1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1991, 1993, 1995 5 * The Regents of the University of California. 6 * Copyright (c) 2007-2009 Robert N. M. Watson 7 * Copyright (c) 2010-2011 Juniper Networks, Inc. 8 * All rights reserved. 9 * 10 * Portions of this software were developed by Robert N. M. Watson under 11 * contract to Juniper Networks, Inc. 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 3. Neither the name of the University nor the names of its contributors 22 * may be used to endorse or promote products derived from this software 23 * without specific prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 35 * SUCH DAMAGE. 36 * 37 * @(#)in_pcb.c 8.4 (Berkeley) 5/24/95 38 */ 39 40 #include <sys/cdefs.h> 41 __FBSDID("$FreeBSD$"); 42 43 #include "opt_ddb.h" 44 #include "opt_ipsec.h" 45 #include "opt_inet.h" 46 #include "opt_inet6.h" 47 #include "opt_ratelimit.h" 48 #include "opt_route.h" 49 #include "opt_rss.h" 50 51 #include <sys/param.h> 52 #include <sys/hash.h> 53 #include <sys/systm.h> 54 #include <sys/libkern.h> 55 #include <sys/lock.h> 56 #include <sys/malloc.h> 57 #include <sys/mbuf.h> 58 #include <sys/callout.h> 59 #include <sys/eventhandler.h> 60 #include <sys/domain.h> 61 #include <sys/protosw.h> 62 #include <sys/smp.h> 63 #include <sys/socket.h> 64 #include <sys/socketvar.h> 65 #include <sys/sockio.h> 66 #include <sys/priv.h> 67 #include <sys/proc.h> 68 #include <sys/refcount.h> 69 #include <sys/jail.h> 70 #include <sys/kernel.h> 71 #include <sys/sysctl.h> 72 73 #ifdef DDB 74 #include <ddb/ddb.h> 75 #endif 76 77 #include <vm/uma.h> 78 #include <vm/vm.h> 79 80 #include <net/if.h> 81 #include <net/if_var.h> 82 #include <net/if_types.h> 83 #include <net/if_llatbl.h> 84 #include <net/route.h> 85 #include <net/rss_config.h> 86 #include <net/vnet.h> 87 88 #if defined(INET) || defined(INET6) 89 #include <netinet/in.h> 90 #include <netinet/in_pcb.h> 91 #include <netinet/in_pcb_var.h> 92 #ifdef INET 93 #include <netinet/in_var.h> 94 #include <netinet/in_fib.h> 95 #endif 96 #include <netinet/ip_var.h> 97 #include <netinet/tcp_var.h> 98 #ifdef TCPHPTS 99 #include <netinet/tcp_hpts.h> 100 #endif 101 #include <netinet/udp.h> 102 #include <netinet/udp_var.h> 103 #ifdef INET6 104 #include <netinet/ip6.h> 105 #include <netinet6/in6_pcb.h> 106 #include <netinet6/in6_var.h> 107 #include <netinet6/ip6_var.h> 108 #endif /* INET6 */ 109 #include <net/route/nhop.h> 110 #endif 111 112 #include <netipsec/ipsec_support.h> 113 114 #include <security/mac/mac_framework.h> 115 116 #define INPCBLBGROUP_SIZMIN 8 117 #define INPCBLBGROUP_SIZMAX 256 118 #define INP_FREED 0x00000200 /* See in_pcb.h. */ 119 120 static struct callout ipport_tick_callout; 121 122 /* 123 * These configure the range of local port addresses assigned to 124 * "unspecified" outgoing connections/packets/whatever. 125 */ 126 VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1; /* 1023 */ 127 VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART; /* 600 */ 128 VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST; /* 10000 */ 129 VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST; /* 65535 */ 130 VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO; /* 49152 */ 131 VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO; /* 65535 */ 132 133 /* 134 * Reserved ports accessible only to root. There are significant 135 * security considerations that must be accounted for when changing these, 136 * but the security benefits can be great. Please be careful. 137 */ 138 VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1; /* 1023 */ 139 VNET_DEFINE(int, ipport_reservedlow); 140 141 /* Variables dealing with random ephemeral port allocation. */ 142 VNET_DEFINE(int, ipport_randomized) = 1; /* user controlled via sysctl */ 143 VNET_DEFINE(int, ipport_randomcps) = 10; /* user controlled via sysctl */ 144 VNET_DEFINE(int, ipport_randomtime) = 45; /* user controlled via sysctl */ 145 VNET_DEFINE(int, ipport_stoprandom); /* toggled by ipport_tick */ 146 VNET_DEFINE(int, ipport_tcpallocs); 147 VNET_DEFINE_STATIC(int, ipport_tcplastcount); 148 149 #define V_ipport_tcplastcount VNET(ipport_tcplastcount) 150 151 #ifdef INET 152 static struct inpcb *in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, 153 struct in_addr faddr, u_int fport_arg, 154 struct in_addr laddr, u_int lport_arg, 155 int lookupflags, struct ifnet *ifp, 156 uint8_t numa_domain); 157 158 #define RANGECHK(var, min, max) \ 159 if ((var) < (min)) { (var) = (min); } \ 160 else if ((var) > (max)) { (var) = (max); } 161 162 static int 163 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS) 164 { 165 int error; 166 167 error = sysctl_handle_int(oidp, arg1, arg2, req); 168 if (error == 0) { 169 RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1); 170 RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1); 171 RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX); 172 RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX); 173 RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX); 174 RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX); 175 } 176 return (error); 177 } 178 179 #undef RANGECHK 180 181 static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, 182 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 183 "IP Ports"); 184 185 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst, 186 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 187 &VNET_NAME(ipport_lowfirstauto), 0, &sysctl_net_ipport_check, "I", 188 ""); 189 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast, 190 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 191 &VNET_NAME(ipport_lowlastauto), 0, &sysctl_net_ipport_check, "I", 192 ""); 193 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first, 194 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 195 &VNET_NAME(ipport_firstauto), 0, &sysctl_net_ipport_check, "I", 196 ""); 197 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last, 198 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 199 &VNET_NAME(ipport_lastauto), 0, &sysctl_net_ipport_check, "I", 200 ""); 201 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst, 202 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 203 &VNET_NAME(ipport_hifirstauto), 0, &sysctl_net_ipport_check, "I", 204 ""); 205 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast, 206 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 207 &VNET_NAME(ipport_hilastauto), 0, &sysctl_net_ipport_check, "I", 208 ""); 209 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh, 210 CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE, 211 &VNET_NAME(ipport_reservedhigh), 0, ""); 212 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow, 213 CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, ""); 214 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized, 215 CTLFLAG_VNET | CTLFLAG_RW, 216 &VNET_NAME(ipport_randomized), 0, "Enable random port allocation"); 217 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomcps, 218 CTLFLAG_VNET | CTLFLAG_RW, 219 &VNET_NAME(ipport_randomcps), 0, "Maximum number of random port " 220 "allocations before switching to a sequential one"); 221 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomtime, 222 CTLFLAG_VNET | CTLFLAG_RW, 223 &VNET_NAME(ipport_randomtime), 0, 224 "Minimum time to keep sequential port " 225 "allocation before switching to a random one"); 226 227 #ifdef RATELIMIT 228 counter_u64_t rate_limit_new; 229 counter_u64_t rate_limit_chg; 230 counter_u64_t rate_limit_active; 231 counter_u64_t rate_limit_alloc_fail; 232 counter_u64_t rate_limit_set_ok; 233 234 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, rl, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 235 "IP Rate Limiting"); 236 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, active, CTLFLAG_RD, 237 &rate_limit_active, "Active rate limited connections"); 238 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, alloc_fail, CTLFLAG_RD, 239 &rate_limit_alloc_fail, "Rate limited connection failures"); 240 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, set_ok, CTLFLAG_RD, 241 &rate_limit_set_ok, "Rate limited setting succeeded"); 242 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, newrl, CTLFLAG_RD, 243 &rate_limit_new, "Total Rate limit new attempts"); 244 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, chgrl, CTLFLAG_RD, 245 &rate_limit_chg, "Total Rate limited change attempts"); 246 247 #endif /* RATELIMIT */ 248 249 #endif /* INET */ 250 251 VNET_DEFINE(uint32_t, in_pcbhashseed); 252 static void 253 in_pcbhashseed_init(void) 254 { 255 256 V_in_pcbhashseed = arc4random(); 257 } 258 VNET_SYSINIT(in_pcbhashseed_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_FIRST, 259 in_pcbhashseed_init, 0); 260 261 /* 262 * in_pcb.c: manage the Protocol Control Blocks. 263 * 264 * NOTE: It is assumed that most of these functions will be called with 265 * the pcbinfo lock held, and often, the inpcb lock held, as these utility 266 * functions often modify hash chains or addresses in pcbs. 267 */ 268 269 static struct inpcblbgroup * 270 in_pcblbgroup_alloc(struct inpcblbgrouphead *hdr, u_char vflag, 271 uint16_t port, const union in_dependaddr *addr, int size, 272 uint8_t numa_domain) 273 { 274 struct inpcblbgroup *grp; 275 size_t bytes; 276 277 bytes = __offsetof(struct inpcblbgroup, il_inp[size]); 278 grp = malloc(bytes, M_PCB, M_ZERO | M_NOWAIT); 279 if (!grp) 280 return (NULL); 281 grp->il_vflag = vflag; 282 grp->il_lport = port; 283 grp->il_numa_domain = numa_domain; 284 grp->il_dependladdr = *addr; 285 grp->il_inpsiz = size; 286 CK_LIST_INSERT_HEAD(hdr, grp, il_list); 287 return (grp); 288 } 289 290 static void 291 in_pcblbgroup_free_deferred(epoch_context_t ctx) 292 { 293 struct inpcblbgroup *grp; 294 295 grp = __containerof(ctx, struct inpcblbgroup, il_epoch_ctx); 296 free(grp, M_PCB); 297 } 298 299 static void 300 in_pcblbgroup_free(struct inpcblbgroup *grp) 301 { 302 303 CK_LIST_REMOVE(grp, il_list); 304 NET_EPOCH_CALL(in_pcblbgroup_free_deferred, &grp->il_epoch_ctx); 305 } 306 307 static struct inpcblbgroup * 308 in_pcblbgroup_resize(struct inpcblbgrouphead *hdr, 309 struct inpcblbgroup *old_grp, int size) 310 { 311 struct inpcblbgroup *grp; 312 int i; 313 314 grp = in_pcblbgroup_alloc(hdr, old_grp->il_vflag, 315 old_grp->il_lport, &old_grp->il_dependladdr, size, 316 old_grp->il_numa_domain); 317 if (grp == NULL) 318 return (NULL); 319 320 KASSERT(old_grp->il_inpcnt < grp->il_inpsiz, 321 ("invalid new local group size %d and old local group count %d", 322 grp->il_inpsiz, old_grp->il_inpcnt)); 323 324 for (i = 0; i < old_grp->il_inpcnt; ++i) 325 grp->il_inp[i] = old_grp->il_inp[i]; 326 grp->il_inpcnt = old_grp->il_inpcnt; 327 in_pcblbgroup_free(old_grp); 328 return (grp); 329 } 330 331 /* 332 * PCB at index 'i' is removed from the group. Pull up the ones below il_inp[i] 333 * and shrink group if possible. 334 */ 335 static void 336 in_pcblbgroup_reorder(struct inpcblbgrouphead *hdr, struct inpcblbgroup **grpp, 337 int i) 338 { 339 struct inpcblbgroup *grp, *new_grp; 340 341 grp = *grpp; 342 for (; i + 1 < grp->il_inpcnt; ++i) 343 grp->il_inp[i] = grp->il_inp[i + 1]; 344 grp->il_inpcnt--; 345 346 if (grp->il_inpsiz > INPCBLBGROUP_SIZMIN && 347 grp->il_inpcnt <= grp->il_inpsiz / 4) { 348 /* Shrink this group. */ 349 new_grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz / 2); 350 if (new_grp != NULL) 351 *grpp = new_grp; 352 } 353 } 354 355 /* 356 * Add PCB to load balance group for SO_REUSEPORT_LB option. 357 */ 358 static int 359 in_pcbinslbgrouphash(struct inpcb *inp, uint8_t numa_domain) 360 { 361 const static struct timeval interval = { 60, 0 }; 362 static struct timeval lastprint; 363 struct inpcbinfo *pcbinfo; 364 struct inpcblbgrouphead *hdr; 365 struct inpcblbgroup *grp; 366 uint32_t idx; 367 368 pcbinfo = inp->inp_pcbinfo; 369 370 INP_WLOCK_ASSERT(inp); 371 INP_HASH_WLOCK_ASSERT(pcbinfo); 372 373 /* 374 * Don't allow jailed socket to join local group. 375 */ 376 if (inp->inp_socket != NULL && jailed(inp->inp_socket->so_cred)) 377 return (0); 378 379 #ifdef INET6 380 /* 381 * Don't allow IPv4 mapped INET6 wild socket. 