xref: /freebsd/sys/netinet/in_pcb.c (revision f2d48b5e2c3b45850585e4d7aee324fe148afbf2)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1991, 1993, 1995
5  *	The Regents of the University of California.
6  * Copyright (c) 2007-2009 Robert N. M. Watson
7  * Copyright (c) 2010-2011 Juniper Networks, Inc.
8  * All rights reserved.
9  *
10  * Portions of this software were developed by Robert N. M. Watson under
11  * contract to Juniper Networks, Inc.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  *	@(#)in_pcb.c	8.4 (Berkeley) 5/24/95
38  */
39 
40 #include <sys/cdefs.h>
41 __FBSDID("$FreeBSD$");
42 
43 #include "opt_ddb.h"
44 #include "opt_ipsec.h"
45 #include "opt_inet.h"
46 #include "opt_inet6.h"
47 #include "opt_ratelimit.h"
48 #include "opt_pcbgroup.h"
49 #include "opt_route.h"
50 #include "opt_rss.h"
51 
52 #include <sys/param.h>
53 #include <sys/systm.h>
54 #include <sys/lock.h>
55 #include <sys/malloc.h>
56 #include <sys/mbuf.h>
57 #include <sys/callout.h>
58 #include <sys/eventhandler.h>
59 #include <sys/domain.h>
60 #include <sys/protosw.h>
61 #include <sys/rmlock.h>
62 #include <sys/smp.h>
63 #include <sys/socket.h>
64 #include <sys/socketvar.h>
65 #include <sys/sockio.h>
66 #include <sys/priv.h>
67 #include <sys/proc.h>
68 #include <sys/refcount.h>
69 #include <sys/jail.h>
70 #include <sys/kernel.h>
71 #include <sys/sysctl.h>
72 
73 #ifdef DDB
74 #include <ddb/ddb.h>
75 #endif
76 
77 #include <vm/uma.h>
78 #include <vm/vm.h>
79 
80 #include <net/if.h>
81 #include <net/if_var.h>
82 #include <net/if_types.h>
83 #include <net/if_llatbl.h>
84 #include <net/route.h>
85 #include <net/rss_config.h>
86 #include <net/vnet.h>
87 
88 #if defined(INET) || defined(INET6)
89 #include <netinet/in.h>
90 #include <netinet/in_pcb.h>
91 #ifdef INET
92 #include <netinet/in_var.h>
93 #include <netinet/in_fib.h>
94 #endif
95 #include <netinet/ip_var.h>
96 #include <netinet/tcp_var.h>
97 #ifdef TCPHPTS
98 #include <netinet/tcp_hpts.h>
99 #endif
100 #include <netinet/udp.h>
101 #include <netinet/udp_var.h>
102 #ifdef INET6
103 #include <netinet/ip6.h>
104 #include <netinet6/in6_pcb.h>
105 #include <netinet6/in6_var.h>
106 #include <netinet6/ip6_var.h>
107 #endif /* INET6 */
108 #include <net/route/nhop.h>
109 #endif
110 
111 #include <netipsec/ipsec_support.h>
112 
113 #include <security/mac/mac_framework.h>
114 
115 #define	INPCBLBGROUP_SIZMIN	8
116 #define	INPCBLBGROUP_SIZMAX	256
117 
118 static struct callout	ipport_tick_callout;
119 
120 /*
121  * These configure the range of local port addresses assigned to
122  * "unspecified" outgoing connections/packets/whatever.
123  */
124 VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1;	/* 1023 */
125 VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART;	/* 600 */
126 VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST;	/* 10000 */
127 VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST;	/* 65535 */
128 VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO;	/* 49152 */
129 VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO;	/* 65535 */
130 
131 /*
132  * Reserved ports accessible only to root. There are significant
133  * security considerations that must be accounted for when changing these,
134  * but the security benefits can be great. Please be careful.
135  */
136 VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1;	/* 1023 */
137 VNET_DEFINE(int, ipport_reservedlow);
138 
139 /* Variables dealing with random ephemeral port allocation. */
140 VNET_DEFINE(int, ipport_randomized) = 1;	/* user controlled via sysctl */
141 VNET_DEFINE(int, ipport_randomcps) = 10;	/* user controlled via sysctl */
142 VNET_DEFINE(int, ipport_randomtime) = 45;	/* user controlled via sysctl */
143 VNET_DEFINE(int, ipport_stoprandom);		/* toggled by ipport_tick */
144 VNET_DEFINE(int, ipport_tcpallocs);
145 VNET_DEFINE_STATIC(int, ipport_tcplastcount);
146 
147 #define	V_ipport_tcplastcount		VNET(ipport_tcplastcount)
148 
149 static void	in_pcbremlists(struct inpcb *inp);
150 #ifdef INET
151 static struct inpcb	*in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo,
152 			    struct in_addr faddr, u_int fport_arg,
153 			    struct in_addr laddr, u_int lport_arg,
154 			    int lookupflags, struct ifnet *ifp,
155 			    uint8_t numa_domain);
156 
157 #define RANGECHK(var, min, max) \
158 	if ((var) < (min)) { (var) = (min); } \
159 	else if ((var) > (max)) { (var) = (max); }
160 
161 static int
162 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS)
163 {
164 	int error;
165 
166 	error = sysctl_handle_int(oidp, arg1, arg2, req);
167 	if (error == 0) {
168 		RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1);
169 		RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1);
170 		RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX);
171 		RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX);
172 		RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX);
173 		RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX);
174 	}
175 	return (error);
176 }
177 
178 #undef RANGECHK
179 
180 static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange,
181     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
182     "IP Ports");
183 
184 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst,
185     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
186     &VNET_NAME(ipport_lowfirstauto), 0, &sysctl_net_ipport_check, "I",
187     "");
188 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast,
189     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
190     &VNET_NAME(ipport_lowlastauto), 0, &sysctl_net_ipport_check, "I",
191     "");
192 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first,
193     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
194     &VNET_NAME(ipport_firstauto), 0, &sysctl_net_ipport_check, "I",
195     "");
196 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last,
197     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
198     &VNET_NAME(ipport_lastauto), 0, &sysctl_net_ipport_check, "I",
199     "");
200 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst,
201     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
202     &VNET_NAME(ipport_hifirstauto), 0, &sysctl_net_ipport_check, "I",
203     "");
204 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast,
205     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
206     &VNET_NAME(ipport_hilastauto), 0, &sysctl_net_ipport_check, "I",
207     "");
208 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh,
209 	CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE,
210 	&VNET_NAME(ipport_reservedhigh), 0, "");
211 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow,
212 	CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, "");
213 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized,
214 	CTLFLAG_VNET | CTLFLAG_RW,
215 	&VNET_NAME(ipport_randomized), 0, "Enable random port allocation");
216 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomcps,
217 	CTLFLAG_VNET | CTLFLAG_RW,
218 	&VNET_NAME(ipport_randomcps), 0, "Maximum number of random port "
219 	"allocations before switching to a sequental one");
220 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomtime,
221 	CTLFLAG_VNET | CTLFLAG_RW,
222 	&VNET_NAME(ipport_randomtime), 0,
223 	"Minimum time to keep sequental port "
224 	"allocation before switching to a random one");
225 
226 #ifdef RATELIMIT
227 counter_u64_t rate_limit_active;
228 counter_u64_t rate_limit_alloc_fail;
229 counter_u64_t rate_limit_set_ok;
230 
231 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, rl, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
232     "IP Rate Limiting");
233 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, active, CTLFLAG_RD,
234     &rate_limit_active, "Active rate limited connections");
235 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, alloc_fail, CTLFLAG_RD,
236    &rate_limit_alloc_fail, "Rate limited connection failures");
237 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, set_ok, CTLFLAG_RD,
238    &rate_limit_set_ok, "Rate limited setting succeeded");
239 #endif /* RATELIMIT */
240 
241 #endif /* INET */
242 
243 /*
244  * in_pcb.c: manage the Protocol Control Blocks.
245  *
246  * NOTE: It is assumed that most of these functions will be called with
247  * the pcbinfo lock held, and often, the inpcb lock held, as these utility
248  * functions often modify hash chains or addresses in pcbs.
249  */
250 
251 static struct inpcblbgroup *
252 in_pcblbgroup_alloc(struct inpcblbgrouphead *hdr, u_char vflag,
253     uint16_t port, const union in_dependaddr *addr, int size,
254     uint8_t numa_domain)
255 {
256 	struct inpcblbgroup *grp;
257 	size_t bytes;
258 
259 	bytes = __offsetof(struct inpcblbgroup, il_inp[size]);
260 	grp = malloc(bytes, M_PCB, M_ZERO | M_NOWAIT);
261 	if (!grp)
262 		return (NULL);
263 	grp->il_vflag = vflag;
264 	grp->il_lport = port;
265 	grp->il_numa_domain = numa_domain;
266 	grp->il_dependladdr = *addr;
267 	grp->il_inpsiz = size;
268 	CK_LIST_INSERT_HEAD(hdr, grp, il_list);
269 	return (grp);
270 }
271 
272 static void
273 in_pcblbgroup_free_deferred(epoch_context_t ctx)
274 {
275 	struct inpcblbgroup *grp;
276 
277 	grp = __containerof(ctx, struct inpcblbgroup, il_epoch_ctx);
278 	free(grp, M_PCB);
279 }
280 
281 static void
282 in_pcblbgroup_free(struct inpcblbgroup *grp)
283 {
284 
285 	CK_LIST_REMOVE(grp, il_list);
286 	NET_EPOCH_CALL(in_pcblbgroup_free_deferred, &grp->il_epoch_ctx);
287 }
288 
289 static struct inpcblbgroup *
290 in_pcblbgroup_resize(struct inpcblbgrouphead *hdr,
291     struct inpcblbgroup *old_grp, int size)
292 {
293 	struct inpcblbgroup *grp;
294 	int i;
295 
296 	grp = in_pcblbgroup_alloc(hdr, old_grp->il_vflag,
297 	    old_grp->il_lport, &old_grp->il_dependladdr, size,
298 	    old_grp->il_numa_domain);
299 	if (grp == NULL)
300 		return (NULL);
301 
302 	KASSERT(old_grp->il_inpcnt < grp->il_inpsiz,
303 	    ("invalid new local group size %d and old local group count %d",
304 	     grp->il_inpsiz, old_grp->il_inpcnt));
305 
306 	for (i = 0; i < old_grp->il_inpcnt; ++i)
307 		grp->il_inp[i] = old_grp->il_inp[i];
308 	grp->il_inpcnt = old_grp->il_inpcnt;
309 	in_pcblbgroup_free(old_grp);
310 	return (grp);
311 }
312 
313 /*
314  * PCB at index 'i' is removed from the group. Pull up the ones below il_inp[i]
315  * and shrink group if possible.
316  */
317 static void
318 in_pcblbgroup_reorder(struct inpcblbgrouphead *hdr, struct inpcblbgroup **grpp,
319     int i)
320 {
321 	struct inpcblbgroup *grp, *new_grp;
322 
323 	grp = *grpp;
324 	for (; i + 1 < grp->il_inpcnt; ++i)
325 		grp->il_inp[i] = grp->il_inp[i + 1];
326 	grp->il_inpcnt--;
327 
328 	if (grp->il_inpsiz > INPCBLBGROUP_SIZMIN &&
329 	    grp->il_inpcnt <= grp->il_inpsiz / 4) {
330 		/* Shrink this group. */
331 		new_grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz / 2);
332 		if (new_grp != NULL)
333 			*grpp = new_grp;
334 	}
335 }
336 
337 /*
338  * Add PCB to load balance group for SO_REUSEPORT_LB option.
339  */
340 static int
341 in_pcbinslbgrouphash(struct inpcb *inp, uint8_t numa_domain)
342 {
343 	const static struct timeval interval = { 60, 0 };
344 	static struct timeval lastprint;
345 	struct inpcbinfo *pcbinfo;
346 	struct inpcblbgrouphead *hdr;
347 	struct inpcblbgroup *grp;
348 	uint32_t idx;
349 
350 	pcbinfo = inp->inp_pcbinfo;
351 
352 	INP_WLOCK_ASSERT(inp);
353 	INP_HASH_WLOCK_ASSERT(pcbinfo);
354 
355 	/*
356 	 * Don't allow jailed socket to join local group.
357 	 */
358 	if (inp->inp_socket != NULL && jailed(inp->inp_socket->so_cred))
359 		return (0);
360 
361 #ifdef INET6
362 	/*
363 	 * Don't allow IPv4 mapped INET6 wild socket.
364 	 */
365 	if ((inp->inp_vflag & INP_IPV4) &&
366 	    inp->inp_laddr.s_addr == INADDR_ANY &&
367 	    INP_CHECK_SOCKAF(inp->inp_socket, AF_INET6)) {
368 		return (0);
369 	}
370 #endif
371 
372 	idx = INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask);
373 	hdr = &pcbinfo->ipi_lbgrouphashbase[idx];
374 	CK_LIST_FOREACH(grp, hdr, il_list) {
375 		if (grp->il_vflag == inp->inp_vflag &&
376 		    grp->il_lport == inp->inp_lport &&
377 		    grp->il_numa_domain == numa_domain &&
378 		    memcmp(&grp->il_dependladdr,
379 		    &inp->inp_inc.inc_ie.ie_dependladdr,
380 		    sizeof(grp->il_dependladdr)) == 0)
381 			break;
382 	}
383 	if (grp == NULL) {
384 		/* Create new load balance group. */
385 		grp = in_pcblbgroup_alloc(hdr, inp->inp_vflag,
386 		    inp->inp_lport, &inp->inp_inc.inc_ie.ie_dependladdr,
387 		    INPCBLBGROUP_SIZMIN, numa_domain);
388 		if (grp == NULL)
389 			return (ENOBUFS);
390 	} else if (grp->il_inpcnt == grp->il_inpsiz) {
391 		if (grp->il_inpsiz >= INPCBLBGROUP_SIZMAX) {
392 			if (ratecheck(&lastprint, &interval))
393 				printf("lb group port %d, limit reached\n",
394 				    ntohs(grp->il_lport));
395 			return (0);
396 		}
397 
398 		/* Expand this local group. */
399 		grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz * 2);
400 		if (grp == NULL)
401 			return (ENOBUFS);
402 	}
403 
404 	KASSERT(grp->il_inpcnt < grp->il_inpsiz,
405 	    ("invalid local group size %d and count %d", grp->il_inpsiz,
406 	    grp->il_inpcnt));
407 
408 	grp->il_inp[grp->il_inpcnt] = inp;
409 	grp->il_inpcnt++;
410 	return (0);
411 }
412 
413 /*
414  * Remove PCB from load balance group.
415  */
416 static void
417 in_pcbremlbgrouphash(struct inpcb *inp)
418 {
419 	struct inpcbinfo *pcbinfo;
420 	struct inpcblbgrouphead *hdr;
421 	struct inpcblbgroup *grp;
422 	int i;
423 
424 	pcbinfo = inp->inp_pcbinfo;
425 
426 	INP_WLOCK_ASSERT(inp);
427 	INP_HASH_WLOCK_ASSERT(pcbinfo);
428 
429 	hdr = &pcbinfo->ipi_lbgrouphashbase[
430 	    INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask)];
431 	CK_LIST_FOREACH(grp, hdr, il_list) {
432 		for (i = 0; i < grp->il_inpcnt; ++i) {
433 			if (grp->il_inp[i] != inp)
434 				continue;
435 
436 			if (grp->il_inpcnt == 1) {
437 				/* We are the last, free this local group. */
438 				in_pcblbgroup_free(grp);
439 			} else {
440 				/* Pull up inpcbs, shrink group if possible. */
441 				in_pcblbgroup_reorder(hdr, &grp, i);
442 			}
443 			return;
444 		}
445 	}
446 }
447 
448 int
449 in_pcblbgroup_numa(struct inpcb *inp, int arg)
450 {
451 	struct inpcbinfo *pcbinfo;
452 	struct inpcblbgrouphead *hdr;
453 	struct inpcblbgroup *grp;
454 	int err, i;
455 	uint8_t numa_domain;
456 
457 	switch (arg) {
458 	case TCP_REUSPORT_LB_NUMA_NODOM:
459 		numa_domain = M_NODOM;
460 		break;
461 	case TCP_REUSPORT_LB_NUMA_CURDOM:
462 		numa_domain = PCPU_GET(domain);
463 		break;
464 	default:
465 		if (arg < 0 || arg >= vm_ndomains)
466 			return (EINVAL);
467 		numa_domain = arg;
468 	}
469 
470 	err = 0;
471 	pcbinfo = inp->inp_pcbinfo;
472 	INP_WLOCK_ASSERT(inp);
473 	INP_HASH_WLOCK(pcbinfo);
474 	hdr = &pcbinfo->ipi_lbgrouphashbase[
475 	    INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask)];
476 	CK_LIST_FOREACH(grp, hdr, il_list) {
477 		for (i = 0; i < grp->il_inpcnt; ++i) {
478 			if (grp->il_inp[i] != inp)
479 				continue;
480 
481 			if (grp->il_numa_domain == numa_domain) {
482 				goto abort_with_hash_wlock;
483 			}
484 
485 			/* Remove it from the old group. */
486 			in_pcbremlbgrouphash(inp);
487 
488 			/* Add it to the new group based on numa domain. */
489 			in_pcbinslbgrouphash(inp, numa_domain);
490 			goto abort_with_hash_wlock;
491 		}
492 	}
493 	err = ENOENT;
494 abort_with_hash_wlock:
495 	INP_HASH_WUNLOCK(pcbinfo);
496 	return (err);
497 }
498 
499 /*
500  * Different protocols initialize their inpcbs differently - giving
501  * different name to the lock.  But they all are disposed the same.
