1 /*- 2 * Copyright (c) 2002 Luigi Rizzo, Universita` di Pisa 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. Redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution. 12 * 13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 16 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 23 * SUCH DAMAGE. 24 * 25 * $FreeBSD$ 26 */ 27 28 #ifndef _IPFW2_H 29 #define _IPFW2_H 30 31 /* 32 * The default rule number. By the design of ip_fw, the default rule 33 * is the last one, so its number can also serve as the highest number 34 * allowed for a rule. The ip_fw code relies on both meanings of this 35 * constant. 36 */ 37 #define IPFW_DEFAULT_RULE 65535 38 39 /* 40 * The number of ipfw tables. The maximum allowed table number is the 41 * (IPFW_TABLES_MAX - 1). 42 */ 43 #define IPFW_TABLES_MAX 128 44 45 /* 46 * The kernel representation of ipfw rules is made of a list of 47 * 'instructions' (for all practical purposes equivalent to BPF 48 * instructions), which specify which fields of the packet 49 * (or its metadata) should be analysed. 50 * 51 * Each instruction is stored in a structure which begins with 52 * "ipfw_insn", and can contain extra fields depending on the 53 * instruction type (listed below). 54 * Note that the code is written so that individual instructions 55 * have a size which is a multiple of 32 bits. This means that, if 56 * such structures contain pointers or other 64-bit entities, 57 * (there is just one instance now) they may end up unaligned on 58 * 64-bit architectures, so the must be handled with care. 59 * 60 * "enum ipfw_opcodes" are the opcodes supported. We can have up 61 * to 256 different opcodes. When adding new opcodes, they should 62 * be appended to the end of the opcode list before O_LAST_OPCODE, 63 * this will prevent the ABI from being broken, otherwise users 64 * will have to recompile ipfw(8) when they update the kernel. 65 */ 66 67 enum ipfw_opcodes { /* arguments (4 byte each) */ 68 O_NOP, 69 70 O_IP_SRC, /* u32 = IP */ 71 O_IP_SRC_MASK, /* ip = IP/mask */ 72 O_IP_SRC_ME, /* none */ 73 O_IP_SRC_SET, /* u32=base, arg1=len, bitmap */ 74 75 O_IP_DST, /* u32 = IP */ 76 O_IP_DST_MASK, /* ip = IP/mask */ 77 O_IP_DST_ME, /* none */ 78 O_IP_DST_SET, /* u32=base, arg1=len, bitmap */ 79 80 O_IP_SRCPORT, /* (n)port list:mask 4 byte ea */ 81 O_IP_DSTPORT, /* (n)port list:mask 4 byte ea */ 82 O_PROTO, /* arg1=protocol */ 83 84 O_MACADDR2, /* 2 mac addr:mask */ 85 O_MAC_TYPE, /* same as srcport */ 86 87 O_LAYER2, /* none */ 88 O_IN, /* none */ 89 O_FRAG, /* none */ 90 91 O_RECV, /* none */ 92 O_XMIT, /* none */ 93 O_VIA, /* none */ 94 95 O_IPOPT, /* arg1 = 2*u8 bitmap */ 96 O_IPLEN, /* arg1 = len */ 97 O_IPID, /* arg1 = id */ 98 99 O_IPTOS, /* arg1 = id */ 100 O_IPPRECEDENCE, /* arg1 = precedence << 5 */ 101 O_IPTTL, /* arg1 = TTL */ 102 103 O_IPVER, /* arg1 = version */ 104 O_UID, /* u32 = id */ 105 O_GID, /* u32 = id */ 106 O_ESTAB, /* none (tcp established) */ 107 O_TCPFLAGS, /* arg1 = 2*u8 bitmap */ 108 O_TCPWIN, /* arg1 = desired win */ 109 O_TCPSEQ, /* u32 = desired seq. */ 110 O_TCPACK, /* u32 = desired seq. */ 111 O_ICMPTYPE, /* u32 = icmp bitmap */ 112 O_TCPOPTS, /* arg1 = 2*u8 bitmap */ 113 114 O_VERREVPATH, /* none */ 115 O_VERSRCREACH, /* none */ 116 117 O_PROBE_STATE, /* none */ 118 O_KEEP_STATE, /* none */ 119 O_LIMIT, /* ipfw_insn_limit */ 120 O_LIMIT_PARENT, /* dyn_type, not an opcode. */ 121 122 /* 123 * These are really 'actions'. 124 */ 125 126 O_LOG, /* ipfw_insn_log */ 127 O_PROB, /* u32 = match probability */ 128 129 O_CHECK_STATE, /* none */ 130 O_ACCEPT, /* none */ 131 O_DENY, /* none */ 132 O_REJECT, /* arg1=icmp arg (same as deny) */ 133 O_COUNT, /* none */ 134 O_SKIPTO, /* arg1=next rule number */ 135 O_PIPE, /* arg1=pipe number */ 136 O_QUEUE, /* arg1=queue number */ 137 O_DIVERT, /* arg1=port number */ 138 O_TEE, /* arg1=port number */ 139 O_FORWARD_IP, /* fwd sockaddr */ 140 O_FORWARD_MAC, /* fwd mac */ 141 O_NAT, /* nope */ 142 O_REASS, /* none */ 143 144 /* 145 * More opcodes. 146 */ 147 O_IPSEC, /* has ipsec history */ 148 O_IP_SRC_LOOKUP, /* arg1=table number, u32=value */ 149 O_IP_DST_LOOKUP, /* arg1=table number, u32=value */ 150 O_ANTISPOOF, /* none */ 151 O_JAIL, /* u32 = id */ 152 O_ALTQ, /* u32 = altq classif. qid */ 153 O_DIVERTED, /* arg1=bitmap (1:loop, 2:out) */ 154 O_TCPDATALEN, /* arg1 = tcp data len */ 155 O_IP6_SRC, /* address without mask */ 156 O_IP6_SRC_ME, /* my addresses */ 157 O_IP6_SRC_MASK, /* address with the mask */ 158 O_IP6_DST, 159 O_IP6_DST_ME, 160 O_IP6_DST_MASK, 161 O_FLOW6ID, /* for flow id tag in the ipv6 pkt */ 162 O_ICMP6TYPE, /* icmp6 packet type filtering */ 163 O_EXT_HDR, /* filtering for ipv6 extension header */ 164 O_IP6, 165 166 /* 167 * actions for ng_ipfw 168 */ 169 O_NETGRAPH, /* send to ng_ipfw */ 170 O_NGTEE, /* copy to ng_ipfw */ 171 172 O_IP4, 173 174 O_UNREACH6, /* arg1=icmpv6 code arg (deny) */ 175 176 O_TAG, /* arg1=tag number */ 177 O_TAGGED, /* arg1=tag number */ 178 179 O_SETFIB, /* arg1=FIB number */ 180 O_FIB, /* arg1=FIB desired fib number */ 181 182 O_LAST_OPCODE /* not an opcode! */ 183 }; 184 185 /* 186 * The extension header are filtered only for presence using a bit 187 * vector with a flag for each header. 188 */ 189 #define EXT_FRAGMENT 0x1 190 #define EXT_HOPOPTS 0x2 191 #define EXT_ROUTING 0x4 192 #define EXT_AH 0x8 193 #define EXT_ESP 0x10 194 #define EXT_DSTOPTS 0x20 195 #define EXT_RTHDR0 0x40 196 #define EXT_RTHDR2 0x80 197 198 /* 199 * Template for instructions. 200 * 201 * ipfw_insn is used for all instructions which require no operands, 202 * a single 16-bit value (arg1), or a couple of 8-bit values. 203 * 204 * For other instructions which require different/larger arguments 205 * we have derived structures, ipfw_insn_*. 