1 /*- 2 * Copyright (c) 2002 Luigi Rizzo, Universita` di Pisa 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. Redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution. 12 * 13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 16 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 23 * SUCH DAMAGE. 24 * 25 * $FreeBSD$ 26 */ 27 28 #ifndef _IPFW2_H 29 #define _IPFW2_H 30 31 /* 32 * The default rule number. By the design of ip_fw, the default rule 33 * is the last one, so its number can also serve as the highest number 34 * allowed for a rule. The ip_fw code relies on both meanings of this 35 * constant. 36 */ 37 #define IPFW_DEFAULT_RULE 65535 38 39 /* 40 * The number of ipfw tables. The maximum allowed table number is the 41 * (IPFW_TABLES_MAX - 1). 42 */ 43 #define IPFW_TABLES_MAX 128 44 45 /* 46 * The kernel representation of ipfw rules is made of a list of 47 * 'instructions' (for all practical purposes equivalent to BPF 48 * instructions), which specify which fields of the packet 49 * (or its metadata) should be analysed. 50 * 51 * Each instruction is stored in a structure which begins with 52 * "ipfw_insn", and can contain extra fields depending on the 53 * instruction type (listed below). 54 * Note that the code is written so that individual instructions 55 * have a size which is a multiple of 32 bits. This means that, if 56 * such structures contain pointers or other 64-bit entities, 57 * (there is just one instance now) they may end up unaligned on 58 * 64-bit architectures, so the must be handled with care. 59 * 60 * "enum ipfw_opcodes" are the opcodes supported. We can have up 61 * to 256 different opcodes. When adding new opcodes, they should 62 * be appended to the end of the opcode list before O_LAST_OPCODE, 63 * this will prevent the ABI from being broken, otherwise users 64 * will have to recompile ipfw(8) when they update the kernel. 65 */ 66 67 enum ipfw_opcodes { /* arguments (4 byte each) */ 68 O_NOP, 69 70 O_IP_SRC, /* u32 = IP */ 71 O_IP_SRC_MASK, /* ip = IP/mask */ 72 O_IP_SRC_ME, /* none */ 73 O_IP_SRC_SET, /* u32=base, arg1=len, bitmap */ 74 75 O_IP_DST, /* u32 = IP */ 76 O_IP_DST_MASK, /* ip = IP/mask */ 77 O_IP_DST_ME, /* none */ 78 O_IP_DST_SET, /* u32=base, arg1=len, bitmap */ 79 80 O_IP_SRCPORT, /* (n)port list:mask 4 byte ea */ 81 O_IP_DSTPORT, /* (n)port list:mask 4 byte ea */ 82 O_PROTO, /* arg1=protocol */ 83 84 O_MACADDR2, /* 2 mac addr:mask */ 85 O_MAC_TYPE, /* same as srcport */ 86 87 O_LAYER2, /* none */ 88 O_IN, /* none */ 89 O_FRAG, /* none */ 90 91 O_RECV, /* none */ 92 O_XMIT, /* none */ 93 O_VIA, /* none */ 94 95 O_IPOPT, /* arg1 = 2*u8 bitmap */ 96 O_IPLEN, /* arg1 = len */ 97 O_IPID, /* arg1 = id */ 98 99 O_IPTOS, /* arg1 = id */ 100 O_IPPRECEDENCE, /* arg1 = precedence << 5 */ 101 O_IPTTL, /* arg1 = TTL */ 102 103 O_IPVER, /* arg1 = version */ 104 O_UID, /* u32 = id */ 105 