502  */
503 static void
504 inpcb_fini(void *mem, int size)
505 {
506 	struct inpcb *inp = mem;
507 
508 	INP_LOCK_DESTROY(inp);
509 }
510 
511 /*
512  * Initialize an inpcbinfo -- we should be able to reduce the number of
513  * arguments in time.
514  */
515 void
516 in_pcbinfo_init(struct inpcbinfo *pcbinfo, const char *name,
517     struct inpcbhead *listhead, int hash_nelements, int porthash_nelements,
518     char *inpcbzone_name, uma_init inpcbzone_init, u_int hashfields)
519 {
520 
521 	porthash_nelements = imin(porthash_nelements, IPPORT_MAX + 1);
522 
523 	INP_INFO_LOCK_INIT(pcbinfo, name);
524 	INP_HASH_LOCK_INIT(pcbinfo, "pcbinfohash");	/* XXXRW: argument? */
525 	INP_LIST_LOCK_INIT(pcbinfo, "pcbinfolist");
526 #ifdef VIMAGE
527 	pcbinfo->ipi_vnet = curvnet;
528 #endif
529 	pcbinfo->ipi_listhead = listhead;
530 	CK_LIST_INIT(pcbinfo->ipi_listhead);
531 	pcbinfo->ipi_count = 0;
532 	pcbinfo->ipi_hashbase = hashinit(hash_nelements, M_PCB,
533 	    &pcbinfo->ipi_hashmask);
534 	pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB,
535 	    &pcbinfo->ipi_porthashmask);
536 	pcbinfo->ipi_lbgrouphashbase = hashinit(porthash_nelements, M_PCB,
537 	    &pcbinfo->ipi_lbgrouphashmask);
538 #ifdef PCBGROUP
539 	in_pcbgroup_init(pcbinfo, hashfields, hash_nelements);
540 #endif
541 	pcbinfo->ipi_zone = uma_zcreate(inpcbzone_name, sizeof(struct inpcb),
542 	    NULL, NULL, inpcbzone_init, inpcb_fini, UMA_ALIGN_PTR, 0);
543 	uma_zone_set_max(pcbinfo->ipi_zone, maxsockets);
544 	uma_zone_set_warning(pcbinfo->ipi_zone,
545 	    "kern.ipc.maxsockets limit reached");
546 }
547 
548 /*
549  * Destroy an inpcbinfo.
550  */
551 void
552 in_pcbinfo_destroy(struct inpcbinfo *pcbinfo)
553 {
554 
555 	KASSERT(pcbinfo->ipi_count == 0,
556 	    ("%s: ipi_count = %u", __func__, pcbinfo->ipi_count));
557 
558 	hashdestroy(pcbinfo->ipi_hashbase, M_PCB, pcbinfo->ipi_hashmask);
559 	hashdestroy(pcbinfo->ipi_porthashbase, M_PCB,
560 	    pcbinfo->ipi_porthashmask);
561 	hashdestroy(pcbinfo->ipi_lbgrouphashbase, M_PCB,
562 	    pcbinfo->ipi_lbgrouphashmask);
563 #ifdef PCBGROUP
564 	in_pcbgroup_destroy(pcbinfo);
565 #endif
566 	uma_zdestroy(pcbinfo->ipi_zone);
567 	INP_LIST_LOCK_DESTROY(pcbinfo);
568 	INP_HASH_LOCK_DESTROY(pcbinfo);
569 	INP_INFO_LOCK_DESTROY(pcbinfo);
570 }
571 
572 /*
573  * Allocate a PCB and associate it with the socket.
574  * On success return with the PCB locked.
575  */
576 int
577 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo)
578 {
579 	struct inpcb *inp;
580 	int error;
581 
582 	error = 0;
583 	inp = uma_zalloc(pcbinfo->ipi_zone, M_NOWAIT);
584 	if (inp == NULL)
585 		return (ENOBUFS);
586 	bzero(&inp->inp_start_zero, inp_zero_size);
587 #ifdef NUMA
588 	inp->inp_numa_domain = M_NODOM;
589 #endif
590 	inp->inp_pcbinfo = pcbinfo;
591 	inp->inp_socket = so;
592 	inp->inp_cred = crhold(so->so_cred);
593 	inp->inp_inc.inc_fibnum = so->so_fibnum;
594 #ifdef MAC
595 	error = mac_inpcb_init(inp, M_NOWAIT);
596 	if (error != 0)
597 		goto out;
598 	mac_inpcb_create(so, inp);
599 #endif
600 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
601 	error = ipsec_init_pcbpolicy(inp);
602 	if (error != 0) {
603 #ifdef MAC
604 		mac_inpcb_destroy(inp);
605 #endif
606 		goto out;
607 	}
608 #endif /*IPSEC*/
609 #ifdef INET6
610 	if (INP_SOCKAF(so) == AF_INET6) {
611 		inp->inp_vflag |= INP_IPV6PROTO;
612 		if (V_ip6_v6only)
613 			inp->inp_flags |= IN6P_IPV6_V6ONLY;
614 	}
615 #endif
616 	INP_WLOCK(inp);
617 	INP_LIST_WLOCK(pcbinfo);
618 	CK_LIST_INSERT_HEAD(pcbinfo->ipi_listhead, inp, inp_list);
619 	pcbinfo->ipi_count++;
620 	so->so_pcb = (caddr_t)inp;
621 #ifdef INET6
622 	if (V_ip6_auto_flowlabel)
623 		inp->inp_flags |= IN6P_AUTOFLOWLABEL;
624 #endif
625 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
626 	refcount_init(&inp->inp_refcount, 1);	/* Reference from inpcbinfo */
627 
628 	/*
629 	 * Routes in inpcb's can cache L2 as well; they are guaranteed
630 	 * to be cleaned up.
631 	 */
632 	inp->inp_route.ro_flags = RT_LLE_CACHE;
633 	INP_LIST_WUNLOCK(pcbinfo);
634 #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC)
635 out:
636 	if (error != 0) {
637 		crfree(inp->inp_cred);
638 		uma_zfree(pcbinfo->ipi_zone, inp);
639 	}
640 #endif
641 	return (error);
642 }
643 
644 #ifdef INET
645 int
646 in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
647 {
648 	int anonport, error;
649 
650 	INP_WLOCK_ASSERT(inp);
651 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
652 
653 	if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY)
654 		return (EINVAL);
655 	anonport = nam == NULL || ((struct sockaddr_in *)nam)->sin_port == 0;
656 	error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr,
657 	    &inp->inp_lport, cred);
658 	if (error)
659 		return (error);
660 	if (in_pcbinshash(inp) != 0) {
661 		inp->inp_laddr.s_addr = INADDR_ANY;
662 		inp->inp_lport = 0;
663 		return (EAGAIN);
664 	}
665 	if (anonport)
666 		inp->inp_flags |= INP_ANONPORT;
667 	return (0);
668 }
669 #endif
670 
671 #if defined(INET) || defined(INET6)
672 /*
673  * Assign a local port like in_pcb_lport(), but also used with connect()
674  * and a foreign address and port.  If fsa is non-NULL, choose a local port
675  * that is unused with those, otherwise one that is completely unused.
676  * lsa can be NULL for IPv6.
677  */
678 int
679 in_pcb_lport_dest(struct inpcb *inp, struct sockaddr *lsa, u_short *lportp,
680     struct sockaddr *fsa, u_short fport, struct ucred *cred, int lookupflags)
681 {
682 	struct inpcbinfo *pcbinfo;
683 	struct inpcb *tmpinp;
684 	unsigned short *lastport;
685 	int count, dorandom, error;
686 	u_short aux, first, last, lport;
687 #ifdef INET
688 	struct in_addr laddr, faddr;
689 #endif
690 #ifdef INET6
691 	struct in6_addr *laddr6, *faddr6;
692 #endif
693 
694 	pcbinfo = inp->inp_pcbinfo;
695 
696 	/*
697 	 * Because no actual state changes occur here, a global write lock on
698 	 * the pcbinfo isn't required.
699 	 */
700 	INP_LOCK_ASSERT(inp);
701 	INP_HASH_LOCK_ASSERT(pcbinfo);
702 
703 	if (inp->inp_flags & INP_HIGHPORT) {
704 		first = V_ipport_hifirstauto;	/* sysctl */
705 		last  = V_ipport_hilastauto;
706 		lastport = &pcbinfo->ipi_lasthi;
707 	} else if (inp->inp_flags & INP_LOWPORT) {
708 		error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT);
709 		if (error)
710 			return (error);
711 		first = V_ipport_lowfirstauto;	/* 1023 */
712 		last  = V_ipport_lowlastauto;	/* 600 */
713 		lastport = &pcbinfo->ipi_lastlow;
714 	} else {
715 		first = V_ipport_firstauto;	/* sysctl */
716 		last  = V_ipport_lastauto;
717 		lastport = &pcbinfo->ipi_lastport;
718 	}
719 	/*
720 	 * For UDP(-Lite), use random port allocation as long as the user
721 	 * allows it.  For TCP (and as of yet unknown) connections,
722 	 * use random port allocation only if the user allows it AND
723 	 * ipport_tick() allows it.
724 	 */
725 	if (V_ipport_randomized &&
726 		(!V_ipport_stoprandom || pcbinfo == &V_udbinfo ||
727 		pcbinfo == &V_ulitecbinfo))
728 		dorandom = 1;
729 	else
730 		dorandom = 0;
731 	/*
732 	 * It makes no sense to do random port allocation if
733 	 * we have the only port available.
734 	 */
735 	if (first == last)
736 		dorandom = 0;
737 	/* Make sure to not include UDP(-Lite) packets in the count. */
738 	if (pcbinfo != &V_udbinfo || pcbinfo != &V_ulitecbinfo)
739 		V_ipport_tcpallocs++;
740 	/*
741 	 * Instead of having two loops further down counting up or down
742 	 * make sure that first is always <= last and go with only one
743 	 * code path implementing all logic.
744 	 */
745 	if (first > last) {
746 		aux = first;
747 		first = last;
748 		last = aux;
749 	}
750 
751 #ifdef INET
752 	laddr.s_addr = INADDR_ANY;
753 	if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) {
754 		if (lsa != NULL)
755 			laddr = ((struct sockaddr_in *)lsa)->sin_addr;
756 		if (fsa != NULL)
757 			faddr = ((struct sockaddr_in *)fsa)->sin_addr;
758 	}
759 #endif
760 #ifdef INET6
761 	laddr6 = NULL;
762 	if ((inp->inp_vflag & INP_IPV6) != 0) {
763 		if (lsa != NULL)
764 			laddr6 = &((struct sockaddr_in6 *)lsa)->sin6_addr;
765 		if (fsa != NULL)
766 			faddr6 = &((struct sockaddr_in6 *)fsa)->sin6_addr;
767 	}
768 #endif
769 
770 	tmpinp = NULL;
771 	lport = *lportp;
772 
773 	if (dorandom)
774 		*lastport = first + (arc4random() % (last - first));
775 
776 	count = last - first;
777 
778 	do {
779 		if (count-- < 0)	/* completely used? */
780 			return (EADDRNOTAVAIL);
781 		++*lastport;
782 		if (*lastport < first || *lastport > last)
783 			*lastport = first;
784 		lport = htons(*lastport);
785 
786 		if (fsa != NULL) {
787 #ifdef INET
788 			if (lsa->sa_family == AF_INET) {
789 				tmpinp = in_pcblookup_hash_locked(pcbinfo,
790 				    faddr, fport, laddr, lport, lookupflags,
791 				    NULL, M_NODOM);
792 			}
793 #endif
794 #ifdef INET6
795 			if (lsa->sa_family == AF_INET6) {
796 				tmpinp = in6_pcblookup_hash_locked(pcbinfo,
797 				    faddr6, fport, laddr6, lport, lookupflags,
798 				    NULL, M_NODOM);
799 			}
800 #endif
801 		} else {
802 #ifdef INET6
803 			if ((inp->inp_vflag & INP_IPV6) != 0)
804 				tmpinp = in6_pcblookup_local(pcbinfo,
805 				    &inp->in6p_laddr, lport, lookupflags, cred);
806 #endif
807 #if defined(INET) && defined(INET6)
808 			else
809 #endif
810 #ifdef INET
811 				tmpinp = in_pcblookup_local(pcbinfo, laddr,
812 				    lport, lookupflags, cred);
813 #endif
814 		}
815 	} while (tmpinp != NULL);
816 
817 	*lportp = lport;
818 
819 	return (0);
820 }
821 
822 /*
823  * Select a local port (number) to use.
824  */
825 int
826 in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp,
827     struct ucred *cred, int lookupflags)
828 {
829 	struct sockaddr_in laddr;
830 
831 	if (laddrp) {
832 		bzero(&laddr, sizeof(laddr));
833 		laddr.sin_family = AF_INET;
834 		laddr.sin_addr = *laddrp;
835 	}
836 	return (in_pcb_lport_dest(inp, laddrp ? (struct sockaddr *) &laddr :
837 	    NULL, lportp, NULL, 0, cred, lookupflags));
838 }
839 
840 /*
841  * Return cached socket options.
842  */
843 int
844 inp_so_options(const struct inpcb *inp)
845 {
846 	int so_options;
847 
848 	so_options = 0;
849 
850 	if ((inp->inp_flags2 & INP_REUSEPORT_LB) != 0)
851 		so_options |= SO_REUSEPORT_LB;
852 	if ((inp->inp_flags2 & INP_REUSEPORT) != 0)
853 		so_options |= SO_REUSEPORT;
854 	if ((inp->inp_flags2 & INP_REUSEADDR) != 0)
855 		so_options |= SO_REUSEADDR;
856 	return (so_options);
857 }
858 #endif /* INET || INET6 */
859 
860 /*
861  * Check if a new BINDMULTI socket is allowed to be created.
862  *
863  * ni points to the new inp.
864  * oi points to the exisitng inp.
865  *
866  * This checks whether the existing inp also has BINDMULTI and
867  * whether the credentials match.
868  */
869 int
870 in_pcbbind_check_bindmulti(const struct inpcb *ni, const struct inpcb *oi)
871 {
872 	/* Check permissions match */
873 	if ((ni->inp_flags2 & INP_BINDMULTI) &&
874 	    (ni->inp_cred->cr_uid !=
875 	    oi->inp_cred->cr_uid))
876 		return (0);
877 
878 	/* Check the existing inp has BINDMULTI set */
879 	if ((ni->inp_flags2 & INP_BINDMULTI) &&
880 	    ((oi->inp_flags2 & INP_BINDMULTI) == 0))
881 		return (0);
882 
883 	/*
884 	 * We're okay - either INP_BINDMULTI isn't set on ni, or
885 	 * it is and it matches the checks.
886 	 */
887 	return (1);
888 }
889 
890 #ifdef INET
891 /*
892  * Set up a bind operation on a PCB, performing port allocation
893  * as required, but do not actually modify the PCB. Callers can
894  * either complete the bind by setting inp_laddr/inp_lport and
895  * calling in_pcbinshash(), or they can just use the resulting
896  * port and address to authorise the sending of a once-off packet.
897  *
898  * On error, the values of *laddrp and *lportp are not changed.
899  */
900 int
901 in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp,
902     u_short *lportp, struct ucred *cred)
903 {
904 	struct socket *so = inp->inp_socket;
905 	struct sockaddr_in *sin;
906 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
907 	struct in_addr laddr;
908 	u_short lport = 0;
909 	int lookupflags = 0, reuseport = (so->so_options & SO_REUSEPORT);
910 	int error;
911 
912 	/*
913 	 * XXX: Maybe we could let SO_REUSEPORT_LB set SO_REUSEPORT bit here
914 	 * so that we don't have to add to the (already messy) code below.
915 	 */
916 	int reuseport_lb = (so->so_options & SO_REUSEPORT_LB);
917 
918 	/*
919 	 * No state changes, so read locks are sufficient here.