382 */ 383 if ((inp->inp_vflag & INP_IPV4) && 384 inp->inp_laddr.s_addr == INADDR_ANY && 385 INP_CHECK_SOCKAF(inp->inp_socket, AF_INET6)) { 386 return (0); 387 } 388 #endif 389 390 idx = INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask); 391 hdr = &pcbinfo->ipi_lbgrouphashbase[idx]; 392 CK_LIST_FOREACH(grp, hdr, il_list) { 393 if (grp->il_vflag == inp->inp_vflag && 394 grp->il_lport == inp->inp_lport && 395 grp->il_numa_domain == numa_domain && 396 memcmp(&grp->il_dependladdr, 397 &inp->inp_inc.inc_ie.ie_dependladdr, 398 sizeof(grp->il_dependladdr)) == 0) 399 break; 400 } 401 if (grp == NULL) { 402 /* Create new load balance group. */ 403 grp = in_pcblbgroup_alloc(hdr, inp->inp_vflag, 404 inp->inp_lport, &inp->inp_inc.inc_ie.ie_dependladdr, 405 INPCBLBGROUP_SIZMIN, numa_domain); 406 if (grp == NULL) 407 return (ENOBUFS); 408 } else if (grp->il_inpcnt == grp->il_inpsiz) { 409 if (grp->il_inpsiz >= INPCBLBGROUP_SIZMAX) { 410 if (ratecheck(&lastprint, &interval)) 411 printf("lb group port %d, limit reached\n", 412 ntohs(grp->il_lport)); 413 return (0); 414 } 415 416 /* Expand this local group. */ 417 grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz * 2); 418 if (grp == NULL) 419 return (ENOBUFS); 420 } 421 422 KASSERT(grp->il_inpcnt < grp->il_inpsiz, 423 ("invalid local group size %d and count %d", grp->il_inpsiz, 424 grp->il_inpcnt)); 425 426 grp->il_inp[grp->il_inpcnt] = inp; 427 grp->il_inpcnt++; 428 return (0); 429 } 430 431 /* 432 * Remove PCB from load balance group. 433 */ 434 static void 435 in_pcbremlbgrouphash(struct inpcb *inp) 436 { 437 struct inpcbinfo *pcbinfo; 438 struct inpcblbgrouphead *hdr; 439 struct inpcblbgroup *grp; 440 int i; 441 442 pcbinfo = inp->inp_pcbinfo; 443 444 INP_WLOCK_ASSERT(inp); 445 INP_HASH_WLOCK_ASSERT(pcbinfo); 446 447 hdr = &pcbinfo->ipi_lbgrouphashbase[ 448 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask)]; 449 CK_LIST_FOREACH(grp, hdr, il_list) { 450 for (i = 0; i < grp->il_inpcnt; ++i) { 451 if (grp->il_inp[i] != inp) 452 continue; 453 454 if (grp->il_inpcnt == 1) { 455 /* We are the last, free this local group. */ 456 in_pcblbgroup_free(grp); 457 } else { 458 /* Pull up inpcbs, shrink group if possible. */ 459 in_pcblbgroup_reorder(hdr, &grp, i); 460 } 461 return; 462 } 463 } 464 } 465 466 int 467 in_pcblbgroup_numa(struct inpcb *inp, int arg) 468 { 469 struct inpcbinfo *pcbinfo; 470 struct inpcblbgrouphead *hdr; 471 struct inpcblbgroup *grp; 472 int err, i; 473 uint8_t numa_domain; 474 475 switch (arg) { 476 case TCP_REUSPORT_LB_NUMA_NODOM: 477 numa_domain = M_NODOM; 478 break; 479 case TCP_REUSPORT_LB_NUMA_CURDOM: 480 numa_domain = PCPU_GET(domain); 481 break; 482 default: 483 if (arg < 0 || arg >= vm_ndomains) 484 return (EINVAL); 485 numa_domain = arg; 486 } 487 488 err = 0; 489 pcbinfo = inp->inp_pcbinfo; 490 INP_WLOCK_ASSERT(inp); 491 INP_HASH_WLOCK(pcbinfo); 492 hdr = &pcbinfo->ipi_lbgrouphashbase[ 493 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask)]; 494 CK_LIST_FOREACH(grp, hdr, il_list) { 495 for (i = 0; i < grp->il_inpcnt; ++i) { 496 if (grp->il_inp[i] != inp) 497 continue; 498 499 if (grp->il_numa_domain == numa_domain) { 500 goto abort_with_hash_wlock; 501 } 502 503 /* Remove it from the old group. */ 504 in_pcbremlbgrouphash(inp); 505 506 /* Add it to the new group based on numa domain. */ 507 in_pcbinslbgrouphash(inp, numa_domain); 508 goto abort_with_hash_wlock; 509 } 510 } 511 err = ENOENT; 512 abort_with_hash_wlock: 513 INP_HASH_WUNLOCK(pcbinfo); 514 return (err); 515 } 516 517 /* Make sure it is safe to use hashinit(9) on CK_LIST. */ 518 CTASSERT(sizeof(struct inpcbhead) == sizeof(LIST_HEAD(, inpcb))); 519 520 /* 521 * Initialize an inpcbinfo - a per-VNET instance of connections db. 522 */ 523 void 524 in_pcbinfo_init(struct inpcbinfo *pcbinfo, struct inpcbstorage *pcbstor, 525 u_int hash_nelements, u_int porthash_nelements) 526 { 527 528 mtx_init(&pcbinfo->ipi_lock, pcbstor->ips_infolock_name, NULL, MTX_DEF); 529 mtx_init(&pcbinfo->ipi_hash_lock, pcbstor->ips_hashlock_name, 530 NULL, MTX_DEF); 531 #ifdef VIMAGE 532 pcbinfo->ipi_vnet = curvnet; 533 #endif 534 CK_LIST_INIT(&pcbinfo->ipi_listhead); 535 pcbinfo->ipi_count = 0; 536 pcbinfo->ipi_hashbase = hashinit(hash_nelements, M_PCB, 537 &pcbinfo->ipi_hashmask); 538 porthash_nelements = imin(porthash_nelements, IPPORT_MAX + 1); 539 pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB, 540 &pcbinfo->ipi_porthashmask); 541 pcbinfo->ipi_lbgrouphashbase = hashinit(porthash_nelements, M_PCB, 542 &pcbinfo->ipi_lbgrouphashmask); 543 pcbinfo->ipi_zone = pcbstor->ips_zone; 544 pcbinfo->ipi_portzone = pcbstor->ips_portzone; 545 pcbinfo->ipi_smr = uma_zone_get_smr(pcbinfo->ipi_zone); 546 } 547 548 /* 549 * Destroy an inpcbinfo. 550 */ 551 void 552 in_pcbinfo_destroy(struct inpcbinfo *pcbinfo) 553 { 554 555 KASSERT(pcbinfo->ipi_count == 0, 556 ("%s: ipi_count = %u", __func__, pcbinfo->ipi_count)); 557 558 hashdestroy(pcbinfo->ipi_hashbase, M_PCB, pcbinfo->ipi_hashmask); 559 hashdestroy(pcbinfo->ipi_porthashbase, M_PCB, 560 pcbinfo->ipi_porthashmask); 561 hashdestroy(pcbinfo->ipi_lbgrouphashbase, M_PCB, 562 pcbinfo->ipi_lbgrouphashmask); 563 mtx_destroy(&pcbinfo->ipi_hash_lock); 564 mtx_destroy(&pcbinfo->ipi_lock); 565 } 566 567 /* 568 * Initialize a pcbstorage - per protocol zones to allocate inpcbs. 569 */ 570 static void inpcb_dtor(void *, int, void *); 571 static void inpcb_fini(void *, int); 572 void 573 in_pcbstorage_init(void *arg) 574 { 575 struct inpcbstorage *pcbstor = arg; 576 577 pcbstor->ips_zone = uma_zcreate(pcbstor->ips_zone_name, 578 sizeof(struct inpcb), NULL, inpcb_dtor, pcbstor->ips_pcbinit, 579 inpcb_fini, UMA_ALIGN_PTR, UMA_ZONE_SMR); 580 pcbstor->ips_portzone = uma_zcreate(pcbstor->ips_portzone_name, 581 sizeof(struct inpcbport), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 582 uma_zone_set_smr(pcbstor->ips_portzone, 583 uma_zone_get_smr(pcbstor->ips_zone)); 584 } 585 586 /* 587 * Destroy a pcbstorage - used by unloadable protocols. 588 */ 589 void 590 in_pcbstorage_destroy(void *arg) 591 { 592 struct inpcbstorage *pcbstor = arg; 593 594 uma_zdestroy(pcbstor->ips_zone); 595 uma_zdestroy(pcbstor->ips_portzone); 596 } 597 598 /* 599 * Allocate a PCB and associate it with the socket. 600 * On success return with the PCB locked. 601 */ 602 int 603 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo) 604 { 605 struct inpcb *inp; 606 #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC) 607 int error; 608 #endif 609 610 inp = uma_zalloc_smr(pcbinfo->ipi_zone, M_NOWAIT); 611 if (inp == NULL) 612 return (ENOBUFS); 613 bzero(&inp->inp_start_zero, inp_zero_size); 614 #ifdef NUMA 615 inp->inp_numa_domain = M_NODOM; 616 #endif 617 inp->inp_pcbinfo = pcbinfo; 618 inp->inp_socket = so; 619 inp->inp_cred = crhold(so->so_cred); 620 inp->inp_inc.inc_fibnum = so->so_fibnum; 621 #ifdef MAC 622 error = mac_inpcb_init(inp, M_NOWAIT); 623 if (error != 0) 624 goto out; 625 mac_inpcb_create(so, inp); 626 #endif 627 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 628 error = ipsec_init_pcbpolicy(inp); 629 if (error != 0) { 630 #ifdef MAC 631 mac_inpcb_destroy(inp); 632 #endif 633 goto out; 634 } 635 #endif /*IPSEC*/ 636 #ifdef INET6 637 if (INP_SOCKAF(so) == AF_INET6) { 638 inp->inp_vflag |= INP_IPV6PROTO | INP_IPV6; 639 if (V_ip6_v6only) 640 inp->inp_flags |= IN6P_IPV6_V6ONLY; 641 #ifdef INET 642 else 643 inp->inp_vflag |= INP_IPV4; 644 #endif 645 if (V_ip6_auto_flowlabel) 646 inp->inp_flags |= IN6P_AUTOFLOWLABEL; 647 inp->in6p_hops = -1; /* use kernel default */ 648 } 649 #endif 650 #if defined(INET) && defined(INET6) 651 else 652 #endif 653 #ifdef INET 654 inp->inp_vflag |= INP_IPV4; 655 #endif 656 /* 657 * Routes in inpcb's can cache L2 as well; they are guaranteed 658 * to be cleaned up. 659 */ 660 inp->inp_route.ro_flags = RT_LLE_CACHE; 661 #ifdef TCPHPTS 662 /* 663 * If using hpts lets drop a random number in so 664 * not all new connections fall on the same CPU. 665 */ 666 inp->inp_hpts_cpu = hpts_random_cpu(inp); 667 #endif 668 refcount_init(&inp->inp_refcount, 1); /* Reference from socket. */ 669 INP_WLOCK(inp); 670 INP_INFO_WLOCK(pcbinfo); 671 pcbinfo->ipi_count++; 672 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 673 CK_LIST_INSERT_HEAD(&pcbinfo->ipi_listhead, inp, inp_list); 674 INP_INFO_WUNLOCK(pcbinfo); 675 so->so_pcb = inp; 676 677 return (0); 678 679 #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC) 680 out: 681 uma_zfree_smr(pcbinfo->ipi_zone, inp); 682 return (error); 683 #endif 684 } 685 686 #ifdef INET 687 int 688 in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred) 689 { 690 int anonport, error; 691 692 KASSERT(nam == NULL || nam->sa_family == AF_INET, 693 ("%s: invalid address family for %p", __func__, nam)); 694 KASSERT(nam == NULL || nam->sa_len == sizeof(struct sockaddr_in), 695 ("%s: invalid address length for %p", __func__, nam)); 696 INP_WLOCK_ASSERT(inp); 697 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 698 699 if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY) 700 return (EINVAL); 701 anonport = nam == NULL || ((struct sockaddr_in *)nam)->sin_port == 0; 702 error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr, 703 &inp->inp_lport, cred); 704 if (error) 705 return (error); 706 if (in_pcbinshash(inp) != 0) { 707 inp->inp_laddr.s_addr = INADDR_ANY; 708 inp->inp_lport = 0; 709 return (EAGAIN); 710 } 711 if (anonport) 712 inp->inp_flags |= INP_ANONPORT; 713 return (0); 714 } 715 #endif 716 717 #if defined(INET) || defined(INET6) 718 /* 719 * Assign a local port like in_pcb_lport(), but also used with connect() 720 * and a foreign address and port. If fsa is non-NULL, choose a local port 721 * that is unused with those, otherwise one that is completely unused. 722 * lsa can be NULL for IPv6. 723 */ 724 int 725 in_pcb_lport_dest(struct inpcb *inp, struct sockaddr *lsa, u_short *lportp, 726 struct sockaddr *fsa, u_short fport, struct ucred *cred, int lookupflags) 727 { 728 struct inpcbinfo *pcbinfo; 729 struct inpcb *tmpinp; 730 unsigned short *lastport; 731 int count, dorandom, error; 732 u_short aux, first, last, lport; 733 #ifdef INET 734 struct in_addr laddr, faddr; 735 #endif 736 #ifdef INET6 737 struct in6_addr *laddr6, *faddr6; 738 #endif 739 740 pcbinfo = inp->inp_pcbinfo; 741 742 /* 743 * Because no actual state changes occur here, a global write lock on 744 * the pcbinfo isn't required. 745 */ 746 INP_LOCK_ASSERT(inp); 747 INP_HASH_LOCK_ASSERT(pcbinfo); 748 749 if (inp->inp_flags & INP_HIGHPORT) { 750 first = V_ipport_hifirstauto; /* sysctl */ 751 last = V_ipport_hilastauto; 752 lastport = &pcbinfo->ipi_lasthi; 753 } else if (inp->inp_flags & INP_LOWPORT) { 754 error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT); 755 if (error) 756 return (error); 757 first = V_ipport_lowfirstauto; /* 1023 */ 758 last = V_ipport_lowlastauto; /* 600 */ 759 lastport = &pcbinfo->ipi_lastlow; 760 } else { 761 first = V_ipport_firstauto; /* sysctl */ 762 last = V_ipport_lastauto; 763 lastport = &pcbinfo->ipi_lastport; 764 } 765 /* 766 * For UDP(-Lite), use random port allocation as long as the user 767 * allows it. For TCP (and as of yet unknown) connections, 768 * use random port allocation only if the user allows it AND 769 * ipport_tick() allows it. 770 */ 771 if (V_ipport_randomized && 772 (!V_ipport_stoprandom || pcbinfo == &V_udbinfo || 773 pcbinfo == &V_ulitecbinfo)) 774 dorandom = 1; 775 else 776 dorandom = 0; 777 /* 778 * It makes no sense to do random port allocation if 779 * we have the only port available. 780 */ 781 if (first == last) 782 dorandom = 0; 783 /* Make sure to not include UDP(-Lite) packets in the count. */ 784 if (pcbinfo != &V_udbinfo && pcbinfo != &V_ulitecbinfo) 785 V_ipport_tcpallocs++; 786 /* 787 * Instead of having two loops further down counting up or down 788 * make sure that first is always <= last and go with only one 789 * code path implementing all logic. 