xref: /freebsd/sys/netinet/ip_input.c (revision 00b4430eb820ba018d1a4aed99bb82c3dcffa91d)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_bootp.h"
36 #include "opt_ipfw.h"
37 #include "opt_ipstealth.h"
38 #include "opt_ipsec.h"
39 #include "opt_mac.h"
40 #include "opt_carp.h"
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/callout.h>
45 #include <sys/mbuf.h>
46 #include <sys/malloc.h>
47 #include <sys/domain.h>
48 #include <sys/protosw.h>
49 #include <sys/socket.h>
50 #include <sys/time.h>
51 #include <sys/kernel.h>
52 #include <sys/syslog.h>
53 #include <sys/sysctl.h>
54 #include <sys/vimage.h>
55 
56 #include <net/pfil.h>
57 #include <net/if.h>
58 #include <net/if_types.h>
59 #include <net/if_var.h>
60 #include <net/if_dl.h>
61 #include <net/route.h>
62 #include <net/netisr.h>
63 
64 #include <netinet/in.h>
65 #include <netinet/in_systm.h>
66 #include <netinet/in_var.h>
67 #include <netinet/ip.h>
68 #include <netinet/in_pcb.h>
69 #include <netinet/ip_var.h>
70 #include <netinet/ip_icmp.h>
71 #include <netinet/ip_options.h>
72 #include <machine/in_cksum.h>
73 #ifdef DEV_CARP
74 #include <netinet/ip_carp.h>
75 #endif
76 #ifdef IPSEC
77 #include <netinet/ip_ipsec.h>
78 #endif /* IPSEC */
79 
80 #include <sys/socketvar.h>
81 
82 /* XXX: Temporary until ipfw_ether and ipfw_bridge are converted. */
83 #include <netinet/ip_fw.h>
84 #include <netinet/ip_dummynet.h>
85 
86 #include <security/mac/mac_framework.h>
87 
88 #ifdef CTASSERT
89 CTASSERT(sizeof(struct ip) == 20);
90 #endif
91 
92 int rsvp_on = 0;
93 
94 int	ipforwarding = 0;
95 SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
96     &ipforwarding, 0, "Enable IP forwarding between interfaces");
97 
98 static int	ipsendredirects = 1; /* XXX */
99 SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
100     &ipsendredirects, 0, "Enable sending IP redirects");
101 
102 int	ip_defttl = IPDEFTTL;
103 SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
104     &ip_defttl, 0, "Maximum TTL on IP packets");
105 
106 static int	ip_keepfaith = 0;
107 SYSCTL_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
108     &ip_keepfaith,	0,
109     "Enable packet capture for FAITH IPv4->IPv6 translater daemon");
110 
111 static int	ip_sendsourcequench = 0;
112 SYSCTL_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW,
113     &ip_sendsourcequench, 0,
114     "Enable the transmission of source quench packets");
115 
116 int	ip_do_randomid = 0;
117 SYSCTL_INT(_net_inet_ip, OID_AUTO, random_id, CTLFLAG_RW,
118     &ip_do_randomid, 0,
119     "Assign random ip_id values");
120 
121 /*
122  * XXX - Setting ip_checkinterface mostly implements the receive side of
123  * the Strong ES model described in RFC 1122, but since the routing table
124  * and transmit implementation do not implement the Strong ES model,
125  * setting this to 1 results in an odd hybrid.
126  *
127  * XXX - ip_checkinterface currently must be disabled if you use ipnat
128  * to translate the destination address to another local interface.
129  *
130  * XXX - ip_checkinterface must be disabled if you add IP aliases
131  * to the loopback interface instead of the interface where the
132  * packets for those addresses are received.
133  */
134 static int	ip_checkinterface = 0;
135 SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
136     &ip_checkinterface, 0, "Verify packet arrives on correct interface");
137 
138 struct pfil_head inet_pfil_hook;	/* Packet filter hooks */
139 
140 static struct	ifqueue ipintrq;
141 static int	ipqmaxlen = IFQ_MAXLEN;
142 
143 extern	struct domain inetdomain;
144 extern	struct protosw inetsw[];
145 u_char	ip_protox[IPPROTO_MAX];
146 struct	in_ifaddrhead in_ifaddrhead; 		/* first inet address */
147 struct	in_ifaddrhashhead *in_ifaddrhashtbl;	/* inet addr hash table  */
148 u_long 	in_ifaddrhmask;				/* mask for hash table */
149 
150 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen, CTLFLAG_RW,
151     &ipintrq.ifq_maxlen, 0, "Maximum size of the IP input queue");
152 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops, CTLFLAG_RD,
153     &ipintrq.ifq_drops, 0,
154     "Number of packets dropped from the IP input queue");
155 
156 struct ipstat ipstat;
157 SYSCTL_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RW,
158     &ipstat, ipstat, "IP statistics (struct ipstat, netinet/ip_var.h)");
159 
160 /*
161  * IP datagram reassembly.
162  */
163 #define IPREASS_NHASH_LOG2      6
164 #define IPREASS_NHASH           (1 << IPREASS_NHASH_LOG2)
165 #define IPREASS_HMASK           (IPREASS_NHASH - 1)
166 #define IPREASS_HASH(x,y) \
167 	(((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
168 
169 static uma_zone_t ipq_zone;
170 static TAILQ_HEAD(ipqhead, ipq) ipq[IPREASS_NHASH];
171 static struct mtx ipqlock;
172 
173 #define	IPQ_LOCK()	mtx_lock(&ipqlock)
174 #define	IPQ_UNLOCK()	mtx_unlock(&ipqlock)
175 #define	IPQ_LOCK_INIT()	mtx_init(&ipqlock, "ipqlock", NULL, MTX_DEF)
176 #define	IPQ_LOCK_ASSERT()	mtx_assert(&ipqlock, MA_OWNED)
177 
178 static void	maxnipq_update(void);
179 static void	ipq_zone_change(void *);
180 
181 static int	maxnipq;	/* Administrative limit on # reass queues. */
182 static int	nipq = 0;	/* Total # of reass queues */
183 SYSCTL_INT(_net_inet_ip, OID_AUTO, fragpackets, CTLFLAG_RD,
184     &nipq, 0, "Current number of IPv4 fragment reassembly queue entries");
185 
186 static int	maxfragsperpacket;
187 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_RW,
188     &maxfragsperpacket, 0,
189     "Maximum number of IPv4 fragments allowed per packet");
190 
191 struct callout	ipport_tick_callout;
192 
193 #ifdef IPCTL_DEFMTU
194 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
195     &ip_mtu, 0, "Default MTU");
196 #endif
197 
198 #ifdef IPSTEALTH
199 int	ipstealth = 0;
200 SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW,
201     &ipstealth, 0, "IP stealth mode, no TTL decrementation on forwarding");
202 #endif
203 
204 /*
205  * ipfw_ether and ipfw_bridge hooks.
206  * XXX: Temporary until those are converted to pfil_hooks as well.
207  */
208 ip_fw_chk_t *ip_fw_chk_ptr = NULL;
209 ip_dn_io_t *ip_dn_io_ptr = NULL;
210 int fw_one_pass = 1;
211 
212 static void	ip_freef(struct ipqhead *, struct ipq *);
213 
214 /*
215  * IP initialization: fill in IP protocol switch table.
216  * All protocols not implemented in kernel go to raw IP protocol handler.