920 	 */
921 	INP_LOCK_ASSERT(inp);
922 	INP_HASH_LOCK_ASSERT(pcbinfo);
923 
924 	if (CK_STAILQ_EMPTY(&V_in_ifaddrhead)) /* XXX broken! */
925 		return (EADDRNOTAVAIL);
926 	laddr.s_addr = *laddrp;
927 	if (nam != NULL && laddr.s_addr != INADDR_ANY)
928 		return (EINVAL);
929 	if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT|SO_REUSEPORT_LB)) == 0)
930 		lookupflags = INPLOOKUP_WILDCARD;
931 	if (nam == NULL) {
932 		if ((error = prison_local_ip4(cred, &laddr)) != 0)
933 			return (error);
934 	} else {
935 		sin = (struct sockaddr_in *)nam;
936 		if (nam->sa_len != sizeof (*sin))
937 			return (EINVAL);
938 #ifdef notdef
939 		/*
940 		 * We should check the family, but old programs
941 		 * incorrectly fail to initialize it.
942 		 */
943 		if (sin->sin_family != AF_INET)
944 			return (EAFNOSUPPORT);
945 #endif
946 		error = prison_local_ip4(cred, &sin->sin_addr);
947 		if (error)
948 			return (error);
949 		if (sin->sin_port != *lportp) {
950 			/* Don't allow the port to change. */
951 			if (*lportp != 0)
952 				return (EINVAL);
953 			lport = sin->sin_port;
954 		}
955 		/* NB: lport is left as 0 if the port isn't being changed. */
956 		if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) {
957 			/*
958 			 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast;
959 			 * allow complete duplication of binding if
960 			 * SO_REUSEPORT is set, or if SO_REUSEADDR is set
961 			 * and a multicast address is bound on both
962 			 * new and duplicated sockets.
963 			 */
964 			if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) != 0)
965 				reuseport = SO_REUSEADDR|SO_REUSEPORT;
966 			/*
967 			 * XXX: How to deal with SO_REUSEPORT_LB here?
968 			 * Treat same as SO_REUSEPORT for now.
969 			 */
970 			if ((so->so_options &
971 			    (SO_REUSEADDR|SO_REUSEPORT_LB)) != 0)
972 				reuseport_lb = SO_REUSEADDR|SO_REUSEPORT_LB;
973 		} else if (sin->sin_addr.s_addr != INADDR_ANY) {
974 			sin->sin_port = 0;		/* yech... */
975 			bzero(&sin->sin_zero, sizeof(sin->sin_zero));
976 			/*
977 			 * Is the address a local IP address?
978 			 * If INP_BINDANY is set, then the socket may be bound
979 			 * to any endpoint address, local or not.
980 			 */
981 			if ((inp->inp_flags & INP_BINDANY) == 0 &&
982 			    ifa_ifwithaddr_check((struct sockaddr *)sin) == 0)
983 				return (EADDRNOTAVAIL);
984 		}
985 		laddr = sin->sin_addr;
986 		if (lport) {
987 			struct inpcb *t;
988 			struct tcptw *tw;
989 
990 			/* GROSS */
991 			if (ntohs(lport) <= V_ipport_reservedhigh &&
992 			    ntohs(lport) >= V_ipport_reservedlow &&
993 			    priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT))
994 				return (EACCES);
995 			if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) &&
996 			    priv_check_cred(inp->inp_cred, PRIV_NETINET_REUSEPORT) != 0) {
997 				t = in_pcblookup_local(pcbinfo, sin->sin_addr,
998 				    lport, INPLOOKUP_WILDCARD, cred);
999 	/*
1000 	 * XXX
1001 	 * This entire block sorely needs a rewrite.
1002 	 */
1003 				if (t &&
1004 				    ((inp->inp_flags2 & INP_BINDMULTI) == 0) &&
1005 				    ((t->inp_flags & INP_TIMEWAIT) == 0) &&
1006 				    (so->so_type != SOCK_STREAM ||
1007 				     ntohl(t->inp_faddr.s_addr) == INADDR_ANY) &&
1008 				    (ntohl(sin->sin_addr.s_addr) != INADDR_ANY ||
1009 				     ntohl(t->inp_laddr.s_addr) != INADDR_ANY ||
1010 				     (t->inp_flags2 & INP_REUSEPORT) ||
1011 				     (t->inp_flags2 & INP_REUSEPORT_LB) == 0) &&
1012 				    (inp->inp_cred->cr_uid !=
1013 				     t->inp_cred->cr_uid))
1014 					return (EADDRINUSE);
1015 
1016 				/*
1017 				 * If the socket is a BINDMULTI socket, then
1018 				 * the credentials need to match and the
1019 				 * original socket also has to have been bound
1020 				 * with BINDMULTI.
1021 				 */
1022 				if (t && (! in_pcbbind_check_bindmulti(inp, t)))
1023 					return (EADDRINUSE);
1024 			}
1025 			t = in_pcblookup_local(pcbinfo, sin->sin_addr,
1026 			    lport, lookupflags, cred);
1027 			if (t && (t->inp_flags & INP_TIMEWAIT)) {
1028 				/*
1029 				 * XXXRW: If an incpb has had its timewait
1030 				 * state recycled, we treat the address as
1031 				 * being in use (for now).  This is better
1032 				 * than a panic, but not desirable.
1033 				 */
1034 				tw = intotw(t);
1035 				if (tw == NULL ||
1036 				    ((reuseport & tw->tw_so_options) == 0 &&
1037 					(reuseport_lb &
1038 				            tw->tw_so_options) == 0)) {
1039 					return (EADDRINUSE);
1040 				}
1041 			} else if (t &&
1042 				   ((inp->inp_flags2 & INP_BINDMULTI) == 0) &&
1043 				   (reuseport & inp_so_options(t)) == 0 &&
1044 				   (reuseport_lb & inp_so_options(t)) == 0) {
1045 #ifdef INET6
1046 				if (ntohl(sin->sin_addr.s_addr) !=
1047 				    INADDR_ANY ||
1048 				    ntohl(t->inp_laddr.s_addr) !=
1049 				    INADDR_ANY ||
1050 				    (inp->inp_vflag & INP_IPV6PROTO) == 0 ||
1051 				    (t->inp_vflag & INP_IPV6PROTO) == 0)
1052 #endif
1053 						return (EADDRINUSE);
1054 				if (t && (! in_pcbbind_check_bindmulti(inp, t)))
1055 					return (EADDRINUSE);
1056 			}
1057 		}
1058 	}
1059 	if (*lportp != 0)
1060 		lport = *lportp;
1061 	if (lport == 0) {
1062 		error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags);
1063 		if (error != 0)
1064 			return (error);
1065 	}
1066 	*laddrp = laddr.s_addr;
1067 	*lportp = lport;
1068 	return (0);
1069 }
1070 
1071 /*
1072  * Connect from a socket to a specified address.
1073  * Both address and port must be specified in argument sin.
1074  * If don't have a local address for this socket yet,
1075  * then pick one.
1076  */
1077 int
1078 in_pcbconnect_mbuf(struct inpcb *inp, struct sockaddr *nam,
1079     struct ucred *cred, struct mbuf *m, bool rehash)
1080 {
1081 	u_short lport, fport;
1082 	in_addr_t laddr, faddr;
1083 	int anonport, error;
1084 
1085 	INP_WLOCK_ASSERT(inp);
1086 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
1087 
1088 	lport = inp->inp_lport;
1089 	laddr = inp->inp_laddr.s_addr;
1090 	anonport = (lport == 0);
1091 	error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport,
1092 	    NULL, cred);
1093 	if (error)
1094 		return (error);
1095 
1096 	/* Do the initial binding of the local address if required. */
1097 	if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) {
1098 		KASSERT(rehash == true,
1099 		    ("Rehashing required for unbound inps"));
1100 		inp->inp_lport = lport;
1101 		inp->inp_laddr.s_addr = laddr;
1102 		if (in_pcbinshash(inp) != 0) {
1103 			inp->inp_laddr.s_addr = INADDR_ANY;
1104 			inp->inp_lport = 0;
1105 			return (EAGAIN);
1106 		}
1107 	}
1108 
1109 	/* Commit the remaining changes. */
1110 	inp->inp_lport = lport;
1111 	inp->inp_laddr.s_addr = laddr;
1112 	inp->inp_faddr.s_addr = faddr;
1113 	inp->inp_fport = fport;
1114 	if (rehash) {
1115 		in_pcbrehash_mbuf(inp, m);
1116 	} else {
1117 		in_pcbinshash_mbuf(inp, m);
1118 	}
1119 
1120 	if (anonport)
1121 		inp->inp_flags |= INP_ANONPORT;
1122 	return (0);
1123 }
1124 
1125 int
1126 in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
1127 {
1128 
1129 	return (in_pcbconnect_mbuf(inp, nam, cred, NULL, true));
1130 }
1131 
1132 /*
1133  * Do proper source address selection on an unbound socket in case
1134  * of connect. Take jails into account as well.
1135  */
1136 int
1137 in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr,
1138     struct ucred *cred)
1139 {
1140 	struct ifaddr *ifa;
1141 	struct sockaddr *sa;
1142 	struct sockaddr_in *sin, dst;
1143 	struct nhop_object *nh;
1144 	int error;
1145 
1146 	NET_EPOCH_ASSERT();
1147 	KASSERT(laddr != NULL, ("%s: laddr NULL", __func__));
1148 	/*
1149 	 * Bypass source address selection and use the primary jail IP
1150 	 * if requested.
1151 	 */
1152 	if (cred != NULL && !prison_saddrsel_ip4(cred, laddr))
1153 		return (0);
1154 
1155 	error = 0;
1156 
1157 	nh = NULL;
1158 	bzero(&dst, sizeof(dst));
1159 	sin = &dst;
1160 	sin->sin_family = AF_INET;
1161 	sin->sin_len = sizeof(struct sockaddr_in);
1162 	sin->sin_addr.s_addr = faddr->s_addr;
1163 
1164 	/*
1165 	 * If route is known our src addr is taken from the i/f,
1166 	 * else punt.
1167 	 *
1168 	 * Find out route to destination.
1169 	 */
1170 	if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0)
1171 		nh = fib4_lookup(inp->inp_inc.inc_fibnum, *faddr,
1172 		    0, NHR_NONE, 0);
1173 
1174 	/*
1175 	 * If we found a route, use the address corresponding to
1176 	 * the outgoing interface.
1177 	 *
1178 	 * Otherwise assume faddr is reachable on a directly connected
1179 	 * network and try to find a corresponding interface to take
1180 	 * the source address from.
1181 	 */
1182 	if (nh == NULL || nh->nh_ifp == NULL) {
1183 		struct in_ifaddr *ia;
1184 		struct ifnet *ifp;
1185 
1186 		ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin,
1187 					inp->inp_socket->so_fibnum));
1188 		if (ia == NULL) {
1189 			ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0,
1190 						inp->inp_socket->so_fibnum));
1191 		}
1192 		if (ia == NULL) {
1193 			error = ENETUNREACH;
1194 			goto done;
1195 		}
1196 
1197 		if (cred == NULL || !prison_flag(cred, PR_IP4)) {
1198 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1199 			goto done;
1200 		}
1201 
1202 		ifp = ia->ia_ifp;
1203 		ia = NULL;
1204 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1205 			sa = ifa->ifa_addr;
1206 			if (sa->sa_family != AF_INET)
1207 				continue;
1208 			sin = (struct sockaddr_in *)sa;
1209 			if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
1210 				ia = (struct in_ifaddr *)ifa;
1211 				break;
1212 			}
1213 		}
1214 		if (ia != NULL) {
1215 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1216 			goto done;
1217 		}
1218 
1219 		/* 3. As a last resort return the 'default' jail address. */
1220 		error = prison_get_ip4(cred, laddr);
1221 		goto done;
1222 	}
1223 
1224 	/*
1225 	 * If the outgoing interface on the route found is not
1226 	 * a loopback interface, use the address from that interface.
1227 	 * In case of jails do those three steps:
1228 	 * 1. check if the interface address belongs to the jail. If so use it.
1229 	 * 2. check if we have any address on the outgoing interface
1230 	 *    belonging to this jail. If so use it.
1231 	 * 3. as a last resort return the 'default' jail address.
1232 	 */
1233 	if ((nh->nh_ifp->if_flags & IFF_LOOPBACK) == 0) {
1234 		struct in_ifaddr *ia;
1235 		struct ifnet *ifp;
1236 
1237 		/* If not jailed, use the default returned. */
1238 		if (cred == NULL || !prison_flag(cred, PR_IP4)) {
1239 			ia = (struct in_ifaddr *)nh->nh_ifa;
1240 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1241 			goto done;
1242 		}
1243 
1244 		/* Jailed. */
1245 		/* 1. Check if the iface address belongs to the jail. */
1246 		sin = (struct sockaddr_in *)nh->nh_ifa->ifa_addr;
1247 		if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
1248 			ia = (struct in_ifaddr *)nh->nh_ifa;
1249 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1250 			goto done;
1251 		}
1252 
1253 		/*
1254 		 * 2. Check if we have any address on the outgoing interface
1255 		 *    belonging to this jail.
1256 		 */
1257 		ia = NULL;
1258 		ifp = nh->nh_ifp;
1259 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1260 			sa = ifa->ifa_addr;
1261 			if (sa->sa_family != AF_INET)
1262 				continue;
1263 			sin = (struct sockaddr_in *)sa;
1264 			if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
1265 				ia = (struct in_ifaddr *)ifa;
1266 				break;
1267 			}
1268 		}
1269 		if (ia != NULL) {
1270 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1271 			goto done;
1272 		}
1273 
1274 		/* 3. As a last resort return the 'default' jail address. */
1275 		error = prison_get_ip4(cred, laddr);
1276 		goto done;
1277 	}
1278 
1279 	/*
1280 	 * The outgoing interface is marked with 'loopback net', so a route
1281 	 * to ourselves is here.
1282 	 * Try to find the interface of the destination address and then
1283 	 * take the address from there. That interface is not necessarily
1284 	 * a loopback interface.
1285 	 * In case of jails, check that it is an address of the jail
1286 	 * and if we cannot find, fall back to the 'default' jail address.
1287 	 */
1288 	if ((nh->nh_ifp->if_flags & IFF_LOOPBACK) != 0) {
1289 		struct in_ifaddr *ia;
1290 
1291 		ia = ifatoia(ifa_ifwithdstaddr(sintosa(&dst),
1292 					inp->inp_socket->so_fibnum));
1293 		if (ia == NULL)
1294 			ia = ifatoia(ifa_ifwithnet(sintosa(&dst), 0,
1295 						inp->inp_socket->so_fibnum));
1296 		if (ia == NULL)
1297 			ia = ifatoia(ifa_ifwithaddr(sintosa(&dst)));
1298 
1299 		if (cred == NULL || !prison_flag(cred, PR_IP4)) {
1300 			if (ia == NULL) {
1301 				error = ENETUNREACH;
1302 				goto done;
1303 			}
1304 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1305 			goto done;
1306 		}
1307 
1308 		/* Jailed. */
1309 		if (ia != NULL) {
1310 			struct ifnet *ifp;
1311 
1312 			ifp = ia->ia_ifp;
1313 			ia = NULL;
1314 			CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1315 				sa = ifa->ifa_addr;
1316 				if (sa->sa_family != AF_INET)
1317 					continue;
1318 				sin = (struct sockaddr_in *)sa;
1319 				if (prison_check_ip4(cred,
1320 				    &sin->sin_addr) == 0) {
1321 					ia = (struct in_ifaddr *)ifa;
1322 					break;
1323 				}
1324 			}
1325 			if (ia != NULL) {
1326 				laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1327 				goto done;
1328 			}
1329 		}
1330 
1331 		/* 3. As a last resort return the 'default' jail address. */
1332 		error = prison_get_ip4(cred, laddr);
1333 		goto done;
1334 	}
1335 
1336 done:
1337 	return (error);
1338 }
1339 
1340 /*
1341  * Set up for a connect from a socket to the specified address.
1342  * On entry, *laddrp and *lportp should contain the current local
1343  * address and port for the PCB; these are updated to the values
1344  * that should be placed in inp_laddr and inp_lport to complete
1345  * the connect.
1346  *
1347  * On success, *faddrp and *fportp will be set to the remote address
1348  * and port. These are not updated in the error case.
1349  *
1350  * If the operation fails because the connection already exists,
1351  * *oinpp will be set to the PCB of that connection so that the
1352  * caller can decide to override it. In all other cases, *oinpp
1353  * is set to NULL.
1354  */
1355 int
1356 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam,
1357     in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp,
1358     struct inpcb **oinpp, struct ucred *cred)
1359 {
1360 	struct rm_priotracker in_ifa_tracker;
1361 	struct sockaddr_in *sin = (struct sockaddr_in *)nam;
1362 	struct in_ifaddr *ia;
1363 	struct inpcb *oinp;
1364 	struct in_addr laddr, faddr;
1365 	u_short lport, fport;
1366 	int error;
1367 
1368 	/*
1369 	 * Because a global state change doesn't actually occur here, a read
1370 	 * lock is sufficient.