O_GID, /* u32 = id */ 106 O_ESTAB, /* none (tcp established) */ 107 O_TCPFLAGS, /* arg1 = 2*u8 bitmap */ 108 O_TCPWIN, /* arg1 = desired win */ 109 O_TCPSEQ, /* u32 = desired seq. */ 110 O_TCPACK, /* u32 = desired seq. */ 111 O_ICMPTYPE, /* u32 = icmp bitmap */ 112 O_TCPOPTS, /* arg1 = 2*u8 bitmap */ 113 114 O_VERREVPATH, /* none */ 115 O_VERSRCREACH, /* none */ 116 117 O_PROBE_STATE, /* none */ 118 O_KEEP_STATE, /* none */ 119 O_LIMIT, /* ipfw_insn_limit */ 120 O_LIMIT_PARENT, /* dyn_type, not an opcode. */ 121 122 /* 123 * These are really 'actions'. 124 */ 125 126 O_LOG, /* ipfw_insn_log */ 127 O_PROB, /* u32 = match probability */ 128 129 O_CHECK_STATE, /* none */ 130 O_ACCEPT, /* none */ 131 O_DENY, /* none */ 132 O_REJECT, /* arg1=icmp arg (same as deny) */ 133 O_COUNT, /* none */ 134 O_SKIPTO, /* arg1=next rule number */ 135 O_PIPE, /* arg1=pipe number */ 136 O_QUEUE, /* arg1=queue number */ 137 O_DIVERT, /* arg1=port number */ 138 O_TEE, /* arg1=port number */ 139 O_FORWARD_IP, /* fwd sockaddr */ 140 O_FORWARD_MAC, /* fwd mac */ 141 O_NAT, /* nope */ 142 143 /* 144 * More opcodes. 145 */ 146 O_IPSEC, /* has ipsec history */ 147 O_IP_SRC_LOOKUP, /* arg1=table number, u32=value */ 148 O_IP_DST_LOOKUP, /* arg1=table number, u32=value */ 149 O_ANTISPOOF, /* none */ 150 O_JAIL, /* u32 = id */ 151 O_ALTQ, /* u32 = altq classif. qid */ 152 O_DIVERTED, /* arg1=bitmap (1:loop, 2:out) */ 153 O_TCPDATALEN, /* arg1 = tcp data len */ 154 O_IP6_SRC, /* address without mask */ 155 O_IP6_SRC_ME, /* my addresses */ 156 O_IP6_SRC_MASK, /* address with the mask */ 157 O_IP6_DST, 158 O_IP6_DST_ME, 159 O_IP6_DST_MASK, 160 O_FLOW6ID, /* for flow id tag in the ipv6 pkt */ 161 O_ICMP6TYPE, /* icmp6 packet type filtering */ 162 O_EXT_HDR, /* filtering for ipv6 extension header */ 163 O_IP6, 164 165 /* 166 * actions for ng_ipfw 167 */ 168 O_NETGRAPH, /* send to ng_ipfw */ 169 O_NGTEE, /* copy to ng_ipfw */ 170 171 O_IP4, 172 173 O_UNREACH6, /* arg1=icmpv6 code arg (deny) */ 174 175 O_TAG, /* arg1=tag number */ 176 O_TAGGED, /* arg1=tag number */ 177 178 O_SETFIB, /* arg1=FIB number */ 179 O_FIB, /* arg1=FIB desired fib number */ 180 181 O_LAST_OPCODE /* not an opcode! */ 182 }; 183 184 /* 185 * The extension header are filtered only for presence using a bit 186 * vector with a flag for each header. 187 */ 188 #define EXT_FRAGMENT 0x1 189 #define EXT_HOPOPTS 0x2 190 #define EXT_ROUTING 0x4 191 #define EXT_AH 0x8 192 #define EXT_ESP 0x10 193 #define EXT_DSTOPTS 0x20 194 #define EXT_RTHDR0 0x40 195 #define EXT_RTHDR2 0x80 196 197 /* 198 * Template for instructions. 199 * 200 * ipfw_insn is used for all instructions which require no operands, 201 * a single 16-bit value (arg1), or a couple of 8-bit values. 202 * 203 * For other instructions which require different/larger arguments 204 * we have derived structures, ipfw_insn_*. 