xref: /freebsd/sys/netinet/ip_dummynet.h (revision 2b743a9e9ddc6736208dc8ca1ce06ce64ad20a19)
1 /*-
2  * Copyright (c) 1998-2002 Luigi Rizzo, Universita` di Pisa
3  * Portions Copyright (c) 2000 Akamba Corp.
4  * All rights reserved
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  *
27  * $FreeBSD$
28  */
29 
30 #ifndef _IP_DUMMYNET_H
31 #define _IP_DUMMYNET_H
32 
33 /*
34  * Definition of dummynet data structures. In the structures, I decided
35  * not to use the macros in <sys/queue.h> in the hope of making the code
36  * easier to port to other architectures. The type of lists and queue we
37  * use here is pretty simple anyways.
38  */
39 
40 /*
41  * We start with a heap, which is used in the scheduler to decide when
42  * to transmit packets etc.
43  *
44  * The key for the heap is used for two different values:
45  *
46  * 1. timer ticks- max 10K/second, so 32 bits are enough;
47  *
48  * 2. virtual times. These increase in steps of len/x, where len is the
49  *    packet length, and x is either the weight of the flow, or the
50  *    sum of all weights.
51  *    If we limit to max 1000 flows and a max weight of 100, then
52  *    x needs 17 bits. The packet size is 16 bits, so we can easily
53  *    overflow if we do not allow errors.
54  * So we use a key "dn_key" which is 64 bits. Some macros are used to
55  * compare key values and handle wraparounds.
56  * MAX64 returns the largest of two key values.
57  * MY_M is used as a shift count when doing fixed point arithmetic
58  * (a better name would be useful...).
59  */
60 typedef u_int64_t dn_key ;      /* sorting key */
61 #define DN_KEY_LT(a,b)     ((int64_t)((a)-(b)) < 0)
62 #define DN_KEY_LEQ(a,b)    ((int64_t)((a)-(b)) <= 0)
63 #define DN_KEY_GT(a,b)     ((int64_t)((a)-(b)) > 0)
64 #define DN_KEY_GEQ(a,b)    ((int64_t)((a)-(b)) >= 0)
65 #define MAX64(x,y)  (( (int64_t) ( (y)-(x) )) > 0 ) ? (y) : (x)
66 #define MY_M	16 /* number of left shift to obtain a larger precision */
67 
68 /*
69  * XXX With this scaling, max 1000 flows, max weight 100, 1Gbit/s, the
70  * virtual time wraps every 15 days.
71  */
72 
73 /*
74  * The OFFSET_OF macro is used to return the offset of a field within
75  * a structure. It is used by the heap management routines.
76  */
77 #define OFFSET_OF(type, field) ((int)&( ((type *)0)->field) )
78 
79 /*
80  * The maximum hash table size for queues.  This value must be a power
81  * of 2.
82  */
83 #define DN_MAX_HASH_SIZE 65536
84 
85 /*
86  * A heap entry is made of a key and a pointer to the actual
87  * object stored in the heap.
88  * The heap is an array of dn_heap_entry entries, dynamically allocated.
89  * Current size is "size", with "elements" actually in use.
90  * The heap normally supports only ordered insert and extract from the top.
91  * If we want to extract an object from the middle of the heap, we
92  * have to know where the object itself is located in the heap (or we
93  * need to scan the whole array). To this purpose, an object has a
94  * field (int) which contains the index of the object itself into the
95  * heap. When the object is moved, the field must also be updated.
96  * The offset of the index in the object is stored in the 'offset'
97  * field in the heap descriptor. The assumption is that this offset
98  * is non-zero if we want to support extract from the middle.
99  */
100 struct dn_heap_entry {
101     dn_key key ;	/* sorting key. Topmost element is smallest one */
102     void *object ;	/* object pointer */
103 } ;
104 
105 struct dn_heap {
106     int size ;
107     int elements ;
108     int offset ; /* XXX if > 0 this is the offset of direct ptr to obj */
109     struct dn_heap_entry *p ;	/* really an array of "size" entries */
110 } ;
111 
112 #ifdef _KERNEL
113 /*
114  * Packets processed by dummynet have an mbuf tag associated with
115  * them that carries their dummynet state.  This is used within
116  * the dummynet code as well as outside when checking for special
117  * processing requirements.
