_div_info = 0;
916 		fp->ipq_div_cookie = 0;
917 #endif
918 		goto inserted;
919 	}
920 
921 #define GETIP(m)	((struct ip*)((m)->m_pkthdr.header))
922 
923 	/*
924 	 * Find a segment which begins after this one does.
925 	 */
926 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
927 		if (GETIP(q)->ip_off > ip->ip_off)
928 			break;
929 
930 	/*
931 	 * If there is a preceding segment, it may provide some of
932 	 * our data already.  If so, drop the data from the incoming
933 	 * segment.  If it provides all of our data, drop us, otherwise
934 	 * stick new segment in the proper place.
935 	 *
936 	 * If some of the data is dropped from the the preceding
937 	 * segment, then it's checksum is invalidated.
938 	 */
939 	if (p) {
940 		i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
941 		if (i > 0) {
942 			if (i >= ip->ip_len)
943 				goto dropfrag;
944 			m_adj(m, i);
945 			m->m_pkthdr.csum_flags = 0;
946 			ip->ip_off += i;
947 			ip->ip_len -= i;
948 		}
949 		m->m_nextpkt = p->m_nextpkt;
950 		p->m_nextpkt = m;
951 	} else {
952 		m->m_nextpkt = fp->ipq_frags;
953 		fp->ipq_frags = m;
954 	}
955 
956 	/*
957 	 * While we overlap succeeding segments trim them or,
958 	 * if they are completely covered, dequeue them.
959 	 */
960 	for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
961 	     q = nq) {
962 		i = (ip->ip_off + ip->ip_len) -
963 		    GETIP(q)->ip_off;
964 		if (i < GETIP(q)->ip_len) {
965 			GETIP(q)->ip_len -= i;
966 			GETIP(q)->ip_off += i;
967 			m_adj(q, i);
968 			q->m_pkthdr.csum_flags = 0;
969 			break;
970 		}
971 		nq = q->m_nextpkt;
972 		m->m_nextpkt = nq;
973 		m_freem(q);
974 	}
975 
976 inserted:
977 
978 #ifdef IPDIVERT
979 	/*
980 	 * Transfer firewall instructions to the fragment structure.
981 	 * Only trust info in the fragment at offset 0.
982 	 */
983 	if (ip->ip_off == 0) {
984 		fp->ipq_div_info = *divinfo;
985 		fp->ipq_div_cookie = *divert_rule;
986 	}
987 	*divinfo = 0;
988 	*divert_rule = 0;
989 #endif
990 
991 	/*
992 	 * Check for complete reassembly.
993 	 */
994 	next = 0;
995 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
996 		if (GETIP(q)->ip_off != next)
997 			return (0);
998 		next += GETIP(q)->ip_len;
999 	}
1000 	/* Make sure the last packet didn't have the IP_MF flag */
1001 	if (p->m_flags & M_FRAG)
1002 		return (0);
1003 
1004 	/*
1005 	 * Reassembly is complete.  Make sure the packet is a sane size.
1006 	 */
1007 	q = fp->ipq_frags;
1008 	ip = GETIP(q);
1009 	if (next + (IP_VHL_HL(ip->ip_vhl) << 2) > IP_MAXPACKET) {
1010 		ipstat.ips_toolong++;
1011 		ip_freef(head, fp);
1012 		return (0);
1013 	}
1014 
1015 	/*
1016 	 * Concatenate fragments.
1017 	 */
1018 	m = q;
1019 	t = m->m_next;
1020 	m->m_next = 0;
1021 	m_cat(m, t);
1022 	nq = q->m_nextpkt;
1023 	q->m_nextpkt = 0;
1024 	for (q = nq; q != NULL; q = nq) {
1025 		nq = q->m_nextpkt;
1026 		q->m_nextpkt = NULL;
1027 		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1028 		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1029 		m_cat(m, q);
1030 	}
1031 
1032 #ifdef IPDIVERT
1033 	/*
1034 	 * Extract firewall instructions from the fragment structure.
1035 	 */
1036 	*divinfo = fp->ipq_div_info;
1037 	*divert_rule = fp->ipq_div_cookie;
1038 #endif
1039 
1040 	/*
1041 	 * Create header for new ip packet by
1042 	 * modifying header of first packet;
1043 	 * dequeue and discard fragment reassembly header.
1044 	 * Make header visible.
