xref: /freebsd/sys/netinet/ip_dummynet.h (revision c98323078dede7579020518ec84cdcb478e5c142)
1 /*
2  * Copyright (c) 1998-2002 Luigi Rizzo, Universita` di Pisa
3  * Portions Copyright (c) 2000 Akamba Corp.
4  * All rights reserved
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  *
27  * $FreeBSD$
28  */
29 
30 #ifndef _IP_DUMMYNET_H
31 #define _IP_DUMMYNET_H
32 
33 /*
34  * Definition of dummynet data structures. In the structures, I decided
35  * not to use the macros in <sys/queue.h> in the hope of making the code
36  * easier to port to other architectures. The type of lists and queue we
37  * use here is pretty simple anyways.
38  */
39 
40 /*
41  * We start with a heap, which is used in the scheduler to decide when
42  * to transmit packets etc.
43  *
44  * The key for the heap is used for two different values:
45  *
46  * 1. timer ticks- max 10K/second, so 32 bits are enough;
47  *
48  * 2. virtual times. These increase in steps of len/x, where len is the
49  *    packet length, and x is either the weight of the flow, or the
50  *    sum of all weights.
51  *    If we limit to max 1000 flows and a max weight of 100, then
52  *    x needs 17 bits. The packet size is 16 bits, so we can easily
53  *    overflow if we do not allow errors.
54  * So we use a key "dn_key" which is 64 bits. Some macros are used to
55  * compare key values and handle wraparounds.
56  * MAX64 returns the largest of two key values.
57  * MY_M is used as a shift count when doing fixed point arithmetic
58  * (a better name would be useful...).
59  */
60 typedef u_int64_t dn_key ;      /* sorting key */
61 #define DN_KEY_LT(a,b)     ((int64_t)((a)-(b)) < 0)
62 #define DN_KEY_LEQ(a,b)    ((int64_t)((a)-(b)) <= 0)
63 #define DN_KEY_GT(a,b)     ((int64_t)((a)-(b)) > 0)
64 #define DN_KEY_GEQ(a,b)    ((int64_t)((a)-(b)) >= 0)
65 #define MAX64(x,y)  (( (int64_t) ( (y)-(x) )) > 0 ) ? (y) : (x)
66 #define MY_M	16 /* number of left shift to obtain a larger precision */
67 
68 /*
69  * XXX With this scaling, max 1000 flows, max weight 100, 1Gbit/s, the
70  * virtual time wraps every 15 days.
71  */
72 
73 /*
74  * The OFFSET_OF macro is used to return the offset of a field within
75  * a structure. It is used by the heap management routines.
76  */
77 #define OFFSET_OF(type, field) ((int)&( ((type *)0)->field) )
78 
79 /*
80  * The maximum hash table size for queues.  This value must be a power
81  * of 2.
82  */
83 #define DN_MAX_HASH_SIZE 65536
84 
85 /*
86  * A heap entry is made of a key and a pointer to the actual
87  * object stored in the heap.
88  * The heap is an array of dn_heap_entry entries, dynamically allocated.
89  * Current size is "size", with "elements" actually in use.
90  * The heap normally supports only ordered insert and extract from the top.
91  * If we want to extract an object from the middle of the heap, we
92  * have to know where the object itself is located in the heap (or we
93  * need to scan the whole array). To this purpose, an object has a
94  * field (int) which contains the index of the object itself into the
95  * heap. When the object is moved, the field must also be updated.
96  * The offset of the index in the object is stored in the 'offset'
97  * field in the heap descriptor. The assumption is that this offset
98  * is non-zero if we want to support extract from the middle.
99  */
100 struct dn_heap_entry {
101     dn_key key ;	/* sorting key. Topmost element is smallest one */
102     void *object ;	/* object pointer */
103 } ;
104 
105 struct dn_heap {
106     int size ;
107     int elements ;
108     int offset ; /* XXX if > 0 this is the offset of direct ptr to obj */
109     struct dn_heap_entry *p ;	/* really an array of "size" entries */
110 } ;
111 
112 #ifdef _KERNEL
113 /*
114  * Packets processed by dummynet have an mbuf tag associated with
115  * them that carries their dummynet state.  This is used within
116  * the dummynet code as well as outside when checking for special
117  * processing requirements.