206 * 207 * The size of the instruction (in 32-bit words) is in the low 208 * 6 bits of "len". The 2 remaining bits are used to implement 209 * NOT and OR on individual instructions. Given a type, you can 210 * compute the length to be put in "len" using F_INSN_SIZE(t) 211 * 212 * F_NOT negates the match result of the instruction. 213 * 214 * F_OR is used to build or blocks. By default, instructions 215 * are evaluated as part of a logical AND. An "or" block 216 * { X or Y or Z } contains F_OR set in all but the last 217 * instruction of the block. A match will cause the code 218 * to skip past the last instruction of the block. 219 * 220 * NOTA BENE: in a couple of places we assume that 221 * sizeof(ipfw_insn) == sizeof(u_int32_t) 222 * this needs to be fixed. 223 * 224 */ 225 typedef struct _ipfw_insn { /* template for instructions */ 226 enum ipfw_opcodes opcode:8; 227 u_int8_t len; /* number of 32-bit words */ 228 #define F_NOT 0x80 229 #define F_OR 0x40 230 #define F_LEN_MASK 0x3f 231 #define F_LEN(cmd) ((cmd)->len & F_LEN_MASK) 232 233 u_int16_t arg1; 234 } ipfw_insn; 235 236 /* 237 * The F_INSN_SIZE(type) computes the size, in 4-byte words, of 238 * a given type. 239 */ 240 #define F_INSN_SIZE(t) ((sizeof (t))/sizeof(u_int32_t)) 241 242 #define MTAG_IPFW 1148380143 /* IPFW-tagged cookie */ 243 244 /* 245 * This is used to store an array of 16-bit entries (ports etc.) 246 */ 247 typedef struct _ipfw_insn_u16 { 248 ipfw_insn o; 249 u_int16_t ports[2]; /* there may be more */ 250 } ipfw_insn_u16; 251 252 /* 253 * This is used to store an array of 32-bit entries 254 * (uid, single IPv4 addresses etc.) 255 */ 256 typedef struct _ipfw_insn_u32 { 257 ipfw_insn o; 258 u_int32_t d[1]; /* one or more */ 259 } ipfw_insn_u32; 260 261 /* 262 * This is used to store IP addr-mask pairs. 263 */ 264 typedef struct _ipfw_insn_ip { 265 ipfw_insn o; 266 struct in_addr addr; 267 struct in_addr mask; 268 } ipfw_insn_ip; 269 270 /* 271 * This is used to forward to a given address (ip). 272 */ 273 typedef struct _ipfw_insn_sa { 274 ipfw_insn o; 275 struct sockaddr_in sa; 276 } ipfw_insn_sa; 277 278 /* 279 * This is used for MAC addr-mask pairs. 280 */ 281 typedef struct _ipfw_insn_mac { 282 ipfw_insn o; 283 u_char addr[12]; /* dst[6] + src[6] */ 284 u_char mask[12]; /* dst[6] + src[6] */ 285 } ipfw_insn_mac; 286 287 /* 288 * This is used for interface match rules (recv xx, xmit xx). 289 */ 290 typedef struct _ipfw_insn_if { 291 ipfw_insn o; 292 union { 293 struct in_addr ip; 294 int glob; 295 } p; 296 char name[IFNAMSIZ]; 297 } ipfw_insn_if; 298 299 /* 300 * This is used for storing an altq queue id number. 301 */ 302 typedef struct _ipfw_insn_altq { 303 ipfw_insn o; 304 u_int32_t qid; 305 } ipfw_insn_altq; 306 307 /* 308 * This is used for limit rules. 