xref: /freebsd/sys/netinet/ip_input.c (revision 04c9749ff0148ec8f73b150cec8bc2c094a5d31a)
1 /*
2  * Copyright (c) 1982, 1986, 1988, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
34  * $FreeBSD$
35  */
36 
37 #define	_IP_VHL
38 
39 #include "opt_bootp.h"
40 #include "opt_ipfw.h"
41 #include "opt_ipdn.h"
42 #include "opt_ipdivert.h"
43 #include "opt_ipfilter.h"
44 #include "opt_ipstealth.h"
45 #include "opt_ipsec.h"
46 #include "opt_pfil_hooks.h"
47 
48 #include <stddef.h>
49 
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/mbuf.h>
53 #include <sys/malloc.h>
54 #include <sys/domain.h>
55 #include <sys/protosw.h>
56 #include <sys/socket.h>
57 #include <sys/time.h>
58 #include <sys/kernel.h>
59 #include <sys/syslog.h>
60 #include <sys/sysctl.h>
61 
62 #include <net/pfil.h>
63 #include <net/if.h>
64 #include <net/if_var.h>
65 #include <net/if_dl.h>
66 #include <net/route.h>
67 #include <net/netisr.h>
68 #include <net/intrq.h>
69 
70 #include <netinet/in.h>
71 #include <netinet/in_systm.h>
72 #include <netinet/in_var.h>
73 #include <netinet/ip.h>
74 #include <netinet/in_pcb.h>
75 #include <netinet/ip_var.h>
76 #include <netinet/ip_icmp.h>
77 #include <machine/in_cksum.h>
78 
79 #include <netinet/ipprotosw.h>
80 
81 #include <sys/socketvar.h>
82 
83 #include <netinet/ip_fw.h>
84 
85 #ifdef IPSEC
86 #include <netinet6/ipsec.h>
87 #include <netkey/key.h>
88 #endif
89 
90 #include "faith.h"
91 #if defined(NFAITH) && NFAITH > 0
92 #include <net/if_types.h>
93 #endif
94 
95 #ifdef DUMMYNET
96 #include <netinet/ip_dummynet.h>
97 #endif
98 
99 int rsvp_on = 0;
100 static int ip_rsvp_on;
101 struct socket *ip_rsvpd;
102 
103 int	ipforwarding = 0;
104 SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
105     &ipforwarding, 0, "Enable IP forwarding between interfaces");
106 
107 static int	ipsendredirects = 1; /* XXX */
108 SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
109     &ipsendredirects, 0, "Enable sending IP redirects");
110 
111 int	ip_defttl = IPDEFTTL;
112 SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
113     &ip_defttl, 0, "Maximum TTL on IP packets");
114 
115 static int	ip_dosourceroute = 0;
116 SYSCTL_INT(_net_inet_ip, IPCTL_SOURCEROUTE, sourceroute, CTLFLAG_RW,
117     &ip_dosourceroute, 0, "Enable forwarding source routed IP packets");
118 
119 static int	ip_acceptsourceroute = 0;
120 SYSCTL_INT(_net_inet_ip, IPCTL_ACCEPTSOURCEROUTE, accept_sourceroute,
121     CTLFLAG_RW, &ip_acceptsourceroute, 0,
122     "Enable accepting source routed IP packets");
123 
124 static int	ip_keepfaith = 0;
125 SYSCTL_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
126 	&ip_keepfaith,	0,
127 	"Enable packet capture for FAITH IPv4->IPv6 translater daemon");
128 
129 #ifdef DIAGNOSTIC
130 static int	ipprintfs = 0;
131 #endif
132 
133 extern	struct domain inetdomain;
134 extern	struct ipprotosw inetsw[];
135 u_char	ip_protox[IPPROTO_MAX];
136 static int	ipqmaxlen = IFQ_MAXLEN;
137 struct	in_ifaddrhead in_ifaddrhead; /* first inet address */
138 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen, CTLFLAG_RW,
139     &ipintrq.ifq_maxlen, 0, "Maximum size of the IP input queue");
140 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops, CTLFLAG_RD,
141     &ipintrq.ifq_drops, 0, "Number of packets dropped from the IP input queue");
142 
143 struct ipstat ipstat;
144 SYSCTL_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RD,
145     &ipstat, ipstat, "IP statistics (struct ipstat, netinet/ip_var.h)");
146 
147 /* Packet reassembly stuff */
148 #define IPREASS_NHASH_LOG2      6
149 #define IPREASS_NHASH           (1 << IPREASS_NHASH_LOG2)
150 #define IPREASS_HMASK           (IPREASS_NHASH - 1)
151 #define IPREASS_HASH(x,y) \
152 	(((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
153 
154 static struct ipq ipq[IPREASS_NHASH];
155 static int    nipq = 0;         /* total # of reass queues */
156 static int    maxnipq;
157 const  int    ipintrq_present = 1;
158 
159 #ifdef IPCTL_DEFMTU
160 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
161     &ip_mtu, 0, "Default MTU");
162 #endif
163 
164 #ifdef IPSTEALTH
165 static int	ipstealth = 0;
166 SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW,
167     &ipstealth, 0, "");
168 #endif
169 
170 
171 /* Firewall hooks */
172 ip_fw_chk_t *ip_fw_chk_ptr;
173 ip_fw_ctl_t *ip_fw_ctl_ptr;
174 int fw_enable = 1 ;
175 
176 #ifdef DUMMYNET
177 ip_dn_ctl_t *ip_dn_ctl_ptr;
178 #endif
179 
180 
181 /*
182  * We need to save the IP options in case a protocol wants to respond
183  * to an incoming packet over the same route if the packet got here
184  * using IP source routing.  This allows connection establishment and
185  * maintenance when the remote end is on a network that is not known
186  * to us.
187  */
188 static int	ip_nhops = 0;
189 static	struct ip_srcrt {
190 	struct	in_addr dst;			/* final destination */
191 	char	nop;				/* one NOP to align */
192 	char	srcopt[IPOPT_OFFSET + 1];	/* OPTVAL, OLEN and OFFSET */
193 	struct	in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
194 } ip_srcrt;
195 
196 struct sockaddr_in *ip_fw_fwd_addr;
197 
198 static void	save_rte __P((u_char *, struct in_addr));
199 static int	ip_dooptions __P((struct mbuf *));
200 static void	ip_forward __P((struct mbuf *, int));
201 static void	ip_freef __P((struct ipq *));
202 #ifdef IPDIVERT
203 static struct	mbuf *ip_reass __P((struct mbuf *,
204 			struct ipq *, struct ipq *, u_int32_t *, u_int16_t *));
205 #else
206 static struct	mbuf *ip_reass __P((struct mbuf *, struct ipq *, struct ipq *));
207 #endif
208 static struct	in_ifaddr *ip_rtaddr __P((struct in_addr));
209 static void	ipintr __P((void));
210 
211 /*
212  * IP initialization: fill in IP protocol switch table.
213  * All protocols not implemented in kernel go to raw IP protocol handler.
214  */
215 void
216 ip_init()
217 {
218 	register struct ipprotosw *pr;
219 	register int i;
220 
221 	TAILQ_INIT(&in_ifaddrhead);
222 	pr = (struct ipprotosw *)pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
223 	if (pr == 0)
224 		panic("ip_init");
225 	for (i = 0; i < IPPROTO_MAX; i++)
226 		ip_protox[i] = pr - inetsw;
227 	for (pr = (struct ipprotosw *)inetdomain.dom_protosw;
228 	    pr < (struct ipprotosw *)inetdomain.dom_protoswNPROTOSW; pr++)
229 		if (pr->pr_domain->dom_family == PF_INET &&
230 		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
231 			ip_protox[pr->pr_protocol] = pr - inetsw;
232 
233 	for (i = 0; i < IPREASS_NHASH; i++)
234 	    ipq[i].next = ipq[i].prev = &ipq[i];
235 
236 	maxnipq = nmbclusters/4;
237 
238 	ip_id = time_second & 0xffff;
239 	ipintrq.ifq_maxlen = ipqmaxlen;
240 
241 	register_netisr(NETISR_IP, ipintr);
242 }
243 
244 static struct	sockaddr_in ipaddr = { sizeof(ipaddr), AF_INET };
245 static struct	route ipforward_rt;
246 
247 /*
248  * Ip input routine.  Checksum and byte swap header.  If fragmented
249  * try to reassemble.  Process options.  Pass to next level.