790 */ 791 if (first > last) { 792 aux = first; 793 first = last; 794 last = aux; 795 } 796 797 #ifdef INET 798 laddr.s_addr = INADDR_ANY; /* used by INET6+INET below too */ 799 if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) { 800 if (lsa != NULL) 801 laddr = ((struct sockaddr_in *)lsa)->sin_addr; 802 if (fsa != NULL) 803 faddr = ((struct sockaddr_in *)fsa)->sin_addr; 804 } 805 #endif 806 #ifdef INET6 807 laddr6 = NULL; 808 if ((inp->inp_vflag & INP_IPV6) != 0) { 809 if (lsa != NULL) 810 laddr6 = &((struct sockaddr_in6 *)lsa)->sin6_addr; 811 if (fsa != NULL) 812 faddr6 = &((struct sockaddr_in6 *)fsa)->sin6_addr; 813 } 814 #endif 815 816 tmpinp = NULL; 817 lport = *lportp; 818 819 if (dorandom) 820 *lastport = first + (arc4random() % (last - first)); 821 822 count = last - first; 823 824 do { 825 if (count-- < 0) /* completely used? */ 826 return (EADDRNOTAVAIL); 827 ++*lastport; 828 if (*lastport < first || *lastport > last) 829 *lastport = first; 830 lport = htons(*lastport); 831 832 if (fsa != NULL) { 833 #ifdef INET 834 if (lsa->sa_family == AF_INET) { 835 tmpinp = in_pcblookup_hash_locked(pcbinfo, 836 faddr, fport, laddr, lport, lookupflags, 837 NULL, M_NODOM); 838 } 839 #endif 840 #ifdef INET6 841 if (lsa->sa_family == AF_INET6) { 842 tmpinp = in6_pcblookup_hash_locked(pcbinfo, 843 faddr6, fport, laddr6, lport, lookupflags, 844 NULL, M_NODOM); 845 } 846 #endif 847 } else { 848 #ifdef INET6 849 if ((inp->inp_vflag & INP_IPV6) != 0) { 850 tmpinp = in6_pcblookup_local(pcbinfo, 851 &inp->in6p_laddr, lport, lookupflags, cred); 852 #ifdef INET 853 if (tmpinp == NULL && 854 (inp->inp_vflag & INP_IPV4)) 855 tmpinp = in_pcblookup_local(pcbinfo, 856 laddr, lport, lookupflags, cred); 857 #endif 858 } 859 #endif 860 #if defined(INET) && defined(INET6) 861 else 862 #endif 863 #ifdef INET 864 tmpinp = in_pcblookup_local(pcbinfo, laddr, 865 lport, lookupflags, cred); 866 #endif 867 } 868 } while (tmpinp != NULL); 869 870 *lportp = lport; 871 872 return (0); 873 } 874 875 /* 876 * Select a local port (number) to use. 877 */ 878 int 879 in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp, 880 struct ucred *cred, int lookupflags) 881 { 882 struct sockaddr_in laddr; 883 884 if (laddrp) { 885 bzero(&laddr, sizeof(laddr)); 886 laddr.sin_family = AF_INET; 887 laddr.sin_addr = *laddrp; 888 } 889 return (in_pcb_lport_dest(inp, laddrp ? (struct sockaddr *) &laddr : 890 NULL, lportp, NULL, 0, cred, lookupflags)); 891 } 892 893 /* 894 * Return cached socket options. 895 */ 896 int 897 inp_so_options(const struct inpcb *inp) 898 { 899 int so_options; 900 901 so_options = 0; 902 903 if ((inp->inp_flags2 & INP_REUSEPORT_LB) != 0) 904 so_options |= SO_REUSEPORT_LB; 905 if ((inp->inp_flags2 & INP_REUSEPORT) != 0) 906 so_options |= SO_REUSEPORT; 907 if ((inp->inp_flags2 & INP_REUSEADDR) != 0) 908 so_options |= SO_REUSEADDR; 909 return (so_options); 910 } 911 #endif /* INET || INET6 */ 912 913 /* 914 * Check if a new BINDMULTI socket is allowed to be created. 915 * 916 * ni points to the new inp. 917 * oi points to the existing inp. 918 * 919 * This checks whether the existing inp also has BINDMULTI and 920 * whether the credentials match. 921 */ 922 int 923 in_pcbbind_check_bindmulti(const struct inpcb *ni, const struct inpcb *oi) 924 { 925 /* Check permissions match */ 926 if ((ni->inp_flags2 & INP_BINDMULTI) && 927 (ni->inp_cred->cr_uid != 928 oi->inp_cred->cr_uid)) 929 return (0); 930 931 /* Check the existing inp has BINDMULTI set */ 932 if ((ni->inp_flags2 & INP_BINDMULTI) && 933 ((oi->inp_flags2 & INP_BINDMULTI) == 0)) 934 return (0); 935 936 /* 937 * We're okay - either INP_BINDMULTI isn't set on ni, or 938 * it is and it matches the checks. 939 */ 940 return (1); 941 } 942 943 #ifdef INET 944 /* 945 * Set up a bind operation on a PCB, performing port allocation 946 * as required, but do not actually modify the PCB. Callers can 947 * either complete the bind by setting inp_laddr/inp_lport and 948 * calling in_pcbinshash(), or they can just use the resulting 949 * port and address to authorise the sending of a once-off packet. 950 * 951 * On error, the values of *laddrp and *lportp are not changed. 952 */ 953 int 954 in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp, 955 u_short *lportp, struct ucred *cred) 956 { 957 struct socket *so = inp->inp_socket; 958 struct sockaddr_in *sin; 959 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 960 struct in_addr laddr; 961 u_short lport = 0; 962 int lookupflags = 0, reuseport = (so->so_options & SO_REUSEPORT); 963 int error; 964 965 /* 966 * XXX: Maybe we could let SO_REUSEPORT_LB set SO_REUSEPORT bit here 967 * so that we don't have to add to the (already messy) code below. 968 */ 969 int reuseport_lb = (so->so_options & SO_REUSEPORT_LB); 970 971 /* 972 * No state changes, so read locks are sufficient here. 973 */ 974 INP_LOCK_ASSERT(inp); 975 INP_HASH_LOCK_ASSERT(pcbinfo); 976 977 laddr.s_addr = *laddrp; 978 if (nam != NULL && laddr.s_addr != INADDR_ANY) 979 return (EINVAL); 980 if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT|SO_REUSEPORT_LB)) == 0) 981 lookupflags = INPLOOKUP_WILDCARD; 982 if (nam == NULL) { 983 if ((error = prison_local_ip4(cred, &laddr)) != 0) 984 return (error); 985 } else { 986 sin = (struct sockaddr_in *)nam; 987 KASSERT(sin->sin_family == AF_INET, 988 ("%s: invalid family for address %p", __func__, sin)); 989 KASSERT(sin->sin_len == sizeof(*sin), 990 ("%s: invalid length for address %p", __func__, sin)); 991 992 error = prison_local_ip4(cred, &sin->sin_addr); 993 if (error) 994 return (error); 995 if (sin->sin_port != *lportp) { 996 /* Don't allow the port to change. */ 997 if (*lportp != 0) 998 return (EINVAL); 999 lport = sin->sin_port; 1000 } 1001 /* NB: lport is left as 0 if the port isn't being changed. */ 1002 if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) { 1003 /* 1004 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast; 1005 * allow complete duplication of binding if 1006 * SO_REUSEPORT is set, or if SO_REUSEADDR is set 1007 * and a multicast address is bound on both 1008 * new and duplicated sockets. 1009 */ 1010 if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) != 0) 1011 reuseport = SO_REUSEADDR|SO_REUSEPORT; 1012 /* 1013 * XXX: How to deal with SO_REUSEPORT_LB here? 1014 * Treat same as SO_REUSEPORT for now. 1015 */ 1016 if ((so->so_options & 1017 (SO_REUSEADDR|SO_REUSEPORT_LB)) != 0) 1018 reuseport_lb = SO_REUSEADDR|SO_REUSEPORT_LB; 1019 } else if (sin->sin_addr.s_addr != INADDR_ANY) { 1020 sin->sin_port = 0; /* yech... */ 1021 bzero(&sin->sin_zero, sizeof(sin->sin_zero)); 1022 /* 1023 * Is the address a local IP address? 1024 * If INP_BINDANY is set, then the socket may be bound 1025 * to any endpoint address, local or not. 1026 */ 1027 if ((inp->inp_flags & INP_BINDANY) == 0 && 1028 ifa_ifwithaddr_check((struct sockaddr *)sin) == 0) 1029 return (EADDRNOTAVAIL); 1030 } 1031 laddr = sin->sin_addr; 1032 if (lport) { 1033 struct inpcb *t; 1034 1035 /* GROSS */ 1036 if (ntohs(lport) <= V_ipport_reservedhigh && 1037 ntohs(lport) >= V_ipport_reservedlow && 1038 priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT)) 1039 return (EACCES); 1040 if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) && 1041 priv_check_cred(inp->inp_cred, PRIV_NETINET_REUSEPORT) != 0) { 1042 t = in_pcblookup_local(pcbinfo, sin->sin_addr, 1043 lport, INPLOOKUP_WILDCARD, cred); 1044 /* 1045 * XXX 1046 * This entire block sorely needs a rewrite. 1047 */ 1048 if (t && 1049 ((inp->inp_flags2 & INP_BINDMULTI) == 0) && 1050 (so->so_type != SOCK_STREAM || 1051 ntohl(t->inp_faddr.s_addr) == INADDR_ANY) && 1052 (ntohl(sin->sin_addr.s_addr) != INADDR_ANY || 1053 ntohl(t->inp_laddr.s_addr) != INADDR_ANY || 1054 (t->inp_flags2 & INP_REUSEPORT) || 1055 (t->inp_flags2 & INP_REUSEPORT_LB) == 0) && 1056 (inp->inp_cred->cr_uid != 1057 t->inp_cred->cr_uid)) 1058 return (EADDRINUSE); 1059 1060 /* 1061 * If the socket is a BINDMULTI socket, then 1062 * the credentials need to match and the 1063 * original socket also has to have been bound 1064 * with BINDMULTI. 1065 */ 1066 if (t && (! in_pcbbind_check_bindmulti(inp, t))) 1067 return (EADDRINUSE); 1068 } 1069 t = in_pcblookup_local(pcbinfo, sin->sin_addr, 1070 lport, lookupflags, cred); 1071 if (t && ((inp->inp_flags2 & INP_BINDMULTI) == 0) && 1072 (reuseport & inp_so_options(t)) == 0 && 1073 (reuseport_lb & inp_so_options(t)) == 0) { 1074 #ifdef INET6 1075 if (ntohl(sin->sin_addr.s_addr) != 1076 INADDR_ANY || 1077 ntohl(t->inp_laddr.s_addr) != 1078 INADDR_ANY || 1079 (inp->inp_vflag & INP_IPV6PROTO) == 0 || 1080 (t->inp_vflag & INP_IPV6PROTO) == 0) 1081 #endif 1082 return (EADDRINUSE); 1083 if (t && (! in_pcbbind_check_bindmulti(inp, t))) 1084 return (EADDRINUSE); 1085 } 1086 } 1087 } 1088 if (*lportp != 0) 1089 lport = *lportp; 1090 if (lport == 0) { 1091 error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags); 1092 if (error != 0) 1093 return (error); 1094 } 1095 *laddrp = laddr.s_addr; 1096 *lportp = lport; 1097 return (0); 1098 } 1099 1100 /* 1101 * Connect from a socket to a specified address. 1102 * Both address and port must be specified in argument sin. 1103 * If don't have a local address for this socket yet, 1104 * then pick one. 1105 */ 1106 int 1107 in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred, 1108 bool rehash) 1109 { 1110 u_short lport, fport; 1111 in_addr_t laddr, faddr; 1112 int anonport, error; 1113 1114 INP_WLOCK_ASSERT(inp); 1115 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 1116 1117 lport = inp->inp_lport; 1118 laddr = inp->inp_laddr.s_addr; 1119 anonport = (lport == 0); 1120 error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport, 1121 NULL, cred); 1122 if (error) 1123 return (error); 1124 1125 /* Do the initial binding of the local address if required. */ 1126 if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) { 1127 KASSERT(rehash == true, 1128 ("Rehashing required for unbound inps")); 1129 inp->inp_lport = lport; 1130 inp->inp_laddr.s_addr = laddr; 1131 if (in_pcbinshash(inp) != 0) { 1132 inp->inp_laddr.s_addr = INADDR_ANY; 1133 inp->inp_lport = 0; 1134 return (EAGAIN); 1135 } 1136 } 1137 1138 /* Commit the remaining changes. */ 1139 inp->inp_lport = lport; 1140 inp->inp_laddr.s_addr = laddr; 1141 inp->inp_faddr.s_addr = faddr; 1142 inp->inp_fport = fport; 1143 if (rehash) { 1144 in_pcbrehash(inp); 1145 } else { 1146 in_pcbinshash(inp); 1147 } 1148 1149 if (anonport) 1150 inp->inp_flags |= INP_ANONPORT; 1151 return (0); 1152 } 1153 1154 /* 1155 * Do proper source address selection on an unbound socket in case 1156 * of connect. Take jails into account as well. 1157 */ 1158 int 1159 in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr, 1160 struct ucred *cred) 1161 { 1162 struct ifaddr *ifa; 1163 struct sockaddr *sa; 1164 struct sockaddr_in *sin, dst; 1165 struct nhop_object *nh; 1166 int error; 1167 1168 NET_EPOCH_ASSERT(); 1169 KASSERT(laddr != NULL, ("%s: laddr NULL", __func__)); 1170 /* 1171 * Bypass source address selection and use the primary jail IP 1172 * if requested. 1173 */ 1174 if (cred != NULL && !prison_saddrsel_ip4(cred, laddr)) 1175 return (0); 1176 1177 error = 0; 1178 1179 nh = NULL; 1180 bzero(&dst, sizeof(dst)); 1181 sin = &dst; 1182 sin->sin_family = AF_INET; 1183 sin->sin_len = sizeof(struct sockaddr_in); 1184 sin->sin_addr.s_addr = faddr->s_addr; 1185 1186 /* 1187 * If route is known our src addr is taken from the i/f, 1188 * else punt. 1189 * 1190 * Find out route to destination. 1191 */ 1192 if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0) 1193 nh = fib4_lookup(inp->inp_inc.inc_fibnum, *faddr, 1194 0, NHR_NONE, 0); 1195 1196 /* 1197 * If we found a route, use the address corresponding to 1198 * the outgoing interface. 1199 * 1200 * Otherwise assume faddr is reachable on a directly connected 1201 * network and try to find a corresponding interface to take 1202 * the source address from. 1203 */ 1204 if (nh == NULL || nh->nh_ifp == NULL) { 1205 struct in_ifaddr *ia; 1206 struct ifnet *ifp; 1207 1208 ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin, 1209 inp->inp_socket->so_fibnum)); 1210 if (ia == NULL) { 1211 ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0, 1212 inp->inp_socket->so_fibnum)); 1213 } 1214 if (ia == NULL) { 1215 error = ENETUNREACH; 1216 goto done; 1217 } 1218 1219 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 1220 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1221 goto done; 1222 } 1223 1224 ifp = ia->ia_ifp; 1225 ia = NULL; 1226 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1227 sa = ifa->ifa_addr; 1228 if (sa->sa_family != AF_INET) 1229 continue; 1230 sin = (struct sockaddr_in *)sa; 1231 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 1232 ia = (struct in_ifaddr *)ifa; 1233 break; 1234 } 1235 } 1236 if (ia != NULL) { 1237 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1238 goto done; 1239 } 1240 1241 /* 3. As a last resort return the 'default' jail address. */ 1242 error = prison_get_ip4(cred, laddr); 1243 goto done; 1244 } 1245 1246 /* 1247 * If the outgoing interface on the route found is not 1248 * a loopback interface, use the address from that interface. 