1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1991, 1993, 1995 5 * The Regents of the University of California. 6 * Copyright (c) 2007-2009 Robert N. M. Watson 7 * Copyright (c) 2010-2011 Juniper Networks, Inc. 8 * All rights reserved. 9 * 10 * Portions of this software were developed by Robert N. M. Watson under 11 * contract to Juniper Networks, Inc. 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 3. Neither the name of the University nor the names of its contributors 22 * may be used to endorse or promote products derived from this software 23 * without specific prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 35 * SUCH DAMAGE. 36 * 37 * @(#)in_pcb.c 8.4 (Berkeley) 5/24/95 38 */ 39 40 #include <sys/cdefs.h> 41 __FBSDID("$FreeBSD$"); 42 43 #include "opt_ddb.h" 44 #include "opt_ipsec.h" 45 #include "opt_inet.h" 46 #include "opt_inet6.h" 47 #include "opt_ratelimit.h" 48 #include "opt_pcbgroup.h" 49 #include "opt_rss.h" 50 51 #include <sys/param.h> 52 #include <sys/systm.h> 53 #include <sys/lock.h> 54 #include <sys/malloc.h> 55 #include <sys/mbuf.h> 56 #include <sys/callout.h> 57 #include <sys/eventhandler.h> 58 #include <sys/domain.h> 59 #include <sys/protosw.h> 60 #include <sys/rmlock.h> 61 #include <sys/smp.h> 62 #include <sys/socket.h> 63 #include <sys/socketvar.h> 64 #include <sys/sockio.h> 65 #include <sys/priv.h> 66 #include <sys/proc.h> 67 #include <sys/refcount.h> 68 #include <sys/jail.h> 69 #include <sys/kernel.h> 70 #include <sys/sysctl.h> 71 72 #ifdef DDB 73 #include <ddb/ddb.h> 74 #endif 75 76 #include <vm/uma.h> 77 78 #include <net/if.h> 79 #include <net/if_var.h> 80 #include <net/if_types.h> 81 #include <net/if_llatbl.h> 82 #include <net/route.h> 83 #include <net/rss_config.h> 84 #include <net/vnet.h> 85 86 #if defined(INET) || defined(INET6) 87 #include <netinet/in.h> 88 #include <netinet/in_pcb.h> 89 #ifdef INET 90 #include <netinet/in_var.h> 91 #endif 92 #include <netinet/ip_var.h> 93 #include <netinet/tcp_var.h> 94 #ifdef TCPHPTS 95 #include <netinet/tcp_hpts.h> 96 #endif 97 #include <netinet/udp.h> 98 #include <netinet/udp_var.h> 99 #ifdef INET6 100 #include <netinet/ip6.h> 101 #include <netinet6/in6_pcb.h> 102 #include <netinet6/in6_var.h> 103 #include <netinet6/ip6_var.h> 104 #endif /* INET6 */ 105 #endif 106 107 #include <netipsec/ipsec_support.h> 108 109 #include <security/mac/mac_framework.h> 110 111 #define INPCBLBGROUP_SIZMIN 8 112 #define INPCBLBGROUP_SIZMAX 256 113 114 static struct callout ipport_tick_callout; 115 116 /* 117 * These configure the range of local port addresses assigned to 118 * "unspecified" outgoing connections/packets/whatever. 119 */ 120 VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1; /* 1023 */ 121 VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART; /* 600 */ 122 VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST; /* 10000 */ 123 VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST; /* 65535 */ 124 VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO; /* 49152 */ 125 VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO; /* 65535 */ 126 127 /* 128 * Reserved ports accessible only to root. There are significant 129 * security considerations that must be accounted for when changing these, 130 * but the security benefits can be great. Please be careful. 131 */ 132 VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1; /* 1023 */ 133 VNET_DEFINE(int, ipport_reservedlow); 134 135 /* Variables dealing with random ephemeral port allocation. */ 136 VNET_DEFINE(int, ipport_randomized) = 1; /* user controlled via sysctl */ 137 VNET_DEFINE(int, ipport_randomcps) = 10; /* user controlled via sysctl */ 138 VNET_DEFINE(int, ipport_randomtime) = 45; /* user controlled via sysctl */ 139 VNET_DEFINE(int, ipport_stoprandom); /* toggled by ipport_tick */ 140 VNET_DEFINE(int, ipport_tcpallocs); 141 VNET_DEFINE_STATIC(int, ipport_tcplastcount); 142 143 #define V_ipport_tcplastcount VNET(ipport_tcplastcount) 144 145 static void in_pcbremlists(struct inpcb *inp); 146 #ifdef INET 147 static struct inpcb *in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, 148 struct in_addr faddr, u_int fport_arg, 149 struct in_addr laddr, u_int lport_arg, 150 int lookupflags, struct ifnet *ifp); 151 152 #define RANGECHK(var, min, max) \ 153 if ((var) < (min)) { (var) = (min); } \ 154 else if ((var) > (max)) { (var) = (max); } 155 156 static int 157 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS) 158 { 159 int error; 160 161 error = sysctl_handle_int(oidp, arg1, arg2, req); 162 if (error == 0) { 163 RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1); 164 RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1); 165 RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX); 166 RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX); 167 RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX); 168 RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX); 169 } 170 return (error); 171 } 172 173 #undef RANGECHK 174 175 static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, CTLFLAG_RW, 0, 176 "IP Ports"); 177 178 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst, 179 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 180 &VNET_NAME(ipport_lowfirstauto), 0, &sysctl_net_ipport_check, "I", ""); 181 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast, 182 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 183 &VNET_NAME(ipport_lowlastauto), 0, &sysctl_net_ipport_check, "I", ""); 184 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first, 185 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 186 &VNET_NAME(ipport_firstauto), 0, &sysctl_net_ipport_check, "I", ""); 187 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last, 188 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 189 &VNET_NAME(ipport_lastauto), 0, &sysctl_net_ipport_check, "I", ""); 190 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst, 191 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 192 &VNET_NAME(ipport_hifirstauto), 0, &sysctl_net_ipport_check, "I", ""); 193 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast, 194 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 195 &VNET_NAME(ipport_hilastauto), 0, &sysctl_net_ipport_check, "I", ""); 196 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh, 197 CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE, 198 &VNET_NAME(ipport_reservedhigh), 0, ""); 199 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow, 200 CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, ""); 201 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized, 202 CTLFLAG_VNET | CTLFLAG_RW, 203 &VNET_NAME(ipport_randomized), 0, "Enable random port allocation"); 204 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomcps, 205 CTLFLAG_VNET | CTLFLAG_RW, 206 &VNET_NAME(ipport_randomcps), 0, "Maximum number of random port " 207 "allocations before switching to a sequental one"); 208 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomtime, 209 CTLFLAG_VNET | CTLFLAG_RW, 210 &VNET_NAME(ipport_randomtime), 0, 211 "Minimum time to keep sequental port " 212 "allocation before switching to a random one"); 213 214 #ifdef RATELIMIT 215 counter_u64_t rate_limit_active; 216 counter_u64_t rate_limit_alloc_fail; 217 counter_u64_t rate_limit_set_ok; 218 219 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, rl, CTLFLAG_RD, 0, 220 "IP Rate Limiting"); 221 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, active, CTLFLAG_RD, 222 &rate_limit_active, "Active rate limited connections"); 223 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, alloc_fail, CTLFLAG_RD, 224 &rate_limit_alloc_fail, "Rate limited connection failures"); 225 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, set_ok, CTLFLAG_RD, 226 &rate_limit_set_ok, "Rate limited setting succeeded"); 227 #endif /* RATELIMIT */ 228 229 #endif /* INET */ 230 231 /* 232 * in_pcb.c: manage the Protocol Control Blocks. 