250  */
251 void
252 ip_input(struct mbuf *m)
253 {
254 	struct ip *ip;
255 	struct ipq *fp;
256 	struct in_ifaddr *ia;
257 	int    i, hlen, mff;
258 	u_short sum;
259 	u_int16_t divert_cookie;		/* firewall cookie */
260 #ifdef IPDIVERT
261 	u_int32_t divert_info = 0;		/* packet divert/tee info */
262 #endif
263 	struct ip_fw_chain *rule = NULL;
264 #ifdef PFIL_HOOKS
265 	struct packet_filter_hook *pfh;
266 	struct mbuf *m0;
267 	int rv;
268 #endif /* PFIL_HOOKS */
269 
270 #ifdef IPDIVERT
271 	/* Get and reset firewall cookie */
272 	divert_cookie = ip_divert_cookie;
273 	ip_divert_cookie = 0;
274 #else
275 	divert_cookie = 0;
276 #endif
277 
278 #if defined(IPFIREWALL) && defined(DUMMYNET)
279         /*
280          * dummynet packet are prepended a vestigial mbuf with
281          * m_type = MT_DUMMYNET and m_data pointing to the matching
282          * rule.
283          */
284         if (m->m_type == MT_DUMMYNET) {
285             rule = (struct ip_fw_chain *)(m->m_data) ;
286             m = m->m_next ;
287             ip = mtod(m, struct ip *);
288             hlen = IP_VHL_HL(ip->ip_vhl) << 2;
289             goto iphack ;
290         } else
291             rule = NULL ;
292 #endif
293 
294 #ifdef	DIAGNOSTIC
295 	if (m == NULL || (m->m_flags & M_PKTHDR) == 0)
296 		panic("ip_input no HDR");
297 #endif
298 	ipstat.ips_total++;
299 
300 	if (m->m_pkthdr.len < sizeof(struct ip))
301 		goto tooshort;
302 
303 	if (m->m_len < sizeof (struct ip) &&
304 	    (m = m_pullup(m, sizeof (struct ip))) == 0) {
305 		ipstat.ips_toosmall++;
306 		return;
307 	}
308 	ip = mtod(m, struct ip *);
309 
310 	if (IP_VHL_V(ip->ip_vhl) != IPVERSION) {
311 		ipstat.ips_badvers++;
312 		goto bad;
313 	}
314 
315 	hlen = IP_VHL_HL(ip->ip_vhl) << 2;
316 	if (hlen < sizeof(struct ip)) {	/* minimum header length */
317 		ipstat.ips_badhlen++;
318 		goto bad;
319 	}
320 	if (hlen > m->m_len) {
321 		if ((m = m_pullup(m, hlen)) == 0) {
322 			ipstat.ips_badhlen++;
323 			return;
324 		}
325 		ip = mtod(m, struct ip *);
326 	}
327 	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
328 		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
329 	} else {
330 		if (hlen == sizeof(struct ip)) {
331 			sum = in_cksum_hdr(ip);
332 		} else {
333 			sum = in_cksum(m, hlen);
334 		}
335 	}
336 	if (sum) {
337 		ipstat.ips_badsum++;
338 		goto bad;
339 	}
340 
341 	/*
342 	 * Convert fields to host representation.
343 	 */
344 	NTOHS(ip->ip_len);
345 	if (ip->ip_len < hlen) {
346 		ipstat.ips_badlen++;
347 		goto bad;
348 	}
349 	NTOHS(ip->ip_id);
350 	NTOHS(ip->ip_off);
351 
352 	/*
353 	 * Check that the amount of data in the buffers
354 	 * is as at least much as the IP header would have us expect.
355 	 * Trim mbufs if longer than we expect.
356 	 * Drop packet if shorter than we expect.
357 	 */
358 	if (m->m_pkthdr.len < ip->ip_len) {
359 tooshort:
360 		ipstat.ips_tooshort++;
361 		goto bad;
362 	}
363 	if (m->m_pkthdr.len > ip->ip_len) {
364 		if (m->m_len == m->m_pkthdr.len) {
365 			m->m_len = ip->ip_len;
366 			m->m_pkthdr.len = ip->ip_len;
367 		} else
368 			m_adj(m, ip->ip_len - m->m_pkthdr.len);
369 	}
370 	/*
371 	 * IpHack's section.
372 	 * Right now when no processing on packet has done
373 	 * and it is still fresh out of network we do our black
374 	 * deals with it.
375 	 * - Firewall: deny/allow/divert
376 	 * - Xlate: translate packet's addr/port (NAT).
377 	 * - Pipe: pass pkt through dummynet.
378 	 * - Wrap: fake packet's addr/port <unimpl.>
379 	 * - Encapsulate: put it in another IP and send out. <unimp.>
380  	 */
381 
382 #if defined(IPFIREWALL) && defined(DUMMYNET)
383 iphack:
384 #endif
385 
386 #ifdef PFIL_HOOKS
387 	/*
388 	 * Run through list of hooks for input packets.  If there are any
389 	 * filters which require that additional packets in the flow are
390 	 * not fast-forwarded, they must clear the M_CANFASTFWD flag.
391 	 * Note that filters must _never_ set this flag, as another filter
392 	 * in the list may have previously cleared it.
393 	 */
394 	m0 = m;
395 	pfh = pfil_hook_get(PFIL_IN, &inetsw[ip_protox[IPPROTO_IP]].pr_pfh);
396 	for (; pfh; pfh = pfh->pfil_link.tqe_next)
397 		if (pfh->pfil_func) {
398 			rv = pfh->pfil_func(ip, hlen,
399 					    m->m_pkthdr.rcvif, 0, &m0);
400 			if (rv)
401 				return;
402 			m = m0;
403 			if (m == NULL)
404 				return;
405 			ip = mtod(m, struct ip *);
406 		}
407 #endif /* PFIL_HOOKS */
408 
409 	if (fw_enable && ip_fw_chk_ptr) {
410 #ifdef IPFIREWALL_FORWARD
411 		/*
412 		 * If we've been forwarded from the output side, then
413 		 * skip the firewall a second time
414 		 */
415 		if (ip_fw_fwd_addr)
416 			goto ours;
417 #endif	/* IPFIREWALL_FORWARD */
418 		/*
419 		 * See the comment in ip_output for the return values
420 		 * produced by the firewall.
421 		 */
422 		i = (*ip_fw_chk_ptr)(&ip,
423 		    hlen, NULL, &divert_cookie, &m, &rule, &ip_fw_fwd_addr);
424 		if (m == NULL)		/* Packet discarded by firewall */
425 			return;
426 		if (i == 0 && ip_fw_fwd_addr == NULL)	/* common case */
427 			goto pass;
428 #ifdef DUMMYNET
429                 if ((i & IP_FW_PORT_DYNT_FLAG) != 0) {
430                         /* Send packet to the appropriate pipe */
431                         dummynet_io(i&0xffff,DN_TO_IP_IN,m,NULL,NULL,0, rule,
432 				    0);
433 			return;
434 		}
435 #endif
436 #ifdef IPDIVERT
437 		if (i != 0 && (i & IP_FW_PORT_DYNT_FLAG) == 0) {
438 			/* Divert or tee packet */
439 			divert_info = i;
440 			goto ours;
441 		}
442 #endif
443 #ifdef IPFIREWALL_FORWARD
444 		if (i == 0 && ip_fw_fwd_addr != NULL)
445 			goto pass;
446 #endif
447 		/*
448 		 * if we get here, the packet must be dropped
449 		 */
450 		m_freem(m);
451 		return;
452 	}
453 pass:
454 
455 	/*
456 	 * Process options and, if not destined for us,
457 	 * ship it on.  ip_dooptions returns 1 when an
458 	 * error was detected (causing an icmp message
459 	 * to be sent and the original packet to be freed).
