xref: /freebsd/sys/netinet/ip_dummynet.h (revision 13e403fdeadd26f9748ba83ea50ee271fbfc862a)
1 /*-
2  * Copyright (c) 1998-2002 Luigi Rizzo, Universita` di Pisa
3  * Portions Copyright (c) 2000 Akamba Corp.
4  * All rights reserved
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  *
27  * $FreeBSD$
28  */
29 
30 #ifndef _IP_DUMMYNET_H
31 #define _IP_DUMMYNET_H
32 
33 /*
34  * Definition of dummynet data structures. In the structures, I decided
35  * not to use the macros in <sys/queue.h> in the hope of making the code
36  * easier to port to other architectures. The type of lists and queue we
37  * use here is pretty simple anyways.
38  */
39 
40 /*
41  * We start with a heap, which is used in the scheduler to decide when
42  * to transmit packets etc.
43  *
44  * The key for the heap is used for two different values:
45  *
46  * 1. timer ticks- max 10K/second, so 32 bits are enough;
47  *
48  * 2. virtual times. These increase in steps of len/x, where len is the
49  *    packet length, and x is either the weight of the flow, or the
50  *    sum of all weights.
51  *    If we limit to max 1000 flows and a max weight of 100, then
52  *    x needs 17 bits. The packet size is 16 bits, so we can easily
53  *    overflow if we do not allow errors.
54  * So we use a key "dn_key" which is 64 bits. Some macros are used to
55  * compare key values and handle wraparounds.
56  * MAX64 returns the largest of two key values.
57  * MY_M is used as a shift count when doing fixed point arithmetic
58  * (a better name would be useful...).
59  */
60 typedef u_int64_t dn_key ;      /* sorting key */
61 #define DN_KEY_LT(a,b)     ((int64_t)((a)-(b)) < 0)
62 #define DN_KEY_LEQ(a,b)    ((int64_t)((a)-(b)) <= 0)
63 #define DN_KEY_GT(a,b)     ((int64_t)((a)-(b)) > 0)
64 #define DN_KEY_GEQ(a,b)    ((int64_t)((a)-(b)) >= 0)
65 #define MAX64(x,y)  (( (int64_t) ( (y)-(x) )) > 0 ) ? (y) : (x)
66 #define MY_M	16 /* number of left shift to obtain a larger precision */
67 
68 /*
69  * XXX With this scaling, max 1000 flows, max weight 100, 1Gbit/s, the
70  * virtual time wraps every 15 days.
71  */
72 
73 
74 /*
75  * The maximum hash table size for queues.  This value must be a power
76  * of 2.
77  */
78 #define DN_MAX_HASH_SIZE 65536
79 
80 /*
81  * A heap entry is made of a key and a pointer to the actual
82  * object stored in the heap.
83  * The heap is an array of dn_heap_entry entries, dynamically allocated.
84  * Current size is "size", with "elements" actually in use.
85  * The heap normally supports only ordered insert and extract from the top.
86  * If we want to extract an object from the middle of the heap, we
87  * have to know where the object itself is located in the heap (or we
88  * need to scan the whole array). To this purpose, an object has a
89  * field (int) which contains the index of the object itself into the
90  * heap. When the object is moved, the field must also be updated.
91  * The offset of the index in the object is stored in the 'offset'
92  * field in the heap descriptor. The assumption is that this offset
93  * is non-zero if we want to support extract from the middle.
94  */
95 struct dn_heap_entry {
96     dn_key key ;	/* sorting key. Topmost element is smallest one */
97     void *object ;	/* object pointer */
98 } ;
99 
100 struct dn_heap {
101     int size ;
102     int elements ;
103     int offset ; /* XXX if > 0 this is the offset of direct ptr to obj */
104     struct dn_heap_entry *p ;	/* really an array of "size" entries */
105 } ;
106 
107 #ifdef _KERNEL
108 /*
109  * Packets processed by dummynet have an mbuf tag associated with
110  * them that carries their dummynet state.  This is used within
111  * the dummynet code as well as outside when checking for special
112  * processing requirements.