217  */
218 void
219 ip_init(void)
220 {
221 	struct protosw *pr;
222 	int i;
223 
224 	TAILQ_INIT(&V_in_ifaddrhead);
225 	V_in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &V_in_ifaddrhmask);
226 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
227 	if (pr == NULL)
228 		panic("ip_init: PF_INET not found");
229 
230 	/* Initialize the entire ip_protox[] array to IPPROTO_RAW. */
231 	for (i = 0; i < IPPROTO_MAX; i++)
232 		ip_protox[i] = pr - inetsw;
233 	/*
234 	 * Cycle through IP protocols and put them into the appropriate place
235 	 * in ip_protox[].
236 	 */
237 	for (pr = inetdomain.dom_protosw;
238 	    pr < inetdomain.dom_protoswNPROTOSW; pr++)
239 		if (pr->pr_domain->dom_family == PF_INET &&
240 		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW) {
241 			/* Be careful to only index valid IP protocols. */
242 			if (pr->pr_protocol < IPPROTO_MAX)
243 				ip_protox[pr->pr_protocol] = pr - inetsw;
244 		}
245 
246 	/* Initialize packet filter hooks. */
247 	inet_pfil_hook.ph_type = PFIL_TYPE_AF;
248 	inet_pfil_hook.ph_af = AF_INET;
249 	if ((i = pfil_head_register(&inet_pfil_hook)) != 0)
250 		printf("%s: WARNING: unable to register pfil hook, "
251 			"error %d\n", __func__, i);
252 
253 	/* Initialize IP reassembly queue. */
254 	IPQ_LOCK_INIT();
255 	for (i = 0; i < IPREASS_NHASH; i++)
256 	    TAILQ_INIT(&V_ipq[i]);
257 	V_maxnipq = nmbclusters / 32;
258 	V_maxfragsperpacket = 16;
259 	V_ipq_zone = uma_zcreate("ipq", sizeof(struct ipq), NULL, NULL, NULL,
260 	    NULL, UMA_ALIGN_PTR, 0);
261 	maxnipq_update();
262 
263 	/* Start ipport_tick. */
264 	callout_init(&ipport_tick_callout, CALLOUT_MPSAFE);
265 	ipport_tick(NULL);
266 	EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL,
267 		SHUTDOWN_PRI_DEFAULT);
268 	EVENTHANDLER_REGISTER(nmbclusters_change, ipq_zone_change,
269 		NULL, EVENTHANDLER_PRI_ANY);
270 
271 	/* Initialize various other remaining things. */
272 	V_ip_id = time_second & 0xffff;
273 	ipintrq.ifq_maxlen = ipqmaxlen;
274 	mtx_init(&ipintrq.ifq_mtx, "ip_inq", NULL, MTX_DEF);
275 	netisr_register(NETISR_IP, ip_input, &ipintrq, 0);
276 }
277 
278 void
279 ip_fini(void *xtp)
280 {
281 
282 	callout_stop(&ipport_tick_callout);
283 }
284 
285 /*
286  * Ip input routine.  Checksum and byte swap header.  If fragmented
287  * try to reassemble.  Process options.  Pass to next level.
288  */
289 void
290 ip_input(struct mbuf *m)
291 {
292 	struct ip *ip = NULL;
293 	struct in_ifaddr *ia = NULL;
294 	struct ifaddr *ifa;
295 	int    checkif, hlen = 0;
296 	u_short sum;
297 	int dchg = 0;				/* dest changed after fw */
298 	struct in_addr odst;			/* original dst address */
299 
300 	M_ASSERTPKTHDR(m);
301 
302 	if (m->m_flags & M_FASTFWD_OURS) {
303 		/*
304 		 * Firewall or NAT changed destination to local.
305 		 * We expect ip_len and ip_off to be in host byte order.
306 		 */
307 		m->m_flags &= ~M_FASTFWD_OURS;
308 		/* Set up some basics that will be used later. */
309 		ip = mtod(m, struct ip *);
310 		hlen = ip->ip_hl << 2;
311 		goto ours;
312 	}
313 
314 	V_ipstat.ips_total++;
315 
316 	if (m->m_pkthdr.len < sizeof(struct ip))
317 		goto tooshort;
318 
319 	if (m->m_len < sizeof (struct ip) &&
320 	    (m = m_pullup(m, sizeof (struct ip))) == NULL) {
321 		V_ipstat.ips_toosmall++;
322 		return;
323 	}
324 	ip = mtod(m, struct ip *);
325 
326 	if (ip->ip_v != IPVERSION) {
327 		V_ipstat.ips_badvers++;
328 		goto bad;
329 	}
330 
331 	hlen = ip->ip_hl << 2;
332 	if (hlen < sizeof(struct ip)) {	/* minimum header length */
333 		V_ipstat.ips_badhlen++;
334 		goto bad;
335 	}
336 	if (hlen > m->m_len) {
337 		if ((m = m_pullup(m, hlen)) == NULL) {
338 			V_ipstat.ips_badhlen++;
339 			return;
340 		}
341 		ip = mtod(m, struct ip *);
342 	}
343 
344 	/* 127/8 must not appear on wire - RFC1122 */
345 	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
346 	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
347 		if ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) {
348 			V_ipstat.ips_badaddr++;
349 			goto bad;
350 		}
351 	}
352 
353 	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
354 		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
355 	} else {
356 		if (hlen == sizeof(struct ip)) {
357 			sum = in_cksum_hdr(ip);
358 		} else {
359 			sum = in_cksum(m, hlen);
360 		}
361 	}
362 	if (sum) {
363 		V_ipstat.ips_badsum++;
364 		goto bad;
365 	}
366 
367 #ifdef ALTQ
368 	if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0)
369 		/* packet is dropped by traffic conditioner */
370 		return;
371 #endif
372 
373 	/*
374 	 * Convert fields to host representation.
375 	 */
376 	ip->ip_len = ntohs(ip->ip_len);
377 	if (ip->ip_len < hlen) {
378 		V_ipstat.ips_badlen++;
379 		goto bad;
380 	}
381 	ip->ip_off = ntohs(ip->ip_off);
382 
383 	/*
384 	 * Check that the amount of data in the buffers
385 	 * is as at least much as the IP header would have us expect.
386 	 * Trim mbufs if longer than we expect.
387 	 * Drop packet if shorter than we expect.
388 	 */
389 	if (m->m_pkthdr.len < ip->ip_len) {
390 tooshort:
391 		V_ipstat.ips_tooshort++;
392 		goto bad;
393 	}
394 	if (m->m_pkthdr.len > ip->ip_len) {
395 		if (m->m_len == m->m_pkthdr.len) {
396 			m->m_len = ip->ip_len;
397 			m->m_pkthdr.len = ip->ip_len;
398 		} else
399 			m_adj(m, ip->ip_len - m->m_pkthdr.len);
400 	}
401 #ifdef IPSEC
402 	/*
403 	 * Bypass packet filtering for packets from a tunnel (gif).
404 	 */
405 	if (ip_ipsec_filtertunnel(m))
406 		goto passin;
407 #endif /* IPSEC */
408 
409 	/*
410 	 * Run through list of hooks for input packets.
411 	 *
412 	 * NB: Beware of the destination address changing (e.g.
413 	 *     by NAT rewriting).  When this happens, tell
414 	 *     ip_forward to do the right thing.