460 	 */
461 	ip_nhops = 0;		/* for source routed packets */
462 	if (hlen > sizeof (struct ip) && ip_dooptions(m)) {
463 #ifdef IPFIREWALL_FORWARD
464 		ip_fw_fwd_addr = NULL;
465 #endif
466 		return;
467 	}
468 
469         /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
470          * matter if it is destined to another node, or whether it is
471          * a multicast one, RSVP wants it! and prevents it from being forwarded
472          * anywhere else. Also checks if the rsvp daemon is running before
473 	 * grabbing the packet.
474          */
475 	if (rsvp_on && ip->ip_p==IPPROTO_RSVP)
476 		goto ours;
477 
478 	/*
479 	 * Check our list of addresses, to see if the packet is for us.
480 	 * If we don't have any addresses, assume any unicast packet
481 	 * we receive might be for us (and let the upper layers deal
482 	 * with it).
483 	 */
484 	if (TAILQ_EMPTY(&in_ifaddrhead) &&
485 	    (m->m_flags & (M_MCAST|M_BCAST)) == 0)
486 		goto ours;
487 
488 	for (ia = TAILQ_FIRST(&in_ifaddrhead); ia;
489 					ia = TAILQ_NEXT(ia, ia_link)) {
490 #define	satosin(sa)	((struct sockaddr_in *)(sa))
491 
492 #ifdef BOOTP_COMPAT
493 		if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY)
494 			goto ours;
495 #endif
496 #ifdef IPFIREWALL_FORWARD
497 		/*
498 		 * If the addr to forward to is one of ours, we pretend to
499 		 * be the destination for this packet.
500 		 */
501 		if (ip_fw_fwd_addr == NULL) {
502 			if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr)
503 				goto ours;
504 		} else if (IA_SIN(ia)->sin_addr.s_addr ==
505 					 ip_fw_fwd_addr->sin_addr.s_addr)
506 			goto ours;
507 #else
508 		if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr)
509 			goto ours;
510 #endif
511 		if (ia->ia_ifp && ia->ia_ifp->if_flags & IFF_BROADCAST) {
512 			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
513 			    ip->ip_dst.s_addr)
514 				goto ours;
515 			if (ip->ip_dst.s_addr == ia->ia_netbroadcast.s_addr)
516 				goto ours;
517 		}
518 	}
519 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
520 		struct in_multi *inm;
521 		if (ip_mrouter) {
522 			/*
523 			 * If we are acting as a multicast router, all
524 			 * incoming multicast packets are passed to the
525 			 * kernel-level multicast forwarding function.
526 			 * The packet is returned (relatively) intact; if
527 			 * ip_mforward() returns a non-zero value, the packet
528 			 * must be discarded, else it may be accepted below.
529 			 *
530 			 * (The IP ident field is put in the same byte order
531 			 * as expected when ip_mforward() is called from
532 			 * ip_output().)
533 			 */
534 			ip->ip_id = htons(ip->ip_id);
535 			if (ip_mforward(ip, m->m_pkthdr.rcvif, m, 0) != 0) {
536 				ipstat.ips_cantforward++;
537 				m_freem(m);
538 				return;
539 			}
540 			ip->ip_id = ntohs(ip->ip_id);
541 
542 			/*
543 			 * The process-level routing demon needs to receive
544 			 * all multicast IGMP packets, whether or not this
545 			 * host belongs to their destination groups.
546 			 */
547 			if (ip->ip_p == IPPROTO_IGMP)
548 				goto ours;
549 			ipstat.ips_forward++;
550 		}
551 		/*
552 		 * See if we belong to the destination multicast group on the
553 		 * arrival interface.
554 		 */
555 		IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
556 		if (inm == NULL) {
557 			ipstat.ips_notmember++;
558 			m_freem(m);
559 			return;
560 		}
561 		goto ours;
562 	}
563 	if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
564 		goto ours;
565 	if (ip->ip_dst.s_addr == INADDR_ANY)
566 		goto ours;
567 
568 #if defined(NFAITH) && 0 < NFAITH
569 	/*
570 	 * FAITH(Firewall Aided Internet Translator)
571 	 */
572 	if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
573 		if (ip_keepfaith) {
574 			if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
575 				goto ours;
576 		}
577 		m_freem(m);
578 		return;
579 	}
580 #endif
581 	/*
582 	 * Not for us; forward if possible and desirable.
583 	 */
584 	if (ipforwarding == 0) {
585 		ipstat.ips_cantforward++;
586 		m_freem(m);
587 	} else
588 		ip_forward(m, 0);
589 #ifdef IPFIREWALL_FORWARD
590 	ip_fw_fwd_addr = NULL;
591 #endif
592 	return;
593 
594 ours:
595 
596 	/*
597 	 * If offset or IP_MF are set, must reassemble.
598 	 * Otherwise, nothing need be done.
599 	 * (We could look in the reassembly queue to see
600 	 * if the packet was previously fragmented,
601 	 * but it's not worth the time; just let them time out.)
602 	 */
603 	if (ip->ip_off & (IP_MF | IP_OFFMASK | IP_RF)) {
604 
605 #if 0	/*
606 	 * Reassembly should be able to treat a mbuf cluster, for later
607 	 * operation of contiguous protocol headers on the cluster. (KAME)
608 	 */
609 		if (m->m_flags & M_EXT) {		/* XXX */
610 			if ((m = m_pullup(m, hlen)) == 0) {
611 				ipstat.ips_toosmall++;
612 #ifdef IPFIREWALL_FORWARD
613 				ip_fw_fwd_addr = NULL;
614 #endif
615 				return;
616 			}
617 			ip = mtod(m, struct ip *);
618 		}
619 #endif
620 		sum = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
621 		/*
622 		 * Look for queue of fragments
623 		 * of this datagram.
624 		 */
625 		for (fp = ipq[sum].next; fp != &ipq[sum]; fp = fp->next)
626 			if (ip->ip_id == fp->ipq_id &&
627 			    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
628 			    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
629 			    ip->ip_p == fp->ipq_p)
630 				goto found;
631 
632 		fp = 0;
633 
634 		/* check if there's a place for the new queue */
635 		if (nipq > maxnipq) {
636 		    /*
637 		     * drop something from the tail of the current queue
638 		     * before proceeding further
639 		     */
640 		    if (ipq[sum].prev == &ipq[sum]) {   /* gak */
641 			for (i = 0; i < IPREASS_NHASH; i++) {
642 			    if (ipq[i].prev != &ipq[i]) {
643 				ip_freef(ipq[i].prev);
644 				break;
645 			    }
646 			}
647 		    } else
648 			ip_freef(ipq[sum].prev);
649 		}
650 found:
651 		/*
652 		 * Adjust ip_len to not reflect header,
653 		 * set ip_mff if more fragments are expected,
654 		 * convert offset of this to bytes.
655 		 */
656 		ip->ip_len -= hlen;
657 		mff = (ip->ip_off & IP_MF) != 0;
658 		if (mff) {
659 		        /*
660 		         * Make sure that fragments have a data length
661 			 * that's a non-zero multiple of 8 bytes.
662 		         */
663 			if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
664 				ipstat.ips_toosmall++; /* XXX */
665 				goto bad;
666 			}
667 			m->m_flags |= M_FRAG;
668 		}
669 		ip->ip_off <<= 3;
670 
671 		/*
672 		 * If datagram marked as having more fragments
673 		 * or if this is not the first fragment,
674 		 * attempt reassembly; if it succeeds, proceed.