233 * 234 * NOTE: It is assumed that most of these functions will be called with 235 * the pcbinfo lock held, and often, the inpcb lock held, as these utility 236 * functions often modify hash chains or addresses in pcbs. 237 */ 238 239 static struct inpcblbgroup * 240 in_pcblbgroup_alloc(struct inpcblbgrouphead *hdr, u_char vflag, 241 uint16_t port, const union in_dependaddr *addr, int size) 242 { 243 struct inpcblbgroup *grp; 244 size_t bytes; 245 246 bytes = __offsetof(struct inpcblbgroup, il_inp[size]); 247 grp = malloc(bytes, M_PCB, M_ZERO | M_NOWAIT); 248 if (!grp) 249 return (NULL); 250 grp->il_vflag = vflag; 251 grp->il_lport = port; 252 grp->il_dependladdr = *addr; 253 grp->il_inpsiz = size; 254 CK_LIST_INSERT_HEAD(hdr, grp, il_list); 255 return (grp); 256 } 257 258 static void 259 in_pcblbgroup_free_deferred(epoch_context_t ctx) 260 { 261 struct inpcblbgroup *grp; 262 263 grp = __containerof(ctx, struct inpcblbgroup, il_epoch_ctx); 264 free(grp, M_PCB); 265 } 266 267 static void 268 in_pcblbgroup_free(struct inpcblbgroup *grp) 269 { 270 271 CK_LIST_REMOVE(grp, il_list); 272 epoch_call(net_epoch_preempt, &grp->il_epoch_ctx, 273 in_pcblbgroup_free_deferred); 274 } 275 276 static struct inpcblbgroup * 277 in_pcblbgroup_resize(struct inpcblbgrouphead *hdr, 278 struct inpcblbgroup *old_grp, int size) 279 { 280 struct inpcblbgroup *grp; 281 int i; 282 283 grp = in_pcblbgroup_alloc(hdr, old_grp->il_vflag, 284 old_grp->il_lport, &old_grp->il_dependladdr, size); 285 if (grp == NULL) 286 return (NULL); 287 288 KASSERT(old_grp->il_inpcnt < grp->il_inpsiz, 289 ("invalid new local group size %d and old local group count %d", 290 grp->il_inpsiz, old_grp->il_inpcnt)); 291 292 for (i = 0; i < old_grp->il_inpcnt; ++i) 293 grp->il_inp[i] = old_grp->il_inp[i]; 294 grp->il_inpcnt = old_grp->il_inpcnt; 295 in_pcblbgroup_free(old_grp); 296 return (grp); 297 } 298 299 /* 300 * PCB at index 'i' is removed from the group. Pull up the ones below il_inp[i] 301 * and shrink group if possible. 302 */ 303 static void 304 in_pcblbgroup_reorder(struct inpcblbgrouphead *hdr, struct inpcblbgroup **grpp, 305 int i) 306 { 307 struct inpcblbgroup *grp, *new_grp; 308 309 grp = *grpp; 310 for (; i + 1 < grp->il_inpcnt; ++i) 311 grp->il_inp[i] = grp->il_inp[i + 1]; 312 grp->il_inpcnt--; 313 314 if (grp->il_inpsiz > INPCBLBGROUP_SIZMIN && 315 grp->il_inpcnt <= grp->il_inpsiz / 4) { 316 /* Shrink this group. */ 317 new_grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz / 2); 318 if (new_grp != NULL) 319 *grpp = new_grp; 320 } 321 } 322 323 /* 324 * Add PCB to load balance group for SO_REUSEPORT_LB option. 325 */ 326 static int 327 in_pcbinslbgrouphash(struct inpcb *inp) 328 { 329 const static struct timeval interval = { 60, 0 }; 330 static struct timeval lastprint; 331 struct inpcbinfo *pcbinfo; 332 struct inpcblbgrouphead *hdr; 333 struct inpcblbgroup *grp; 334 uint32_t idx; 335 336 pcbinfo = inp->inp_pcbinfo; 337 338 INP_WLOCK_ASSERT(inp); 339 INP_HASH_WLOCK_ASSERT(pcbinfo); 340 341 /* 342 * Don't allow jailed socket to join local group. 343 */ 344 if (inp->inp_socket != NULL && jailed(inp->inp_socket->so_cred)) 345 return (0); 346 347 #ifdef INET6 348 /* 349 * Don't allow IPv4 mapped INET6 wild socket. 350 */ 351 if ((inp->inp_vflag & INP_IPV4) && 352 inp->inp_laddr.s_addr == INADDR_ANY && 353 INP_CHECK_SOCKAF(inp->inp_socket, AF_INET6)) { 354 return (0); 355 } 356 #endif 357 358 idx = INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask); 359 hdr = &pcbinfo->ipi_lbgrouphashbase[idx]; 360 CK_LIST_FOREACH(grp, hdr, il_list) { 361 if (grp->il_vflag == inp->inp_vflag && 362 grp->il_lport == inp->inp_lport && 363 memcmp(&grp->il_dependladdr, 364 &inp->inp_inc.inc_ie.ie_dependladdr, 365 sizeof(grp->il_dependladdr)) == 0) 366 break; 367 } 368 if (grp == NULL) { 369 /* Create new load balance group. */ 370 grp = in_pcblbgroup_alloc(hdr, inp->inp_vflag, 371 inp->inp_lport, &inp->inp_inc.inc_ie.ie_dependladdr, 372 INPCBLBGROUP_SIZMIN); 373 if (grp == NULL) 374 return (ENOBUFS); 375 } else if (grp->il_inpcnt == grp->il_inpsiz) { 376 if (grp->il_inpsiz >= INPCBLBGROUP_SIZMAX) { 377 if (ratecheck(&lastprint, &interval)) 378 printf("lb group port %d, limit reached\n", 379 ntohs(grp->il_lport)); 380 return (0); 381 } 382 383 /* Expand this local group. */ 384 grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz * 2); 385 if (grp == NULL) 386 return (ENOBUFS); 387 } 388 389 KASSERT(grp->il_inpcnt < grp->il_inpsiz, 390 ("invalid local group size %d and count %d", grp->il_inpsiz, 391 grp->il_inpcnt)); 392 393 grp->il_inp[grp->il_inpcnt] = inp; 394 grp->il_inpcnt++; 395 return (0); 396 } 397 398 /* 399 * Remove PCB from load balance group. 400 */ 401 static void 402 in_pcbremlbgrouphash(struct inpcb *inp) 403 { 404 struct inpcbinfo *pcbinfo; 405 struct inpcblbgrouphead *hdr; 406 struct inpcblbgroup *grp; 407 int i; 408 409 pcbinfo = inp->inp_pcbinfo; 410 411 INP_WLOCK_ASSERT(inp); 412 INP_HASH_WLOCK_ASSERT(pcbinfo); 413 414 hdr = &pcbinfo->ipi_lbgrouphashbase[ 415 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask)]; 416 CK_LIST_FOREACH(grp, hdr, il_list) { 417 for (i = 0; i < grp->il_inpcnt; ++i) { 418 if (grp->il_inp[i] != inp) 419 continue; 420 421 if (grp->il_inpcnt == 1) { 422 /* We are the last, free this local group. */ 423 in_pcblbgroup_free(grp); 424 } else { 425 /* Pull up inpcbs, shrink group if possible. */ 426 in_pcblbgroup_reorder(hdr, &grp, i); 427 } 428 return; 429 } 430 } 431 } 432 433 /* 434 * Different protocols initialize their inpcbs differently - giving 435 * different name to the lock. But they all are disposed the same. 436 */ 437 static void 438 inpcb_fini(void *mem, int size) 439 { 440 struct inpcb *inp = mem; 441 442 INP_LOCK_DESTROY(inp); 443 } 444 445 /* 446 * Initialize an inpcbinfo -- we should be able to reduce the number of 447 * arguments in time. 448 */ 449 void 450 in_pcbinfo_init(struct inpcbinfo *pcbinfo, const char *name, 451 struct inpcbhead *listhead, int hash_nelements, int porthash_nelements, 452 char *inpcbzone_name, uma_init inpcbzone_init, u_int hashfields) 453 { 454 455 porthash_nelements = imin(porthash_nelements, IPPORT_MAX + 1); 456 457 INP_INFO_LOCK_INIT(pcbinfo, name); 458 INP_HASH_LOCK_INIT(pcbinfo, "pcbinfohash"); /* XXXRW: argument? */ 459 INP_LIST_LOCK_INIT(pcbinfo, "pcbinfolist"); 460 #ifdef VIMAGE 461 pcbinfo->ipi_vnet = curvnet; 462 #endif 463 pcbinfo->ipi_listhead = listhead; 464 CK_LIST_INIT(pcbinfo->ipi_listhead); 465 pcbinfo->ipi_count = 0; 466 pcbinfo->ipi_hashbase = hashinit(hash_nelements, M_PCB, 467 &pcbinfo->ipi_hashmask); 468 pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB, 469 &pcbinfo->ipi_porthashmask); 470 pcbinfo->ipi_lbgrouphashbase = hashinit(porthash_nelements, M_PCB, 471 &pcbinfo->ipi_lbgrouphashmask); 472 #ifdef PCBGROUP 473 in_pcbgroup_init(pcbinfo, hashfields, hash_nelements); 474 #endif 475 pcbinfo->ipi_zone = uma_zcreate(inpcbzone_name, sizeof(struct inpcb), 476 NULL, NULL, inpcbzone_init, inpcb_fini, UMA_ALIGN_PTR, 0); 477 uma_zone_set_max(pcbinfo->ipi_zone, maxsockets); 478 uma_zone_set_warning(pcbinfo->ipi_zone, 479 "kern.ipc.maxsockets limit reached"); 480 } 481 482 /* 483 * Destroy an inpcbinfo. 484 */ 485 void 486 in_pcbinfo_destroy(struct inpcbinfo *pcbinfo) 487 { 488 489 KASSERT(pcbinfo->ipi_count == 0, 490 ("%s: ipi_count = %u", __func__, pcbinfo->ipi_count)); 491 492 hashdestroy(pcbinfo->ipi_hashbase, M_PCB, pcbinfo->ipi_hashmask); 493 hashdestroy(pcbinfo->ipi_porthashbase, M_PCB, 494 pcbinfo->ipi_porthashmask); 495 hashdestroy(pcbinfo->ipi_lbgrouphashbase, M_PCB, 496 pcbinfo->ipi_lbgrouphashmask); 497 #ifdef PCBGROUP 498 in_pcbgroup_destroy(pcbinfo); 499 #endif 500 uma_zdestroy(pcbinfo->ipi_zone); 501 INP_LIST_LOCK_DESTROY(pcbinfo); 502 INP_HASH_LOCK_DESTROY(pcbinfo); 503 INP_INFO_LOCK_DESTROY(pcbinfo); 504 } 505 506 /* 507 * Allocate a PCB and associate it with the socket. 508 * On success return with the PCB locked. 509 */ 510 int 511 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo) 512 { 513 struct inpcb *inp; 514 int error; 515 516 #ifdef INVARIANTS 517 if (pcbinfo == &V_tcbinfo) { 518 NET_EPOCH_ASSERT(); 519 } else { 520 INP_INFO_WLOCK_ASSERT(pcbinfo); 521 } 522 #endif 523 524 error = 0; 525 inp = uma_zalloc(pcbinfo->ipi_zone, M_NOWAIT); 526 if (inp == NULL) 527 return (ENOBUFS); 528 bzero(&inp->inp_start_zero, inp_zero_size); 529 #ifdef NUMA 530 inp->inp_numa_domain = M_NODOM; 531 #endif 532 inp->inp_pcbinfo = pcbinfo; 533 inp->inp_socket = so; 534 inp->inp_cred = crhold(so->so_cred); 535 inp->inp_inc.inc_fibnum = so->so_fibnum; 536 #ifdef MAC 537 error = mac_inpcb_init(inp, M_NOWAIT); 538 if (error != 0) 539 goto out; 540 mac_inpcb_create(so, inp); 541 #endif 542 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 543 error = ipsec_init_pcbpolicy(inp); 544 if (error != 0) { 545 #ifdef MAC 546 mac_inpcb_destroy(inp); 547 #endif 548 goto out; 549 } 550 #endif /*IPSEC*/ 551 #ifdef INET6 552 if (INP_SOCKAF(so) == AF_INET6) { 553 inp->inp_vflag |= INP_IPV6PROTO; 554 if (V_ip6_v6only) 555 inp->inp_flags |= IN6P_IPV6_V6ONLY; 556 } 557 #endif 558 INP_WLOCK(inp); 559 INP_LIST_WLOCK(pcbinfo); 560 CK_LIST_INSERT_HEAD(pcbinfo->ipi_listhead, inp, inp_list); 561 pcbinfo->ipi_count++; 562 so->so_pcb = (caddr_t)inp; 563 #ifdef INET6 564 if (V_ip6_auto_flowlabel) 565 inp->inp_flags |= IN6P_AUTOFLOWLABEL; 566 #endif 567 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 568 refcount_init(&inp->inp_refcount, 1); /* Reference from inpcbinfo */ 569 570 /* 571 * Routes in inpcb's can cache L2 as well; they are guaranteed 572 * to be cleaned up. 573 */ 574 inp->inp_route.ro_flags = RT_LLE_CACHE; 575 INP_LIST_WUNLOCK(pcbinfo); 576 #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC) 577 out: 578 if (error != 0) { 579 crfree(inp->inp_cred); 580 uma_zfree(pcbinfo->ipi_zone, inp); 581 } 582 #endif 583 return (error); 584 } 585 586 #ifdef INET 587 int 588 in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred) 589 { 590 int anonport, error; 591 592 INP_WLOCK_ASSERT(inp); 593 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 594 595 if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY) 596 return (EINVAL); 597 anonport = nam == NULL || ((struct sockaddr_in *)nam)->sin_port == 0; 598 error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr, 599 &inp->inp_lport, cred); 600 if (error) 601 return (error); 602 if (in_pcbinshash(inp) != 0) { 603 inp->inp_laddr.s_addr = INADDR_ANY; 604 inp->inp_lport = 0; 605 return (EAGAIN); 606 } 607 if (anonport) 608 inp->inp_flags |= INP_ANONPORT; 609 return (0); 610 } 611 #endif 612 613 /* 614 * Select a local port (number) to use. 615 */ 616 #if defined(INET) || defined(INET6) 617 int 618 in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp, 619 struct ucred *cred, int lookupflags) 620 { 621 struct inpcbinfo *pcbinfo; 622 struct inpcb *tmpinp; 623 unsigned short *lastport; 624 int count, dorandom, error; 625 u_short aux, first, last, lport; 626 #ifdef INET 627 struct in_addr laddr; 628 #endif 629 630 pcbinfo = inp->inp_pcbinfo; 631 632 /* 633 * Because no actual state changes occur here, a global write lock on 634 * the pcbinfo isn't required. 635 */ 636 INP_LOCK_ASSERT(inp); 637 INP_HASH_LOCK_ASSERT(pcbinfo); 638 639 if (inp->inp_flags & INP_HIGHPORT) { 640 first = V_ipport_hifirstauto; /* sysctl */ 641 last = V_ipport_hilastauto; 642 lastport = &pcbinfo->ipi_lasthi; 643 } else if (inp->inp_flags & INP_LOWPORT) { 644 error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT); 645 if (error) 646 return (error); 647 first = V_ipport_lowfirstauto; /* 1023 */ 648 last = V_ipport_lowlastauto; /* 600 */ 649 lastport = &pcbinfo->ipi_lastlow; 650 } else { 651 first = V_ipport_firstauto; /* sysctl */ 652 last = V_ipport_lastauto; 653 lastport = &pcbinfo->ipi_lastport; 654 } 655 /* 656 * For UDP(-Lite), use random port allocation as long as the user 657 * allows it. For TCP (and as of yet unknown) connections, 658 * use random port allocation only if the user allows it AND 659 * ipport_tick() allows it. 660 */ 661 if (V_ipport_randomized && 662 (!V_ipport_stoprandom || pcbinfo == &V_udbinfo || 663 pcbinfo == &V_ulitecbinfo)) 664 dorandom = 1; 665 else 666 dorandom = 0; 667 /* 668 * It makes no sense to do random port allocation if 669 * we have the only port available. 670 */ 671 if (first == last) 672 dorandom = 0; 673 /* Make sure to not include UDP(-Lite) packets in the count. */ 674 if (pcbinfo != &V_udbinfo || pcbinfo != &V_ulitecbinfo) 675 V_ipport_tcpallocs++; 676 /* 677 * Instead of having two loops further down counting up or down 678 * make sure that first is always <= last and go with only one 679 * code path implementing all logic. 680 */ 681 if (first > last) { 682 aux = first; 683 first = last; 684 last = aux; 685 } 686 687 #ifdef INET 688 /* Make the compiler happy. */ 689 laddr.s_addr = 0; 690 if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) { 691 KASSERT(laddrp != NULL, ("%s: laddrp NULL for v4 inp %p", 692 __func__, inp)); 693 laddr = *laddrp; 694 } 695 #endif 696 tmpinp = NULL; /* Make compiler happy. */ 697 lport = *lportp; 698 699 if (dorandom) 700 *lastport = first + (arc4random() % (last - first)); 701 702 count = last - first; 703 704 do { 705 if (count-- < 0) /* completely used? */ 706 return (EADDRNOTAVAIL); 707 ++*lastport; 708 if (*lastport < first || *lastport > last) 709 *lastport = first; 710 lport = htons(*lastport); 711 712 #ifdef INET6 713 if ((inp->inp_vflag & INP_IPV6) != 0) 714 tmpinp = in6_pcblookup_local(pcbinfo, 715 &inp->in6p_laddr, lport, lookupflags, cred); 716 #endif 717 #if defined(INET) && defined(INET6) 718 else 719 #endif 720 #ifdef INET 721 tmpinp = in_pcblookup_local(pcbinfo, laddr, 722 lport, lookupflags, cred); 723 #endif 724 } while (tmpinp != NULL); 725 726 #ifdef INET 727 if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) 728 laddrp->s_addr = laddr.s_addr; 729 #endif 730 *lportp = lport; 731 732 return (0); 733 } 734 735 /* 736 * Return cached socket options. 737 */ 738 int 739 inp_so_options(const struct inpcb *inp) 740 { 741 int so_options; 742 743 so_options = 0; 744 745 if ((inp->inp_flags2 & INP_REUSEPORT_LB) != 0) 746 so_options |= SO_REUSEPORT_LB; 747 if ((inp->inp_flags2 & INP_REUSEPORT) != 0) 748 so_options |= SO_REUSEPORT; 749 if ((inp->inp_flags2 & INP_REUSEADDR) != 0) 750 so_options |= SO_REUSEADDR; 751 return (so_options); 752 } 753 #endif /* INET || INET6 */ 754 755 /* 756 * Check if a new BINDMULTI socket is allowed to be created. 757 * 758 * ni points to the new inp. 759 * oi points to the exisitng inp. 760 * 761 * This checks whether the existing inp also has BINDMULTI and 762 * whether the credentials match. 763 */ 764 int 765 in_pcbbind_check_bindmulti(const struct inpcb *ni, const struct inpcb *oi) 766 { 767 /* Check permissions match */ 768 if ((ni->inp_flags2 & INP_BINDMULTI) && 769 (ni->inp_cred->cr_uid != 770 oi->inp_cred->cr_uid)) 771 return (0); 772 773 /* Check the existing inp has BINDMULTI set */ 774 if ((ni->inp_flags2 & INP_BINDMULTI) && 775 ((oi->inp_flags2 & INP_BINDMULTI) == 0)) 776 return (0); 777 778 /* 779 * We're okay - either INP_BINDMULTI isn't set on ni, or 780 * it is and it matches the checks. 781 */ 782 return (1); 783 } 784 785 #ifdef INET 786 /* 787 * Set up a bind operation on a PCB, performing port allocation 788 * as required, but do not actually modify the PCB. Callers can 789 * either complete the bind by setting inp_laddr/inp_lport and 790 * calling in_pcbinshash(), or they can just use the resulting 791 * port and address to authorise the sending of a once-off packet. 792 * 793 * On error, the values of *laddrp and *lportp are not changed. 794 */ 795 int 796 in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp, 797 u_short *lportp, struct ucred *cred) 798 { 799 struct socket *so = inp->inp_socket; 800 struct sockaddr_in *sin; 801 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 802 struct in_addr laddr; 803 u_short lport = 0; 804 int lookupflags = 0, reuseport = (so->so_options & SO_REUSEPORT); 805 int error; 806 807 /* 808 * XXX: Maybe we could let SO_REUSEPORT_LB set SO_REUSEPORT bit here 809 * so that we don't have to add to the (already messy) code below. 810 */ 811 int reuseport_lb = (so->so_options & SO_REUSEPORT_LB); 812 813 /* 814 * No state changes, so read locks are sufficient here. 815 */ 816 INP_LOCK_ASSERT(inp); 817 INP_HASH_LOCK_ASSERT(pcbinfo); 818 819 if (CK_STAILQ_EMPTY(&V_in_ifaddrhead)) /* XXX broken! */ 820 return (EADDRNOTAVAIL); 821 laddr.s_addr = *laddrp; 822 if (nam != NULL && laddr.s_addr != INADDR_ANY) 823 return (EINVAL); 824 if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT|SO_REUSEPORT_LB)) == 0) 825 lookupflags = INPLOOKUP_WILDCARD; 826 if (nam == NULL) { 827 if ((error = prison_local_ip4(cred, &laddr)) != 0) 828 return (error); 829 } else { 830 sin = (struct sockaddr_in *)nam; 831 if (nam->sa_len != sizeof (*sin)) 832 return (EINVAL); 833 #ifdef notdef 834 /* 835 * We should check the family, but old programs 836 * incorrectly fail to initialize it. 837 */ 838 if (sin->sin_family != AF_INET) 839 return (EAFNOSUPPORT); 840 #endif 841 error = prison_local_ip4(cred, &sin->sin_addr); 842 if (error) 843 return (error); 844 if (sin->sin_port != *lportp) { 845 /* Don't allow the port to change. */ 846 if (*lportp != 0) 847 return (EINVAL); 848 lport = sin->sin_port; 849 } 850 /* NB: lport is left as 0 if the port isn't being changed. */ 851 if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) { 852 /* 853 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast; 854 * allow complete duplication of binding if 855 * SO_REUSEPORT is set, or if SO_REUSEADDR is set 856 * and a multicast address is bound on both 857 * new and duplicated sockets. 858 */ 859 if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) != 0) 860 reuseport = SO_REUSEADDR|SO_REUSEPORT; 861 /* 862 * XXX: How to deal with SO_REUSEPORT_LB here? 863 * Treat same as SO_REUSEPORT for now. 864 */ 865 if ((so->so_options & 866 (SO_REUSEADDR|SO_REUSEPORT_LB)) != 0) 867 reuseport_lb = SO_REUSEADDR|SO_REUSEPORT_LB; 868 } else if (sin->sin_addr.s_addr != INADDR_ANY) { 869 sin->sin_port = 0; /* yech... */ 870 bzero(&sin->sin_zero, sizeof(sin->sin_zero)); 871 /* 872 * Is the address a local IP address? 