1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1991, 1993, 1995 5 * The Regents of the University of California. 6 * Copyright (c) 2007-2009 Robert N. M. Watson 7 * Copyright (c) 2010-2011 Juniper Networks, Inc. 8 * All rights reserved. 9 * 10 * Portions of this software were developed by Robert N. M. Watson under 11 * contract to Juniper Networks, Inc. 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 3. Neither the name of the University nor the names of its contributors 22 * may be used to endorse or promote products derived from this software 23 * without specific prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 35 * SUCH DAMAGE. 36 * 37 * @(#)in_pcb.c 8.4 (Berkeley) 5/24/95 38 */ 39 40 #include <sys/cdefs.h> 41 __FBSDID("$FreeBSD$"); 42 43 #include "opt_ddb.h" 44 #include "opt_ipsec.h" 45 #include "opt_inet.h" 46 #include "opt_inet6.h" 47 #include "opt_ratelimit.h" 48 #include "opt_pcbgroup.h" 49 #include "opt_route.h" 50 #include "opt_rss.h" 51 52 #include <sys/param.h> 53 #include <sys/systm.h> 54 #include <sys/lock.h> 55 #include <sys/malloc.h> 56 #include <sys/mbuf.h> 57 #include <sys/callout.h> 58 #include <sys/eventhandler.h> 59 #include <sys/domain.h> 60 #include <sys/protosw.h> 61 #include <sys/rmlock.h> 62 #include <sys/smp.h> 63 #include <sys/socket.h> 64 #include <sys/socketvar.h> 65 #include <sys/sockio.h> 66 #include <sys/priv.h> 67 #include <sys/proc.h> 68 #include <sys/refcount.h> 69 #include <sys/jail.h> 70 #include <sys/kernel.h> 71 #include <sys/sysctl.h> 72 73 #ifdef DDB 74 #include <ddb/ddb.h> 75 #endif 76 77 #include <vm/uma.h> 78 #include <vm/vm.h> 79 80 #include <net/if.h> 81 #include <net/if_var.h> 82 #include <net/if_types.h> 83 #include <net/if_llatbl.h> 84 #include <net/route.h> 85 #include <net/rss_config.h> 86 #include <net/vnet.h> 87 88 #if defined(INET) || defined(INET6) 89 #include <netinet/in.h> 90 #include <netinet/in_pcb.h> 91 #ifdef INET 92 #include <netinet/in_var.h> 93 #include <netinet/in_fib.h> 94 #endif 95 #include <netinet/ip_var.h> 96 #include <netinet/tcp_var.h> 97 #ifdef TCPHPTS 98 #include <netinet/tcp_hpts.h> 99 #endif 100 #include <netinet/udp.h> 101 #include <netinet/udp_var.h> 102 #ifdef INET6 103 #include <netinet/ip6.h> 104 #include <netinet6/in6_pcb.h> 105 #include <netinet6/in6_var.h> 106 #include <netinet6/ip6_var.h> 107 #endif /* INET6 */ 108 #include <net/route/nhop.h> 109 #endif 110 111 #include <netipsec/ipsec_support.h> 112 113 #include <security/mac/mac_framework.h> 114 115 #define INPCBLBGROUP_SIZMIN 8 116 #define INPCBLBGROUP_SIZMAX 256 117 118 static struct callout ipport_tick_callout; 119 120 /* 121 * These configure the range of local port addresses assigned to 122 * "unspecified" outgoing connections/packets/whatever. 123 */ 124 VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1; /* 1023 */ 125 VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART; /* 600 */ 126 VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST; /* 10000 */ 127 VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST; /* 65535 */ 128 VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO; /* 49152 */ 129 VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO; /* 65535 */ 130 131 /* 132 * Reserved ports accessible only to root. There are significant 133 * security considerations that must be accounted for when changing these, 134 * but the security benefits can be great. Please be careful. 135 */ 136 VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1; /* 1023 */ 137 VNET_DEFINE(int, ipport_reservedlow); 138 139 /* Variables dealing with random ephemeral port allocation. */ 140 VNET_DEFINE(int, ipport_randomized) = 1; /* user controlled via sysctl */ 141 VNET_DEFINE(int, ipport_randomcps) = 10; /* user controlled via sysctl */ 142 VNET_DEFINE(int, ipport_randomtime) = 45; /* user controlled via sysctl */ 143 VNET_DEFINE(int, ipport_stoprandom); /* toggled by ipport_tick */ 144 VNET_DEFINE(int, ipport_tcpallocs); 145 VNET_DEFINE_STATIC(int, ipport_tcplastcount); 146 147 #define V_ipport_tcplastcount VNET(ipport_tcplastcount) 148 149 static void in_pcbremlists(struct inpcb *inp); 150 #ifdef INET 151 static struct inpcb *in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, 152 struct in_addr faddr, u_int fport_arg, 153 struct in_addr laddr, u_int lport_arg, 154 int lookupflags, struct ifnet *ifp, 155 uint8_t numa_domain); 156 157 #define RANGECHK(var, min, max) \ 158 if ((var) < (min)) { (var) = (min); } \ 159 else if ((var) > (max)) { (var) = (max); } 160 161 static int 162 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS) 163 { 164 int error; 165 166 error = sysctl_handle_int(oidp, arg1, arg2, req); 167 if (error == 0) { 168 RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1); 169 RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1); 170 RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX); 171 RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX); 172 RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX); 173 RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX); 174 } 175 return (error); 176 } 177 178 #undef RANGECHK 179 180 static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, 181 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 182 "IP Ports"); 183 184 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst, 185 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 186 &VNET_NAME(ipport_lowfirstauto), 0, &sysctl_net_ipport_check, "I", 187 ""); 188 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast, 189 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 190 &VNET_NAME(ipport_lowlastauto), 0, &sysctl_net_ipport_check, "I", 191 ""); 192 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first, 193 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 194 &VNET_NAME(ipport_firstauto), 0, &sysctl_net_ipport_check, "I", 195 ""); 196 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last, 197 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 198 &VNET_NAME(ipport_lastauto), 0, &sysctl_net_ipport_check, "I", 199 ""); 200 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst, 201 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 202 &VNET_NAME(ipport_hifirstauto), 0, &sysctl_net_ipport_check, "I", 203 ""); 204 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast, 205 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 206 &VNET_NAME(ipport_hilastauto), 0, &sysctl_net_ipport_check, "I", 207 ""); 208 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh, 209 CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE, 210 &VNET_NAME(ipport_reservedhigh), 0, ""); 211 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow, 212 CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, ""); 213 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized, 214 CTLFLAG_VNET | CTLFLAG_RW, 215 &VNET_NAME(ipport_randomized), 0, "Enable random port allocation"); 216 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomcps, 217 CTLFLAG_VNET | CTLFLAG_RW, 218 &VNET_NAME(ipport_randomcps), 0, "Maximum number of random port " 219 "allocations before switching to a sequental one"); 220 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomtime, 221 CTLFLAG_VNET | CTLFLAG_RW, 222 &VNET_NAME(ipport_randomtime), 0, 223 "Minimum time to keep sequental port " 224 "allocation before switching to a random one"); 225 226 #ifdef RATELIMIT 227 counter_u64_t rate_limit_active; 228 counter_u64_t rate_limit_alloc_fail; 229 counter_u64_t rate_limit_set_ok; 230 231 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, rl, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 232 "IP Rate Limiting"); 233 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, active, CTLFLAG_RD, 234 &rate_limit_active, "Active rate limited connections"); 235 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, alloc_fail, CTLFLAG_RD, 236 &rate_limit_alloc_fail, "Rate limited connection failures"); 237 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, set_ok, CTLFLAG_RD, 238 &rate_limit_set_ok, "Rate limited setting succeeded"); 239 #endif /* RATELIMIT */ 240 241 #endif /* INET */ 242 243 /* 244 * in_pcb.c: manage the Protocol Control Blocks. 245 * 246 * NOTE: It is assumed that most of these functions will be called with 247 * the pcbinfo lock held, and often, the inpcb lock held, as these utility 248 * functions often modify hash chains or addresses in pcbs. 249 */ 250 251 static struct inpcblbgroup * 252 in_pcblbgroup_alloc(struct inpcblbgrouphead *hdr, u_char vflag, 253 uint16_t port, const union in_dependaddr *addr, int size, 254 uint8_t numa_domain) 255 { 256 struct inpcblbgroup *grp; 257 size_t bytes; 258 259 bytes = __offsetof(struct inpcblbgroup, il_inp[size]); 260 grp = malloc(bytes, M_PCB, M_ZERO | M_NOWAIT); 261 if (!grp) 262 return (NULL); 263 grp->il_vflag = vflag; 264 grp->il_lport = port; 265 grp->il_numa_domain = numa_domain; 266 grp->il_dependladdr = *addr; 267 grp->il_inpsiz = size; 268 CK_LIST_INSERT_HEAD(hdr, grp, il_list); 269 return (grp); 270 } 271 272 static void 273 in_pcblbgroup_free_deferred(epoch_context_t ctx) 274 { 275 struct inpcblbgroup *grp; 276 277 grp = __containerof(ctx, struct inpcblbgroup, il_epoch_ctx); 278 free(grp, M_PCB); 279 } 280 281 static void 282 in_pcblbgroup_free(struct inpcblbgroup *grp) 283 { 284 285 CK_LIST_REMOVE(grp, il_list); 286 NET_EPOCH_CALL(in_pcblbgroup_free_deferred, &grp->il_epoch_ctx); 287 } 288 289 static struct inpcblbgroup * 290 in_pcblbgroup_resize(struct inpcblbgrouphead *hdr, 291 struct inpcblbgroup *old_grp, int size) 292 { 293 struct inpcblbgroup *grp; 294 int i; 295 296 grp = in_pcblbgroup_alloc(hdr, old_grp->il_vflag, 297 old_grp->il_lport, &old_grp->il_dependladdr, size, 298 old_grp->il_numa_domain); 299 if (grp == NULL) 300 return (NULL); 301 302 KASSERT(old_grp->il_inpcnt < grp->il_inpsiz, 303 ("invalid new local group size %d and old local group count %d", 304 grp->il_inpsiz, old_grp->il_inpcnt)); 305 306 for (i = 0; i < old_grp->il_inpcnt; ++i) 307 grp->il_inp[i] = old_grp->il_inp[i]; 308 grp->il_inpcnt = old_grp->il_inpcnt; 309 in_pcblbgroup_free(old_grp); 310 return (grp); 311 } 312 313 /* 314 * PCB at index 'i' is removed from the group. Pull up the ones below il_inp[i] 315 * and shrink group if possible. 316 */ 317 static void 318 in_pcblbgroup_reorder(struct inpcblbgrouphead *hdr, struct inpcblbgroup **grpp, 319 int i) 320 { 321 struct inpcblbgroup *grp, *new_grp; 322 323 grp = *grpp; 324 for (; i + 1 < grp->il_inpcnt; ++i) 325 grp->il_inp[i] = grp->il_inp[i + 1]; 326 grp->il_inpcnt--; 327 328 if (grp->il_inpsiz > INPCBLBGROUP_SIZMIN && 329 grp->il_inpcnt <= grp->il_inpsiz / 4) { 330 /* Shrink this group. */ 331 new_grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz / 2); 332 if (new_grp != NULL) 333 *grpp = new_grp; 334 } 335 } 336 337 /* 338 * Add PCB to load balance group for SO_REUSEPORT_LB option. 339 */ 340 static int 341 in_pcbinslbgrouphash(struct inpcb *inp, uint8_t numa_domain) 342 { 343 const static struct timeval interval = { 60, 0 }; 344 static struct timeval lastprint; 345 struct inpcbinfo *pcbinfo; 346 struct inpcblbgrouphead *hdr; 347 struct inpcblbgroup *grp; 348 uint32_t idx; 349 350 pcbinfo = inp->inp_pcbinfo; 351 352 INP_WLOCK_ASSERT(inp); 353 INP_HASH_WLOCK_ASSERT(pcbinfo); 354 355 /* 356 * Don't allow jailed socket to join local group. 357 */ 358 if (inp->inp_socket != NULL && jailed(inp->inp_socket->so_cred)) 359 return (0); 360 361 #ifdef INET6 362 /* 363 * Don't allow IPv4 mapped INET6 wild socket. 364 */ 365 if ((inp->inp_vflag & INP_IPV4) && 366 inp->inp_laddr.s_addr == INADDR_ANY && 367 INP_CHECK_SOCKAF(inp->inp_socket, AF_INET6)) { 368 return (0); 369 } 370 #endif 371 372 idx = INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask); 373 hdr = &pcbinfo->ipi_lbgrouphashbase[idx]; 374 CK_LIST_FOREACH(grp, hdr, il_list) { 375 if (grp->il_vflag == inp->inp_vflag && 376 grp->il_lport == inp->inp_lport && 377 grp->il_numa_domain == numa_domain && 378 memcmp(&grp->il_dependladdr, 379 &inp->inp_inc.inc_ie.ie_dependladdr, 380 sizeof(grp->il_dependladdr)) == 0) 381 break; 382 } 383 if (grp == NULL) { 384 /* Create new load balance group. */ 385 grp = in_pcblbgroup_alloc(hdr, inp->inp_vflag, 386 inp->inp_lport, &inp->inp_inc.inc_ie.ie_dependladdr, 387 INPCBLBGROUP_SIZMIN, numa_domain); 388 if (grp == NULL) 389 return (ENOBUFS); 390 } else if (grp->il_inpcnt == grp->il_inpsiz) { 391 if (grp->il_inpsiz >= INPCBLBGROUP_SIZMAX) { 392 if (ratecheck(&lastprint, &interval)) 393 printf("lb group port %d, limit reached\n", 394 ntohs(grp->il_lport)); 395 return (0); 396 } 397 398 /* Expand this local group. */ 399 grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz * 2); 400 if (grp == NULL) 401 return (ENOBUFS); 402 } 403 404 KASSERT(grp->il_inpcnt < grp->il_inpsiz, 405 ("invalid local group size %d and count %d", grp->il_inpsiz, 406 grp->il_inpcnt)); 407 408 grp->il_inp[grp->il_inpcnt] = inp; 409 grp->il_inpcnt++; 410 return (0); 411 } 412 413 /* 414 * Remove PCB from load balance group. 