675 		 */
676 		if (mff || ip->ip_off) {
677 			ipstat.ips_fragments++;
678 			m->m_pkthdr.header = ip;
679 #ifdef IPDIVERT
680 			m = ip_reass(m,
681 			    fp, &ipq[sum], &divert_info, &divert_cookie);
682 #else
683 			m = ip_reass(m, fp, &ipq[sum]);
684 #endif
685 			if (m == 0) {
686 #ifdef IPFIREWALL_FORWARD
687 				ip_fw_fwd_addr = NULL;
688 #endif
689 				return;
690 			}
691 			/* Get the length of the reassembled packets header */
692 			hlen = IP_VHL_HL(ip->ip_vhl) << 2;
693 			ipstat.ips_reassembled++;
694 			ip = mtod(m, struct ip *);
695 #ifdef IPDIVERT
696 			/* Restore original checksum before diverting packet */
697 			if (divert_info != 0) {
698 				ip->ip_len += hlen;
699 				HTONS(ip->ip_len);
700 				HTONS(ip->ip_off);
701 				HTONS(ip->ip_id);
702 				ip->ip_sum = 0;
703 				ip->ip_sum = in_cksum_hdr(ip);
704 				NTOHS(ip->ip_id);
705 				NTOHS(ip->ip_off);
706 				NTOHS(ip->ip_len);
707 				ip->ip_len -= hlen;
708 			}
709 #endif
710 		} else
711 			if (fp)
712 				ip_freef(fp);
713 	} else
714 		ip->ip_len -= hlen;
715 
716 #ifdef IPDIVERT
717 	/*
718 	 * Divert or tee packet to the divert protocol if required.
719 	 *
720 	 * If divert_info is zero then cookie should be too, so we shouldn't
721 	 * need to clear them here.  Assume divert_packet() does so also.
722 	 */
723 	if (divert_info != 0) {
724 		struct mbuf *clone = NULL;
725 
726 		/* Clone packet if we're doing a 'tee' */
727 		if ((divert_info & IP_FW_PORT_TEE_FLAG) != 0)
728 			clone = m_dup(m, M_DONTWAIT);
729 
730 		/* Restore packet header fields to original values */
731 		ip->ip_len += hlen;
732 		HTONS(ip->ip_len);
733 		HTONS(ip->ip_off);
734 		HTONS(ip->ip_id);
735 
736 		/* Deliver packet to divert input routine */
737 		ip_divert_cookie = divert_cookie;
738 		divert_packet(m, 1, divert_info & 0xffff);
739 		ipstat.ips_delivered++;
740 
741 		/* If 'tee', continue with original packet */
742 		if (clone == NULL)
743 			return;
744 		m = clone;
745 		ip = mtod(m, struct ip *);
746 	}
747 #endif
748 
749 	/*
750 	 * Switch out to protocol's input routine.
751 	 */
752 	ipstat.ips_delivered++;
753     {
754 	int off = hlen, nh = ip->ip_p;
755 
756 	(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, off, nh);
757 #ifdef	IPFIREWALL_FORWARD
758 	ip_fw_fwd_addr = NULL;	/* tcp needed it */
759 #endif
760 	return;
761     }
762 bad:
763 #ifdef	IPFIREWALL_FORWARD
764 	ip_fw_fwd_addr = NULL;
765 #endif
766 	m_freem(m);
767 }
768 
769 /*
770  * IP software interrupt routine - to go away sometime soon
771  */
772 static void
773 ipintr(void)
774 {
775 	int s;
776 	struct mbuf *m;
777 
778 	while(1) {
779 		s = splimp();
780 		IF_DEQUEUE(&ipintrq, m);
781 		splx(s);
782 		if (m == 0)
783 			return;
784 		ip_input(m);
785 	}
786 }
787 
788 /*
789  * Take incoming datagram fragment and try to reassemble it into
790  * whole datagram.  If a chain for reassembly of this datagram already
791  * exists, then it is given as fp; otherwise have to make a chain.
792  *
793  * When IPDIVERT enabled, keep additional state with each packet that
794  * tells us if we need to divert or tee the packet we're building.
795  */
796 
797 static struct mbuf *
798 #ifdef IPDIVERT
799 ip_reass(m, fp, where, divinfo, divcookie)
800 #else
801 ip_reass(m, fp, where)
802 #endif
803 	register struct mbuf *m;
804 	register struct ipq *fp;
805 	struct   ipq    *where;
806 #ifdef IPDIVERT
807 	u_int32_t *divinfo;
808 	u_int16_t *divcookie;
809 #endif
810 {
811 	struct ip *ip = mtod(m, struct ip *);
812 	register struct mbuf *p = 0, *q, *nq;
813 	struct mbuf *t;
814 	int hlen = IP_VHL_HL(ip->ip_vhl) << 2;
815 	int i, next;
816 
817 	/*
818 	 * Presence of header sizes in mbufs
819 	 * would confuse code below.
820 	 */
821 	m->m_data += hlen;
822 	m->m_len -= hlen;
823 
824 	/*
825 	 * If first fragment to arrive, create a reassembly queue.
826 	 */
827 	if (fp == 0) {
828 		if ((t = m_get(M_DONTWAIT, MT_FTABLE)) == NULL)
829 			goto dropfrag;
830 		fp = mtod(t, struct ipq *);
831 		insque(fp, where);
832 		nipq++;
833 		fp->ipq_ttl = IPFRAGTTL;
834 		fp->ipq_p = ip->ip_p;
835 		fp->ipq_id = ip->ip_id;
836 		fp->ipq_src = ip->ip_src;
837 		fp->ipq_dst = ip->ip_dst;
838 		fp->ipq_frags = m;
839 		m->m_nextpkt = NULL;
840 #ifdef IPDIVERT
841 		fp->ipq_div_info = 0;
842 		fp->ipq_div_cookie = 0;
843 #endif
844 		goto inserted;
845 	}
846 
847 #define GETIP(m)	((struct ip*)((m)->m_pkthdr.header))
848 
849 	/*
850 	 * Find a segment which begins after this one does.
851 	 */
852 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
853 		if (GETIP(q)->ip_off > ip->ip_off)
854 			break;
855 
856 	/*
857 	 * If there is a preceding segment, it may provide some of
858 	 * our data already.  If so, drop the data from the incoming
859 	 * segment.  If it provides all of our data, drop us, otherwise
860 	 * stick new segment in the proper place.
861 	 *
862 	 * If some of the data is dropped from the the preceding
863 	 * segment, then it's checksum is invalidated.
864 	 */
865 	if (p) {
866 		i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
867 		if (i > 0) {
868 			if (i >= ip->ip_len)
869 				goto dropfrag;
870 			m_adj(m, i);
871 			m->m_pkthdr.csum_flags = 0;
872 			ip->ip_off += i;
873 			ip->ip_len -= i;
874 		}
875 		m->m_nextpkt = p->m_nextpkt;
876 		p->m_nextpkt = m;
877 	} else {
878 		m->m_nextpkt = fp->ipq_frags;
879 		fp->ipq_frags = m;
880 	}
881 
882 	/*
883 	 * While we overlap succeeding segments trim them or,
884 	 * if they are completely covered, dequeue them.
885 	 */
886 	for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
887 	     q = nq) {
888 		i = (ip->ip_off + ip->ip_len) -
889 		    GETIP(q)->ip_off;
890 		if (i < GETIP(q)->ip_len) {
891 			GETIP(q)->ip_len -= i;
892 			GETIP(q)->ip_off += i;
893 			m_adj(q, i);
894 			q->m_pkthdr.csum_flags = 0;
895 			break;
896 		}
897 		nq = q->m_nextpkt;
898 		m->m_nextpkt = nq;
899 		m_freem(q);
900 	}
901 
902 inserted:
903 
904 #ifdef IPDIVERT
905 	/*
906 	 * Transfer firewall instructions to the fragment structure.
907 	 * Any fragment diverting causes the whole packet to divert.