873 * If INP_BINDANY is set, then the socket may be bound 874 * to any endpoint address, local or not. 875 */ 876 if ((inp->inp_flags & INP_BINDANY) == 0 && 877 ifa_ifwithaddr_check((struct sockaddr *)sin) == 0) 878 return (EADDRNOTAVAIL); 879 } 880 laddr = sin->sin_addr; 881 if (lport) { 882 struct inpcb *t; 883 struct tcptw *tw; 884 885 /* GROSS */ 886 if (ntohs(lport) <= V_ipport_reservedhigh && 887 ntohs(lport) >= V_ipport_reservedlow && 888 priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT)) 889 return (EACCES); 890 if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) && 891 priv_check_cred(inp->inp_cred, PRIV_NETINET_REUSEPORT) != 0) { 892 t = in_pcblookup_local(pcbinfo, sin->sin_addr, 893 lport, INPLOOKUP_WILDCARD, cred); 894 /* 895 * XXX 896 * This entire block sorely needs a rewrite. 897 */ 898 if (t && 899 ((inp->inp_flags2 & INP_BINDMULTI) == 0) && 900 ((t->inp_flags & INP_TIMEWAIT) == 0) && 901 (so->so_type != SOCK_STREAM || 902 ntohl(t->inp_faddr.s_addr) == INADDR_ANY) && 903 (ntohl(sin->sin_addr.s_addr) != INADDR_ANY || 904 ntohl(t->inp_laddr.s_addr) != INADDR_ANY || 905 (t->inp_flags2 & INP_REUSEPORT) || 906 (t->inp_flags2 & INP_REUSEPORT_LB) == 0) && 907 (inp->inp_cred->cr_uid != 908 t->inp_cred->cr_uid)) 909 return (EADDRINUSE); 910 911 /* 912 * If the socket is a BINDMULTI socket, then 913 * the credentials need to match and the 914 * original socket also has to have been bound 915 * with BINDMULTI. 916 */ 917 if (t && (! in_pcbbind_check_bindmulti(inp, t))) 918 return (EADDRINUSE); 919 } 920 t = in_pcblookup_local(pcbinfo, sin->sin_addr, 921 lport, lookupflags, cred); 922 if (t && (t->inp_flags & INP_TIMEWAIT)) { 923 /* 924 * XXXRW: If an incpb has had its timewait 925 * state recycled, we treat the address as 926 * being in use (for now). This is better 927 * than a panic, but not desirable. 928 */ 929 tw = intotw(t); 930 if (tw == NULL || 931 ((reuseport & tw->tw_so_options) == 0 && 932 (reuseport_lb & 933 tw->tw_so_options) == 0)) { 934 return (EADDRINUSE); 935 } 936 } else if (t && 937 ((inp->inp_flags2 & INP_BINDMULTI) == 0) && 938 (reuseport & inp_so_options(t)) == 0 && 939 (reuseport_lb & inp_so_options(t)) == 0) { 940 #ifdef INET6 941 if (ntohl(sin->sin_addr.s_addr) != 942 INADDR_ANY || 943 ntohl(t->inp_laddr.s_addr) != 944 INADDR_ANY || 945 (inp->inp_vflag & INP_IPV6PROTO) == 0 || 946 (t->inp_vflag & INP_IPV6PROTO) == 0) 947 #endif 948 return (EADDRINUSE); 949 if (t && (! in_pcbbind_check_bindmulti(inp, t))) 950 return (EADDRINUSE); 951 } 952 } 953 } 954 if (*lportp != 0) 955 lport = *lportp; 956 if (lport == 0) { 957 error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags); 958 if (error != 0) 959 return (error); 960 961 } 962 *laddrp = laddr.s_addr; 963 *lportp = lport; 964 return (0); 965 } 966 967 /* 968 * Connect from a socket to a specified address. 969 * Both address and port must be specified in argument sin. 970 * If don't have a local address for this socket yet, 971 * then pick one. 972 */ 973 int 974 in_pcbconnect_mbuf(struct inpcb *inp, struct sockaddr *nam, 975 struct ucred *cred, struct mbuf *m, bool rehash) 976 { 977 u_short lport, fport; 978 in_addr_t laddr, faddr; 979 int anonport, error; 980 981 INP_WLOCK_ASSERT(inp); 982 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 983 984 lport = inp->inp_lport; 985 laddr = inp->inp_laddr.s_addr; 986 anonport = (lport == 0); 987 error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport, 988 NULL, cred); 989 if (error) 990 return (error); 991 992 /* Do the initial binding of the local address if required. */ 993 if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) { 994 KASSERT(rehash == true, 995 ("Rehashing required for unbound inps")); 996 inp->inp_lport = lport; 997 inp->inp_laddr.s_addr = laddr; 998 if (in_pcbinshash(inp) != 0) { 999 inp->inp_laddr.s_addr = INADDR_ANY; 1000 inp->inp_lport = 0; 1001 return (EAGAIN); 1002 } 1003 } 1004 1005 /* Commit the remaining changes. */ 1006 inp->inp_lport = lport; 1007 inp->inp_laddr.s_addr = laddr; 1008 inp->inp_faddr.s_addr = faddr; 1009 inp->inp_fport = fport; 1010 if (rehash) { 1011 in_pcbrehash_mbuf(inp, m); 1012 } else { 1013 in_pcbinshash_mbuf(inp, m); 1014 } 1015 1016 if (anonport) 1017 inp->inp_flags |= INP_ANONPORT; 1018 return (0); 1019 } 1020 1021 int 1022 in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred) 1023 { 1024 1025 return (in_pcbconnect_mbuf(inp, nam, cred, NULL, true)); 1026 } 1027 1028 /* 1029 * Do proper source address selection on an unbound socket in case 1030 * of connect. Take jails into account as well. 1031 */ 1032 int 1033 in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr, 1034 struct ucred *cred) 1035 { 1036 struct ifaddr *ifa; 1037 struct sockaddr *sa; 1038 struct sockaddr_in *sin; 1039 struct route sro; 1040 struct epoch_tracker et; 1041 int error; 1042 1043 KASSERT(laddr != NULL, ("%s: laddr NULL", __func__)); 1044 /* 1045 * Bypass source address selection and use the primary jail IP 1046 * if requested. 1047 */ 1048 if (cred != NULL && !prison_saddrsel_ip4(cred, laddr)) 1049 return (0); 1050 1051 error = 0; 1052 bzero(&sro, sizeof(sro)); 1053 1054 sin = (struct sockaddr_in *)&sro.ro_dst; 1055 sin->sin_family = AF_INET; 1056 sin->sin_len = sizeof(struct sockaddr_in); 1057 sin->sin_addr.s_addr = faddr->s_addr; 1058 1059 /* 1060 * If route is known our src addr is taken from the i/f, 1061 * else punt. 1062 * 1063 * Find out route to destination. 1064 */ 1065 if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0) 1066 in_rtalloc_ign(&sro, 0, inp->inp_inc.inc_fibnum); 1067 1068 /* 1069 * If we found a route, use the address corresponding to 1070 * the outgoing interface. 1071 * 1072 * Otherwise assume faddr is reachable on a directly connected 1073 * network and try to find a corresponding interface to take 1074 * the source address from. 1075 */ 1076 NET_EPOCH_ENTER(et); 1077 if (sro.ro_rt == NULL || sro.ro_rt->rt_ifp == NULL) { 1078 struct in_ifaddr *ia; 1079 struct ifnet *ifp; 1080 1081 ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin, 1082 inp->inp_socket->so_fibnum)); 1083 if (ia == NULL) { 1084 ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0, 1085 inp->inp_socket->so_fibnum)); 1086 1087 } 1088 if (ia == NULL) { 1089 error = ENETUNREACH; 1090 goto done; 1091 } 1092 1093 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 1094 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1095 goto done; 1096 } 1097 1098 ifp = ia->ia_ifp; 1099 ia = NULL; 1100 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1101 1102 sa = ifa->ifa_addr; 1103 if (sa->sa_family != AF_INET) 1104 continue; 1105 sin = (struct sockaddr_in *)sa; 1106 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 1107 ia = (struct in_ifaddr *)ifa; 1108 break; 1109 } 1110 } 1111 if (ia != NULL) { 1112 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1113 goto done; 1114 } 1115 1116 /* 3. As a last resort return the 'default' jail address. */ 1117 error = prison_get_ip4(cred, laddr); 1118 goto done; 1119 } 1120 1121 /* 1122 * If the outgoing interface on the route found is not 1123 * a loopback interface, use the address from that interface. 1124 * In case of jails do those three steps: 1125 * 1. check if the interface address belongs to the jail. If so use it. 1126 * 2. check if we have any address on the outgoing interface 1127 * belonging to this jail. If so use it. 1128 * 3. as a last resort return the 'default' jail address. 1129 */ 1130 if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) { 1131 struct in_ifaddr *ia; 1132 struct ifnet *ifp; 1133 1134 /* If not jailed, use the default returned. */ 1135 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 1136 ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa; 1137 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1138 goto done; 1139 } 1140 1141 /* Jailed. */ 1142 /* 1. Check if the iface address belongs to the jail. */ 1143 sin = (struct sockaddr_in *)sro.ro_rt->rt_ifa->ifa_addr; 1144 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 1145 ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa; 1146 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1147 goto done; 1148 } 1149 1150 /* 1151 * 2. Check if we have any address on the outgoing interface 1152 * belonging to this jail. 1153 */ 1154 ia = NULL; 1155 ifp = sro.ro_rt->rt_ifp; 1156 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1157 sa = ifa->ifa_addr; 1158 if (sa->sa_family != AF_INET) 1159 continue; 1160 sin = (struct sockaddr_in *)sa; 1161 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 1162 ia = (struct in_ifaddr *)ifa; 1163 break; 1164 } 1165 } 1166 if (ia != NULL) { 1167 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1168 goto done; 1169 } 1170 1171 /* 3. As a last resort return the 'default' jail address. */ 1172 error = prison_get_ip4(cred, laddr); 1173 goto done; 1174 } 1175 1176 /* 1177 * The outgoing interface is marked with 'loopback net', so a route 1178 * to ourselves is here. 1179 * Try to find the interface of the destination address and then 1180 * take the address from there. That interface is not necessarily 1181 * a loopback interface. 