415 */ 416 static void 417 in_pcbremlbgrouphash(struct inpcb *inp) 418 { 419 struct inpcbinfo *pcbinfo; 420 struct inpcblbgrouphead *hdr; 421 struct inpcblbgroup *grp; 422 int i; 423 424 pcbinfo = inp->inp_pcbinfo; 425 426 INP_WLOCK_ASSERT(inp); 427 INP_HASH_WLOCK_ASSERT(pcbinfo); 428 429 hdr = &pcbinfo->ipi_lbgrouphashbase[ 430 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask)]; 431 CK_LIST_FOREACH(grp, hdr, il_list) { 432 for (i = 0; i < grp->il_inpcnt; ++i) { 433 if (grp->il_inp[i] != inp) 434 continue; 435 436 if (grp->il_inpcnt == 1) { 437 /* We are the last, free this local group. */ 438 in_pcblbgroup_free(grp); 439 } else { 440 /* Pull up inpcbs, shrink group if possible. */ 441 in_pcblbgroup_reorder(hdr, &grp, i); 442 } 443 return; 444 } 445 } 446 } 447 448 int 449 in_pcblbgroup_numa(struct inpcb *inp, int arg) 450 { 451 struct inpcbinfo *pcbinfo; 452 struct inpcblbgrouphead *hdr; 453 struct inpcblbgroup *grp; 454 int err, i; 455 uint8_t numa_domain; 456 457 switch (arg) { 458 case TCP_REUSPORT_LB_NUMA_NODOM: 459 numa_domain = M_NODOM; 460 break; 461 case TCP_REUSPORT_LB_NUMA_CURDOM: 462 numa_domain = PCPU_GET(domain); 463 break; 464 default: 465 if (arg < 0 || arg >= vm_ndomains) 466 return (EINVAL); 467 numa_domain = arg; 468 } 469 470 err = 0; 471 pcbinfo = inp->inp_pcbinfo; 472 INP_WLOCK_ASSERT(inp); 473 INP_HASH_WLOCK(pcbinfo); 474 hdr = &pcbinfo->ipi_lbgrouphashbase[ 475 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask)]; 476 CK_LIST_FOREACH(grp, hdr, il_list) { 477 for (i = 0; i < grp->il_inpcnt; ++i) { 478 if (grp->il_inp[i] != inp) 479 continue; 480 481 if (grp->il_numa_domain == numa_domain) { 482 goto abort_with_hash_wlock; 483 } 484 485 /* Remove it from the old group. */ 486 in_pcbremlbgrouphash(inp); 487 488 /* Add it to the new group based on numa domain. */ 489 in_pcbinslbgrouphash(inp, numa_domain); 490 goto abort_with_hash_wlock; 491 } 492 } 493 err = ENOENT; 494 abort_with_hash_wlock: 495 INP_HASH_WUNLOCK(pcbinfo); 496 return (err); 497 } 498 499 /* 500 * Different protocols initialize their inpcbs differently - giving 501 * different name to the lock. But they all are disposed the same. 502 */ 503 static void 504 inpcb_fini(void *mem, int size) 505 { 506 struct inpcb *inp = mem; 507 508 INP_LOCK_DESTROY(inp); 509 } 510 511 /* 512 * Initialize an inpcbinfo -- we should be able to reduce the number of 513 * arguments in time. 514 */ 515 void 516 in_pcbinfo_init(struct inpcbinfo *pcbinfo, const char *name, 517 struct inpcbhead *listhead, int hash_nelements, int porthash_nelements, 518 char *inpcbzone_name, uma_init inpcbzone_init, u_int hashfields) 519 { 520 521 porthash_nelements = imin(porthash_nelements, IPPORT_MAX + 1); 522 523 INP_INFO_LOCK_INIT(pcbinfo, name); 524 INP_HASH_LOCK_INIT(pcbinfo, "pcbinfohash"); /* XXXRW: argument? */ 525 INP_LIST_LOCK_INIT(pcbinfo, "pcbinfolist"); 526 #ifdef VIMAGE 527 pcbinfo->ipi_vnet = curvnet; 528 #endif 529 pcbinfo->ipi_listhead = listhead; 530 CK_LIST_INIT(pcbinfo->ipi_listhead); 531 pcbinfo->ipi_count = 0; 532 pcbinfo->ipi_hashbase = hashinit(hash_nelements, M_PCB, 533 &pcbinfo->ipi_hashmask); 534 pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB, 535 &pcbinfo->ipi_porthashmask); 536 pcbinfo->ipi_lbgrouphashbase = hashinit(porthash_nelements, M_PCB, 537 &pcbinfo->ipi_lbgrouphashmask); 538 #ifdef PCBGROUP 539 in_pcbgroup_init(pcbinfo, hashfields, hash_nelements); 540 #endif 541 pcbinfo->ipi_zone = uma_zcreate(inpcbzone_name, sizeof(struct inpcb), 542 NULL, NULL, inpcbzone_init, inpcb_fini, UMA_ALIGN_PTR, 0); 543 uma_zone_set_max(pcbinfo->ipi_zone, maxsockets); 544 uma_zone_set_warning(pcbinfo->ipi_zone, 545 "kern.ipc.maxsockets limit reached"); 546 } 547 548 /* 549 * Destroy an inpcbinfo. 550 */ 551 void 552 in_pcbinfo_destroy(struct inpcbinfo *pcbinfo) 553 { 554 555 KASSERT(pcbinfo->ipi_count == 0, 556 ("%s: ipi_count = %u", __func__, pcbinfo->ipi_count)); 557 558 hashdestroy(pcbinfo->ipi_hashbase, M_PCB, pcbinfo->ipi_hashmask); 559 hashdestroy(pcbinfo->ipi_porthashbase, M_PCB, 560 pcbinfo->ipi_porthashmask); 561 hashdestroy(pcbinfo->ipi_lbgrouphashbase, M_PCB, 562 pcbinfo->ipi_lbgrouphashmask); 563 #ifdef PCBGROUP 564 in_pcbgroup_destroy(pcbinfo); 565 #endif 566 uma_zdestroy(pcbinfo->ipi_zone); 567 INP_LIST_LOCK_DESTROY(pcbinfo); 568 INP_HASH_LOCK_DESTROY(pcbinfo); 569 INP_INFO_LOCK_DESTROY(pcbinfo); 570 } 571 572 /* 573 * Allocate a PCB and associate it with the socket. 574 * On success return with the PCB locked. 575 */ 576 int 577 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo) 578 { 579 struct inpcb *inp; 580 int error; 581 582 error = 0; 583 inp = uma_zalloc(pcbinfo->ipi_zone, M_NOWAIT); 584 if (inp == NULL) 585 return (ENOBUFS); 586 bzero(&inp->inp_start_zero, inp_zero_size); 587 #ifdef NUMA 588 inp->inp_numa_domain = M_NODOM; 589 #endif 590 inp->inp_pcbinfo = pcbinfo; 591 inp->inp_socket = so; 592 inp->inp_cred = crhold(so->so_cred); 593 inp->inp_inc.inc_fibnum = so->so_fibnum; 594 #ifdef MAC 595 error = mac_inpcb_init(inp, M_NOWAIT); 596 if (error != 0) 597 goto out; 598 mac_inpcb_create(so, inp); 599 #endif 600 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 601 error = ipsec_init_pcbpolicy(inp); 602 if (error != 0) { 603 #ifdef MAC 604 mac_inpcb_destroy(inp); 605 #endif 606 goto out; 607 } 608 #endif /*IPSEC*/ 609 #ifdef INET6 610 if (INP_SOCKAF(so) == AF_INET6) { 611 inp->inp_vflag |= INP_IPV6PROTO; 612 if (V_ip6_v6only) 613 inp->inp_flags |= IN6P_IPV6_V6ONLY; 614 } 615 #endif 616 INP_WLOCK(inp); 617 INP_LIST_WLOCK(pcbinfo); 618 CK_LIST_INSERT_HEAD(pcbinfo->ipi_listhead, inp, inp_list); 619 pcbinfo->ipi_count++; 620 so->so_pcb = (caddr_t)inp; 621 #ifdef INET6 622 if (V_ip6_auto_flowlabel) 623 inp->inp_flags |= IN6P_AUTOFLOWLABEL; 624 #endif 625 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 626 refcount_init(&inp->inp_refcount, 1); /* Reference from inpcbinfo */ 627 628 /* 629 * Routes in inpcb's can cache L2 as well; they are guaranteed 630 * to be cleaned up. 631 */ 632 inp->inp_route.ro_flags = RT_LLE_CACHE; 633 INP_LIST_WUNLOCK(pcbinfo); 634 #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC) 635 out: 636 if (error != 0) { 637 crfree(inp->inp_cred); 638 uma_zfree(pcbinfo->ipi_zone, inp); 639 } 640 #endif 641 return (error); 642 } 643 644 #ifdef INET 645 int 646 in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred) 647 { 648 int anonport, error; 649 650 INP_WLOCK_ASSERT(inp); 651 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 652 653 if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY) 654 return (EINVAL); 655 anonport = nam == NULL || ((struct sockaddr_in *)nam)->sin_port == 0; 656 error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr, 657 &inp->inp_lport, cred); 658 if (error) 659 return (error); 660 if (in_pcbinshash(inp) != 0) { 661 inp->inp_laddr.s_addr = INADDR_ANY; 662 inp->inp_lport = 0; 663 return (EAGAIN); 664 } 665 if (anonport) 666 inp->inp_flags |= INP_ANONPORT; 667 return (0); 668 } 669 #endif 670 671 #if defined(INET) || defined(INET6) 672 /* 673 * Assign a local port like in_pcb_lport(), but also used with connect() 674 * and a foreign address and port. If fsa is non-NULL, choose a local port 675 * that is unused with those, otherwise one that is completely unused. 676 * lsa can be NULL for IPv6. 677 */ 678 int 679 in_pcb_lport_dest(struct inpcb *inp, struct sockaddr *lsa, u_short *lportp, 680 struct sockaddr *fsa, u_short fport, struct ucred *cred, int lookupflags) 681 { 682 struct inpcbinfo *pcbinfo; 683 struct inpcb *tmpinp; 684 unsigned short *lastport; 685 int count, dorandom, error; 686 u_short aux, first, last, lport; 687 #ifdef INET 688 struct in_addr laddr, faddr; 689 #endif 690 #ifdef INET6 691 struct in6_addr *laddr6, *faddr6; 692 #endif 693 694 pcbinfo = inp->inp_pcbinfo; 695 696 /* 697 * Because no actual state changes occur here, a global write lock on 698 * the pcbinfo isn't required. 699 */ 700 INP_LOCK_ASSERT(inp); 701 INP_HASH_LOCK_ASSERT(pcbinfo); 702 703 if (inp->inp_flags & INP_HIGHPORT) { 704 first = V_ipport_hifirstauto; /* sysctl */ 705 last = V_ipport_hilastauto; 706 lastport = &pcbinfo->ipi_lasthi; 707 } else if (inp->inp_flags & INP_LOWPORT) { 708 error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT); 709 if (error) 710 return (error); 711 first = V_ipport_lowfirstauto; /* 1023 */ 712 last = V_ipport_lowlastauto; /* 600 */ 713 lastport = &pcbinfo->ipi_lastlow; 714 } else { 715 first = V_ipport_firstauto; /* sysctl */ 716 last = V_ipport_lastauto; 717 lastport = &pcbinfo->ipi_lastport; 718 } 719 /* 720 * For UDP(-Lite), use random port allocation as long as the user 721 * allows it. For TCP (and as of yet unknown) connections, 722 * use random port allocation only if the user allows it AND 723 * ipport_tick() allows it. 724 */ 725 if (V_ipport_randomized && 726 (!V_ipport_stoprandom || pcbinfo == &V_udbinfo || 727 pcbinfo == &V_ulitecbinfo)) 728 dorandom = 1; 729 else 730 dorandom = 0; 731 /* 732 * It makes no sense to do random port allocation if 733 * we have the only port available. 734 */ 735 if (first == last) 736 dorandom = 0; 737 /* Make sure to not include UDP(-Lite) packets in the count. */ 738 if (pcbinfo != &V_udbinfo || pcbinfo != &V_ulitecbinfo) 739 V_ipport_tcpallocs++; 740 /* 741 * Instead of having two loops further down counting up or down 742 * make sure that first is always <= last and go with only one 743 * code path implementing all logic. 744 */ 745 if (first > last) { 746 aux = first; 747 first = last; 748 last = aux; 749 } 750 751 #ifdef INET 752 laddr.s_addr = INADDR_ANY; 753 if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) { 754 if (lsa != NULL) 755 laddr = ((struct sockaddr_in *)lsa)->sin_addr; 756 if (fsa != NULL) 757 faddr = ((struct sockaddr_in *)fsa)->sin_addr; 758 } 759 #endif 760 #ifdef INET6 761 laddr6 = NULL; 762 if ((inp->inp_vflag & INP_IPV6) != 0) { 763 if (lsa != NULL) 764 laddr6 = &((struct sockaddr_in6 *)lsa)->sin6_addr; 765 if (fsa != NULL) 766 faddr6 = &((struct sockaddr_in6 *)fsa)->sin6_addr; 767 } 768 #endif 769 770 tmpinp = NULL; 771 lport = *lportp; 772 773 if (dorandom) 774 *lastport = first + (arc4random() % (last - first)); 775 776 count = last - first; 777 778 do { 779 if (count-- < 0) /* completely used? */ 780 return (EADDRNOTAVAIL); 781 ++*lastport; 782 if (*lastport < first || *lastport > last) 783 *lastport = first; 784 lport = htons(*lastport); 785 786 if (fsa != NULL) { 787 #ifdef INET 788 if (lsa->sa_family == AF_INET) { 789 tmpinp = in_pcblookup_hash_locked(pcbinfo, 790 faddr, fport, laddr, lport, lookupflags, 791 NULL, M_NODOM); 792 } 793 #endif 794 #ifdef INET6 795 if (lsa->sa_family == AF_INET6) { 796 tmpinp = in6_pcblookup_hash_locked(pcbinfo, 797 faddr6, fport, laddr6, lport, lookupflags, 798 NULL, M_NODOM); 799 } 800 #endif 801 } else { 802 #ifdef INET6 803 if ((inp->inp_vflag & INP_IPV6) != 0) 804 tmpinp = in6_pcblookup_local(pcbinfo, 805 &inp->in6p_laddr, lport, lookupflags, cred); 806 #endif 807 #if defined(INET) && defined(INET6) 808 else 809 #endif 810 #ifdef INET 811 tmpinp = in_pcblookup_local(pcbinfo, laddr, 812 lport, lookupflags, cred); 813 #endif 814 } 815 } while (tmpinp != NULL); 816 817 *lportp = lport; 818 819 return (0); 820 } 821 822 /* 823 * Select a local port (number) to use. 824 */ 825 int 826 in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp, 827 struct ucred *cred, int lookupflags) 828 { 829 struct sockaddr_in laddr; 830 831 if (laddrp) { 832 bzero(&laddr, sizeof(laddr)); 833 laddr.sin_family = AF_INET; 834 laddr.sin_addr = *laddrp; 835 } 836 return (in_pcb_lport_dest(inp, laddrp ? (struct sockaddr *) &laddr : 837 NULL, lportp, NULL, 0, cred, lookupflags)); 838 } 839 840 /* 841 * Return cached socket options. 842 */ 843 int 844 inp_so_options(const struct inpcb *inp) 845 { 846 int so_options; 847 848 so_options = 0; 849 850 if ((inp->inp_flags2 & INP_REUSEPORT_LB) != 0) 851 so_options |= SO_REUSEPORT_LB; 852 if ((inp->inp_flags2 & INP_REUSEPORT) != 0) 853 so_options |= SO_REUSEPORT; 854 if ((inp->inp_flags2 & INP_REUSEADDR) != 0) 855 so_options |= SO_REUSEADDR; 856 return (so_options); 857 } 858 #endif /* INET || INET6 */ 859 860 /* 861 * Check if a new BINDMULTI socket is allowed to be created. 862 * 863 * ni points to the new inp. 864 * oi points to the exisitng inp. 865 * 866 * This checks whether the existing inp also has BINDMULTI and 867 * whether the credentials match. 