118  */
119 struct dn_pkt_tag {
120     struct ip_fw *rule;		/* matching rule */
121     int dn_dir;			/* action when packet comes out. */
122 #define DN_TO_IP_OUT	1
123 #define DN_TO_IP_IN	2
124 /* Obsolete: #define DN_TO_BDG_FWD	3 */
125 #define DN_TO_ETH_DEMUX	4
126 #define DN_TO_ETH_OUT	5
127 #define DN_TO_IP6_IN	6
128 #define DN_TO_IP6_OUT	7
129 #define DN_TO_IFB_FWD	8
130 
131     dn_key output_time;		/* when the pkt is due for delivery	*/
132     struct ifnet *ifp;		/* interface, for ip_output		*/
133     struct _ip6dn_args ip6opt;	/* XXX ipv6 options			*/
134 };
135 #endif /* _KERNEL */
136 
137 /*
138  * Overall structure of dummynet (with WF2Q+):
139 
140 In dummynet, packets are selected with the firewall rules, and passed
141 to two different objects: PIPE or QUEUE.
142 
143 A QUEUE is just a queue with configurable size and queue management
144 policy. It is also associated with a mask (to discriminate among
145 different flows), a weight (used to give different shares of the
146 bandwidth to different flows) and a "pipe", which essentially
147 supplies the transmit clock for all queues associated with that
148 pipe.
149 
150 A PIPE emulates a fixed-bandwidth link, whose bandwidth is
151 configurable.  The "clock" for a pipe can come from either an
152 internal timer, or from the transmit interrupt of an interface.
153 A pipe is also associated with one (or more, if masks are used)
154 queue, where all packets for that pipe are stored.
155 
156 The bandwidth available on the pipe is shared by the queues
157 associated with that pipe (only one in case the packet is sent
158 to a PIPE) according to the WF2Q+ scheduling algorithm and the
159 configured weights.
160 
161 In general, incoming packets are stored in the appropriate queue,
162 which is then placed into one of a few heaps managed by a scheduler
163 to decide when the packet should be extracted.
164 The scheduler (a function called dummynet()) is run at every timer
165 tick, and grabs queues from the head of the heaps when they are
166 ready for processing.
167 
168 There are three data structures definining a pipe and associated queues:
169 
170  + dn_pipe, which contains the main configuration parameters related
171    to delay and bandwidth;
172  + dn_flow_set, which contains WF2Q+ configuration, flow
173    masks, plr and RED configuration;
174  + dn_flow_queue, which is the per-flow queue (containing the packets)
175 
176 Multiple dn_flow_set can be linked to the same pipe, and multiple
177 dn_flow_queue can be linked to the same dn_flow_set.
178 All data structures are linked in a linear list which is used for
179 housekeeping purposes.
180 
181 During configuration, we create and initialize the dn_flow_set
182 and dn_pipe structures (a dn_pipe also contains a dn_flow_set).
183 
184 At runtime: packets are sent to the appropriate dn_flow_set (either
185 WFQ ones, or the one embedded in the dn_pipe for fixed-rate flows),
186 which in turn dispatches them to the appropriate dn_flow_queue
187 (created dynamically according to the masks).
188 
189 The transmit clock for fixed rate flows (ready_event()) selects the
190 dn_flow_queue to be used to transmit the next packet. For WF2Q,
191 wfq_ready_event() extract a pipe which in turn selects the right
192 flow using a number of heaps defined into the pipe itself.
193 
194  *
195  */
196 
197 /*
198  * per flow queue. This contains the flow identifier, the queue
199  * of packets, counters, and parameters used to support both RED and
200  * WF2Q+.
201  *
202  * A dn_flow_queue is created and initialized whenever a packet for
203  * a new flow arrives.