205 * 206 * The size of the instruction (in 32-bit words) is in the low 207 * 6 bits of "len". The 2 remaining bits are used to implement 208 * NOT and OR on individual instructions. Given a type, you can 209 * compute the length to be put in "len" using F_INSN_SIZE(t) 210 * 211 * F_NOT negates the match result of the instruction. 212 * 213 * F_OR is used to build or blocks. By default, instructions 214 * are evaluated as part of a logical AND. An "or" block 215 * { X or Y or Z } contains F_OR set in all but the last 216 * instruction of the block. A match will cause the code 217 * to skip past the last instruction of the block. 218 * 219 * NOTA BENE: in a couple of places we assume that 220 * sizeof(ipfw_insn) == sizeof(u_int32_t) 221 * this needs to be fixed. 222 * 223 */ 224 typedef struct _ipfw_insn { /* template for instructions */ 225 enum ipfw_opcodes opcode:8; 226 u_int8_t len; /* number of 32-bit words */ 227 #define F_NOT 0x80 228 #define F_OR 0x40 229 #define F_LEN_MASK 0x3f 230 #define F_LEN(cmd) ((cmd)->len & F_LEN_MASK) 231 232 u_int16_t arg1; 233 } ipfw_insn; 234 235 /* 236 * The F_INSN_SIZE(type) computes the size, in 4-byte words, of 237 * a given type. 238 */ 239 #define F_INSN_SIZE(t) ((sizeof (t))/sizeof(u_int32_t)) 240 241 #define MTAG_IPFW 1148380143 /* IPFW-tagged cookie */ 242 243 /* 244 * This is used to store an array of 16-bit entries (ports etc.) 245 */ 246 typedef struct _ipfw_insn_u16 { 247 ipfw_insn o; 248 u_int16_t ports[2]; /* there may be more */ 249 } ipfw_insn_u16; 250 251 /* 252 * This is used to store an array of 32-bit entries 253 * (uid, single IPv4 addresses etc.) 254 */ 255 typedef struct _ipfw_insn_u32 { 256 ipfw_insn o; 257 u_int32_t d[1]; /* one or more */ 258 } ipfw_insn_u32; 259 260 /* 261 * This is used to store IP addr-mask pairs. 262 */ 263 typedef struct _ipfw_insn_ip { 264 ipfw_insn o; 265 struct in_addr addr; 266 struct in_addr mask; 267 } ipfw_insn_ip; 268 269 /* 270 * This is used to forward to a given address (ip). 271 */ 272 typedef struct _ipfw_insn_sa { 273 ipfw_insn o; 274 struct sockaddr_in sa; 275 } ipfw_insn_sa; 276 277 /* 278 * This is used for MAC addr-mask pairs. 279 */ 280 typedef struct _ipfw_insn_mac { 281 ipfw_insn o; 282 u_char addr[12]; /* dst[6] + src[6] */ 283 u_char mask[12]; /* dst[6] + src[6] */ 284 } ipfw_insn_mac; 285 286 /* 287 * This is used for interface match rules (recv xx, xmit xx). 288 */ 289 typedef struct _ipfw_insn_if { 290 ipfw_insn o; 291 union { 292 struct in_addr ip; 293 int glob; 294 } p; 295 char name[IFNAMSIZ]; 296 } ipfw_insn_if; 297 298 /* 299 * This is used for storing an altq queue id number. 300 */ 301 typedef struct _ipfw_insn_altq { 302 ipfw_insn o; 303 u_int32_t qid; 304 } ipfw_insn_altq; 305 306 /* 307 * This is used for limit rules. 