415 	 */
416 
417 	/* Jump over all PFIL processing if hooks are not active. */
418 	if (!PFIL_HOOKED(&inet_pfil_hook))
419 		goto passin;
420 
421 	odst = ip->ip_dst;
422 	if (pfil_run_hooks(&inet_pfil_hook, &m, m->m_pkthdr.rcvif,
423 	    PFIL_IN, NULL) != 0)
424 		return;
425 	if (m == NULL)			/* consumed by filter */
426 		return;
427 
428 	ip = mtod(m, struct ip *);
429 	dchg = (odst.s_addr != ip->ip_dst.s_addr);
430 
431 #ifdef IPFIREWALL_FORWARD
432 	if (m->m_flags & M_FASTFWD_OURS) {
433 		m->m_flags &= ~M_FASTFWD_OURS;
434 		goto ours;
435 	}
436 	if ((dchg = (m_tag_find(m, PACKET_TAG_IPFORWARD, NULL) != NULL)) != 0) {
437 		/*
438 		 * Directly ship on the packet.  This allows to forward packets
439 		 * that were destined for us to some other directly connected
440 		 * host.
441 		 */
442 		ip_forward(m, dchg);
443 		return;
444 	}
445 #endif /* IPFIREWALL_FORWARD */
446 
447 passin:
448 	/*
449 	 * Process options and, if not destined for us,
450 	 * ship it on.  ip_dooptions returns 1 when an
451 	 * error was detected (causing an icmp message
452 	 * to be sent and the original packet to be freed).
453 	 */
454 	if (hlen > sizeof (struct ip) && ip_dooptions(m, 0))
455 		return;
456 
457         /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
458          * matter if it is destined to another node, or whether it is
459          * a multicast one, RSVP wants it! and prevents it from being forwarded
460          * anywhere else. Also checks if the rsvp daemon is running before
461 	 * grabbing the packet.
462          */
463 	if (V_rsvp_on && ip->ip_p==IPPROTO_RSVP)
464 		goto ours;
465 
466 	/*
467 	 * Check our list of addresses, to see if the packet is for us.
468 	 * If we don't have any addresses, assume any unicast packet
469 	 * we receive might be for us (and let the upper layers deal
470 	 * with it).
471 	 */
472 	if (TAILQ_EMPTY(&V_in_ifaddrhead) &&
473 	    (m->m_flags & (M_MCAST|M_BCAST)) == 0)
474 		goto ours;
475 
476 	/*
477 	 * Enable a consistency check between the destination address
478 	 * and the arrival interface for a unicast packet (the RFC 1122
479 	 * strong ES model) if IP forwarding is disabled and the packet
480 	 * is not locally generated and the packet is not subject to
481 	 * 'ipfw fwd'.
482 	 *
483 	 * XXX - Checking also should be disabled if the destination
484 	 * address is ipnat'ed to a different interface.
485 	 *
486 	 * XXX - Checking is incompatible with IP aliases added
487 	 * to the loopback interface instead of the interface where
488 	 * the packets are received.
489 	 *
490 	 * XXX - This is the case for carp vhost IPs as well so we
491 	 * insert a workaround. If the packet got here, we already
492 	 * checked with carp_iamatch() and carp_forus().
493 	 */
494 	checkif = V_ip_checkinterface && (V_ipforwarding == 0) &&
495 	    m->m_pkthdr.rcvif != NULL &&
496 	    ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) &&
497 #ifdef DEV_CARP
498 	    !m->m_pkthdr.rcvif->if_carp &&
499 #endif
500 	    (dchg == 0);
501 
502 	/*
503 	 * Check for exact addresses in the hash bucket.
504 	 */
505 	LIST_FOREACH(ia, INADDR_HASH(ip->ip_dst.s_addr), ia_hash) {
506 		/*
507 		 * If the address matches, verify that the packet
508 		 * arrived via the correct interface if checking is
509 		 * enabled.
510 		 */
511 		if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr &&
512 		    (!checkif || ia->ia_ifp == m->m_pkthdr.rcvif))
513 			goto ours;
514 	}
515 	/*
516 	 * Check for broadcast addresses.
517 	 *
518 	 * Only accept broadcast packets that arrive via the matching
519 	 * interface.  Reception of forwarded directed broadcasts would
520 	 * be handled via ip_forward() and ether_output() with the loopback
521 	 * into the stack for SIMPLEX interfaces handled by ether_output().
522 	 */
523 	if (m->m_pkthdr.rcvif != NULL &&
524 	    m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
525 	        TAILQ_FOREACH(ifa, &m->m_pkthdr.rcvif->if_addrhead, ifa_link) {
526 			if (ifa->ifa_addr->sa_family != AF_INET)
527 				continue;
528 			ia = ifatoia(ifa);
529 			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
530 			    ip->ip_dst.s_addr)
531 				goto ours;
532 			if (ia->ia_netbroadcast.s_addr == ip->ip_dst.s_addr)
533 				goto ours;
534 #ifdef BOOTP_COMPAT
535 			if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY)
536 				goto ours;
537 #endif
538 		}
539 	}
540 	/* RFC 3927 2.7: Do not forward datagrams for 169.254.0.0/16. */
541 	if (IN_LINKLOCAL(ntohl(ip->ip_dst.s_addr))) {
542 		V_ipstat.ips_cantforward++;
543 		m_freem(m);
544 		return;
545 	}
546 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
547 		struct in_multi *inm;
548 		if (V_ip_mrouter) {
549 			/*
550 			 * If we are acting as a multicast router, all
551 			 * incoming multicast packets are passed to the
552 			 * kernel-level multicast forwarding function.
553 			 * The packet is returned (relatively) intact; if
554 			 * ip_mforward() returns a non-zero value, the packet
555 			 * must be discarded, else it may be accepted below.
556 			 */
557 			if (ip_mforward &&
558 			    ip_mforward(ip, m->m_pkthdr.rcvif, m, 0) != 0) {
559 				V_ipstat.ips_cantforward++;
560 				m_freem(m);
561 				return;
562 			}
563 
564 			/*
565 			 * The process-level routing daemon needs to receive
566 			 * all multicast IGMP packets, whether or not this
567 			 * host belongs to their destination groups.
568 			 */
569 			if (ip->ip_p == IPPROTO_IGMP)
570 				goto ours;
571 			V_ipstat.ips_forward++;
572 		}
573 		/*
574 		 * See if we belong to the destination multicast group on the
575 		 * arrival interface.
576 		 */
577 		IN_MULTI_LOCK();
578 		IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
579 		IN_MULTI_UNLOCK();
580 		if (inm == NULL) {
581 			V_ipstat.ips_notmember++;
582 			m_freem(m);
583 			return;
584 		}
585 		goto ours;
586 	}
587 	if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
588 		goto ours;
589 	if (ip->ip_dst.s_addr == INADDR_ANY)
590 		goto ours;
591 
592 	/*
593 	 * FAITH(Firewall Aided Internet Translator)
594 	 */
595 	if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
596 		if (V_ip_keepfaith) {
597 			if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
598 				goto ours;
599 		}
600 		m_freem(m);
601 		return;
602 	}
603 
604 	/*
605 	 * Not for us; forward if possible and desirable.
606 	 */
607 	if (V_ipforwarding == 0) {
608 		V_ipstat.ips_cantforward++;
609 		m_freem(m);
610 	} else {
611 #ifdef IPSEC
612 		if (ip_ipsec_fwd(m))
613 			goto bad;
614 #endif /* IPSEC */
615 		ip_forward(m, dchg);
616 	}
617 	return;
618 
619 ours:
620 #ifdef IPSTEALTH
621 	/*
622 	 * IPSTEALTH: Process non-routing options only
623 	 * if the packet is destined for us.