204  */
205 struct dn_flow_queue {
206     struct dn_flow_queue *next ;
207     struct ipfw_flow_id id ;
208 
209     struct mbuf *head, *tail ;	/* queue of packets */
210     u_int len ;
211     u_int len_bytes ;
212     u_long numbytes ;		/* credit for transmission (dynamic queues) */
213 
214     u_int64_t tot_pkts ;	/* statistics counters	*/
215     u_int64_t tot_bytes ;
216     u_int32_t drops ;
217 
218     int hash_slot ;		/* debugging/diagnostic */
219 
220     /* RED parameters */
221     int avg ;                   /* average queue length est. (scaled) */
222     int count ;                 /* arrivals since last RED drop */
223     int random ;                /* random value (scaled) */
224     u_int32_t q_time ;          /* start of queue idle time */
225 
226     /* WF2Q+ support */
227     struct dn_flow_set *fs ;	/* parent flow set */
228     int heap_pos ;		/* position (index) of struct in heap */
229     dn_key sched_time ;		/* current time when queue enters ready_heap */
230 
231     dn_key S,F ;		/* start time, finish time */
232     /*
233      * Setting F < S means the timestamp is invalid. We only need
234      * to test this when the queue is empty.
235      */
236 } ;
237 
238 /*
239  * flow_set descriptor. Contains the "template" parameters for the
240  * queue configuration, and pointers to the hash table of dn_flow_queue's.
241  *
242  * The hash table is an array of lists -- we identify the slot by
243  * hashing the flow-id, then scan the list looking for a match.
244  * The size of the hash table (buckets) is configurable on a per-queue
245  * basis.
246  *
247  * A dn_flow_set is created whenever a new queue or pipe is created (in the
248  * latter case, the structure is located inside the struct dn_pipe).
249  */
250 struct dn_flow_set {
251     SLIST_ENTRY(dn_flow_set)	next;	/* linked list in a hash slot */
252 
253     u_short fs_nr ;             /* flow_set number       */
254     u_short flags_fs;
255 #define DN_HAVE_FLOW_MASK	0x0001
256 #define DN_IS_RED		0x0002
257 #define DN_IS_GENTLE_RED	0x0004
258 #define DN_QSIZE_IS_BYTES	0x0008	/* queue size is measured in bytes */
259 #define DN_NOERROR		0x0010	/* do not report ENOBUFS on drops  */
260 #define DN_IS_PIPE		0x4000
261 #define DN_IS_QUEUE		0x8000
262 
263     struct dn_pipe *pipe ;	/* pointer to parent pipe */
264     u_short parent_nr ;		/* parent pipe#, 0 if local to a pipe */
265 
266     int weight ;		/* WFQ queue weight */
267     int qsize ;			/* queue size in slots or bytes */
268     int plr ;			/* pkt loss rate (2^31-1 means 100%) */
269 
270     struct ipfw_flow_id flow_mask ;
271 
272     /* hash table of queues onto this flow_set */
273     int rq_size ;		/* number of slots */
274     int rq_elements ;		/* active elements */
275     struct dn_flow_queue **rq;	/* array of rq_size entries */
276 
277     u_int32_t last_expired ;	/* do not expire too frequently */
278     int backlogged ;		/* #active queues for this flowset */
279 
280         /* RED parameters */
281 #define SCALE_RED               16
282 #define SCALE(x)                ( (x) << SCALE_RED )
283 #define SCALE_VAL(x)            ( (x) >> SCALE_RED )
284 #define SCALE_MUL(x,y)          ( ( (x) * (y) ) >> SCALE_RED )
285     int w_q ;			/* queue weight (scaled) */
286     int max_th ;		/* maximum threshold for queue (scaled) */
287     int min_th ;		/* minimum threshold for queue (scaled) */
288     int max_p ;			/* maximum value for p_b (scaled) */
289     u_int c_1 ;			/* max_p/(max_th-min_th) (scaled) */
290     u_int c_2 ;			/* max_p*min_th/(max_th-min_th) (scaled) */
291     u_int c_3 ;			/* for GRED, (1-max_p)/max_th (scaled) */
292     u_int c_4 ;			/* for GRED, 1 - 2*max_p (scaled) */
293     u_int * w_q_lookup ;	/* lookup table for computing (1-w_q)^t */
294     u_int lookup_depth ;	/* depth of lookup table */
295     int lookup_step ;		/* granularity inside the lookup table */
296     int lookup_weight ;		/* equal to (1-w_q)^t / (1-w_q)^(t+1) */
297     int avg_pkt_size ;		/* medium packet size */
298     int max_pkt_size ;		/* max packet size */
299 };
300 SLIST_HEAD(dn_flow_set_head, dn_flow_set);
301 
302 /*
303  * Pipe descriptor. Contains global parameters, delay-line queue,
304  * and the flow_set used for fixed-rate queues.