1045 	 */
1046 	ip->ip_len = next;
1047 	ip->ip_src = fp->ipq_src;
1048 	ip->ip_dst = fp->ipq_dst;
1049 	TAILQ_REMOVE(head, fp, ipq_list);
1050 	nipq--;
1051 	(void) m_free(dtom(fp));
1052 	ip_nfragpackets--;
1053 	m->m_len += (IP_VHL_HL(ip->ip_vhl) << 2);
1054 	m->m_data -= (IP_VHL_HL(ip->ip_vhl) << 2);
1055 	/* some debugging cruft by sklower, below, will go away soon */
1056 	if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
1057 		register int plen = 0;
1058 		for (t = m; t; t = t->m_next)
1059 			plen += t->m_len;
1060 		m->m_pkthdr.len = plen;
1061 	}
1062 	return (m);
1063 
1064 dropfrag:
1065 #ifdef IPDIVERT
1066 	*divinfo = 0;
1067 	*divert_rule = 0;
1068 #endif
1069 	ipstat.ips_fragdropped++;
1070 	m_freem(m);
1071 	return (0);
1072 
1073 #undef GETIP
1074 }
1075 
1076 /*
1077  * Free a fragment reassembly header and all
1078  * associated datagrams.
1079  */
1080 static void
1081 ip_freef(fhp, fp)
1082 	struct ipqhead *fhp;
1083 	struct ipq *fp;
1084 {
1085 	register struct mbuf *q;
1086 
1087 	while (fp->ipq_frags) {
1088 		q = fp->ipq_frags;
1089 		fp->ipq_frags = q->m_nextpkt;
1090 		m_freem(q);
1091 	}
1092 	TAILQ_REMOVE(fhp, fp, ipq_list);
1093 	(void) m_free(dtom(fp));
1094 	ip_nfragpackets--;
1095 	nipq--;
1096 }
1097 
1098 /*
1099  * IP timer processing;
1100  * if a timer expires on a reassembly
1101  * queue, discard it.
1102  */
1103 void
1104 ip_slowtimo()
1105 {
1106 	register struct ipq *fp;
1107 	int s = splnet();
1108 	int i;
1109 
1110 	for (i = 0; i < IPREASS_NHASH; i++) {
1111 		for(fp = TAILQ_FIRST(&ipq[i]); fp;) {
1112 			struct ipq *fpp;
1113 
1114 			fpp = fp;
1115 			fp = TAILQ_NEXT(fp, ipq_list);
1116 			if(--fpp->ipq_ttl == 0) {
1117 				ipstat.ips_fragtimeout++;
1118 				ip_freef(&ipq[i], fpp);
1119 			}
1120 		}
1121 	}
1122 	/*
1123 	 * If we are over the maximum number of fragments
1124 	 * (due to the limit being lowered), drain off
1125 	 * enough to get down to the new limit.
1126 	 */
1127 	for (i = 0; i < IPREASS_NHASH; i++) {
1128 		if (ip_maxfragpackets >= 0) {
1129 			while (ip_nfragpackets > ip_maxfragpackets &&
1130 				!TAILQ_EMPTY(&ipq[i])) {
1131 				ipstat.ips_fragdropped++;
1132 				ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i]));
1133 			}
1134 		}
1135 	}
1136 	ipflow_slowtimo();
1137 	splx(s);
1138 }
1139 
1140 /*
1141  * Drain off all datagram fragments.
1142  */
1143 void
1144 ip_drain()
1145 {
1146 	int     i;
1147 
1148 	for (i = 0; i < IPREASS_NHASH; i++) {
1149 		while(!TAILQ_EMPTY(&ipq[i])) {
1150 			ipstat.ips_fragdropped++;
1151 			ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i]));
1152 		}
1153 	}
1154 	in_rtqdrain();
1155 }
1156 
1157 /*
1158  * Do option processing on a datagram,
1159  * possibly discarding it if bad options are encountered,
1160  * or forwarding it if source-routed.
1161  * The pass argument is used when operating in the IPSTEALTH
1162  * mode to tell what options to process:
1163  * [LS]SRR (pass 0) or the others (pass 1).
1164  * The reason for as many as two passes is that when doing IPSTEALTH,
1165  * non-routing options should be processed only if the packet is for us.
1166  * Returns 1 if packet has been forwarded/freed,
1167  * 0 if the packet should be processed further.
1168  */
1169 static int
1170 ip_dooptions(struct mbuf *m, int pass, struct sockaddr_in *next_hop)
1171 {
1172 	struct ip *ip = mtod(m, struct ip *);
1173 	u_char *cp;
1174 	struct in_ifaddr *ia;
1175 	int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
1176 	struct in_addr *sin, dst;
1177 	n_time ntime;
1178 	struct	sockaddr_in ipaddr = { sizeof(ipaddr), AF_INET };
1179 
1180 	dst = ip->ip_dst;
1181 	cp = (u_char *)(ip + 1);
1182 	cnt = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof (struct ip);
1183 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1184 		opt = cp[IPOPT_OPTVAL];
1185 		if (opt == IPOPT_EOL)
1186 			break;
1187 		if (opt == IPOPT_NOP)
1188 			optlen = 1;
1189 		else {
1190 			if (cnt < IPOPT_OLEN + sizeof(*cp)) {
1191 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1192 				goto bad;
1193 			}
1194 			optlen = cp[IPOPT_OLEN];
1195 			if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
1196 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1197 				goto bad;
1198 			}
1199 		}
1200 		switch (opt) {
1201 
1202 		default:
1203 			break;
1204 
1205 		/*
1206 		 * Source routing with record.