308 */ 309 typedef struct _ipfw_insn_limit { 310 ipfw_insn o; 311 u_int8_t _pad; 312 u_int8_t limit_mask; /* combination of DYN_* below */ 313 #define DYN_SRC_ADDR 0x1 314 #define DYN_SRC_PORT 0x2 315 #define DYN_DST_ADDR 0x4 316 #define DYN_DST_PORT 0x8 317 318 u_int16_t conn_limit; 319 } ipfw_insn_limit; 320 321 /* 322 * This is used for log instructions. 323 */ 324 typedef struct _ipfw_insn_log { 325 ipfw_insn o; 326 u_int32_t max_log; /* how many do we log -- 0 = all */ 327 u_int32_t log_left; /* how many left to log */ 328 } ipfw_insn_log; 329 330 /* 331 * Data structures required by both ipfw(8) and ipfw(4) but not part of the 332 * management API are protected by IPFW_INTERNAL. 333 */ 334 #ifdef IPFW_INTERNAL 335 /* Server pool support (LSNAT). */ 336 struct cfg_spool { 337 LIST_ENTRY(cfg_spool) _next; /* chain of spool instances */ 338 struct in_addr addr; 339 u_short port; 340 }; 341 #endif 342 343 /* Redirect modes id. */ 344 #define REDIR_ADDR 0x01 345 #define REDIR_PORT 0x02 346 #define REDIR_PROTO 0x04 347 348 #ifdef IPFW_INTERNAL 349 /* Nat redirect configuration. */ 350 struct cfg_redir { 351 LIST_ENTRY(cfg_redir) _next; /* chain of redir instances */ 352 u_int16_t mode; /* type of redirect mode */ 353 struct in_addr laddr; /* local ip address */ 354 struct in_addr paddr; /* public ip address */ 355 struct in_addr raddr; /* remote ip address */ 356 u_short lport; /* local port */ 357 u_short pport; /* public port */ 358 u_short rport; /* remote port */ 359 u_short pport_cnt; /* number of public ports */ 360 u_short rport_cnt; /* number of remote ports */ 361 int proto; /* protocol: tcp/udp */ 362 struct alias_link **alink; 363 /* num of entry in spool chain */ 364 u_int16_t spool_cnt; 365 /* chain of spool instances */ 366 LIST_HEAD(spool_chain, cfg_spool) spool_chain; 367 }; 368 #endif 369 370 #define NAT_BUF_LEN 1024 371 372 #ifdef IPFW_INTERNAL 373 /* Nat configuration data struct. */ 374 struct cfg_nat { 375 /* chain of nat instances */ 376 LIST_ENTRY(cfg_nat) _next; 377 int id; /* nat id */ 378 struct in_addr ip; /* nat ip address */ 379 char if_name[IF_NAMESIZE]; /* interface name */ 380 int mode; /* aliasing mode */ 381 struct libalias *lib; /* libalias instance */ 382 /* number of entry in spool chain */ 383 int redir_cnt; 384 /* chain of redir instances */ 385 LIST_HEAD(redir_chain, cfg_redir) redir_chain; 386 }; 387 #endif 388 389 #define SOF_NAT sizeof(struct cfg_nat) 390 #define SOF_REDIR sizeof(struct cfg_redir) 391 #define SOF_SPOOL sizeof(struct cfg_spool) 392 393 /* Nat command. */ 394 typedef struct _ipfw_insn_nat { 395 ipfw_insn o; 396 struct cfg_nat *nat; 397 } ipfw_insn_nat; 398 399 /* Apply ipv6 mask on ipv6 addr */ 400 #define APPLY_MASK(addr,mask) \ 401 (addr)->__u6_addr.__u6_addr32[0] &= (mask)->__u6_addr.__u6_addr32[0]; \ 402 (addr)->__u6_addr.__u6_addr32[1] &= (mask)->__u6_addr.__u6_addr32[1]; \ 403 (addr)->__u6_addr.__u6_addr32[2] &= (mask)->__u6_addr.__u6_addr32[2]; \ 404 (addr)->__u6_addr.