868 */ 869 int 870 in_pcbbind_check_bindmulti(const struct inpcb *ni, const struct inpcb *oi) 871 { 872 /* Check permissions match */ 873 if ((ni->inp_flags2 & INP_BINDMULTI) && 874 (ni->inp_cred->cr_uid != 875 oi->inp_cred->cr_uid)) 876 return (0); 877 878 /* Check the existing inp has BINDMULTI set */ 879 if ((ni->inp_flags2 & INP_BINDMULTI) && 880 ((oi->inp_flags2 & INP_BINDMULTI) == 0)) 881 return (0); 882 883 /* 884 * We're okay - either INP_BINDMULTI isn't set on ni, or 885 * it is and it matches the checks. 886 */ 887 return (1); 888 } 889 890 #ifdef INET 891 /* 892 * Set up a bind operation on a PCB, performing port allocation 893 * as required, but do not actually modify the PCB. Callers can 894 * either complete the bind by setting inp_laddr/inp_lport and 895 * calling in_pcbinshash(), or they can just use the resulting 896 * port and address to authorise the sending of a once-off packet. 897 * 898 * On error, the values of *laddrp and *lportp are not changed. 899 */ 900 int 901 in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp, 902 u_short *lportp, struct ucred *cred) 903 { 904 struct socket *so = inp->inp_socket; 905 struct sockaddr_in *sin; 906 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 907 struct in_addr laddr; 908 u_short lport = 0; 909 int lookupflags = 0, reuseport = (so->so_options & SO_REUSEPORT); 910 int error; 911 912 /* 913 * XXX: Maybe we could let SO_REUSEPORT_LB set SO_REUSEPORT bit here 914 * so that we don't have to add to the (already messy) code below. 915 */ 916 int reuseport_lb = (so->so_options & SO_REUSEPORT_LB); 917 918 /* 919 * No state changes, so read locks are sufficient here. 920 */ 921 INP_LOCK_ASSERT(inp); 922 INP_HASH_LOCK_ASSERT(pcbinfo); 923 924 if (CK_STAILQ_EMPTY(&V_in_ifaddrhead)) /* XXX broken! */ 925 return (EADDRNOTAVAIL); 926 laddr.s_addr = *laddrp; 927 if (nam != NULL && laddr.s_addr != INADDR_ANY) 928 return (EINVAL); 929 if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT|SO_REUSEPORT_LB)) == 0) 930 lookupflags = INPLOOKUP_WILDCARD; 931 if (nam == NULL) { 932 if ((error = prison_local_ip4(cred, &laddr)) != 0) 933 return (error); 934 } else { 935 sin = (struct sockaddr_in *)nam; 936 if (nam->sa_len != sizeof (*sin)) 937 return (EINVAL); 938 #ifdef notdef 939 /* 940 * We should check the family, but old programs 941 * incorrectly fail to initialize it. 942 */ 943 if (sin->sin_family != AF_INET) 944 return (EAFNOSUPPORT); 945 #endif 946 error = prison_local_ip4(cred, &sin->sin_addr); 947 if (error) 948 return (error); 949 if (sin->sin_port != *lportp) { 950 /* Don't allow the port to change. */ 951 if (*lportp != 0) 952 return (EINVAL); 953 lport = sin->sin_port; 954 } 955 /* NB: lport is left as 0 if the port isn't being changed. */ 956 if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) { 957 /* 958 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast; 959 * allow complete duplication of binding if 960 * SO_REUSEPORT is set, or if SO_REUSEADDR is set 961 * and a multicast address is bound on both 962 * new and duplicated sockets. 963 */ 964 if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) != 0) 965 reuseport = SO_REUSEADDR|SO_REUSEPORT; 966 /* 967 * XXX: How to deal with SO_REUSEPORT_LB here? 968 * Treat same as SO_REUSEPORT for now. 969 */ 970 if ((so->so_options & 971 (SO_REUSEADDR|SO_REUSEPORT_LB)) != 0) 972 reuseport_lb = SO_REUSEADDR|SO_REUSEPORT_LB; 973 } else if (sin->sin_addr.s_addr != INADDR_ANY) { 974 sin->sin_port = 0; /* yech... */ 975 bzero(&sin->sin_zero, sizeof(sin->sin_zero)); 976 /* 977 * Is the address a local IP address? 978 * If INP_BINDANY is set, then the socket may be bound 979 * to any endpoint address, local or not. 980 */ 981 if ((inp->inp_flags & INP_BINDANY) == 0 && 982 ifa_ifwithaddr_check((struct sockaddr *)sin) == 0) 983 return (EADDRNOTAVAIL); 984 } 985 laddr = sin->sin_addr; 986 if (lport) { 987 struct inpcb *t; 988 struct tcptw *tw; 989 990 /* GROSS */ 991 if (ntohs(lport) <= V_ipport_reservedhigh && 992 ntohs(lport) >= V_ipport_reservedlow && 993 priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT)) 994 return (EACCES); 995 if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) && 996 priv_check_cred(inp->inp_cred, PRIV_NETINET_REUSEPORT) != 0) { 997 t = in_pcblookup_local(pcbinfo, sin->sin_addr, 998 lport, INPLOOKUP_WILDCARD, cred); 999 /* 1000 * XXX 1001 * This entire block sorely needs a rewrite. 1002 */ 1003 if (t && 1004 ((inp->inp_flags2 & INP_BINDMULTI) == 0) && 1005 ((t->inp_flags & INP_TIMEWAIT) == 0) && 1006 (so->so_type != SOCK_STREAM || 1007 ntohl(t->inp_faddr.s_addr) == INADDR_ANY) && 1008 (ntohl(sin->sin_addr.s_addr) != INADDR_ANY || 1009 ntohl(t->inp_laddr.s_addr) != INADDR_ANY || 1010 (t->inp_flags2 & INP_REUSEPORT) || 1011 (t->inp_flags2 & INP_REUSEPORT_LB) == 0) && 1012 (inp->inp_cred->cr_uid != 1013 t->inp_cred->cr_uid)) 1014 return (EADDRINUSE); 1015 1016 /* 1017 * If the socket is a BINDMULTI socket, then 1018 * the credentials need to match and the 1019 * original socket also has to have been bound 1020 * with BINDMULTI. 1021 */ 1022 if (t && (! in_pcbbind_check_bindmulti(inp, t))) 1023 return (EADDRINUSE); 1024 } 1025 t = in_pcblookup_local(pcbinfo, sin->sin_addr, 1026 lport, lookupflags, cred); 1027 if (t && (t->inp_flags & INP_TIMEWAIT)) { 1028 /* 1029 * XXXRW: If an incpb has had its timewait 1030 * state recycled, we treat the address as 1031 * being in use (for now). This is better 1032 * than a panic, but not desirable. 1033 */ 1034 tw = intotw(t); 1035 if (tw == NULL || 1036 ((reuseport & tw->tw_so_options) == 0 && 1037 (reuseport_lb & 1038 tw->tw_so_options) == 0)) { 1039 return (EADDRINUSE); 1040 } 1041 } else if (t && 1042 ((inp->inp_flags2 & INP_BINDMULTI) == 0) && 1043 (reuseport & inp_so_options(t)) == 0 && 1044 (reuseport_lb & inp_so_options(t)) == 0) { 1045 #ifdef INET6 1046 if (ntohl(sin->sin_addr.s_addr) != 1047 INADDR_ANY || 1048 ntohl(t->inp_laddr.s_addr) != 1049 INADDR_ANY || 1050 (inp->inp_vflag & INP_IPV6PROTO) == 0 || 1051 (t->inp_vflag & INP_IPV6PROTO) == 0) 1052 #endif 1053 return (EADDRINUSE); 1054 if (t && (! in_pcbbind_check_bindmulti(inp, t))) 1055 return (EADDRINUSE); 1056 } 1057 } 1058 } 1059 if (*lportp != 0) 1060 lport = *lportp; 1061 if (lport == 0) { 1062 error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags); 1063 if (error != 0) 1064 return (error); 1065 } 1066 *laddrp = laddr.s_addr; 1067 *lportp = lport; 1068 return (0); 1069 } 1070 1071 /* 1072 * Connect from a socket to a specified address. 1073 * Both address and port must be specified in argument sin. 1074 * If don't have a local address for this socket yet, 1075 * then pick one. 1076 */ 1077 int 1078 in_pcbconnect_mbuf(struct inpcb *inp, struct sockaddr *nam, 1079 struct ucred *cred, struct mbuf *m, bool rehash) 1080 { 1081 u_short lport, fport; 1082 in_addr_t laddr, faddr; 1083 int anonport, error; 1084 1085 INP_WLOCK_ASSERT(inp); 1086 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 1087 1088 lport = inp->inp_lport; 1089 laddr = inp->inp_laddr.s_addr; 1090 anonport = (lport == 0); 1091 error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport, 1092 NULL, cred); 1093 if (error) 1094 return (error); 1095 1096 /* Do the initial binding of the local address if required. */ 1097 if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) { 1098 KASSERT(rehash == true, 1099 ("Rehashing required for unbound inps")); 1100 inp->inp_lport = lport; 1101 inp->inp_laddr.s_addr = laddr; 1102 if (in_pcbinshash(inp) != 0) { 1103 inp->inp_laddr.s_addr = INADDR_ANY; 1104 inp->inp_lport = 0; 1105 return (EAGAIN); 1106 } 1107 } 1108 1109 /* Commit the remaining changes. */ 1110 inp->inp_lport = lport; 1111 inp->inp_laddr.s_addr = laddr; 1112 inp->inp_faddr.s_addr = faddr; 1113 inp->inp_fport = fport; 1114 if (rehash) { 1115 in_pcbrehash_mbuf(inp, m); 1116 } else { 1117 in_pcbinshash_mbuf(inp, m); 1118 } 1119 1120 if (anonport) 1121 inp->inp_flags |= INP_ANONPORT; 1122 return (0); 1123 } 1124 1125 int 1126 in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred) 1127 { 1128 1129 return (in_pcbconnect_mbuf(inp, nam, cred, NULL, true)); 1130 } 1131 1132 /* 1133 * Do proper source address selection on an unbound socket in case 1134 * of connect. Take jails into account as well. 1135 */ 1136 int 1137 in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr, 1138 struct ucred *cred) 1139 { 1140 struct ifaddr *ifa; 1141 struct sockaddr *sa; 1142 struct sockaddr_in *sin, dst; 1143 struct nhop_object *nh; 1144 int error; 1145 1146 NET_EPOCH_ASSERT(); 1147 KASSERT(laddr != NULL, ("%s: laddr NULL", __func__)); 1148 /* 1149 * Bypass source address selection and use the primary jail IP 1150 * if requested. 1151 */ 1152 if (cred != NULL && !prison_saddrsel_ip4(cred, laddr)) 1153 return (0); 1154 1155 error = 0; 1156 1157 nh = NULL; 1158 bzero(&dst, sizeof(dst)); 1159 sin = &dst; 1160 sin->sin_family = AF_INET; 1161 sin->sin_len = sizeof(struct sockaddr_in); 1162 sin->sin_addr.s_addr = faddr->s_addr; 1163 1164 /* 1165 * If route is known our src addr is taken from the i/f, 1166 * else punt. 1167 * 1168 * Find out route to destination. 1169 */ 1170 if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0) 1171 nh = fib4_lookup(inp->inp_inc.inc_fibnum, *faddr, 1172 0, NHR_NONE, 0); 1173 1174 /* 1175 * If we found a route, use the address corresponding to 1176 * the outgoing interface. 1177 * 1178 * Otherwise assume faddr is reachable on a directly connected 1179 * network and try to find a corresponding interface to take 1180 * the source address from. 1181 */ 1182 if (nh == NULL || nh->nh_ifp == NULL) { 1183 struct in_ifaddr *ia; 1184 struct ifnet *ifp; 1185 1186 ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin, 1187 inp->inp_socket->so_fibnum)); 1188 if (ia == NULL) { 1189 ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0, 1190 inp->inp_socket->so_fibnum)); 1191 } 1192 if (ia == NULL) { 1193 error = ENETUNREACH; 1194 goto done; 1195 } 1196 1197 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 1198 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1199 goto done; 1200 } 1201 1202 ifp = ia->ia_ifp; 1203 ia = NULL; 1204 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1205 sa = ifa->ifa_addr; 1206 if (sa->sa_family != AF_INET) 1207 continue; 1208 sin = (struct sockaddr_in *)sa; 1209 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 1210 ia = (struct in_ifaddr *)ifa; 1211 break; 1212 } 1213 } 1214 if (ia != NULL) { 1215 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1216 goto done; 1217 } 1218 1219 /* 3. As a last resort return the 'default' jail address. */ 1220 error = prison_get_ip4(cred, laddr); 1221 goto done; 1222 } 1223 1224 /* 1225 * If the outgoing interface on the route found is not 1226 * a loopback interface, use the address from that interface. 1227 * In case of jails do those three steps: 1228 * 1. check if the interface address belongs to the jail. If so use it. 1229 * 2. check if we have any address on the outgoing interface 1230 * belonging to this jail. If so use it. 1231 * 3. as a last resort return the 'default' jail address. 1232 */ 1233 if ((nh->nh_ifp->if_flags & IFF_LOOPBACK) == 0) { 1234 struct in_ifaddr *ia; 1235 struct ifnet *ifp; 1236 1237 /* If not jailed, use the default returned. */ 1238 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 1239 ia = (struct in_ifaddr *)nh->nh_ifa; 1240 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1241 goto done; 1242 } 1243 1244 /* Jailed. */ 1245 /* 1. Check if the iface address belongs to the jail. */ 1246 sin = (struct sockaddr_in *)nh->nh_ifa->ifa_addr; 1247 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 1248 ia = (struct in_ifaddr *)nh->nh_ifa; 1249 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1250 goto done; 1251 } 1252 1253 /* 1254 * 2. Check if we have any address on the outgoing interface 1255 * belonging to this jail. 1256 */ 1257 ia = NULL; 1258 ifp = nh->nh_ifp; 1259 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1260 sa = ifa->ifa_addr; 1261 if (sa->sa_family != AF_INET) 1262 continue; 1263 sin = (struct sockaddr_in *)sa; 1264 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 1265 ia = (struct in_ifaddr *)ifa; 1266 break; 1267 } 1268 } 1269 if (ia != NULL) { 1270 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1271 goto done; 1272 } 1273 1274 /* 3. As a last resort return the 'default' jail address. */ 1275 error = prison_get_ip4(cred, laddr); 1276 goto done; 1277 } 1278 1279 /* 1280 * The outgoing interface is marked with 'loopback net', so a route 1281 * to ourselves is here. 1282 * Try to find the interface of the destination address and then 1283 * take the address from there. That interface is not necessarily 1284 * a loopback interface. 1285 * In case of jails, check that it is an address of the jail 1286 * and if we cannot find, fall back to the 'default' jail address. 