113  * Note that the first part is the reinject info and is common to
114  * other forms of packet reinjection.
115  */
116 struct dn_pkt_tag {
117     /* first part, reinject info */
118     uint32_t slot;		/* slot of next rule to use */
119     uint32_t rulenum;		/* matching rule number */
120     uint32_t rule_id;		/* matching rule id */
121     uint32_t chain_id;		/* ruleset id */
122 
123     /* second part, dummynet specific */
124     int dn_dir;			/* action when packet comes out. */
125 				/* see ip_fw_private.h */
126 
127     dn_key output_time;		/* when the pkt is due for delivery	*/
128     struct ifnet *ifp;		/* interface, for ip_output		*/
129     struct _ip6dn_args ip6opt;	/* XXX ipv6 options			*/
130 };
131 #endif /* _KERNEL */
132 
133 /*
134  * Overall structure of dummynet (with WF2Q+):
135 
136 In dummynet, packets are selected with the firewall rules, and passed
137 to two different objects: PIPE or QUEUE.
138 
139 A QUEUE is just a queue with configurable size and queue management
140 policy. It is also associated with a mask (to discriminate among
141 different flows), a weight (used to give different shares of the
142 bandwidth to different flows) and a "pipe", which essentially
143 supplies the transmit clock for all queues associated with that
144 pipe.
145 
146 A PIPE emulates a fixed-bandwidth link, whose bandwidth is
147 configurable.  The "clock" for a pipe can come from either an
148 internal timer, or from the transmit interrupt of an interface.
149 A pipe is also associated with one (or more, if masks are used)
150 queue, where all packets for that pipe are stored.
151 
152 The bandwidth available on the pipe is shared by the queues
153 associated with that pipe (only one in case the packet is sent
154 to a PIPE) according to the WF2Q+ scheduling algorithm and the
155 configured weights.
156 
157 In general, incoming packets are stored in the appropriate queue,
158 which is then placed into one of a few heaps managed by a scheduler
159 to decide when the packet should be extracted.
160 The scheduler (a function called dummynet()) is run at every timer
161 tick, and grabs queues from the head of the heaps when they are
162 ready for processing.
163 
164 There are three data structures definining a pipe and associated queues:
165 
166  + dn_pipe, which contains the main configuration parameters related
167    to delay and bandwidth;
168  + dn_flow_set, which contains WF2Q+ configuration, flow
169    masks, plr and RED configuration;
170  + dn_flow_queue, which is the per-flow queue (containing the packets)
171 
172 Multiple dn_flow_set can be linked to the same pipe, and multiple
173 dn_flow_queue can be linked to the same dn_flow_set.
174 All data structures are linked in a linear list which is used for
175 housekeeping purposes.
176 
177 During configuration, we create and initialize the dn_flow_set
178 and dn_pipe structures (a dn_pipe also contains a dn_flow_set).
179 
180 At runtime: packets are sent to the appropriate dn_flow_set (either
181 WFQ ones, or the one embedded in the dn_pipe for fixed-rate flows),
182 which in turn dispatches them to the appropriate dn_flow_queue
183 (created dynamically according to the masks).
184 
185 The transmit clock for fixed rate flows (ready_event()) selects the
186 dn_flow_queue to be used to transmit the next packet. For WF2Q,
187 wfq_ready_event() extract a pipe which in turn selects the right
188 flow using a number of heaps defined into the pipe itself.
189 
190  *
191  */
192 
193 /*
194  * per flow queue. This contains the flow identifier, the queue
195  * of packets, counters, and parameters used to support both RED and
196  * WF2Q+.
197  *
198  * A dn_flow_queue is created and initialized whenever a packet for
199  * a new flow arrives.