309 */ 310 typedef struct _ipfw_insn_limit { 311 ipfw_insn o; 312 u_int8_t _pad; 313 u_int8_t limit_mask; /* combination of DYN_* below */ 314 #define DYN_SRC_ADDR 0x1 315 #define DYN_SRC_PORT 0x2 316 #define DYN_DST_ADDR 0x4 317 #define DYN_DST_PORT 0x8 318 319 u_int16_t conn_limit; 320 } ipfw_insn_limit; 321 322 /* 323 * This is used for log instructions. 324 */ 325 typedef struct _ipfw_insn_log { 326 ipfw_insn o; 327 u_int32_t max_log; /* how many do we log -- 0 = all */ 328 u_int32_t log_left; /* how many left to log */ 329 } ipfw_insn_log; 330 331 /* 332 * Data structures required by both ipfw(8) and ipfw(4) but not part of the 333 * management API are protected by IPFW_INTERNAL. 334 */ 335 #ifdef IPFW_INTERNAL 336 /* Server pool support (LSNAT). */ 337 struct cfg_spool { 338 LIST_ENTRY(cfg_spool) _next; /* chain of spool instances */ 339 struct in_addr addr; 340 u_short port; 341 }; 342 #endif 343 344 /* Redirect modes id. */ 345 #define REDIR_ADDR 0x01 346 #define REDIR_PORT 0x02 347 #define REDIR_PROTO 0x04 348 349 #ifdef IPFW_INTERNAL 350 /* Nat redirect configuration. */ 351 struct cfg_redir { 352 LIST_ENTRY(cfg_redir) _next; /* chain of redir instances */ 353 u_int16_t mode; /* type of redirect mode */ 354 struct in_addr laddr; /* local ip address */ 355 struct in_addr paddr; /* public ip address */ 356 struct in_addr raddr; /* remote ip address */ 357 u_short lport; /* local port */ 358 u_short pport; /* public port */ 359 u_short rport; /* remote port */ 360 u_short pport_cnt; /* number of public ports */ 361 u_short rport_cnt; /* number of remote ports */ 362 int proto; /* protocol: tcp/udp */ 363 struct alias_link **alink; 364 /* num of entry in spool chain */ 365 u_int16_t spool_cnt; 366 /* chain of spool instances */ 367 LIST_HEAD(spool_chain, cfg_spool) spool_chain; 368 }; 369 #endif 370 371 #define NAT_BUF_LEN 1024 372 373 #ifdef IPFW_INTERNAL 374 /* Nat configuration data struct. */ 375 struct cfg_nat { 376 /* chain of nat instances */ 377 LIST_ENTRY(cfg_nat) _next; 378 int id; /* nat id */ 379 struct in_addr ip; /* nat ip address */ 380 char if_name[IF_NAMESIZE]; /* interface name */ 381 int mode; /* aliasing mode */ 382 struct libalias *lib; /* libalias instance */ 383 /* number of entry in spool chain */ 384 int redir_cnt; 385 /* chain of redir instances */ 386 LIST_HEAD(redir_chain, cfg_redir) redir_chain; 387 }; 388 #endif 389 390 #define SOF_NAT sizeof(struct cfg_nat) 391 #define SOF_REDIR sizeof(struct cfg_redir) 392 #define SOF_SPOOL sizeof(struct cfg_spool) 393 394 /* Nat command. */ 395 typedef struct _ipfw_insn_nat { 396 ipfw_insn o; 397 struct cfg_nat *nat; 398 } ipfw_insn_nat; 399 400 /* Apply ipv6 mask on ipv6 addr */ 401 #define APPLY_MASK(addr,mask) \ 402 (addr)->__u6_addr.__u6_addr32[0] &= (mask)->__u6_addr.__u6_addr32[0]; \ 403 (addr)->__u6_addr.__u6_addr32[1] &= (mask)->__u6_addr.__u6_addr32[1]; \ 404 (addr)->__u6_addr.__u6_addr32[2] &= (mask)->__u6_addr.__u6_addr32[2]; \ 405 (addr)->__u6_addr.__u6_addr32[3] &= (mask)->__u6_addr.