1182 * In case of jails, check that it is an address of the jail 1183 * and if we cannot find, fall back to the 'default' jail address. 1184 */ 1185 if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) { 1186 struct sockaddr_in sain; 1187 struct in_ifaddr *ia; 1188 1189 bzero(&sain, sizeof(struct sockaddr_in)); 1190 sain.sin_family = AF_INET; 1191 sain.sin_len = sizeof(struct sockaddr_in); 1192 sain.sin_addr.s_addr = faddr->s_addr; 1193 1194 ia = ifatoia(ifa_ifwithdstaddr(sintosa(&sain), 1195 inp->inp_socket->so_fibnum)); 1196 if (ia == NULL) 1197 ia = ifatoia(ifa_ifwithnet(sintosa(&sain), 0, 1198 inp->inp_socket->so_fibnum)); 1199 if (ia == NULL) 1200 ia = ifatoia(ifa_ifwithaddr(sintosa(&sain))); 1201 1202 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 1203 if (ia == NULL) { 1204 error = ENETUNREACH; 1205 goto done; 1206 } 1207 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1208 goto done; 1209 } 1210 1211 /* Jailed. */ 1212 if (ia != NULL) { 1213 struct ifnet *ifp; 1214 1215 ifp = ia->ia_ifp; 1216 ia = NULL; 1217 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1218 sa = ifa->ifa_addr; 1219 if (sa->sa_family != AF_INET) 1220 continue; 1221 sin = (struct sockaddr_in *)sa; 1222 if (prison_check_ip4(cred, 1223 &sin->sin_addr) == 0) { 1224 ia = (struct in_ifaddr *)ifa; 1225 break; 1226 } 1227 } 1228 if (ia != NULL) { 1229 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1230 goto done; 1231 } 1232 } 1233 1234 /* 3. As a last resort return the 'default' jail address. */ 1235 error = prison_get_ip4(cred, laddr); 1236 goto done; 1237 } 1238 1239 done: 1240 NET_EPOCH_EXIT(et); 1241 if (sro.ro_rt != NULL) 1242 RTFREE(sro.ro_rt); 1243 return (error); 1244 } 1245 1246 /* 1247 * Set up for a connect from a socket to the specified address. 1248 * On entry, *laddrp and *lportp should contain the current local 1249 * address and port for the PCB; these are updated to the values 1250 * that should be placed in inp_laddr and inp_lport to complete 1251 * the connect. 1252 * 1253 * On success, *faddrp and *fportp will be set to the remote address 1254 * and port. These are not updated in the error case. 1255 * 1256 * If the operation fails because the connection already exists, 1257 * *oinpp will be set to the PCB of that connection so that the 1258 * caller can decide to override it. In all other cases, *oinpp 1259 * is set to NULL. 1260 */ 1261 int 1262 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam, 1263 in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp, 1264 struct inpcb **oinpp, struct ucred *cred) 1265 { 1266 struct rm_priotracker in_ifa_tracker; 1267 struct sockaddr_in *sin = (struct sockaddr_in *)nam; 1268 struct in_ifaddr *ia; 1269 struct inpcb *oinp; 1270 struct in_addr laddr, faddr; 1271 u_short lport, fport; 1272 int error; 1273 1274 /* 1275 * Because a global state change doesn't actually occur here, a read 1276 * lock is sufficient. 1277 */ 1278 INP_LOCK_ASSERT(inp); 1279 INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo); 1280 1281 if (oinpp != NULL) 1282 *oinpp = NULL; 1283 if (nam->sa_len != sizeof (*sin)) 1284 return (EINVAL); 1285 if (sin->sin_family != AF_INET) 1286 return (EAFNOSUPPORT); 1287 if (sin->sin_port == 0) 1288 return (EADDRNOTAVAIL); 1289 laddr.s_addr = *laddrp; 1290 lport = *lportp; 1291 faddr = sin->sin_addr; 1292 fport = sin->sin_port; 1293 1294 if (!CK_STAILQ_EMPTY(&V_in_ifaddrhead)) { 1295 /* 1296 * If the destination address is INADDR_ANY, 1297 * use the primary local address. 1298 * If the supplied address is INADDR_BROADCAST, 1299 * and the primary interface supports broadcast, 1300 * choose the broadcast address for that interface. 1301 */ 1302 if (faddr.s_addr == INADDR_ANY) { 1303 IN_IFADDR_RLOCK(&in_ifa_tracker); 1304 faddr = 1305 IA_SIN(CK_STAILQ_FIRST(&V_in_ifaddrhead))->sin_addr; 1306 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 1307 if (cred != NULL && 1308 (error = prison_get_ip4(cred, &faddr)) != 0) 1309 return (error); 1310 } else if (faddr.s_addr == (u_long)INADDR_BROADCAST) { 1311 IN_IFADDR_RLOCK(&in_ifa_tracker); 1312 if (CK_STAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags & 1313 IFF_BROADCAST) 1314 faddr = satosin(&CK_STAILQ_FIRST( 1315 &V_in_ifaddrhead)->ia_broadaddr)->sin_addr; 1316 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 1317 } 1318 } 1319 if (laddr.s_addr == INADDR_ANY) { 1320 error = in_pcbladdr(inp, &faddr, &laddr, cred); 1321 /* 1322 * If the destination address is multicast and an outgoing 1323 * interface has been set as a multicast option, prefer the 1324 * address of that interface as our source address. 1325 */ 1326 if (IN_MULTICAST(ntohl(faddr.s_addr)) && 1327 inp->inp_moptions != NULL) { 1328 struct ip_moptions *imo; 1329 struct ifnet *ifp; 1330 1331 imo = inp->inp_moptions; 1332 if (imo->imo_multicast_ifp != NULL) { 1333 ifp = imo->imo_multicast_ifp; 1334 IN_IFADDR_RLOCK(&in_ifa_tracker); 1335 CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) { 1336 if ((ia->ia_ifp == ifp) && 1337 (cred == NULL || 1338 prison_check_ip4(cred, 1339 &ia->ia_addr.sin_addr) == 0)) 1340 break; 1341 } 1342 if (ia == NULL) 1343 error = EADDRNOTAVAIL; 1344 else { 1345 laddr = ia->ia_addr.sin_addr; 1346 error = 0; 1347 } 1348 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 1349 } 1350 } 1351 if (error) 1352 return (error); 1353 } 1354 oinp = in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr, fport, 1355 laddr, lport, 0, NULL); 1356 if (oinp != NULL) { 1357 if (oinpp != NULL) 1358 *oinpp = oinp; 1359 return (EADDRINUSE); 1360 } 1361 if (lport == 0) { 1362 error = in_pcbbind_setup(inp, NULL, &laddr.s_addr, &lport, 1363 cred); 1364 if (error) 1365 return (error); 1366 } 1367 *laddrp = laddr.s_addr; 1368 *lportp = lport; 1369 *faddrp = faddr.s_addr; 1370 *fportp = fport; 1371 return (0); 1372 } 1373 1374 void 1375 in_pcbdisconnect(struct inpcb *inp) 1376 { 1377 1378 INP_WLOCK_ASSERT(inp); 1379 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 1380 1381 inp->inp_faddr.s_addr = INADDR_ANY; 1382 inp->inp_fport = 0; 1383 in_pcbrehash(inp); 1384 } 1385 #endif /* INET */ 1386 1387 /* 1388 * in_pcbdetach() is responsibe for disassociating a socket from an inpcb. 1389 * For most protocols, this will be invoked immediately prior to calling 1390 * in_pcbfree(). However, with TCP the inpcb may significantly outlive the 1391 * socket, in which case in_pcbfree() is deferred. 1392 */ 1393 void 1394 in_pcbdetach(struct inpcb *inp) 1395 { 1396 1397 KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__)); 1398 1399 #ifdef RATELIMIT 1400 if (inp->inp_snd_tag != NULL) 1401 in_pcbdetach_txrtlmt(inp); 1402 #endif 1403 inp->inp_socket->so_pcb = NULL; 1404 inp->inp_socket = NULL; 1405 } 1406 1407 /* 1408 * in_pcbref() bumps the reference count on an inpcb in order to maintain 1409 * stability of an inpcb pointer despite the inpcb lock being released. This 1410 * is used in TCP when the inpcbinfo lock needs to be acquired or upgraded, 1411 * but where the inpcb lock may already held, or when acquiring a reference 1412 * via a pcbgroup. 1413 * 1414 * in_pcbref() should be used only to provide brief memory stability, and 1415 * must always be followed by a call to INP_WLOCK() and in_pcbrele() to 1416 * garbage collect the inpcb if it has been in_pcbfree()'d from another 1417 * context. Until in_pcbrele() has returned that the inpcb is still valid, 1418 * lock and rele are the *only* safe operations that may be performed on the 1419 * inpcb. 1420 * 1421 * While the inpcb will not be freed, releasing the inpcb lock means that the 1422 * connection's state may change, so the caller should be careful to 1423 * revalidate any cached state on reacquiring the lock. Drop the reference 1424 * using in_pcbrele(). 1425 */ 1426 void 1427 in_pcbref(struct inpcb *inp) 1428 { 1429 1430 KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__)); 1431 1432 refcount_acquire(&inp->inp_refcount); 1433 } 1434 1435 /* 1436 * Drop a refcount on an inpcb elevated using in_pcbref(); because a call to 1437 * in_pcbfree() may have been made between in_pcbref() and in_pcbrele(), we 1438 * return a flag indicating whether or not the inpcb remains valid. If it is 1439 * valid, we return with the inpcb lock held. 1440 * 1441 * Notice that, unlike in_pcbref(), the inpcb lock must be held to drop a 1442 * reference on an inpcb. Historically more work was done here (actually, in 1443 * in_pcbfree_internal()) but has been moved to in_pcbfree() to avoid the 1444 * need for the pcbinfo lock in in_pcbrele(). Deferring the free is entirely 1445 * about memory stability (and continued use of the write lock). 1446 */ 1447 int 1448 in_pcbrele_rlocked(struct inpcb *inp) 1449 { 1450 struct inpcbinfo *pcbinfo; 1451 1452 KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__)); 1453 1454 INP_RLOCK_ASSERT(inp); 1455 1456 if (refcount_release(&inp->inp_refcount) == 0) { 1457 /* 1458 * If the inpcb has been freed, let the caller know, even if 1459 * this isn't the last reference. 