624 	 */
625 	if (V_ipstealth && hlen > sizeof (struct ip) &&
626 	    ip_dooptions(m, 1))
627 		return;
628 #endif /* IPSTEALTH */
629 
630 	/* Count the packet in the ip address stats */
631 	if (ia != NULL) {
632 		ia->ia_ifa.if_ipackets++;
633 		ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
634 	}
635 
636 	/*
637 	 * Attempt reassembly; if it succeeds, proceed.
638 	 * ip_reass() will return a different mbuf.
639 	 */
640 	if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
641 		m = ip_reass(m);
642 		if (m == NULL)
643 			return;
644 		ip = mtod(m, struct ip *);
645 		/* Get the header length of the reassembled packet */
646 		hlen = ip->ip_hl << 2;
647 	}
648 
649 	/*
650 	 * Further protocols expect the packet length to be w/o the
651 	 * IP header.
652 	 */
653 	ip->ip_len -= hlen;
654 
655 #ifdef IPSEC
656 	/*
657 	 * enforce IPsec policy checking if we are seeing last header.
658 	 * note that we do not visit this with protocols with pcb layer
659 	 * code - like udp/tcp/raw ip.
660 	 */
661 	if (ip_ipsec_input(m))
662 		goto bad;
663 #endif /* IPSEC */
664 
665 	/*
666 	 * Switch out to protocol's input routine.
667 	 */
668 	V_ipstat.ips_delivered++;
669 
670 	(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
671 	return;
672 bad:
673 	m_freem(m);
674 }
675 
676 /*
677  * After maxnipq has been updated, propagate the change to UMA.  The UMA zone
678  * max has slightly different semantics than the sysctl, for historical
679  * reasons.
680  */
681 static void
682 maxnipq_update(void)
683 {
684 
685 	/*
686 	 * -1 for unlimited allocation.
687 	 */
688 	if (V_maxnipq < 0)
689 		uma_zone_set_max(V_ipq_zone, 0);
690 	/*
691 	 * Positive number for specific bound.
692 	 */
693 	if (V_maxnipq > 0)
694 		uma_zone_set_max(V_ipq_zone, V_maxnipq);
695 	/*
696 	 * Zero specifies no further fragment queue allocation -- set the
697 	 * bound very low, but rely on implementation elsewhere to actually
698 	 * prevent allocation and reclaim current queues.
699 	 */
700 	if (V_maxnipq == 0)
701 		uma_zone_set_max(V_ipq_zone, 1);
702 }
703 
704 static void
705 ipq_zone_change(void *tag)
706 {
707 
708 	if (V_maxnipq > 0 && V_maxnipq < (nmbclusters / 32)) {
709 		V_maxnipq = nmbclusters / 32;
710 		maxnipq_update();
711 	}
712 }
713 
714 static int
715 sysctl_maxnipq(SYSCTL_HANDLER_ARGS)
716 {
717 	int error, i;
718 
719 	i = V_maxnipq;
720 	error = sysctl_handle_int(oidp, &i, 0, req);
721 	if (error || !req->newptr)
722 		return (error);
723 
724 	/*
725 	 * XXXRW: Might be a good idea to sanity check the argument and place
726 	 * an extreme upper bound.
727 	 */
728 	if (i < -1)
729 		return (EINVAL);
730 	V_maxnipq = i;
731 	maxnipq_update();
732 	return (0);
733 }
734 
735 SYSCTL_PROC(_net_inet_ip, OID_AUTO, maxfragpackets, CTLTYPE_INT|CTLFLAG_RW,
736     NULL, 0, sysctl_maxnipq, "I",
737     "Maximum number of IPv4 fragment reassembly queue entries");
738 
739 /*
740  * Take incoming datagram fragment and try to reassemble it into
741  * whole datagram.  If the argument is the first fragment or one
742  * in between the function will return NULL and store the mbuf
743  * in the fragment chain.  If the argument is the last fragment
744  * the packet will be reassembled and the pointer to the new
745  * mbuf returned for further processing.  Only m_tags attached
746  * to the first packet/fragment are preserved.
747  * The IP header is *NOT* adjusted out of iplen.
748  */
749 struct mbuf *
750 ip_reass(struct mbuf *m)
751 {
752 	struct ip *ip;
753 	struct mbuf *p, *q, *nq, *t;
754 	struct ipq *fp = NULL;
755 	struct ipqhead *head;
756 	int i, hlen, next;
757 	u_int8_t ecn, ecn0;
758 	u_short hash;
759 
760 	/* If maxnipq or maxfragsperpacket are 0, never accept fragments. */
761 	if (V_maxnipq == 0 || V_maxfragsperpacket == 0) {
762 		V_ipstat.ips_fragments++;
763 		V_ipstat.ips_fragdropped++;
764 		m_freem(m);
765 		return (NULL);
766 	}
767 
768 	ip = mtod(m, struct ip *);
769 	hlen = ip->ip_hl << 2;
770 
771 	hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
772 	head = &V_ipq[hash];
773 	IPQ_LOCK();
774 
775 	/*
776 	 * Look for queue of fragments
777 	 * of this datagram.
778 	 */
779 	TAILQ_FOREACH(fp, head, ipq_list)
780 		if (ip->ip_id == fp->ipq_id &&
781 		    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
782 		    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
783 #ifdef MAC
784 		    mac_ipq_match(m, fp) &&
785 #endif
786 		    ip->ip_p == fp->ipq_p)
787 			goto found;
788 
789 	fp = NULL;
790 
791 	/*
792 	 * Attempt to trim the number of allocated fragment queues if it
793 	 * exceeds the administrative limit.
794 	 */
795 	if ((V_nipq > V_maxnipq) && (V_maxnipq > 0)) {
796 		/*
797 		 * drop something from the tail of the current queue
798 		 * before proceeding further
799 		 */
800 		struct ipq *q = TAILQ_LAST(head, ipqhead);
801 		if (q == NULL) {   /* gak */
802 			for (i = 0; i < IPREASS_NHASH; i++) {
803 				struct ipq *r = TAILQ_LAST(&V_ipq[i], ipqhead);
804 				if (r) {
805 					V_ipstat.ips_fragtimeout +=
806 					    r->ipq_nfrags;
807 					ip_freef(&V_ipq[i], r);
808 					break;
809 				}
810 			}
811 		} else {
812 			V_ipstat.ips_fragtimeout += q->ipq_nfrags;
813 			ip_freef(head, q);
814 		}
815 	}
816 
817 found:
818 	/*
819 	 * Adjust ip_len to not reflect header,
820 	 * convert offset of this to bytes.
821 	 */
822 	ip->ip_len -= hlen;
823 	if (ip->ip_off & IP_MF) {
824 		/*
825 		 * Make sure that fragments have a data length
826 		 * that's a non-zero multiple of 8 bytes.
827 		 */
828 		if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
829 			V_ipstat.ips_toosmall++; /* XXX */
830 			goto dropfrag;
831 		}
832 		m->m_flags |= M_FRAG;
833 	} else
834 		m->m_flags &= ~M_FRAG;
835 	ip->ip_off <<= 3;
836 
837 
838 	/*
839 	 * Attempt reassembly; if it succeeds, proceed.
840 	 * ip_reass() will return a different mbuf.
841 	 */
842 	V_ipstat.ips_fragments++;
843 	m->m_pkthdr.header = ip;
844 
845 	/* Previous ip_reass() started here. */
846 	/*
847 	 * Presence of header sizes in mbufs
848 	 * would confuse code below.