__u6_addr32[3] &= (mask)->__u6_addr.__u6_addr32[3]; 405 406 /* Structure for ipv6 */ 407 typedef struct _ipfw_insn_ip6 { 408 ipfw_insn o; 409 struct in6_addr addr6; 410 struct in6_addr mask6; 411 } ipfw_insn_ip6; 412 413 /* Used to support icmp6 types */ 414 typedef struct _ipfw_insn_icmp6 { 415 ipfw_insn o; 416 uint32_t d[7]; /* XXX This number si related to the netinet/icmp6.h 417 * define ICMP6_MAXTYPE 418 * as follows: n = ICMP6_MAXTYPE/32 + 1 419 * Actually is 203 420 */ 421 } ipfw_insn_icmp6; 422 423 /* 424 * Here we have the structure representing an ipfw rule. 425 * 426 * It starts with a general area (with link fields and counters) 427 * followed by an array of one or more instructions, which the code 428 * accesses as an array of 32-bit values. 429 * 430 * Given a rule pointer r: 431 * 432 * r->cmd is the start of the first instruction. 433 * ACTION_PTR(r) is the start of the first action (things to do 434 * once a rule matched). 435 * 436 * When assembling instruction, remember the following: 437 * 438 * + if a rule has a "keep-state" (or "limit") option, then the 439 * first instruction (at r->cmd) MUST BE an O_PROBE_STATE 440 * + if a rule has a "log" option, then the first action 441 * (at ACTION_PTR(r)) MUST be O_LOG 442 * + if a rule has an "altq" option, it comes after "log" 443 * + if a rule has an O_TAG option, it comes after "log" and "altq" 444 * 445 * NOTE: we use a simple linked list of rules because we never need 446 * to delete a rule without scanning the list. We do not use 447 * queue(3) macros for portability and readability. 448 */ 449 450 struct ip_fw { 451 struct ip_fw *next; /* linked list of rules */ 452 struct ip_fw *next_rule; /* ptr to next [skipto] rule */ 453 /* 'next_rule' is used to pass up 'set_disable' status */ 454 455 u_int16_t act_ofs; /* offset of action in 32-bit units */ 456 u_int16_t cmd_len; /* # of 32-bit words in cmd */ 457 u_int16_t rulenum; /* rule number */ 458 u_int8_t set; /* rule set (0..31) */ 459 #define RESVD_SET 31 /* set for default and persistent rules */ 460 u_int8_t _pad; /* padding */ 461 462 /* These fields are present in all rules. */ 463 u_int64_t pcnt; /* Packet counter */ 464 u_int64_t bcnt; /* Byte counter */ 465 u_int32_t timestamp; /* tv_sec of last match */ 466 467 ipfw_insn cmd[1]; /* storage for commands */ 468 }; 469 470 #define ACTION_PTR(rule) \ 471 (ipfw_insn *)( (u_int32_t *)((rule)->cmd) + ((rule)->act_ofs) ) 472 473 #define RULESIZE(rule) (sizeof(struct ip_fw) + \ 474 ((struct ip_fw *)(rule))->cmd_len * 4 - 4) 475 476 /* 477 * This structure is used as a flow mask and a flow id for various 478 * parts of the code. 479 */ 480 struct ipfw_flow_id { 481 u_int32_t dst_ip; 482 u_int32_t src_ip; 483 u_int16_t dst_port; 484 u_int16_t src_port; 485 u_int8_t fib; 486 u_int8_t proto; 487 u_int8_t flags; /* protocol-specific flags */ 488 uint8_t addr_type; /* 4 = ipv4, 6 = ipv6, 1=ether ? */ 489 struct in6_addr dst_ip6; /* could also store MAC addr! */ 490 struct in6_addr src_ip6; 491 u_int32_t flow_id6; 492 u_int32_t frag_id6; 493 }; 494 495 #define IS_IP6_FLOW_ID(id) ((id)->addr_type == 6) 496 497 /* 498 * Dynamic ipfw rule. 499 */ 500 typedef struct _ipfw_dyn_rule ipfw_dyn_rule; 501 502 struct _ipfw_dyn_rule { 503 ipfw_dyn_rule *next; /* linked list of rules. */ 504 struct ip_fw *rule; /* pointer to rule */ 505 /* 'rule' is used to pass up the rule number (from the parent) */ 506 507 ipfw_dyn_rule *parent; /* pointer to parent rule */ 508 u_int64_t pcnt; /* packet match counter */ 509 u_int64_t bcnt; /* byte match counter */ 510 struct ipfw_flow_id id; /* (masked) flow id */ 511 u_int32_t expire; /* expire time */ 512 u_int32_t bucket; /* which bucket in hash table */ 513 u_int32_t state; /* state of this rule (typically a 514 * combination of TCP flags) 515 */ 516 u_int32_t ack_fwd; /* most recent ACKs in forward */ 517 u_int32_t ack_rev; /* and reverse directions (used */ 518 /* to generate keepalives) */ 519 u_int16_t dyn_type; /* rule type */ 520 u_int16_t count; /* refcount */ 521 }; 522 523 /* 524 * Definitions for IP option names. 525 */ 526 #define IP_FW_IPOPT_LSRR 0x01 527 #define IP_FW_IPOPT_SSRR 0x02 528 #define IP_FW_IPOPT_RR 0x04 529 #define IP_FW_IPOPT_TS 0x08 530 531 /* 532 * Definitions for TCP option names. 533 */ 534 #define IP_FW_TCPOPT_MSS 0x01 535 #define IP_FW_TCPOPT_WINDOW 0x02 536 #define IP_FW_TCPOPT_SACK 0x04 537 #define IP_FW_TCPOPT_TS 0x08 538 #define IP_FW_TCPOPT_CC 0x10 539 540 #define ICMP_REJECT_RST 0x100 /* fake ICMP code (send a TCP RST) */ 541 #define ICMP6_UNREACH_RST 0x100 /* fake ICMPv6 code (send a TCP RST) */ 542 543 /* 544 * These are used for lookup tables. 545 */ 546 typedef struct _ipfw_table_entry { 547 in_addr_t addr; /* network address */ 548 u_int32_t value; /* value */ 549 u_int16_t tbl; /* table number */ 550 u_int8_t masklen; /* mask length */ 551 } ipfw_table_entry; 552 553 typedef struct _ipfw_table { 554 u_int32_t size; /* size of entries in bytes */ 555 u_int32_t cnt; /* # of entries */ 556 u_int16_t tbl; /* table number */ 557 ipfw_table_entry ent[0]; /* entries */ 558 } ipfw_table; 559 560 #define IP_FW_TABLEARG 65535 561 562 /* 563 * Main firewall chains definitions and global var's definitions. 564 */ 565 #ifdef _KERNEL 566 567 /* Return values from ipfw_chk() */ 568 enum { 569 IP_FW_PASS = 0, 570 IP_FW_DENY, 571 IP_FW_DIVERT, 572 IP_FW_TEE, 573 IP_FW_DUMMYNET, 574 IP_FW_NETGRAPH, 575 IP_FW_NGTEE, 576 IP_FW_NAT, 577 }; 578 579 /* flags for divert mtag */ 580 #define IP_FW_DIVERT_LOOPBACK_FLAG 0x00080000 581 #define IP_FW_DIVERT_OUTPUT_FLAG 0x00100000 582 583 /* 584 * Structure for collecting parameters to dummynet for ip6_output forwarding 585 */ 586 struct _ip6dn_args { 587 struct ip6_pktopts *opt_or; 588 struct route_in6 ro_or; 589 int flags_or; 590 struct ip6_moptions *im6o_or; 591 struct ifnet *origifp_or; 592 struct ifnet *ifp_or; 593 struct sockaddr_in6 dst_or; 594 u_long mtu_or; 595 struct route_in6 ro_pmtu_or; 596 }; 597 598 /* 599 * Arguments for calling ipfw_chk() and dummynet_io(). We put them 600 * all into a structure because this way it is easier and more 601 * efficient to pass variables around and extend the interface. 