1207 		 * Find interface with current destination address.
1208 		 * If none on this machine then drop if strictly routed,
1209 		 * or do nothing if loosely routed.
1210 		 * Record interface address and bring up next address
1211 		 * component.  If strictly routed make sure next
1212 		 * address is on directly accessible net.
1213 		 */
1214 		case IPOPT_LSRR:
1215 		case IPOPT_SSRR:
1216 #ifdef IPSTEALTH
1217 			if (ipstealth && pass > 0)
1218 				break;
1219 #endif
1220 			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1221 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1222 				goto bad;
1223 			}
1224 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1225 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1226 				goto bad;
1227 			}
1228 			ipaddr.sin_addr = ip->ip_dst;
1229 			ia = (struct in_ifaddr *)
1230 				ifa_ifwithaddr((struct sockaddr *)&ipaddr);
1231 			if (ia == 0) {
1232 				if (opt == IPOPT_SSRR) {
1233 					type = ICMP_UNREACH;
1234 					code = ICMP_UNREACH_SRCFAIL;
1235 					goto bad;
1236 				}
1237 				if (!ip_dosourceroute)
1238 					goto nosourcerouting;
1239 				/*
1240 				 * Loose routing, and not at next destination
1241 				 * yet; nothing to do except forward.
1242 				 */
1243 				break;
1244 			}
1245 			off--;			/* 0 origin */
1246 			if (off > optlen - (int)sizeof(struct in_addr)) {
1247 				/*
1248 				 * End of source route.  Should be for us.
1249 				 */
1250 				if (!ip_acceptsourceroute)
1251 					goto nosourcerouting;
1252 				save_rte(cp, ip->ip_src);
1253 				break;
1254 			}
1255 #ifdef IPSTEALTH
1256 			if (ipstealth)
1257 				goto dropit;
1258 #endif
1259 			if (!ip_dosourceroute) {
1260 				if (ipforwarding) {
1261 					char buf[16]; /* aaa.bbb.ccc.ddd\0 */
1262 					/*
1263 					 * Acting as a router, so generate ICMP
1264 					 */
1265 nosourcerouting:
1266 					strcpy(buf, inet_ntoa(ip->ip_dst));
1267 					log(LOG_WARNING,
1268 					    "attempted source route from %s to %s\n",
1269 					    inet_ntoa(ip->ip_src), buf);
1270 					type = ICMP_UNREACH;
1271 					code = ICMP_UNREACH_SRCFAIL;
1272 					goto bad;
1273 				} else {
1274 					/*
1275 					 * Not acting as a router, so silently drop.
1276 					 */
1277 #ifdef IPSTEALTH
1278 dropit:
1279 #endif
1280 					ipstat.ips_cantforward++;
1281 					m_freem(m);
1282 					return (1);
1283 				}
1284 			}
1285 
1286 			/*
1287 			 * locate outgoing interface
1288 			 */
1289 			(void)memcpy(&ipaddr.sin_addr, cp + off,
1290 			    sizeof(ipaddr.sin_addr));
1291 
1292 			if (opt == IPOPT_SSRR) {
1293 #define	INA	struct in_ifaddr *
1294 #define	SA	struct sockaddr *
1295 			    if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr)) == 0)
1296 				ia = (INA)ifa_ifwithnet((SA)&ipaddr);
1297 			} else
1298 				ia = ip_rtaddr(ipaddr.sin_addr, &ipforward_rt);
1299 			if (ia == 0) {
1300 				type = ICMP_UNREACH;
1301 				code = ICMP_UNREACH_SRCFAIL;
1302 				goto bad;
1303 			}
1304 			ip->ip_dst = ipaddr.sin_addr;
1305 			(void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr),
1306 			    sizeof(struct in_addr));
1307 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1308 			/*
1309 			 * Let ip_intr's mcast routing check handle mcast pkts
1310 			 */
1311 			forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr));
1312 			break;
1313 
1314 		case IPOPT_RR:
1315 #ifdef IPSTEALTH
1316 			if (ipstealth && pass == 0)
1317 				break;
1318 #endif
1319 			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1320 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1321 				goto bad;
1322 			}
1323 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1324 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1325 				goto bad;
1326 			}
1327 			/*
1328 			 * If no space remains, ignore.