__u6_addr32[3]; 406 407 /* Structure for ipv6 */ 408 typedef struct _ipfw_insn_ip6 { 409 ipfw_insn o; 410 struct in6_addr addr6; 411 struct in6_addr mask6; 412 } ipfw_insn_ip6; 413 414 /* Used to support icmp6 types */ 415 typedef struct _ipfw_insn_icmp6 { 416 ipfw_insn o; 417 uint32_t d[7]; /* XXX This number si related to the netinet/icmp6.h 418 * define ICMP6_MAXTYPE 419 * as follows: n = ICMP6_MAXTYPE/32 + 1 420 * Actually is 203 421 */ 422 } ipfw_insn_icmp6; 423 424 /* 425 * Here we have the structure representing an ipfw rule. 426 * 427 * It starts with a general area (with link fields and counters) 428 * followed by an array of one or more instructions, which the code 429 * accesses as an array of 32-bit values. 430 * 431 * Given a rule pointer r: 432 * 433 * r->cmd is the start of the first instruction. 434 * ACTION_PTR(r) is the start of the first action (things to do 435 * once a rule matched). 436 * 437 * When assembling instruction, remember the following: 438 * 439 * + if a rule has a "keep-state" (or "limit") option, then the 440 * first instruction (at r->cmd) MUST BE an O_PROBE_STATE 441 * + if a rule has a "log" option, then the first action 442 * (at ACTION_PTR(r)) MUST be O_LOG 443 * + if a rule has an "altq" option, it comes after "log" 444 * + if a rule has an O_TAG option, it comes after "log" and "altq" 445 * 446 * NOTE: we use a simple linked list of rules because we never need 447 * to delete a rule without scanning the list. We do not use 448 * queue(3) macros for portability and readability. 449 */ 450 451 struct ip_fw { 452 struct ip_fw *next; /* linked list of rules */ 453 struct ip_fw *next_rule; /* ptr to next [skipto] rule */ 454 /* 'next_rule' is used to pass up 'set_disable' status */ 455 456 u_int16_t act_ofs; /* offset of action in 32-bit units */ 457 u_int16_t cmd_len; /* # of 32-bit words in cmd */ 458 u_int16_t rulenum; /* rule number */ 459 u_int8_t set; /* rule set (0..31) */ 460 #define RESVD_SET 31 /* set for default and persistent rules */ 461 u_int8_t _pad; /* padding */ 462 463 /* These fields are present in all rules. */ 464 u_int64_t pcnt; /* Packet counter */ 465 u_int64_t bcnt; /* Byte counter */ 466 u_int32_t timestamp; /* tv_sec of last match */ 467 468 ipfw_insn cmd[1]; /* storage for commands */ 469 }; 470 471 #define ACTION_PTR(rule) \ 472 (ipfw_insn *)( (u_int32_t *)((rule)->cmd) + ((rule)->act_ofs) ) 473 474 #define RULESIZE(rule) (sizeof(struct ip_fw) + \ 475 ((struct ip_fw *)(rule))->cmd_len * 4 - 4) 476 477 /* 478 * This structure is used as a flow mask and a flow id for various 479 * parts of the code. 480 */ 481 struct ipfw_flow_id { 482 u_int32_t dst_ip; 483 u_int32_t src_ip; 484 u_int16_t dst_port; 485 u_int16_t src_port; 486 u_int8_t fib; 487 u_int8_t proto; 488 u_int8_t flags; /* protocol-specific flags */ 489 uint8_t addr_type; /* 4 = ipv4, 6 = ipv6, 1=ether ? */ 490 struct in6_addr dst_ip6; /* could also store MAC addr! */ 