1249 * In case of jails do those three steps: 1250 * 1. check if the interface address belongs to the jail. If so use it. 1251 * 2. check if we have any address on the outgoing interface 1252 * belonging to this jail. If so use it. 1253 * 3. as a last resort return the 'default' jail address. 1254 */ 1255 if ((nh->nh_ifp->if_flags & IFF_LOOPBACK) == 0) { 1256 struct in_ifaddr *ia; 1257 struct ifnet *ifp; 1258 1259 /* If not jailed, use the default returned. */ 1260 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 1261 ia = (struct in_ifaddr *)nh->nh_ifa; 1262 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1263 goto done; 1264 } 1265 1266 /* Jailed. */ 1267 /* 1. Check if the iface address belongs to the jail. */ 1268 sin = (struct sockaddr_in *)nh->nh_ifa->ifa_addr; 1269 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 1270 ia = (struct in_ifaddr *)nh->nh_ifa; 1271 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1272 goto done; 1273 } 1274 1275 /* 1276 * 2. Check if we have any address on the outgoing interface 1277 * belonging to this jail. 1278 */ 1279 ia = NULL; 1280 ifp = nh->nh_ifp; 1281 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1282 sa = ifa->ifa_addr; 1283 if (sa->sa_family != AF_INET) 1284 continue; 1285 sin = (struct sockaddr_in *)sa; 1286 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 1287 ia = (struct in_ifaddr *)ifa; 1288 break; 1289 } 1290 } 1291 if (ia != NULL) { 1292 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1293 goto done; 1294 } 1295 1296 /* 3. As a last resort return the 'default' jail address. */ 1297 error = prison_get_ip4(cred, laddr); 1298 goto done; 1299 } 1300 1301 /* 1302 * The outgoing interface is marked with 'loopback net', so a route 1303 * to ourselves is here. 1304 * Try to find the interface of the destination address and then 1305 * take the address from there. That interface is not necessarily 1306 * a loopback interface. 1307 * In case of jails, check that it is an address of the jail 1308 * and if we cannot find, fall back to the 'default' jail address. 1309 */ 1310 if ((nh->nh_ifp->if_flags & IFF_LOOPBACK) != 0) { 1311 struct in_ifaddr *ia; 1312 1313 ia = ifatoia(ifa_ifwithdstaddr(sintosa(&dst), 1314 inp->inp_socket->so_fibnum)); 1315 if (ia == NULL) 1316 ia = ifatoia(ifa_ifwithnet(sintosa(&dst), 0, 1317 inp->inp_socket->so_fibnum)); 1318 if (ia == NULL) 1319 ia = ifatoia(ifa_ifwithaddr(sintosa(&dst))); 1320 1321 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 1322 if (ia == NULL) { 1323 error = ENETUNREACH; 1324 goto done; 1325 } 1326 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1327 goto done; 1328 } 1329 1330 /* Jailed. */ 1331 if (ia != NULL) { 1332 struct ifnet *ifp; 1333 1334 ifp = ia->ia_ifp; 1335 ia = NULL; 1336 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1337 sa = ifa->ifa_addr; 1338 if (sa->sa_family != AF_INET) 1339 continue; 1340 sin = (struct sockaddr_in *)sa; 1341 if (prison_check_ip4(cred, 1342 &sin->sin_addr) == 0) { 1343 ia = (struct in_ifaddr *)ifa; 1344 break; 1345 } 1346 } 1347 if (ia != NULL) { 1348 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1349 goto done; 1350 } 1351 } 1352 1353 /* 3. As a last resort return the 'default' jail address. */ 1354 error = prison_get_ip4(cred, laddr); 1355 goto done; 1356 } 1357 1358 done: 1359 return (error); 1360 } 1361 1362 /* 1363 * Set up for a connect from a socket to the specified address. 1364 * On entry, *laddrp and *lportp should contain the current local 1365 * address and port for the PCB; these are updated to the values 1366 * that should be placed in inp_laddr and inp_lport to complete 1367 * the connect. 1368 * 1369 * On success, *faddrp and *fportp will be set to the remote address 1370 * and port. These are not updated in the error case. 1371 * 1372 * If the operation fails because the connection already exists, 1373 * *oinpp will be set to the PCB of that connection so that the 1374 * caller can decide to override it. In all other cases, *oinpp 1375 * is set to NULL. 1376 */ 1377 int 1378 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam, 1379 in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp, 1380 struct inpcb **oinpp, struct ucred *cred) 1381 { 1382 struct sockaddr_in *sin = (struct sockaddr_in *)nam; 1383 struct in_ifaddr *ia; 1384 struct inpcb *oinp; 1385 struct in_addr laddr, faddr; 1386 u_short lport, fport; 1387 int error; 1388 1389 KASSERT(sin->sin_family == AF_INET, 1390 ("%s: invalid address family for %p", __func__, sin)); 1391 KASSERT(sin->sin_len == sizeof(*sin), 1392 ("%s: invalid address length for %p", __func__, sin)); 1393 1394 /* 1395 * Because a global state change doesn't actually occur here, a read 1396 * lock is sufficient. 1397 */ 1398 NET_EPOCH_ASSERT(); 1399 INP_LOCK_ASSERT(inp); 1400 INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo); 1401 1402 if (oinpp != NULL) 1403 *oinpp = NULL; 1404 if (sin->sin_port == 0) 1405 return (EADDRNOTAVAIL); 1406 laddr.s_addr = *laddrp; 1407 lport = *lportp; 1408 faddr = sin->sin_addr; 1409 fport = sin->sin_port; 1410 #ifdef ROUTE_MPATH 1411 if (CALC_FLOWID_OUTBOUND) { 1412 uint32_t hash_val, hash_type; 1413 1414 hash_val = fib4_calc_software_hash(laddr, faddr, 0, fport, 1415 inp->inp_socket->so_proto->pr_protocol, &hash_type); 1416 1417 inp->inp_flowid = hash_val; 1418 inp->inp_flowtype = hash_type; 1419 } 1420 #endif 1421 if (!CK_STAILQ_EMPTY(&V_in_ifaddrhead)) { 1422 /* 1423 * If the destination address is INADDR_ANY, 1424 * use the primary local address. 1425 * If the supplied address is INADDR_BROADCAST, 1426 * and the primary interface supports broadcast, 1427 * choose the broadcast address for that interface. 1428 */ 1429 if (faddr.s_addr == INADDR_ANY) { 1430 faddr = 1431 IA_SIN(CK_STAILQ_FIRST(&V_in_ifaddrhead))->sin_addr; 1432 if (cred != NULL && 1433 (error = prison_get_ip4(cred, &faddr)) != 0) 1434 return (error); 1435 } else if (faddr.s_addr == (u_long)INADDR_BROADCAST) { 1436 if (CK_STAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags & 1437 IFF_BROADCAST) 1438 faddr = satosin(&CK_STAILQ_FIRST( 1439 &V_in_ifaddrhead)->ia_broadaddr)->sin_addr; 1440 } 1441 } 1442 if (laddr.s_addr == INADDR_ANY) { 1443 error = in_pcbladdr(inp, &faddr, &laddr, cred); 1444 /* 1445 * If the destination address is multicast and an outgoing 1446 * interface has been set as a multicast option, prefer the 1447 * address of that interface as our source address. 1448 */ 1449 if (IN_MULTICAST(ntohl(faddr.s_addr)) && 1450 inp->inp_moptions != NULL) { 1451 struct ip_moptions *imo; 1452 struct ifnet *ifp; 1453 1454 imo = inp->inp_moptions; 1455 if (imo->imo_multicast_ifp != NULL) { 1456 ifp = imo->imo_multicast_ifp; 1457 CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) { 1458 if ((ia->ia_ifp == ifp) && 1459 (cred == NULL || 1460 prison_check_ip4(cred, 1461 &ia->ia_addr.sin_addr) == 0)) 1462 break; 1463 } 1464 if (ia == NULL) 1465 error = EADDRNOTAVAIL; 1466 else { 1467 laddr = ia->ia_addr.sin_addr; 1468 error = 0; 1469 } 1470 } 1471 } 1472 if (error) 1473 return (error); 1474 } 1475 1476 if (lport != 0) { 1477 oinp = in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr, 1478 fport, laddr, lport, 0, NULL, M_NODOM); 1479 if (oinp != NULL) { 1480 if (oinpp != NULL) 1481 *oinpp = oinp; 1482 return (EADDRINUSE); 1483 } 1484 } else { 1485 struct sockaddr_in lsin, fsin; 1486 1487 bzero(&lsin, sizeof(lsin)); 1488 bzero(&fsin, sizeof(fsin)); 1489 lsin.sin_family = AF_INET; 1490 lsin.sin_addr = laddr; 1491 fsin.sin_family = AF_INET; 1492 fsin.sin_addr = faddr; 1493 error = in_pcb_lport_dest(inp, (struct sockaddr *) &lsin, 1494 &lport, (struct sockaddr *)& fsin, fport, cred, 1495 INPLOOKUP_WILDCARD); 1496 if (error) 1497 return (error); 1498 } 1499 *laddrp = laddr.s_addr; 1500 *lportp = lport; 1501 *faddrp = faddr.s_addr; 1502 *fportp = fport; 1503 return (0); 1504 } 1505 1506 void 1507 in_pcbdisconnect(struct inpcb *inp) 1508 { 1509 1510 INP_WLOCK_ASSERT(inp); 1511 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 1512 1513 inp->inp_faddr.s_addr = INADDR_ANY; 1514 inp->inp_fport = 0; 1515 in_pcbrehash(inp); 1516 } 1517 #endif /* INET */ 1518 1519 /* 1520 * in_pcbdetach() is responsibe for disassociating a socket from an inpcb. 1521 * For most protocols, this will be invoked immediately prior to calling 1522 * in_pcbfree(). However, with TCP the inpcb may significantly outlive the 1523 * socket, in which case in_pcbfree() is deferred. 1524 */ 1525 void 1526 in_pcbdetach(struct inpcb *inp) 1527 { 1528 1529 KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__)); 1530 1531 #ifdef RATELIMIT 1532 if (inp->inp_snd_tag != NULL) 1533 in_pcbdetach_txrtlmt(inp); 1534 #endif 1535 inp->inp_socket->so_pcb = NULL; 1536 inp->inp_socket = NULL; 1537 } 1538 1539 /* 1540 * inpcb hash lookups are protected by SMR section. 1541 * 1542 * Once desired pcb has been found, switching from SMR section to a pcb 1543 * lock is performed with inp_smr_lock(). We can not use INP_(W|R)LOCK 1544 * here because SMR is a critical section. 1545 * In 99%+ cases inp_smr_lock() would obtain the lock immediately. 1546 */ 1547 static inline void 1548 inp_lock(struct inpcb *inp, const inp_lookup_t lock) 1549 { 1550 1551 lock == INPLOOKUP_RLOCKPCB ? 1552 rw_rlock(&inp->inp_lock) : rw_wlock(&inp->inp_lock); 1553 } 1554 1555 static inline void 1556 inp_unlock(struct inpcb *inp, const inp_lookup_t lock) 1557 { 1558 1559 lock == INPLOOKUP_RLOCKPCB ? 1560 rw_runlock(&inp->inp_lock) : rw_wunlock(&inp->inp_lock); 1561 } 1562 1563 static inline int 1564 inp_trylock(struct inpcb *inp, const inp_lookup_t lock) 1565 { 1566 1567 return (lock == INPLOOKUP_RLOCKPCB ? 1568 rw_try_rlock(&inp->inp_lock) : rw_try_wlock(&inp->inp_lock)); 1569 } 1570 1571 static inline bool 1572 in_pcbrele(struct inpcb *inp, const inp_lookup_t lock) 1573 { 1574 1575 return (lock == INPLOOKUP_RLOCKPCB ? 1576 in_pcbrele_rlocked(inp) : in_pcbrele_wlocked(inp)); 1577 } 1578 1579 bool 1580 inp_smr_lock(struct inpcb *inp, const inp_lookup_t lock) 1581 { 1582 1583 MPASS(lock == INPLOOKUP_RLOCKPCB || lock == INPLOOKUP_WLOCKPCB); 1584 SMR_ASSERT_ENTERED(inp->inp_pcbinfo->ipi_smr); 1585 1586 if (__predict_true(inp_trylock(inp, lock))) { 1587 if (__predict_false(inp->inp_flags & INP_FREED)) { 1588 smr_exit(inp->inp_pcbinfo->ipi_smr); 1589 inp_unlock(inp, lock); 1590 return (false); 1591 } 1592 smr_exit(inp->inp_pcbinfo->ipi_smr); 1593 return (true); 1594 } 1595 1596 if (__predict_true(refcount_acquire_if_not_zero(&inp->inp_refcount))) { 1597 smr_exit(inp->inp_pcbinfo->ipi_smr); 1598 inp_lock(inp, lock); 1599 if (__predict_false(in_pcbrele(inp, lock))) 1600 return (false); 1601 /* 1602 * inp acquired through refcount & lock for sure didn't went 1603 * through uma_zfree(). However, it may have already went 1604 * through in_pcbfree() and has another reference, that 1605 * prevented its release by our in_pcbrele(). 1606 */ 1607 if (__predict_false(inp->inp_flags & INP_FREED)) { 1608 inp_unlock(inp, lock); 1609 return (false); 1610 } 1611 return (true); 1612 } else { 1613 smr_exit(inp->inp_pcbinfo->ipi_smr); 1614 return (false); 1615 } 1616 } 1617 1618 /* 1619 * inp_next() - inpcb hash/list traversal iterator 1620 * 1621 * Requires initialized struct inpcb_iterator for context. 1622 * The structure can be initialized with INP_ITERATOR() or INP_ALL_ITERATOR(). 1623 * 1624 * - Iterator can have either write-lock or read-lock semantics, that can not 1625 * be changed later. 1626 * - Iterator can iterate either over all pcbs list (INP_ALL_LIST), or through 1627 * a single hash slot. Note: only rip_input() does the latter. 1628 * - Iterator may have optional bool matching function. The matching function 1629 * will be executed for each inpcb in the SMR context, so it can not acquire 1630 * locks and can safely access only immutable fields of inpcb. 1631 * 1632 * A fresh initialized iterator has NULL inpcb in its context and that 1633 * means that inp_next() call would return the very first inpcb on the list 1634 * locked with desired semantic. In all following calls the context pointer 1635 * shall hold the current inpcb pointer. The KPI user is not supposed to 1636 * unlock the current inpcb! Upon end of traversal inp_next() will return NULL 1637 * and write NULL to its context. After end of traversal an iterator can be 1638 * reused. 1639 * 1640 * List traversals have the following features/constraints: 1641 * - New entries won't be seen, as they are always added to the head of a list. 1642 * - Removed entries won't stop traversal as long as they are not added to 1643 * a different list. This is violated by in_pcbrehash(). 