xref: /freebsd/sys/netinet/ip_id.c (revision 63f537551380d2dab29fa402ad1269feae17e594)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2008 Michael J. Silbersack.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice unmodified, this list of conditions, and the following
12  *    disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 /*
31  * IP ID generation is a fascinating topic.
32  *
33  * In order to avoid ID collisions during packet reassembly, common sense
34  * dictates that the period between reuse of IDs be as large as possible.
35  * This leads to the classic implementation of a system-wide counter, thereby
36  * ensuring that IDs repeat only once every 2^16 packets.
37  *
38  * Subsequent security researchers have pointed out that using a global
39  * counter makes ID values predictable.  This predictability allows traffic
40  * analysis, idle scanning, and even packet injection in specific cases.
41  * These results suggest that IP IDs should be as random as possible.
42  *
43  * The "searchable queues" algorithm used in this IP ID implementation was
44  * proposed by Amit Klein.  It is a compromise between the above two
45  * viewpoints that has provable behavior that can be tuned to the user's
46  * requirements.
47  *
48  * The basic concept is that we supplement a standard random number generator
49  * with a queue of the last L IDs that we have handed out to ensure that all
50  * IDs have a period of at least L.
51  *
52  * To efficiently implement this idea, we keep two data structures: a
53  * circular array of IDs of size L and a bitstring of 65536 bits.
54  *
55  * To start, we ask the RNG for a new ID.  A quick index into the bitstring
56  * is used to determine if this is a recently used value.  The process is
57  * repeated until a value is returned that is not in the bitstring.
58  *
59  * Having found a usable ID, we remove the ID stored at the current position
60  * in the queue from the bitstring and replace it with our new ID.  Our new
61  * ID is then added to the bitstring and the queue pointer is incremented.
62  *
63  * The lower limit of 512 was chosen because there doesn't seem to be much
64  * point to having a smaller value.  The upper limit of 32768 was chosen for
65  * two reasons.  First, every step above 32768 decreases the entropy.  Taken
66  * to an extreme, 65533 would offer 1 bit of entropy.  Second, the number of
67  * attempts it takes the algorithm to find an unused ID drastically
68  * increases, killing performance.  The default value of 8192 was chosen
69  * because it provides a good tradeoff between randomness and non-repetition.
70  *
71  * With L=8192, the queue will use 16K of memory.  The bitstring always
72  * uses 8K of memory.  No memory is allocated until the use of random ids is
73  * enabled.
74  */
75 
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/counter.h>
79 #include <sys/kernel.h>
80 #include <sys/malloc.h>
81 #include <sys/lock.h>
82 #include <sys/mutex.h>
83 #include <sys/random.h>
84 #include <sys/smp.h>
85 #include <sys/sysctl.h>
86 #include <sys/bitstring.h>
87 
88 #include <net/vnet.h>
89 
90 #include <netinet/in.h>
91 #include <netinet/ip.h>
92 #include <netinet/ip_var.h>
93 
94 /*
95  * By default we generate IP ID only for non-atomic datagrams, as
96  * suggested by RFC6864.  We use per-CPU counter for that, or if
97  * user wants to, we can turn on random ID generation.
98  */
99 VNET_DEFINE_STATIC(int, ip_rfc6864) = 1;
100 VNET_DEFINE_STATIC(int, ip_do_randomid) = 0;
101 #define	V_ip_rfc6864		VNET(ip_rfc6864)
102 #define	V_ip_do_randomid	VNET(ip_do_randomid)
103 
104 /*
105  * Random ID state engine.