118  */
119 struct dn_pkt_tag {
120     struct ip_fw *rule;		/* matching rule */
121     int dn_dir;			/* action when packet comes out. */
122 #define DN_TO_IP_OUT	1
123 #define DN_TO_IP_IN	2
124 #define DN_TO_BDG_FWD	3
125 #define DN_TO_ETH_DEMUX	4
126 #define DN_TO_ETH_OUT	5
127 
128     dn_key output_time;		/* when the pkt is due for delivery	*/
129     struct ifnet *ifp;		/* interface, for ip_output		*/
130     struct sockaddr_in *dn_dst ;
131     struct route ro;		/* route, for ip_output. MUST COPY	*/
132     int flags ;			/* flags, for ip_output (IPv6 ?)	*/
133 };
134 #endif /* _KERNEL */
135 
136 /*
137  * Overall structure of dummynet (with WF2Q+):
138 
139 In dummynet, packets are selected with the firewall rules, and passed
140 to two different objects: PIPE or QUEUE.
141 
142 A QUEUE is just a queue with configurable size and queue management
143 policy. It is also associated with a mask (to discriminate among
144 different flows), a weight (used to give different shares of the
145 bandwidth to different flows) and a "pipe", which essentially
146 supplies the transmit clock for all queues associated with that
147 pipe.
148 
149 A PIPE emulates a fixed-bandwidth link, whose bandwidth is
150 configurable.  The "clock" for a pipe can come from either an
151 internal timer, or from the transmit interrupt of an interface.
152 A pipe is also associated with one (or more, if masks are used)
153 queue, where all packets for that pipe are stored.
154 
155 The bandwidth available on the pipe is shared by the queues
156 associated with that pipe (only one in case the packet is sent
157 to a PIPE) according to the WF2Q+ scheduling algorithm and the
158 configured weights.
159 
160 In general, incoming packets are stored in the appropriate queue,
161 which is then placed into one of a few heaps managed by a scheduler
162 to decide when the packet should be extracted.
163 The scheduler (a function called dummynet()) is run at every timer
164 tick, and grabs queues from the head of the heaps when they are
165 ready for processing.
166 
167 There are three data structures definining a pipe and associated queues:
168 
169  + dn_pipe, which contains the main configuration parameters related
170    to delay and bandwidth;
171  + dn_flow_set, which contains WF2Q+ configuration, flow
172    masks, plr and RED configuration;
173  + dn_flow_queue, which is the per-flow queue (containing the packets)
174 
175 Multiple dn_flow_set can be linked to the same pipe, and multiple
176 dn_flow_queue can be linked to the same dn_flow_set.
177 All data structures are linked in a linear list which is used for
178 housekeeping purposes.
179 
180 During configuration, we create and initialize the dn_flow_set
181 and dn_pipe structures (a dn_pipe also contains a dn_flow_set).
182 
183 At runtime: packets are sent to the appropriate dn_flow_set (either
184 WFQ ones, or the one embedded in the dn_pipe for fixed-rate flows),
185 which in turn dispatches them to the appropriate dn_flow_queue
186 (created dynamically according to the masks).
187 
188 The transmit clock for fixed rate flows (ready_event()) selects the
189 dn_flow_queue to be used to transmit the next packet. For WF2Q,
190 wfq_ready_event() extract a pipe which in turn selects the right
191 flow using a number of heaps defined into the pipe itself.
192 
193  *
194  */
195 
196 /*
197  * per flow queue. This contains the flow identifier, the queue
198  * of packets, counters, and parameters used to support both RED and
199  * WF2Q+.
200  *
201  * A dn_flow_queue is created and initialized whenever a packet for
202  * a new flow arrives.