1460 */ 1461 if (inp->inp_flags2 & INP_FREED) { 1462 INP_RUNLOCK(inp); 1463 return (1); 1464 } 1465 return (0); 1466 } 1467 1468 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); 1469 #ifdef TCPHPTS 1470 if (inp->inp_in_hpts || inp->inp_in_input) { 1471 struct tcp_hpts_entry *hpts; 1472 /* 1473 * We should not be on the hpts at 1474 * this point in any form. we must 1475 * get the lock to be sure. 1476 */ 1477 hpts = tcp_hpts_lock(inp); 1478 if (inp->inp_in_hpts) 1479 panic("Hpts:%p inp:%p at free still on hpts", 1480 hpts, inp); 1481 mtx_unlock(&hpts->p_mtx); 1482 hpts = tcp_input_lock(inp); 1483 if (inp->inp_in_input) 1484 panic("Hpts:%p inp:%p at free still on input hpts", 1485 hpts, inp); 1486 mtx_unlock(&hpts->p_mtx); 1487 } 1488 #endif 1489 INP_RUNLOCK(inp); 1490 pcbinfo = inp->inp_pcbinfo; 1491 uma_zfree(pcbinfo->ipi_zone, inp); 1492 return (1); 1493 } 1494 1495 int 1496 in_pcbrele_wlocked(struct inpcb *inp) 1497 { 1498 struct inpcbinfo *pcbinfo; 1499 1500 KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__)); 1501 1502 INP_WLOCK_ASSERT(inp); 1503 1504 if (refcount_release(&inp->inp_refcount) == 0) { 1505 /* 1506 * If the inpcb has been freed, let the caller know, even if 1507 * this isn't the last reference. 1508 */ 1509 if (inp->inp_flags2 & INP_FREED) { 1510 INP_WUNLOCK(inp); 1511 return (1); 1512 } 1513 return (0); 1514 } 1515 1516 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); 1517 #ifdef TCPHPTS 1518 if (inp->inp_in_hpts || inp->inp_in_input) { 1519 struct tcp_hpts_entry *hpts; 1520 /* 1521 * We should not be on the hpts at 1522 * this point in any form. we must 1523 * get the lock to be sure. 1524 */ 1525 hpts = tcp_hpts_lock(inp); 1526 if (inp->inp_in_hpts) 1527 panic("Hpts:%p inp:%p at free still on hpts", 1528 hpts, inp); 1529 mtx_unlock(&hpts->p_mtx); 1530 hpts = tcp_input_lock(inp); 1531 if (inp->inp_in_input) 1532 panic("Hpts:%p inp:%p at free still on input hpts", 1533 hpts, inp); 1534 mtx_unlock(&hpts->p_mtx); 1535 } 1536 #endif 1537 INP_WUNLOCK(inp); 1538 pcbinfo = inp->inp_pcbinfo; 1539 uma_zfree(pcbinfo->ipi_zone, inp); 1540 return (1); 1541 } 1542 1543 /* 1544 * Temporary wrapper. 1545 */ 1546 int 1547 in_pcbrele(struct inpcb *inp) 1548 { 1549 1550 return (in_pcbrele_wlocked(inp)); 1551 } 1552 1553 void 1554 in_pcblist_rele_rlocked(epoch_context_t ctx) 1555 { 1556 struct in_pcblist *il; 1557 struct inpcb *inp; 1558 struct inpcbinfo *pcbinfo; 1559 int i, n; 1560 1561 il = __containerof(ctx, struct in_pcblist, il_epoch_ctx); 1562 pcbinfo = il->il_pcbinfo; 1563 n = il->il_count; 1564 INP_INFO_WLOCK(pcbinfo); 1565 for (i = 0; i < n; i++) { 1566 inp = il->il_inp_list[i]; 1567 INP_RLOCK(inp); 1568 if (!in_pcbrele_rlocked(inp)) 1569 INP_RUNLOCK(inp); 1570 } 1571 INP_INFO_WUNLOCK(pcbinfo); 1572 free(il, M_TEMP); 1573 } 1574 1575 static void 1576 inpcbport_free(epoch_context_t ctx) 1577 { 1578 struct inpcbport *phd; 1579 1580 phd = __containerof(ctx, struct inpcbport, phd_epoch_ctx); 1581 free(phd, M_PCB); 1582 } 1583 1584 static void 1585 in_pcbfree_deferred(epoch_context_t ctx) 1586 { 1587 struct inpcb *inp; 1588 int released __unused; 1589 1590 inp = __containerof(ctx, struct inpcb, inp_epoch_ctx); 1591 1592 INP_WLOCK(inp); 1593 CURVNET_SET(inp->inp_vnet); 1594 #ifdef INET 1595 struct ip_moptions *imo = inp->inp_moptions; 1596 inp->inp_moptions = NULL; 1597 #endif 1598 /* XXXRW: Do as much as possible here. */ 1599 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1600 if (inp->inp_sp != NULL) 1601 ipsec_delete_pcbpolicy(inp); 1602 #endif 1603 #ifdef INET6 1604 struct ip6_moptions *im6o = NULL; 1605 if (inp->inp_vflag & INP_IPV6PROTO) { 1606 ip6_freepcbopts(inp->in6p_outputopts); 1607 im6o = inp->in6p_moptions; 1608 inp->in6p_moptions = NULL; 1609 } 1610 #endif 1611 if (inp->inp_options) 1612 (void)m_free(inp->inp_options); 1613 inp->inp_vflag = 0; 1614 crfree(inp->inp_cred); 1615 #ifdef MAC 1616 mac_inpcb_destroy(inp); 1617 #endif 1618 released = in_pcbrele_wlocked(inp); 1619 MPASS(released); 1620 #ifdef INET6 1621 ip6_freemoptions(im6o); 1622 #endif 1623 #ifdef INET 1624 inp_freemoptions(imo); 1625 #endif 1626 CURVNET_RESTORE(); 1627 } 1628 1629 /* 1630 * Unconditionally schedule an inpcb to be freed by decrementing its 1631 * reference count, which should occur only after the inpcb has been detached 1632 * from its socket. If another thread holds a temporary reference (acquired 1633 * using in_pcbref()) then the free is deferred until that reference is 1634 * released using in_pcbrele(), but the inpcb is still unlocked. Almost all 1635 * work, including removal from global lists, is done in this context, where 1636 * the pcbinfo lock is held. 1637 */ 1638 void 1639 in_pcbfree(struct inpcb *inp) 1640 { 1641 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 1642 1643 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); 1644 KASSERT((inp->inp_flags2 & INP_FREED) == 0, 1645 ("%s: called twice for pcb %p", __func__, inp)); 1646 if (inp->inp_flags2 & INP_FREED) { 1647 INP_WUNLOCK(inp); 1648 return; 1649 } 1650 1651 #ifdef INVARIANTS 1652 if (pcbinfo == &V_tcbinfo) { 1653 INP_INFO_LOCK_ASSERT(pcbinfo); 1654 } else { 1655 INP_INFO_WLOCK_ASSERT(pcbinfo); 1656 } 1657 #endif 1658 INP_WLOCK_ASSERT(inp); 1659 INP_LIST_WLOCK(pcbinfo); 1660 in_pcbremlists(inp); 1661 INP_LIST_WUNLOCK(pcbinfo); 1662 RO_INVALIDATE_CACHE(&inp->inp_route); 1663 /* mark as destruction in progress */ 1664 inp->inp_flags2 |= INP_FREED; 1665 INP_WUNLOCK(inp); 1666 epoch_call(net_epoch_preempt, &inp->inp_epoch_ctx, in_pcbfree_deferred); 1667 } 1668 1669 /* 1670 * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and 1671 * port reservation, and preventing it from being returned by inpcb lookups. 1672 * 1673 * It is used by TCP to mark an inpcb as unused and avoid future packet 1674 * delivery or event notification when a socket remains open but TCP has 1675 * closed. This might occur as a result of a shutdown()-initiated TCP close 1676 * or a RST on the wire, and allows the port binding to be reused while still 1677 * maintaining the invariant that so_pcb always points to a valid inpcb until 1678 * in_pcbdetach(). 1679 * 1680 * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by 1681 * in_pcbnotifyall() and in_pcbpurgeif0()? 1682 */ 1683 void 1684 in_pcbdrop(struct inpcb *inp) 1685 { 1686 1687 INP_WLOCK_ASSERT(inp); 1688 #ifdef INVARIANTS 1689 if (inp->inp_socket != NULL && inp->inp_ppcb != NULL) 1690 MPASS(inp->inp_refcount > 1); 1691 #endif 1692 1693 /* 1694 * XXXRW: Possibly we should protect the setting of INP_DROPPED with 1695 * the hash lock...? 1696 */ 1697 inp->inp_flags |= INP_DROPPED; 1698 if (inp->inp_flags & INP_INHASHLIST) { 1699 struct inpcbport *phd = inp->inp_phd; 1700 1701 INP_HASH_WLOCK(inp->inp_pcbinfo); 1702 in_pcbremlbgrouphash(inp); 1703 CK_LIST_REMOVE(inp, inp_hash); 1704 CK_LIST_REMOVE(inp, inp_portlist); 1705 if (CK_LIST_FIRST(&phd->phd_pcblist) == NULL) { 1706 CK_LIST_REMOVE(phd, phd_hash); 1707 epoch_call(net_epoch_preempt, &phd->phd_epoch_ctx, inpcbport_free); 1708 } 1709 INP_HASH_WUNLOCK(inp->inp_pcbinfo); 1710 inp->inp_flags &= ~INP_INHASHLIST; 1711 #ifdef PCBGROUP 1712 in_pcbgroup_remove(inp); 1713 #endif 1714 } 1715 } 1716 1717 #ifdef INET 1718 /* 1719 * Common routines to return the socket addresses associated with inpcbs. 1720 */ 1721 struct sockaddr * 1722 in_sockaddr(in_port_t port, struct in_addr *addr_p) 1723 { 1724 struct sockaddr_in *sin; 1725 1726 sin = malloc(sizeof *sin, M_SONAME, 1727 M_WAITOK | M_ZERO); 1728 sin->sin_family = AF_INET; 1729 sin->sin_len = sizeof(*sin); 1730 sin->sin_addr = *addr_p; 1731 sin->sin_port = port; 1732 1733 return (struct sockaddr *)sin; 1734 } 1735 1736 int 1737 in_getsockaddr(struct socket *so, struct sockaddr **nam) 1738 { 1739 struct inpcb *inp; 1740 struct in_addr addr; 1741 in_port_t port; 1742 1743 inp = sotoinpcb(so); 1744 KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL")); 1745 1746 INP_RLOCK(inp); 1747 port = inp->inp_lport; 1748 addr = inp->inp_laddr; 1749 INP_RUNLOCK(inp); 1750 1751 *nam = in_sockaddr(port, &addr); 1752 return 0; 1753 } 1754 1755 int 1756 in_getpeeraddr(struct socket *so, struct sockaddr **nam) 1757 { 1758 struct inpcb *inp; 1759 struct in_addr addr; 1760 in_port_t port; 1761 1762 inp = sotoinpcb(so); 1763 KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL")); 1764 1765 INP_RLOCK(inp); 1766 port = inp->inp_fport; 1767 addr = inp->inp_faddr; 1768 INP_RUNLOCK(inp); 1769 1770 *nam = in_sockaddr(port, &addr); 1771 return 0; 1772 } 1773 1774 void 1775 in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno, 1776 struct inpcb *(*notify)(struct inpcb *, int)) 1777 { 1778 struct inpcb *inp, *inp_temp; 1779 1780 INP_INFO_WLOCK(pcbinfo); 1781 CK_LIST_FOREACH_SAFE(inp, pcbinfo->ipi_listhead, inp_list, inp_temp) { 1782 INP_WLOCK(inp); 1783 #ifdef INET6 1784 if ((inp->inp_vflag & INP_IPV4) == 0) { 1785 INP_WUNLOCK(inp); 1786 continue; 1787 } 1788 #endif 1789 if (inp->inp_faddr.s_addr != faddr.s_addr || 1790 inp->inp_socket == NULL) { 1791 INP_WUNLOCK(inp); 1792 continue; 1793 } 1794 if ((*notify)(inp, errno)) 1795 INP_WUNLOCK(inp); 1796 } 1797 INP_INFO_WUNLOCK(pcbinfo); 1798 } 1799 1800 void 1801 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp) 1802 { 1803 struct inpcb *inp; 1804 struct in_multi *inm; 1805 struct in_mfilter *imf; 1806 struct ip_moptions *imo; 1807 1808 INP_INFO_WLOCK(pcbinfo); 1809 CK_LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) { 1810 INP_WLOCK(inp); 1811 imo = inp->inp_moptions; 1812 if ((inp->inp_vflag & INP_IPV4) && 1813 imo != NULL) { 1814 /* 1815 * Unselect the outgoing interface if it is being 1816 * detached. 