908 	 */
909 	fp->ipq_div_info = *divinfo;
910 	fp->ipq_div_cookie = *divcookie;
911 	*divinfo = 0;
912 	*divcookie = 0;
913 #endif
914 
915 	/*
916 	 * Check for complete reassembly.
917 	 */
918 	next = 0;
919 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
920 		if (GETIP(q)->ip_off != next)
921 			return (0);
922 		next += GETIP(q)->ip_len;
923 	}
924 	/* Make sure the last packet didn't have the IP_MF flag */
925 	if (p->m_flags & M_FRAG)
926 		return (0);
927 
928 	/*
929 	 * Reassembly is complete.  Make sure the packet is a sane size.
930 	 */
931 	q = fp->ipq_frags;
932 	ip = GETIP(q);
933 	if (next + (IP_VHL_HL(ip->ip_vhl) << 2) > IP_MAXPACKET) {
934 		ipstat.ips_toolong++;
935 		ip_freef(fp);
936 		return (0);
937 	}
938 
939 	/*
940 	 * Concatenate fragments.
941 	 */
942 	m = q;
943 	t = m->m_next;
944 	m->m_next = 0;
945 	m_cat(m, t);
946 	nq = q->m_nextpkt;
947 	q->m_nextpkt = 0;
948 	for (q = nq; q != NULL; q = nq) {
949 		nq = q->m_nextpkt;
950 		q->m_nextpkt = NULL;
951 		m_cat(m, q);
952 		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
953 		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
954 	}
955 
956 #ifdef IPDIVERT
957 	/*
958 	 * Extract firewall instructions from the fragment structure.
959 	 */
960 	*divinfo = fp->ipq_div_info;
961 	*divcookie = fp->ipq_div_cookie;
962 #endif
963 
964 	/*
965 	 * Create header for new ip packet by
966 	 * modifying header of first packet;
967 	 * dequeue and discard fragment reassembly header.
968 	 * Make header visible.
969 	 */
970 	ip->ip_len = next;
971 	ip->ip_src = fp->ipq_src;
972 	ip->ip_dst = fp->ipq_dst;
973 	remque(fp);
974 	nipq--;
975 	(void) m_free(dtom(fp));
976 	m->m_len += (IP_VHL_HL(ip->ip_vhl) << 2);
977 	m->m_data -= (IP_VHL_HL(ip->ip_vhl) << 2);
978 	/* some debugging cruft by sklower, below, will go away soon */
979 	if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
980 		register int plen = 0;
981 		for (t = m; t; t = t->m_next)
982 			plen += t->m_len;
983 		m->m_pkthdr.len = plen;
984 	}
985 	return (m);
986 
987 dropfrag:
988 #ifdef IPDIVERT
989 	*divinfo = 0;
990 	*divcookie = 0;
991 #endif
992 	ipstat.ips_fragdropped++;
993 	m_freem(m);
994 	return (0);
995 
996 #undef GETIP
997 }
998 
999 /*
1000  * Free a fragment reassembly header and all
1001  * associated datagrams.
1002  */
1003 static void
1004 ip_freef(fp)
1005 	struct ipq *fp;
1006 {
1007 	register struct mbuf *q;
1008 
1009 	while (fp->ipq_frags) {
1010 		q = fp->ipq_frags;
1011 		fp->ipq_frags = q->m_nextpkt;
1012 		m_freem(q);
1013 	}
1014 	remque(fp);
1015 	(void) m_free(dtom(fp));
1016 	nipq--;
1017 }
1018 
1019 /*
1020  * IP timer processing;
1021  * if a timer expires on a reassembly
1022  * queue, discard it.
1023  */
1024 void
1025 ip_slowtimo()
1026 {
1027 	register struct ipq *fp;
1028 	int s = splnet();
1029 	int i;
1030 
1031 	for (i = 0; i < IPREASS_NHASH; i++) {
1032 		fp = ipq[i].next;
1033 		if (fp == 0)
1034 			continue;
1035 		while (fp != &ipq[i]) {
1036 			--fp->ipq_ttl;
1037 			fp = fp->next;
1038 			if (fp->prev->ipq_ttl == 0) {
1039 				ipstat.ips_fragtimeout++;
1040 				ip_freef(fp->prev);
1041 			}
1042 		}
1043 	}
1044 	ipflow_slowtimo();
1045 	splx(s);
1046 }
1047 
1048 /*
1049  * Drain off all datagram fragments.
1050  */
1051 void
1052 ip_drain()
1053 {
1054 	int     i;
1055 
1056 	for (i = 0; i < IPREASS_NHASH; i++) {
1057 		while (ipq[i].next != &ipq[i]) {
1058 			ipstat.ips_fragdropped++;
1059 			ip_freef(ipq[i].next);
1060 		}
1061 	}
1062 	in_rtqdrain();
1063 }
1064 
1065 /*
1066  * Do option processing on a datagram,
1067  * possibly discarding it if bad options are encountered,
1068  * or forwarding it if source-routed.
1069  * Returns 1 if packet has been forwarded/freed,
1070  * 0 if the packet should be processed further.
1071  */
1072 static int
1073 ip_dooptions(m)
1074 	struct mbuf *m;
1075 {
1076 	register struct ip *ip = mtod(m, struct ip *);
1077 	register u_char *cp;
1078 	register struct ip_timestamp *ipt;
1079 	register struct in_ifaddr *ia;
1080 	int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
1081 	struct in_addr *sin, dst;
1082 	n_time ntime;
1083 
1084 	dst = ip->ip_dst;
1085 	cp = (u_char *)(ip + 1);
1086 	cnt = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof (struct ip);
1087 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1088 		opt = cp[IPOPT_OPTVAL];
1089 		if (opt == IPOPT_EOL)
1090 			break;
1091 		if (opt == IPOPT_NOP)
1092 			optlen = 1;
1093 		else {
1094 			if (cnt < IPOPT_OLEN + sizeof(*cp)) {
1095 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1096 				goto bad;
1097 			}
1098 			optlen = cp[IPOPT_OLEN];
1099 			if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
1100 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1101 				goto bad;
1102 			}
1103 		}
1104 		switch (opt) {
1105 
1106 		default:
1107 			break;
1108 
1109 		/*
1110 		 * Source routing with record.
1111 		 * Find interface with current destination address.
1112 		 * If none on this machine then drop if strictly routed,
1113 		 * or do nothing if loosely routed.
1114 		 * Record interface address and bring up next address
1115 		 * component.  If strictly routed make sure next
1116 		 * address is on directly accessible net.
1117 		 */
1118 		case IPOPT_LSRR:
1119 		case IPOPT_SSRR:
1120 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1121 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1122 				goto bad;
1123 			}
1124 			ipaddr.sin_addr = ip->ip_dst;
1125 			ia = (struct in_ifaddr *)
1126 				ifa_ifwithaddr((struct sockaddr *)&ipaddr);
1127 			if (ia == 0) {
1128 				if (opt == IPOPT_SSRR) {
1129 					type = ICMP_UNREACH;
1130 					code = ICMP_UNREACH_SRCFAIL;
1131 					goto bad;
1132 				}
1133 				if (!ip_dosourceroute)
1134 					goto nosourcerouting;
1135 				/*
1136 				 * Loose routing, and not at next destination
1137 				 * yet; nothing to do except forward.
1138 				 */
1139 				break;
1140 			}
1141 			off--;			/* 0 origin */
1142 			if (off > optlen - (int)sizeof(struct in_addr)) {
1143 				/*
1144 				 * End of source route.  Should be for us.
1145 				 */
1146 				if (!ip_acceptsourceroute)
1147 					goto nosourcerouting;
1148 				save_rte(cp, ip->ip_src);
1149 				break;
1150 			}
1151 
1152 			if (!ip_dosourceroute) {
1153 				if (ipforwarding) {
1154 					char buf[16]; /* aaa.bbb.ccc.ddd\0 */
1155 					/*
1156 					 * Acting as a router, so generate ICMP
1157 					 */
1158 nosourcerouting:
1159 					strcpy(buf, inet_ntoa(ip->ip_dst));
1160 					log(LOG_WARNING,
1161 					    "attempted source route from %s to %s\n",
1162 					    inet_ntoa(ip->ip_src), buf);
1163 					type = ICMP_UNREACH;
1164 					code = ICMP_UNREACH_SRCFAIL;
1165 					goto bad;
1166 				} else {
1167 					/*
1168 					 * Not acting as a router, so silently drop.