491 struct in6_addr src_ip6; 492 u_int32_t flow_id6; 493 u_int32_t frag_id6; 494 }; 495 496 #define IS_IP6_FLOW_ID(id) ((id)->addr_type == 6) 497 498 /* 499 * Dynamic ipfw rule. 500 */ 501 typedef struct _ipfw_dyn_rule ipfw_dyn_rule; 502 503 struct _ipfw_dyn_rule { 504 ipfw_dyn_rule *next; /* linked list of rules. */ 505 struct ip_fw *rule; /* pointer to rule */ 506 /* 'rule' is used to pass up the rule number (from the parent) */ 507 508 ipfw_dyn_rule *parent; /* pointer to parent rule */ 509 u_int64_t pcnt; /* packet match counter */ 510 u_int64_t bcnt; /* byte match counter */ 511 struct ipfw_flow_id id; /* (masked) flow id */ 512 u_int32_t expire; /* expire time */ 513 u_int32_t bucket; /* which bucket in hash table */ 514 u_int32_t state; /* state of this rule (typically a 515 * combination of TCP flags) 516 */ 517 u_int32_t ack_fwd; /* most recent ACKs in forward */ 518 u_int32_t ack_rev; /* and reverse directions (used */ 519 /* to generate keepalives) */ 520 u_int16_t dyn_type; /* rule type */ 521 u_int16_t count; /* refcount */ 522 }; 523 524 /* 525 * Definitions for IP option names. 526 */ 527 #define IP_FW_IPOPT_LSRR 0x01 528 #define IP_FW_IPOPT_SSRR 0x02 529 #define IP_FW_IPOPT_RR 0x04 530 #define IP_FW_IPOPT_TS 0x08 531 532 /* 533 * Definitions for TCP option names. 534 */ 535 #define IP_FW_TCPOPT_MSS 0x01 536 #define IP_FW_TCPOPT_WINDOW 0x02 537 #define IP_FW_TCPOPT_SACK 0x04 538 #define IP_FW_TCPOPT_TS 0x08 539 #define IP_FW_TCPOPT_CC 0x10 540 541 #define ICMP_REJECT_RST 0x100 /* fake ICMP code (send a TCP RST) */ 542 #define ICMP6_UNREACH_RST 0x100 /* fake ICMPv6 code (send a TCP RST) */ 543 544 /* 545 * These are used for lookup tables. 546 */ 547 typedef struct _ipfw_table_entry { 548 in_addr_t addr; /* network address */ 549 u_int32_t value; /* value */ 550 u_int16_t tbl; /* table number */ 551 u_int8_t masklen; /* mask length */ 552 } ipfw_table_entry; 553 554 typedef struct _ipfw_table { 555 u_int32_t size; /* size of entries in bytes */ 556 u_int32_t cnt; /* # of entries */ 557 u_int16_t tbl; /* table number */ 558 ipfw_table_entry ent[0]; /* entries */ 559 } ipfw_table; 560 561 #define IP_FW_TABLEARG 65535 562 563 /* 564 * Main firewall chains definitions and global var's definitions. 565 */ 566 #ifdef _KERNEL 567 568 /* Return values from ipfw_chk() */ 569 enum { 570 IP_FW_PASS = 0, 571 IP_FW_DENY, 572 IP_FW_DIVERT, 573 IP_FW_TEE, 574 IP_FW_DUMMYNET, 575 IP_FW_NETGRAPH, 576 IP_FW_NGTEE, 577 IP_FW_NAT, 578 IP_FW_REASS, 579 }; 580 581 /* flags for divert mtag */ 582 #define IP_FW_DIVERT_LOOPBACK_FLAG 0x00080000 583 #define IP_FW_DIVERT_OUTPUT_FLAG 0x00100000 584 585 /* 586 * Structure for collecting parameters to dummynet for ip6_output forwarding 587 */ 588 struct _ip6dn_args { 589 struct ip6_pktopts *opt_or; 590 struct route_in6 ro_or; 591 int flags_or; 592 struct ip6_moptions *im6o_or; 593 struct ifnet *origifp_or; 594 struct ifnet *ifp_or; 595 struct sockaddr_in6 dst_or; 596 u_long mtu_or; 597 struct route_in6 ro_pmtu_or; 598 }; 599 600 /* 601 * Arguments for calling ipfw_chk() and dummynet_io(). We put them 602 * all into a structure because this way it is easier and more 603 * efficient to pass variables around and extend the interface. 