1371 	 */
1372 	NET_EPOCH_ASSERT();
1373 	INP_LOCK_ASSERT(inp);
1374 	INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo);
1375 
1376 	if (oinpp != NULL)
1377 		*oinpp = NULL;
1378 	if (nam->sa_len != sizeof (*sin))
1379 		return (EINVAL);
1380 	if (sin->sin_family != AF_INET)
1381 		return (EAFNOSUPPORT);
1382 	if (sin->sin_port == 0)
1383 		return (EADDRNOTAVAIL);
1384 	laddr.s_addr = *laddrp;
1385 	lport = *lportp;
1386 	faddr = sin->sin_addr;
1387 	fport = sin->sin_port;
1388 #ifdef ROUTE_MPATH
1389 	if (CALC_FLOWID_OUTBOUND) {
1390 		uint32_t hash_val, hash_type;
1391 
1392 		hash_val = fib4_calc_software_hash(laddr, faddr, 0, fport,
1393 		    inp->inp_socket->so_proto->pr_protocol, &hash_type);
1394 
1395 		inp->inp_flowid = hash_val;
1396 		inp->inp_flowtype = hash_type;
1397 	}
1398 #endif
1399 	if (!CK_STAILQ_EMPTY(&V_in_ifaddrhead)) {
1400 		/*
1401 		 * If the destination address is INADDR_ANY,
1402 		 * use the primary local address.
1403 		 * If the supplied address is INADDR_BROADCAST,
1404 		 * and the primary interface supports broadcast,
1405 		 * choose the broadcast address for that interface.
1406 		 */
1407 		if (faddr.s_addr == INADDR_ANY) {
1408 			IN_IFADDR_RLOCK(&in_ifa_tracker);
1409 			faddr =
1410 			    IA_SIN(CK_STAILQ_FIRST(&V_in_ifaddrhead))->sin_addr;
1411 			IN_IFADDR_RUNLOCK(&in_ifa_tracker);
1412 			if (cred != NULL &&
1413 			    (error = prison_get_ip4(cred, &faddr)) != 0)
1414 				return (error);
1415 		} else if (faddr.s_addr == (u_long)INADDR_BROADCAST) {
1416 			IN_IFADDR_RLOCK(&in_ifa_tracker);
1417 			if (CK_STAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags &
1418 			    IFF_BROADCAST)
1419 				faddr = satosin(&CK_STAILQ_FIRST(
1420 				    &V_in_ifaddrhead)->ia_broadaddr)->sin_addr;
1421 			IN_IFADDR_RUNLOCK(&in_ifa_tracker);
1422 		}
1423 	}
1424 	if (laddr.s_addr == INADDR_ANY) {
1425 		error = in_pcbladdr(inp, &faddr, &laddr, cred);
1426 		/*
1427 		 * If the destination address is multicast and an outgoing
1428 		 * interface has been set as a multicast option, prefer the
1429 		 * address of that interface as our source address.
1430 		 */
1431 		if (IN_MULTICAST(ntohl(faddr.s_addr)) &&
1432 		    inp->inp_moptions != NULL) {
1433 			struct ip_moptions *imo;
1434 			struct ifnet *ifp;
1435 
1436 			imo = inp->inp_moptions;
1437 			if (imo->imo_multicast_ifp != NULL) {
1438 				ifp = imo->imo_multicast_ifp;
1439 				IN_IFADDR_RLOCK(&in_ifa_tracker);
1440 				CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) {
1441 					if ((ia->ia_ifp == ifp) &&
1442 					    (cred == NULL ||
1443 					    prison_check_ip4(cred,
1444 					    &ia->ia_addr.sin_addr) == 0))
1445 						break;
1446 				}
1447 				if (ia == NULL)
1448 					error = EADDRNOTAVAIL;
1449 				else {
1450 					laddr = ia->ia_addr.sin_addr;
1451 					error = 0;
1452 				}
1453 				IN_IFADDR_RUNLOCK(&in_ifa_tracker);
1454 			}
1455 		}
1456 		if (error)
1457 			return (error);
1458 	}
1459 
1460 	if (lport != 0) {
1461 		oinp = in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr,
1462 		    fport, laddr, lport, 0, NULL, M_NODOM);
1463 		if (oinp != NULL) {
1464 			if (oinpp != NULL)
1465 				*oinpp = oinp;
1466 			return (EADDRINUSE);
1467 		}
1468 	} else {
1469 		struct sockaddr_in lsin, fsin;
1470 
1471 		bzero(&lsin, sizeof(lsin));
1472 		bzero(&fsin, sizeof(fsin));
1473 		lsin.sin_family = AF_INET;
1474 		lsin.sin_addr = laddr;
1475 		fsin.sin_family = AF_INET;
1476 		fsin.sin_addr = faddr;
1477 		error = in_pcb_lport_dest(inp, (struct sockaddr *) &lsin,
1478 		    &lport, (struct sockaddr *)& fsin, fport, cred,
1479 		    INPLOOKUP_WILDCARD);
1480 		if (error)
1481 			return (error);
1482 	}
1483 	*laddrp = laddr.s_addr;
1484 	*lportp = lport;
1485 	*faddrp = faddr.s_addr;
1486 	*fportp = fport;
1487 	return (0);
1488 }
1489 
1490 void
1491 in_pcbdisconnect(struct inpcb *inp)
1492 {
1493 
1494 	INP_WLOCK_ASSERT(inp);
1495 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
1496 
1497 	inp->inp_faddr.s_addr = INADDR_ANY;
1498 	inp->inp_fport = 0;
1499 	in_pcbrehash(inp);
1500 }
1501 #endif /* INET */
1502 
1503 /*
1504  * in_pcbdetach() is responsibe for disassociating a socket from an inpcb.
1505  * For most protocols, this will be invoked immediately prior to calling
1506  * in_pcbfree().  However, with TCP the inpcb may significantly outlive the
1507  * socket, in which case in_pcbfree() is deferred.
1508  */
1509 void
1510 in_pcbdetach(struct inpcb *inp)
1511 {
1512 
1513 	KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__));
1514 
1515 #ifdef RATELIMIT
1516 	if (inp->inp_snd_tag != NULL)
1517 		in_pcbdetach_txrtlmt(inp);
1518 #endif
1519 	inp->inp_socket->so_pcb = NULL;
1520 	inp->inp_socket = NULL;
1521 }
1522 
1523 /*
1524  * in_pcbref() bumps the reference count on an inpcb in order to maintain
1525  * stability of an inpcb pointer despite the inpcb lock being released.  This
1526  * is used in TCP when the inpcbinfo lock needs to be acquired or upgraded,
1527  * but where the inpcb lock may already held, or when acquiring a reference
1528  * via a pcbgroup.
1529  *
1530  * in_pcbref() should be used only to provide brief memory stability, and
1531  * must always be followed by a call to INP_WLOCK() and in_pcbrele() to
1532  * garbage collect the inpcb if it has been in_pcbfree()'d from another
1533  * context.  Until in_pcbrele() has returned that the inpcb is still valid,
1534  * lock and rele are the *only* safe operations that may be performed on the
1535  * inpcb.
1536  *
1537  * While the inpcb will not be freed, releasing the inpcb lock means that the
1538  * connection's state may change, so the caller should be careful to
1539  * revalidate any cached state on reacquiring the lock.  Drop the reference
1540  * using in_pcbrele().
1541  */
1542 void
1543 in_pcbref(struct inpcb *inp)
1544 {
1545 
1546 	KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1547 
1548 	refcount_acquire(&inp->inp_refcount);
1549 }
1550 
1551 /*
1552  * Drop a refcount on an inpcb elevated using in_pcbref(); because a call to
1553  * in_pcbfree() may have been made between in_pcbref() and in_pcbrele(), we
1554  * return a flag indicating whether or not the inpcb remains valid.  If it is
1555  * valid, we return with the inpcb lock held.
1556  *
1557  * Notice that, unlike in_pcbref(), the inpcb lock must be held to drop a
1558  * reference on an inpcb.  Historically more work was done here (actually, in
1559  * in_pcbfree_internal()) but has been moved to in_pcbfree() to avoid the
1560  * need for the pcbinfo lock in in_pcbrele().  Deferring the free is entirely
1561  * about memory stability (and continued use of the write lock).
1562  */
1563 int
1564 in_pcbrele_rlocked(struct inpcb *inp)
1565 {
1566 	struct inpcbinfo *pcbinfo;
1567 
1568 	KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1569 
1570 	INP_RLOCK_ASSERT(inp);
1571 
1572 	if (refcount_release(&inp->inp_refcount) == 0) {
1573 		/*
1574 		 * If the inpcb has been freed, let the caller know, even if
1575 		 * this isn't the last reference.
1576 		 */
1577 		if (inp->inp_flags2 & INP_FREED) {
1578 			INP_RUNLOCK(inp);
1579 			return (1);
1580 		}
1581 		return (0);
1582 	}
1583 
1584 	KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1585 #ifdef TCPHPTS
1586 	if (inp->inp_in_hpts || inp->inp_in_input) {
1587 		struct tcp_hpts_entry *hpts;
1588 		/*
1589 		 * We should not be on the hpts at
1590 		 * this point in any form. we must
1591 		 * get the lock to be sure.
1592 		 */
1593 		hpts = tcp_hpts_lock(inp);
1594 		if (inp->inp_in_hpts)
1595 			panic("Hpts:%p inp:%p at free still on hpts",
1596 			      hpts, inp);
1597 		mtx_unlock(&hpts->p_mtx);
1598 		hpts = tcp_input_lock(inp);
1599 		if (inp->inp_in_input)
1600 			panic("Hpts:%p inp:%p at free still on input hpts",
1601 			      hpts, inp);
1602 		mtx_unlock(&hpts->p_mtx);
1603 	}
1604 #endif
1605 	INP_RUNLOCK(inp);
1606 	pcbinfo = inp->inp_pcbinfo;
1607 	uma_zfree(pcbinfo->ipi_zone, inp);
1608 	return (1);
1609 }
1610 
1611 int
1612 in_pcbrele_wlocked(struct inpcb *inp)
1613 {
1614 	struct inpcbinfo *pcbinfo;
1615 
1616 	KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1617 
1618 	INP_WLOCK_ASSERT(inp);
1619 
1620 	if (refcount_release(&inp->inp_refcount) == 0) {
1621 		/*
1622 		 * If the inpcb has been freed, let the caller know, even if
1623 		 * this isn't the last reference.
1624 		 */
1625 		if (inp->inp_flags2 & INP_FREED) {
1626 			INP_WUNLOCK(inp);
1627 			return (1);
1628 		}
1629 		return (0);
1630 	}
1631 
1632 	KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1633 #ifdef TCPHPTS
1634 	if (inp->inp_in_hpts || inp->inp_in_input) {
1635 		struct tcp_hpts_entry *hpts;
1636 		/*
1637 		 * We should not be on the hpts at
1638 		 * this point in any form. we must
1639 		 * get the lock to be sure.
1640 		 */
1641 		hpts = tcp_hpts_lock(inp);
1642 		if (inp->inp_in_hpts)
1643 			panic("Hpts:%p inp:%p at free still on hpts",
1644 			      hpts, inp);
1645 		mtx_unlock(&hpts->p_mtx);
1646 		hpts = tcp_input_lock(inp);
1647 		if (inp->inp_in_input)
1648 			panic("Hpts:%p inp:%p at free still on input hpts",
1649 			      hpts, inp);
1650 		mtx_unlock(&hpts->p_mtx);
1651 	}
1652 #endif
1653 	INP_WUNLOCK(inp);
1654 	pcbinfo = inp->inp_pcbinfo;
1655 	uma_zfree(pcbinfo->ipi_zone, inp);
1656 	return (1);
1657 }
1658 
1659 /*
1660  * Temporary wrapper.
1661  */
1662 int
1663 in_pcbrele(struct inpcb *inp)
1664 {
1665 
1666 	return (in_pcbrele_wlocked(inp));
1667 }
1668 
1669 void
1670 in_pcblist_rele_rlocked(epoch_context_t ctx)
1671 {
1672 	struct in_pcblist *il;
1673 	struct inpcb *inp;
1674 	struct inpcbinfo *pcbinfo;
1675 	int i, n;
1676 
1677 	il = __containerof(ctx, struct in_pcblist, il_epoch_ctx);
1678 	pcbinfo = il->il_pcbinfo;
1679 	n = il->il_count;
1680 	INP_INFO_WLOCK(pcbinfo);
1681 	for (i = 0; i < n; i++) {
1682 		inp = il->il_inp_list[i];
1683 		INP_RLOCK(inp);
1684 		if (!in_pcbrele_rlocked(inp))
1685 			INP_RUNLOCK(inp);
1686 	}
1687 	INP_INFO_WUNLOCK(pcbinfo);
1688 	free(il, M_TEMP);
1689 }
1690 
1691 static void
1692 inpcbport_free(epoch_context_t ctx)
1693 {
1694 	struct inpcbport *phd;
1695 
1696 	phd = __containerof(ctx, struct inpcbport, phd_epoch_ctx);
1697 	free(phd, M_PCB);
1698 }
1699 
1700 static void
1701 in_pcbfree_deferred(epoch_context_t ctx)
1702 {
1703 	struct inpcb *inp;
1704 	int released __unused;
1705 
1706 	inp = __containerof(ctx, struct inpcb, inp_epoch_ctx);
1707 
1708 	INP_WLOCK(inp);
1709 	CURVNET_SET(inp->inp_vnet);
1710 #ifdef INET
1711 	struct ip_moptions *imo = inp->inp_moptions;
1712 	inp->inp_moptions = NULL;
1713 #endif
1714 	/* XXXRW: Do as much as possible here. */
1715 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
1716 	if (inp->inp_sp != NULL)
1717 		ipsec_delete_pcbpolicy(inp);
1718 #endif
1719 #ifdef INET6
1720 	struct ip6_moptions *im6o = NULL;
1721 	if (inp->inp_vflag & INP_IPV6PROTO) {
1722 		ip6_freepcbopts(inp->in6p_outputopts);
1723 		im6o = inp->in6p_moptions;
1724 		inp->in6p_moptions = NULL;
1725 	}
1726 #endif
1727 	if (inp->inp_options)
1728 		(void)m_free(inp->inp_options);
1729 	inp->inp_vflag = 0;
1730 	crfree(inp->inp_cred);
1731 #ifdef MAC
1732 	mac_inpcb_destroy(inp);
1733 #endif
1734 	released = in_pcbrele_wlocked(inp);
1735 	MPASS(released);
1736 #ifdef INET6
1737 	ip6_freemoptions(im6o);
1738 #endif
1739 #ifdef INET
1740 	inp_freemoptions(imo);
1741 #endif
1742 	CURVNET_RESTORE();
1743 }
1744 
1745 /*
1746  * Unconditionally schedule an inpcb to be freed by decrementing its
1747  * reference count, which should occur only after the inpcb has been detached
1748  * from its socket.  If another thread holds a temporary reference (acquired
1749  * using in_pcbref()) then the free is deferred until that reference is
1750  * released using in_pcbrele(), but the inpcb is still unlocked.  Almost all
1751  * work, including removal from global lists, is done in this context, where
1752  * the pcbinfo lock is held.
1753  */
1754 void
1755 in_pcbfree(struct inpcb *inp)
1756 {
1757 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1758 
1759 	KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1760 	KASSERT((inp->inp_flags2 & INP_FREED) == 0,
1761 	    ("%s: called twice for pcb %p", __func__, inp));
1762 	if (inp->inp_flags2 & INP_FREED) {
1763 		INP_WUNLOCK(inp);
1764 		return;
1765 	}
1766 
1767 	INP_WLOCK_ASSERT(inp);
1768 	INP_LIST_WLOCK(pcbinfo);
1769 	in_pcbremlists(inp);
1770 	INP_LIST_WUNLOCK(pcbinfo);
1771 	RO_INVALIDATE_CACHE(&inp->inp_route);
1772 	/* mark as destruction in progress */
1773 	inp->inp_flags2 |= INP_FREED;
1774 	INP_WUNLOCK(inp);
1775 	NET_EPOCH_CALL(in_pcbfree_deferred, &inp->inp_epoch_ctx);
1776 }
1777 
1778 /*
1779  * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and
1780  * port reservation, and preventing it from being returned by inpcb lookups.
1781  *
1782  * It is used by TCP to mark an inpcb as unused and avoid future packet
1783  * delivery or event notification when a socket remains open but TCP has
1784  * closed.  This might occur as a result of a shutdown()-initiated TCP close
1785  * or a RST on the wire, and allows the port binding to be reused while still
1786  * maintaining the invariant that so_pcb always points to a valid inpcb until
1787  * in_pcbdetach().