602 */ 603 struct ip_fw_args { 604 struct mbuf *m; /* the mbuf chain */ 605 struct ifnet *oif; /* output interface */ 606 struct sockaddr_in *next_hop; /* forward address */ 607 struct ip_fw *rule; /* matching rule */ 608 struct ether_header *eh; /* for bridged packets */ 609 610 struct ipfw_flow_id f_id; /* grabbed from IP header */ 611 u_int32_t cookie; /* a cookie depending on rule action */ 612 struct inpcb *inp; 613 614 struct _ip6dn_args dummypar; /* dummynet->ip6_output */ 615 struct sockaddr_in hopstore; /* store here if cannot use a pointer */ 616 }; 617 618 /* 619 * Function definitions. 620 */ 621 622 /* Firewall hooks */ 623 struct sockopt; 624 struct dn_flow_set; 625 626 int ipfw_check_in(void *, struct mbuf **, struct ifnet *, int, struct inpcb *inp); 627 int ipfw_check_out(void *, struct mbuf **, struct ifnet *, int, struct inpcb *inp); 628 629 int ipfw_chk(struct ip_fw_args *); 630 631 int ipfw_init(void); 632 void ipfw_destroy(void); 633 #ifdef NOTYET 634 void ipfw_nat_destroy(void); 635 #endif 636 637 typedef int ip_fw_ctl_t(struct sockopt *); 638 extern ip_fw_ctl_t *ip_fw_ctl_ptr; 639 640 #ifdef VIMAGE_GLOBALS 641 extern int fw_one_pass; 642 extern int fw_enable; 643 #ifdef INET6 644 extern int fw6_enable; 645 #endif 646 #endif 647 648 /* For kernel ipfw_ether and ipfw_bridge. */ 649 typedef int ip_fw_chk_t(struct ip_fw_args *args); 650 extern ip_fw_chk_t *ip_fw_chk_ptr; 651 #define IPFW_LOADED (ip_fw_chk_ptr != NULL) 652 653 struct ip_fw_chain { 654 struct ip_fw *rules; /* list of rules */ 655 struct ip_fw *reap; /* list of rules to reap */ 656 LIST_HEAD(, cfg_nat) nat; /* list of nat entries */ 657 struct radix_node_head *tables[IPFW_TABLES_MAX]; 658 struct rwlock rwmtx; 659 }; 660 661 #ifdef IPFW_INTERNAL 662 663 #define IPFW_LOCK_INIT(_chain) \ 664 rw_init(&(_chain)->rwmtx, "IPFW static rules") 665 #define IPFW_LOCK_DESTROY(_chain) rw_destroy(&(_chain)->rwmtx) 666 #define IPFW_WLOCK_ASSERT(_chain) rw_assert(&(_chain)->rwmtx, RA_WLOCKED) 667 668 #define IPFW_RLOCK(p) rw_rlock(&(p)->rwmtx) 669 #define IPFW_RUNLOCK(p) rw_runlock(&(p)->rwmtx) 670 #define IPFW_WLOCK(p) rw_wlock(&(p)->rwmtx) 671 #define IPFW_WUNLOCK(p) rw_wunlock(&(p)->rwmtx) 672 673 #define LOOKUP_NAT(l, i, p) do { \ 674 LIST_FOREACH((p), &(l.nat), _next) { \ 675 if ((p)->id == (i)) { \ 676 break; \ 677 } \ 678 } \ 679 } while (0) 680 681 typedef int ipfw_nat_t(struct ip_fw_args *, struct cfg_nat *, struct mbuf *); 682 typedef int ipfw_nat_cfg_t(struct sockopt *); 683 #endif 684 685 struct eventhandler_entry; 686 /* 687 * Stack virtualization support. 