1287 */ 1288 if ((nh->nh_ifp->if_flags & IFF_LOOPBACK) != 0) { 1289 struct in_ifaddr *ia; 1290 1291 ia = ifatoia(ifa_ifwithdstaddr(sintosa(&dst), 1292 inp->inp_socket->so_fibnum)); 1293 if (ia == NULL) 1294 ia = ifatoia(ifa_ifwithnet(sintosa(&dst), 0, 1295 inp->inp_socket->so_fibnum)); 1296 if (ia == NULL) 1297 ia = ifatoia(ifa_ifwithaddr(sintosa(&dst))); 1298 1299 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 1300 if (ia == NULL) { 1301 error = ENETUNREACH; 1302 goto done; 1303 } 1304 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1305 goto done; 1306 } 1307 1308 /* Jailed. */ 1309 if (ia != NULL) { 1310 struct ifnet *ifp; 1311 1312 ifp = ia->ia_ifp; 1313 ia = NULL; 1314 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1315 sa = ifa->ifa_addr; 1316 if (sa->sa_family != AF_INET) 1317 continue; 1318 sin = (struct sockaddr_in *)sa; 1319 if (prison_check_ip4(cred, 1320 &sin->sin_addr) == 0) { 1321 ia = (struct in_ifaddr *)ifa; 1322 break; 1323 } 1324 } 1325 if (ia != NULL) { 1326 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1327 goto done; 1328 } 1329 } 1330 1331 /* 3. As a last resort return the 'default' jail address. */ 1332 error = prison_get_ip4(cred, laddr); 1333 goto done; 1334 } 1335 1336 done: 1337 return (error); 1338 } 1339 1340 /* 1341 * Set up for a connect from a socket to the specified address. 1342 * On entry, *laddrp and *lportp should contain the current local 1343 * address and port for the PCB; these are updated to the values 1344 * that should be placed in inp_laddr and inp_lport to complete 1345 * the connect. 1346 * 1347 * On success, *faddrp and *fportp will be set to the remote address 1348 * and port. These are not updated in the error case. 1349 * 1350 * If the operation fails because the connection already exists, 1351 * *oinpp will be set to the PCB of that connection so that the 1352 * caller can decide to override it. In all other cases, *oinpp 1353 * is set to NULL. 1354 */ 1355 int 1356 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam, 1357 in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp, 1358 struct inpcb **oinpp, struct ucred *cred) 1359 { 1360 struct rm_priotracker in_ifa_tracker; 1361 struct sockaddr_in *sin = (struct sockaddr_in *)nam; 1362 struct in_ifaddr *ia; 1363 struct inpcb *oinp; 1364 struct in_addr laddr, faddr; 1365 u_short lport, fport; 1366 int error; 1367 1368 /* 1369 * Because a global state change doesn't actually occur here, a read 1370 * lock is sufficient. 1371 */ 1372 NET_EPOCH_ASSERT(); 1373 INP_LOCK_ASSERT(inp); 1374 INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo); 1375 1376 if (oinpp != NULL) 1377 *oinpp = NULL; 1378 if (nam->sa_len != sizeof (*sin)) 1379 return (EINVAL); 1380 if (sin->sin_family != AF_INET) 1381 return (EAFNOSUPPORT); 1382 if (sin->sin_port == 0) 1383 return (EADDRNOTAVAIL); 1384 laddr.s_addr = *laddrp; 1385 lport = *lportp; 1386 faddr = sin->sin_addr; 1387 fport = sin->sin_port; 1388 #ifdef ROUTE_MPATH 1389 if (CALC_FLOWID_OUTBOUND) { 1390 uint32_t hash_val, hash_type; 1391 1392 hash_val = fib4_calc_software_hash(laddr, faddr, 0, fport, 1393 inp->inp_socket->so_proto->pr_protocol, &hash_type); 1394 1395 inp->inp_flowid = hash_val; 1396 inp->inp_flowtype = hash_type; 1397 } 1398 #endif 1399 if (!CK_STAILQ_EMPTY(&V_in_ifaddrhead)) { 1400 /* 1401 * If the destination address is INADDR_ANY, 1402 * use the primary local address. 1403 * If the supplied address is INADDR_BROADCAST, 1404 * and the primary interface supports broadcast, 1405 * choose the broadcast address for that interface. 1406 */ 1407 if (faddr.s_addr == INADDR_ANY) { 1408 IN_IFADDR_RLOCK(&in_ifa_tracker); 1409 faddr = 1410 IA_SIN(CK_STAILQ_FIRST(&V_in_ifaddrhead))->sin_addr; 1411 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 1412 if (cred != NULL && 1413 (error = prison_get_ip4(cred, &faddr)) != 0) 1414 return (error); 1415 } else if (faddr.s_addr == (u_long)INADDR_BROADCAST) { 1416 IN_IFADDR_RLOCK(&in_ifa_tracker); 1417 if (CK_STAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags & 1418 IFF_BROADCAST) 1419 faddr = satosin(&CK_STAILQ_FIRST( 1420 &V_in_ifaddrhead)->ia_broadaddr)->sin_addr; 1421 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 1422 } 1423 } 1424 if (laddr.s_addr == INADDR_ANY) { 1425 error = in_pcbladdr(inp, &faddr, &laddr, cred); 1426 /* 1427 * If the destination address is multicast and an outgoing 1428 * interface has been set as a multicast option, prefer the 1429 * address of that interface as our source address. 1430 */ 1431 if (IN_MULTICAST(ntohl(faddr.s_addr)) && 1432 inp->inp_moptions != NULL) { 1433 struct ip_moptions *imo; 1434 struct ifnet *ifp; 1435 1436 imo = inp->inp_moptions; 1437 if (imo->imo_multicast_ifp != NULL) { 1438 ifp = imo->imo_multicast_ifp; 1439 IN_IFADDR_RLOCK(&in_ifa_tracker); 1440 CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) { 1441 if ((ia->ia_ifp == ifp) && 1442 (cred == NULL || 1443 prison_check_ip4(cred, 1444 &ia->ia_addr.sin_addr) == 0)) 1445 break; 1446 } 1447 if (ia == NULL) 1448 error = EADDRNOTAVAIL; 1449 else { 1450 laddr = ia->ia_addr.sin_addr; 1451 error = 0; 1452 } 1453 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 1454 } 1455 } 1456 if (error) 1457 return (error); 1458 } 1459 1460 if (lport != 0) { 1461 oinp = in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr, 1462 fport, laddr, lport, 0, NULL, M_NODOM); 1463 if (oinp != NULL) { 1464 if (oinpp != NULL) 1465 *oinpp = oinp; 1466 return (EADDRINUSE); 1467 } 1468 } else { 1469 struct sockaddr_in lsin, fsin; 1470 1471 bzero(&lsin, sizeof(lsin)); 1472 bzero(&fsin, sizeof(fsin)); 1473 lsin.sin_family = AF_INET; 1474 lsin.sin_addr = laddr; 1475 fsin.sin_family = AF_INET; 1476 fsin.sin_addr = faddr; 1477 error = in_pcb_lport_dest(inp, (struct sockaddr *) &lsin, 1478 &lport, (struct sockaddr *)& fsin, fport, cred, 1479 INPLOOKUP_WILDCARD); 1480 if (error) 1481 return (error); 1482 } 1483 *laddrp = laddr.s_addr; 1484 *lportp = lport; 1485 *faddrp = faddr.s_addr; 1486 *fportp = fport; 1487 return (0); 1488 } 1489 1490 void 1491 in_pcbdisconnect(struct inpcb *inp) 1492 { 1493 1494 INP_WLOCK_ASSERT(inp); 1495 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 1496 1497 inp->inp_faddr.s_addr = INADDR_ANY; 1498 inp->inp_fport = 0; 1499 in_pcbrehash(inp); 1500 } 1501 #endif /* INET */ 1502 1503 /* 1504 * in_pcbdetach() is responsibe for disassociating a socket from an inpcb. 1505 * For most protocols, this will be invoked immediately prior to calling 1506 * in_pcbfree(). However, with TCP the inpcb may significantly outlive the 1507 * socket, in which case in_pcbfree() is deferred. 1508 */ 1509 void 1510 in_pcbdetach(struct inpcb *inp) 1511 { 1512 1513 KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__)); 1514 1515 #ifdef RATELIMIT 1516 if (inp->inp_snd_tag != NULL) 1517 in_pcbdetach_txrtlmt(inp); 1518 #endif 1519 inp->inp_socket->so_pcb = NULL; 1520 inp->inp_socket = NULL; 1521 } 1522 1523 /* 1524 * in_pcbref() bumps the reference count on an inpcb in order to maintain 1525 * stability of an inpcb pointer despite the inpcb lock being released. This 1526 * is used in TCP when the inpcbinfo lock needs to be acquired or upgraded, 1527 * but where the inpcb lock may already held, or when acquiring a reference 1528 * via a pcbgroup. 1529 * 1530 * in_pcbref() should be used only to provide brief memory stability, and 1531 * must always be followed by a call to INP_WLOCK() and in_pcbrele() to 1532 * garbage collect the inpcb if it has been in_pcbfree()'d from another 1533 * context. Until in_pcbrele() has returned that the inpcb is still valid, 1534 * lock and rele are the *only* safe operations that may be performed on the 1535 * inpcb. 1536 * 1537 * While the inpcb will not be freed, releasing the inpcb lock means that the 1538 * connection's state may change, so the caller should be careful to 1539 * revalidate any cached state on reacquiring the lock. Drop the reference 1540 * using in_pcbrele(). 1541 */ 1542 void 1543 in_pcbref(struct inpcb *inp) 1544 { 1545 1546 KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__)); 1547 1548 refcount_acquire(&inp->inp_refcount); 1549 } 1550 1551 /* 1552 * Drop a refcount on an inpcb elevated using in_pcbref(); because a call to 1553 * in_pcbfree() may have been made between in_pcbref() and in_pcbrele(), we 1554 * return a flag indicating whether or not the inpcb remains valid. If it is 1555 * valid, we return with the inpcb lock held. 1556 * 1557 * Notice that, unlike in_pcbref(), the inpcb lock must be held to drop a 1558 * reference on an inpcb. Historically more work was done here (actually, in 1559 * in_pcbfree_internal()) but has been moved to in_pcbfree() to avoid the 1560 * need for the pcbinfo lock in in_pcbrele(). Deferring the free is entirely 1561 * about memory stability (and continued use of the write lock). 1562 */ 1563 int 1564 in_pcbrele_rlocked(struct inpcb *inp) 1565 { 1566 struct inpcbinfo *pcbinfo; 1567 1568 KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__)); 1569 1570 INP_RLOCK_ASSERT(inp); 1571 1572 if (refcount_release(&inp->inp_refcount) == 0) { 1573 /* 1574 * If the inpcb has been freed, let the caller know, even if 1575 * this isn't the last reference. 1576 */ 1577 if (inp->inp_flags2 & INP_FREED) { 1578 INP_RUNLOCK(inp); 1579 return (1); 1580 } 1581 return (0); 1582 } 1583 1584 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); 1585 #ifdef TCPHPTS 1586 if (inp->inp_in_hpts || inp->inp_in_input) { 1587 struct tcp_hpts_entry *hpts; 1588 /* 1589 * We should not be on the hpts at 1590 * this point in any form. we must 1591 * get the lock to be sure. 1592 */ 1593 hpts = tcp_hpts_lock(inp); 1594 if (inp->inp_in_hpts) 1595 panic("Hpts:%p inp:%p at free still on hpts", 1596 hpts, inp); 1597 mtx_unlock(&hpts->p_mtx); 1598 hpts = tcp_input_lock(inp); 1599 if (inp->inp_in_input) 1600 panic("Hpts:%p inp:%p at free still on input hpts", 1601 hpts, inp); 1602 mtx_unlock(&hpts->p_mtx); 1603 } 1604 #endif 1605 INP_RUNLOCK(inp); 1606 pcbinfo = inp->inp_pcbinfo; 1607 uma_zfree(pcbinfo->ipi_zone, inp); 1608 return (1); 1609 } 1610 1611 int 1612 in_pcbrele_wlocked(struct inpcb *inp) 1613 { 1614 struct inpcbinfo *pcbinfo; 1615 1616 KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__)); 1617 1618 INP_WLOCK_ASSERT(inp); 1619 1620 if (refcount_release(&inp->inp_refcount) == 0) { 1621 /* 1622 * If the inpcb has been freed, let the caller know, even if 1623 * this isn't the last reference. 1624 */ 1625 if (inp->inp_flags2 & INP_FREED) { 1626 INP_WUNLOCK(inp); 1627 return (1); 1628 } 1629 return (0); 1630 } 1631 1632 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); 1633 #ifdef TCPHPTS 1634 if (inp->inp_in_hpts || inp->inp_in_input) { 1635 struct tcp_hpts_entry *hpts; 1636 /* 1637 * We should not be on the hpts at 1638 * this point in any form. we must 1639 * get the lock to be sure. 1640 */ 1641 hpts = tcp_hpts_lock(inp); 1642 if (inp->inp_in_hpts) 1643 panic("Hpts:%p inp:%p at free still on hpts", 1644 hpts, inp); 1645 mtx_unlock(&hpts->p_mtx); 1646 hpts = tcp_input_lock(inp); 1647 if (inp->inp_in_input) 1648 panic("Hpts:%p inp:%p at free still on input hpts", 1649 hpts, inp); 1650 mtx_unlock(&hpts->p_mtx); 1651 } 1652 #endif 1653 INP_WUNLOCK(inp); 1654 pcbinfo = inp->inp_pcbinfo; 1655 uma_zfree(pcbinfo->ipi_zone, inp); 1656 return (1); 1657 } 1658 1659 /* 1660 * Temporary wrapper. 