1329 			 */
1330 			off--;			/* 0 origin */
1331 			if (off > optlen - (int)sizeof(struct in_addr))
1332 				break;
1333 			(void)memcpy(&ipaddr.sin_addr, &ip->ip_dst,
1334 			    sizeof(ipaddr.sin_addr));
1335 			/*
1336 			 * locate outgoing interface; if we're the destination,
1337 			 * use the incoming interface (should be same).
1338 			 */
1339 			if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == 0 &&
1340 			    (ia = ip_rtaddr(ipaddr.sin_addr,
1341 			    &ipforward_rt)) == 0) {
1342 				type = ICMP_UNREACH;
1343 				code = ICMP_UNREACH_HOST;
1344 				goto bad;
1345 			}
1346 			(void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr),
1347 			    sizeof(struct in_addr));
1348 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1349 			break;
1350 
1351 		case IPOPT_TS:
1352 #ifdef IPSTEALTH
1353 			if (ipstealth && pass == 0)
1354 				break;
1355 #endif
1356 			code = cp - (u_char *)ip;
1357 			if (optlen < 4 || optlen > 40) {
1358 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1359 				goto bad;
1360 			}
1361 			if ((off = cp[IPOPT_OFFSET]) < 5) {
1362 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1363 				goto bad;
1364 			}
1365 			if (off > optlen - (int)sizeof(int32_t)) {
1366 				cp[IPOPT_OFFSET + 1] += (1 << 4);
1367 				if ((cp[IPOPT_OFFSET + 1] & 0xf0) == 0) {
1368 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1369 					goto bad;
1370 				}
1371 				break;
1372 			}
1373 			off--;				/* 0 origin */
1374 			sin = (struct in_addr *)(cp + off);
1375 			switch (cp[IPOPT_OFFSET + 1] & 0x0f) {
1376 
1377 			case IPOPT_TS_TSONLY:
1378 				break;
1379 
1380 			case IPOPT_TS_TSANDADDR:
1381 				if (off + sizeof(n_time) +
1382 				    sizeof(struct in_addr) > optlen) {
1383 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1384 					goto bad;
1385 				}
1386 				ipaddr.sin_addr = dst;
1387 				ia = (INA)ifaof_ifpforaddr((SA)&ipaddr,
1388 							    m->m_pkthdr.rcvif);
1389 				if (ia == 0)
1390 					continue;
1391 				(void)memcpy(sin, &IA_SIN(ia)->sin_addr,
1392 				    sizeof(struct in_addr));
1393 				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1394 				break;
1395 
1396 			case IPOPT_TS_PRESPEC:
1397 				if (off + sizeof(n_time) +
1398 				    sizeof(struct in_addr) > optlen) {
1399 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1400 					goto bad;
1401 				}
1402 				(void)memcpy(&ipaddr.sin_addr, sin,
1403 				    sizeof(struct in_addr));
1404 				if (ifa_ifwithaddr((SA)&ipaddr) == 0)
1405 					continue;
1406 				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1407 				break;
1408 
1409 			default:
1410 				code = &cp[IPOPT_OFFSET + 1] - (u_char *)ip;
1411 				goto bad;
1412 			}
1413 			ntime = iptime();
1414 			(void)memcpy(cp + off, &ntime, sizeof(n_time));
1415 			cp[IPOPT_OFFSET] += sizeof(n_time);
1416 		}
1417 	}
1418 	if (forward && ipforwarding) {
1419 		ip_forward(m, 1, next_hop);
1420 		return (1);
1421 	}
1422 	return (0);
1423 bad:
1424 	icmp_error(m, type, code, 0, 0);
1425 	ipstat.ips_badoptions++;
1426 	return (1);
1427 }
1428 
1429 /*
1430  * Given address of next destination (final or next hop),
1431  * return internet address info of interface to be used to get there.
1432  */
1433 struct in_ifaddr *
1434 ip_rtaddr(dst, rt)
1435 	struct in_addr dst;
1436 	struct route *rt;
1437 {
1438 	register struct sockaddr_in *sin;
1439 
1440 	sin = (struct sockaddr_in *)&rt->ro_dst;
1441 
1442 	if (rt->ro_rt == 0 ||
1443 	    !(rt->ro_rt->rt_flags & RTF_UP) ||
1444 	    dst.s_addr != sin->sin_addr.s_addr) {
1445 		if (rt->ro_rt) {
1446 			RTFREE(rt->ro_rt);
1447 			rt->ro_rt = 0;
1448 		}
1449 		sin->sin_family = AF_INET;
1450 		sin->sin_len = sizeof(*sin);
1451 		sin->sin_addr = dst;
1452 
1453 		rtalloc_ign(rt, RTF_PRCLONING);
1454 	}
1455 	if (rt->ro_rt == 0)
1456 		return ((struct in_ifaddr *)0);
1457 	return (ifatoia(rt->ro_rt->rt_ifa));
1458 }
1459 
1460 /*
1461  * Save incoming source route for use in replies,
1462  * to be picked up later by ip_srcroute if the receiver is interested.