1169 					 */
1170 					ipstat.ips_cantforward++;
1171 					m_freem(m);
1172 					return (1);
1173 				}
1174 			}
1175 
1176 			/*
1177 			 * locate outgoing interface
1178 			 */
1179 			(void)memcpy(&ipaddr.sin_addr, cp + off,
1180 			    sizeof(ipaddr.sin_addr));
1181 
1182 			if (opt == IPOPT_SSRR) {
1183 #define	INA	struct in_ifaddr *
1184 #define	SA	struct sockaddr *
1185 			    if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr)) == 0)
1186 				ia = (INA)ifa_ifwithnet((SA)&ipaddr);
1187 			} else
1188 				ia = ip_rtaddr(ipaddr.sin_addr);
1189 			if (ia == 0) {
1190 				type = ICMP_UNREACH;
1191 				code = ICMP_UNREACH_SRCFAIL;
1192 				goto bad;
1193 			}
1194 			ip->ip_dst = ipaddr.sin_addr;
1195 			(void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr),
1196 			    sizeof(struct in_addr));
1197 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1198 			/*
1199 			 * Let ip_intr's mcast routing check handle mcast pkts
1200 			 */
1201 			forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr));
1202 			break;
1203 
1204 		case IPOPT_RR:
1205 			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1206 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1207 				goto bad;
1208 			}
1209 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1210 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1211 				goto bad;
1212 			}
1213 			/*
1214 			 * If no space remains, ignore.
1215 			 */
1216 			off--;			/* 0 origin */
1217 			if (off > optlen - (int)sizeof(struct in_addr))
1218 				break;
1219 			(void)memcpy(&ipaddr.sin_addr, &ip->ip_dst,
1220 			    sizeof(ipaddr.sin_addr));
1221 			/*
1222 			 * locate outgoing interface; if we're the destination,
1223 			 * use the incoming interface (should be same).
1224 			 */
1225 			if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == 0 &&
1226 			    (ia = ip_rtaddr(ipaddr.sin_addr)) == 0) {
1227 				type = ICMP_UNREACH;
1228 				code = ICMP_UNREACH_HOST;
1229 				goto bad;
1230 			}
1231 			(void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr),
1232 			    sizeof(struct in_addr));
1233 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1234 			break;
1235 
1236 		case IPOPT_TS:
1237 			code = cp - (u_char *)ip;
1238 			ipt = (struct ip_timestamp *)cp;
1239 			if (ipt->ipt_len < 5)
1240 				goto bad;
1241 			if (ipt->ipt_ptr >
1242 			    ipt->ipt_len - (int)sizeof(int32_t)) {
1243 				if (++ipt->ipt_oflw == 0)
1244 					goto bad;
1245 				break;
1246 			}
1247 			sin = (struct in_addr *)(cp + ipt->ipt_ptr - 1);
1248 			switch (ipt->ipt_flg) {
1249 
1250 			case IPOPT_TS_TSONLY:
1251 				break;
1252 
1253 			case IPOPT_TS_TSANDADDR:
1254 				if (ipt->ipt_ptr - 1 + sizeof(n_time) +
1255 				    sizeof(struct in_addr) > ipt->ipt_len)
1256 					goto bad;
1257 				ipaddr.sin_addr = dst;
1258 				ia = (INA)ifaof_ifpforaddr((SA)&ipaddr,
1259 							    m->m_pkthdr.rcvif);
1260 				if (ia == 0)
1261 					continue;
1262 				(void)memcpy(sin, &IA_SIN(ia)->sin_addr,
1263 				    sizeof(struct in_addr));
1264 				ipt->ipt_ptr += sizeof(struct in_addr);
1265 				break;
1266 
1267 			case IPOPT_TS_PRESPEC:
1268 				if (ipt->ipt_ptr - 1 + sizeof(n_time) +
1269 				    sizeof(struct in_addr) > ipt->ipt_len)
1270 					goto bad;
1271 				(void)memcpy(&ipaddr.sin_addr, sin,
1272 				    sizeof(struct in_addr));
1273 				if (ifa_ifwithaddr((SA)&ipaddr) == 0)
1274 					continue;
1275 				ipt->ipt_ptr += sizeof(struct in_addr);
1276 				break;
1277 
1278 			default:
1279 				goto bad;
1280 			}
1281 			ntime = iptime();
1282 			(void)memcpy(cp + ipt->ipt_ptr - 1, &ntime,
1283 			    sizeof(n_time));
1284 			ipt->ipt_ptr += sizeof(n_time);
1285 		}
1286 	}
1287 	if (forward && ipforwarding) {
1288 		ip_forward(m, 1);
1289 		return (1);
1290 	}
1291 	return (0);
1292 bad:
1293 	ip->ip_len -= IP_VHL_HL(ip->ip_vhl) << 2;   /* XXX icmp_error adds in hdr length */
1294 	icmp_error(m, type, code, 0, 0);
1295 	ipstat.ips_badoptions++;
1296 	return (1);
1297 }
1298 
1299 /*
1300  * Given address of next destination (final or next hop),
1301  * return internet address info of interface to be used to get there.
1302  */
1303 static struct in_ifaddr *
1304 ip_rtaddr(dst)
1305 	 struct in_addr dst;
1306 {
1307 	register struct sockaddr_in *sin;
1308 
1309 	sin = (struct sockaddr_in *) &ipforward_rt.ro_dst;
1310 
1311 	if (ipforward_rt.ro_rt == 0 || dst.s_addr != sin->sin_addr.s_addr) {
1312 		if (ipforward_rt.ro_rt) {
1313 			RTFREE(ipforward_rt.ro_rt);
1314 			ipforward_rt.ro_rt = 0;
1315 		}
1316 		sin->sin_family = AF_INET;
1317 		sin->sin_len = sizeof(*sin);
1318 		sin->sin_addr = dst;
1319 
1320 		rtalloc_ign(&ipforward_rt, RTF_PRCLONING);
1321 	}
1322 	if (ipforward_rt.ro_rt == 0)
1323 		return ((struct in_ifaddr *)0);
1324 	return ((struct in_ifaddr *) ipforward_rt.ro_rt->rt_ifa);
1325 }
1326 
1327 /*
1328  * Save incoming source route for use in replies,
1329  * to be picked up later by ip_srcroute if the receiver is interested.
1330  */
1331 void
1332 save_rte(option, dst)
1333 	u_char *option;
1334 	struct in_addr dst;
1335 {
1336 	unsigned olen;
1337 
1338 	olen = option[IPOPT_OLEN];
1339 #ifdef DIAGNOSTIC
1340 	if (ipprintfs)
1341 		printf("save_rte: olen %d\n", olen);
1342 #endif
1343 	if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
1344 		return;
1345 	bcopy(option, ip_srcrt.srcopt, olen);
1346 	ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
1347 	ip_srcrt.dst = dst;
1348 }
1349 
1350 /*
1351  * Retrieve incoming source route for use in replies,
1352  * in the same form used by setsockopt.
1353  * The first hop is placed before the options, will be removed later.
