1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2008 Michael J. Silbersack. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice unmodified, this list of conditions, and the following 12 * disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 /* 33 * IP ID generation is a fascinating topic. 34 * 35 * In order to avoid ID collisions during packet reassembly, common sense 36 * dictates that the period between reuse of IDs be as large as possible. 37 * This leads to the classic implementation of a system-wide counter, thereby 38 * ensuring that IDs repeat only once every 2^16 packets. 39 * 40 * Subsequent security researchers have pointed out that using a global 41 * counter makes ID values predictable. This predictability allows traffic 42 * analysis, idle scanning, and even packet injection in specific cases. 43 * These results suggest that IP IDs should be as random as possible. 44 * 45 * The "searchable queues" algorithm used in this IP ID implementation was 46 * proposed by Amit Klein. It is a compromise between the above two 47 * viewpoints that has provable behavior that can be tuned to the user's 48 * requirements. 49 * 50 * The basic concept is that we supplement a standard random number generator 51 * with a queue of the last L IDs that we have handed out to ensure that all 52 * IDs have a period of at least L. 53 * 54 * To efficiently implement this idea, we keep two data structures: a 55 * circular array of IDs of size L and a bitstring of 65536 bits. 56 * 57 * To start, we ask the RNG for a new ID. A quick index into the bitstring 58 * is used to determine if this is a recently used value. The process is 59 * repeated until a value is returned that is not in the bitstring. 60 * 61 * Having found a usable ID, we remove the ID stored at the current position 62 * in the queue from the bitstring and replace it with our new ID. Our new 63 * ID is then added to the bitstring and the queue pointer is incremented. 64 * 65 * The lower limit of 512 was chosen because there doesn't seem to be much 66 * point to having a smaller value. The upper limit of 32768 was chosen for 67 * two reasons. First, every step above 32768 decreases the entropy. Taken 68 * to an extreme, 65533 would offer 1 bit of entropy. Second, the number of 69 * attempts it takes the algorithm to find an unused ID drastically 70 * increases, killing performance. The default value of 8192 was chosen 71 * because it provides a good tradeoff between randomness and non-repetition. 72 * 73 * With L=8192, the queue will use 16K of memory. The bitstring always 74 * uses 8K of memory. No memory is allocated until the use of random ids is 75 * enabled. 76 */ 77 78 #include <sys/param.h> 79 #include <sys/systm.h> 80 #include <sys/counter.h> 81 #include <sys/kernel.h> 82 #include <sys/malloc.h> 83 #include <sys/lock.h> 84 #include <sys/mutex.h> 85 #include <sys/random.h> 86 #include <sys/smp.h> 87 #include <sys/sysctl.h> 88 #include <sys/bitstring.h> 89 90 #include <net/vnet.h> 91 92 #include <netinet/in.h> 93 #include <netinet/ip.h> 94 #include <netinet/ip_var.h> 95 96 /* 97 * By default we generate IP ID only for non-atomic datagrams, as 98 * suggested by RFC6864. We use per-CPU counter for that, or if 99 * user wants to, we can turn on random ID generation. 