1644 */ 1645 #define II_LIST_FIRST(ipi, hash) \ 1646 (((hash) == INP_ALL_LIST) ? \ 1647 CK_LIST_FIRST(&(ipi)->ipi_listhead) : \ 1648 CK_LIST_FIRST(&(ipi)->ipi_hashbase[(hash)])) 1649 #define II_LIST_NEXT(inp, hash) \ 1650 (((hash) == INP_ALL_LIST) ? \ 1651 CK_LIST_NEXT((inp), inp_list) : \ 1652 CK_LIST_NEXT((inp), inp_hash)) 1653 #define II_LOCK_ASSERT(inp, lock) \ 1654 rw_assert(&(inp)->inp_lock, \ 1655 (lock) == INPLOOKUP_RLOCKPCB ? RA_RLOCKED : RA_WLOCKED ) 1656 struct inpcb * 1657 inp_next(struct inpcb_iterator *ii) 1658 { 1659 const struct inpcbinfo *ipi = ii->ipi; 1660 inp_match_t *match = ii->match; 1661 void *ctx = ii->ctx; 1662 inp_lookup_t lock = ii->lock; 1663 int hash = ii->hash; 1664 struct inpcb *inp; 1665 1666 if (ii->inp == NULL) { /* First call. */ 1667 smr_enter(ipi->ipi_smr); 1668 /* This is unrolled CK_LIST_FOREACH(). */ 1669 for (inp = II_LIST_FIRST(ipi, hash); 1670 inp != NULL; 1671 inp = II_LIST_NEXT(inp, hash)) { 1672 if (match != NULL && (match)(inp, ctx) == false) 1673 continue; 1674 if (__predict_true(inp_smr_lock(inp, lock))) 1675 break; 1676 else { 1677 smr_enter(ipi->ipi_smr); 1678 MPASS(inp != II_LIST_FIRST(ipi, hash)); 1679 inp = II_LIST_FIRST(ipi, hash); 1680 if (inp == NULL) 1681 break; 1682 } 1683 } 1684 1685 if (inp == NULL) 1686 smr_exit(ipi->ipi_smr); 1687 else 1688 ii->inp = inp; 1689 1690 return (inp); 1691 } 1692 1693 /* Not a first call. */ 1694 smr_enter(ipi->ipi_smr); 1695 restart: 1696 inp = ii->inp; 1697 II_LOCK_ASSERT(inp, lock); 1698 next: 1699 inp = II_LIST_NEXT(inp, hash); 1700 if (inp == NULL) { 1701 smr_exit(ipi->ipi_smr); 1702 goto found; 1703 } 1704 1705 if (match != NULL && (match)(inp, ctx) == false) 1706 goto next; 1707 1708 if (__predict_true(inp_trylock(inp, lock))) { 1709 if (__predict_false(inp->inp_flags & INP_FREED)) { 1710 /* 1711 * Entries are never inserted in middle of a list, thus 1712 * as long as we are in SMR, we can continue traversal. 1713 * Jump to 'restart' should yield in the same result, 1714 * but could produce unnecessary looping. Could this 1715 * looping be unbound? 1716 */ 1717 inp_unlock(inp, lock); 1718 goto next; 1719 } else { 1720 smr_exit(ipi->ipi_smr); 1721 goto found; 1722 } 1723 } 1724 1725 /* 1726 * Can't obtain lock immediately, thus going hard. Once we exit the 1727 * SMR section we can no longer jump to 'next', and our only stable 1728 * anchoring point is ii->inp, which we keep locked for this case, so 1729 * we jump to 'restart'. 1730 */ 1731 if (__predict_true(refcount_acquire_if_not_zero(&inp->inp_refcount))) { 1732 smr_exit(ipi->ipi_smr); 1733 inp_lock(inp, lock); 1734 if (__predict_false(in_pcbrele(inp, lock))) { 1735 smr_enter(ipi->ipi_smr); 1736 goto restart; 1737 } 1738 /* 1739 * See comment in inp_smr_lock(). 1740 */ 1741 if (__predict_false(inp->inp_flags & INP_FREED)) { 1742 inp_unlock(inp, lock); 1743 smr_enter(ipi->ipi_smr); 1744 goto restart; 1745 } 1746 } else 1747 goto next; 1748 1749 found: 1750 inp_unlock(ii->inp, lock); 1751 ii->inp = inp; 1752 1753 return (ii->inp); 1754 } 1755 1756 /* 1757 * in_pcbref() bumps the reference count on an inpcb in order to maintain 1758 * stability of an inpcb pointer despite the inpcb lock being released or 1759 * SMR section exited. 1760 * 1761 * To free a reference later in_pcbrele_(r|w)locked() must be performed. 1762 */ 1763 void 1764 in_pcbref(struct inpcb *inp) 1765 { 1766 u_int old __diagused; 1767 1768 old = refcount_acquire(&inp->inp_refcount); 1769 KASSERT(old > 0, ("%s: refcount 0", __func__)); 1770 } 1771 1772 /* 1773 * Drop a refcount on an inpcb elevated using in_pcbref(), potentially 1774 * freeing the pcb, if the reference was very last. 1775 */ 1776 bool 1777 in_pcbrele_rlocked(struct inpcb *inp) 1778 { 1779 1780 INP_RLOCK_ASSERT(inp); 1781 1782 if (refcount_release(&inp->inp_refcount) == 0) 1783 return (false); 1784 1785 MPASS(inp->inp_flags & INP_FREED); 1786 MPASS(inp->inp_socket == NULL); 1787 MPASS(inp->inp_in_hpts == 0); 1788 INP_RUNLOCK(inp); 1789 uma_zfree_smr(inp->inp_pcbinfo->ipi_zone, inp); 1790 return (true); 1791 } 1792 1793 bool 1794 in_pcbrele_wlocked(struct inpcb *inp) 1795 { 1796 1797 INP_WLOCK_ASSERT(inp); 1798 1799 if (refcount_release(&inp->inp_refcount) == 0) 1800 return (false); 1801 1802 MPASS(inp->inp_flags & INP_FREED); 1803 MPASS(inp->inp_socket == NULL); 1804 MPASS(inp->inp_in_hpts == 0); 1805 INP_WUNLOCK(inp); 1806 uma_zfree_smr(inp->inp_pcbinfo->ipi_zone, inp); 1807 return (true); 1808 } 1809 1810 /* 1811 * Unconditionally schedule an inpcb to be freed by decrementing its 1812 * reference count, which should occur only after the inpcb has been detached 1813 * from its socket. If another thread holds a temporary reference (acquired 1814 * using in_pcbref()) then the free is deferred until that reference is 1815 * released using in_pcbrele_(r|w)locked(), but the inpcb is still unlocked. 1816 * Almost all work, including removal from global lists, is done in this 1817 * context, where the pcbinfo lock is held. 1818 */ 1819 void 1820 in_pcbfree(struct inpcb *inp) 1821 { 1822 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 1823 #ifdef INET 1824 struct ip_moptions *imo; 1825 #endif 1826 #ifdef INET6 1827 struct ip6_moptions *im6o; 1828 #endif 1829 1830 INP_WLOCK_ASSERT(inp); 1831 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); 1832 KASSERT((inp->inp_flags & INP_FREED) == 0, 1833 ("%s: called twice for pcb %p", __func__, inp)); 1834 1835 inp->inp_flags |= INP_FREED; 1836 INP_INFO_WLOCK(pcbinfo); 1837 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 1838 pcbinfo->ipi_count--; 1839 CK_LIST_REMOVE(inp, inp_list); 1840 INP_INFO_WUNLOCK(pcbinfo); 1841 1842 if (inp->inp_flags & INP_INHASHLIST) { 1843 struct inpcbport *phd = inp->inp_phd; 1844 1845 INP_HASH_WLOCK(pcbinfo); 1846 /* XXX: Only do if SO_REUSEPORT_LB set? */ 1847 in_pcbremlbgrouphash(inp); 1848 1849 CK_LIST_REMOVE(inp, inp_hash); 1850 CK_LIST_REMOVE(inp, inp_portlist); 1851 if (CK_LIST_FIRST(&phd->phd_pcblist) == NULL) { 1852 CK_LIST_REMOVE(phd, phd_hash); 1853 uma_zfree_smr(pcbinfo->ipi_portzone, phd); 1854 } 1855 INP_HASH_WUNLOCK(pcbinfo); 1856 inp->inp_flags &= ~INP_INHASHLIST; 1857 } 1858 1859 RO_INVALIDATE_CACHE(&inp->inp_route); 1860 #ifdef MAC 1861 mac_inpcb_destroy(inp); 1862 #endif 1863 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1864 if (inp->inp_sp != NULL) 1865 ipsec_delete_pcbpolicy(inp); 1866 #endif 1867 #ifdef INET 1868 if (inp->inp_options) 1869 (void)m_free(inp->inp_options); 1870 imo = inp->inp_moptions; 1871 #endif 1872 #ifdef INET6 1873 if (inp->inp_vflag & INP_IPV6PROTO) { 1874 ip6_freepcbopts(inp->in6p_outputopts); 1875 im6o = inp->in6p_moptions; 1876 } else 1877 im6o = NULL; 1878 #endif 1879 1880 if (__predict_false(in_pcbrele_wlocked(inp) == false)) { 1881 INP_WUNLOCK(inp); 1882 } 1883 #ifdef INET6 1884 ip6_freemoptions(im6o); 1885 #endif 1886 #ifdef INET 1887 inp_freemoptions(imo); 1888 #endif 1889 /* Destruction is finalized in inpcb_dtor(). */ 1890 } 1891 1892 static void 1893 inpcb_dtor(void *mem, int size, void *arg) 1894 { 1895 struct inpcb *inp = mem; 1896 1897 crfree(inp->inp_cred); 1898 #ifdef INVARIANTS 1899 inp->inp_cred = NULL; 1900 #endif 1901 } 1902 1903 /* 1904 * Different protocols initialize their inpcbs differently - giving 1905 * different name to the lock. But they all are disposed the same. 1906 */ 1907 static void 1908 inpcb_fini(void *mem, int size) 1909 { 1910 struct inpcb *inp = mem; 1911 1912 INP_LOCK_DESTROY(inp); 1913 } 1914 1915 /* 1916 * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and 1917 * port reservation, and preventing it from being returned by inpcb lookups. 1918 * 1919 * It is used by TCP to mark an inpcb as unused and avoid future packet 1920 * delivery or event notification when a socket remains open but TCP has 1921 * closed. This might occur as a result of a shutdown()-initiated TCP close 1922 * or a RST on the wire, and allows the port binding to be reused while still 1923 * maintaining the invariant that so_pcb always points to a valid inpcb until 1924 * in_pcbdetach(). 1925 * 1926 * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by 1927 * in_pcbnotifyall() and in_pcbpurgeif0()? 1928 */ 1929 void 1930 in_pcbdrop(struct inpcb *inp) 1931 { 1932 1933 INP_WLOCK_ASSERT(inp); 1934 #ifdef INVARIANTS 1935 if (inp->inp_socket != NULL && inp->inp_ppcb != NULL) 1936 MPASS(inp->inp_refcount > 1); 1937 #endif 1938 1939 /* 1940 * XXXRW: Possibly we should protect the setting of INP_DROPPED with 1941 * the hash lock...? 1942 */ 1943 inp->inp_flags |= INP_DROPPED; 1944 if (inp->inp_flags & INP_INHASHLIST) { 1945 struct inpcbport *phd = inp->inp_phd; 1946 1947 INP_HASH_WLOCK(inp->inp_pcbinfo); 1948 in_pcbremlbgrouphash(inp); 1949 CK_LIST_REMOVE(inp, inp_hash); 1950 CK_LIST_REMOVE(inp, inp_portlist); 1951 if (CK_LIST_FIRST(&phd->phd_pcblist) == NULL) { 1952 CK_LIST_REMOVE(phd, phd_hash); 1953 uma_zfree_smr(inp->inp_pcbinfo->ipi_portzone, phd); 1954 } 1955 INP_HASH_WUNLOCK(inp->inp_pcbinfo); 1956 inp->inp_flags &= ~INP_INHASHLIST; 1957 } 1958 } 1959 1960 #ifdef INET 1961 /* 1962 * Common routines to return the socket addresses associated with inpcbs. 1963 */ 1964 struct sockaddr * 1965 in_sockaddr(in_port_t port, struct in_addr *addr_p) 1966 { 1967 struct sockaddr_in *sin; 1968 1969 sin = malloc(sizeof *sin, M_SONAME, 1970 M_WAITOK | M_ZERO); 1971 sin->sin_family = AF_INET; 1972 sin->sin_len = sizeof(*sin); 1973 sin->sin_addr = *addr_p; 1974 sin->sin_port = port; 1975 1976 return (struct sockaddr *)sin; 1977 } 1978 1979 int 1980 in_getsockaddr(struct socket *so, struct sockaddr **nam) 1981 { 1982 struct inpcb *inp; 1983 struct in_addr addr; 1984 in_port_t port; 1985 1986 inp = sotoinpcb(so); 1987 KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL")); 1988 1989 INP_RLOCK(inp); 1990 port = inp->inp_lport; 1991 addr = inp->inp_laddr; 1992 INP_RUNLOCK(inp); 1993 1994 *nam = in_sockaddr(port, &addr); 1995 return 0; 1996 } 1997 1998 int 1999 in_getpeeraddr(struct socket *so, struct sockaddr **nam) 2000 { 2001 struct inpcb *inp; 2002 struct in_addr addr; 2003 in_port_t port; 2004 2005 inp = sotoinpcb(so); 2006 KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL")); 2007 2008 INP_RLOCK(inp); 2009 port = inp->inp_fport; 2010 addr = inp->inp_faddr; 2011 INP_RUNLOCK(inp); 2012 2013 *nam = in_sockaddr(port, &addr); 2014 return 0; 2015 } 2016 2017 void 2018 in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno, 2019 struct inpcb *(*notify)(struct inpcb *, int)) 2020 { 2021 struct inpcb *inp, *inp_temp; 2022 2023 INP_INFO_WLOCK(pcbinfo); 2024 CK_LIST_FOREACH_SAFE(inp, &pcbinfo->ipi_listhead, inp_list, inp_temp) { 2025 INP_WLOCK(inp); 2026 #ifdef INET6 2027 if ((inp->inp_vflag & INP_IPV4) == 0) { 2028 INP_WUNLOCK(inp); 2029 continue; 2030 } 2031 #endif 2032 if (inp->inp_faddr.s_addr != faddr.s_addr || 2033 inp->inp_socket == NULL) { 2034 INP_WUNLOCK(inp); 2035 continue; 2036 } 2037 if ((*notify)(inp, errno)) 2038 INP_WUNLOCK(inp); 2039 } 2040 INP_INFO_WUNLOCK(pcbinfo); 2041 } 2042 2043 static bool 2044 inp_v4_multi_match(const struct inpcb *inp, void *v __unused) 2045 { 2046 2047 if ((inp->inp_vflag & INP_IPV4) && inp->inp_moptions != NULL) 2048 return (true); 2049 else 2050 return (false); 2051 } 2052 2053 void 2054 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp) 2055 { 2056 struct inpcb_iterator inpi = INP_ITERATOR(pcbinfo, INPLOOKUP_WLOCKPCB, 2057 inp_v4_multi_match, NULL); 2058 struct inpcb *inp; 2059 struct in_multi *inm; 2060 struct in_mfilter *imf; 2061 struct ip_moptions *imo; 2062 2063 IN_MULTI_LOCK_ASSERT(); 2064 2065 while ((inp = inp_next(&inpi)) != NULL) { 2066 INP_WLOCK_ASSERT(inp); 2067 2068 imo = inp->inp_moptions; 2069 /* 2070 * Unselect the outgoing interface if it is being 2071 * detached. 2072 */ 2073 if (imo->imo_multicast_ifp == ifp) 2074 imo->imo_multicast_ifp = NULL; 2075 2076 /* 2077 * Drop multicast group membership if we joined 2078 * through the interface being detached. 2079 * 2080 * XXX This can all be deferred to an epoch_call 2081 */ 2082 restart: 2083 IP_MFILTER_FOREACH(imf, &imo->imo_head) { 2084 if ((inm = imf->imf_inm) == NULL) 2085 continue; 2086 if (inm->inm_ifp != ifp) 2087 continue; 2088 ip_mfilter_remove(&imo->imo_head, imf); 2089 in_leavegroup_locked(inm, NULL); 2090 ip_mfilter_free(imf); 2091 goto restart; 2092 } 2093 } 2094 } 2095 2096 /* 2097 * Lookup a PCB based on the local address and port. Caller must hold the 2098 * hash lock. No inpcb locks or references are acquired. 