1788  *
1789  * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by
1790  * in_pcbnotifyall() and in_pcbpurgeif0()?
1791  */
1792 void
1793 in_pcbdrop(struct inpcb *inp)
1794 {
1795 
1796 	INP_WLOCK_ASSERT(inp);
1797 #ifdef INVARIANTS
1798 	if (inp->inp_socket != NULL && inp->inp_ppcb != NULL)
1799 		MPASS(inp->inp_refcount > 1);
1800 #endif
1801 
1802 	/*
1803 	 * XXXRW: Possibly we should protect the setting of INP_DROPPED with
1804 	 * the hash lock...?
1805 	 */
1806 	inp->inp_flags |= INP_DROPPED;
1807 	if (inp->inp_flags & INP_INHASHLIST) {
1808 		struct inpcbport *phd = inp->inp_phd;
1809 
1810 		INP_HASH_WLOCK(inp->inp_pcbinfo);
1811 		in_pcbremlbgrouphash(inp);
1812 		CK_LIST_REMOVE(inp, inp_hash);
1813 		CK_LIST_REMOVE(inp, inp_portlist);
1814 		if (CK_LIST_FIRST(&phd->phd_pcblist) == NULL) {
1815 			CK_LIST_REMOVE(phd, phd_hash);
1816 			NET_EPOCH_CALL(inpcbport_free, &phd->phd_epoch_ctx);
1817 		}
1818 		INP_HASH_WUNLOCK(inp->inp_pcbinfo);
1819 		inp->inp_flags &= ~INP_INHASHLIST;
1820 #ifdef PCBGROUP
1821 		in_pcbgroup_remove(inp);
1822 #endif
1823 	}
1824 }
1825 
1826 #ifdef INET
1827 /*
1828  * Common routines to return the socket addresses associated with inpcbs.
1829  */
1830 struct sockaddr *
1831 in_sockaddr(in_port_t port, struct in_addr *addr_p)
1832 {
1833 	struct sockaddr_in *sin;
1834 
1835 	sin = malloc(sizeof *sin, M_SONAME,
1836 		M_WAITOK | M_ZERO);
1837 	sin->sin_family = AF_INET;
1838 	sin->sin_len = sizeof(*sin);
1839 	sin->sin_addr = *addr_p;
1840 	sin->sin_port = port;
1841 
1842 	return (struct sockaddr *)sin;
1843 }
1844 
1845 int
1846 in_getsockaddr(struct socket *so, struct sockaddr **nam)
1847 {
1848 	struct inpcb *inp;
1849 	struct in_addr addr;
1850 	in_port_t port;
1851 
1852 	inp = sotoinpcb(so);
1853 	KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL"));
1854 
1855 	INP_RLOCK(inp);
1856 	port = inp->inp_lport;
1857 	addr = inp->inp_laddr;
1858 	INP_RUNLOCK(inp);
1859 
1860 	*nam = in_sockaddr(port, &addr);
1861 	return 0;
1862 }
1863 
1864 int
1865 in_getpeeraddr(struct socket *so, struct sockaddr **nam)
1866 {
1867 	struct inpcb *inp;
1868 	struct in_addr addr;
1869 	in_port_t port;
1870 
1871 	inp = sotoinpcb(so);
1872 	KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL"));
1873 
1874 	INP_RLOCK(inp);
1875 	port = inp->inp_fport;
1876 	addr = inp->inp_faddr;
1877 	INP_RUNLOCK(inp);
1878 
1879 	*nam = in_sockaddr(port, &addr);
1880 	return 0;
1881 }
1882 
1883 void
1884 in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno,
1885     struct inpcb *(*notify)(struct inpcb *, int))
1886 {
1887 	struct inpcb *inp, *inp_temp;
1888 
1889 	INP_INFO_WLOCK(pcbinfo);
1890 	CK_LIST_FOREACH_SAFE(inp, pcbinfo->ipi_listhead, inp_list, inp_temp) {
1891 		INP_WLOCK(inp);
1892 #ifdef INET6
1893 		if ((inp->inp_vflag & INP_IPV4) == 0) {
1894 			INP_WUNLOCK(inp);
1895 			continue;
1896 		}
1897 #endif
1898 		if (inp->inp_faddr.s_addr != faddr.s_addr ||
1899 		    inp->inp_socket == NULL) {
1900 			INP_WUNLOCK(inp);
1901 			continue;
1902 		}
1903 		if ((*notify)(inp, errno))
1904 			INP_WUNLOCK(inp);
1905 	}
1906 	INP_INFO_WUNLOCK(pcbinfo);
1907 }
1908 
1909 void
1910 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp)
1911 {
1912 	struct inpcb *inp;
1913 	struct in_multi *inm;
1914 	struct in_mfilter *imf;
1915 	struct ip_moptions *imo;
1916 
1917 	INP_INFO_WLOCK(pcbinfo);
1918 	CK_LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) {
1919 		INP_WLOCK(inp);
1920 		imo = inp->inp_moptions;
1921 		if ((inp->inp_vflag & INP_IPV4) &&
1922 		    imo != NULL) {
1923 			/*
1924 			 * Unselect the outgoing interface if it is being
1925 			 * detached.
1926 			 */
1927 			if (imo->imo_multicast_ifp == ifp)
1928 				imo->imo_multicast_ifp = NULL;
1929 
1930 			/*
1931 			 * Drop multicast group membership if we joined
1932 			 * through the interface being detached.
1933 			 *
1934 			 * XXX This can all be deferred to an epoch_call
1935 			 */
1936 restart:
1937 			IP_MFILTER_FOREACH(imf, &imo->imo_head) {
1938 				if ((inm = imf->imf_inm) == NULL)
1939 					continue;
1940 				if (inm->inm_ifp != ifp)
1941 					continue;
1942 				ip_mfilter_remove(&imo->imo_head, imf);
1943 				IN_MULTI_LOCK_ASSERT();
1944 				in_leavegroup_locked(inm, NULL);
1945 				ip_mfilter_free(imf);
1946 				goto restart;
1947 			}
1948 		}
1949 		INP_WUNLOCK(inp);
1950 	}
1951 	INP_INFO_WUNLOCK(pcbinfo);
1952 }
1953 
1954 /*
1955  * Lookup a PCB based on the local address and port.  Caller must hold the
1956  * hash lock.  No inpcb locks or references are acquired.
1957  */
1958 #define INP_LOOKUP_MAPPED_PCB_COST	3
1959 struct inpcb *
1960 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr,
1961     u_short lport, int lookupflags, struct ucred *cred)
1962 {
1963 	struct inpcb *inp;
1964 #ifdef INET6
1965 	int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST;
1966 #else
1967 	int matchwild = 3;
1968 #endif
1969 	int wildcard;
1970 
1971 	KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0,
1972 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
1973 
1974 	INP_HASH_LOCK_ASSERT(pcbinfo);
1975 
1976 	if ((lookupflags & INPLOOKUP_WILDCARD) == 0) {
1977 		struct inpcbhead *head;
1978 		/*
1979 		 * Look for an unconnected (wildcard foreign addr) PCB that
1980 		 * matches the local address and port we're looking for.
1981 		 */
1982 		head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
1983 		    0, pcbinfo->ipi_hashmask)];
1984 		CK_LIST_FOREACH(inp, head, inp_hash) {
1985 #ifdef INET6
1986 			/* XXX inp locking */
1987 			if ((inp->inp_vflag & INP_IPV4) == 0)
1988 				continue;
1989 #endif
1990 			if (inp->inp_faddr.s_addr == INADDR_ANY &&
1991 			    inp->inp_laddr.s_addr == laddr.s_addr &&
1992 			    inp->inp_lport == lport) {
1993 				/*
1994 				 * Found?
1995 				 */
1996 				if (cred == NULL ||
1997 				    prison_equal_ip4(cred->cr_prison,
1998 					inp->inp_cred->cr_prison))
1999 					return (inp);
2000 			}
2001 		}
2002 		/*
2003 		 * Not found.
2004 		 */
2005 		return (NULL);
2006 	} else {
2007 		struct inpcbporthead *porthash;
2008 		struct inpcbport *phd;
2009 		struct inpcb *match = NULL;
2010 		/*
2011 		 * Best fit PCB lookup.
2012 		 *
2013 		 * First see if this local port is in use by looking on the
2014 		 * port hash list.
2015 		 */
2016 		porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport,
2017 		    pcbinfo->ipi_porthashmask)];
2018 		CK_LIST_FOREACH(phd, porthash, phd_hash) {
2019 			if (phd->phd_port == lport)
2020 				break;
2021 		}
2022 		if (phd != NULL) {
2023 			/*
2024 			 * Port is in use by one or more PCBs. Look for best
2025 			 * fit.
2026 			 */
2027 			CK_LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) {
2028 				wildcard = 0;
2029 				if (cred != NULL &&
2030 				    !prison_equal_ip4(inp->inp_cred->cr_prison,
2031 					cred->cr_prison))
2032 					continue;
2033 #ifdef INET6
2034 				/* XXX inp locking */
2035 				if ((inp->inp_vflag & INP_IPV4) == 0)
2036 					continue;
2037 				/*
2038 				 * We never select the PCB that has
2039 				 * INP_IPV6 flag and is bound to :: if
2040 				 * we have another PCB which is bound
2041 				 * to 0.0.0.0.  If a PCB has the
2042 				 * INP_IPV6 flag, then we set its cost
2043 				 * higher than IPv4 only PCBs.
2044 				 *
2045 				 * Note that the case only happens
2046 				 * when a socket is bound to ::, under
2047 				 * the condition that the use of the
2048 				 * mapped address is allowed.
2049 				 */
2050 				if ((inp->inp_vflag & INP_IPV6) != 0)
2051 					wildcard += INP_LOOKUP_MAPPED_PCB_COST;
2052 #endif
2053 				if (inp->inp_faddr.s_addr != INADDR_ANY)
2054 					wildcard++;
2055 				if (inp->inp_laddr.s_addr != INADDR_ANY) {
2056 					if (laddr.s_addr == INADDR_ANY)
2057 						wildcard++;
2058 					else if (inp->inp_laddr.s_addr != laddr.s_addr)
2059 						continue;
2060 				} else {
2061 					if (laddr.s_addr != INADDR_ANY)
2062 						wildcard++;
2063 				}
2064 				if (wildcard < matchwild) {
2065 					match = inp;
2066 					matchwild = wildcard;
2067 					if (matchwild == 0)
2068 						break;
2069 				}
2070 			}
2071 		}
2072 		return (match);
2073 	}
2074 }
2075 #undef INP_LOOKUP_MAPPED_PCB_COST
2076 
2077 static struct inpcb *
2078 in_pcblookup_lbgroup(const struct inpcbinfo *pcbinfo,
2079     const struct in_addr *laddr, uint16_t lport, const struct in_addr *faddr,
2080     uint16_t fport, int lookupflags, int numa_domain)
2081 {
2082 	struct inpcb *local_wild, *numa_wild;
2083 	const struct inpcblbgrouphead *hdr;
2084 	struct inpcblbgroup *grp;
2085 	uint32_t idx;
2086 
2087 	INP_HASH_LOCK_ASSERT(pcbinfo);
2088 
2089 	hdr = &pcbinfo->ipi_lbgrouphashbase[
2090 	    INP_PCBPORTHASH(lport, pcbinfo->ipi_lbgrouphashmask)];
2091 
2092 	/*
2093 	 * Order of socket selection:
2094 	 * 1. non-wild.
2095 	 * 2. wild (if lookupflags contains INPLOOKUP_WILDCARD).
2096 	 *
2097 	 * NOTE:
2098 	 * - Load balanced group does not contain jailed sockets
2099 	 * - Load balanced group does not contain IPv4 mapped INET6 wild sockets
2100 	 */
2101 	local_wild = NULL;
2102 	numa_wild = NULL;
2103 	CK_LIST_FOREACH(grp, hdr, il_list) {
2104 #ifdef INET6
2105 		if (!(grp->il_vflag & INP_IPV4))
2106 			continue;
2107 #endif
2108 		if (grp->il_lport != lport)
2109 			continue;
2110 
2111 		idx = INP_PCBLBGROUP_PKTHASH(faddr->s_addr, lport, fport) %
2112 		    grp->il_inpcnt;
2113 		if (grp->il_laddr.s_addr == laddr->s_addr) {
2114 			if (numa_domain == M_NODOM ||
2115 			    grp->il_numa_domain == numa_domain) {
2116 				return (grp->il_inp[idx]);
2117 			} else {
2118 				numa_wild = grp->il_inp[idx];
2119 			}
2120 		}
2121 		if (grp->il_laddr.s_addr == INADDR_ANY &&
2122 		    (lookupflags & INPLOOKUP_WILDCARD) != 0 &&
2123 		    (local_wild == NULL || numa_domain == M_NODOM ||
2124 			grp->il_numa_domain == numa_domain)) {
2125 			local_wild = grp->il_inp[idx];
2126 		}
2127 	}
2128 	if (numa_wild != NULL)
2129 		return (numa_wild);
2130 
2131 	return (local_wild);
2132 }
2133 
2134 #ifdef PCBGROUP
2135 /*
2136  * Lookup PCB in hash list, using pcbgroup tables.
2137  */
2138 static struct inpcb *
2139 in_pcblookup_group(struct inpcbinfo *pcbinfo, struct inpcbgroup *pcbgroup,
2140     struct in_addr faddr, u_int fport_arg, struct in_addr laddr,
2141     u_int lport_arg, int lookupflags, struct ifnet *ifp)
2142 {
2143 	struct inpcbhead *head;
2144 	struct inpcb *inp, *tmpinp;
2145 	u_short fport = fport_arg, lport = lport_arg;
2146 	bool locked;
2147 
2148 	/*
2149 	 * First look for an exact match.
2150 	 */
2151 	tmpinp = NULL;
2152 	INP_GROUP_LOCK(pcbgroup);
2153 	head = &pcbgroup->ipg_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport,
2154 	    pcbgroup->ipg_hashmask)];
2155 	CK_LIST_FOREACH(inp, head, inp_pcbgrouphash) {
2156 #ifdef INET6
2157 		/* XXX inp locking */
2158 		if ((inp->inp_vflag & INP_IPV4) == 0)
2159 			continue;
2160 #endif
2161 		if (inp->inp_faddr.s_addr == faddr.s_addr &&
2162 		    inp->inp_laddr.s_addr == laddr.s_addr &&
2163 		    inp->inp_fport == fport &&
2164 		    inp->inp_lport == lport) {
2165 			/*
2166 			 * XXX We should be able to directly return
2167 			 * the inp here, without any checks.
2168 			 * Well unless both bound with SO_REUSEPORT?
2169 			 */
2170 			if (prison_flag(inp->inp_cred, PR_IP4))
2171 				goto found;
2172 			if (tmpinp == NULL)
2173 				tmpinp = inp;
2174 		}
2175 	}
2176 	if (tmpinp != NULL) {
2177 		inp = tmpinp;
2178 		goto found;
2179 	}
2180 
2181 #ifdef	RSS
2182 	/*
2183 	 * For incoming connections, we may wish to do a wildcard
2184 	 * match for an RSS-local socket.
2185 	 */
2186 	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
2187 		struct inpcb *local_wild = NULL, *local_exact = NULL;
2188 #ifdef INET6
2189 		struct inpcb *local_wild_mapped = NULL;
2190 #endif
2191 		struct inpcb *jail_wild = NULL;
2192 		struct inpcbhead *head;
2193 		int injail;
2194 
2195 		/*
2196 		 * Order of socket selection - we always prefer jails.
2197 		 *      1. jailed, non-wild.
2198 		 *      2. jailed, wild.
2199 		 *      3. non-jailed, non-wild.
2200 		 *      4. non-jailed, wild.
2201 		 */
2202 
2203 		head = &pcbgroup->ipg_hashbase[INP_PCBHASH(INADDR_ANY,
2204 		    lport, 0, pcbgroup->ipg_hashmask)];
2205 		CK_LIST_FOREACH(inp, head, inp_pcbgrouphash) {
2206 #ifdef INET6
2207 			/* XXX inp locking */
2208 			if ((inp->inp_vflag & INP_IPV4) == 0)
2209 				continue;
2210 #endif
2211 			if (inp->inp_faddr.s_addr != INADDR_ANY ||
2212 			    inp->inp_lport != lport)
2213 				continue;
2214 
2215 			injail = prison_flag(inp->inp_cred, PR_IP4);
2216 			if (injail) {
2217 				if (prison_check_ip4(inp->inp_cred,
2218 				    &laddr) != 0)
2219 					continue;
2220 			} else {
2221 				if (local_exact != NULL)
2222 					continue;
2223 			}
2224 
2225 			if (inp->inp_laddr.s_addr == laddr.s_addr) {
2226 				if (injail)
2227 					goto found;
2228 				else
2229 					local_exact = inp;
2230 			} else if (inp->inp_laddr.s_addr == INADDR_ANY) {
2231 #ifdef INET6
2232 				/* XXX inp locking, NULL check */
2233 				if (inp->inp_vflag & INP_IPV6PROTO)
2234 					local_wild_mapped = inp;
2235 				else
2236 #endif
2237 					if (injail)
2238 						jail_wild = inp;
2239 					else
2240 						local_wild = inp;
2241 			}
2242 		} /* LIST_FOREACH */
2243 
2244 		inp = jail_wild;
2245 		if (inp == NULL)
2246 			inp = local_exact;
2247 		if (inp == NULL)
2248 			inp = local_wild;
2249 #ifdef INET6
2250 		if (inp == NULL)
2251 			inp = local_wild_mapped;
2252 #endif
2253 		if (inp != NULL)
2254 			goto found;
2255 	}
2256 #endif
2257 
2258 	/*
2259 	 * Then look for a wildcard match, if requested.