604 */ 605 struct ip_fw_args { 606 struct mbuf *m; /* the mbuf chain */ 607 struct ifnet *oif; /* output interface */ 608 struct sockaddr_in *next_hop; /* forward address */ 609 struct ip_fw *rule; /* matching rule */ 610 struct ether_header *eh; /* for bridged packets */ 611 612 struct ipfw_flow_id f_id; /* grabbed from IP header */ 613 u_int32_t cookie; /* a cookie depending on rule action */ 614 struct inpcb *inp; 615 616 struct _ip6dn_args dummypar; /* dummynet->ip6_output */ 617 struct sockaddr_in hopstore; /* store here if cannot use a pointer */ 618 }; 619 620 /* 621 * Function definitions. 622 */ 623 624 /* Firewall hooks */ 625 struct sockopt; 626 struct dn_flow_set; 627 628 int ipfw_check_in(void *, struct mbuf **, struct ifnet *, int, struct inpcb *inp); 629 int ipfw_check_out(void *, struct mbuf **, struct ifnet *, int, struct inpcb *inp); 630 631 int ipfw_chk(struct ip_fw_args *); 632 633 int ipfw_init(void); 634 void ipfw_destroy(void); 635 #ifdef NOTYET 636 void ipfw_nat_destroy(void); 637 #endif 638 639 typedef int ip_fw_ctl_t(struct sockopt *); 640 extern ip_fw_ctl_t *ip_fw_ctl_ptr; 641 642 #ifdef VIMAGE_GLOBALS 643 extern int fw_one_pass; 644 extern int fw_enable; 645 #ifdef INET6 646 extern int fw6_enable; 647 #endif 648 #endif 649 650 /* For kernel ipfw_ether and ipfw_bridge. */ 651 typedef int ip_fw_chk_t(struct ip_fw_args *args); 652 extern ip_fw_chk_t *ip_fw_chk_ptr; 653 #define IPFW_LOADED (ip_fw_chk_ptr != NULL) 654 655 struct ip_fw_chain { 656 struct ip_fw *rules; /* list of rules */ 657 struct ip_fw *reap; /* list of rules to reap */ 658 LIST_HEAD(, cfg_nat) nat; /* list of nat entries */ 659 struct radix_node_head *tables[IPFW_TABLES_MAX]; 660 struct rwlock rwmtx; 661 }; 662 663 #ifdef IPFW_INTERNAL 664 665 #define IPFW_LOCK_INIT(_chain) \ 666 rw_init(&(_chain)->rwmtx, "IPFW static rules") 667 #define IPFW_LOCK_DESTROY(_chain) rw_destroy(&(_chain)->rwmtx) 668 #define IPFW_WLOCK_ASSERT(_chain) rw_assert(&(_chain)->rwmtx, RA_WLOCKED) 669 670 #define IPFW_RLOCK(p) rw_rlock(&(p)->rwmtx) 671 #define IPFW_RUNLOCK(p) rw_runlock(&(p)->rwmtx) 672 #define IPFW_WLOCK(p) rw_wlock(&(p)->rwmtx) 673 #define IPFW_WUNLOCK(p) rw_wunlock(&(p)->rwmtx) 674 675 #define LOOKUP_NAT(l, i, p) do { \ 676 LIST_FOREACH((p), &(l.nat), _next) { \ 677 if ((p)->id == (i)) { \ 678 break; \ 679 } \ 680 } \ 681 } while (0) 682 683 typedef int ipfw_nat_t(struct ip_fw_args *, struct cfg_nat *, struct mbuf *); 684 typedef int ipfw_nat_cfg_t(struct sockopt *); 685 #endif 686 687 struct eventhandler_entry; 688 /* 689 * Stack virtualization support. 