688 */ 689 struct vnet_ipfw { 690 int _fw_enable; 691 int _fw6_enable; 692 u_int32_t _set_disable; 693 int _fw_deny_unknown_exthdrs; 694 int _fw_verbose; 695 int _verbose_limit; 696 int _fw_debug; 697 int _autoinc_step; 698 ipfw_dyn_rule **_ipfw_dyn_v; 699 struct ip_fw_chain _layer3_chain; 700 u_int32_t _dyn_buckets; 701 u_int32_t _curr_dyn_buckets; 702 u_int32_t _dyn_ack_lifetime; 703 u_int32_t _dyn_syn_lifetime; 704 u_int32_t _dyn_fin_lifetime; 705 u_int32_t _dyn_rst_lifetime; 706 u_int32_t _dyn_udp_lifetime; 707 u_int32_t _dyn_short_lifetime; 708 u_int32_t _dyn_keepalive_interval; 709 u_int32_t _dyn_keepalive_period; 710 u_int32_t _dyn_keepalive; 711 u_int32_t _static_count; 712 u_int32_t _static_len; 713 u_int32_t _dyn_count; 714 u_int32_t _dyn_max; 715 u_int64_t _norule_counter; 716 struct callout _ipfw_timeout; 717 struct eventhandler_entry *_ifaddr_event_tag; 718 }; 719 720 #ifndef VIMAGE 721 #ifndef VIMAGE_GLOBALS 722 extern struct vnet_ipfw vnet_ipfw_0; 723 #endif 724 #endif 725 726 /* 727 * Symbol translation macros 728 */ 729 #define INIT_VNET_IPFW(vnet) \ 730 INIT_FROM_VNET(vnet, VNET_MOD_IPFW, struct vnet_ipfw, vnet_ipfw) 731 732 #define VNET_IPFW(sym) VSYM(vnet_ipfw, sym) 733 734 #define V_fw_enable VNET_IPFW(fw_enable) 735 #define V_fw6_enable VNET_IPFW(fw6_enable) 736 #define V_set_disable VNET_IPFW(set_disable) 737 #define V_fw_deny_unknown_exthdrs VNET_IPFW(fw_deny_unknown_exthdrs) 738 #define V_fw_verbose VNET_IPFW(fw_verbose) 739 #define V_verbose_limit VNET_IPFW(verbose_limit) 740 #define V_fw_debug VNET_IPFW(fw_debug) 741 #define V_autoinc_step VNET_IPFW(autoinc_step) 742 #define V_ipfw_dyn_v VNET_IPFW(ipfw_dyn_v) 743 #define V_layer3_chain VNET_IPFW(layer3_chain) 744 #define V_dyn_buckets VNET_IPFW(dyn_buckets) 745 #define V_curr_dyn_buckets VNET_IPFW(curr_dyn_buckets) 746 #define V_dyn_ack_lifetime VNET_IPFW(dyn_ack_lifetime) 747 #define V_dyn_syn_lifetime VNET_IPFW(dyn_syn_lifetime) 748 #define V_dyn_fin_lifetime VNET_IPFW(dyn_fin_lifetime) 749 #define V_dyn_rst_lifetime VNET_IPFW(dyn_rst_lifetime) 750 #define V_dyn_udp_lifetime VNET_IPFW(dyn_udp_lifetime) 751 #define V_dyn_short_lifetime VNET_IPFW(dyn_short_lifetime) 752 #define V_dyn_keepalive_interval VNET_IPFW(dyn_keepalive_interval) 753 #define V_dyn_keepalive_period VNET_IPFW(dyn_keepalive_period) 754 #define V_dyn_keepalive VNET_IPFW(dyn_keepalive) 755 #define V_static_count VNET_IPFW(static_count) 756 #define V_static_len VNET_IPFW(static_len) 757 #define V_dyn_count VNET_IPFW(dyn_count) 758 #define V_dyn_max VNET_IPFW(dyn_max) 759 #define V_norule_counter VNET_IPFW(norule_counter) 760 #define V_ipfw_timeout VNET_IPFW(ipfw_timeout) 761 #define V_ifaddr_event_tag VNET_IPFW(ifaddr_event_tag) 762 763 #endif /* _KERNEL */ 764 #endif /* _IPFW2_H */ 765