2260 	 */
2261 	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
2262 		struct inpcb *local_wild = NULL, *local_exact = NULL;
2263 #ifdef INET6
2264 		struct inpcb *local_wild_mapped = NULL;
2265 #endif
2266 		struct inpcb *jail_wild = NULL;
2267 		struct inpcbhead *head;
2268 		int injail;
2269 
2270 		/*
2271 		 * Order of socket selection - we always prefer jails.
2272 		 *      1. jailed, non-wild.
2273 		 *      2. jailed, wild.
2274 		 *      3. non-jailed, non-wild.
2275 		 *      4. non-jailed, wild.
2276 		 */
2277 		head = &pcbinfo->ipi_wildbase[INP_PCBHASH(INADDR_ANY, lport,
2278 		    0, pcbinfo->ipi_wildmask)];
2279 		CK_LIST_FOREACH(inp, head, inp_pcbgroup_wild) {
2280 #ifdef INET6
2281 			/* XXX inp locking */
2282 			if ((inp->inp_vflag & INP_IPV4) == 0)
2283 				continue;
2284 #endif
2285 			if (inp->inp_faddr.s_addr != INADDR_ANY ||
2286 			    inp->inp_lport != lport)
2287 				continue;
2288 
2289 			injail = prison_flag(inp->inp_cred, PR_IP4);
2290 			if (injail) {
2291 				if (prison_check_ip4(inp->inp_cred,
2292 				    &laddr) != 0)
2293 					continue;
2294 			} else {
2295 				if (local_exact != NULL)
2296 					continue;
2297 			}
2298 
2299 			if (inp->inp_laddr.s_addr == laddr.s_addr) {
2300 				if (injail)
2301 					goto found;
2302 				else
2303 					local_exact = inp;
2304 			} else if (inp->inp_laddr.s_addr == INADDR_ANY) {
2305 #ifdef INET6
2306 				/* XXX inp locking, NULL check */
2307 				if (inp->inp_vflag & INP_IPV6PROTO)
2308 					local_wild_mapped = inp;
2309 				else
2310 #endif
2311 					if (injail)
2312 						jail_wild = inp;
2313 					else
2314 						local_wild = inp;
2315 			}
2316 		} /* LIST_FOREACH */
2317 		inp = jail_wild;
2318 		if (inp == NULL)
2319 			inp = local_exact;
2320 		if (inp == NULL)
2321 			inp = local_wild;
2322 #ifdef INET6
2323 		if (inp == NULL)
2324 			inp = local_wild_mapped;
2325 #endif
2326 		if (inp != NULL)
2327 			goto found;
2328 	} /* if (lookupflags & INPLOOKUP_WILDCARD) */
2329 	INP_GROUP_UNLOCK(pcbgroup);
2330 	return (NULL);
2331 
2332 found:
2333 	if (lookupflags & INPLOOKUP_WLOCKPCB)
2334 		locked = INP_TRY_WLOCK(inp);
2335 	else if (lookupflags & INPLOOKUP_RLOCKPCB)
2336 		locked = INP_TRY_RLOCK(inp);
2337 	else
2338 		panic("%s: locking bug", __func__);
2339 	if (__predict_false(locked && (inp->inp_flags2 & INP_FREED))) {
2340 		if (lookupflags & INPLOOKUP_WLOCKPCB)
2341 			INP_WUNLOCK(inp);
2342 		else
2343 			INP_RUNLOCK(inp);
2344 		return (NULL);
2345 	} else if (!locked)
2346 		in_pcbref(inp);
2347 	INP_GROUP_UNLOCK(pcbgroup);
2348 	if (!locked) {
2349 		if (lookupflags & INPLOOKUP_WLOCKPCB) {
2350 			INP_WLOCK(inp);
2351 			if (in_pcbrele_wlocked(inp))
2352 				return (NULL);
2353 		} else {
2354 			INP_RLOCK(inp);
2355 			if (in_pcbrele_rlocked(inp))
2356 				return (NULL);
2357 		}
2358 	}
2359 #ifdef INVARIANTS
2360 	if (lookupflags & INPLOOKUP_WLOCKPCB)
2361 		INP_WLOCK_ASSERT(inp);
2362 	else
2363 		INP_RLOCK_ASSERT(inp);
2364 #endif
2365 	return (inp);
2366 }
2367 #endif /* PCBGROUP */
2368 
2369 /*
2370  * Lookup PCB in hash list, using pcbinfo tables.  This variation assumes
2371  * that the caller has locked the hash list, and will not perform any further
2372  * locking or reference operations on either the hash list or the connection.
2373  */
2374 static struct inpcb *
2375 in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2376     u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags,
2377     struct ifnet *ifp, uint8_t numa_domain)
2378 {
2379 	struct inpcbhead *head;
2380 	struct inpcb *inp, *tmpinp;
2381 	u_short fport = fport_arg, lport = lport_arg;
2382 
2383 	KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0,
2384 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
2385 	INP_HASH_LOCK_ASSERT(pcbinfo);
2386 
2387 	/*
2388 	 * First look for an exact match.
2389 	 */
2390 	tmpinp = NULL;
2391 	head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport,
2392 	    pcbinfo->ipi_hashmask)];
2393 	CK_LIST_FOREACH(inp, head, inp_hash) {
2394 #ifdef INET6
2395 		/* XXX inp locking */
2396 		if ((inp->inp_vflag & INP_IPV4) == 0)
2397 			continue;
2398 #endif
2399 		if (inp->inp_faddr.s_addr == faddr.s_addr &&
2400 		    inp->inp_laddr.s_addr == laddr.s_addr &&
2401 		    inp->inp_fport == fport &&
2402 		    inp->inp_lport == lport) {
2403 			/*
2404 			 * XXX We should be able to directly return
2405 			 * the inp here, without any checks.
2406 			 * Well unless both bound with SO_REUSEPORT?
2407 			 */
2408 			if (prison_flag(inp->inp_cred, PR_IP4))
2409 				return (inp);
2410 			if (tmpinp == NULL)
2411 				tmpinp = inp;
2412 		}
2413 	}
2414 	if (tmpinp != NULL)
2415 		return (tmpinp);
2416 
2417 	/*
2418 	 * Then look in lb group (for wildcard match).
2419 	 */
2420 	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
2421 		inp = in_pcblookup_lbgroup(pcbinfo, &laddr, lport, &faddr,
2422 		    fport, lookupflags, numa_domain);
2423 		if (inp != NULL)
2424 			return (inp);
2425 	}
2426 
2427 	/*
2428 	 * Then look for a wildcard match, if requested.
2429 	 */
2430 	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
2431 		struct inpcb *local_wild = NULL, *local_exact = NULL;
2432 #ifdef INET6
2433 		struct inpcb *local_wild_mapped = NULL;
2434 #endif
2435 		struct inpcb *jail_wild = NULL;
2436 		int injail;
2437 
2438 		/*
2439 		 * Order of socket selection - we always prefer jails.
2440 		 *      1. jailed, non-wild.
2441 		 *      2. jailed, wild.
2442 		 *      3. non-jailed, non-wild.
2443 		 *      4. non-jailed, wild.
2444 		 */
2445 
2446 		head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
2447 		    0, pcbinfo->ipi_hashmask)];
2448 		CK_LIST_FOREACH(inp, head, inp_hash) {
2449 #ifdef INET6
2450 			/* XXX inp locking */
2451 			if ((inp->inp_vflag & INP_IPV4) == 0)
2452 				continue;
2453 #endif
2454 			if (inp->inp_faddr.s_addr != INADDR_ANY ||
2455 			    inp->inp_lport != lport)
2456 				continue;
2457 
2458 			injail = prison_flag(inp->inp_cred, PR_IP4);
2459 			if (injail) {
2460 				if (prison_check_ip4(inp->inp_cred,
2461 				    &laddr) != 0)
2462 					continue;
2463 			} else {
2464 				if (local_exact != NULL)
2465 					continue;
2466 			}
2467 
2468 			if (inp->inp_laddr.s_addr == laddr.s_addr) {
2469 				if (injail)
2470 					return (inp);
2471 				else
2472 					local_exact = inp;
2473 			} else if (inp->inp_laddr.s_addr == INADDR_ANY) {
2474 #ifdef INET6
2475 				/* XXX inp locking, NULL check */
2476 				if (inp->inp_vflag & INP_IPV6PROTO)
2477 					local_wild_mapped = inp;
2478 				else
2479 #endif
2480 					if (injail)
2481 						jail_wild = inp;
2482 					else
2483 						local_wild = inp;
2484 			}
2485 		} /* LIST_FOREACH */
2486 		if (jail_wild != NULL)
2487 			return (jail_wild);
2488 		if (local_exact != NULL)
2489 			return (local_exact);
2490 		if (local_wild != NULL)
2491 			return (local_wild);
2492 #ifdef INET6
2493 		if (local_wild_mapped != NULL)
2494 			return (local_wild_mapped);
2495 #endif
2496 	} /* if ((lookupflags & INPLOOKUP_WILDCARD) != 0) */
2497 
2498 	return (NULL);
2499 }
2500 
2501 /*
2502  * Lookup PCB in hash list, using pcbinfo tables.  This variation locks the
2503  * hash list lock, and will return the inpcb locked (i.e., requires
2504  * INPLOOKUP_LOCKPCB).
2505  */
2506 static struct inpcb *
2507 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2508     u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
2509     struct ifnet *ifp, uint8_t numa_domain)
2510 {
2511 	struct inpcb *inp;
2512 
2513 	inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport,
2514 	    (lookupflags & ~(INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)), ifp,
2515 	    numa_domain);
2516 	if (inp != NULL) {
2517 		if (lookupflags & INPLOOKUP_WLOCKPCB) {
2518 			INP_WLOCK(inp);
2519 			if (__predict_false(inp->inp_flags2 & INP_FREED)) {
2520 				INP_WUNLOCK(inp);
2521 				inp = NULL;
2522 			}
2523 		} else if (lookupflags & INPLOOKUP_RLOCKPCB) {
2524 			INP_RLOCK(inp);
2525 			if (__predict_false(inp->inp_flags2 & INP_FREED)) {
2526 				INP_RUNLOCK(inp);
2527 				inp = NULL;
2528 			}
2529 		} else
2530 			panic("%s: locking bug", __func__);
2531 #ifdef INVARIANTS
2532 		if (inp != NULL) {
2533 			if (lookupflags & INPLOOKUP_WLOCKPCB)
2534 				INP_WLOCK_ASSERT(inp);
2535 			else
2536 				INP_RLOCK_ASSERT(inp);
2537 		}
2538 #endif
2539 	}
2540 
2541 	return (inp);
2542 }
2543 
2544 /*
2545  * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf
2546  * from which a pre-calculated hash value may be extracted.
2547  *
2548  * Possibly more of this logic should be in in_pcbgroup.c.
2549  */
2550 struct inpcb *
2551 in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport,
2552     struct in_addr laddr, u_int lport, int lookupflags, struct ifnet *ifp)
2553 {
2554 #if defined(PCBGROUP) && !defined(RSS)
2555 	struct inpcbgroup *pcbgroup;
2556 #endif
2557 
2558 	KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0,
2559 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
2560 	KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
2561 	    ("%s: LOCKPCB not set", __func__));
2562 
2563 	/*
2564 	 * When not using RSS, use connection groups in preference to the
2565 	 * reservation table when looking up 4-tuples.  When using RSS, just
2566 	 * use the reservation table, due to the cost of the Toeplitz hash
2567 	 * in software.
2568 	 *
2569 	 * XXXRW: This policy belongs in the pcbgroup code, as in principle
2570 	 * we could be doing RSS with a non-Toeplitz hash that is affordable
2571 	 * in software.
2572 	 */
2573 #if defined(PCBGROUP) && !defined(RSS)
2574 	if (in_pcbgroup_enabled(pcbinfo)) {
2575 		pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr,
2576 		    fport);
2577 		return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport,
2578 		    laddr, lport, lookupflags, ifp));
2579 	}
2580 #endif
2581 	return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport,
2582 	    lookupflags, ifp, M_NODOM));
2583 }
2584 
2585 struct inpcb *
2586 in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2587     u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
2588     struct ifnet *ifp, struct mbuf *m)
2589 {
2590 #ifdef PCBGROUP
2591 	struct inpcbgroup *pcbgroup;
2592 #endif
2593 
2594 	KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0,
2595 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
2596 	KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
2597 	    ("%s: LOCKPCB not set", __func__));
2598 
2599 #ifdef PCBGROUP
2600 	/*
2601 	 * If we can use a hardware-generated hash to look up the connection
2602 	 * group, use that connection group to find the inpcb.  Otherwise
2603 	 * fall back on a software hash -- or the reservation table if we're
2604 	 * using RSS.
2605 	 *
2606 	 * XXXRW: As above, that policy belongs in the pcbgroup code.
2607 	 */
2608 	if (in_pcbgroup_enabled(pcbinfo) &&
2609 	    !(M_HASHTYPE_TEST(m, M_HASHTYPE_NONE))) {
2610 		pcbgroup = in_pcbgroup_byhash(pcbinfo, M_HASHTYPE_GET(m),
2611 		    m->m_pkthdr.flowid);
2612 		if (pcbgroup != NULL)
2613 			return (in_pcblookup_group(pcbinfo, pcbgroup, faddr,
2614 			    fport, laddr, lport, lookupflags, ifp));
2615 #ifndef RSS
2616 		pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr,
2617 		    fport);
2618 		return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport,
2619 		    laddr, lport, lookupflags, ifp));
2620 #endif
2621 	}
2622 #endif
2623 	return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport,
2624 	    lookupflags, ifp, m->m_pkthdr.numa_domain));
2625 }
2626 #endif /* INET */
2627 
2628 /*
2629  * Insert PCB onto various hash lists.
2630  */
2631 static int
2632 in_pcbinshash_internal(struct inpcb *inp, struct mbuf *m)
2633 {
2634 	struct inpcbhead *pcbhash;
2635 	struct inpcbporthead *pcbporthash;
2636 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2637 	struct inpcbport *phd;
2638 	u_int32_t hashkey_faddr;
2639 	int so_options;
2640 
2641 	INP_WLOCK_ASSERT(inp);
2642 	INP_HASH_WLOCK_ASSERT(pcbinfo);
2643 
2644 	KASSERT((inp->inp_flags & INP_INHASHLIST) == 0,
2645 	    ("in_pcbinshash: INP_INHASHLIST"));
2646 
2647 #ifdef INET6
2648 	if (inp->inp_vflag & INP_IPV6)
2649 		hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr);
2650 	else
2651 #endif
2652 	hashkey_faddr = inp->inp_faddr.s_addr;
2653 
2654 	pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
2655 		 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
2656 
2657 	pcbporthash = &pcbinfo->ipi_porthashbase[
2658 	    INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)];
2659 
2660 	/*
2661 	 * Add entry to load balance group.
2662 	 * Only do this if SO_REUSEPORT_LB is set.
2663 	 */
2664 	so_options = inp_so_options(inp);
2665 	if (so_options & SO_REUSEPORT_LB) {
2666 		int ret = in_pcbinslbgrouphash(inp, M_NODOM);
2667 		if (ret) {
2668 			/* pcb lb group malloc fail (ret=ENOBUFS). */
2669 			return (ret);
2670 		}
2671 	}
2672 
2673 	/*
2674 	 * Go through port list and look for a head for this lport.
2675 	 */
2676 	CK_LIST_FOREACH(phd, pcbporthash, phd_hash) {
2677 		if (phd->phd_port == inp->inp_lport)
2678 			break;
2679 	}
2680 	/*
2681 	 * If none exists, malloc one and tack it on.