1661 */ 1662 int 1663 in_pcbrele(struct inpcb *inp) 1664 { 1665 1666 return (in_pcbrele_wlocked(inp)); 1667 } 1668 1669 void 1670 in_pcblist_rele_rlocked(epoch_context_t ctx) 1671 { 1672 struct in_pcblist *il; 1673 struct inpcb *inp; 1674 struct inpcbinfo *pcbinfo; 1675 int i, n; 1676 1677 il = __containerof(ctx, struct in_pcblist, il_epoch_ctx); 1678 pcbinfo = il->il_pcbinfo; 1679 n = il->il_count; 1680 INP_INFO_WLOCK(pcbinfo); 1681 for (i = 0; i < n; i++) { 1682 inp = il->il_inp_list[i]; 1683 INP_RLOCK(inp); 1684 if (!in_pcbrele_rlocked(inp)) 1685 INP_RUNLOCK(inp); 1686 } 1687 INP_INFO_WUNLOCK(pcbinfo); 1688 free(il, M_TEMP); 1689 } 1690 1691 static void 1692 inpcbport_free(epoch_context_t ctx) 1693 { 1694 struct inpcbport *phd; 1695 1696 phd = __containerof(ctx, struct inpcbport, phd_epoch_ctx); 1697 free(phd, M_PCB); 1698 } 1699 1700 static void 1701 in_pcbfree_deferred(epoch_context_t ctx) 1702 { 1703 struct inpcb *inp; 1704 int released __unused; 1705 1706 inp = __containerof(ctx, struct inpcb, inp_epoch_ctx); 1707 1708 INP_WLOCK(inp); 1709 CURVNET_SET(inp->inp_vnet); 1710 #ifdef INET 1711 struct ip_moptions *imo = inp->inp_moptions; 1712 inp->inp_moptions = NULL; 1713 #endif 1714 /* XXXRW: Do as much as possible here. */ 1715 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1716 if (inp->inp_sp != NULL) 1717 ipsec_delete_pcbpolicy(inp); 1718 #endif 1719 #ifdef INET6 1720 struct ip6_moptions *im6o = NULL; 1721 if (inp->inp_vflag & INP_IPV6PROTO) { 1722 ip6_freepcbopts(inp->in6p_outputopts); 1723 im6o = inp->in6p_moptions; 1724 inp->in6p_moptions = NULL; 1725 } 1726 #endif 1727 if (inp->inp_options) 1728 (void)m_free(inp->inp_options); 1729 inp->inp_vflag = 0; 1730 crfree(inp->inp_cred); 1731 #ifdef MAC 1732 mac_inpcb_destroy(inp); 1733 #endif 1734 released = in_pcbrele_wlocked(inp); 1735 MPASS(released); 1736 #ifdef INET6 1737 ip6_freemoptions(im6o); 1738 #endif 1739 #ifdef INET 1740 inp_freemoptions(imo); 1741 #endif 1742 CURVNET_RESTORE(); 1743 } 1744 1745 /* 1746 * Unconditionally schedule an inpcb to be freed by decrementing its 1747 * reference count, which should occur only after the inpcb has been detached 1748 * from its socket. If another thread holds a temporary reference (acquired 1749 * using in_pcbref()) then the free is deferred until that reference is 1750 * released using in_pcbrele(), but the inpcb is still unlocked. Almost all 1751 * work, including removal from global lists, is done in this context, where 1752 * the pcbinfo lock is held. 1753 */ 1754 void 1755 in_pcbfree(struct inpcb *inp) 1756 { 1757 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 1758 1759 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); 1760 KASSERT((inp->inp_flags2 & INP_FREED) == 0, 1761 ("%s: called twice for pcb %p", __func__, inp)); 1762 if (inp->inp_flags2 & INP_FREED) { 1763 INP_WUNLOCK(inp); 1764 return; 1765 } 1766 1767 INP_WLOCK_ASSERT(inp); 1768 INP_LIST_WLOCK(pcbinfo); 1769 in_pcbremlists(inp); 1770 INP_LIST_WUNLOCK(pcbinfo); 1771 RO_INVALIDATE_CACHE(&inp->inp_route); 1772 /* mark as destruction in progress */ 1773 inp->inp_flags2 |= INP_FREED; 1774 INP_WUNLOCK(inp); 1775 NET_EPOCH_CALL(in_pcbfree_deferred, &inp->inp_epoch_ctx); 1776 } 1777 1778 /* 1779 * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and 1780 * port reservation, and preventing it from being returned by inpcb lookups. 1781 * 1782 * It is used by TCP to mark an inpcb as unused and avoid future packet 1783 * delivery or event notification when a socket remains open but TCP has 1784 * closed. This might occur as a result of a shutdown()-initiated TCP close 1785 * or a RST on the wire, and allows the port binding to be reused while still 1786 * maintaining the invariant that so_pcb always points to a valid inpcb until 1787 * in_pcbdetach(). 1788 * 1789 * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by 1790 * in_pcbnotifyall() and in_pcbpurgeif0()? 1791 */ 1792 void 1793 in_pcbdrop(struct inpcb *inp) 1794 { 1795 1796 INP_WLOCK_ASSERT(inp); 1797 #ifdef INVARIANTS 1798 if (inp->inp_socket != NULL && inp->inp_ppcb != NULL) 1799 MPASS(inp->inp_refcount > 1); 1800 #endif 1801 1802 /* 1803 * XXXRW: Possibly we should protect the setting of INP_DROPPED with 1804 * the hash lock...? 1805 */ 1806 inp->inp_flags |= INP_DROPPED; 1807 if (inp->inp_flags & INP_INHASHLIST) { 1808 struct inpcbport *phd = inp->inp_phd; 1809 1810 INP_HASH_WLOCK(inp->inp_pcbinfo); 1811 in_pcbremlbgrouphash(inp); 1812 CK_LIST_REMOVE(inp, inp_hash); 1813 CK_LIST_REMOVE(inp, inp_portlist); 1814 if (CK_LIST_FIRST(&phd->phd_pcblist) == NULL) { 1815 CK_LIST_REMOVE(phd, phd_hash); 1816 NET_EPOCH_CALL(inpcbport_free, &phd->phd_epoch_ctx); 1817 } 1818 INP_HASH_WUNLOCK(inp->inp_pcbinfo); 1819 inp->inp_flags &= ~INP_INHASHLIST; 1820 #ifdef PCBGROUP 1821 in_pcbgroup_remove(inp); 1822 #endif 1823 } 1824 } 1825 1826 #ifdef INET 1827 /* 1828 * Common routines to return the socket addresses associated with inpcbs. 1829 */ 1830 struct sockaddr * 1831 in_sockaddr(in_port_t port, struct in_addr *addr_p) 1832 { 1833 struct sockaddr_in *sin; 1834 1835 sin = malloc(sizeof *sin, M_SONAME, 1836 M_WAITOK | M_ZERO); 1837 sin->sin_family = AF_INET; 1838 sin->sin_len = sizeof(*sin); 1839 sin->sin_addr = *addr_p; 1840 sin->sin_port = port; 1841 1842 return (struct sockaddr *)sin; 1843 } 1844 1845 int 1846 in_getsockaddr(struct socket *so, struct sockaddr **nam) 1847 { 1848 struct inpcb *inp; 1849 struct in_addr addr; 1850 in_port_t port; 1851 1852 inp = sotoinpcb(so); 1853 KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL")); 1854 1855 INP_RLOCK(inp); 1856 port = inp->inp_lport; 1857 addr = inp->inp_laddr; 1858 INP_RUNLOCK(inp); 1859 1860 *nam = in_sockaddr(port, &addr); 1861 return 0; 1862 } 1863 1864 int 1865 in_getpeeraddr(struct socket *so, struct sockaddr **nam) 1866 { 1867 struct inpcb *inp; 1868 struct in_addr addr; 1869 in_port_t port; 1870 1871 inp = sotoinpcb(so); 1872 KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL")); 1873 1874 INP_RLOCK(inp); 1875 port = inp->inp_fport; 1876 addr = inp->inp_faddr; 1877 INP_RUNLOCK(inp); 1878 1879 *nam = in_sockaddr(port, &addr); 1880 return 0; 1881 } 1882 1883 void 1884 in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno, 1885 struct inpcb *(*notify)(struct inpcb *, int)) 1886 { 1887 struct inpcb *inp, *inp_temp; 1888 1889 INP_INFO_WLOCK(pcbinfo); 1890 CK_LIST_FOREACH_SAFE(inp, pcbinfo->ipi_listhead, inp_list, inp_temp) { 1891 INP_WLOCK(inp); 1892 #ifdef INET6 1893 if ((inp->inp_vflag & INP_IPV4) == 0) { 1894 INP_WUNLOCK(inp); 1895 continue; 1896 } 1897 #endif 1898 if (inp->inp_faddr.s_addr != faddr.s_addr || 1899 inp->inp_socket == NULL) { 1900 INP_WUNLOCK(inp); 1901 continue; 1902 } 1903 if ((*notify)(inp, errno)) 1904 INP_WUNLOCK(inp); 1905 } 1906 INP_INFO_WUNLOCK(pcbinfo); 1907 } 1908 1909 void 1910 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp) 1911 { 1912 struct inpcb *inp; 1913 struct in_multi *inm; 1914 struct in_mfilter *imf; 1915 struct ip_moptions *imo; 1916 1917 INP_INFO_WLOCK(pcbinfo); 1918 CK_LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) { 1919 INP_WLOCK(inp); 1920 imo = inp->inp_moptions; 1921 if ((inp->inp_vflag & INP_IPV4) && 1922 imo != NULL) { 1923 /* 1924 * Unselect the outgoing interface if it is being 1925 * detached. 1926 */ 1927 if (imo->imo_multicast_ifp == ifp) 1928 imo->imo_multicast_ifp = NULL; 1929 1930 /* 1931 * Drop multicast group membership if we joined 1932 * through the interface being detached. 1933 * 1934 * XXX This can all be deferred to an epoch_call 1935 */ 1936 restart: 1937 IP_MFILTER_FOREACH(imf, &imo->imo_head) { 1938 if ((inm = imf->imf_inm) == NULL) 1939 continue; 1940 if (inm->inm_ifp != ifp) 1941 continue; 1942 ip_mfilter_remove(&imo->imo_head, imf); 1943 IN_MULTI_LOCK_ASSERT(); 1944 in_leavegroup_locked(inm, NULL); 1945 ip_mfilter_free(imf); 1946 goto restart; 1947 } 1948 } 1949 INP_WUNLOCK(inp); 1950 } 1951 INP_INFO_WUNLOCK(pcbinfo); 1952 } 1953 1954 /* 1955 * Lookup a PCB based on the local address and port. Caller must hold the 1956 * hash lock. No inpcb locks or references are acquired. 1957 */ 1958 #define INP_LOOKUP_MAPPED_PCB_COST 3 1959 struct inpcb * 1960 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr, 1961 u_short lport, int lookupflags, struct ucred *cred) 1962 { 1963 struct inpcb *inp; 1964 #ifdef INET6 1965 int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST; 1966 #else 1967 int matchwild = 3; 1968 #endif 1969 int wildcard; 1970 1971 KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0, 1972 ("%s: invalid lookup flags %d", __func__, lookupflags)); 1973 1974 INP_HASH_LOCK_ASSERT(pcbinfo); 1975 1976 if ((lookupflags & INPLOOKUP_WILDCARD) == 0) { 1977 struct inpcbhead *head; 1978 /* 1979 * Look for an unconnected (wildcard foreign addr) PCB that 1980 * matches the local address and port we're looking for. 1981 */ 1982 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport, 1983 0, pcbinfo->ipi_hashmask)]; 1984 CK_LIST_FOREACH(inp, head, inp_hash) { 1985 #ifdef INET6 1986 /* XXX inp locking */ 1987 if ((inp->inp_vflag & INP_IPV4) == 0) 1988 continue; 1989 #endif 1990 if (inp->inp_faddr.s_addr == INADDR_ANY && 1991 inp->inp_laddr.s_addr == laddr.s_addr && 1992 inp->inp_lport == lport) { 1993 /* 1994 * Found? 1995 */ 1996 if (cred == NULL || 1997 prison_equal_ip4(cred->cr_prison, 1998 inp->inp_cred->cr_prison)) 1999 return (inp); 2000 } 2001 } 2002 /* 2003 * Not found. 2004 */ 2005 return (NULL); 2006 } else { 2007 struct inpcbporthead *porthash; 2008 struct inpcbport *phd; 2009 struct inpcb *match = NULL; 2010 /* 2011 * Best fit PCB lookup. 2012 * 2013 * First see if this local port is in use by looking on the 2014 * port hash list. 2015 */ 2016 porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport, 2017 pcbinfo->ipi_porthashmask)]; 2018 CK_LIST_FOREACH(phd, porthash, phd_hash) { 2019 if (phd->phd_port == lport) 2020 break; 2021 } 2022 if (phd != NULL) { 2023 /* 2024 * Port is in use by one or more PCBs. Look for best 2025 * fit. 2026 */ 2027 CK_LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) { 2028 wildcard = 0; 2029 if (cred != NULL && 2030 !prison_equal_ip4(inp->inp_cred->cr_prison, 2031 cred->cr_prison)) 2032 continue; 2033 #ifdef INET6 2034 /* XXX inp locking */ 2035 if ((inp->inp_vflag & INP_IPV4) == 0) 2036 continue; 2037 /* 2038 * We never select the PCB that has 2039 * INP_IPV6 flag and is bound to :: if 2040 * we have another PCB which is bound 2041 * to 0.0.0.0. If a PCB has the 2042 * INP_IPV6 flag, then we set its cost 2043 * higher than IPv4 only PCBs. 2044 * 2045 * Note that the case only happens 2046 * when a socket is bound to ::, under 2047 * the condition that the use of the 2048 * mapped address is allowed. 2049 */ 2050 if ((inp->inp_vflag & INP_IPV6) != 0) 2051 wildcard += INP_LOOKUP_MAPPED_PCB_COST; 2052 #endif 2053 if (inp->inp_faddr.s_addr != INADDR_ANY) 2054 wildcard++; 2055 if (inp->inp_laddr.s_addr != INADDR_ANY) { 2056 if (laddr.s_addr == INADDR_ANY) 2057 wildcard++; 2058 else if (inp->inp_laddr.s_addr != laddr.s_addr) 2059 continue; 2060 } else { 2061 if (laddr.s_addr != INADDR_ANY) 2062 wildcard++; 2063 } 2064 if (wildcard < matchwild) { 2065 match = inp; 2066 matchwild = wildcard; 2067 if (matchwild == 0) 2068 break; 2069 } 2070 } 2071 } 2072 return (match); 2073 } 2074 } 2075 #undef INP_LOOKUP_MAPPED_PCB_COST 2076 2077 static struct inpcb * 2078 in_pcblookup_lbgroup(const struct inpcbinfo *pcbinfo, 2079 const struct in_addr *laddr, uint16_t lport, const struct in_addr *faddr, 2080 uint16_t fport, int lookupflags, int numa_domain) 2081 { 2082 struct inpcb *local_wild, *numa_wild; 2083 const struct inpcblbgrouphead *hdr; 2084 struct inpcblbgroup *grp; 2085 uint32_t idx; 2086 2087 INP_HASH_LOCK_ASSERT(pcbinfo); 2088 2089 hdr = &pcbinfo->ipi_lbgrouphashbase[ 2090 INP_PCBPORTHASH(lport, pcbinfo->ipi_lbgrouphashmask)]; 2091 2092 /* 2093 * Order of socket selection: 2094 * 1. non-wild. 2095 * 2. wild (if lookupflags contains INPLOOKUP_WILDCARD). 2096 * 2097 * NOTE: 2098 * - Load balanced group does not contain jailed sockets 2099 * - Load balanced group does not contain IPv4 mapped INET6 wild sockets 2100 */ 2101 local_wild = NULL; 2102 numa_wild = NULL; 2103 CK_LIST_FOREACH(grp, hdr, il_list) { 2104 #ifdef INET6 2105 if (!(grp->il_vflag & INP_IPV4)) 2106 continue; 2107 #endif 2108 if (grp->il_lport != lport) 2109 continue; 2110 2111 idx = INP_PCBLBGROUP_PKTHASH(faddr->s_addr, lport, fport) % 2112 grp->il_inpcnt; 2113 if (grp->il_laddr.s_addr == laddr->s_addr) { 2114 if (numa_domain == M_NODOM || 2115 grp->il_numa_domain == numa_domain) { 2116 return (grp->il_inp[idx]); 2117 } else { 2118 numa_wild = grp->il_inp[idx]; 2119 } 2120 } 2121 if (grp->il_laddr.s_addr == INADDR_ANY && 2122 (lookupflags & INPLOOKUP_WILDCARD) != 0 && 2123 (local_wild == NULL || numa_domain == M_NODOM || 2124 grp->il_numa_domain == numa_domain)) { 2125 local_wild = grp->il_inp[idx]; 2126 } 2127 } 2128 if (numa_wild != NULL) 2129 return (numa_wild); 2130 2131 return (local_wild); 2132 } 2133 2134 #ifdef PCBGROUP 2135 /* 2136 * Lookup PCB in hash list, using pcbgroup tables. 2137 */ 2138 static struct inpcb * 2139 in_pcblookup_group(struct inpcbinfo *pcbinfo, struct inpcbgroup *pcbgroup, 2140 struct in_addr faddr, u_int fport_arg, struct in_addr laddr, 2141 u_int lport_arg, int lookupflags, struct ifnet *ifp) 2142 { 2143 struct inpcbhead *head; 2144 struct inpcb *inp, *tmpinp; 2145 u_short fport = fport_arg, lport = lport_arg; 2146 bool locked; 2147 2148 /* 2149 * First look for an exact match. 2150 */ 2151 tmpinp = NULL; 2152 INP_GROUP_LOCK(pcbgroup); 2153 head = &pcbgroup->ipg_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport, 2154 pcbgroup->ipg_hashmask)]; 2155 CK_LIST_FOREACH(inp, head, inp_pcbgrouphash) { 2156 #ifdef INET6 2157 /* XXX inp locking */ 2158 if ((inp->inp_vflag & INP_IPV4) == 0) 2159 continue; 2160 #endif 2161 if (inp->inp_faddr.s_addr == faddr.s_addr && 2162 inp->inp_laddr.s_addr == laddr.s_addr && 2163 inp->inp_fport == fport && 2164 inp->inp_lport == lport) { 2165 /* 2166 * XXX We should be able to directly return 2167 * the inp here, without any checks. 2168 * Well unless both bound with SO_REUSEPORT? 