690 */ 691 struct vnet_ipfw { 692 int _fw_enable; 693 int _fw6_enable; 694 u_int32_t _set_disable; 695 int _fw_deny_unknown_exthdrs; 696 int _fw_verbose; 697 int _verbose_limit; 698 int _fw_debug; /* actually unused */ 699 int _autoinc_step; 700 ipfw_dyn_rule **_ipfw_dyn_v; 701 uma_zone_t _ipfw_dyn_rule_zone; 702 struct ip_fw_chain _layer3_chain; 703 u_int32_t _dyn_buckets; 704 u_int32_t _curr_dyn_buckets; 705 u_int32_t _dyn_ack_lifetime; 706 u_int32_t _dyn_syn_lifetime; 707 u_int32_t _dyn_fin_lifetime; 708 u_int32_t _dyn_rst_lifetime; 709 u_int32_t _dyn_udp_lifetime; 710 u_int32_t _dyn_short_lifetime; 711 u_int32_t _dyn_keepalive_interval; 712 u_int32_t _dyn_keepalive_period; 713 u_int32_t _dyn_keepalive; 714 u_int32_t _static_count; 715 u_int32_t _static_len; 716 u_int32_t _dyn_count; 717 u_int32_t _dyn_max; 718 u_int64_t _norule_counter; 719 struct callout _ipfw_timeout; 720 struct eventhandler_entry *_ifaddr_event_tag; 721 }; 722 723 #ifndef VIMAGE 724 #ifndef VIMAGE_GLOBALS 725 extern struct vnet_ipfw vnet_ipfw_0; 726 #endif 727 #endif 728 729 /* 730 * Symbol translation macros 731 */ 732 #define INIT_VNET_IPFW(vnet) \ 733 INIT_FROM_VNET(vnet, VNET_MOD_IPFW, struct vnet_ipfw, vnet_ipfw) 734 735 #define VNET_IPFW(sym) VSYM(vnet_ipfw, sym) 736 737 #define V_fw_enable VNET_IPFW(fw_enable) 738 #define V_fw6_enable VNET_IPFW(fw6_enable) 739 #define V_set_disable VNET_IPFW(set_disable) 740 #define V_fw_deny_unknown_exthdrs VNET_IPFW(fw_deny_unknown_exthdrs) 741 #define V_fw_verbose VNET_IPFW(fw_verbose) 742 #define V_verbose_limit VNET_IPFW(verbose_limit) 743 #define V_fw_debug VNET_IPFW(fw_debug) 744 #define V_autoinc_step VNET_IPFW(autoinc_step) 745 #define V_ipfw_dyn_v VNET_IPFW(ipfw_dyn_v) 746 #define V_ipfw_dyn_rule_zone VNET_IPFW(ipfw_dyn_rule_zone) 747 #define V_layer3_chain VNET_IPFW(layer3_chain) 748 #define V_dyn_buckets VNET_IPFW(dyn_buckets) 749 #define V_curr_dyn_buckets VNET_IPFW(curr_dyn_buckets) 750 #define V_dyn_ack_lifetime VNET_IPFW(dyn_ack_lifetime) 751 #define V_dyn_syn_lifetime VNET_IPFW(dyn_syn_lifetime) 752 #define V_dyn_fin_lifetime VNET_IPFW(dyn_fin_lifetime) 753 #define V_dyn_rst_lifetime VNET_IPFW(dyn_rst_lifetime) 754 #define V_dyn_udp_lifetime VNET_IPFW(dyn_udp_lifetime) 755 #define V_dyn_short_lifetime VNET_IPFW(dyn_short_lifetime) 756 #define V_dyn_keepalive_interval VNET_IPFW(dyn_keepalive_interval) 757 #define V_dyn_keepalive_period VNET_IPFW(dyn_keepalive_period) 758 #define V_dyn_keepalive VNET_IPFW(dyn_keepalive) 759 #define V_static_count VNET_IPFW(static_count) 760 #define V_static_len VNET_IPFW(static_len) 761 #define V_dyn_count VNET_IPFW(dyn_count) 762 #define V_dyn_max VNET_IPFW(dyn_max) 763 #define V_norule_counter VNET_IPFW(norule_counter) 764 #define V_ipfw_timeout VNET_IPFW(ipfw_timeout) 765 #define V_ifaddr_event_tag VNET_IPFW(ifaddr_event_tag) 766 767 #endif /* _KERNEL */ 768 #endif /* _IPFW2_H */ 769