1463  */
1464 void
1465 save_rte(option, dst)
1466 	u_char *option;
1467 	struct in_addr dst;
1468 {
1469 	unsigned olen;
1470 
1471 	olen = option[IPOPT_OLEN];
1472 #ifdef DIAGNOSTIC
1473 	if (ipprintfs)
1474 		printf("save_rte: olen %d\n", olen);
1475 #endif
1476 	if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
1477 		return;
1478 	bcopy(option, ip_srcrt.srcopt, olen);
1479 	ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
1480 	ip_srcrt.dst = dst;
1481 }
1482 
1483 /*
1484  * Retrieve incoming source route for use in replies,
1485  * in the same form used by setsockopt.
1486  * The first hop is placed before the options, will be removed later.
1487  */
1488 struct mbuf *
1489 ip_srcroute()
1490 {
1491 	register struct in_addr *p, *q;
1492 	register struct mbuf *m;
1493 
1494 	if (ip_nhops == 0)
1495 		return ((struct mbuf *)0);
1496 	m = m_get(M_DONTWAIT, MT_HEADER);
1497 	if (m == 0)
1498 		return ((struct mbuf *)0);
1499 
1500 #define OPTSIZ	(sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
1501 
1502 	/* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1503 	m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
1504 	    OPTSIZ;
1505 #ifdef DIAGNOSTIC
1506 	if (ipprintfs)
1507 		printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
1508 #endif
1509 
1510 	/*
1511 	 * First save first hop for return route
1512 	 */
1513 	p = &ip_srcrt.route[ip_nhops - 1];
1514 	*(mtod(m, struct in_addr *)) = *p--;
1515 #ifdef DIAGNOSTIC
1516 	if (ipprintfs)
1517 		printf(" hops %lx", (u_long)ntohl(mtod(m, struct in_addr *)->s_addr));
1518 #endif
1519 
1520 	/*
1521 	 * Copy option fields and padding (nop) to mbuf.
1522 	 */
1523 	ip_srcrt.nop = IPOPT_NOP;
1524 	ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
1525 	(void)memcpy(mtod(m, caddr_t) + sizeof(struct in_addr),
1526 	    &ip_srcrt.nop, OPTSIZ);
1527 	q = (struct in_addr *)(mtod(m, caddr_t) +
1528 	    sizeof(struct in_addr) + OPTSIZ);
1529 #undef OPTSIZ
1530 	/*
1531 	 * Record return path as an IP source route,
1532 	 * reversing the path (pointers are now aligned).
1533 	 */
1534 	while (p >= ip_srcrt.route) {
1535 #ifdef DIAGNOSTIC
1536 		if (ipprintfs)
1537 			printf(" %lx", (u_long)ntohl(q->s_addr));
1538 #endif
1539 		*q++ = *p--;
1540 	}
1541 	/*
1542 	 * Last hop goes to final destination.
1543 	 */
1544 	*q = ip_srcrt.dst;
1545 #ifdef DIAGNOSTIC
1546 	if (ipprintfs)
1547 		printf(" %lx\n", (u_long)ntohl(q->s_addr));
1548 #endif
1549 	return (m);
1550 }
1551 
1552 /*
1553  * Strip out IP options, at higher
1554  * level protocol in the kernel.
1555  * Second argument is buffer to which options
1556  * will be moved, and return value is their length.
1557  * XXX should be deleted; last arg currently ignored.
1558  */
1559 void
1560 ip_stripoptions(m, mopt)
1561 	register struct mbuf *m;
1562 	struct mbuf *mopt;
1563 {
1564 	register int i;
1565 	struct ip *ip = mtod(m, struct ip *);
1566 	register caddr_t opts;
1567 	int olen;
1568 
1569 	olen = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof (struct ip);
1570 	opts = (caddr_t)(ip + 1);
1571 	i = m->m_len - (sizeof (struct ip) + olen);
1572 	bcopy(opts + olen, opts, (unsigned)i);
1573 	m->m_len -= olen;
1574 	if (m->m_flags & M_PKTHDR)
1575 		m->m_pkthdr.len -= olen;
1576 	ip->ip_vhl = IP_MAKE_VHL(IPVERSION, sizeof(struct ip) >> 2);
1577 }
1578 
1579 u_char inetctlerrmap[PRC_NCMDS] = {
1580 	0,		0,		0,		0,
1581 	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1582 	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1583 	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1584 	0,		0,		0,		0,
1585 	ENOPROTOOPT,	ECONNREFUSED
1586 };
1587 
1588 /*
1589  * Forward a packet.  If some error occurs return the sender
1590  * an icmp packet.  Note we can't always generate a meaningful
1591  * icmp message because icmp doesn't have a large enough repertoire
1592  * of codes and types.