2169 */ 2170 if (prison_flag(inp->inp_cred, PR_IP4)) 2171 goto found; 2172 if (tmpinp == NULL) 2173 tmpinp = inp; 2174 } 2175 } 2176 if (tmpinp != NULL) { 2177 inp = tmpinp; 2178 goto found; 2179 } 2180 2181 #ifdef RSS 2182 /* 2183 * For incoming connections, we may wish to do a wildcard 2184 * match for an RSS-local socket. 2185 */ 2186 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 2187 struct inpcb *local_wild = NULL, *local_exact = NULL; 2188 #ifdef INET6 2189 struct inpcb *local_wild_mapped = NULL; 2190 #endif 2191 struct inpcb *jail_wild = NULL; 2192 struct inpcbhead *head; 2193 int injail; 2194 2195 /* 2196 * Order of socket selection - we always prefer jails. 2197 * 1. jailed, non-wild. 2198 * 2. jailed, wild. 2199 * 3. non-jailed, non-wild. 2200 * 4. non-jailed, wild. 2201 */ 2202 2203 head = &pcbgroup->ipg_hashbase[INP_PCBHASH(INADDR_ANY, 2204 lport, 0, pcbgroup->ipg_hashmask)]; 2205 CK_LIST_FOREACH(inp, head, inp_pcbgrouphash) { 2206 #ifdef INET6 2207 /* XXX inp locking */ 2208 if ((inp->inp_vflag & INP_IPV4) == 0) 2209 continue; 2210 #endif 2211 if (inp->inp_faddr.s_addr != INADDR_ANY || 2212 inp->inp_lport != lport) 2213 continue; 2214 2215 injail = prison_flag(inp->inp_cred, PR_IP4); 2216 if (injail) { 2217 if (prison_check_ip4(inp->inp_cred, 2218 &laddr) != 0) 2219 continue; 2220 } else { 2221 if (local_exact != NULL) 2222 continue; 2223 } 2224 2225 if (inp->inp_laddr.s_addr == laddr.s_addr) { 2226 if (injail) 2227 goto found; 2228 else 2229 local_exact = inp; 2230 } else if (inp->inp_laddr.s_addr == INADDR_ANY) { 2231 #ifdef INET6 2232 /* XXX inp locking, NULL check */ 2233 if (inp->inp_vflag & INP_IPV6PROTO) 2234 local_wild_mapped = inp; 2235 else 2236 #endif 2237 if (injail) 2238 jail_wild = inp; 2239 else 2240 local_wild = inp; 2241 } 2242 } /* LIST_FOREACH */ 2243 2244 inp = jail_wild; 2245 if (inp == NULL) 2246 inp = local_exact; 2247 if (inp == NULL) 2248 inp = local_wild; 2249 #ifdef INET6 2250 if (inp == NULL) 2251 inp = local_wild_mapped; 2252 #endif 2253 if (inp != NULL) 2254 goto found; 2255 } 2256 #endif 2257 2258 /* 2259 * Then look for a wildcard match, if requested. 2260 */ 2261 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 2262 struct inpcb *local_wild = NULL, *local_exact = NULL; 2263 #ifdef INET6 2264 struct inpcb *local_wild_mapped = NULL; 2265 #endif 2266 struct inpcb *jail_wild = NULL; 2267 struct inpcbhead *head; 2268 int injail; 2269 2270 /* 2271 * Order of socket selection - we always prefer jails. 2272 * 1. jailed, non-wild. 2273 * 2. jailed, wild. 2274 * 3. non-jailed, non-wild. 2275 * 4. non-jailed, wild. 2276 */ 2277 head = &pcbinfo->ipi_wildbase[INP_PCBHASH(INADDR_ANY, lport, 2278 0, pcbinfo->ipi_wildmask)]; 2279 CK_LIST_FOREACH(inp, head, inp_pcbgroup_wild) { 2280 #ifdef INET6 2281 /* XXX inp locking */ 2282 if ((inp->inp_vflag & INP_IPV4) == 0) 2283 continue; 2284 #endif 2285 if (inp->inp_faddr.s_addr != INADDR_ANY || 2286 inp->inp_lport != lport) 2287 continue; 2288 2289 injail = prison_flag(inp->inp_cred, PR_IP4); 2290 if (injail) { 2291 if (prison_check_ip4(inp->inp_cred, 2292 &laddr) != 0) 2293 continue; 2294 } else { 2295 if (local_exact != NULL) 2296 continue; 2297 } 2298 2299 if (inp->inp_laddr.s_addr == laddr.s_addr) { 2300 if (injail) 2301 goto found; 2302 else 2303 local_exact = inp; 2304 } else if (inp->inp_laddr.s_addr == INADDR_ANY) { 2305 #ifdef INET6 2306 /* XXX inp locking, NULL check */ 2307 if (inp->inp_vflag & INP_IPV6PROTO) 2308 local_wild_mapped = inp; 2309 else 2310 #endif 2311 if (injail) 2312 jail_wild = inp; 2313 else 2314 local_wild = inp; 2315 } 2316 } /* LIST_FOREACH */ 2317 inp = jail_wild; 2318 if (inp == NULL) 2319 inp = local_exact; 2320 if (inp == NULL) 2321 inp = local_wild; 2322 #ifdef INET6 2323 if (inp == NULL) 2324 inp = local_wild_mapped; 2325 #endif 2326 if (inp != NULL) 2327 goto found; 2328 } /* if (lookupflags & INPLOOKUP_WILDCARD) */ 2329 INP_GROUP_UNLOCK(pcbgroup); 2330 return (NULL); 2331 2332 found: 2333 if (lookupflags & INPLOOKUP_WLOCKPCB) 2334 locked = INP_TRY_WLOCK(inp); 2335 else if (lookupflags & INPLOOKUP_RLOCKPCB) 2336 locked = INP_TRY_RLOCK(inp); 2337 else 2338 panic("%s: locking bug", __func__); 2339 if (__predict_false(locked && (inp->inp_flags2 & INP_FREED))) { 2340 if (lookupflags & INPLOOKUP_WLOCKPCB) 2341 INP_WUNLOCK(inp); 2342 else 2343 INP_RUNLOCK(inp); 2344 return (NULL); 2345 } else if (!locked) 2346 in_pcbref(inp); 2347 INP_GROUP_UNLOCK(pcbgroup); 2348 if (!locked) { 2349 if (lookupflags & INPLOOKUP_WLOCKPCB) { 2350 INP_WLOCK(inp); 2351 if (in_pcbrele_wlocked(inp)) 2352 return (NULL); 2353 } else { 2354 INP_RLOCK(inp); 2355 if (in_pcbrele_rlocked(inp)) 2356 return (NULL); 2357 } 2358 } 2359 #ifdef INVARIANTS 2360 if (lookupflags & INPLOOKUP_WLOCKPCB) 2361 INP_WLOCK_ASSERT(inp); 2362 else 2363 INP_RLOCK_ASSERT(inp); 2364 #endif 2365 return (inp); 2366 } 2367 #endif /* PCBGROUP */ 2368 2369 /* 2370 * Lookup PCB in hash list, using pcbinfo tables. This variation assumes 2371 * that the caller has locked the hash list, and will not perform any further 2372 * locking or reference operations on either the hash list or the connection. 2373 */ 2374 static struct inpcb * 2375 in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2376 u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags, 2377 struct ifnet *ifp, uint8_t numa_domain) 2378 { 2379 struct inpcbhead *head; 2380 struct inpcb *inp, *tmpinp; 2381 u_short fport = fport_arg, lport = lport_arg; 2382 2383 KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0, 2384 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2385 INP_HASH_LOCK_ASSERT(pcbinfo); 2386 2387 /* 2388 * First look for an exact match. 2389 */ 2390 tmpinp = NULL; 2391 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport, 2392 pcbinfo->ipi_hashmask)]; 2393 CK_LIST_FOREACH(inp, head, inp_hash) { 2394 #ifdef INET6 2395 /* XXX inp locking */ 2396 if ((inp->inp_vflag & INP_IPV4) == 0) 2397 continue; 2398 #endif 2399 if (inp->inp_faddr.s_addr == faddr.s_addr && 2400 inp->inp_laddr.s_addr == laddr.s_addr && 2401 inp->inp_fport == fport && 2402 inp->inp_lport == lport) { 2403 /* 2404 * XXX We should be able to directly return 2405 * the inp here, without any checks. 2406 * Well unless both bound with SO_REUSEPORT? 2407 */ 2408 if (prison_flag(inp->inp_cred, PR_IP4)) 2409 return (inp); 2410 if (tmpinp == NULL) 2411 tmpinp = inp; 2412 } 2413 } 2414 if (tmpinp != NULL) 2415 return (tmpinp); 2416 2417 /* 2418 * Then look in lb group (for wildcard match). 2419 */ 2420 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 2421 inp = in_pcblookup_lbgroup(pcbinfo, &laddr, lport, &faddr, 2422 fport, lookupflags, numa_domain); 2423 if (inp != NULL) 2424 return (inp); 2425 } 2426 2427 /* 2428 * Then look for a wildcard match, if requested. 2429 */ 2430 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 2431 struct inpcb *local_wild = NULL, *local_exact = NULL; 2432 #ifdef INET6 2433 struct inpcb *local_wild_mapped = NULL; 2434 #endif 2435 struct inpcb *jail_wild = NULL; 2436 int injail; 2437 2438 /* 2439 * Order of socket selection - we always prefer jails. 2440 * 1. jailed, non-wild. 2441 * 2. jailed, wild. 2442 * 3. non-jailed, non-wild. 2443 * 4. non-jailed, wild. 2444 */ 2445 2446 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport, 2447 0, pcbinfo->ipi_hashmask)]; 2448 CK_LIST_FOREACH(inp, head, inp_hash) { 2449 #ifdef INET6 2450 /* XXX inp locking */ 2451 if ((inp->inp_vflag & INP_IPV4) == 0) 2452 continue; 2453 #endif 2454 if (inp->inp_faddr.s_addr != INADDR_ANY || 2455 inp->inp_lport != lport) 2456 continue; 2457 2458 injail = prison_flag(inp->inp_cred, PR_IP4); 2459 if (injail) { 2460 if (prison_check_ip4(inp->inp_cred, 2461 &laddr) != 0) 2462 continue; 2463 } else { 2464 if (local_exact != NULL) 2465 continue; 2466 } 2467 2468 if (inp->inp_laddr.s_addr == laddr.s_addr) { 2469 if (injail) 2470 return (inp); 2471 else 2472 local_exact = inp; 2473 } else if (inp->inp_laddr.s_addr == INADDR_ANY) { 2474 #ifdef INET6 2475 /* XXX inp locking, NULL check */ 2476 if (inp->inp_vflag & INP_IPV6PROTO) 2477 local_wild_mapped = inp; 2478 else 2479 #endif 2480 if (injail) 2481 jail_wild = inp; 2482 else 2483 local_wild = inp; 2484 } 2485 } /* LIST_FOREACH */ 2486 if (jail_wild != NULL) 2487 return (jail_wild); 2488 if (local_exact != NULL) 2489 return (local_exact); 2490 if (local_wild != NULL) 2491 return (local_wild); 2492 #ifdef INET6 2493 if (local_wild_mapped != NULL) 2494 return (local_wild_mapped); 2495 #endif 2496 } /* if ((lookupflags & INPLOOKUP_WILDCARD) != 0) */ 2497 2498 return (NULL); 2499 } 2500 2501 /* 2502 * Lookup PCB in hash list, using pcbinfo tables. This variation locks the 2503 * hash list lock, and will return the inpcb locked (i.e., requires 2504 * INPLOOKUP_LOCKPCB). 2505 */ 2506 static struct inpcb * 2507 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2508 u_int fport, struct in_addr laddr, u_int lport, int lookupflags, 2509 struct ifnet *ifp, uint8_t numa_domain) 2510 { 2511 struct inpcb *inp; 2512 2513 inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport, 2514 (lookupflags & ~(INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)), ifp, 2515 numa_domain); 2516 if (inp != NULL) { 2517 if (lookupflags & INPLOOKUP_WLOCKPCB) { 2518 INP_WLOCK(inp); 2519 if (__predict_false(inp->inp_flags2 & INP_FREED)) { 2520 INP_WUNLOCK(inp); 2521 inp = NULL; 2522 } 2523 } else if (lookupflags & INPLOOKUP_RLOCKPCB) { 2524 INP_RLOCK(inp); 2525 if (__predict_false(inp->inp_flags2 & INP_FREED)) { 2526 INP_RUNLOCK(inp); 2527 inp = NULL; 2528 } 2529 } else 2530 panic("%s: locking bug", __func__); 2531 #ifdef INVARIANTS 2532 if (inp != NULL) { 2533 if (lookupflags & INPLOOKUP_WLOCKPCB) 2534 INP_WLOCK_ASSERT(inp); 2535 else 2536 INP_RLOCK_ASSERT(inp); 2537 } 2538 #endif 2539 } 2540 2541 return (inp); 2542 } 2543 2544 /* 2545 * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf 2546 * from which a pre-calculated hash value may be extracted. 2547 * 2548 * Possibly more of this logic should be in in_pcbgroup.c. 2549 */ 2550 struct inpcb * 2551 in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport, 2552 struct in_addr laddr, u_int lport, int lookupflags, struct ifnet *ifp) 2553 { 2554 #if defined(PCBGROUP) && !defined(RSS) 2555 struct inpcbgroup *pcbgroup; 2556 #endif 2557 2558 KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0, 2559 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2560 KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0, 2561 ("%s: LOCKPCB not set", __func__)); 2562 2563 /* 2564 * When not using RSS, use connection groups in preference to the 2565 * reservation table when looking up 4-tuples. When using RSS, just 2566 * use the reservation table, due to the cost of the Toeplitz hash 2567 * in software. 2568 * 2569 * XXXRW: This policy belongs in the pcbgroup code, as in principle 2570 * we could be doing RSS with a non-Toeplitz hash that is affordable 2571 * in software. 2572 */ 2573 #if defined(PCBGROUP) && !defined(RSS) 2574 if (in_pcbgroup_enabled(pcbinfo)) { 2575 pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr, 2576 fport); 2577 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport, 2578 laddr, lport, lookupflags, ifp)); 2579 } 2580 #endif 2581 return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport, 2582 lookupflags, ifp, M_NODOM)); 2583 } 2584 2585 struct inpcb * 2586 in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2587 u_int fport, struct in_addr laddr, u_int lport, int lookupflags, 2588 struct ifnet *ifp, struct mbuf *m) 2589 { 2590 #ifdef PCBGROUP 2591 struct inpcbgroup *pcbgroup; 2592 #endif 2593 2594 KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0, 2595 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2596 KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0, 2597 ("%s: LOCKPCB not set", __func__)); 2598 2599 #ifdef PCBGROUP 2600 /* 2601 * If we can use a hardware-generated hash to look up the connection 2602 * group, use that connection group to find the inpcb. Otherwise 2603 * fall back on a software hash -- or the reservation table if we're 2604 * using RSS. 2605 * 2606 * XXXRW: As above, that policy belongs in the pcbgroup code. 2607 */ 2608 if (in_pcbgroup_enabled(pcbinfo) && 2609 !(M_HASHTYPE_TEST(m, M_HASHTYPE_NONE))) { 2610 pcbgroup = in_pcbgroup_byhash(pcbinfo, M_HASHTYPE_GET(m), 2611 m->m_pkthdr.flowid); 2612 if (pcbgroup != NULL) 2613 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, 2614 fport, laddr, lport, lookupflags, ifp)); 2615 #ifndef RSS 2616 pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr, 2617 fport); 2618 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport, 2619 laddr, lport, lookupflags, ifp)); 2620 #endif 2621 } 2622 #endif 2623 return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport, 2624 lookupflags, ifp, m->m_pkthdr.numa_domain)); 2625 } 2626 #endif /* INET */ 2627 2628 /* 2629 * Insert PCB onto various hash lists. 