305  *
306  * For WF2Q+ support it also has 3 heaps holding dn_flow_queue:
307  *   not_eligible_heap, for queues whose start time is higher
308  *	than the virtual time. Sorted by start time.
309  *   scheduler_heap, for queues eligible for scheduling. Sorted by
310  *	finish time.
311  *   idle_heap, all flows that are idle and can be removed. We
312  *	do that on each tick so we do not slow down too much
313  *	operations during forwarding.
314  *
315  */
316 struct dn_pipe {		/* a pipe */
317     SLIST_ENTRY(dn_pipe)	next;	/* linked list in a hash slot */
318 
319     int	pipe_nr ;		/* number	*/
320     int bandwidth;		/* really, bytes/tick.	*/
321     int	delay ;			/* really, ticks	*/
322 
323     struct	mbuf *head, *tail ;	/* packets in delay line */
324 
325     /* WF2Q+ */
326     struct dn_heap scheduler_heap ; /* top extract - key Finish time*/
327     struct dn_heap not_eligible_heap; /* top extract- key Start time */
328     struct dn_heap idle_heap ; /* random extract - key Start=Finish time */
329 
330     dn_key V ;			/* virtual time */
331     int sum;			/* sum of weights of all active sessions */
332     int numbytes;		/* bits I can transmit (more or less). */
333 
334     dn_key sched_time ;		/* time pipe was scheduled in ready_heap */
335 
336     /*
337      * When the tx clock come from an interface (if_name[0] != '\0'), its name
338      * is stored below, whereas the ifp is filled when the rule is configured.
339      */
340     char if_name[IFNAMSIZ];
341     struct ifnet *ifp ;
342     int ready ; /* set if ifp != NULL and we got a signal from it */
343 
344     struct dn_flow_set fs ; /* used with fixed-rate flows */
345 };
346 SLIST_HEAD(dn_pipe_head, dn_pipe);
347 
348 #ifdef _KERNEL
349 typedef	int ip_dn_ctl_t(struct sockopt *); /* raw_ip.c */
350 typedef	void ip_dn_ruledel_t(void *); /* ip_fw.c */
351 typedef	int ip_dn_io_t(struct mbuf *m, int dir, struct ip_fw_args *fwa);
352 extern	ip_dn_ctl_t *ip_dn_ctl_ptr;
353 extern	ip_dn_ruledel_t *ip_dn_ruledel_ptr;
354 extern	ip_dn_io_t *ip_dn_io_ptr;
355 #define	DUMMYNET_LOADED	(ip_dn_io_ptr != NULL)
356 
357 /*
358  * Return the IPFW rule associated with the dummynet tag; if any.
359  * Make sure that the dummynet tag is not reused by lower layers.
360  */
361 static __inline struct ip_fw *
362 ip_dn_claim_rule(struct mbuf *m)
363 {
364 	struct m_tag *mtag = m_tag_find(m, PACKET_TAG_DUMMYNET, NULL);
365 	if (mtag != NULL) {
366 		mtag->m_tag_id = PACKET_TAG_NONE;
367 		return (((struct dn_pkt_tag *)(mtag+1))->rule);
368 	} else
369 		return (NULL);
370 }
371 #endif
372 #endif /* _IP_DUMMYNET_H */
373