203  */
204 struct dn_flow_queue {
205     struct dn_flow_queue *next ;
206     struct ipfw_flow_id id ;
207 
208     struct mbuf *head, *tail ;	/* queue of packets */
209     u_int len ;
210     u_int len_bytes ;
211     u_long numbytes ;		/* credit for transmission (dynamic queues) */
212 
213     u_int64_t tot_pkts ;	/* statistics counters	*/
214     u_int64_t tot_bytes ;
215     u_int32_t drops ;
216 
217     int hash_slot ;		/* debugging/diagnostic */
218 
219     /* RED parameters */
220     int avg ;                   /* average queue length est. (scaled) */
221     int count ;                 /* arrivals since last RED drop */
222     int random ;                /* random value (scaled) */
223     u_int32_t q_time ;          /* start of queue idle time */
224 
225     /* WF2Q+ support */
226     struct dn_flow_set *fs ;	/* parent flow set */
227     int heap_pos ;		/* position (index) of struct in heap */
228     dn_key sched_time ;		/* current time when queue enters ready_heap */
229 
230     dn_key S,F ;		/* start time, finish time */
231     /*
232      * Setting F < S means the timestamp is invalid. We only need
233      * to test this when the queue is empty.
234      */
235 } ;
236 
237 /*
238  * flow_set descriptor. Contains the "template" parameters for the
239  * queue configuration, and pointers to the hash table of dn_flow_queue's.
240  *
241  * The hash table is an array of lists -- we identify the slot by
242  * hashing the flow-id, then scan the list looking for a match.
243  * The size of the hash table (buckets) is configurable on a per-queue
244  * basis.
245  *
246  * A dn_flow_set is created whenever a new queue or pipe is created (in the
247  * latter case, the structure is located inside the struct dn_pipe).
248  */
249 struct dn_flow_set {
250     struct dn_flow_set *next; /* next flow set in all_flow_sets list */
251 
252     u_short fs_nr ;             /* flow_set number       */
253     u_short flags_fs;
254 #define DN_HAVE_FLOW_MASK	0x0001
255 #define DN_IS_RED		0x0002
256 #define DN_IS_GENTLE_RED	0x0004
257 #define DN_QSIZE_IS_BYTES	0x0008	/* queue size is measured in bytes */
258 #define DN_NOERROR		0x0010	/* do not report ENOBUFS on drops  */
259 #define DN_IS_PIPE		0x4000
260 #define DN_IS_QUEUE		0x8000
261 
262     struct dn_pipe *pipe ;	/* pointer to parent pipe */
263     u_short parent_nr ;		/* parent pipe#, 0 if local to a pipe */
264 
265     int weight ;		/* WFQ queue weight */
266     int qsize ;			/* queue size in slots or bytes */
267     int plr ;			/* pkt loss rate (2^31-1 means 100%) */
268 
269     struct ipfw_flow_id flow_mask ;
270 
271     /* hash table of queues onto this flow_set */
272     int rq_size ;		/* number of slots */
273     int rq_elements ;		/* active elements */
274     struct dn_flow_queue **rq;	/* array of rq_size entries */
275 
276     u_int32_t last_expired ;	/* do not expire too frequently */
277     int backlogged ;		/* #active queues for this flowset */
278 
279         /* RED parameters */
280 #define SCALE_RED               16
281 #define SCALE(x)                ( (x) << SCALE_RED )
282 #define SCALE_VAL(x)            ( (x) >> SCALE_RED )
283 #define SCALE_MUL(x,y)          ( ( (x) * (y) ) >> SCALE_RED )
284     int w_q ;			/* queue weight (scaled) */
285     int max_th ;		/* maximum threshold for queue (scaled) */
286     int min_th ;		/* minimum threshold for queue (scaled) */
287     int max_p ;			/* maximum value for p_b (scaled) */
288     u_int c_1 ;			/* max_p/(max_th-min_th) (scaled) */
289     u_int c_2 ;			/* max_p*min_th/(max_th-min_th) (scaled) */
290     u_int c_3 ;			/* for GRED, (1-max_p)/max_th (scaled) */
291     u_int c_4 ;			/* for GRED, 1 - 2*max_p (scaled) */
292     u_int * w_q_lookup ;	/* lookup table for computing (1-w_q)^t */
293     u_int lookup_depth ;	/* depth of lookup table */
294     int lookup_step ;		/* granularity inside the lookup table */
295     int lookup_weight ;		/* equal to (1-w_q)^t / (1-w_q)^(t+1) */
296     int avg_pkt_size ;		/* medium packet size */
297     int max_pkt_size ;		/* max packet size */
298 } ;
299 
300 /*
301  * Pipe descriptor. Contains global parameters, delay-line queue,
302  * and the flow_set used for fixed-rate queues.