2630 */ 2631 static int 2632 in_pcbinshash_internal(struct inpcb *inp, struct mbuf *m) 2633 { 2634 struct inpcbhead *pcbhash; 2635 struct inpcbporthead *pcbporthash; 2636 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2637 struct inpcbport *phd; 2638 u_int32_t hashkey_faddr; 2639 int so_options; 2640 2641 INP_WLOCK_ASSERT(inp); 2642 INP_HASH_WLOCK_ASSERT(pcbinfo); 2643 2644 KASSERT((inp->inp_flags & INP_INHASHLIST) == 0, 2645 ("in_pcbinshash: INP_INHASHLIST")); 2646 2647 #ifdef INET6 2648 if (inp->inp_vflag & INP_IPV6) 2649 hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr); 2650 else 2651 #endif 2652 hashkey_faddr = inp->inp_faddr.s_addr; 2653 2654 pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr, 2655 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 2656 2657 pcbporthash = &pcbinfo->ipi_porthashbase[ 2658 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)]; 2659 2660 /* 2661 * Add entry to load balance group. 2662 * Only do this if SO_REUSEPORT_LB is set. 2663 */ 2664 so_options = inp_so_options(inp); 2665 if (so_options & SO_REUSEPORT_LB) { 2666 int ret = in_pcbinslbgrouphash(inp, M_NODOM); 2667 if (ret) { 2668 /* pcb lb group malloc fail (ret=ENOBUFS). */ 2669 return (ret); 2670 } 2671 } 2672 2673 /* 2674 * Go through port list and look for a head for this lport. 2675 */ 2676 CK_LIST_FOREACH(phd, pcbporthash, phd_hash) { 2677 if (phd->phd_port == inp->inp_lport) 2678 break; 2679 } 2680 /* 2681 * If none exists, malloc one and tack it on. 2682 */ 2683 if (phd == NULL) { 2684 phd = malloc(sizeof(struct inpcbport), M_PCB, M_NOWAIT); 2685 if (phd == NULL) { 2686 return (ENOBUFS); /* XXX */ 2687 } 2688 bzero(&phd->phd_epoch_ctx, sizeof(struct epoch_context)); 2689 phd->phd_port = inp->inp_lport; 2690 CK_LIST_INIT(&phd->phd_pcblist); 2691 CK_LIST_INSERT_HEAD(pcbporthash, phd, phd_hash); 2692 } 2693 inp->inp_phd = phd; 2694 CK_LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist); 2695 CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash); 2696 inp->inp_flags |= INP_INHASHLIST; 2697 #ifdef PCBGROUP 2698 if (m != NULL) { 2699 in_pcbgroup_update_mbuf(inp, m); 2700 } else { 2701 in_pcbgroup_update(inp); 2702 } 2703 #endif 2704 return (0); 2705 } 2706 2707 int 2708 in_pcbinshash(struct inpcb *inp) 2709 { 2710 2711 return (in_pcbinshash_internal(inp, NULL)); 2712 } 2713 2714 int 2715 in_pcbinshash_mbuf(struct inpcb *inp, struct mbuf *m) 2716 { 2717 2718 return (in_pcbinshash_internal(inp, m)); 2719 } 2720 2721 /* 2722 * Move PCB to the proper hash bucket when { faddr, fport } have been 2723 * changed. NOTE: This does not handle the case of the lport changing (the 2724 * hashed port list would have to be updated as well), so the lport must 2725 * not change after in_pcbinshash() has been called. 2726 */ 2727 void 2728 in_pcbrehash_mbuf(struct inpcb *inp, struct mbuf *m) 2729 { 2730 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2731 struct inpcbhead *head; 2732 u_int32_t hashkey_faddr; 2733 2734 INP_WLOCK_ASSERT(inp); 2735 INP_HASH_WLOCK_ASSERT(pcbinfo); 2736 2737 KASSERT(inp->inp_flags & INP_INHASHLIST, 2738 ("in_pcbrehash: !INP_INHASHLIST")); 2739 2740 #ifdef INET6 2741 if (inp->inp_vflag & INP_IPV6) 2742 hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr); 2743 else 2744 #endif 2745 hashkey_faddr = inp->inp_faddr.s_addr; 2746 2747 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr, 2748 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 2749 2750 CK_LIST_REMOVE(inp, inp_hash); 2751 CK_LIST_INSERT_HEAD(head, inp, inp_hash); 2752 2753 #ifdef PCBGROUP 2754 if (m != NULL) 2755 in_pcbgroup_update_mbuf(inp, m); 2756 else 2757 in_pcbgroup_update(inp); 2758 #endif 2759 } 2760 2761 void 2762 in_pcbrehash(struct inpcb *inp) 2763 { 2764 2765 in_pcbrehash_mbuf(inp, NULL); 2766 } 2767 2768 /* 2769 * Remove PCB from various lists. 2770 */ 2771 static void 2772 in_pcbremlists(struct inpcb *inp) 2773 { 2774 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2775 2776 INP_WLOCK_ASSERT(inp); 2777 INP_LIST_WLOCK_ASSERT(pcbinfo); 2778 2779 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 2780 if (inp->inp_flags & INP_INHASHLIST) { 2781 struct inpcbport *phd = inp->inp_phd; 2782 2783 INP_HASH_WLOCK(pcbinfo); 2784 2785 /* XXX: Only do if SO_REUSEPORT_LB set? */ 2786 in_pcbremlbgrouphash(inp); 2787 2788 CK_LIST_REMOVE(inp, inp_hash); 2789 CK_LIST_REMOVE(inp, inp_portlist); 2790 if (CK_LIST_FIRST(&phd->phd_pcblist) == NULL) { 2791 CK_LIST_REMOVE(phd, phd_hash); 2792 NET_EPOCH_CALL(inpcbport_free, &phd->phd_epoch_ctx); 2793 } 2794 INP_HASH_WUNLOCK(pcbinfo); 2795 inp->inp_flags &= ~INP_INHASHLIST; 2796 } 2797 CK_LIST_REMOVE(inp, inp_list); 2798 pcbinfo->ipi_count--; 2799 #ifdef PCBGROUP 2800 in_pcbgroup_remove(inp); 2801 #endif 2802 } 2803 2804 /* 2805 * Check for alternatives when higher level complains 2806 * about service problems. For now, invalidate cached 2807 * routing information. If the route was created dynamically 2808 * (by a redirect), time to try a default gateway again. 2809 */ 2810 void 2811 in_losing(struct inpcb *inp) 2812 { 2813 2814 RO_INVALIDATE_CACHE(&inp->inp_route); 2815 return; 2816 } 2817 2818 /* 2819 * A set label operation has occurred at the socket layer, propagate the 2820 * label change into the in_pcb for the socket. 2821 */ 2822 void 2823 in_pcbsosetlabel(struct socket *so) 2824 { 2825 #ifdef MAC 2826 struct inpcb *inp; 2827 2828 inp = sotoinpcb(so); 2829 KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL")); 2830 2831 INP_WLOCK(inp); 2832 SOCK_LOCK(so); 2833 mac_inpcb_sosetlabel(so, inp); 2834 SOCK_UNLOCK(so); 2835 INP_WUNLOCK(inp); 2836 #endif 2837 } 2838 2839 /* 2840 * ipport_tick runs once per second, determining if random port allocation 2841 * should be continued. If more than ipport_randomcps ports have been 2842 * allocated in the last second, then we return to sequential port 2843 * allocation. We return to random allocation only once we drop below 2844 * ipport_randomcps for at least ipport_randomtime seconds. 2845 */ 2846 static void 2847 ipport_tick(void *xtp) 2848 { 2849 VNET_ITERATOR_DECL(vnet_iter); 2850 2851 VNET_LIST_RLOCK_NOSLEEP(); 2852 VNET_FOREACH(vnet_iter) { 2853 CURVNET_SET(vnet_iter); /* XXX appease INVARIANTS here */ 2854 if (V_ipport_tcpallocs <= 2855 V_ipport_tcplastcount + V_ipport_randomcps) { 2856 if (V_ipport_stoprandom > 0) 2857 V_ipport_stoprandom--; 2858 } else 2859 V_ipport_stoprandom = V_ipport_randomtime; 2860 V_ipport_tcplastcount = V_ipport_tcpallocs; 2861 CURVNET_RESTORE(); 2862 } 2863 VNET_LIST_RUNLOCK_NOSLEEP(); 2864 callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL); 2865 } 2866 2867 static void 2868 ip_fini(void *xtp) 2869 { 2870 2871 callout_stop(&ipport_tick_callout); 2872 } 2873 2874 /* 2875 * The ipport_callout should start running at about the time we attach the 2876 * inet or inet6 domains. 2877 */ 2878 static void 2879 ipport_tick_init(const void *unused __unused) 2880 { 2881 2882 /* Start ipport_tick. */ 2883 callout_init(&ipport_tick_callout, 1); 2884 callout_reset(&ipport_tick_callout, 1, ipport_tick, NULL); 2885 EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL, 2886 SHUTDOWN_PRI_DEFAULT); 2887 } 2888 SYSINIT(ipport_tick_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_MIDDLE, 2889 ipport_tick_init, NULL); 2890 2891 void 2892 inp_wlock(struct inpcb *inp) 2893 { 2894 2895 INP_WLOCK(inp); 2896 } 2897 2898 void 2899 inp_wunlock(struct inpcb *inp) 2900 { 2901 2902 INP_WUNLOCK(inp); 2903 } 2904 2905 void 2906 inp_rlock(struct inpcb *inp) 2907 { 2908 2909 INP_RLOCK(inp); 2910 } 2911 2912 void 2913 inp_runlock(struct inpcb *inp) 2914 { 2915 2916 INP_RUNLOCK(inp); 2917 } 2918 2919 #ifdef INVARIANT_SUPPORT 2920 void 2921 inp_lock_assert(struct inpcb *inp) 2922 { 2923 2924 INP_WLOCK_ASSERT(inp); 2925 } 2926 2927 void 2928 inp_unlock_assert(struct inpcb *inp) 2929 { 2930 2931 INP_UNLOCK_ASSERT(inp); 2932 } 2933 #endif 2934 2935 void 2936 inp_apply_all(void (*func)(struct inpcb *, void *), void *arg) 2937 { 2938 struct inpcb *inp; 2939 2940 INP_INFO_WLOCK(&V_tcbinfo); 2941 CK_LIST_FOREACH(inp, V_tcbinfo.ipi_listhead, inp_list) { 2942 INP_WLOCK(inp); 2943 func(inp, arg); 2944 INP_WUNLOCK(inp); 2945 } 2946 INP_INFO_WUNLOCK(&V_tcbinfo); 2947 } 2948 2949 struct socket * 2950 inp_inpcbtosocket(struct inpcb *inp) 2951 { 2952 2953 INP_WLOCK_ASSERT(inp); 2954 return (inp->inp_socket); 2955 } 2956 2957 struct tcpcb * 2958 inp_inpcbtotcpcb(struct inpcb *inp) 2959 { 2960 2961 INP_WLOCK_ASSERT(inp); 2962 return ((struct tcpcb *)inp->inp_ppcb); 2963 } 2964 2965 int 2966 inp_ip_tos_get(const struct inpcb *inp) 2967 { 2968 2969 return (inp->inp_ip_tos); 2970 } 2971 2972 void 2973 inp_ip_tos_set(struct inpcb *inp, int val) 2974 { 2975 2976 inp->inp_ip_tos = val; 2977 } 2978 2979 void 2980 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp, 2981 uint32_t *faddr, uint16_t *fp) 2982 { 2983 2984 INP_LOCK_ASSERT(inp); 2985 *laddr = inp->inp_laddr.s_addr; 2986 *faddr = inp->inp_faddr.s_addr; 2987 *lp = inp->inp_lport; 2988 *fp = inp->inp_fport; 2989 } 2990 2991 struct inpcb * 2992 so_sotoinpcb(struct socket *so) 2993 { 2994 2995 return (sotoinpcb(so)); 2996 } 2997 2998 struct tcpcb * 2999 so_sototcpcb(struct socket *so) 3000 { 3001 3002 return (sototcpcb(so)); 3003 } 3004 3005 /* 3006 * Create an external-format (``xinpcb'') structure using the information in 3007 * the kernel-format in_pcb structure pointed to by inp. This is done to 3008 * reduce the spew of irrelevant information over this interface, to isolate 3009 * user code from changes in the kernel structure, and potentially to provide 3010 * information-hiding if we decide that some of this information should be 3011 * hidden from users. 3012 */ 3013 void 3014 in_pcbtoxinpcb(const struct inpcb *inp, struct xinpcb *xi) 3015 { 3016 3017 bzero(xi, sizeof(*xi)); 3018 xi->xi_len = sizeof(struct xinpcb); 3019 if (inp->inp_socket) 3020 sotoxsocket(inp->inp_socket, &xi->xi_socket); 3021 bcopy(&inp->inp_inc, &xi->inp_inc, sizeof(struct in_conninfo)); 3022 xi->inp_gencnt = inp->inp_gencnt; 3023 xi->inp_ppcb = (uintptr_t)inp->inp_ppcb; 3024 xi->inp_flow = inp->inp_flow; 3025 xi->inp_flowid = inp->inp_flowid; 3026 xi->inp_flowtype = inp->inp_flowtype; 3027 xi->inp_flags = inp->inp_flags; 3028 xi->inp_flags2 = inp->inp_flags2; 3029 xi->inp_rss_listen_bucket = inp->inp_rss_listen_bucket; 3030 xi->in6p_cksum = inp->in6p_cksum; 3031 xi->in6p_hops = inp->in6p_hops; 3032 xi->inp_ip_tos = inp->inp_ip_tos; 3033 xi->inp_vflag = inp->inp_vflag; 3034 xi->inp_ip_ttl = inp->inp_ip_ttl; 3035 xi->inp_ip_p = inp->inp_ip_p; 3036 xi->inp_ip_minttl = inp->inp_ip_minttl; 3037 } 3038 3039 #ifdef DDB 3040 static void 3041 db_print_indent(int indent) 3042 { 3043 int i; 3044 3045 for (i = 0; i < indent; i++) 3046 db_printf(" "); 3047 } 3048 3049 static void 3050 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent) 3051 { 3052 char faddr_str[48], laddr_str[48]; 3053 3054 db_print_indent(indent); 3055 db_printf("%s at %p\n", name, inc); 3056 3057 indent += 2; 3058 3059 #ifdef INET6 3060 if (inc->inc_flags & INC_ISIPV6) { 3061 /* IPv6. */ 3062 ip6_sprintf(laddr_str, &inc->inc6_laddr); 3063 ip6_sprintf(faddr_str, &inc->inc6_faddr); 3064 } else 3065 #endif 3066 { 3067 /* IPv4. */ 3068 inet_ntoa_r(inc->inc_laddr, laddr_str); 3069 inet_ntoa_r(inc->inc_faddr, faddr_str); 3070 } 3071 db_print_indent(indent); 3072 db_printf("inc_laddr %s inc_lport %u\n", laddr_str, 3073 ntohs(inc->inc_lport)); 3074 db_print_indent(indent); 3075 db_printf("inc_faddr %s inc_fport %u\n", faddr_str, 3076 ntohs(inc->inc_fport)); 3077 } 3078 3079 static void 3080 db_print_inpflags(int inp_flags) 3081 { 3082 int comma; 3083 3084 comma = 0; 3085 if (inp_flags & INP_RECVOPTS) { 3086 db_printf("%sINP_RECVOPTS", comma ? ", " : ""); 3087 comma = 1; 3088 } 3089 if (inp_flags & INP_RECVRETOPTS) { 3090 db_printf("%sINP_RECVRETOPTS", comma ? ", " : ""); 3091 comma = 1; 3092 } 3093 if (inp_flags & INP_RECVDSTADDR) { 3094 db_printf("%sINP_RECVDSTADDR", comma ? ", " : ""); 3095 comma = 1; 3096 } 3097 if (inp_flags & INP_ORIGDSTADDR) { 3098 db_printf("%sINP_ORIGDSTADDR", comma ? ", " : ""); 3099 comma = 1; 3100 } 3101 if (inp_flags & INP_HDRINCL) { 3102 db_printf("%sINP_HDRINCL", comma ? ", " : ""); 3103 comma = 1; 3104 } 3105 if (inp_flags & INP_HIGHPORT) { 3106 db_printf("%sINP_HIGHPORT", comma ? ", " : ""); 3107 comma = 1; 3108 } 3109 if (inp_flags & INP_LOWPORT) { 3110 db_printf("%sINP_LOWPORT", comma ? ", " : ""); 3111 comma = 1; 3112 } 3113 if (inp_flags & INP_ANONPORT) { 3114 db_printf("%sINP_ANONPORT", comma ? ", " : ""); 3115 comma = 1; 3116 } 3117 if (inp_flags & INP_RECVIF) { 3118 db_printf("%sINP_RECVIF", comma ? ", " : ""); 3119 comma = 1; 3120 } 3121 if (inp_flags & INP_MTUDISC) { 3122 db_printf("%sINP_MTUDISC", comma ? ", " : ""); 3123 comma = 1; 3124 } 3125 if (inp_flags & INP_RECVTTL) { 3126 db_printf("%sINP_RECVTTL", comma ? ", " : ""); 3127 comma = 1; 3128 } 3129 if (inp_flags & INP_DONTFRAG) { 3130 db_printf("%sINP_DONTFRAG", comma ? ", " : ""); 3131 comma = 1; 3132 } 3133 if (inp_flags & INP_RECVTOS) { 3134 db_printf("%sINP_RECVTOS", comma ? ", " : ""); 3135 comma = 1; 3136 } 3137 if (inp_flags & IN6P_IPV6_V6ONLY) { 3138 db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : ""); 3139 comma = 1; 3140 } 3141 if (inp_flags & IN6P_PKTINFO) { 3142 db_printf("%sIN6P_PKTINFO", comma ? ", " : ""); 3143 comma = 1; 3144 } 3145 if (inp_flags & IN6P_HOPLIMIT) { 3146 db_printf("%sIN6P_HOPLIMIT", comma ? ", " : ""); 3147 comma = 1; 3148 } 3149 if (inp_flags & IN6P_HOPOPTS) { 3150 db_printf("%sIN6P_HOPOPTS", comma ? ", " : ""); 3151 comma = 1; 3152 } 3153 if (inp_flags & IN6P_DSTOPTS) { 3154 db_printf("%sIN6P_DSTOPTS", comma ? ", " : ""); 3155 comma = 1; 3156 } 3157 if (inp_flags & IN6P_RTHDR) { 3158 db_printf("%sIN6P_RTHDR", comma ? ", " : ""); 3159 comma = 1; 3160 } 3161 if (inp_flags & IN6P_RTHDRDSTOPTS) { 3162 db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : ""); 3163 comma = 1; 3164 } 3165 if (inp_flags & IN6P_TCLASS) { 3166 db_printf("%sIN6P_TCLASS", comma ? ", " : ""); 3167 comma = 1; 3168 } 3169 if (inp_flags & IN6P_AUTOFLOWLABEL) { 3170 db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : ""); 3171 comma = 1; 3172 } 3173 if (inp_flags & INP_TIMEWAIT) { 3174 db_printf("%sINP_TIMEWAIT", comma ? ", " : ""); 3175 comma = 1; 3176 } 3177 if (inp_flags & INP_ONESBCAST) { 3178 db_printf("%sINP_ONESBCAST", comma ? ", " : ""); 3179 comma = 1; 3180 } 3181 if (inp_flags & INP_DROPPED) { 3182 db_printf("%sINP_DROPPED", comma ? ", " : ""); 3183 comma = 1; 3184 } 3185 if (inp_flags & INP_SOCKREF) { 3186 db_printf("%sINP_SOCKREF", comma ? ", " : ""); 3187 comma = 1; 3188 } 3189 if (inp_flags & IN6P_RFC2292) { 3190 db_printf("%sIN6P_RFC2292", comma ? ", " : ""); 3191 comma = 1; 3192 } 3193 if (inp_flags & IN6P_MTU) { 3194 db_printf("IN6P_MTU%s", comma ? ", " : ""); 3195 comma = 1; 3196 } 3197 } 3198 3199 static void 3200 db_print_inpvflag(u_char inp_vflag) 3201 { 3202 int comma; 3203 3204 comma = 0; 3205 if (inp_vflag & INP_IPV4) { 3206 db_printf("%sINP_IPV4", comma ? ", " : ""); 3207 comma = 1; 3208 } 3209 if (inp_vflag & INP_IPV6) { 3210 db_printf("%sINP_IPV6", comma ? ", " : ""); 3211 comma = 1; 3212 } 3213 if (inp_vflag & INP_IPV6PROTO) { 3214 db_printf("%sINP_IPV6PROTO", comma ? ", " : ""); 3215 comma = 1; 3216 } 3217 } 3218 3219 static void 3220 db_print_inpcb(struct inpcb *inp, const char *name, int indent) 3221 { 3222 3223 db_print_indent(indent); 3224 db_printf("%s at %p\n", name, inp); 3225 3226 indent += 2; 3227 3228 db_print_indent(indent); 3229 db_printf("inp_flow: 0x%x\n", inp->inp_flow); 3230 3231 db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent); 3232 3233 db_print_indent(indent); 3234 db_printf("inp_ppcb: %p inp_pcbinfo: %p inp_socket: %p\n", 3235 inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket); 3236 3237 db_print_indent(indent); 3238 db_printf("inp_label: %p inp_flags: 0x%x (", 3239 inp->inp_label, inp->inp_flags); 3240 db_print_inpflags(inp->inp_flags); 3241 db_printf(")\n"); 3242 3243 db_print_indent(indent); 3244 db_printf("inp_sp: %p inp_vflag: 0x%x (", inp->inp_sp, 3245 inp->inp_vflag); 3246 db_print_inpvflag(inp->inp_vflag); 3247 db_printf(")\n"); 3248 3249 db_print_indent(indent); 3250 db_printf("inp_ip_ttl: %d inp_ip_p: %d inp_ip_minttl: %d\n", 3251 inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl); 3252 3253 db_print_indent(indent); 3254 #ifdef INET6 3255 if (inp->inp_vflag & INP_IPV6) { 3256 db_printf("in6p_options: %p in6p_outputopts: %p " 3257 "in6p_moptions: %p\n", inp->in6p_options, 3258 inp->in6p_outputopts, inp->in6p_moptions); 3259 db_printf("in6p_icmp6filt: %p in6p_cksum %d " 3260 "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum, 3261 inp->in6p_hops); 3262 } else 3263 #endif 3264 { 3265 db_printf("inp_ip_tos: %d inp_ip_options: %p " 3266 "inp_ip_moptions: %p\n", inp->inp_ip_tos, 3267 inp->inp_options, inp->inp_moptions); 3268 } 3269 3270 db_print_indent(indent); 3271 db_printf("inp_phd: %p inp_gencnt: %ju\n", inp->inp_phd, 3272 (uintmax_t)inp->inp_gencnt); 3273 } 3274 3275 DB_SHOW_COMMAND(inpcb, db_show_inpcb) 3276 { 3277 struct inpcb *inp; 3278 3279 if (!have_addr) { 3280 db_printf("usage: show inpcb <addr>\n"); 3281 return; 3282 } 3283 inp = (struct inpcb *)addr; 3284 3285 db_print_inpcb(inp, "inpcb", 0); 3286 } 3287 #endif /* DDB */ 3288 3289 #ifdef RATELIMIT 3290 /* 3291 * Modify TX rate limit based on the existing "inp->inp_snd_tag", 3292 * if any. 3293 */ 3294 int 3295 in_pcbmodify_txrtlmt(struct inpcb *inp, uint32_t max_pacing_rate) 3296 { 3297 union if_snd_tag_modify_params params = { 3298 .rate_limit.max_rate = max_pacing_rate, 3299 .rate_limit.flags = M_NOWAIT, 3300 }; 3301 struct m_snd_tag *mst; 3302 struct ifnet *ifp; 3303 int error; 3304 3305 mst = inp->inp_snd_tag; 3306 if (mst == NULL) 3307 return (EINVAL); 3308 3309 ifp = mst->ifp; 3310 if (ifp == NULL) 3311 return (EINVAL); 3312 3313 if (ifp->if_snd_tag_modify == NULL) { 3314 error = EOPNOTSUPP; 3315 } else { 3316 error = ifp->if_snd_tag_modify(mst, ¶ms); 3317 } 3318 return (error); 3319 } 3320 3321 /* 3322 * Query existing TX rate limit based on the existing 3323 * "inp->inp_snd_tag", if any. 3324 */ 3325 int 3326 in_pcbquery_txrtlmt(struct inpcb *inp, uint32_t *p_max_pacing_rate) 3327 { 3328 union if_snd_tag_query_params params = { }; 3329 struct m_snd_tag *mst; 3330 struct ifnet *ifp; 3331 int error; 3332 3333 mst = inp->inp_snd_tag; 3334 if (mst == NULL) 3335 return (EINVAL); 3336 3337 ifp = mst->ifp; 3338 if (ifp == NULL) 3339 return (EINVAL); 3340 3341 if (ifp->if_snd_tag_query == NULL) { 3342 error = EOPNOTSUPP; 3343 } else { 3344 error = ifp->if_snd_tag_query(mst, ¶ms); 3345 if (error == 0 && p_max_pacing_rate != NULL) 3346 *p_max_pacing_rate = params.rate_limit.max_rate; 3347 } 3348 return (error); 3349 } 3350 3351 /* 3352 * Query existing TX queue level based on the existing 3353 * "inp->inp_snd_tag", if any. 3354 */ 3355 int 3356 in_pcbquery_txrlevel(struct inpcb *inp, uint32_t *p_txqueue_level) 3357 { 3358 union if_snd_tag_query_params params = { }; 3359 struct m_snd_tag *mst; 3360 struct ifnet *ifp; 3361 int error; 3362 3363 mst = inp->inp_snd_tag; 3364 if (mst == NULL) 3365 return (EINVAL); 3366 3367 ifp = mst->ifp; 3368 if (ifp == NULL) 3369 return (EINVAL); 3370 3371 if (ifp->if_snd_tag_query == NULL) 3372 return (EOPNOTSUPP); 3373 3374 error = ifp->if_snd_tag_query(mst, ¶ms); 3375 if (error == 0 && p_txqueue_level != NULL) 3376 *p_txqueue_level = params.rate_limit.queue_level; 3377 return (error); 3378 } 3379 3380 /* 3381 * Allocate a new TX rate limit send tag from the network interface 3382 * given by the "ifp" argument and save it in "inp->inp_snd_tag": 3383 */ 3384 int 3385 in_pcbattach_txrtlmt(struct inpcb *inp, struct ifnet *ifp, 3386 uint32_t flowtype, uint32_t flowid, uint32_t max_pacing_rate, struct m_snd_tag **st) 3387 3388 { 3389 union if_snd_tag_alloc_params params = { 3390 .rate_limit.hdr.type = (max_pacing_rate == -1U) ? 3391 IF_SND_TAG_TYPE_UNLIMITED : IF_SND_TAG_TYPE_RATE_LIMIT, 3392 .rate_limit.hdr.flowid = flowid, 3393 .rate_limit.hdr.flowtype = flowtype, 3394 .rate_limit.hdr.numa_domain = inp->inp_numa_domain, 3395 .rate_limit.max_rate = max_pacing_rate, 3396 .rate_limit.flags = M_NOWAIT, 3397 }; 3398 int error; 3399 3400 INP_WLOCK_ASSERT(inp); 3401 3402 if (*st != NULL) 3403 return (EINVAL); 3404 3405 error = m_snd_tag_alloc(ifp, ¶ms, st); 3406 #ifdef INET 3407 if (error == 0) { 3408 counter_u64_add(rate_limit_set_ok, 1); 3409 counter_u64_add(rate_limit_active, 1); 3410 } else if (error != EOPNOTSUPP) 3411 counter_u64_add(rate_limit_alloc_fail, 1); 3412 #endif 3413 return (error); 3414 } 3415 3416 void 3417 in_pcbdetach_tag(struct m_snd_tag *mst) 3418 { 3419 3420 m_snd_tag_rele(mst); 3421 #ifdef INET 3422 counter_u64_add(rate_limit_active, -1); 3423 #endif 3424 } 3425 3426 /* 3427 * Free an existing TX rate limit tag based on the "inp->inp_snd_tag", 3428 * if any: 3429 */ 3430 void 3431 in_pcbdetach_txrtlmt(struct inpcb *inp) 3432 { 3433 struct m_snd_tag *mst; 3434 3435 INP_WLOCK_ASSERT(inp); 3436 3437 mst = inp->inp_snd_tag; 3438 inp->inp_snd_tag = NULL; 3439 3440 if (mst == NULL) 3441 return; 3442 3443 m_snd_tag_rele(mst); 3444 } 3445 3446 int 3447 in_pcboutput_txrtlmt_locked(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb, uint32_t max_pacing_rate) 3448 { 3449 int error; 3450 3451 /* 3452 * If the existing send tag is for the wrong interface due to 3453 * a route change, first drop the existing tag. Set the 3454 * CHANGED flag so that we will keep trying to allocate a new 3455 * tag if we fail to allocate one this time. 3456 */ 3457 if (inp->inp_snd_tag != NULL && inp->inp_snd_tag->ifp != ifp) { 3458 in_pcbdetach_txrtlmt(inp); 3459 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 3460 } 3461 3462 /* 3463 * NOTE: When attaching to a network interface a reference is 3464 * made to ensure the network interface doesn't go away until 3465 * all ratelimit connections are gone. The network interface 3466 * pointers compared below represent valid network interfaces, 3467 * except when comparing towards NULL. 3468 */ 3469 if (max_pacing_rate == 0 && inp->inp_snd_tag == NULL) { 3470 error = 0; 3471 } else if (!(ifp->if_capenable & IFCAP_TXRTLMT)) { 3472 if (inp->inp_snd_tag != NULL) 3473 in_pcbdetach_txrtlmt(inp); 3474 error = 0; 3475 } else if (inp->inp_snd_tag == NULL) { 3476 /* 3477 * In order to utilize packet pacing with RSS, we need 3478 * to wait until there is a valid RSS hash before we 3479 * can proceed: 3480 */ 3481 if (M_HASHTYPE_GET(mb) == M_HASHTYPE_NONE) { 3482 error = EAGAIN; 3483 } else { 3484 error = in_pcbattach_txrtlmt(inp, ifp, M_HASHTYPE_GET(mb), 3485 mb->m_pkthdr.flowid, max_pacing_rate, &inp->inp_snd_tag); 3486 } 3487 } else { 3488 error = in_pcbmodify_txrtlmt(inp, max_pacing_rate); 3489 } 3490 if (error == 0 || error == EOPNOTSUPP) 3491 inp->inp_flags2 &= ~INP_RATE_LIMIT_CHANGED; 3492 3493 return (error); 3494 } 3495 3496 /* 3497 * This function should be called when the INP_RATE_LIMIT_CHANGED flag 3498 * is set in the fast path and will attach/detach/modify the TX rate 3499 * limit send tag based on the socket's so_max_pacing_rate value. 3500 */ 3501 void 3502 in_pcboutput_txrtlmt(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb) 3503 { 3504 struct socket *socket; 3505 uint32_t max_pacing_rate; 3506 bool did_upgrade; 3507 int error; 3508 3509 if (inp == NULL) 3510 return; 3511 3512 socket = inp->inp_socket; 3513 if (socket == NULL) 3514 return; 3515 3516 if (!INP_WLOCKED(inp)) { 3517 /* 3518 * NOTE: If the write locking fails, we need to bail 3519 * out and use the non-ratelimited ring for the 3520 * transmit until there is a new chance to get the 3521 * write lock. 3522 */ 3523 if (!INP_TRY_UPGRADE(inp)) 3524 return; 3525 did_upgrade = 1; 3526 } else { 3527 did_upgrade = 0; 3528 } 3529 3530 /* 3531 * NOTE: The so_max_pacing_rate value is read unlocked, 3532 * because atomic updates are not required since the variable 3533 * is checked at every mbuf we send. It is assumed that the 3534 * variable read itself will be atomic. 3535 */ 3536 max_pacing_rate = socket->so_max_pacing_rate; 3537 3538 error = in_pcboutput_txrtlmt_locked(inp, ifp, mb, max_pacing_rate); 3539 3540 if (did_upgrade) 3541 INP_DOWNGRADE(inp); 3542 } 3543 3544 /* 3545 * Track route changes for TX rate limiting. 3546 */ 3547 void 3548 in_pcboutput_eagain(struct inpcb *inp) 3549 { 3550 bool did_upgrade; 3551 3552 if (inp == NULL) 3553 return; 3554 3555 if (inp->inp_snd_tag == NULL) 3556 return; 3557 3558 if (!INP_WLOCKED(inp)) { 3559 /* 3560 * NOTE: If the write locking fails, we need to bail 3561 * out and use the non-ratelimited ring for the 3562 * transmit until there is a new chance to get the 3563 * write lock. 3564 */ 3565 if (!INP_TRY_UPGRADE(inp)) 3566 return; 3567 did_upgrade = 1; 3568 } else { 3569 did_upgrade = 0; 3570 } 3571 3572 /* detach rate limiting */ 3573 in_pcbdetach_txrtlmt(inp); 3574 3575 /* make sure new mbuf send tag allocation is made */ 3576 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 3577 3578 if (did_upgrade) 3579 INP_DOWNGRADE(inp); 3580 } 3581 3582 #ifdef INET 3583 static void 3584 rl_init(void *st) 3585 { 3586 rate_limit_active = counter_u64_alloc(M_WAITOK); 3587 rate_limit_alloc_fail = counter_u64_alloc(M_WAITOK); 3588 rate_limit_set_ok = counter_u64_alloc(M_WAITOK); 3589 } 3590 3591 SYSINIT(rl, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, rl_init, NULL); 3592 #endif 3593 #endif /* RATELIMIT */ 3594