106  */
107 static MALLOC_DEFINE(M_IPID, "ipid", "randomized ip id state");
108 VNET_DEFINE_STATIC(uint16_t *, id_array);
109 VNET_DEFINE_STATIC(bitstr_t *, id_bits);
110 VNET_DEFINE_STATIC(int, array_ptr);
111 VNET_DEFINE_STATIC(int, array_size);
112 VNET_DEFINE_STATIC(int, random_id_collisions);
113 VNET_DEFINE_STATIC(int, random_id_total);
114 VNET_DEFINE_STATIC(struct mtx, ip_id_mtx);
115 #define	V_id_array	VNET(id_array)
116 #define	V_id_bits	VNET(id_bits)
117 #define	V_array_ptr	VNET(array_ptr)
118 #define	V_array_size	VNET(array_size)
119 #define	V_random_id_collisions	VNET(random_id_collisions)
120 #define	V_random_id_total	VNET(random_id_total)
121 #define	V_ip_id_mtx	VNET(ip_id_mtx)
122 
123 /*
124  * Non-random ID state engine is simply a per-cpu counter.
125  */
126 VNET_DEFINE_STATIC(counter_u64_t, ip_id);
127 #define	V_ip_id		VNET(ip_id)
128 
129 static int	sysctl_ip_randomid(SYSCTL_HANDLER_ARGS);
130 static int	sysctl_ip_id_change(SYSCTL_HANDLER_ARGS);
131 static void	ip_initid(int);
132 static uint16_t ip_randomid(void);
133 static void	ipid_sysinit(void);
134 static void	ipid_sysuninit(void);
135 
136 SYSCTL_DECL(_net_inet_ip);
137 SYSCTL_PROC(_net_inet_ip, OID_AUTO, random_id,
138     CTLTYPE_INT | CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_MPSAFE,
139     &VNET_NAME(ip_do_randomid), 0, sysctl_ip_randomid, "IU",
140     "Assign random ip_id values");
141 SYSCTL_INT(_net_inet_ip, OID_AUTO, rfc6864, CTLFLAG_VNET | CTLFLAG_RW,
142     &VNET_NAME(ip_rfc6864), 0,
143     "Use constant IP ID for atomic datagrams");
144 SYSCTL_PROC(_net_inet_ip, OID_AUTO, random_id_period,
145     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_VNET | CTLFLAG_MPSAFE,
146     &VNET_NAME(array_size), 0, sysctl_ip_id_change, "IU", "IP ID Array size");
147 SYSCTL_INT(_net_inet_ip, OID_AUTO, random_id_collisions,
148     CTLFLAG_RD | CTLFLAG_VNET,
149     &VNET_NAME(random_id_collisions), 0, "Count of IP ID collisions");
150 SYSCTL_INT(_net_inet_ip, OID_AUTO, random_id_total, CTLFLAG_RD | CTLFLAG_VNET,
151     &VNET_NAME(random_id_total), 0, "Count of IP IDs created");
152 
153 static int
154 sysctl_ip_randomid(SYSCTL_HANDLER_ARGS)
155 {
156 	int error, new;
157 
158 	new = V_ip_do_randomid;
159 	error = sysctl_handle_int(oidp, &new, 0, req);
160 	if (error || req->newptr == NULL)
161 		return (error);
162 	if (new != 0 && new != 1)
163 		return (EINVAL);
164 	if (new == V_ip_do_randomid)
165 		return (0);
166 	if (new == 1 && V_ip_do_randomid == 0)
167 		ip_initid(8192);
168 	/* We don't free memory when turning random ID off, due to race. */
169 	V_ip_do_randomid = new;
170 	return (0);
171 }
172 
173 static int
174 sysctl_ip_id_change(SYSCTL_HANDLER_ARGS)
175 {
176 	int error, new;
177 
178 	new = V_array_size;
179 	error = sysctl_handle_int(oidp, &new, 0, req);
180 	if (error == 0 && req->newptr) {
181 		if (new >= 512 && new <= 32768)
182 			ip_initid(new);
183 		else
184 			error = EINVAL;
185 	}
186 	return (error);
187 }
188 
189 static void
190 ip_initid(int new_size)
191 {
192 	uint16_t *new_array;
193 	bitstr_t *new_bits;
194 
195 	new_array = malloc(new_size * sizeof(uint16_t), M_IPID,
196 	    M_WAITOK | M_ZERO);
197 	new_bits = malloc(bitstr_size(65536), M_IPID, M_WAITOK | M_ZERO);
198 
199 	mtx_lock(&V_ip_id_mtx);
200 	if (V_id_array != NULL) {
201 		free(V_id_array, M_IPID);
202 		free(V_id_bits, M_IPID);
203 	}
204 	V_id_array = new_array;
205 	V_id_bits = new_bits;
206 	V_array_size = new_size;
207 	V_array_ptr = 0;
208 	V_random_id_collisions = 0;
209 	V_random_id_total = 0;
210 	mtx_unlock(&V_ip_id_mtx);
211 }
212 
213 static uint16_t
214 ip_randomid(void)
215 {
216 	uint16_t new_id;
217 
218 	mtx_lock(&V_ip_id_mtx);
219 	/*
220 	 * To avoid a conflict with the zeros that the array is initially
221 	 * filled with, we never hand out an id of zero.