303  *
304  * For WF2Q+ support it also has 3 heaps holding dn_flow_queue:
305  *   not_eligible_heap, for queues whose start time is higher
306  *	than the virtual time. Sorted by start time.
307  *   scheduler_heap, for queues eligible for scheduling. Sorted by
308  *	finish time.
309  *   idle_heap, all flows that are idle and can be removed. We
310  *	do that on each tick so we do not slow down too much
311  *	operations during forwarding.
312  *
313  */
314 struct dn_pipe {		/* a pipe */
315     struct dn_pipe *next ;
316 
317     int	pipe_nr ;		/* number	*/
318     int bandwidth;		/* really, bytes/tick.	*/
319     int	delay ;			/* really, ticks	*/
320 
321     struct	mbuf *head, *tail ;	/* packets in delay line */
322 
323     /* WF2Q+ */
324     struct dn_heap scheduler_heap ; /* top extract - key Finish time*/
325     struct dn_heap not_eligible_heap; /* top extract- key Start time */
326     struct dn_heap idle_heap ; /* random extract - key Start=Finish time */
327 
328     dn_key V ;			/* virtual time */
329     int sum;			/* sum of weights of all active sessions */
330     int numbytes;		/* bits I can transmit (more or less). */
331 
332     dn_key sched_time ;		/* time pipe was scheduled in ready_heap */
333 
334     /*
335      * When the tx clock come from an interface (if_name[0] != '\0'), its name
336      * is stored below, whereas the ifp is filled when the rule is configured.
337      */
338     char if_name[IFNAMSIZ];
339     struct ifnet *ifp ;
340     int ready ; /* set if ifp != NULL and we got a signal from it */
341 
342     struct dn_flow_set fs ; /* used with fixed-rate flows */
343 };
344 
345 #ifdef _KERNEL
346 typedef	int ip_dn_ctl_t(struct sockopt *); /* raw_ip.c */
347 typedef	void ip_dn_ruledel_t(void *); /* ip_fw.c */
348 typedef	int ip_dn_io_t(struct mbuf *m, int pipe_nr, int dir,
349 	struct ip_fw_args *fwa);
350 extern	ip_dn_ctl_t *ip_dn_ctl_ptr;
351 extern	ip_dn_ruledel_t *ip_dn_ruledel_ptr;
352 extern	ip_dn_io_t *ip_dn_io_ptr;
353 #define	DUMMYNET_LOADED	(ip_dn_io_ptr != NULL)
354 
355 /*
356  * Return the IPFW rule associated with the dummynet tag; if any.
357  * Make sure that the dummynet tag is not reused by lower layers.
358  */
359 static __inline struct ip_fw *
360 ip_dn_claim_rule(struct mbuf *m)
361 {
362 	struct m_tag *mtag = m_tag_find(m, PACKET_TAG_DUMMYNET, NULL);
363 	if (mtag != NULL) {
364 		mtag->m_tag_id = PACKET_TAG_NONE;
365 		return (((struct dn_pkt_tag *)(mtag+1))->rule);
366 	} else
367 		return (NULL);
368 }
369 #endif
370 #endif /* _IP_DUMMYNET_H */
371