2099 */ 2100 #define INP_LOOKUP_MAPPED_PCB_COST 3 2101 struct inpcb * 2102 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr, 2103 u_short lport, int lookupflags, struct ucred *cred) 2104 { 2105 struct inpcb *inp; 2106 #ifdef INET6 2107 int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST; 2108 #else 2109 int matchwild = 3; 2110 #endif 2111 int wildcard; 2112 2113 KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0, 2114 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2115 INP_HASH_LOCK_ASSERT(pcbinfo); 2116 2117 if ((lookupflags & INPLOOKUP_WILDCARD) == 0) { 2118 struct inpcbhead *head; 2119 /* 2120 * Look for an unconnected (wildcard foreign addr) PCB that 2121 * matches the local address and port we're looking for. 2122 */ 2123 head = &pcbinfo->ipi_hashbase[INP_PCBHASH_WILD(lport, 2124 pcbinfo->ipi_hashmask)]; 2125 CK_LIST_FOREACH(inp, head, inp_hash) { 2126 #ifdef INET6 2127 /* XXX inp locking */ 2128 if ((inp->inp_vflag & INP_IPV4) == 0) 2129 continue; 2130 #endif 2131 if (inp->inp_faddr.s_addr == INADDR_ANY && 2132 inp->inp_laddr.s_addr == laddr.s_addr && 2133 inp->inp_lport == lport) { 2134 /* 2135 * Found? 2136 */ 2137 if (cred == NULL || 2138 prison_equal_ip4(cred->cr_prison, 2139 inp->inp_cred->cr_prison)) 2140 return (inp); 2141 } 2142 } 2143 /* 2144 * Not found. 2145 */ 2146 return (NULL); 2147 } else { 2148 struct inpcbporthead *porthash; 2149 struct inpcbport *phd; 2150 struct inpcb *match = NULL; 2151 /* 2152 * Best fit PCB lookup. 2153 * 2154 * First see if this local port is in use by looking on the 2155 * port hash list. 2156 */ 2157 porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport, 2158 pcbinfo->ipi_porthashmask)]; 2159 CK_LIST_FOREACH(phd, porthash, phd_hash) { 2160 if (phd->phd_port == lport) 2161 break; 2162 } 2163 if (phd != NULL) { 2164 /* 2165 * Port is in use by one or more PCBs. Look for best 2166 * fit. 2167 */ 2168 CK_LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) { 2169 wildcard = 0; 2170 if (cred != NULL && 2171 !prison_equal_ip4(inp->inp_cred->cr_prison, 2172 cred->cr_prison)) 2173 continue; 2174 #ifdef INET6 2175 /* XXX inp locking */ 2176 if ((inp->inp_vflag & INP_IPV4) == 0) 2177 continue; 2178 /* 2179 * We never select the PCB that has 2180 * INP_IPV6 flag and is bound to :: if 2181 * we have another PCB which is bound 2182 * to 0.0.0.0. If a PCB has the 2183 * INP_IPV6 flag, then we set its cost 2184 * higher than IPv4 only PCBs. 2185 * 2186 * Note that the case only happens 2187 * when a socket is bound to ::, under 2188 * the condition that the use of the 2189 * mapped address is allowed. 2190 */ 2191 if ((inp->inp_vflag & INP_IPV6) != 0) 2192 wildcard += INP_LOOKUP_MAPPED_PCB_COST; 2193 #endif 2194 if (inp->inp_faddr.s_addr != INADDR_ANY) 2195 wildcard++; 2196 if (inp->inp_laddr.s_addr != INADDR_ANY) { 2197 if (laddr.s_addr == INADDR_ANY) 2198 wildcard++; 2199 else if (inp->inp_laddr.s_addr != laddr.s_addr) 2200 continue; 2201 } else { 2202 if (laddr.s_addr != INADDR_ANY) 2203 wildcard++; 2204 } 2205 if (wildcard < matchwild) { 2206 match = inp; 2207 matchwild = wildcard; 2208 if (matchwild == 0) 2209 break; 2210 } 2211 } 2212 } 2213 return (match); 2214 } 2215 } 2216 #undef INP_LOOKUP_MAPPED_PCB_COST 2217 2218 static struct inpcb * 2219 in_pcblookup_lbgroup(const struct inpcbinfo *pcbinfo, 2220 const struct in_addr *laddr, uint16_t lport, const struct in_addr *faddr, 2221 uint16_t fport, int lookupflags, int numa_domain) 2222 { 2223 struct inpcb *local_wild, *numa_wild; 2224 const struct inpcblbgrouphead *hdr; 2225 struct inpcblbgroup *grp; 2226 uint32_t idx; 2227 2228 INP_HASH_LOCK_ASSERT(pcbinfo); 2229 2230 hdr = &pcbinfo->ipi_lbgrouphashbase[ 2231 INP_PCBPORTHASH(lport, pcbinfo->ipi_lbgrouphashmask)]; 2232 2233 /* 2234 * Order of socket selection: 2235 * 1. non-wild. 2236 * 2. wild (if lookupflags contains INPLOOKUP_WILDCARD). 2237 * 2238 * NOTE: 2239 * - Load balanced group does not contain jailed sockets 2240 * - Load balanced group does not contain IPv4 mapped INET6 wild sockets 2241 */ 2242 local_wild = NULL; 2243 numa_wild = NULL; 2244 CK_LIST_FOREACH(grp, hdr, il_list) { 2245 #ifdef INET6 2246 if (!(grp->il_vflag & INP_IPV4)) 2247 continue; 2248 #endif 2249 if (grp->il_lport != lport) 2250 continue; 2251 2252 idx = INP_PCBLBGROUP_PKTHASH(faddr, lport, fport) % 2253 grp->il_inpcnt; 2254 if (grp->il_laddr.s_addr == laddr->s_addr) { 2255 if (numa_domain == M_NODOM || 2256 grp->il_numa_domain == numa_domain) { 2257 return (grp->il_inp[idx]); 2258 } else { 2259 numa_wild = grp->il_inp[idx]; 2260 } 2261 } 2262 if (grp->il_laddr.s_addr == INADDR_ANY && 2263 (lookupflags & INPLOOKUP_WILDCARD) != 0 && 2264 (local_wild == NULL || numa_domain == M_NODOM || 2265 grp->il_numa_domain == numa_domain)) { 2266 local_wild = grp->il_inp[idx]; 2267 } 2268 } 2269 if (numa_wild != NULL) 2270 return (numa_wild); 2271 2272 return (local_wild); 2273 } 2274 2275 /* 2276 * Lookup PCB in hash list, using pcbinfo tables. This variation assumes 2277 * that the caller has either locked the hash list, which usually happens 2278 * for bind(2) operations, or is in SMR section, which happens when sorting 2279 * out incoming packets. 2280 */ 2281 static struct inpcb * 2282 in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2283 u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags, 2284 struct ifnet *ifp, uint8_t numa_domain) 2285 { 2286 struct inpcbhead *head; 2287 struct inpcb *inp, *tmpinp; 2288 u_short fport = fport_arg, lport = lport_arg; 2289 2290 KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0, 2291 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2292 INP_HASH_LOCK_ASSERT(pcbinfo); 2293 2294 /* 2295 * First look for an exact match. 2296 */ 2297 tmpinp = NULL; 2298 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(&faddr, lport, fport, 2299 pcbinfo->ipi_hashmask)]; 2300 CK_LIST_FOREACH(inp, head, inp_hash) { 2301 #ifdef INET6 2302 /* XXX inp locking */ 2303 if ((inp->inp_vflag & INP_IPV4) == 0) 2304 continue; 2305 #endif 2306 if (inp->inp_faddr.s_addr == faddr.s_addr && 2307 inp->inp_laddr.s_addr == laddr.s_addr && 2308 inp->inp_fport == fport && 2309 inp->inp_lport == lport) { 2310 /* 2311 * XXX We should be able to directly return 2312 * the inp here, without any checks. 2313 * Well unless both bound with SO_REUSEPORT? 2314 */ 2315 if (prison_flag(inp->inp_cred, PR_IP4)) 2316 return (inp); 2317 if (tmpinp == NULL) 2318 tmpinp = inp; 2319 } 2320 } 2321 if (tmpinp != NULL) 2322 return (tmpinp); 2323 2324 /* 2325 * Then look in lb group (for wildcard match). 2326 */ 2327 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 2328 inp = in_pcblookup_lbgroup(pcbinfo, &laddr, lport, &faddr, 2329 fport, lookupflags, numa_domain); 2330 if (inp != NULL) 2331 return (inp); 2332 } 2333 2334 /* 2335 * Then look for a wildcard match, if requested. 2336 */ 2337 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 2338 struct inpcb *local_wild = NULL, *local_exact = NULL; 2339 #ifdef INET6 2340 struct inpcb *local_wild_mapped = NULL; 2341 #endif 2342 struct inpcb *jail_wild = NULL; 2343 int injail; 2344 2345 /* 2346 * Order of socket selection - we always prefer jails. 2347 * 1. jailed, non-wild. 2348 * 2. jailed, wild. 2349 * 3. non-jailed, non-wild. 2350 * 4. non-jailed, wild. 2351 */ 2352 2353 head = &pcbinfo->ipi_hashbase[INP_PCBHASH_WILD(lport, 2354 pcbinfo->ipi_hashmask)]; 2355 CK_LIST_FOREACH(inp, head, inp_hash) { 2356 #ifdef INET6 2357 /* XXX inp locking */ 2358 if ((inp->inp_vflag & INP_IPV4) == 0) 2359 continue; 2360 #endif 2361 if (inp->inp_faddr.s_addr != INADDR_ANY || 2362 inp->inp_lport != lport) 2363 continue; 2364 2365 injail = prison_flag(inp->inp_cred, PR_IP4); 2366 if (injail) { 2367 if (prison_check_ip4_locked( 2368 inp->inp_cred->cr_prison, &laddr) != 0) 2369 continue; 2370 } else { 2371 if (local_exact != NULL) 2372 continue; 2373 } 2374 2375 if (inp->inp_laddr.s_addr == laddr.s_addr) { 2376 if (injail) 2377 return (inp); 2378 else 2379 local_exact = inp; 2380 } else if (inp->inp_laddr.s_addr == INADDR_ANY) { 2381 #ifdef INET6 2382 /* XXX inp locking, NULL check */ 2383 if (inp->inp_vflag & INP_IPV6PROTO) 2384 local_wild_mapped = inp; 2385 else 2386 #endif 2387 if (injail) 2388 jail_wild = inp; 2389 else 2390 local_wild = inp; 2391 } 2392 } /* LIST_FOREACH */ 2393 if (jail_wild != NULL) 2394 return (jail_wild); 2395 if (local_exact != NULL) 2396 return (local_exact); 2397 if (local_wild != NULL) 2398 return (local_wild); 2399 #ifdef INET6 2400 if (local_wild_mapped != NULL) 2401 return (local_wild_mapped); 2402 #endif 2403 } /* if ((lookupflags & INPLOOKUP_WILDCARD) != 0) */ 2404 2405 return (NULL); 2406 } 2407 2408 /* 2409 * Lookup PCB in hash list, using pcbinfo tables. This variation locks the 2410 * hash list lock, and will return the inpcb locked (i.e., requires 2411 * INPLOOKUP_LOCKPCB). 2412 */ 2413 static struct inpcb * 2414 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2415 u_int fport, struct in_addr laddr, u_int lport, int lookupflags, 2416 struct ifnet *ifp, uint8_t numa_domain) 2417 { 2418 struct inpcb *inp; 2419 2420 smr_enter(pcbinfo->ipi_smr); 2421 inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport, 2422 lookupflags & INPLOOKUP_WILDCARD, ifp, numa_domain); 2423 if (inp != NULL) { 2424 if (__predict_false(inp_smr_lock(inp, 2425 (lookupflags & INPLOOKUP_LOCKMASK)) == false)) 2426 inp = NULL; 2427 } else 2428 smr_exit(pcbinfo->ipi_smr); 2429 2430 return (inp); 2431 } 2432 2433 /* 2434 * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf 2435 * from which a pre-calculated hash value may be extracted. 2436 */ 2437 struct inpcb * 2438 in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport, 2439 struct in_addr laddr, u_int lport, int lookupflags, struct ifnet *ifp) 2440 { 2441 2442 KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0, 2443 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2444 KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0, 2445 ("%s: LOCKPCB not set", __func__)); 2446 2447 return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport, 2448 lookupflags, ifp, M_NODOM)); 2449 } 2450 2451 struct inpcb * 2452 in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2453 u_int fport, struct in_addr laddr, u_int lport, int lookupflags, 2454 struct ifnet *ifp, struct mbuf *m) 2455 { 2456 2457 KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0, 2458 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2459 KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0, 2460 ("%s: LOCKPCB not set", __func__)); 2461 2462 return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport, 2463 lookupflags, ifp, m->m_pkthdr.numa_domain)); 2464 } 2465 #endif /* INET */ 2466 2467 /* 2468 * Insert PCB onto various hash lists. 2469 */ 2470 int 2471 in_pcbinshash(struct inpcb *inp) 2472 { 2473 struct inpcbhead *pcbhash; 2474 struct inpcbporthead *pcbporthash; 2475 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2476 struct inpcbport *phd; 2477 int so_options; 2478 2479 INP_WLOCK_ASSERT(inp); 2480 INP_HASH_WLOCK_ASSERT(pcbinfo); 2481 2482 KASSERT((inp->inp_flags & INP_INHASHLIST) == 0, 2483 ("in_pcbinshash: INP_INHASHLIST")); 2484 2485 #ifdef INET6 2486 if (inp->inp_vflag & INP_IPV6) 2487 pcbhash = &pcbinfo->ipi_hashbase[INP6_PCBHASH(&inp->in6p_faddr, 2488 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 2489 else 2490 #endif 2491 pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(&inp->inp_faddr, 2492 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 2493 2494 pcbporthash = &pcbinfo->ipi_porthashbase[ 2495 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)]; 2496 2497 /* 2498 * Add entry to load balance group. 2499 * Only do this if SO_REUSEPORT_LB is set. 2500 */ 2501 so_options = inp_so_options(inp); 2502 if (so_options & SO_REUSEPORT_LB) { 2503 int ret = in_pcbinslbgrouphash(inp, M_NODOM); 2504 if (ret) { 2505 /* pcb lb group malloc fail (ret=ENOBUFS). */ 2506 return (ret); 2507 } 2508 } 2509 2510 /* 2511 * Go through port list and look for a head for this lport. 