849 	 */
850 	m->m_data += hlen;
851 	m->m_len -= hlen;
852 
853 	/*
854 	 * If first fragment to arrive, create a reassembly queue.
855 	 */
856 	if (fp == NULL) {
857 		fp = uma_zalloc(V_ipq_zone, M_NOWAIT);
858 		if (fp == NULL)
859 			goto dropfrag;
860 #ifdef MAC
861 		if (mac_ipq_init(fp, M_NOWAIT) != 0) {
862 			uma_zfree(V_ipq_zone, fp);
863 			fp = NULL;
864 			goto dropfrag;
865 		}
866 		mac_ipq_create(m, fp);
867 #endif
868 		TAILQ_INSERT_HEAD(head, fp, ipq_list);
869 		V_nipq++;
870 		fp->ipq_nfrags = 1;
871 		fp->ipq_ttl = IPFRAGTTL;
872 		fp->ipq_p = ip->ip_p;
873 		fp->ipq_id = ip->ip_id;
874 		fp->ipq_src = ip->ip_src;
875 		fp->ipq_dst = ip->ip_dst;
876 		fp->ipq_frags = m;
877 		m->m_nextpkt = NULL;
878 		goto done;
879 	} else {
880 		fp->ipq_nfrags++;
881 #ifdef MAC
882 		mac_ipq_update(m, fp);
883 #endif
884 	}
885 
886 #define GETIP(m)	((struct ip*)((m)->m_pkthdr.header))
887 
888 	/*
889 	 * Handle ECN by comparing this segment with the first one;
890 	 * if CE is set, do not lose CE.
891 	 * drop if CE and not-ECT are mixed for the same packet.
892 	 */
893 	ecn = ip->ip_tos & IPTOS_ECN_MASK;
894 	ecn0 = GETIP(fp->ipq_frags)->ip_tos & IPTOS_ECN_MASK;
895 	if (ecn == IPTOS_ECN_CE) {
896 		if (ecn0 == IPTOS_ECN_NOTECT)
897 			goto dropfrag;
898 		if (ecn0 != IPTOS_ECN_CE)
899 			GETIP(fp->ipq_frags)->ip_tos |= IPTOS_ECN_CE;
900 	}
901 	if (ecn == IPTOS_ECN_NOTECT && ecn0 != IPTOS_ECN_NOTECT)
902 		goto dropfrag;
903 
904 	/*
905 	 * Find a segment which begins after this one does.
906 	 */
907 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
908 		if (GETIP(q)->ip_off > ip->ip_off)
909 			break;
910 
911 	/*
912 	 * If there is a preceding segment, it may provide some of
913 	 * our data already.  If so, drop the data from the incoming
914 	 * segment.  If it provides all of our data, drop us, otherwise
915 	 * stick new segment in the proper place.
916 	 *
917 	 * If some of the data is dropped from the the preceding
918 	 * segment, then it's checksum is invalidated.
919 	 */
920 	if (p) {
921 		i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
922 		if (i > 0) {
923 			if (i >= ip->ip_len)
924 				goto dropfrag;
925 			m_adj(m, i);
926 			m->m_pkthdr.csum_flags = 0;
927 			ip->ip_off += i;
928 			ip->ip_len -= i;
929 		}
930 		m->m_nextpkt = p->m_nextpkt;
931 		p->m_nextpkt = m;
932 	} else {
933 		m->m_nextpkt = fp->ipq_frags;
934 		fp->ipq_frags = m;
935 	}
936 
937 	/*
938 	 * While we overlap succeeding segments trim them or,
939 	 * if they are completely covered, dequeue them.
940 	 */
941 	for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
942 	     q = nq) {
943 		i = (ip->ip_off + ip->ip_len) - GETIP(q)->ip_off;
944 		if (i < GETIP(q)->ip_len) {
945 			GETIP(q)->ip_len -= i;
946 			GETIP(q)->ip_off += i;
947 			m_adj(q, i);
948 			q->m_pkthdr.csum_flags = 0;
949 			break;
950 		}
951 		nq = q->m_nextpkt;
952 		m->m_nextpkt = nq;
953 		V_ipstat.ips_fragdropped++;
954 		fp->ipq_nfrags--;
955 		m_freem(q);
956 	}
957 
958 	/*
959 	 * Check for complete reassembly and perform frag per packet
960 	 * limiting.
961 	 *
962 	 * Frag limiting is performed here so that the nth frag has
963 	 * a chance to complete the packet before we drop the packet.
964 	 * As a result, n+1 frags are actually allowed per packet, but
965 	 * only n will ever be stored. (n = maxfragsperpacket.)
966 	 *
967 	 */
968 	next = 0;
969 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
970 		if (GETIP(q)->ip_off != next) {
971 			if (fp->ipq_nfrags > V_maxfragsperpacket) {
972 				V_ipstat.ips_fragdropped += fp->ipq_nfrags;
973 				ip_freef(head, fp);
974 			}
975 			goto done;
976 		}
977 		next += GETIP(q)->ip_len;
978 	}
979 	/* Make sure the last packet didn't have the IP_MF flag */
980 	if (p->m_flags & M_FRAG) {
981 		if (fp->ipq_nfrags > V_maxfragsperpacket) {
982 			V_ipstat.ips_fragdropped += fp->ipq_nfrags;
983 			ip_freef(head, fp);
984 		}
985 		goto done;
986 	}
987 
988 	/*
989 	 * Reassembly is complete.  Make sure the packet is a sane size.
990 	 */
991 	q = fp->ipq_frags;
992 	ip = GETIP(q);
993 	if (next + (ip->ip_hl << 2) > IP_MAXPACKET) {
994 		V_ipstat.ips_toolong++;
995 		V_ipstat.ips_fragdropped += fp->ipq_nfrags;
996 		ip_freef(head, fp);
997 		goto done;
998 	}
999 
1000 	/*
1001 	 * Concatenate fragments.
1002 	 */
1003 	m = q;
1004 	t = m->m_next;
1005 	m->m_next = NULL;
1006 	m_cat(m, t);
1007 	nq = q->m_nextpkt;
1008 	q->m_nextpkt = NULL;
1009 	for (q = nq; q != NULL; q = nq) {
1010 		nq = q->m_nextpkt;
1011 		q->m_nextpkt = NULL;
1012 		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1013 		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1014 		m_cat(m, q);
1015 	}
1016 	/*
1017 	 * In order to do checksumming faster we do 'end-around carry' here
1018 	 * (and not in for{} loop), though it implies we are not going to
1019 	 * reassemble more than 64k fragments.
1020 	 */
1021 	m->m_pkthdr.csum_data =
1022 	    (m->m_pkthdr.csum_data & 0xffff) + (m->m_pkthdr.csum_data >> 16);
1023 #ifdef MAC
1024 	mac_ipq_reassemble(fp, m);
1025 	mac_ipq_destroy(fp);
1026 #endif
1027 
1028 	/*
1029 	 * Create header for new ip packet by modifying header of first
1030 	 * packet;  dequeue and discard fragment reassembly header.
1031 	 * Make header visible.