1593  *
1594  * If not forwarding, just drop the packet.  This could be confusing
1595  * if ipforwarding was zero but some routing protocol was advancing
1596  * us as a gateway to somewhere.  However, we must let the routing
1597  * protocol deal with that.
1598  *
1599  * The srcrt parameter indicates whether the packet is being forwarded
1600  * via a source route.
1601  */
1602 static void
1603 ip_forward(struct mbuf *m, int srcrt, struct sockaddr_in *next_hop)
1604 {
1605 	struct ip *ip = mtod(m, struct ip *);
1606 	struct rtentry *rt;
1607 	int error, type = 0, code = 0;
1608 	struct mbuf *mcopy;
1609 	n_long dest;
1610 	struct in_addr pkt_dst;
1611 	struct ifnet *destifp;
1612 #ifdef IPSEC
1613 	struct ifnet dummyifp;
1614 #endif
1615 
1616 	dest = 0;
1617 	/*
1618 	 * Cache the destination address of the packet; this may be
1619 	 * changed by use of 'ipfw fwd'.
1620 	 */
1621 	pkt_dst = next_hop ? next_hop->sin_addr : ip->ip_dst;
1622 
1623 #ifdef DIAGNOSTIC
1624 	if (ipprintfs)
1625 		printf("forward: src %lx dst %lx ttl %x\n",
1626 		    (u_long)ip->ip_src.s_addr, (u_long)pkt_dst.s_addr,
1627 		    ip->ip_ttl);
1628 #endif
1629 
1630 
1631 	if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(pkt_dst) == 0) {
1632 		ipstat.ips_cantforward++;
1633 		m_freem(m);
1634 		return;
1635 	}
1636 #ifdef IPSTEALTH
1637 	if (!ipstealth) {
1638 #endif
1639 		if (ip->ip_ttl <= IPTTLDEC) {
1640 			icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS,
1641 			    dest, 0);
1642 			return;
1643 		}
1644 #ifdef IPSTEALTH
1645 	}
1646 #endif
1647 
1648 	if (ip_rtaddr(pkt_dst, &ipforward_rt) == 0) {
1649 		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0);
1650 		return;
1651 	} else
1652 		rt = ipforward_rt.ro_rt;
1653 
1654 	/*
1655 	 * Save the IP header and at most 8 bytes of the payload,
1656 	 * in case we need to generate an ICMP message to the src.
1657 	 *
1658 	 * XXX this can be optimized a lot by saving the data in a local
1659 	 * buffer on the stack (72 bytes at most), and only allocating the
1660 	 * mbuf if really necessary. The vast majority of the packets
1661 	 * are forwarded without having to send an ICMP back (either
1662 	 * because unnecessary, or because rate limited), so we are
1663 	 * really we are wasting a lot of work here.
1664 	 *
1665 	 * We don't use m_copy() because it might return a reference
1666 	 * to a shared cluster. Both this function and ip_output()
1667 	 * assume exclusive access to the IP header in `m', so any
1668 	 * data in a cluster may change before we reach icmp_error().
1669 	 */
1670 	MGET(mcopy, M_DONTWAIT, m->m_type);
1671 	if (mcopy != NULL) {
1672 		M_COPY_PKTHDR(mcopy, m);
1673 		mcopy->m_len = imin((IP_VHL_HL(ip->ip_vhl) << 2) + 8,
1674 		    (int)ip->ip_len);
1675 		m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
1676 	}
1677 
1678 #ifdef IPSTEALTH
1679 	if (!ipstealth) {
1680 #endif
1681 		ip->ip_ttl -= IPTTLDEC;
1682 #ifdef IPSTEALTH
1683 	}
1684 #endif
1685 
1686 	/*
1687 	 * If forwarding packet using same interface that it came in on,
1688 	 * perhaps should send a redirect to sender to shortcut a hop.
1689 	 * Only send redirect if source is sending directly to us,
1690 	 * and if packet was not source routed (or has any options).
1691 	 * Also, don't send redirect if forwarding using a default route
1692 	 * or a route modified by a redirect.