100 */ 101 VNET_DEFINE_STATIC(int, ip_rfc6864) = 1; 102 VNET_DEFINE_STATIC(int, ip_do_randomid) = 0; 103 #define V_ip_rfc6864 VNET(ip_rfc6864) 104 #define V_ip_do_randomid VNET(ip_do_randomid) 105 106 /* 107 * Random ID state engine. 108 */ 109 static MALLOC_DEFINE(M_IPID, "ipid", "randomized ip id state"); 110 VNET_DEFINE_STATIC(uint16_t *, id_array); 111 VNET_DEFINE_STATIC(bitstr_t *, id_bits); 112 VNET_DEFINE_STATIC(int, array_ptr); 113 VNET_DEFINE_STATIC(int, array_size); 114 VNET_DEFINE_STATIC(int, random_id_collisions); 115 VNET_DEFINE_STATIC(int, random_id_total); 116 VNET_DEFINE_STATIC(struct mtx, ip_id_mtx); 117 #define V_id_array VNET(id_array) 118 #define V_id_bits VNET(id_bits) 119 #define V_array_ptr VNET(array_ptr) 120 #define V_array_size VNET(array_size) 121 #define V_random_id_collisions VNET(random_id_collisions) 122 #define V_random_id_total VNET(random_id_total) 123 #define V_ip_id_mtx VNET(ip_id_mtx) 124 125 /* 126 * Non-random ID state engine is simply a per-cpu counter. 127 */ 128 VNET_DEFINE_STATIC(counter_u64_t, ip_id); 129 #define V_ip_id VNET(ip_id) 130 131 static int sysctl_ip_randomid(SYSCTL_HANDLER_ARGS); 132 static int sysctl_ip_id_change(SYSCTL_HANDLER_ARGS); 133 static void ip_initid(int); 134 static uint16_t ip_randomid(void); 135 static void ipid_sysinit(void); 136 static void ipid_sysuninit(void); 137 138 SYSCTL_DECL(_net_inet_ip); 139 SYSCTL_PROC(_net_inet_ip, OID_AUTO, random_id, 140 CTLTYPE_INT | CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_MPSAFE, 141 &VNET_NAME(ip_do_randomid), 0, sysctl_ip_randomid, "IU", 142 "Assign random ip_id values"); 143 SYSCTL_INT(_net_inet_ip, OID_AUTO, rfc6864, CTLFLAG_VNET | CTLFLAG_RW, 144 &VNET_NAME(ip_rfc6864), 0, 145 "Use constant IP ID for atomic datagrams"); 146 SYSCTL_PROC(_net_inet_ip, OID_AUTO, random_id_period, 147 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_VNET | CTLFLAG_MPSAFE, 148 &VNET_NAME(array_size), 0, sysctl_ip_id_change, "IU", "IP ID Array size"); 149 SYSCTL_INT(_net_inet_ip, OID_AUTO, random_id_collisions, 150 CTLFLAG_RD | CTLFLAG_VNET, 151 &VNET_NAME(random_id_collisions), 0, "Count of IP ID collisions"); 152 SYSCTL_INT(_net_inet_ip, OID_AUTO, random_id_total, CTLFLAG_RD | CTLFLAG_VNET, 153 &VNET_NAME(random_id_total), 0, "Count of IP IDs created"); 154 155 static int 156 sysctl_ip_randomid(SYSCTL_HANDLER_ARGS) 157 { 158 int error, new; 159 160 new = V_ip_do_randomid; 161 error = sysctl_handle_int(oidp, &new, 0, req); 162 if (error || req->newptr == NULL) 163 return (error); 164 if (new != 0 && new != 1) 165 return (EINVAL); 166 if (new == V_ip_do_randomid) 167 return (0); 168 if (new == 1 && V_ip_do_randomid == 0) 169 ip_initid(8192); 170 /* We don't free memory when turning random ID off, due to race. */ 171 V_ip_do_randomid = new; 172 return (0); 173 } 174 175 static int 176 sysctl_ip_id_change(SYSCTL_HANDLER_ARGS) 177 { 178 int error, new; 179 180 new = V_array_size; 181 error = sysctl_handle_int(oidp, &new, 0, req); 182 if (error == 0 && req->newptr) { 183 if (new >= 512 && new <= 32768) 184 ip_initid(new); 185 else 