1032 	 */
1033 	ip->ip_len = (ip->ip_hl << 2) + next;
1034 	ip->ip_src = fp->ipq_src;
1035 	ip->ip_dst = fp->ipq_dst;
1036 	TAILQ_REMOVE(head, fp, ipq_list);
1037 	V_nipq--;
1038 	uma_zfree(V_ipq_zone, fp);
1039 	m->m_len += (ip->ip_hl << 2);
1040 	m->m_data -= (ip->ip_hl << 2);
1041 	/* some debugging cruft by sklower, below, will go away soon */
1042 	if (m->m_flags & M_PKTHDR)	/* XXX this should be done elsewhere */
1043 		m_fixhdr(m);
1044 	V_ipstat.ips_reassembled++;
1045 	IPQ_UNLOCK();
1046 	return (m);
1047 
1048 dropfrag:
1049 	V_ipstat.ips_fragdropped++;
1050 	if (fp != NULL)
1051 		fp->ipq_nfrags--;
1052 	m_freem(m);
1053 done:
1054 	IPQ_UNLOCK();
1055 	return (NULL);
1056 
1057 #undef GETIP
1058 }
1059 
1060 /*
1061  * Free a fragment reassembly header and all
1062  * associated datagrams.
1063  */
1064 static void
1065 ip_freef(struct ipqhead *fhp, struct ipq *fp)
1066 {
1067 	struct mbuf *q;
1068 
1069 	IPQ_LOCK_ASSERT();
1070 
1071 	while (fp->ipq_frags) {
1072 		q = fp->ipq_frags;
1073 		fp->ipq_frags = q->m_nextpkt;
1074 		m_freem(q);
1075 	}
1076 	TAILQ_REMOVE(fhp, fp, ipq_list);
1077 	uma_zfree(V_ipq_zone, fp);
1078 	V_nipq--;
1079 }
1080 
1081 /*
1082  * IP timer processing;
1083  * if a timer expires on a reassembly
1084  * queue, discard it.
1085  */
1086 void
1087 ip_slowtimo(void)
1088 {
1089 	struct ipq *fp;
1090 	int i;
1091 
1092 	IPQ_LOCK();
1093 	for (i = 0; i < IPREASS_NHASH; i++) {
1094 		for(fp = TAILQ_FIRST(&V_ipq[i]); fp;) {
1095 			struct ipq *fpp;
1096 
1097 			fpp = fp;
1098 			fp = TAILQ_NEXT(fp, ipq_list);
1099 			if(--fpp->ipq_ttl == 0) {
1100 				V_ipstat.ips_fragtimeout += fpp->ipq_nfrags;
1101 				ip_freef(&V_ipq[i], fpp);
1102 			}
1103 		}
1104 	}
1105 	/*
1106 	 * If we are over the maximum number of fragments
1107 	 * (due to the limit being lowered), drain off
1108 	 * enough to get down to the new limit.
1109 	 */
1110 	if (V_maxnipq >= 0 && V_nipq > V_maxnipq) {
1111 		for (i = 0; i < IPREASS_NHASH; i++) {
1112 			while (V_nipq > V_maxnipq && !TAILQ_EMPTY(&V_ipq[i])) {
1113 				V_ipstat.ips_fragdropped +=
1114 				    TAILQ_FIRST(&V_ipq[i])->ipq_nfrags;
1115 				ip_freef(&V_ipq[i], TAILQ_FIRST(&V_ipq[i]));
1116 			}
1117 		}
1118 	}
1119 	IPQ_UNLOCK();
1120 }
1121 
1122 /*
1123  * Drain off all datagram fragments.
1124  */
1125 void
1126 ip_drain(void)
1127 {
1128 	int     i;
1129 
1130 	IPQ_LOCK();
1131 	for (i = 0; i < IPREASS_NHASH; i++) {
1132 		while(!TAILQ_EMPTY(&V_ipq[i])) {
1133 			V_ipstat.ips_fragdropped +=
1134 			    TAILQ_FIRST(&V_ipq[i])->ipq_nfrags;
1135 			ip_freef(&V_ipq[i], TAILQ_FIRST(&V_ipq[i]));
1136 		}
1137 	}
1138 	IPQ_UNLOCK();
1139 	in_rtqdrain();
1140 }
1141 
1142 /*
1143  * The protocol to be inserted into ip_protox[] must be already registered
1144  * in inetsw[], either statically or through pf_proto_register().
1145  */
1146 int
1147 ipproto_register(u_char ipproto)
1148 {
1149 	struct protosw *pr;
1150 
1151 	/* Sanity checks. */
1152 	if (ipproto == 0)
1153 		return (EPROTONOSUPPORT);
1154 
1155 	/*
1156 	 * The protocol slot must not be occupied by another protocol
1157 	 * already.  An index pointing to IPPROTO_RAW is unused.
1158 	 */
1159 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
1160 	if (pr == NULL)
1161 		return (EPFNOSUPPORT);
1162 	if (ip_protox[ipproto] != pr - inetsw)	/* IPPROTO_RAW */
1163 		return (EEXIST);
1164 
1165 	/* Find the protocol position in inetsw[] and set the index. */
1166 	for (pr = inetdomain.dom_protosw;
1167 	     pr < inetdomain.dom_protoswNPROTOSW; pr++) {
1168 		if (pr->pr_domain->dom_family == PF_INET &&
1169 		    pr->pr_protocol && pr->pr_protocol == ipproto) {
1170 			/* Be careful to only index valid IP protocols. */
1171 			if (pr->pr_protocol < IPPROTO_MAX) {
1172 				ip_protox[pr->pr_protocol] = pr - inetsw;
1173 				return (0);
1174 			} else
1175 				return (EINVAL);
1176 		}
1177 	}
1178 	return (EPROTONOSUPPORT);
1179 }
1180 
1181 int
1182 ipproto_unregister(u_char ipproto)
1183 {
1184 	struct protosw *pr;
1185 
1186 	/* Sanity checks. */
1187 	if (ipproto == 0)
1188 		return (EPROTONOSUPPORT);
1189 
1190 	/* Check if the protocol was indeed registered. */
1191 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
1192 	if (pr == NULL)
1193 		return (EPFNOSUPPORT);
1194 	if (ip_protox[ipproto] == pr - inetsw)  /* IPPROTO_RAW */
1195 		return (ENOENT);
1196 
1197 	/* Reset the protocol slot to IPPROTO_RAW. */
1198 	ip_protox[ipproto] = pr - inetsw;
1199 	return (0);
1200 }
1201 
1202 /*
1203  * Given address of next destination (final or next hop),
1204  * return internet address info of interface to be used to get there.
1205  */
1206 struct in_ifaddr *
1207 ip_rtaddr(struct in_addr dst, u_int fibnum)
1208 {
1209 	struct route sro;
1210 	struct sockaddr_in *sin;
1211 	struct in_ifaddr *ifa;
1212 
1213 	bzero(&sro, sizeof(sro));
1214 	sin = (struct sockaddr_in *)&sro.ro_dst;
1215 	sin->sin_family = AF_INET;
1216 	sin->sin_len = sizeof(*sin);
1217 	sin->sin_addr = dst;
1218 	in_rtalloc_ign(&sro, RTF_CLONING, fibnum);
1219 
1220 	if (sro.ro_rt == NULL)
1221 		return (NULL);
1222 
1223 	ifa = ifatoia(sro.ro_rt->rt_ifa);
1224 	RTFREE(sro.ro_rt);
1225 	return (ifa);
1226 }
1227 
1228 u_char inetctlerrmap[PRC_NCMDS] = {
1229 	0,		0,		0,		0,
1230 	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1231 	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1232 	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1233 	0,		0,		EHOSTUNREACH,	0,
1234 	ENOPROTOOPT,	ECONNREFUSED
1235 };
1236 
1237 /*
1238  * Forward a packet.  If some error occurs return the sender
1239  * an icmp packet.  Note we can't always generate a meaningful
1240  * icmp message because icmp doesn't have a large enough repertoire
1241  * of codes and types.