200  */
201 struct dn_flow_queue {
202     struct dn_flow_queue *next ;
203     struct ipfw_flow_id id ;
204 
205     struct mbuf *head, *tail ;	/* queue of packets */
206     u_int len ;
207     u_int len_bytes ;
208 
209     /*
210      * When we emulate MAC overheads, or channel unavailability due
211      * to other traffic on a shared medium, we augment the packet at
212      * the head of the queue with an 'extra_bits' field representsing
213      * the additional delay the packet will be subject to:
214      *		extra_bits = bw*unavailable_time.
215      * With large bandwidth and large delays, extra_bits (and also numbytes)
216      * can become very large, so better play safe and use 64 bit
217      */
218     uint64_t numbytes ;		/* credit for transmission (dynamic queues) */
219     int64_t extra_bits;		/* extra bits simulating unavailable channel */
220 
221     u_int64_t tot_pkts ;	/* statistics counters	*/
222     u_int64_t tot_bytes ;
223     u_int32_t drops ;
224 
225     int hash_slot ;		/* debugging/diagnostic */
226 
227     /* RED parameters */
228     int avg ;                   /* average queue length est. (scaled) */
229     int count ;                 /* arrivals since last RED drop */
230     int random ;                /* random value (scaled) */
231     dn_key idle_time;		/* start of queue idle time */
232 
233     /* WF2Q+ support */
234     struct dn_flow_set *fs ;	/* parent flow set */
235     int heap_pos ;		/* position (index) of struct in heap */
236     dn_key sched_time ;		/* current time when queue enters ready_heap */
237 
238     dn_key S,F ;		/* start time, finish time */
239     /*
240      * Setting F < S means the timestamp is invalid. We only need
241      * to test this when the queue is empty.
242      */
243 } ;
244 
245 /*
246  * flow_set descriptor. Contains the "template" parameters for the
247  * queue configuration, and pointers to the hash table of dn_flow_queue's.
248  *
249  * The hash table is an array of lists -- we identify the slot by
250  * hashing the flow-id, then scan the list looking for a match.
251  * The size of the hash table (buckets) is configurable on a per-queue
252  * basis.
253  *
254  * A dn_flow_set is created whenever a new queue or pipe is created (in the
255  * latter case, the structure is located inside the struct dn_pipe).
256  */
257 struct dn_flow_set {
258     SLIST_ENTRY(dn_flow_set)	next;	/* linked list in a hash slot */
259 
260     u_short fs_nr ;             /* flow_set number       */
261     u_short flags_fs;
262 #define DN_HAVE_FLOW_MASK	0x0001
263 #define DN_IS_RED		0x0002
264 #define DN_IS_GENTLE_RED	0x0004
265 #define DN_QSIZE_IS_BYTES	0x0008	/* queue size is measured in bytes */
266 #define DN_NOERROR		0x0010	/* do not report ENOBUFS on drops  */
267 #define	DN_HAS_PROFILE		0x0020	/* the pipe has a delay profile. */
268 #define DN_IS_PIPE		0x4000
269 #define DN_IS_QUEUE		0x8000
270 
271     struct dn_pipe *pipe ;	/* pointer to parent pipe */
272     u_short parent_nr ;		/* parent pipe#, 0 if local to a pipe */
273 
274     int weight ;		/* WFQ queue weight */
275     int qsize ;			/* queue size in slots or bytes */
276     int plr ;			/* pkt loss rate (2^31-1 means 100%) */
277 
278     struct ipfw_flow_id flow_mask ;
279 
280     /* hash table of queues onto this flow_set */
281     int rq_size ;		/* number of slots */
282     int rq_elements ;		/* active elements */
283     struct dn_flow_queue **rq;	/* array of rq_size entries */
284 
285     u_int32_t last_expired ;	/* do not expire too frequently */
286     int backlogged ;		/* #active queues for this flowset */
287 
288         /* RED parameters */