186 error = EINVAL; 187 } 188 return (error); 189 } 190 191 static void 192 ip_initid(int new_size) 193 { 194 uint16_t *new_array; 195 bitstr_t *new_bits; 196 197 new_array = malloc(new_size * sizeof(uint16_t), M_IPID, 198 M_WAITOK | M_ZERO); 199 new_bits = malloc(bitstr_size(65536), M_IPID, M_WAITOK | M_ZERO); 200 201 mtx_lock(&V_ip_id_mtx); 202 if (V_id_array != NULL) { 203 free(V_id_array, M_IPID); 204 free(V_id_bits, M_IPID); 205 } 206 V_id_array = new_array; 207 V_id_bits = new_bits; 208 V_array_size = new_size; 209 V_array_ptr = 0; 210 V_random_id_collisions = 0; 211 V_random_id_total = 0; 212 mtx_unlock(&V_ip_id_mtx); 213 } 214 215 static uint16_t 216 ip_randomid(void) 217 { 218 uint16_t new_id; 219 220 mtx_lock(&V_ip_id_mtx); 221 /* 222 * To avoid a conflict with the zeros that the array is initially 223 * filled with, we never hand out an id of zero. 224 */ 225 new_id = 0; 226 do { 227 if (new_id != 0) 228 V_random_id_collisions++; 229 arc4rand(&new_id, sizeof(new_id), 0); 230 } while (bit_test(V_id_bits, new_id) || new_id == 0); 231 bit_clear(V_id_bits, V_id_array[V_array_ptr]); 232 bit_set(V_id_bits, new_id); 233 V_id_array[V_array_ptr] = new_id; 234 V_array_ptr++; 235 if (V_array_ptr == V_array_size) 236 V_array_ptr = 0; 237 V_random_id_total++; 238 mtx_unlock(&V_ip_id_mtx); 239 return (new_id); 240 } 241 242 void 243 ip_fillid(struct ip *ip) 244 { 245 246 /* 247 * Per RFC6864 Section 4 248 * 249 * o Atomic datagrams: (DF==1) && (MF==0) && (frag_offset==0) 250 * o Non-atomic datagrams: (DF==0) || (MF==1) || (frag_offset>0) 251 */ 252 if (V_ip_rfc6864 && (ip->ip_off & htons(IP_DF)) == htons(IP_DF)) 253 ip->ip_id = 0; 254 else if (V_ip_do_randomid) 255 ip->ip_id = ip_randomid(); 256 else { 257 counter_u64_add(V_ip_id, 1); 258 /* 259 * There are two issues about this trick, to be kept in mind. 260 * 1) We can migrate between counter_u64_add() and next 261 * line, and grab counter from other CPU, resulting in too 262 * quick ID reuse. This is tolerable in our particular case, 263 * since probability of such event is much lower then reuse 264 * of ID due to legitimate overflow, that at modern Internet 265 * speeds happens all the time. 266 * 2) We are relying on the fact that counter(9) is based on 267 * UMA_ZONE_PCPU uma(9) zone. We also take only last 268 * sixteen bits of a counter, so we don't care about the 269 * fact that machines with 32-bit word update their counters 270 * not atomically. 271 */ 272 ip->ip_id = htons((*(uint64_t *)zpcpu_get(V_ip_id)) & 0xffff); 273 } 274 } 275 276 static void 277 ipid_sysinit(void) 278 { 279 int i; 280 281 mtx_init(&V_ip_id_mtx, "ip_id_mtx", NULL, MTX_DEF); 282 V_ip_id = counter_u64_alloc(M_WAITOK); 283 284 CPU_FOREACH(i) 285 arc4rand(zpcpu_get_cpu(V_ip_id, i), sizeof(uint64_t), 0); 286 } 287 VNET_SYSINIT(ip_id, SI_SUB_PROTO_DOMAIN, SI_ORDER_ANY, ipid_sysinit, NULL); 288 289 static void 290 ipid_sysuninit(void) 291 { 292 293 if (V_id_array != NULL) { 294 free(V_id_array, M_IPID); 295 free(V_id_bits, M_IPID); 296 } 297 counter_u64_free(V_ip_id); 298 mtx_destroy(&V_ip_id_mtx); 299 } 300 VNET_SYSUNINIT(ip_id, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, ipid_sysuninit, NULL); 301