1242  *
1243  * If not forwarding, just drop the packet.  This could be confusing
1244  * if ipforwarding was zero but some routing protocol was advancing
1245  * us as a gateway to somewhere.  However, we must let the routing
1246  * protocol deal with that.
1247  *
1248  * The srcrt parameter indicates whether the packet is being forwarded
1249  * via a source route.
1250  */
1251 void
1252 ip_forward(struct mbuf *m, int srcrt)
1253 {
1254 	struct ip *ip = mtod(m, struct ip *);
1255 	struct in_ifaddr *ia = NULL;
1256 	struct mbuf *mcopy;
1257 	struct in_addr dest;
1258 	struct route ro;
1259 	int error, type = 0, code = 0, mtu = 0;
1260 
1261 	if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) {
1262 		V_ipstat.ips_cantforward++;
1263 		m_freem(m);
1264 		return;
1265 	}
1266 #ifdef IPSTEALTH
1267 	if (!V_ipstealth) {
1268 #endif
1269 		if (ip->ip_ttl <= IPTTLDEC) {
1270 			icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS,
1271 			    0, 0);
1272 			return;
1273 		}
1274 #ifdef IPSTEALTH
1275 	}
1276 #endif
1277 
1278 	ia = ip_rtaddr(ip->ip_dst, M_GETFIB(m));
1279 	if (!srcrt && ia == NULL) {
1280 		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, 0, 0);
1281 		return;
1282 	}
1283 
1284 	/*
1285 	 * Save the IP header and at most 8 bytes of the payload,
1286 	 * in case we need to generate an ICMP message to the src.
1287 	 *
1288 	 * XXX this can be optimized a lot by saving the data in a local
1289 	 * buffer on the stack (72 bytes at most), and only allocating the
1290 	 * mbuf if really necessary. The vast majority of the packets
1291 	 * are forwarded without having to send an ICMP back (either
1292 	 * because unnecessary, or because rate limited), so we are
1293 	 * really we are wasting a lot of work here.
1294 	 *
1295 	 * We don't use m_copy() because it might return a reference
1296 	 * to a shared cluster. Both this function and ip_output()
1297 	 * assume exclusive access to the IP header in `m', so any
1298 	 * data in a cluster may change before we reach icmp_error().
1299 	 */
1300 	MGETHDR(mcopy, M_DONTWAIT, m->m_type);
1301 	if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, M_DONTWAIT)) {
1302 		/*
1303 		 * It's probably ok if the pkthdr dup fails (because
1304 		 * the deep copy of the tag chain failed), but for now
1305 		 * be conservative and just discard the copy since
1306 		 * code below may some day want the tags.
1307 		 */
1308 		m_free(mcopy);
1309 		mcopy = NULL;
1310 	}
1311 	if (mcopy != NULL) {
1312 		mcopy->m_len = min(ip->ip_len, M_TRAILINGSPACE(mcopy));
1313 		mcopy->m_pkthdr.len = mcopy->m_len;
1314 		m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
1315 	}
1316 
1317 #ifdef IPSTEALTH
1318 	if (!V_ipstealth) {
1319 #endif
1320 		ip->ip_ttl -= IPTTLDEC;
1321 #ifdef IPSTEALTH
1322 	}
1323 #endif
1324 
1325 	/*
1326 	 * If forwarding packet using same interface that it came in on,
1327 	 * perhaps should send a redirect to sender to shortcut a hop.
1328 	 * Only send redirect if source is sending directly to us,
1329 	 * and if packet was not source routed (or has any options).
1330 	 * Also, don't send redirect if forwarding using a default route
1331 	 * or a route modified by a redirect.
1332 	 */
1333 	dest.s_addr = 0;
1334 	if (!srcrt && V_ipsendredirects && ia->ia_ifp == m->m_pkthdr.rcvif) {
1335 		struct sockaddr_in *sin;
1336 		struct rtentry *rt;
1337 
1338 		bzero(&ro, sizeof(ro));
1339 		sin = (struct sockaddr_in *)&ro.ro_dst;
1340 		sin->sin_family = AF_INET;
1341 		sin->sin_len = sizeof(*sin);
1342 		sin->sin_addr = ip->ip_dst;
1343 		in_rtalloc_ign(&ro, RTF_CLONING, M_GETFIB(m));
1344 
1345 		rt = ro.ro_rt;
1346 
1347 		if (rt && (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1348 		    satosin(rt_key(rt))->sin_addr.s_addr != 0) {
1349 #define	RTA(rt)	((struct in_ifaddr *)(rt->rt_ifa))
1350 			u_long src = ntohl(ip->ip_src.s_addr);
1351 
1352 			if (RTA(rt) &&
1353 			    (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
1354 				if (rt->rt_flags & RTF_GATEWAY)
1355 					dest.s_addr = satosin(rt->rt_gateway)->sin_addr.s_addr;
1356 				else
1357 					dest.s_addr = ip->ip_dst.s_addr;
1358 				/* Router requirements says to only send host redirects */
1359 				type = ICMP_REDIRECT;
1360 				code = ICMP_REDIRECT_HOST;
1361 			}
1362 		}
1363 		if (rt)
1364 			RTFREE(rt);
1365 	}
1366 
1367 	/*
1368 	 * Try to cache the route MTU from ip_output so we can consider it for
1369 	 * the ICMP_UNREACH_NEEDFRAG "Next-Hop MTU" field described in RFC1191.
1370 	 */
1371 	bzero(&ro, sizeof(ro));
1372 
1373 	error = ip_output(m, NULL, &ro, IP_FORWARDING, NULL, NULL);
1374 
1375 	if (error == EMSGSIZE && ro.ro_rt)
1376 		mtu = ro.ro_rt->rt_rmx.rmx_mtu;
1377 	if (ro.ro_rt)
1378 		RTFREE(ro.ro_rt);
1379 
1380 	if (error)
1381 		V_ipstat.ips_cantforward++;
1382 	else {
1383 		V_ipstat.ips_forward++;
1384 		if (type)
1385 			V_ipstat.ips_redirectsent++;
1386 		else {
1387 			if (mcopy)
1388 				m_freem(mcopy);
1389 			return;
1390 		}
1391 	}
1392 	if (mcopy == NULL)
1393 		return;
1394 
1395 	switch (error) {
1396 
1397 	case 0:				/* forwarded, but need redirect */
1398 		/* type, code set above */
1399 		break;
1400 
1401 	case ENETUNREACH:		/* shouldn't happen, checked above */
1402 	case EHOSTUNREACH:
1403 	case ENETDOWN:
1404 	case EHOSTDOWN:
1405 	default:
1406 		type = ICMP_UNREACH;
1407 		code = ICMP_UNREACH_HOST;
1408 		break;
1409 
1410 	case EMSGSIZE:
1411 		type = ICMP_UNREACH;
1412 		code = ICMP_UNREACH_NEEDFRAG;
1413 
1414 #ifdef IPSEC
1415 		/*
1416 		 * If IPsec is configured for this path,
1417 		 * override any possibly mtu value set by ip_output.
1418 		 */
1419 		mtu = ip_ipsec_mtu(m, mtu);
1420 #endif /* IPSEC */
1421 		/*
1422 		 * If the MTU was set before make sure we are below the
1423 		 * interface MTU.
1424 		 * If the MTU wasn't set before use the interface mtu or
1425 		 * fall back to the next smaller mtu step compared to the
1426 		 * current packet size.