1354  */
1355 struct mbuf *
1356 ip_srcroute()
1357 {
1358 	register struct in_addr *p, *q;
1359 	register struct mbuf *m;
1360 
1361 	if (ip_nhops == 0)
1362 		return ((struct mbuf *)0);
1363 	m = m_get(M_DONTWAIT, MT_HEADER);
1364 	if (m == 0)
1365 		return ((struct mbuf *)0);
1366 
1367 #define OPTSIZ	(sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
1368 
1369 	/* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1370 	m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
1371 	    OPTSIZ;
1372 #ifdef DIAGNOSTIC
1373 	if (ipprintfs)
1374 		printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
1375 #endif
1376 
1377 	/*
1378 	 * First save first hop for return route
1379 	 */
1380 	p = &ip_srcrt.route[ip_nhops - 1];
1381 	*(mtod(m, struct in_addr *)) = *p--;
1382 #ifdef DIAGNOSTIC
1383 	if (ipprintfs)
1384 		printf(" hops %lx", (u_long)ntohl(mtod(m, struct in_addr *)->s_addr));
1385 #endif
1386 
1387 	/*
1388 	 * Copy option fields and padding (nop) to mbuf.
1389 	 */
1390 	ip_srcrt.nop = IPOPT_NOP;
1391 	ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
1392 	(void)memcpy(mtod(m, caddr_t) + sizeof(struct in_addr),
1393 	    &ip_srcrt.nop, OPTSIZ);
1394 	q = (struct in_addr *)(mtod(m, caddr_t) +
1395 	    sizeof(struct in_addr) + OPTSIZ);
1396 #undef OPTSIZ
1397 	/*
1398 	 * Record return path as an IP source route,
1399 	 * reversing the path (pointers are now aligned).
1400 	 */
1401 	while (p >= ip_srcrt.route) {
1402 #ifdef DIAGNOSTIC
1403 		if (ipprintfs)
1404 			printf(" %lx", (u_long)ntohl(q->s_addr));
1405 #endif
1406 		*q++ = *p--;
1407 	}
1408 	/*
1409 	 * Last hop goes to final destination.
1410 	 */
1411 	*q = ip_srcrt.dst;
1412 #ifdef DIAGNOSTIC
1413 	if (ipprintfs)
1414 		printf(" %lx\n", (u_long)ntohl(q->s_addr));
1415 #endif
1416 	return (m);
1417 }
1418 
1419 /*
1420  * Strip out IP options, at higher
1421  * level protocol in the kernel.
1422  * Second argument is buffer to which options
1423  * will be moved, and return value is their length.
1424  * XXX should be deleted; last arg currently ignored.
1425  */
1426 void
1427 ip_stripoptions(m, mopt)
1428 	register struct mbuf *m;
1429 	struct mbuf *mopt;
1430 {
1431 	register int i;
1432 	struct ip *ip = mtod(m, struct ip *);
1433 	register caddr_t opts;
1434 	int olen;
1435 
1436 	olen = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof (struct ip);
1437 	opts = (caddr_t)(ip + 1);
1438 	i = m->m_len - (sizeof (struct ip) + olen);
1439 	bcopy(opts + olen, opts, (unsigned)i);
1440 	m->m_len -= olen;
1441 	if (m->m_flags & M_PKTHDR)
1442 		m->m_pkthdr.len -= olen;
1443 	ip->ip_vhl = IP_MAKE_VHL(IPVERSION, sizeof(struct ip) >> 2);
1444 }
1445 
1446 u_char inetctlerrmap[PRC_NCMDS] = {
1447 	0,		0,		0,		0,
1448 	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1449 	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1450 	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1451 	0,		0,		0,		0,
1452 	ENOPROTOOPT
1453 };
1454 
1455 /*
1456  * Forward a packet.  If some error occurs return the sender
1457  * an icmp packet.  Note we can't always generate a meaningful
1458  * icmp message because icmp doesn't have a large enough repertoire
1459  * of codes and types.
1460  *
1461  * If not forwarding, just drop the packet.  This could be confusing
1462  * if ipforwarding was zero but some routing protocol was advancing
1463  * us as a gateway to somewhere.  However, we must let the routing
1464  * protocol deal with that.
1465  *
1466  * The srcrt parameter indicates whether the packet is being forwarded
1467  * via a source route.
1468  */
1469 static void
1470 ip_forward(m, srcrt)
1471 	struct mbuf *m;
1472 	int srcrt;
1473 {
1474 	register struct ip *ip = mtod(m, struct ip *);
1475 	register struct sockaddr_in *sin;
1476 	register struct rtentry *rt;
1477 	int error, type = 0, code = 0;
1478 	struct mbuf *mcopy;
1479 	n_long dest;
1480 	struct ifnet *destifp;
1481 #ifdef IPSEC
1482 	struct ifnet dummyifp;
1483 #endif
1484 
1485 	dest = 0;
1486 #ifdef DIAGNOSTIC
1487 	if (ipprintfs)
1488 		printf("forward: src %lx dst %lx ttl %x\n",
1489 		    (u_long)ip->ip_src.s_addr, (u_long)ip->ip_dst.s_addr,
1490 		    ip->ip_ttl);
1491 #endif
1492 
1493 
1494 	if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) {
1495 		ipstat.ips_cantforward++;
1496 		m_freem(m);
1497 		return;
1498 	}
1499 	HTONS(ip->ip_id);
1500 #ifdef IPSTEALTH
1501 	if (!ipstealth) {
1502 #endif
1503 		if (ip->ip_ttl <= IPTTLDEC) {
1504 			icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS,
1505 			    dest, 0);
1506 			return;
1507 		}
1508 		ip->ip_ttl -= IPTTLDEC;
1509 #ifdef IPSTEALTH
1510 	}
1511 #endif
1512 
1513 	sin = (struct sockaddr_in *)&ipforward_rt.ro_dst;
1514 	if ((rt = ipforward_rt.ro_rt) == 0 ||
1515 	    ip->ip_dst.s_addr != sin->sin_addr.s_addr) {
1516 		if (ipforward_rt.ro_rt) {
1517 			RTFREE(ipforward_rt.ro_rt);
1518 			ipforward_rt.ro_rt = 0;
1519 		}
1520 		sin->sin_family = AF_INET;
1521 		sin->sin_len = sizeof(*sin);
1522 		sin->sin_addr = ip->ip_dst;
1523 
1524 		rtalloc_ign(&ipforward_rt, RTF_PRCLONING);
1525 		if (ipforward_rt.ro_rt == 0) {
1526 			icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0);
1527 			return;
1528 		}
1529 		rt = ipforward_rt.ro_rt;
1530 	}
1531 
1532 	/*
1533 	 * Save at most 64 bytes of the packet in case
1534 	 * we need to generate an ICMP message to the src.
1535 	 */
1536 	mcopy = m_copy(m, 0, imin((int)ip->ip_len, 64));
1537 
1538 	/*
1539 	 * If forwarding packet using same interface that it came in on,
1540 	 * perhaps should send a redirect to sender to shortcut a hop.
1541 	 * Only send redirect if source is sending directly to us,
1542 	 * and if packet was not source routed (or has any options).
1543 	 * Also, don't send redirect if forwarding using a default route
1544 	 * or a route modified by a redirect.