2512 */ 2513 CK_LIST_FOREACH(phd, pcbporthash, phd_hash) { 2514 if (phd->phd_port == inp->inp_lport) 2515 break; 2516 } 2517 /* 2518 * If none exists, malloc one and tack it on. 2519 */ 2520 if (phd == NULL) { 2521 phd = uma_zalloc_smr(pcbinfo->ipi_portzone, M_NOWAIT); 2522 if (phd == NULL) { 2523 return (ENOBUFS); /* XXX */ 2524 } 2525 phd->phd_port = inp->inp_lport; 2526 CK_LIST_INIT(&phd->phd_pcblist); 2527 CK_LIST_INSERT_HEAD(pcbporthash, phd, phd_hash); 2528 } 2529 inp->inp_phd = phd; 2530 CK_LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist); 2531 CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash); 2532 inp->inp_flags |= INP_INHASHLIST; 2533 2534 return (0); 2535 } 2536 2537 /* 2538 * Move PCB to the proper hash bucket when { faddr, fport } have been 2539 * changed. NOTE: This does not handle the case of the lport changing (the 2540 * hashed port list would have to be updated as well), so the lport must 2541 * not change after in_pcbinshash() has been called. 2542 * 2543 * XXXGL: a race between this function and SMR-protected hash iterator 2544 * will lead to iterator traversing a possibly wrong hash list. However, 2545 * this race should have been here since change from rwlock to epoch. 2546 */ 2547 void 2548 in_pcbrehash(struct inpcb *inp) 2549 { 2550 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2551 struct inpcbhead *head; 2552 2553 INP_WLOCK_ASSERT(inp); 2554 INP_HASH_WLOCK_ASSERT(pcbinfo); 2555 2556 KASSERT(inp->inp_flags & INP_INHASHLIST, 2557 ("in_pcbrehash: !INP_INHASHLIST")); 2558 2559 #ifdef INET6 2560 if (inp->inp_vflag & INP_IPV6) 2561 head = &pcbinfo->ipi_hashbase[INP6_PCBHASH(&inp->in6p_faddr, 2562 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 2563 else 2564 #endif 2565 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(&inp->inp_faddr, 2566 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 2567 2568 CK_LIST_REMOVE(inp, inp_hash); 2569 CK_LIST_INSERT_HEAD(head, inp, inp_hash); 2570 } 2571 2572 /* 2573 * Check for alternatives when higher level complains 2574 * about service problems. For now, invalidate cached 2575 * routing information. If the route was created dynamically 2576 * (by a redirect), time to try a default gateway again. 2577 */ 2578 void 2579 in_losing(struct inpcb *inp) 2580 { 2581 2582 RO_INVALIDATE_CACHE(&inp->inp_route); 2583 return; 2584 } 2585 2586 /* 2587 * A set label operation has occurred at the socket layer, propagate the 2588 * label change into the in_pcb for the socket. 2589 */ 2590 void 2591 in_pcbsosetlabel(struct socket *so) 2592 { 2593 #ifdef MAC 2594 struct inpcb *inp; 2595 2596 inp = sotoinpcb(so); 2597 KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL")); 2598 2599 INP_WLOCK(inp); 2600 SOCK_LOCK(so); 2601 mac_inpcb_sosetlabel(so, inp); 2602 SOCK_UNLOCK(so); 2603 INP_WUNLOCK(inp); 2604 #endif 2605 } 2606 2607 /* 2608 * ipport_tick runs once per second, determining if random port allocation 2609 * should be continued. If more than ipport_randomcps ports have been 2610 * allocated in the last second, then we return to sequential port 2611 * allocation. We return to random allocation only once we drop below 2612 * ipport_randomcps for at least ipport_randomtime seconds. 2613 */ 2614 static void 2615 ipport_tick(void *xtp) 2616 { 2617 VNET_ITERATOR_DECL(vnet_iter); 2618 2619 VNET_LIST_RLOCK_NOSLEEP(); 2620 VNET_FOREACH(vnet_iter) { 2621 CURVNET_SET(vnet_iter); /* XXX appease INVARIANTS here */ 2622 if (V_ipport_tcpallocs - V_ipport_tcplastcount <= 2623 V_ipport_randomcps) { 2624 if (V_ipport_stoprandom > 0) 2625 V_ipport_stoprandom--; 2626 } else 2627 V_ipport_stoprandom = V_ipport_randomtime; 2628 V_ipport_tcplastcount = V_ipport_tcpallocs; 2629 CURVNET_RESTORE(); 2630 } 2631 VNET_LIST_RUNLOCK_NOSLEEP(); 2632 callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL); 2633 } 2634 2635 static void 2636 ip_fini(void *xtp) 2637 { 2638 2639 callout_stop(&ipport_tick_callout); 2640 } 2641 2642 /* 2643 * The ipport_callout should start running at about the time we attach the 2644 * inet or inet6 domains. 2645 */ 2646 static void 2647 ipport_tick_init(const void *unused __unused) 2648 { 2649 2650 /* Start ipport_tick. */ 2651 callout_init(&ipport_tick_callout, 1); 2652 callout_reset(&ipport_tick_callout, 1, ipport_tick, NULL); 2653 EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL, 2654 SHUTDOWN_PRI_DEFAULT); 2655 } 2656 SYSINIT(ipport_tick_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_MIDDLE, 2657 ipport_tick_init, NULL); 2658 2659 void 2660 inp_wlock(struct inpcb *inp) 2661 { 2662 2663 INP_WLOCK(inp); 2664 } 2665 2666 void 2667 inp_wunlock(struct inpcb *inp) 2668 { 2669 2670 INP_WUNLOCK(inp); 2671 } 2672 2673 void 2674 inp_rlock(struct inpcb *inp) 2675 { 2676 2677 INP_RLOCK(inp); 2678 } 2679 2680 void 2681 inp_runlock(struct inpcb *inp) 2682 { 2683 2684 INP_RUNLOCK(inp); 2685 } 2686 2687 #ifdef INVARIANT_SUPPORT 2688 void 2689 inp_lock_assert(struct inpcb *inp) 2690 { 2691 2692 INP_WLOCK_ASSERT(inp); 2693 } 2694 2695 void 2696 inp_unlock_assert(struct inpcb *inp) 2697 { 2698 2699 INP_UNLOCK_ASSERT(inp); 2700 } 2701 #endif 2702 2703 void 2704 inp_apply_all(void (*func)(struct inpcb *, void *), void *arg) 2705 { 2706 struct inpcb_iterator inpi = INP_ALL_ITERATOR(&V_tcbinfo, 2707 INPLOOKUP_WLOCKPCB); 2708 struct inpcb *inp; 2709 2710 while ((inp = inp_next(&inpi)) != NULL) 2711 func(inp, arg); 2712 } 2713 2714 struct socket * 2715 inp_inpcbtosocket(struct inpcb *inp) 2716 { 2717 2718 INP_WLOCK_ASSERT(inp); 2719 return (inp->inp_socket); 2720 } 2721 2722 struct tcpcb * 2723 inp_inpcbtotcpcb(struct inpcb *inp) 2724 { 2725 2726 INP_WLOCK_ASSERT(inp); 2727 return ((struct tcpcb *)inp->inp_ppcb); 2728 } 2729 2730 int 2731 inp_ip_tos_get(const struct inpcb *inp) 2732 { 2733 2734 return (inp->inp_ip_tos); 2735 } 2736 2737 void 2738 inp_ip_tos_set(struct inpcb *inp, int val) 2739 { 2740 2741 inp->inp_ip_tos = val; 2742 } 2743 2744 void 2745 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp, 2746 uint32_t *faddr, uint16_t *fp) 2747 { 2748 2749 INP_LOCK_ASSERT(inp); 2750 *laddr = inp->inp_laddr.s_addr; 2751 *faddr = inp->inp_faddr.s_addr; 2752 *lp = inp->inp_lport; 2753 *fp = inp->inp_fport; 2754 } 2755 2756 struct inpcb * 2757 so_sotoinpcb(struct socket *so) 2758 { 2759 2760 return (sotoinpcb(so)); 2761 } 2762 2763 struct tcpcb * 2764 so_sototcpcb(struct socket *so) 2765 { 2766 2767 return (sototcpcb(so)); 2768 } 2769 2770 /* 2771 * Create an external-format (``xinpcb'') structure using the information in 2772 * the kernel-format in_pcb structure pointed to by inp. This is done to 2773 * reduce the spew of irrelevant information over this interface, to isolate 2774 * user code from changes in the kernel structure, and potentially to provide 2775 * information-hiding if we decide that some of this information should be 2776 * hidden from users. 2777 */ 2778 void 2779 in_pcbtoxinpcb(const struct inpcb *inp, struct xinpcb *xi) 2780 { 2781 2782 bzero(xi, sizeof(*xi)); 2783 xi->xi_len = sizeof(struct xinpcb); 2784 if (inp->inp_socket) 2785 sotoxsocket(inp->inp_socket, &xi->xi_socket); 2786 bcopy(&inp->inp_inc, &xi->inp_inc, sizeof(struct in_conninfo)); 2787 xi->inp_gencnt = inp->inp_gencnt; 2788 xi->inp_ppcb = (uintptr_t)inp->inp_ppcb; 2789 xi->inp_flow = inp->inp_flow; 2790 xi->inp_flowid = inp->inp_flowid; 2791 xi->inp_flowtype = inp->inp_flowtype; 2792 xi->inp_flags = inp->inp_flags; 2793 xi->inp_flags2 = inp->inp_flags2; 2794 xi->inp_rss_listen_bucket = inp->inp_rss_listen_bucket; 2795 xi->in6p_cksum = inp->in6p_cksum; 2796 xi->in6p_hops = inp->in6p_hops; 2797 xi->inp_ip_tos = inp->inp_ip_tos; 2798 xi->inp_vflag = inp->inp_vflag; 2799 xi->inp_ip_ttl = inp->inp_ip_ttl; 2800 xi->inp_ip_p = inp->inp_ip_p; 2801 xi->inp_ip_minttl = inp->inp_ip_minttl; 2802 } 2803 2804 int 2805 sysctl_setsockopt(SYSCTL_HANDLER_ARGS, struct inpcbinfo *pcbinfo, 2806 int (*ctloutput_set)(struct inpcb *, struct sockopt *)) 2807 { 2808 struct sockopt sopt; 2809 struct inpcb_iterator inpi = INP_ALL_ITERATOR(pcbinfo, 2810 INPLOOKUP_WLOCKPCB); 2811 struct inpcb *inp; 2812 struct sockopt_parameters *params; 2813 struct socket *so; 2814 int error; 2815 char buf[1024]; 2816 2817 if (req->oldptr != NULL || req->oldlen != 0) 2818 return (EINVAL); 2819 if (req->newptr == NULL) 2820 return (EPERM); 2821 if (req->newlen > sizeof(buf)) 2822 return (ENOMEM); 2823 error = SYSCTL_IN(req, buf, req->newlen); 2824 if (error != 0) 2825 return (error); 2826 if (req->newlen < sizeof(struct sockopt_parameters)) 2827 return (EINVAL); 2828 params = (struct sockopt_parameters *)buf; 2829 sopt.sopt_level = params->sop_level; 2830 sopt.sopt_name = params->sop_optname; 2831 sopt.sopt_dir = SOPT_SET; 2832 sopt.sopt_val = params->sop_optval; 2833 sopt.sopt_valsize = req->newlen - sizeof(struct sockopt_parameters); 2834 sopt.sopt_td = NULL; 2835 #ifdef INET6 2836 if (params->sop_inc.inc_flags & INC_ISIPV6) { 2837 if (IN6_IS_SCOPE_LINKLOCAL(¶ms->sop_inc.inc6_laddr)) 2838 params->sop_inc.inc6_laddr.s6_addr16[1] = 2839 htons(params->sop_inc.inc6_zoneid & 0xffff); 2840 if (IN6_IS_SCOPE_LINKLOCAL(¶ms->sop_inc.inc6_faddr)) 2841 params->sop_inc.inc6_faddr.s6_addr16[1] = 2842 htons(params->sop_inc.inc6_zoneid & 0xffff); 2843 } 2844 #endif 2845 if (params->sop_inc.inc_lport != htons(0)) { 2846 if (params->sop_inc.inc_fport == htons(0)) 2847 inpi.hash = INP_PCBHASH_WILD(params->sop_inc.inc_lport, 2848 pcbinfo->ipi_hashmask); 2849 else 2850 #ifdef INET6 2851 if (params->sop_inc.inc_flags & INC_ISIPV6) 2852 inpi.hash = INP6_PCBHASH( 2853 ¶ms->sop_inc.inc6_faddr, 2854 params->sop_inc.inc_lport, 2855 params->sop_inc.inc_fport, 2856 pcbinfo->ipi_hashmask); 2857 else 2858 #endif 2859 inpi.hash = INP_PCBHASH( 2860 ¶ms->sop_inc.inc_faddr, 2861 params->sop_inc.inc_lport, 2862 params->sop_inc.inc_fport, 2863 pcbinfo->ipi_hashmask); 2864 } 2865 while ((inp = inp_next(&inpi)) != NULL) 2866 if (inp->inp_gencnt == params->sop_id) { 2867 if (inp->inp_flags & INP_DROPPED) { 2868 INP_WUNLOCK(inp); 2869 return (ECONNRESET); 2870 } 2871 so = inp->inp_socket; 2872 KASSERT(so != NULL, ("inp_socket == NULL")); 2873 soref(so); 2874 error = (*ctloutput_set)(inp, &sopt); 2875 sorele(so); 2876 break; 2877 } 2878 if (inp == NULL) 2879 error = ESRCH; 2880 return (error); 2881 } 2882 2883 #ifdef DDB 2884 static void 2885 db_print_indent(int indent) 2886 { 2887 int i; 2888 2889 for (i = 0; i < indent; i++) 2890 db_printf(" "); 2891 } 2892 2893 static void 2894 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent) 2895 { 2896 char faddr_str[48], laddr_str[48]; 2897 2898 db_print_indent(indent); 2899 db_printf("%s at %p\n", name, inc); 2900 2901 indent += 2; 2902 2903 #ifdef INET6 2904 if (inc->inc_flags & INC_ISIPV6) { 2905 /* IPv6. */ 2906 ip6_sprintf(laddr_str, &inc->inc6_laddr); 2907 ip6_sprintf(faddr_str, &inc->inc6_faddr); 2908 } else 2909 #endif 2910 { 2911 /* IPv4. */ 2912 inet_ntoa_r(inc->inc_laddr, laddr_str); 2913 inet_ntoa_r(inc->inc_faddr, faddr_str); 2914 } 2915 db_print_indent(indent); 2916 db_printf("inc_laddr %s inc_lport %u\n", laddr_str, 2917 ntohs(inc->inc_lport)); 2918 db_print_indent(indent); 2919 db_printf("inc_faddr %s inc_fport %u\n", faddr_str, 2920 ntohs(inc->inc_fport)); 2921 } 2922 2923 static void 2924 db_print_inpflags(int inp_flags) 2925 { 2926 int comma; 2927 2928 comma = 0; 2929 if (inp_flags & INP_RECVOPTS) { 2930 db_printf("%sINP_RECVOPTS", comma ? ", " : ""); 2931 comma = 1; 2932 } 2933 if (inp_flags & INP_RECVRETOPTS) { 2934 db_printf("%sINP_RECVRETOPTS", comma ? ", " : ""); 2935 comma = 1; 2936 } 2937 if (inp_flags & INP_RECVDSTADDR) { 2938 db_printf("%sINP_RECVDSTADDR", comma ? ", " : ""); 2939 comma = 1; 2940 } 2941 if (inp_flags & INP_ORIGDSTADDR) { 2942 db_printf("%sINP_ORIGDSTADDR", comma ? ", " : ""); 2943 comma = 1; 2944 } 2945 if (inp_flags & INP_HDRINCL) { 2946 db_printf("%sINP_HDRINCL", comma ? ", " : ""); 2947 comma = 1; 2948 } 2949 if (inp_flags & INP_HIGHPORT) { 2950 db_printf("%sINP_HIGHPORT", comma ? ", " : ""); 2951 comma = 1; 2952 } 2953 if (inp_flags & INP_LOWPORT) { 2954 db_printf("%sINP_LOWPORT", comma ? ", " : ""); 2955 comma = 1; 2956 } 2957 if (inp_flags & INP_ANONPORT) { 2958 db_printf("%sINP_ANONPORT", comma ? ", " : ""); 2959 comma = 1; 2960 } 2961 if (inp_flags & INP_RECVIF) { 2962 db_printf("%sINP_RECVIF", comma ? ", " : ""); 2963 comma = 1; 2964 } 2965 if (inp_flags & INP_MTUDISC) { 2966 db_printf("%sINP_MTUDISC", comma ? ", " : ""); 2967 comma = 1; 2968 } 2969 if (inp_flags & INP_RECVTTL) { 2970 db_printf("%sINP_RECVTTL", comma ? ", " : ""); 2971 comma = 1; 2972 } 2973 if (inp_flags & INP_DONTFRAG) { 2974 db_printf("%sINP_DONTFRAG", comma ? ", " : ""); 2975 comma = 1; 2976 } 2977 if (inp_flags & INP_RECVTOS) { 2978 db_printf("%sINP_RECVTOS", comma ? ", " : ""); 2979 comma = 1; 2980 } 2981 if (inp_flags & IN6P_IPV6_V6ONLY) { 2982 db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : ""); 2983 comma = 1; 2984 } 2985 if (inp_flags & IN6P_PKTINFO) { 2986 db_printf("%sIN6P_PKTINFO", comma ? ", " : ""); 2987 comma = 1; 2988 } 2989 if (inp_flags & IN6P_HOPLIMIT) { 2990 db_printf("%sIN6P_HOPLIMIT", comma ? ", " : ""); 2991 comma = 1; 2992 } 2993 if (inp_flags & IN6P_HOPOPTS) { 2994 db_printf("%sIN6P_HOPOPTS", comma ? ", " : ""); 2995 comma = 1; 2996 } 2997 if (inp_flags & IN6P_DSTOPTS) { 2998 db_printf("%sIN6P_DSTOPTS", comma ? ", " : ""); 2999 comma = 1; 3000 } 3001 if (inp_flags & IN6P_RTHDR) { 3002 db_printf("%sIN6P_RTHDR", comma ? ", " : ""); 3003 comma = 1; 3004 } 3005 if (inp_flags & IN6P_RTHDRDSTOPTS) { 3006 db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : ""); 3007 comma = 1; 3008 } 3009 if (inp_flags & IN6P_TCLASS) { 3010 db_printf("%sIN6P_TCLASS", comma ? ", " : ""); 3011 comma = 1; 3012 } 3013 if (inp_flags & IN6P_AUTOFLOWLABEL) { 3014 db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : ""); 3015 comma = 1; 3016 } 3017 if (inp_flags & INP_ONESBCAST) { 3018 db_printf("%sINP_ONESBCAST", comma ? ", " : ""); 3019 comma = 1; 3020 } 3021 if (inp_flags & INP_DROPPED) { 3022 db_printf("%sINP_DROPPED", comma ? ", " : ""); 3023 comma = 1; 3024 } 3025 if (inp_flags & INP_SOCKREF) { 3026 db_printf("%sINP_SOCKREF", comma ? ", " : ""); 3027 comma = 1; 3028 } 3029 if (inp_flags & IN6P_RFC2292) { 3030 db_printf("%sIN6P_RFC2292", comma ? ", " : ""); 3031 comma = 1; 3032 } 3033 if (inp_flags & IN6P_MTU) { 3034 db_printf("IN6P_MTU%s", comma ? ", " : ""); 3035 comma = 1; 3036 } 3037 } 3038 3039 static void 3040 db_print_inpvflag(u_char inp_vflag) 3041 { 3042 int comma; 3043 3044 comma = 0; 3045 if (inp_vflag & INP_IPV4) { 3046 db_printf("%sINP_IPV4", comma ? ", " : ""); 3047 comma = 1; 3048 } 3049 if (inp_vflag & INP_IPV6) { 3050 db_printf("%sINP_IPV6", comma ? ", " : ""); 3051 comma = 1; 3052 } 3053 if (inp_vflag & INP_IPV6PROTO) { 3054 db_printf("%sINP_IPV6PROTO", comma ? ", " : ""); 3055 comma = 1; 3056 } 3057 } 3058 3059 static void 3060 db_print_inpcb(struct inpcb *inp, const char *name, int indent) 3061 { 3062 3063 db_print_indent(indent); 3064 db_printf("%s at %p\n", name, inp); 3065 3066 indent += 2; 3067 3068 db_print_indent(indent); 3069 db_printf("inp_flow: 0x%x\n", inp->inp_flow); 3070 3071 db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent); 3072 3073 db_print_indent(indent); 3074 db_printf("inp_ppcb: %p inp_pcbinfo: %p inp_socket: %p\n", 3075 inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket); 3076 3077 db_print_indent(indent); 3078 db_printf("inp_label: %p inp_flags: 0x%x (", 3079 inp->inp_label, inp->inp_flags); 3080 db_print_inpflags(inp->inp_flags); 3081 db_printf(")\n"); 3082 3083 db_print_indent(indent); 3084 db_printf("inp_sp: %p inp_vflag: 0x%x (", inp->inp_sp, 3085 inp->inp_vflag); 3086 db_print_inpvflag(inp->inp_vflag); 3087 db_printf(")\n"); 3088 3089 db_print_indent(indent); 3090 db_printf("inp_ip_ttl: %d inp_ip_p: %d inp_ip_minttl: %d\n", 3091 inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl); 3092 3093 db_print_indent(indent); 3094 #ifdef INET6 3095 if (inp->inp_vflag & INP_IPV6) { 3096 db_printf("in6p_options: %p in6p_outputopts: %p " 3097 "in6p_moptions: %p\n", inp->in6p_options, 3098 inp->in6p_outputopts, inp->in6p_moptions); 3099 db_printf("in6p_icmp6filt: %p in6p_cksum %d " 3100 "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum, 3101 inp->in6p_hops); 3102 } else 3103 #endif 3104 { 3105 db_printf("inp_ip_tos: %d inp_ip_options: %p " 3106 "inp_ip_moptions: %p\n", inp->inp_ip_tos, 3107 inp->inp_options, inp->inp_moptions); 3108 } 3109 3110 db_print_indent(indent); 3111 db_printf("inp_phd: %p inp_gencnt: %ju\n", inp->inp_phd, 3112 (uintmax_t)inp->inp_gencnt); 3113 } 3114 3115 DB_SHOW_COMMAND(inpcb, db_show_inpcb) 3116 { 3117 struct inpcb *inp; 3118 3119 if (!have_addr) { 3120 db_printf("usage: show inpcb <addr>\n"); 3121 return; 3122 } 3123 inp = (struct inpcb *)addr; 3124 3125 db_print_inpcb(inp, "inpcb", 0); 3126 } 3127 #endif /* DDB */ 3128 3129 #ifdef RATELIMIT 3130 /* 3131 * Modify TX rate limit based on the existing "inp->inp_snd_tag", 3132 * if any. 3133 */ 3134 int 3135 in_pcbmodify_txrtlmt(struct inpcb *inp, uint32_t max_pacing_rate) 3136 { 3137 union if_snd_tag_modify_params params = { 3138 .rate_limit.max_rate = max_pacing_rate, 3139 .rate_limit.flags = M_NOWAIT, 3140 }; 3141 struct m_snd_tag *mst; 3142 int error; 3143 3144 mst = inp->inp_snd_tag; 3145 if (mst == NULL) 3146 return (EINVAL); 3147 3148 if (mst->sw->snd_tag_modify == NULL) { 3149 error = EOPNOTSUPP; 3150 } else { 3151 error = mst->sw->snd_tag_modify(mst, ¶ms); 3152 } 3153 return (error); 3154 } 3155 3156 /* 3157 * Query existing TX rate limit based on the existing 3158 * "inp->inp_snd_tag", if any. 3159 */ 3160 int 3161 in_pcbquery_txrtlmt(struct inpcb *inp, uint32_t *p_max_pacing_rate) 3162 { 3163 union if_snd_tag_query_params params = { }; 3164 struct m_snd_tag *mst; 3165 int error; 3166 3167 mst = inp->inp_snd_tag; 3168 if (mst == NULL) 3169 return (EINVAL); 3170 3171 if (mst->sw->snd_tag_query == NULL) { 3172 error = EOPNOTSUPP; 3173 } else { 3174 error = mst->sw->snd_tag_query(mst, ¶ms); 3175 if (error == 0 && p_max_pacing_rate != NULL) 3176 *p_max_pacing_rate = params.rate_limit.max_rate; 3177 } 3178 return (error); 3179 } 3180 3181 /* 3182 * Query existing TX queue level based on the existing 3183 * "inp->inp_snd_tag", if any. 3184 */ 3185 int 3186 in_pcbquery_txrlevel(struct inpcb *inp, uint32_t *p_txqueue_level) 3187 { 3188 union if_snd_tag_query_params params = { }; 3189 struct m_snd_tag *mst; 3190 int error; 3191 3192 mst = inp->inp_snd_tag; 3193 if (mst == NULL) 3194 return (EINVAL); 3195 3196 if (mst->sw->snd_tag_query == NULL) 3197 return (EOPNOTSUPP); 3198 3199 error = mst->sw->snd_tag_query(mst, ¶ms); 3200 if (error == 0 && p_txqueue_level != NULL) 3201 *p_txqueue_level = params.rate_limit.queue_level; 3202 return (error); 3203 } 3204 3205 /* 3206 * Allocate a new TX rate limit send tag from the network interface 3207 * given by the "ifp" argument and save it in "inp->inp_snd_tag": 3208 */ 3209 int 3210 in_pcbattach_txrtlmt(struct inpcb *inp, struct ifnet *ifp, 3211 uint32_t flowtype, uint32_t flowid, uint32_t max_pacing_rate, struct m_snd_tag **st) 3212 3213 { 3214 union if_snd_tag_alloc_params params = { 3215 .rate_limit.hdr.type = (max_pacing_rate == -1U) ? 3216 IF_SND_TAG_TYPE_UNLIMITED : IF_SND_TAG_TYPE_RATE_LIMIT, 3217 .rate_limit.hdr.flowid = flowid, 3218 .rate_limit.hdr.flowtype = flowtype, 3219 .rate_limit.hdr.numa_domain = inp->inp_numa_domain, 3220 .rate_limit.max_rate = max_pacing_rate, 3221 .rate_limit.flags = M_NOWAIT, 3222 }; 3223 int error; 3224 3225 INP_WLOCK_ASSERT(inp); 3226 3227 /* 3228 * If there is already a send tag, or the INP is being torn 3229 * down, allocating a new send tag is not allowed. Else send 3230 * tags may leak. 3231 */ 3232 if (*st != NULL || (inp->inp_flags & INP_DROPPED) != 0) 3233 return (EINVAL); 3234 3235 error = m_snd_tag_alloc(ifp, ¶ms, st); 3236 #ifdef INET 3237 if (error == 0) { 3238 counter_u64_add(rate_limit_set_ok, 1); 3239 counter_u64_add(rate_limit_active, 1); 3240 } else if (error != EOPNOTSUPP) 3241 counter_u64_add(rate_limit_alloc_fail, 1); 3242 #endif 3243 return (error); 3244 } 3245 3246 void 3247 in_pcbdetach_tag(struct m_snd_tag *mst) 3248 { 3249 3250 m_snd_tag_rele(mst); 3251 #ifdef INET 3252 counter_u64_add(rate_limit_active, -1); 3253 #endif 3254 } 3255 3256 /* 3257 * Free an existing TX rate limit tag based on the "inp->inp_snd_tag", 3258 * if any: 3259 */ 3260 void 3261 in_pcbdetach_txrtlmt(struct inpcb *inp) 3262 { 3263 struct m_snd_tag *mst; 3264 3265 INP_WLOCK_ASSERT(inp); 3266 3267 mst = inp->inp_snd_tag; 3268 inp->inp_snd_tag = NULL; 3269 3270 if (mst == NULL) 3271 return; 3272 3273 m_snd_tag_rele(mst); 3274 #ifdef INET 3275 counter_u64_add(rate_limit_active, -1); 3276 #endif 3277 } 3278 3279 int 3280 in_pcboutput_txrtlmt_locked(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb, uint32_t max_pacing_rate) 3281 { 3282 int error; 3283 3284 /* 3285 * If the existing send tag is for the wrong interface due to 3286 * a route change, first drop the existing tag. Set the 3287 * CHANGED flag so that we will keep trying to allocate a new 3288 * tag if we fail to allocate one this time. 3289 */ 3290 if (inp->inp_snd_tag != NULL && inp->inp_snd_tag->ifp != ifp) { 3291 in_pcbdetach_txrtlmt(inp); 3292 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 3293 } 3294 3295 /* 3296 * NOTE: When attaching to a network interface a reference is 3297 * made to ensure the network interface doesn't go away until 3298 * all ratelimit connections are gone. The network interface 3299 * pointers compared below represent valid network interfaces, 3300 * except when comparing towards NULL. 3301 */ 3302 if (max_pacing_rate == 0 && inp->inp_snd_tag == NULL) { 3303 error = 0; 3304 } else if (!(ifp->if_capenable & IFCAP_TXRTLMT)) { 3305 if (inp->inp_snd_tag != NULL) 3306 in_pcbdetach_txrtlmt(inp); 3307 error = 0; 3308 } else if (inp->inp_snd_tag == NULL) { 3309 /* 3310 * In order to utilize packet pacing with RSS, we need 3311 * to wait until there is a valid RSS hash before we 3312 * can proceed: 3313 */ 3314 if (M_HASHTYPE_GET(mb) == M_HASHTYPE_NONE) { 3315 error = EAGAIN; 3316 } else { 3317 error = in_pcbattach_txrtlmt(inp, ifp, M_HASHTYPE_GET(mb), 3318 mb->m_pkthdr.flowid, max_pacing_rate, &inp->inp_snd_tag); 3319 } 3320 } else { 3321 error = in_pcbmodify_txrtlmt(inp, max_pacing_rate); 3322 } 3323 if (error == 0 || error == EOPNOTSUPP) 3324 inp->inp_flags2 &= ~INP_RATE_LIMIT_CHANGED; 3325 3326 return (error); 3327 } 3328 3329 /* 3330 * This function should be called when the INP_RATE_LIMIT_CHANGED flag 3331 * is set in the fast path and will attach/detach/modify the TX rate 3332 * limit send tag based on the socket's so_max_pacing_rate value. 3333 */ 3334 void 3335 in_pcboutput_txrtlmt(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb) 3336 { 3337 struct socket *socket; 3338 uint32_t max_pacing_rate; 3339 bool did_upgrade; 3340 3341 if (inp == NULL) 3342 return; 3343 3344 socket = inp->inp_socket; 3345 if (socket == NULL) 3346 return; 3347 3348 if (!INP_WLOCKED(inp)) { 3349 /* 3350 * NOTE: If the write locking fails, we need to bail 3351 * out and use the non-ratelimited ring for the 3352 * transmit until there is a new chance to get the 3353 * write lock. 3354 */ 3355 if (!INP_TRY_UPGRADE(inp)) 3356 return; 3357 did_upgrade = 1; 3358 } else { 3359 did_upgrade = 0; 3360 } 3361 3362 /* 3363 * NOTE: The so_max_pacing_rate value is read unlocked, 3364 * because atomic updates are not required since the variable 3365 * is checked at every mbuf we send. It is assumed that the 3366 * variable read itself will be atomic. 3367 */ 3368 max_pacing_rate = socket->so_max_pacing_rate; 3369 3370 in_pcboutput_txrtlmt_locked(inp, ifp, mb, max_pacing_rate); 3371 3372 if (did_upgrade) 3373 INP_DOWNGRADE(inp); 3374 } 3375 3376 /* 3377 * Track route changes for TX rate limiting. 3378 */ 3379 void 3380 in_pcboutput_eagain(struct inpcb *inp) 3381 { 3382 bool did_upgrade; 3383 3384 if (inp == NULL) 3385 return; 3386 3387 if (inp->inp_snd_tag == NULL) 3388 return; 3389 3390 if (!INP_WLOCKED(inp)) { 3391 /* 3392 * NOTE: If the write locking fails, we need to bail 3393 * out and use the non-ratelimited ring for the 3394 * transmit until there is a new chance to get the 3395 * write lock. 3396 */ 3397 if (!INP_TRY_UPGRADE(inp)) 3398 return; 3399 did_upgrade = 1; 3400 } else { 3401 did_upgrade = 0; 3402 } 3403 3404 /* detach rate limiting */ 3405 in_pcbdetach_txrtlmt(inp); 3406 3407 /* make sure new mbuf send tag allocation is made */ 3408 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 3409 3410 if (did_upgrade) 3411 INP_DOWNGRADE(inp); 3412 } 3413 3414 #ifdef INET 3415 static void 3416 rl_init(void *st) 3417 { 3418 rate_limit_new = counter_u64_alloc(M_WAITOK); 3419 rate_limit_chg = counter_u64_alloc(M_WAITOK); 3420 rate_limit_active = counter_u64_alloc(M_WAITOK); 3421 rate_limit_alloc_fail = counter_u64_alloc(M_WAITOK); 3422 rate_limit_set_ok = counter_u64_alloc(M_WAITOK); 3423 } 3424 3425 SYSINIT(rl, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, rl_init, NULL); 3426 #endif 3427 #endif /* RATELIMIT */ 3428