1693 	 */
1694 	if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1695 	    (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1696 	    satosin(rt_key(rt))->sin_addr.s_addr != 0 &&
1697 	    ipsendredirects && !srcrt && !next_hop) {
1698 #define	RTA(rt)	((struct in_ifaddr *)(rt->rt_ifa))
1699 		u_long src = ntohl(ip->ip_src.s_addr);
1700 
1701 		if (RTA(rt) &&
1702 		    (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
1703 		    if (rt->rt_flags & RTF_GATEWAY)
1704 			dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1705 		    else
1706 			dest = pkt_dst.s_addr;
1707 		    /* Router requirements says to only send host redirects */
1708 		    type = ICMP_REDIRECT;
1709 		    code = ICMP_REDIRECT_HOST;
1710 #ifdef DIAGNOSTIC
1711 		    if (ipprintfs)
1712 		        printf("redirect (%d) to %lx\n", code, (u_long)dest);
1713 #endif
1714 		}
1715 	}
1716 
1717 	error = ip_output(m, (struct mbuf *)0, &ipforward_rt,
1718 			  IP_FORWARDING, 0);
1719 	if (error)
1720 		ipstat.ips_cantforward++;
1721 	else {
1722 		ipstat.ips_forward++;
1723 		if (type)
1724 			ipstat.ips_redirectsent++;
1725 		else {
1726 			if (mcopy) {
1727 				ipflow_create(&ipforward_rt, mcopy);
1728 				m_freem(mcopy);
1729 			}
1730 			return;
1731 		}
1732 	}
1733 	if (mcopy == NULL)
1734 		return;
1735 	destifp = NULL;
1736 
1737 	switch (error) {
1738 
1739 	case 0:				/* forwarded, but need redirect */
1740 		/* type, code set above */
1741 		break;
1742 
1743 	case ENETUNREACH:		/* shouldn't happen, checked above */
1744 	case EHOSTUNREACH:
1745 	case ENETDOWN:
1746 	case EHOSTDOWN:
1747 	default:
1748 		type = ICMP_UNREACH;
1749 		code = ICMP_UNREACH_HOST;
1750 		break;
1751 
1752 	case EMSGSIZE:
1753 		type = ICMP_UNREACH;
1754 		code = ICMP_UNREACH_NEEDFRAG;
1755 #ifndef IPSEC
1756 		if (ipforward_rt.ro_rt)
1757 			destifp = ipforward_rt.ro_rt->rt_ifp;
1758 #else
1759 		/*
1760 		 * If the packet is routed over IPsec tunnel, tell the
1761 		 * originator the tunnel MTU.
1762 		 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
1763 		 * XXX quickhack!!!
1764 		 */
1765 		if (ipforward_rt.ro_rt) {
1766 			struct secpolicy *sp = NULL;
1767 			int ipsecerror;
1768 			int ipsechdr;
1769 			struct route *ro;
1770 
1771 			sp = ipsec4_getpolicybyaddr(mcopy,
1772 						    IPSEC_DIR_OUTBOUND,
1773 			                            IP_FORWARDING,
1774 			                            &ipsecerror);
1775 
1776 			if (sp == NULL)
1777 				destifp = ipforward_rt.ro_rt->rt_ifp;
1778 			else {
1779 				/* count IPsec header size */
1780 				ipsechdr = ipsec4_hdrsiz(mcopy,
1781 							 IPSEC_DIR_OUTBOUND,
1782 							 NULL);
1783 
1784 				/*
1785 				 * find the correct route for outer IPv4
1786 				 * header, compute tunnel MTU.
1787 				 *
1788 				 * XXX BUG ALERT
1789 				 * The "dummyifp" code relies upon the fact
1790 				 * that icmp_error() touches only ifp->if_mtu.