222 	 */
223 	new_id = 0;
224 	do {
225 		if (new_id != 0)
226 			V_random_id_collisions++;
227 		arc4rand(&new_id, sizeof(new_id), 0);
228 	} while (bit_test(V_id_bits, new_id) || new_id == 0);
229 	bit_clear(V_id_bits, V_id_array[V_array_ptr]);
230 	bit_set(V_id_bits, new_id);
231 	V_id_array[V_array_ptr] = new_id;
232 	V_array_ptr++;
233 	if (V_array_ptr == V_array_size)
234 		V_array_ptr = 0;
235 	V_random_id_total++;
236 	mtx_unlock(&V_ip_id_mtx);
237 	return (new_id);
238 }
239 
240 void
241 ip_fillid(struct ip *ip)
242 {
243 
244 	/*
245 	 * Per RFC6864 Section 4
246 	 *
247 	 * o  Atomic datagrams: (DF==1) && (MF==0) && (frag_offset==0)
248 	 * o  Non-atomic datagrams: (DF==0) || (MF==1) || (frag_offset>0)
249 	 */
250 	if (V_ip_rfc6864 && (ip->ip_off & htons(IP_DF)) == htons(IP_DF))
251 		ip->ip_id = 0;
252 	else if (V_ip_do_randomid)
253 		ip->ip_id = ip_randomid();
254 	else {
255 		counter_u64_add(V_ip_id, 1);
256 		/*
257 		 * There are two issues about this trick, to be kept in mind.
258 		 * 1) We can migrate between counter_u64_add() and next
259 		 *    line, and grab counter from other CPU, resulting in too
260 		 *    quick ID reuse. This is tolerable in our particular case,
261 		 *    since probability of such event is much lower then reuse
262 		 *    of ID due to legitimate overflow, that at modern Internet
263 		 *    speeds happens all the time.
264 		 * 2) We are relying on the fact that counter(9) is based on
265 		 *    UMA_ZONE_PCPU uma(9) zone. We also take only last
266 		 *    sixteen bits of a counter, so we don't care about the
267 		 *    fact that machines with 32-bit word update their counters
268 		 *    not atomically.
269 		 */
270 		ip->ip_id = htons((*(uint64_t *)zpcpu_get(V_ip_id)) & 0xffff);
271 	}
272 }
273 
274 static void
275 ipid_sysinit(void)
276 {
277 	int i;
278 
279 	mtx_init(&V_ip_id_mtx, "ip_id_mtx", NULL, MTX_DEF);
280 	V_ip_id = counter_u64_alloc(M_WAITOK);
281 
282 	CPU_FOREACH(i)
283 		arc4rand(zpcpu_get_cpu(V_ip_id, i), sizeof(uint64_t), 0);
284 }
285 VNET_SYSINIT(ip_id, SI_SUB_PROTO_DOMAIN, SI_ORDER_ANY, ipid_sysinit, NULL);
286 
287 static void
288 ipid_sysuninit(void)
289 {
290 
291 	if (V_id_array != NULL) {
292 		free(V_id_array, M_IPID);
293 		free(V_id_bits, M_IPID);
294 	}
295 	counter_u64_free(V_ip_id);
296 	mtx_destroy(&V_ip_id_mtx);
297 }
298 VNET_SYSUNINIT(ip_id, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, ipid_sysuninit, NULL);
299