1427 		 */
1428 		if (mtu != 0) {
1429 			if (ia != NULL)
1430 				mtu = min(mtu, ia->ia_ifp->if_mtu);
1431 		} else {
1432 			if (ia != NULL)
1433 				mtu = ia->ia_ifp->if_mtu;
1434 			else
1435 				mtu = ip_next_mtu(ip->ip_len, 0);
1436 		}
1437 		V_ipstat.ips_cantfrag++;
1438 		break;
1439 
1440 	case ENOBUFS:
1441 		/*
1442 		 * A router should not generate ICMP_SOURCEQUENCH as
1443 		 * required in RFC1812 Requirements for IP Version 4 Routers.
1444 		 * Source quench could be a big problem under DoS attacks,
1445 		 * or if the underlying interface is rate-limited.
1446 		 * Those who need source quench packets may re-enable them
1447 		 * via the net.inet.ip.sendsourcequench sysctl.
1448 		 */
1449 		if (V_ip_sendsourcequench == 0) {
1450 			m_freem(mcopy);
1451 			return;
1452 		} else {
1453 			type = ICMP_SOURCEQUENCH;
1454 			code = 0;
1455 		}
1456 		break;
1457 
1458 	case EACCES:			/* ipfw denied packet */
1459 		m_freem(mcopy);
1460 		return;
1461 	}
1462 	icmp_error(mcopy, type, code, dest.s_addr, mtu);
1463 }
1464 
1465 void
1466 ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
1467     struct mbuf *m)
1468 {
1469 	if (inp->inp_socket->so_options & (SO_BINTIME | SO_TIMESTAMP)) {
1470 		struct bintime bt;
1471 
1472 		bintime(&bt);
1473 		if (inp->inp_socket->so_options & SO_BINTIME) {
1474 			*mp = sbcreatecontrol((caddr_t) &bt, sizeof(bt),
1475 			SCM_BINTIME, SOL_SOCKET);
1476 			if (*mp)
1477 				mp = &(*mp)->m_next;
1478 		}
1479 		if (inp->inp_socket->so_options & SO_TIMESTAMP) {
1480 			struct timeval tv;
1481 
1482 			bintime2timeval(&bt, &tv);
1483 			*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
1484 				SCM_TIMESTAMP, SOL_SOCKET);
1485 			if (*mp)
1486 				mp = &(*mp)->m_next;
1487 		}
1488 	}
1489 	if (inp->inp_flags & INP_RECVDSTADDR) {
1490 		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
1491 		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
1492 		if (*mp)
1493 			mp = &(*mp)->m_next;
1494 	}
1495 	if (inp->inp_flags & INP_RECVTTL) {
1496 		*mp = sbcreatecontrol((caddr_t) &ip->ip_ttl,
1497 		    sizeof(u_char), IP_RECVTTL, IPPROTO_IP);
1498 		if (*mp)
1499 			mp = &(*mp)->m_next;
1500 	}
1501 #ifdef notyet
1502 	/* XXX
1503 	 * Moving these out of udp_input() made them even more broken
1504 	 * than they already were.
1505 	 */
1506 	/* options were tossed already */
1507 	if (inp->inp_flags & INP_RECVOPTS) {
1508 		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
1509 		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
1510 		if (*mp)
1511 			mp = &(*mp)->m_next;
1512 	}
1513 	/* ip_srcroute doesn't do what we want here, need to fix */
1514 	if (inp->inp_flags & INP_RECVRETOPTS) {
1515 		*mp = sbcreatecontrol((caddr_t) ip_srcroute(m),
1516 		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
1517 		if (*mp)
1518 			mp = &(*mp)->m_next;
1519 	}
1520 #endif
1521 	if (inp->inp_flags & INP_RECVIF) {
1522 		struct ifnet *ifp;
1523 		struct sdlbuf {
1524 			struct sockaddr_dl sdl;
1525 			u_char	pad[32];
1526 		} sdlbuf;
1527 		struct sockaddr_dl *sdp;
1528 		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
1529 
1530 		if (((ifp = m->m_pkthdr.rcvif))
1531 		&& ( ifp->if_index && (ifp->if_index <= V_if_index))) {
1532 			sdp = (struct sockaddr_dl *)ifp->if_addr->ifa_addr;
1533 			/*
1534 			 * Change our mind and don't try copy.
1535 			 */
1536 			if ((sdp->sdl_family != AF_LINK)
1537 			|| (sdp->sdl_len > sizeof(sdlbuf))) {
1538 				goto makedummy;
1539 			}
1540 			bcopy(sdp, sdl2, sdp->sdl_len);
1541 		} else {
1542 makedummy:
1543 			sdl2->sdl_len
1544 				= offsetof(struct sockaddr_dl, sdl_data[0]);
1545 			sdl2->sdl_family = AF_LINK;
1546 			sdl2->sdl_index = 0;
1547 			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
1548 		}
1549 		*mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
1550 			IP_RECVIF, IPPROTO_IP);
1551 		if (*mp)
1552 			mp = &(*mp)->m_next;
1553 	}
1554 }
1555 
1556 /*
1557  * XXXRW: Multicast routing code in ip_mroute.c is generally MPSAFE, but the
1558  * ip_rsvp and ip_rsvp_on variables need to be interlocked with rsvp_on
1559  * locking.  This code remains in ip_input.c as ip_mroute.c is optionally
1560  * compiled.
1561  */
1562 static int ip_rsvp_on;
1563 struct socket *ip_rsvpd;
1564 int
1565 ip_rsvp_init(struct socket *so)
1566 {
1567 	if (so->so_type != SOCK_RAW ||
1568 	    so->so_proto->pr_protocol != IPPROTO_RSVP)
1569 		return EOPNOTSUPP;
1570 
1571 	if (V_ip_rsvpd != NULL)
1572 		return EADDRINUSE;
1573 
1574 	V_ip_rsvpd = so;
1575 	/*
1576 	 * This may seem silly, but we need to be sure we don't over-increment
1577 	 * the RSVP counter, in case something slips up.
1578 	 */
1579 	if (!V_ip_rsvp_on) {
1580 		V_ip_rsvp_on = 1;
1581 		V_rsvp_on++;
1582 	}
1583 
1584 	return 0;
1585 }
1586 
1587 int
1588 ip_rsvp_done(void)
1589 {
1590 	V_ip_rsvpd = NULL;
1591 	/*
1592 	 * This may seem silly, but we need to be sure we don't over-decrement
1593 	 * the RSVP counter, in case something slips up.
1594 	 */
1595 	if (V_ip_rsvp_on) {
1596 		V_ip_rsvp_on = 0;
1597 		V_rsvp_on--;
1598 	}
1599 	return 0;
1600 }
1601 
1602 void
1603 rsvp_input(struct mbuf *m, int off)	/* XXX must fixup manually */
1604 {
1605 	if (rsvp_input_p) { /* call the real one if loaded */
1606 		rsvp_input_p(m, off);
1607 		return;
1608 	}
1609 
1610 	/* Can still get packets with rsvp_on = 0 if there is a local member
1611 	 * of the group to which the RSVP packet is addressed.  But in this
1612 	 * case we want to throw the packet away.
1613 	 */
1614 
1615 	if (!V_rsvp_on) {
1616 		m_freem(m);
1617 		return;
1618 	}
1619 
1620 	if (V_ip_rsvpd != NULL) {
1621 		rip_input(m, off);
1622 		return;
1623 	}
1624 	/* Drop the packet */
1625 	m_freem(m);
1626 }
1627