2682 	 */
2683 	if (phd == NULL) {
2684 		phd = malloc(sizeof(struct inpcbport), M_PCB, M_NOWAIT);
2685 		if (phd == NULL) {
2686 			return (ENOBUFS); /* XXX */
2687 		}
2688 		bzero(&phd->phd_epoch_ctx, sizeof(struct epoch_context));
2689 		phd->phd_port = inp->inp_lport;
2690 		CK_LIST_INIT(&phd->phd_pcblist);
2691 		CK_LIST_INSERT_HEAD(pcbporthash, phd, phd_hash);
2692 	}
2693 	inp->inp_phd = phd;
2694 	CK_LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist);
2695 	CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash);
2696 	inp->inp_flags |= INP_INHASHLIST;
2697 #ifdef PCBGROUP
2698 	if (m != NULL) {
2699 		in_pcbgroup_update_mbuf(inp, m);
2700 	} else {
2701 		in_pcbgroup_update(inp);
2702 	}
2703 #endif
2704 	return (0);
2705 }
2706 
2707 int
2708 in_pcbinshash(struct inpcb *inp)
2709 {
2710 
2711 	return (in_pcbinshash_internal(inp, NULL));
2712 }
2713 
2714 int
2715 in_pcbinshash_mbuf(struct inpcb *inp, struct mbuf *m)
2716 {
2717 
2718 	return (in_pcbinshash_internal(inp, m));
2719 }
2720 
2721 /*
2722  * Move PCB to the proper hash bucket when { faddr, fport } have  been
2723  * changed. NOTE: This does not handle the case of the lport changing (the
2724  * hashed port list would have to be updated as well), so the lport must
2725  * not change after in_pcbinshash() has been called.
2726  */
2727 void
2728 in_pcbrehash_mbuf(struct inpcb *inp, struct mbuf *m)
2729 {
2730 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2731 	struct inpcbhead *head;
2732 	u_int32_t hashkey_faddr;
2733 
2734 	INP_WLOCK_ASSERT(inp);
2735 	INP_HASH_WLOCK_ASSERT(pcbinfo);
2736 
2737 	KASSERT(inp->inp_flags & INP_INHASHLIST,
2738 	    ("in_pcbrehash: !INP_INHASHLIST"));
2739 
2740 #ifdef INET6
2741 	if (inp->inp_vflag & INP_IPV6)
2742 		hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr);
2743 	else
2744 #endif
2745 	hashkey_faddr = inp->inp_faddr.s_addr;
2746 
2747 	head = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
2748 		inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
2749 
2750 	CK_LIST_REMOVE(inp, inp_hash);
2751 	CK_LIST_INSERT_HEAD(head, inp, inp_hash);
2752 
2753 #ifdef PCBGROUP
2754 	if (m != NULL)
2755 		in_pcbgroup_update_mbuf(inp, m);
2756 	else
2757 		in_pcbgroup_update(inp);
2758 #endif
2759 }
2760 
2761 void
2762 in_pcbrehash(struct inpcb *inp)
2763 {
2764 
2765 	in_pcbrehash_mbuf(inp, NULL);
2766 }
2767 
2768 /*
2769  * Remove PCB from various lists.
2770  */
2771 static void
2772 in_pcbremlists(struct inpcb *inp)
2773 {
2774 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2775 
2776 	INP_WLOCK_ASSERT(inp);
2777 	INP_LIST_WLOCK_ASSERT(pcbinfo);
2778 
2779 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
2780 	if (inp->inp_flags & INP_INHASHLIST) {
2781 		struct inpcbport *phd = inp->inp_phd;
2782 
2783 		INP_HASH_WLOCK(pcbinfo);
2784 
2785 		/* XXX: Only do if SO_REUSEPORT_LB set? */
2786 		in_pcbremlbgrouphash(inp);
2787 
2788 		CK_LIST_REMOVE(inp, inp_hash);
2789 		CK_LIST_REMOVE(inp, inp_portlist);
2790 		if (CK_LIST_FIRST(&phd->phd_pcblist) == NULL) {
2791 			CK_LIST_REMOVE(phd, phd_hash);
2792 			NET_EPOCH_CALL(inpcbport_free, &phd->phd_epoch_ctx);
2793 		}
2794 		INP_HASH_WUNLOCK(pcbinfo);
2795 		inp->inp_flags &= ~INP_INHASHLIST;
2796 	}
2797 	CK_LIST_REMOVE(inp, inp_list);
2798 	pcbinfo->ipi_count--;
2799 #ifdef PCBGROUP
2800 	in_pcbgroup_remove(inp);
2801 #endif
2802 }
2803 
2804 /*
2805  * Check for alternatives when higher level complains
2806  * about service problems.  For now, invalidate cached
2807  * routing information.  If the route was created dynamically
2808  * (by a redirect), time to try a default gateway again.
2809  */
2810 void
2811 in_losing(struct inpcb *inp)
2812 {
2813 
2814 	RO_INVALIDATE_CACHE(&inp->inp_route);
2815 	return;
2816 }
2817 
2818 /*
2819  * A set label operation has occurred at the socket layer, propagate the
2820  * label change into the in_pcb for the socket.
2821  */
2822 void
2823 in_pcbsosetlabel(struct socket *so)
2824 {
2825 #ifdef MAC
2826 	struct inpcb *inp;
2827 
2828 	inp = sotoinpcb(so);
2829 	KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL"));
2830 
2831 	INP_WLOCK(inp);
2832 	SOCK_LOCK(so);
2833 	mac_inpcb_sosetlabel(so, inp);
2834 	SOCK_UNLOCK(so);
2835 	INP_WUNLOCK(inp);
2836 #endif
2837 }
2838 
2839 /*
2840  * ipport_tick runs once per second, determining if random port allocation
2841  * should be continued.  If more than ipport_randomcps ports have been
2842  * allocated in the last second, then we return to sequential port
2843  * allocation. We return to random allocation only once we drop below
2844  * ipport_randomcps for at least ipport_randomtime seconds.
2845  */
2846 static void
2847 ipport_tick(void *xtp)
2848 {
2849 	VNET_ITERATOR_DECL(vnet_iter);
2850 
2851 	VNET_LIST_RLOCK_NOSLEEP();
2852 	VNET_FOREACH(vnet_iter) {
2853 		CURVNET_SET(vnet_iter);	/* XXX appease INVARIANTS here */
2854 		if (V_ipport_tcpallocs <=
2855 		    V_ipport_tcplastcount + V_ipport_randomcps) {
2856 			if (V_ipport_stoprandom > 0)
2857 				V_ipport_stoprandom--;
2858 		} else
2859 			V_ipport_stoprandom = V_ipport_randomtime;
2860 		V_ipport_tcplastcount = V_ipport_tcpallocs;
2861 		CURVNET_RESTORE();
2862 	}
2863 	VNET_LIST_RUNLOCK_NOSLEEP();
2864 	callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL);
2865 }
2866 
2867 static void
2868 ip_fini(void *xtp)
2869 {
2870 
2871 	callout_stop(&ipport_tick_callout);
2872 }
2873 
2874 /*
2875  * The ipport_callout should start running at about the time we attach the
2876  * inet or inet6 domains.
2877  */
2878 static void
2879 ipport_tick_init(const void *unused __unused)
2880 {
2881 
2882 	/* Start ipport_tick. */
2883 	callout_init(&ipport_tick_callout, 1);
2884 	callout_reset(&ipport_tick_callout, 1, ipport_tick, NULL);
2885 	EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL,
2886 		SHUTDOWN_PRI_DEFAULT);
2887 }
2888 SYSINIT(ipport_tick_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_MIDDLE,
2889     ipport_tick_init, NULL);
2890 
2891 void
2892 inp_wlock(struct inpcb *inp)
2893 {
2894 
2895 	INP_WLOCK(inp);
2896 }
2897 
2898 void
2899 inp_wunlock(struct inpcb *inp)
2900 {
2901 
2902 	INP_WUNLOCK(inp);
2903 }
2904 
2905 void
2906 inp_rlock(struct inpcb *inp)
2907 {
2908 
2909 	INP_RLOCK(inp);
2910 }
2911 
2912 void
2913 inp_runlock(struct inpcb *inp)
2914 {
2915 
2916 	INP_RUNLOCK(inp);
2917 }
2918 
2919 #ifdef INVARIANT_SUPPORT
2920 void
2921 inp_lock_assert(struct inpcb *inp)
2922 {
2923 
2924 	INP_WLOCK_ASSERT(inp);
2925 }
2926 
2927 void
2928 inp_unlock_assert(struct inpcb *inp)
2929 {
2930 
2931 	INP_UNLOCK_ASSERT(inp);
2932 }
2933 #endif
2934 
2935 void
2936 inp_apply_all(void (*func)(struct inpcb *, void *), void *arg)
2937 {
2938 	struct inpcb *inp;
2939 
2940 	INP_INFO_WLOCK(&V_tcbinfo);
2941 	CK_LIST_FOREACH(inp, V_tcbinfo.ipi_listhead, inp_list) {
2942 		INP_WLOCK(inp);
2943 		func(inp, arg);
2944 		INP_WUNLOCK(inp);
2945 	}
2946 	INP_INFO_WUNLOCK(&V_tcbinfo);
2947 }
2948 
2949 struct socket *
2950 inp_inpcbtosocket(struct inpcb *inp)
2951 {
2952 
2953 	INP_WLOCK_ASSERT(inp);
2954 	return (inp->inp_socket);
2955 }
2956 
2957 struct tcpcb *
2958 inp_inpcbtotcpcb(struct inpcb *inp)
2959 {
2960 
2961 	INP_WLOCK_ASSERT(inp);
2962 	return ((struct tcpcb *)inp->inp_ppcb);
2963 }
2964 
2965 int
2966 inp_ip_tos_get(const struct inpcb *inp)
2967 {
2968 
2969 	return (inp->inp_ip_tos);
2970 }
2971 
2972 void
2973 inp_ip_tos_set(struct inpcb *inp, int val)
2974 {
2975 
2976 	inp->inp_ip_tos = val;
2977 }
2978 
2979 void
2980 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp,
2981     uint32_t *faddr, uint16_t *fp)
2982 {
2983 
2984 	INP_LOCK_ASSERT(inp);
2985 	*laddr = inp->inp_laddr.s_addr;
2986 	*faddr = inp->inp_faddr.s_addr;
2987 	*lp = inp->inp_lport;
2988 	*fp = inp->inp_fport;
2989 }
2990 
2991 struct inpcb *
2992 so_sotoinpcb(struct socket *so)
2993 {
2994 
2995 	return (sotoinpcb(so));
2996 }
2997 
2998 struct tcpcb *
2999 so_sototcpcb(struct socket *so)
3000 {
3001 
3002 	return (sototcpcb(so));
3003 }
3004 
3005 /*
3006  * Create an external-format (``xinpcb'') structure using the information in
3007  * the kernel-format in_pcb structure pointed to by inp.  This is done to
3008  * reduce the spew of irrelevant information over this interface, to isolate
3009  * user code from changes in the kernel structure, and potentially to provide
3010  * information-hiding if we decide that some of this information should be
3011  * hidden from users.
3012  */
3013 void
3014 in_pcbtoxinpcb(const struct inpcb *inp, struct xinpcb *xi)
3015 {
3016 
3017 	bzero(xi, sizeof(*xi));
3018 	xi->xi_len = sizeof(struct xinpcb);
3019 	if (inp->inp_socket)
3020 		sotoxsocket(inp->inp_socket, &xi->xi_socket);
3021 	bcopy(&inp->inp_inc, &xi->inp_inc, sizeof(struct in_conninfo));
3022 	xi->inp_gencnt = inp->inp_gencnt;
3023 	xi->inp_ppcb = (uintptr_t)inp->inp_ppcb;
3024 	xi->inp_flow = inp->inp_flow;
3025 	xi->inp_flowid = inp->inp_flowid;
3026 	xi->inp_flowtype = inp->inp_flowtype;
3027 	xi->inp_flags = inp->inp_flags;
3028 	xi->inp_flags2 = inp->inp_flags2;
3029 	xi->inp_rss_listen_bucket = inp->inp_rss_listen_bucket;
3030 	xi->in6p_cksum = inp->in6p_cksum;
3031 	xi->in6p_hops = inp->in6p_hops;
3032 	xi->inp_ip_tos = inp->inp_ip_tos;
3033 	xi->inp_vflag = inp->inp_vflag;
3034 	xi->inp_ip_ttl = inp->inp_ip_ttl;
3035 	xi->inp_ip_p = inp->inp_ip_p;
3036 	xi->inp_ip_minttl = inp->inp_ip_minttl;
3037 }
3038 
3039 #ifdef DDB
3040 static void
3041 db_print_indent(int indent)
3042 {
3043 	int i;
3044 
3045 	for (i = 0; i < indent; i++)
3046 		db_printf(" ");
3047 }
3048 
3049 static void
3050 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent)
3051 {
3052 	char faddr_str[48], laddr_str[48];
3053 
3054 	db_print_indent(indent);
3055 	db_printf("%s at %p\n", name, inc);
3056 
3057 	indent += 2;
3058 
3059 #ifdef INET6
3060 	if (inc->inc_flags & INC_ISIPV6) {
3061 		/* IPv6. */
3062 		ip6_sprintf(laddr_str, &inc->inc6_laddr);
3063 		ip6_sprintf(faddr_str, &inc->inc6_faddr);
3064 	} else
3065 #endif
3066 	{
3067 		/* IPv4. */
3068 		inet_ntoa_r(inc->inc_laddr, laddr_str);
3069 		inet_ntoa_r(inc->inc_faddr, faddr_str);
3070 	}
3071 	db_print_indent(indent);
3072 	db_printf("inc_laddr %s   inc_lport %u\n", laddr_str,
3073 	    ntohs(inc->inc_lport));
3074 	db_print_indent(indent);
3075 	db_printf("inc_faddr %s   inc_fport %u\n", faddr_str,
3076 	    ntohs(inc->inc_fport));
3077 }
3078 
3079 static void
3080 db_print_inpflags(int inp_flags)
3081 {
3082 	int comma;
3083 
3084 	comma = 0;
3085 	if (inp_flags & INP_RECVOPTS) {
3086 		db_printf("%sINP_RECVOPTS", comma ? ", " : "");
3087 		comma = 1;
3088 	}
3089 	if (inp_flags & INP_RECVRETOPTS) {
3090 		db_printf("%sINP_RECVRETOPTS", comma ? ", " : "");
3091 		comma = 1;
3092 	}
3093 	if (inp_flags & INP_RECVDSTADDR) {
3094 		db_printf("%sINP_RECVDSTADDR", comma ? ", " : "");
3095 		comma = 1;
3096 	}
3097 	if (inp_flags & INP_ORIGDSTADDR) {
3098 		db_printf("%sINP_ORIGDSTADDR", comma ? ", " : "");
3099 		comma = 1;
3100 	}
3101 	if (inp_flags & INP_HDRINCL) {
3102 		db_printf("%sINP_HDRINCL", comma ? ", " : "");
3103 		comma = 1;
3104 	}
3105 	if (inp_flags & INP_HIGHPORT) {
3106 		db_printf("%sINP_HIGHPORT", comma ? ", " : "");
3107 		comma = 1;
3108 	}
3109 	if (inp_flags & INP_LOWPORT) {
3110 		db_printf("%sINP_LOWPORT", comma ? ", " : "");
3111 		comma = 1;
3112 	}
3113 	if (inp_flags & INP_ANONPORT) {
3114 		db_printf("%sINP_ANONPORT", comma ? ", " : "");
3115 		comma = 1;
3116 	}
3117 	if (inp_flags & INP_RECVIF) {
3118 		db_printf("%sINP_RECVIF", comma ? ", " : "");
3119 		comma = 1;
3120 	}
3121 	if (inp_flags & INP_MTUDISC) {
3122 		db_printf("%sINP_MTUDISC", comma ? ", " : "");
3123 		comma = 1;
3124 	}
3125 	if (inp_flags & INP_RECVTTL) {
3126 		db_printf("%sINP_RECVTTL", comma ? ", " : "");
3127 		comma = 1;
3128 	}
3129 	if (inp_flags & INP_DONTFRAG) {
3130 		db_printf("%sINP_DONTFRAG", comma ? ", " : "");
3131 		comma = 1;
3132 	}
3133 	if (inp_flags & INP_RECVTOS) {
3134 		db_printf("%sINP_RECVTOS", comma ? ", " : "");
3135 		comma = 1;
3136 	}
3137 	if (inp_flags & IN6P_IPV6_V6ONLY) {
3138 		db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : "");
3139 		comma = 1;
3140 	}
3141 	if (inp_flags & IN6P_PKTINFO) {
3142 		db_printf("%sIN6P_PKTINFO", comma ? ", " : "");
3143 		comma = 1;
3144 	}
3145 	if (inp_flags & IN6P_HOPLIMIT) {
3146 		db_printf("%sIN6P_HOPLIMIT", comma ? ", " : "");
3147 		comma = 1;
3148 	}
3149 	if (inp_flags & IN6P_HOPOPTS) {
3150 		db_printf("%sIN6P_HOPOPTS", comma ? ", " : "");