1791 				 */
1792 				/*XXX*/
1793 				destifp = NULL;
1794 				if (sp->req != NULL
1795 				 && sp->req->sav != NULL
1796 				 && sp->req->sav->sah != NULL) {
1797 					ro = &sp->req->sav->sah->sa_route;
1798 					if (ro->ro_rt && ro->ro_rt->rt_ifp) {
1799 						dummyifp.if_mtu =
1800 						    ro->ro_rt->rt_ifp->if_mtu;
1801 						dummyifp.if_mtu -= ipsechdr;
1802 						destifp = &dummyifp;
1803 					}
1804 				}
1805 
1806 				key_freesp(sp);
1807 			}
1808 		}
1809 #endif /*IPSEC*/
1810 		ipstat.ips_cantfrag++;
1811 		break;
1812 
1813 	case ENOBUFS:
1814 		type = ICMP_SOURCEQUENCH;
1815 		code = 0;
1816 		break;
1817 
1818 	case EACCES:			/* ipfw denied packet */
1819 		m_freem(mcopy);
1820 		return;
1821 	}
1822 	icmp_error(mcopy, type, code, dest, destifp);
1823 }
1824 
1825 void
1826 ip_savecontrol(inp, mp, ip, m)
1827 	register struct inpcb *inp;
1828 	register struct mbuf **mp;
1829 	register struct ip *ip;
1830 	register struct mbuf *m;
1831 {
1832 	if (inp->inp_socket->so_options & SO_TIMESTAMP) {
1833 		struct timeval tv;
1834 
1835 		microtime(&tv);
1836 		*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
1837 			SCM_TIMESTAMP, SOL_SOCKET);
1838 		if (*mp)
1839 			mp = &(*mp)->m_next;
1840 	}
1841 	if (inp->inp_flags & INP_RECVDSTADDR) {
1842 		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
1843 		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
1844 		if (*mp)
1845 			mp = &(*mp)->m_next;
1846 	}
1847 #ifdef notyet
1848 	/* XXX
1849 	 * Moving these out of udp_input() made them even more broken
1850 	 * than they already were.
1851 	 */
1852 	/* options were tossed already */
1853 	if (inp->inp_flags & INP_RECVOPTS) {
1854 		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
1855 		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
1856 		if (*mp)
1857 			mp = &(*mp)->m_next;
1858 	}
1859 	/* ip_srcroute doesn't do what we want here, need to fix */
1860 	if (inp->inp_flags & INP_RECVRETOPTS) {
1861 		*mp = sbcreatecontrol((caddr_t) ip_srcroute(),
1862 		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
1863 		if (*mp)
1864 			mp = &(*mp)->m_next;
1865 	}
1866 #endif
1867 	if (inp->inp_flags & INP_RECVIF) {
1868 		struct ifnet *ifp;
1869 		struct sdlbuf {
1870 			struct sockaddr_dl sdl;
1871 			u_char	pad[32];
1872 		} sdlbuf;
1873 		struct sockaddr_dl *sdp;
1874 		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
1875 
1876 		if (((ifp = m->m_pkthdr.rcvif))
1877 		&& ( ifp->if_index && (ifp->if_index <= if_index))) {
1878 			sdp = (struct sockaddr_dl *)
1879 			    (ifaddr_byindex(ifp->if_index)->ifa_addr);
1880 			/*
1881 			 * Change our mind and don't try copy.
1882 			 */
1883 			if ((sdp->sdl_family != AF_LINK)
1884 			|| (sdp->sdl_len > sizeof(sdlbuf))) {
1885 				goto makedummy;
1886 			}
1887 			bcopy(sdp, sdl2, sdp->sdl_len);
1888 		} else {
1889 makedummy:
1890 			sdl2->sdl_len
1891 				= offsetof(struct sockaddr_dl, sdl_data[0]);
1892 			sdl2->sdl_family = AF_LINK;
1893 			sdl2->sdl_index = 0;
1894 			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
1895 		}
1896 		*mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
1897 			IP_RECVIF, IPPROTO_IP);
1898 		if (*mp)
1899 			mp = &(*mp)->m_next;
1900 	}
1901 }
1902 
1903 /*
1904  * XXX these routines are called from the upper part of the kernel.
1905  * They need to be locked when we remove Giant.
1906  *
1907  * They could also be moved to ip_mroute.c, since all the RSVP
1908  *  handling is done there already.
1909  */
1910 static int ip_rsvp_on;
1911 struct socket *ip_rsvpd;
1912 int
1913 ip_rsvp_init(struct socket *so)
1914 {
1915 	if (so->so_type != SOCK_RAW ||
1916 	    so->so_proto->pr_protocol != IPPROTO_RSVP)
1917 	  return EOPNOTSUPP;
1918 
1919 	if (ip_rsvpd != NULL)
1920 	  return EADDRINUSE;
1921 
1922 	ip_rsvpd = so;
1923 	/*
1924 	 * This may seem silly, but we need to be sure we don't over-increment
1925 	 * the RSVP counter, in case something slips up.
1926 	 */
1927 	if (!ip_rsvp_on) {
1928 		ip_rsvp_on = 1;
1929 		rsvp_on++;
1930 	}
1931 
1932 	return 0;
1933 }
1934 
1935 int
1936 ip_rsvp_done(void)
1937 {
1938 	ip_rsvpd = NULL;
1939 	/*
1940 	 * This may seem silly, but we need to be sure we don't over-decrement
1941 	 * the RSVP counter, in case something slips up.
1942 	 */
1943 	if (ip_rsvp_on) {
1944 		ip_rsvp_on = 0;
1945 		rsvp_on--;
1946 	}
1947 	return 0;
1948 }
1949