1817 */ 1818 if (imo->imo_multicast_ifp == ifp) 1819 imo->imo_multicast_ifp = NULL; 1820 1821 /* 1822 * Drop multicast group membership if we joined 1823 * through the interface being detached. 1824 * 1825 * XXX This can all be deferred to an epoch_call 1826 */ 1827 restart: 1828 IP_MFILTER_FOREACH(imf, &imo->imo_head) { 1829 if ((inm = imf->imf_inm) == NULL) 1830 continue; 1831 if (inm->inm_ifp != ifp) 1832 continue; 1833 ip_mfilter_remove(&imo->imo_head, imf); 1834 IN_MULTI_LOCK_ASSERT(); 1835 in_leavegroup_locked(inm, NULL); 1836 ip_mfilter_free(imf); 1837 goto restart; 1838 } 1839 } 1840 INP_WUNLOCK(inp); 1841 } 1842 INP_INFO_WUNLOCK(pcbinfo); 1843 } 1844 1845 /* 1846 * Lookup a PCB based on the local address and port. Caller must hold the 1847 * hash lock. No inpcb locks or references are acquired. 1848 */ 1849 #define INP_LOOKUP_MAPPED_PCB_COST 3 1850 struct inpcb * 1851 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr, 1852 u_short lport, int lookupflags, struct ucred *cred) 1853 { 1854 struct inpcb *inp; 1855 #ifdef INET6 1856 int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST; 1857 #else 1858 int matchwild = 3; 1859 #endif 1860 int wildcard; 1861 1862 KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0, 1863 ("%s: invalid lookup flags %d", __func__, lookupflags)); 1864 1865 INP_HASH_LOCK_ASSERT(pcbinfo); 1866 1867 if ((lookupflags & INPLOOKUP_WILDCARD) == 0) { 1868 struct inpcbhead *head; 1869 /* 1870 * Look for an unconnected (wildcard foreign addr) PCB that 1871 * matches the local address and port we're looking for. 1872 */ 1873 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport, 1874 0, pcbinfo->ipi_hashmask)]; 1875 CK_LIST_FOREACH(inp, head, inp_hash) { 1876 #ifdef INET6 1877 /* XXX inp locking */ 1878 if ((inp->inp_vflag & INP_IPV4) == 0) 1879 continue; 1880 #endif 1881 if (inp->inp_faddr.s_addr == INADDR_ANY && 1882 inp->inp_laddr.s_addr == laddr.s_addr && 1883 inp->inp_lport == lport) { 1884 /* 1885 * Found? 1886 */ 1887 if (cred == NULL || 1888 prison_equal_ip4(cred->cr_prison, 1889 inp->inp_cred->cr_prison)) 1890 return (inp); 1891 } 1892 } 1893 /* 1894 * Not found. 1895 */ 1896 return (NULL); 1897 } else { 1898 struct inpcbporthead *porthash; 1899 struct inpcbport *phd; 1900 struct inpcb *match = NULL; 1901 /* 1902 * Best fit PCB lookup. 1903 * 1904 * First see if this local port is in use by looking on the 1905 * port hash list. 1906 */ 1907 porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport, 1908 pcbinfo->ipi_porthashmask)]; 1909 CK_LIST_FOREACH(phd, porthash, phd_hash) { 1910 if (phd->phd_port == lport) 1911 break; 1912 } 1913 if (phd != NULL) { 1914 /* 1915 * Port is in use by one or more PCBs. Look for best 1916 * fit. 1917 */ 1918 CK_LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) { 1919 wildcard = 0; 1920 if (cred != NULL && 1921 !prison_equal_ip4(inp->inp_cred->cr_prison, 1922 cred->cr_prison)) 1923 continue; 1924 #ifdef INET6 1925 /* XXX inp locking */ 1926 if ((inp->inp_vflag & INP_IPV4) == 0) 1927 continue; 1928 /* 1929 * We never select the PCB that has 1930 * INP_IPV6 flag and is bound to :: if 1931 * we have another PCB which is bound 1932 * to 0.0.0.0. If a PCB has the 1933 * INP_IPV6 flag, then we set its cost 1934 * higher than IPv4 only PCBs. 1935 * 1936 * Note that the case only happens 1937 * when a socket is bound to ::, under 1938 * the condition that the use of the 1939 * mapped address is allowed. 1940 */ 1941 if ((inp->inp_vflag & INP_IPV6) != 0) 1942 wildcard += INP_LOOKUP_MAPPED_PCB_COST; 1943 #endif 1944 if (inp->inp_faddr.s_addr != INADDR_ANY) 1945 wildcard++; 1946 if (inp->inp_laddr.s_addr != INADDR_ANY) { 1947 if (laddr.s_addr == INADDR_ANY) 1948 wildcard++; 1949 else if (inp->inp_laddr.s_addr != laddr.s_addr) 1950 continue; 1951 } else { 1952 if (laddr.s_addr != INADDR_ANY) 1953 wildcard++; 1954 } 1955 if (wildcard < matchwild) { 1956 match = inp; 1957 matchwild = wildcard; 1958 if (matchwild == 0) 1959 break; 1960 } 1961 } 1962 } 1963 return (match); 1964 } 1965 } 1966 #undef INP_LOOKUP_MAPPED_PCB_COST 1967 1968 static struct inpcb * 1969 in_pcblookup_lbgroup(const struct inpcbinfo *pcbinfo, 1970 const struct in_addr *laddr, uint16_t lport, const struct in_addr *faddr, 1971 uint16_t fport, int lookupflags) 1972 { 1973 struct inpcb *local_wild; 1974 const struct inpcblbgrouphead *hdr; 1975 struct inpcblbgroup *grp; 1976 uint32_t idx; 1977 1978 INP_HASH_LOCK_ASSERT(pcbinfo); 1979 1980 hdr = &pcbinfo->ipi_lbgrouphashbase[ 1981 INP_PCBPORTHASH(lport, pcbinfo->ipi_lbgrouphashmask)]; 1982 1983 /* 1984 * Order of socket selection: 1985 * 1. non-wild. 1986 * 2. wild (if lookupflags contains INPLOOKUP_WILDCARD). 1987 * 1988 * NOTE: 1989 * - Load balanced group does not contain jailed sockets 1990 * - Load balanced group does not contain IPv4 mapped INET6 wild sockets 1991 */ 1992 local_wild = NULL; 1993 CK_LIST_FOREACH(grp, hdr, il_list) { 1994 #ifdef INET6 1995 if (!(grp->il_vflag & INP_IPV4)) 1996 continue; 1997 #endif 1998 if (grp->il_lport != lport) 1999 continue; 2000 2001 idx = INP_PCBLBGROUP_PKTHASH(faddr->s_addr, lport, fport) % 2002 grp->il_inpcnt; 2003 if (grp->il_laddr.s_addr == laddr->s_addr) 2004 return (grp->il_inp[idx]); 2005 if (grp->il_laddr.s_addr == INADDR_ANY && 2006 (lookupflags & INPLOOKUP_WILDCARD) != 0) 2007 local_wild = grp->il_inp[idx]; 2008 } 2009 return (local_wild); 2010 } 2011 2012 #ifdef PCBGROUP 2013 /* 2014 * Lookup PCB in hash list, using pcbgroup tables. 2015 */ 2016 static struct inpcb * 2017 in_pcblookup_group(struct inpcbinfo *pcbinfo, struct inpcbgroup *pcbgroup, 2018 struct in_addr faddr, u_int fport_arg, struct in_addr laddr, 2019 u_int lport_arg, int lookupflags, struct ifnet *ifp) 2020 { 2021 struct inpcbhead *head; 2022 struct inpcb *inp, *tmpinp; 2023 u_short fport = fport_arg, lport = lport_arg; 2024 bool locked; 2025 2026 /* 2027 * First look for an exact match. 2028 */ 2029 tmpinp = NULL; 2030 INP_GROUP_LOCK(pcbgroup); 2031 head = &pcbgroup->ipg_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport, 2032 pcbgroup->ipg_hashmask)]; 2033 CK_LIST_FOREACH(inp, head, inp_pcbgrouphash) { 2034 #ifdef INET6 2035 /* XXX inp locking */ 2036 if ((inp->inp_vflag & INP_IPV4) == 0) 2037 continue; 2038 #endif 2039 if (inp->inp_faddr.s_addr == faddr.s_addr && 2040 inp->inp_laddr.s_addr == laddr.s_addr && 2041 inp->inp_fport == fport && 2042 inp->inp_lport == lport) { 2043 /* 2044 * XXX We should be able to directly return 2045 * the inp here, without any checks. 2046 * Well unless both bound with SO_REUSEPORT? 2047 */ 2048 if (prison_flag(inp->inp_cred, PR_IP4)) 2049 goto found; 2050 if (tmpinp == NULL) 2051 tmpinp = inp; 2052 } 2053 } 2054 if (tmpinp != NULL) { 2055 inp = tmpinp; 2056 goto found; 2057 } 2058 2059 #ifdef RSS 2060 /* 2061 * For incoming connections, we may wish to do a wildcard 2062 * match for an RSS-local socket. 2063 */ 2064 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 2065 struct inpcb *local_wild = NULL, *local_exact = NULL; 2066 #ifdef INET6 2067 struct inpcb *local_wild_mapped = NULL; 2068 #endif 2069 struct inpcb *jail_wild = NULL; 2070 struct inpcbhead *head; 2071 int injail; 2072 2073 /* 2074 * Order of socket selection - we always prefer jails. 