3151 		comma = 1;
3152 	}
3153 	if (inp_flags & IN6P_DSTOPTS) {
3154 		db_printf("%sIN6P_DSTOPTS", comma ? ", " : "");
3155 		comma = 1;
3156 	}
3157 	if (inp_flags & IN6P_RTHDR) {
3158 		db_printf("%sIN6P_RTHDR", comma ? ", " : "");
3159 		comma = 1;
3160 	}
3161 	if (inp_flags & IN6P_RTHDRDSTOPTS) {
3162 		db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : "");
3163 		comma = 1;
3164 	}
3165 	if (inp_flags & IN6P_TCLASS) {
3166 		db_printf("%sIN6P_TCLASS", comma ? ", " : "");
3167 		comma = 1;
3168 	}
3169 	if (inp_flags & IN6P_AUTOFLOWLABEL) {
3170 		db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : "");
3171 		comma = 1;
3172 	}
3173 	if (inp_flags & INP_TIMEWAIT) {
3174 		db_printf("%sINP_TIMEWAIT", comma ? ", " : "");
3175 		comma  = 1;
3176 	}
3177 	if (inp_flags & INP_ONESBCAST) {
3178 		db_printf("%sINP_ONESBCAST", comma ? ", " : "");
3179 		comma  = 1;
3180 	}
3181 	if (inp_flags & INP_DROPPED) {
3182 		db_printf("%sINP_DROPPED", comma ? ", " : "");
3183 		comma  = 1;
3184 	}
3185 	if (inp_flags & INP_SOCKREF) {
3186 		db_printf("%sINP_SOCKREF", comma ? ", " : "");
3187 		comma  = 1;
3188 	}
3189 	if (inp_flags & IN6P_RFC2292) {
3190 		db_printf("%sIN6P_RFC2292", comma ? ", " : "");
3191 		comma = 1;
3192 	}
3193 	if (inp_flags & IN6P_MTU) {
3194 		db_printf("IN6P_MTU%s", comma ? ", " : "");
3195 		comma = 1;
3196 	}
3197 }
3198 
3199 static void
3200 db_print_inpvflag(u_char inp_vflag)
3201 {
3202 	int comma;
3203 
3204 	comma = 0;
3205 	if (inp_vflag & INP_IPV4) {
3206 		db_printf("%sINP_IPV4", comma ? ", " : "");
3207 		comma  = 1;
3208 	}
3209 	if (inp_vflag & INP_IPV6) {
3210 		db_printf("%sINP_IPV6", comma ? ", " : "");
3211 		comma  = 1;
3212 	}
3213 	if (inp_vflag & INP_IPV6PROTO) {
3214 		db_printf("%sINP_IPV6PROTO", comma ? ", " : "");
3215 		comma  = 1;
3216 	}
3217 }
3218 
3219 static void
3220 db_print_inpcb(struct inpcb *inp, const char *name, int indent)
3221 {
3222 
3223 	db_print_indent(indent);
3224 	db_printf("%s at %p\n", name, inp);
3225 
3226 	indent += 2;
3227 
3228 	db_print_indent(indent);
3229 	db_printf("inp_flow: 0x%x\n", inp->inp_flow);
3230 
3231 	db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent);
3232 
3233 	db_print_indent(indent);
3234 	db_printf("inp_ppcb: %p   inp_pcbinfo: %p   inp_socket: %p\n",
3235 	    inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket);
3236 
3237 	db_print_indent(indent);
3238 	db_printf("inp_label: %p   inp_flags: 0x%x (",
3239 	   inp->inp_label, inp->inp_flags);
3240 	db_print_inpflags(inp->inp_flags);
3241 	db_printf(")\n");
3242 
3243 	db_print_indent(indent);
3244 	db_printf("inp_sp: %p   inp_vflag: 0x%x (", inp->inp_sp,
3245 	    inp->inp_vflag);
3246 	db_print_inpvflag(inp->inp_vflag);
3247 	db_printf(")\n");
3248 
3249 	db_print_indent(indent);
3250 	db_printf("inp_ip_ttl: %d   inp_ip_p: %d   inp_ip_minttl: %d\n",
3251 	    inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl);
3252 
3253 	db_print_indent(indent);
3254 #ifdef INET6
3255 	if (inp->inp_vflag & INP_IPV6) {
3256 		db_printf("in6p_options: %p   in6p_outputopts: %p   "
3257 		    "in6p_moptions: %p\n", inp->in6p_options,
3258 		    inp->in6p_outputopts, inp->in6p_moptions);
3259 		db_printf("in6p_icmp6filt: %p   in6p_cksum %d   "
3260 		    "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum,
3261 		    inp->in6p_hops);
3262 	} else
3263 #endif
3264 	{
3265 		db_printf("inp_ip_tos: %d   inp_ip_options: %p   "
3266 		    "inp_ip_moptions: %p\n", inp->inp_ip_tos,
3267 		    inp->inp_options, inp->inp_moptions);
3268 	}
3269 
3270 	db_print_indent(indent);
3271 	db_printf("inp_phd: %p   inp_gencnt: %ju\n", inp->inp_phd,
3272 	    (uintmax_t)inp->inp_gencnt);
3273 }
3274 
3275 DB_SHOW_COMMAND(inpcb, db_show_inpcb)
3276 {
3277 	struct inpcb *inp;
3278 
3279 	if (!have_addr) {
3280 		db_printf("usage: show inpcb <addr>\n");
3281 		return;
3282 	}
3283 	inp = (struct inpcb *)addr;
3284 
3285 	db_print_inpcb(inp, "inpcb", 0);
3286 }
3287 #endif /* DDB */
3288 
3289 #ifdef RATELIMIT
3290 /*
3291  * Modify TX rate limit based on the existing "inp->inp_snd_tag",
3292  * if any.
3293  */
3294 int
3295 in_pcbmodify_txrtlmt(struct inpcb *inp, uint32_t max_pacing_rate)
3296 {
3297 	union if_snd_tag_modify_params params = {
3298 		.rate_limit.max_rate = max_pacing_rate,
3299 		.rate_limit.flags = M_NOWAIT,
3300 	};
3301 	struct m_snd_tag *mst;
3302 	struct ifnet *ifp;
3303 	int error;
3304 
3305 	mst = inp->inp_snd_tag;
3306 	if (mst == NULL)
3307 		return (EINVAL);
3308 
3309 	ifp = mst->ifp;
3310 	if (ifp == NULL)
3311 		return (EINVAL);
3312 
3313 	if (ifp->if_snd_tag_modify == NULL) {
3314 		error = EOPNOTSUPP;
3315 	} else {
3316 		error = ifp->if_snd_tag_modify(mst, &params);
3317 	}
3318 	return (error);
3319 }
3320 
3321 /*
3322  * Query existing TX rate limit based on the existing
3323  * "inp->inp_snd_tag", if any.
3324  */
3325 int
3326 in_pcbquery_txrtlmt(struct inpcb *inp, uint32_t *p_max_pacing_rate)
3327 {
3328 	union if_snd_tag_query_params params = { };
3329 	struct m_snd_tag *mst;
3330 	struct ifnet *ifp;
3331 	int error;
3332 
3333 	mst = inp->inp_snd_tag;
3334 	if (mst == NULL)
3335 		return (EINVAL);
3336 
3337 	ifp = mst->ifp;
3338 	if (ifp == NULL)
3339 		return (EINVAL);
3340 
3341 	if (ifp->if_snd_tag_query == NULL) {
3342 		error = EOPNOTSUPP;
3343 	} else {
3344 		error = ifp->if_snd_tag_query(mst, &params);
3345 		if (error == 0 &&  p_max_pacing_rate != NULL)
3346 			*p_max_pacing_rate = params.rate_limit.max_rate;
3347 	}
3348 	return (error);
3349 }
3350 
3351 /*
3352  * Query existing TX queue level based on the existing
3353  * "inp->inp_snd_tag", if any.
3354  */
3355 int
3356 in_pcbquery_txrlevel(struct inpcb *inp, uint32_t *p_txqueue_level)
3357 {
3358 	union if_snd_tag_query_params params = { };
3359 	struct m_snd_tag *mst;
3360 	struct ifnet *ifp;
3361 	int error;
3362 
3363 	mst = inp->inp_snd_tag;
3364 	if (mst == NULL)
3365 		return (EINVAL);
3366 
3367 	ifp = mst->ifp;
3368 	if (ifp == NULL)
3369 		return (EINVAL);
3370 
3371 	if (ifp->if_snd_tag_query == NULL)
3372 		return (EOPNOTSUPP);
3373 
3374 	error = ifp->if_snd_tag_query(mst, &params);
3375 	if (error == 0 &&  p_txqueue_level != NULL)
3376 		*p_txqueue_level = params.rate_limit.queue_level;
3377 	return (error);
3378 }
3379 
3380 /*
3381  * Allocate a new TX rate limit send tag from the network interface
3382  * given by the "ifp" argument and save it in "inp->inp_snd_tag":
3383  */
3384 int
3385 in_pcbattach_txrtlmt(struct inpcb *inp, struct ifnet *ifp,
3386     uint32_t flowtype, uint32_t flowid, uint32_t max_pacing_rate, struct m_snd_tag **st)
3387 
3388 {
3389 	union if_snd_tag_alloc_params params = {
3390 		.rate_limit.hdr.type = (max_pacing_rate == -1U) ?
3391 		    IF_SND_TAG_TYPE_UNLIMITED : IF_SND_TAG_TYPE_RATE_LIMIT,
3392 		.rate_limit.hdr.flowid = flowid,
3393 		.rate_limit.hdr.flowtype = flowtype,
3394 		.rate_limit.hdr.numa_domain = inp->inp_numa_domain,
3395 		.rate_limit.max_rate = max_pacing_rate,
3396 		.rate_limit.flags = M_NOWAIT,
3397 	};
3398 	int error;
3399 
3400 	INP_WLOCK_ASSERT(inp);
3401 
3402 	if (*st != NULL)
3403 		return (EINVAL);
3404 
3405 	error = m_snd_tag_alloc(ifp, &params, st);
3406 #ifdef INET
3407 	if (error == 0) {
3408 		counter_u64_add(rate_limit_set_ok, 1);
3409 		counter_u64_add(rate_limit_active, 1);
3410 	} else if (error != EOPNOTSUPP)
3411 		  counter_u64_add(rate_limit_alloc_fail, 1);
3412 #endif
3413 	return (error);
3414 }
3415 
3416 void
3417 in_pcbdetach_tag(struct m_snd_tag *mst)
3418 {
3419 
3420 	m_snd_tag_rele(mst);
3421 #ifdef INET
3422 	counter_u64_add(rate_limit_active, -1);
3423 #endif
3424 }
3425 
3426 /*
3427  * Free an existing TX rate limit tag based on the "inp->inp_snd_tag",
3428  * if any:
3429  */
3430 void
3431 in_pcbdetach_txrtlmt(struct inpcb *inp)
3432 {
3433 	struct m_snd_tag *mst;
3434 
3435 	INP_WLOCK_ASSERT(inp);
3436 
3437 	mst = inp->inp_snd_tag;
3438 	inp->inp_snd_tag = NULL;
3439 
3440 	if (mst == NULL)
3441 		return;
3442 
3443 	m_snd_tag_rele(mst);
3444 }
3445 
3446 int
3447 in_pcboutput_txrtlmt_locked(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb, uint32_t max_pacing_rate)
3448 {
3449 	int error;
3450 
3451 	/*
3452 	 * If the existing send tag is for the wrong interface due to
3453 	 * a route change, first drop the existing tag.  Set the
3454 	 * CHANGED flag so that we will keep trying to allocate a new
3455 	 * tag if we fail to allocate one this time.
3456 	 */
3457 	if (inp->inp_snd_tag != NULL && inp->inp_snd_tag->ifp != ifp) {
3458 		in_pcbdetach_txrtlmt(inp);
3459 		inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED;
3460 	}
3461 
3462 	/*
3463 	 * NOTE: When attaching to a network interface a reference is
3464 	 * made to ensure the network interface doesn't go away until
3465 	 * all ratelimit connections are gone. The network interface
3466 	 * pointers compared below represent valid network interfaces,
3467 	 * except when comparing towards NULL.
3468 	 */
3469 	if (max_pacing_rate == 0 && inp->inp_snd_tag == NULL) {
3470 		error = 0;
3471 	} else if (!(ifp->if_capenable & IFCAP_TXRTLMT)) {
3472 		if (inp->inp_snd_tag != NULL)
3473 			in_pcbdetach_txrtlmt(inp);
3474 		error = 0;
3475 	} else if (inp->inp_snd_tag == NULL) {
3476 		/*
3477 		 * In order to utilize packet pacing with RSS, we need
3478 		 * to wait until there is a valid RSS hash before we
3479 		 * can proceed:
3480 		 */
3481 		if (M_HASHTYPE_GET(mb) == M_HASHTYPE_NONE) {
3482 			error = EAGAIN;
3483 		} else {
3484 			error = in_pcbattach_txrtlmt(inp, ifp, M_HASHTYPE_GET(mb),
3485 			    mb->m_pkthdr.flowid, max_pacing_rate, &inp->inp_snd_tag);
3486 		}
3487 	} else {
3488 		error = in_pcbmodify_txrtlmt(inp, max_pacing_rate);
3489 	}
3490 	if (error == 0 || error == EOPNOTSUPP)
3491 		inp->inp_flags2 &= ~INP_RATE_LIMIT_CHANGED;
3492 
3493 	return (error);
3494 }
3495 
3496 /*
3497  * This function should be called when the INP_RATE_LIMIT_CHANGED flag
3498  * is set in the fast path and will attach/detach/modify the TX rate
3499  * limit send tag based on the socket's so_max_pacing_rate value.
3500  */
3501 void
3502 in_pcboutput_txrtlmt(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb)
3503 {
3504 	struct socket *socket;
3505 	uint32_t max_pacing_rate;
3506 	bool did_upgrade;
3507 	int error;
3508 
3509 	if (inp == NULL)
3510 		return;
3511 
3512 	socket = inp->inp_socket;
3513 	if (socket == NULL)
3514 		return;
3515 
3516 	if (!INP_WLOCKED(inp)) {
3517 		/*
3518 		 * NOTE: If the write locking fails, we need to bail
3519 		 * out and use the non-ratelimited ring for the
3520 		 * transmit until there is a new chance to get the
3521 		 * write lock.
3522 		 */
3523 		if (!INP_TRY_UPGRADE(inp))
3524 			return;
3525 		did_upgrade = 1;
3526 	} else {
3527 		did_upgrade = 0;
3528 	}
3529 
3530 	/*
3531 	 * NOTE: The so_max_pacing_rate value is read unlocked,
3532 	 * because atomic updates are not required since the variable
3533 	 * is checked at every mbuf we send. It is assumed that the
3534 	 * variable read itself will be atomic.
3535 	 */
3536 	max_pacing_rate = socket->so_max_pacing_rate;
3537 
3538 	error = in_pcboutput_txrtlmt_locked(inp, ifp, mb, max_pacing_rate);
3539 
3540 	if (did_upgrade)
3541 		INP_DOWNGRADE(inp);
3542 }
3543 
3544 /*
3545  * Track route changes for TX rate limiting.
3546  */
3547 void
3548 in_pcboutput_eagain(struct inpcb *inp)
3549 {
3550 	bool did_upgrade;
3551 
3552 	if (inp == NULL)
3553 		return;
3554 
3555 	if (inp->inp_snd_tag == NULL)
3556 		return;
3557 
3558 	if (!INP_WLOCKED(inp)) {
3559 		/*
3560 		 * NOTE: If the write locking fails, we need to bail
3561 		 * out and use the non-ratelimited ring for the
3562 		 * transmit until there is a new chance to get the
3563 		 * write lock.
3564 		 */
3565 		if (!INP_TRY_UPGRADE(inp))
3566 			return;
3567 		did_upgrade = 1;
3568 	} else {
3569 		did_upgrade = 0;
3570 	}
3571 
3572 	/* detach rate limiting */
3573 	in_pcbdetach_txrtlmt(inp);
3574 
3575 	/* make sure new mbuf send tag allocation is made */
3576 	inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED;
3577 
3578 	if (did_upgrade)
3579 		INP_DOWNGRADE(inp);
3580 }
3581 
3582 #ifdef INET
3583 static void
3584 rl_init(void *st)
3585 {
3586 	rate_limit_active = counter_u64_alloc(M_WAITOK);
3587 	rate_limit_alloc_fail = counter_u64_alloc(M_WAITOK);
3588 	rate_limit_set_ok = counter_u64_alloc(M_WAITOK);
3589 }
3590 
3591 SYSINIT(rl, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, rl_init, NULL);
3592 #endif
3593 #endif /* RATELIMIT */
3594