289 #define SCALE_RED               16
290 #define SCALE(x)                ( (x) << SCALE_RED )
291 #define SCALE_VAL(x)            ( (x) >> SCALE_RED )
292 #define SCALE_MUL(x,y)          ( ( (x) * (y) ) >> SCALE_RED )
293     int w_q ;			/* queue weight (scaled) */
294     int max_th ;		/* maximum threshold for queue (scaled) */
295     int min_th ;		/* minimum threshold for queue (scaled) */
296     int max_p ;			/* maximum value for p_b (scaled) */
297     u_int c_1 ;			/* max_p/(max_th-min_th) (scaled) */
298     u_int c_2 ;			/* max_p*min_th/(max_th-min_th) (scaled) */
299     u_int c_3 ;			/* for GRED, (1-max_p)/max_th (scaled) */
300     u_int c_4 ;			/* for GRED, 1 - 2*max_p (scaled) */
301     u_int * w_q_lookup ;	/* lookup table for computing (1-w_q)^t */
302     u_int lookup_depth ;	/* depth of lookup table */
303     int lookup_step ;		/* granularity inside the lookup table */
304     int lookup_weight ;		/* equal to (1-w_q)^t / (1-w_q)^(t+1) */
305     int avg_pkt_size ;		/* medium packet size */
306     int max_pkt_size ;		/* max packet size */
307 };
308 SLIST_HEAD(dn_flow_set_head, dn_flow_set);
309 
310 /*
311  * Pipe descriptor. Contains global parameters, delay-line queue,
312  * and the flow_set used for fixed-rate queues.
313  *
314  * For WF2Q+ support it also has 3 heaps holding dn_flow_queue:
315  *   not_eligible_heap, for queues whose start time is higher
316  *	than the virtual time. Sorted by start time.
317  *   scheduler_heap, for queues eligible for scheduling. Sorted by
318  *	finish time.
319  *   idle_heap, all flows that are idle and can be removed. We
320  *	do that on each tick so we do not slow down too much
321  *	operations during forwarding.
322  *
323  */
324 struct dn_pipe {		/* a pipe */
325     SLIST_ENTRY(dn_pipe)	next;	/* linked list in a hash slot */
326 
327     int	pipe_nr ;		/* number	*/
328     int bandwidth;		/* really, bytes/tick.	*/
329     int	delay ;			/* really, ticks	*/
330 
331     struct	mbuf *head, *tail ;	/* packets in delay line */
332 
333     /* WF2Q+ */
334     struct dn_heap scheduler_heap ; /* top extract - key Finish time*/
335     struct dn_heap not_eligible_heap; /* top extract- key Start time */
336     struct dn_heap idle_heap ; /* random extract - key Start=Finish time */
337 
338     dn_key V ;			/* virtual time */
339     int sum;			/* sum of weights of all active sessions */
340 
341     /* Same as in dn_flow_queue, numbytes can become large */
342     int64_t numbytes;		/* bits I can transmit (more or less). */
343     uint64_t burst;		/* burst size, scaled: bits * hz */
344 
345     dn_key sched_time ;		/* time pipe was scheduled in ready_heap */
346     dn_key idle_time;		/* start of pipe idle time */
347 
348     /*
349      * When the tx clock come from an interface (if_name[0] != '\0'), its name
350      * is stored below, whereas the ifp is filled when the rule is configured.
351      */
352     char if_name[IFNAMSIZ];
353     struct ifnet *ifp ;
354     int ready ; /* set if ifp != NULL and we got a signal from it */
355 
356     struct dn_flow_set fs ; /* used with fixed-rate flows */
357 
358     /* fields to simulate a delay profile */
359 
360 #define ED_MAX_NAME_LEN		32
361     char name[ED_MAX_NAME_LEN];
362     int loss_level;
363     int samples_no;
364     int *samples;
365 };
366 
367 /* dn_pipe_max is used to pass pipe configuration from userland onto
368  * kernel space and back
369  */
370 #define ED_MAX_SAMPLES_NO	1024
371 struct dn_pipe_max {
372 	struct dn_pipe pipe;
373 	int samples[ED_MAX_SAMPLES_NO];
374 };
375 
376 SLIST_HEAD(dn_pipe_head, dn_pipe);
377 
378 #endif /* _IP_DUMMYNET_H */
379