1545 	 */
1546 #define	satosin(sa)	((struct sockaddr_in *)(sa))
1547 	if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1548 	    (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1549 	    satosin(rt_key(rt))->sin_addr.s_addr != 0 &&
1550 	    ipsendredirects && !srcrt) {
1551 #define	RTA(rt)	((struct in_ifaddr *)(rt->rt_ifa))
1552 		u_long src = ntohl(ip->ip_src.s_addr);
1553 
1554 		if (RTA(rt) &&
1555 		    (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
1556 		    if (rt->rt_flags & RTF_GATEWAY)
1557 			dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1558 		    else
1559 			dest = ip->ip_dst.s_addr;
1560 		    /* Router requirements says to only send host redirects */
1561 		    type = ICMP_REDIRECT;
1562 		    code = ICMP_REDIRECT_HOST;
1563 #ifdef DIAGNOSTIC
1564 		    if (ipprintfs)
1565 		        printf("redirect (%d) to %lx\n", code, (u_long)dest);
1566 #endif
1567 		}
1568 	}
1569 
1570 	error = ip_output(m, (struct mbuf *)0, &ipforward_rt,
1571 			  IP_FORWARDING, 0);
1572 	if (error)
1573 		ipstat.ips_cantforward++;
1574 	else {
1575 		ipstat.ips_forward++;
1576 		if (type)
1577 			ipstat.ips_redirectsent++;
1578 		else {
1579 			if (mcopy) {
1580 				ipflow_create(&ipforward_rt, mcopy);
1581 				m_freem(mcopy);
1582 			}
1583 			return;
1584 		}
1585 	}
1586 	if (mcopy == NULL)
1587 		return;
1588 	destifp = NULL;
1589 
1590 	switch (error) {
1591 
1592 	case 0:				/* forwarded, but need redirect */
1593 		/* type, code set above */
1594 		break;
1595 
1596 	case ENETUNREACH:		/* shouldn't happen, checked above */
1597 	case EHOSTUNREACH:
1598 	case ENETDOWN:
1599 	case EHOSTDOWN:
1600 	default:
1601 		type = ICMP_UNREACH;
1602 		code = ICMP_UNREACH_HOST;
1603 		break;
1604 
1605 	case EMSGSIZE:
1606 		type = ICMP_UNREACH;
1607 		code = ICMP_UNREACH_NEEDFRAG;
1608 #ifndef IPSEC
1609 		if (ipforward_rt.ro_rt)
1610 			destifp = ipforward_rt.ro_rt->rt_ifp;
1611 #else
1612 		/*
1613 		 * If the packet is routed over IPsec tunnel, tell the
1614 		 * originator the tunnel MTU.
1615 		 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
1616 		 * XXX quickhack!!!
1617 		 */
1618 		if (ipforward_rt.ro_rt) {
1619 			struct secpolicy *sp = NULL;
1620 			int ipsecerror;
1621 			int ipsechdr;
1622 			struct route *ro;
1623 
1624 			sp = ipsec4_getpolicybyaddr(mcopy,
1625 						    IPSEC_DIR_OUTBOUND,
1626 			                            IP_FORWARDING,
1627 			                            &ipsecerror);
1628 
1629 			if (sp == NULL)
1630 				destifp = ipforward_rt.ro_rt->rt_ifp;
1631 			else {
1632 				/* count IPsec header size */
1633 				ipsechdr = ipsec4_hdrsiz(mcopy,
1634 							 IPSEC_DIR_OUTBOUND,
1635 							 NULL);
1636 
1637 				/*
1638 				 * find the correct route for outer IPv4
1639 				 * header, compute tunnel MTU.
1640 				 *
1641 				 * XXX BUG ALERT
1642 				 * The "dummyifp" code relies upon the fact
1643 				 * that icmp_error() touches only ifp->if_mtu.
1644 				 */
1645 				/*XXX*/
1646 				destifp = NULL;
1647 				if (sp->req != NULL
1648 				 && sp->req->sav != NULL
1649 				 && sp->req->sav->sah != NULL) {
1650 					ro = &sp->req->sav->sah->sa_route;
1651 					if (ro->ro_rt && ro->ro_rt->rt_ifp) {
1652 						dummyifp.if_mtu =
1653 						    ro->ro_rt->rt_ifp->if_mtu;
1654 						dummyifp.if_mtu -= ipsechdr;
1655 						destifp = &dummyifp;
1656 					}
1657 				}
1658 
1659 				key_freesp(sp);
1660 			}
1661 		}
1662 #endif /*IPSEC*/
1663 		ipstat.ips_cantfrag++;
1664 		break;
1665 
1666 	case ENOBUFS:
1667 		type = ICMP_SOURCEQUENCH;
1668 		code = 0;
1669 		break;
1670 
1671 	case EACCES:			/* ipfw denied packet */
1672 		m_freem(mcopy);
1673 		return;
1674 	}
1675 	icmp_error(mcopy, type, code, dest, destifp);
1676 }
1677 
1678 void
1679 ip_savecontrol(inp, mp, ip, m)
1680 	register struct inpcb *inp;
1681 	register struct mbuf **mp;
1682 	register struct ip *ip;
1683 	register struct mbuf *m;
1684 {
1685 	if (inp->inp_socket->so_options & SO_TIMESTAMP) {
1686 		struct timeval tv;
1687 
1688 		microtime(&tv);
1689 		*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
1690 			SCM_TIMESTAMP, SOL_SOCKET);
1691 		if (*mp)
1692 			mp = &(*mp)->m_next;
1693 	}
1694 	if (inp->inp_flags & INP_RECVDSTADDR) {
1695 		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
1696 		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
1697 		if (*mp)
1698 			mp = &(*mp)->m_next;
1699 	}
1700 #ifdef notyet
1701 	/* XXX
1702 	 * Moving these out of udp_input() made them even more broken
1703 	 * than they already were.
1704 	 */
1705 	/* options were tossed already */
1706 	if (inp->inp_flags & INP_RECVOPTS) {
1707 		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
1708 		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
1709 		if (*mp)
1710 			mp = &(*mp)->m_next;
1711 	}
1712 	/* ip_srcroute doesn't do what we want here, need to fix */
1713 	if (inp->inp_flags & INP_RECVRETOPTS) {
1714 		*mp = sbcreatecontrol((caddr_t) ip_srcroute(),
1715 		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
1716 		if (*mp)
1717 			mp = &(*mp)->m_next;
1718 	}
1719 #endif
1720 	if (inp->inp_flags & INP_RECVIF) {
1721 		struct ifnet *ifp;
1722 		struct sdlbuf {
1723 			struct sockaddr_dl sdl;
1724 			u_char	pad[32];
1725 		} sdlbuf;
1726 		struct sockaddr_dl *sdp;
1727 		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
1728 
1729 		if (((ifp = m->m_pkthdr.rcvif))
1730 		&& ( ifp->if_index && (ifp->if_index <= if_index))) {
1731 			sdp = (struct sockaddr_dl *)(ifnet_addrs
1732 					[ifp->if_index - 1]->ifa_addr);
1733 			/*
1734 			 * Change our mind and don't try copy.
1735 			 */
1736 			if ((sdp->sdl_family != AF_LINK)
1737 			|| (sdp->sdl_len > sizeof(sdlbuf))) {
1738 				goto makedummy;
1739 			}
1740 			bcopy(sdp, sdl2, sdp->sdl_len);
1741 		} else {
1742 makedummy:
1743 			sdl2->sdl_len
1744 				= offsetof(struct sockaddr_dl, sdl_data[0]);
1745 			sdl2->sdl_family = AF_LINK;
1746 			sdl2->sdl_index = 0;
1747 			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
1748 		}
1749 		*mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
1750 			IP_RECVIF, IPPROTO_IP);
1751 		if (*mp)
1752 			mp = &(*mp)->m_next;
1753 	}
1754 }
1755 
1756 int
1757 ip_rsvp_init(struct socket *so)
1758 {
1759 	if (so->so_type != SOCK_RAW ||
1760 	    so->so_proto->pr_protocol != IPPROTO_RSVP)
1761 	  return EOPNOTSUPP;
1762 
1763 	if (ip_rsvpd != NULL)
1764 	  return EADDRINUSE;
1765 
1766 	ip_rsvpd = so;
1767 	/*
1768 	 * This may seem silly, but we need to be sure we don't over-increment
1769 	 * the RSVP counter, in case something slips up.
1770 	 */
1771 	if (!ip_rsvp_on) {
1772 		ip_rsvp_on = 1;
1773 		rsvp_on++;
1774 	}
1775 
1776 	return 0;
1777 }
1778 
1779 int
1780 ip_rsvp_done(void)
1781 {
1782 	ip_rsvpd = NULL;
1783 	/*
1784 	 * This may seem silly, but we need to be sure we don't over-decrement
1785 	 * the RSVP counter, in case something slips up.
1786 	 */
1787 	if (ip_rsvp_on) {
1788 		ip_rsvp_on = 0;
1789 		rsvp_on--;
1790 	}
1791 	return 0;
1792 }
1793