2075 * 1. jailed, non-wild. 2076 * 2. jailed, wild. 2077 * 3. non-jailed, non-wild. 2078 * 4. non-jailed, wild. 2079 */ 2080 2081 head = &pcbgroup->ipg_hashbase[INP_PCBHASH(INADDR_ANY, 2082 lport, 0, pcbgroup->ipg_hashmask)]; 2083 CK_LIST_FOREACH(inp, head, inp_pcbgrouphash) { 2084 #ifdef INET6 2085 /* XXX inp locking */ 2086 if ((inp->inp_vflag & INP_IPV4) == 0) 2087 continue; 2088 #endif 2089 if (inp->inp_faddr.s_addr != INADDR_ANY || 2090 inp->inp_lport != lport) 2091 continue; 2092 2093 injail = prison_flag(inp->inp_cred, PR_IP4); 2094 if (injail) { 2095 if (prison_check_ip4(inp->inp_cred, 2096 &laddr) != 0) 2097 continue; 2098 } else { 2099 if (local_exact != NULL) 2100 continue; 2101 } 2102 2103 if (inp->inp_laddr.s_addr == laddr.s_addr) { 2104 if (injail) 2105 goto found; 2106 else 2107 local_exact = inp; 2108 } else if (inp->inp_laddr.s_addr == INADDR_ANY) { 2109 #ifdef INET6 2110 /* XXX inp locking, NULL check */ 2111 if (inp->inp_vflag & INP_IPV6PROTO) 2112 local_wild_mapped = inp; 2113 else 2114 #endif 2115 if (injail) 2116 jail_wild = inp; 2117 else 2118 local_wild = inp; 2119 } 2120 } /* LIST_FOREACH */ 2121 2122 inp = jail_wild; 2123 if (inp == NULL) 2124 inp = local_exact; 2125 if (inp == NULL) 2126 inp = local_wild; 2127 #ifdef INET6 2128 if (inp == NULL) 2129 inp = local_wild_mapped; 2130 #endif 2131 if (inp != NULL) 2132 goto found; 2133 } 2134 #endif 2135 2136 /* 2137 * Then look for a wildcard match, if requested. 2138 */ 2139 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 2140 struct inpcb *local_wild = NULL, *local_exact = NULL; 2141 #ifdef INET6 2142 struct inpcb *local_wild_mapped = NULL; 2143 #endif 2144 struct inpcb *jail_wild = NULL; 2145 struct inpcbhead *head; 2146 int injail; 2147 2148 /* 2149 * Order of socket selection - we always prefer jails. 2150 * 1. jailed, non-wild. 2151 * 2. jailed, wild. 2152 * 3. non-jailed, non-wild. 2153 * 4. non-jailed, wild. 2154 */ 2155 head = &pcbinfo->ipi_wildbase[INP_PCBHASH(INADDR_ANY, lport, 2156 0, pcbinfo->ipi_wildmask)]; 2157 CK_LIST_FOREACH(inp, head, inp_pcbgroup_wild) { 2158 #ifdef INET6 2159 /* XXX inp locking */ 2160 if ((inp->inp_vflag & INP_IPV4) == 0) 2161 continue; 2162 #endif 2163 if (inp->inp_faddr.s_addr != INADDR_ANY || 2164 inp->inp_lport != lport) 2165 continue; 2166 2167 injail = prison_flag(inp->inp_cred, PR_IP4); 2168 if (injail) { 2169 if (prison_check_ip4(inp->inp_cred, 2170 &laddr) != 0) 2171 continue; 2172 } else { 2173 if (local_exact != NULL) 2174 continue; 2175 } 2176 2177 if (inp->inp_laddr.s_addr == laddr.s_addr) { 2178 if (injail) 2179 goto found; 2180 else 2181 local_exact = inp; 2182 } else if (inp->inp_laddr.s_addr == INADDR_ANY) { 2183 #ifdef INET6 2184 /* XXX inp locking, NULL check */ 2185 if (inp->inp_vflag & INP_IPV6PROTO) 2186 local_wild_mapped = inp; 2187 else 2188 #endif 2189 if (injail) 2190 jail_wild = inp; 2191 else 2192 local_wild = inp; 2193 } 2194 } /* LIST_FOREACH */ 2195 inp = jail_wild; 2196 if (inp == NULL) 2197 inp = local_exact; 2198 if (inp == NULL) 2199 inp = local_wild; 2200 #ifdef INET6 2201 if (inp == NULL) 2202 inp = local_wild_mapped; 2203 #endif 2204 if (inp != NULL) 2205 goto found; 2206 } /* if (lookupflags & INPLOOKUP_WILDCARD) */ 2207 INP_GROUP_UNLOCK(pcbgroup); 2208 return (NULL); 2209 2210 found: 2211 if (lookupflags & INPLOOKUP_WLOCKPCB) 2212 locked = INP_TRY_WLOCK(inp); 2213 else if (lookupflags & INPLOOKUP_RLOCKPCB) 2214 locked = INP_TRY_RLOCK(inp); 2215 else 2216 panic("%s: locking bug", __func__); 2217 if (__predict_false(locked && (inp->inp_flags2 & INP_FREED))) { 2218 if (lookupflags & INPLOOKUP_WLOCKPCB) 2219 INP_WUNLOCK(inp); 2220 else 2221 INP_RUNLOCK(inp); 2222 return (NULL); 2223 } else if (!locked) 2224 in_pcbref(inp); 2225 INP_GROUP_UNLOCK(pcbgroup); 2226 if (!locked) { 2227 if (lookupflags & INPLOOKUP_WLOCKPCB) { 2228 INP_WLOCK(inp); 2229 if (in_pcbrele_wlocked(inp)) 2230 return (NULL); 2231 } else { 2232 INP_RLOCK(inp); 2233 if (in_pcbrele_rlocked(inp)) 2234 return (NULL); 2235 } 2236 } 2237 #ifdef INVARIANTS 2238 if (lookupflags & INPLOOKUP_WLOCKPCB) 2239 INP_WLOCK_ASSERT(inp); 2240 else 2241 INP_RLOCK_ASSERT(inp); 2242 #endif 2243 return (inp); 2244 } 2245 #endif /* PCBGROUP */ 2246 2247 /* 2248 * Lookup PCB in hash list, using pcbinfo tables. This variation assumes 2249 * that the caller has locked the hash list, and will not perform any further 2250 * locking or reference operations on either the hash list or the connection. 2251 */ 2252 static struct inpcb * 2253 in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2254 u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags, 2255 struct ifnet *ifp) 2256 { 2257 struct inpcbhead *head; 2258 struct inpcb *inp, *tmpinp; 2259 u_short fport = fport_arg, lport = lport_arg; 2260 2261 KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0, 2262 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2263 INP_HASH_LOCK_ASSERT(pcbinfo); 2264 2265 /* 2266 * First look for an exact match. 2267 */ 2268 tmpinp = NULL; 2269 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport, 2270 pcbinfo->ipi_hashmask)]; 2271 CK_LIST_FOREACH(inp, head, inp_hash) { 2272 #ifdef INET6 2273 /* XXX inp locking */ 2274 if ((inp->inp_vflag & INP_IPV4) == 0) 2275 continue; 2276 #endif 2277 if (inp->inp_faddr.s_addr == faddr.s_addr && 2278 inp->inp_laddr.s_addr == laddr.s_addr && 2279 inp->inp_fport == fport && 2280 inp->inp_lport == lport) { 2281 /* 2282 * XXX We should be able to directly return 2283 * the inp here, without any checks. 2284 * Well unless both bound with SO_REUSEPORT? 2285 */ 2286 if (prison_flag(inp->inp_cred, PR_IP4)) 2287 return (inp); 2288 if (tmpinp == NULL) 2289 tmpinp = inp; 2290 } 2291 } 2292 if (tmpinp != NULL) 2293 return (tmpinp); 2294 2295 /* 2296 * Then look in lb group (for wildcard match). 2297 */ 2298 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 2299 inp = in_pcblookup_lbgroup(pcbinfo, &laddr, lport, &faddr, 2300 fport, lookupflags); 2301 if (inp != NULL) 2302 return (inp); 2303 } 2304 2305 /* 2306 * Then look for a wildcard match, if requested. 2307 */ 2308 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 2309 struct inpcb *local_wild = NULL, *local_exact = NULL; 2310 #ifdef INET6 2311 struct inpcb *local_wild_mapped = NULL; 2312 #endif 2313 struct inpcb *jail_wild = NULL; 2314 int injail; 2315 2316 /* 2317 * Order of socket selection - we always prefer jails. 2318 * 1. jailed, non-wild. 2319 * 2. jailed, wild. 2320 * 3. non-jailed, non-wild. 2321 * 4. non-jailed, wild. 2322 */ 2323 2324 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport, 2325 0, pcbinfo->ipi_hashmask)]; 2326 CK_LIST_FOREACH(inp, head, inp_hash) { 2327 #ifdef INET6 2328 /* XXX inp locking */ 2329 if ((inp->inp_vflag & INP_IPV4) == 0) 2330 continue; 2331 #endif 2332 if (inp->inp_faddr.s_addr != INADDR_ANY || 2333 inp->inp_lport != lport) 2334 continue; 2335 2336 injail = prison_flag(inp->inp_cred, PR_IP4); 2337 if (injail) { 2338 if (prison_check_ip4(inp->inp_cred, 2339 &laddr) != 0) 2340 continue; 2341 } else { 2342 if (local_exact != NULL) 2343 continue; 2344 } 2345 2346 if (inp->inp_laddr.s_addr == laddr.s_addr) { 2347 if (injail) 2348 return (inp); 2349 else 2350 local_exact = inp; 2351 } else if (inp->inp_laddr.s_addr == INADDR_ANY) { 2352 #ifdef INET6 2353 /* XXX inp locking, NULL check */ 2354 if (inp->inp_vflag & INP_IPV6PROTO) 2355 local_wild_mapped = inp; 2356 else 2357 #endif 2358 if (injail) 2359 jail_wild = inp; 2360 else 2361 local_wild = inp; 2362 } 2363 } /* LIST_FOREACH */ 2364 if (jail_wild != NULL) 2365 return (jail_wild); 2366 if (local_exact != NULL) 2367 return (local_exact); 2368 if (local_wild != NULL) 2369 return (local_wild); 2370 #ifdef INET6 2371 if (local_wild_mapped != NULL) 2372 return (local_wild_mapped); 2373 #endif 2374 } /* if ((lookupflags & INPLOOKUP_WILDCARD) != 0) */ 2375 2376 return (NULL); 2377 } 2378 2379 /* 2380 * Lookup PCB in hash list, using pcbinfo tables. This variation locks the 2381 * hash list lock, and will return the inpcb locked (i.e., requires 2382 * INPLOOKUP_LOCKPCB). 2383 */ 2384 static struct inpcb * 2385 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2386 u_int fport, struct in_addr laddr, u_int lport, int lookupflags, 2387 struct ifnet *ifp) 2388 { 2389 struct inpcb *inp; 2390 2391 inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport, 2392 (lookupflags & ~(INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)), ifp); 2393 if (inp != NULL) { 2394 if (lookupflags & INPLOOKUP_WLOCKPCB) { 2395 INP_WLOCK(inp); 2396 if (__predict_false(inp->inp_flags2 & INP_FREED)) { 2397 INP_WUNLOCK(inp); 2398 inp = NULL; 2399 } 2400 } else if (lookupflags & INPLOOKUP_RLOCKPCB) { 2401 INP_RLOCK(inp); 2402 if (__predict_false(inp->inp_flags2 & INP_FREED)) { 2403 INP_RUNLOCK(inp); 2404 inp = NULL; 2405 } 2406 } else 2407 panic("%s: locking bug", __func__); 2408 #ifdef INVARIANTS 2409 if (inp != NULL) { 2410 if (lookupflags & INPLOOKUP_WLOCKPCB) 2411 INP_WLOCK_ASSERT(inp); 2412 else 2413 INP_RLOCK_ASSERT(inp); 2414 } 2415 #endif 2416 } 2417 2418 return (inp); 2419 } 2420 2421 /* 2422 * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf 2423 * from which a pre-calculated hash value may be extracted. 2424 * 2425 * Possibly more of this logic should be in in_pcbgroup.c. 2426 */ 2427 struct inpcb * 2428 in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport, 2429 struct in_addr laddr, u_int lport, int lookupflags, struct ifnet *ifp) 2430 { 2431 #if defined(PCBGROUP) && !defined(RSS) 2432 struct inpcbgroup *pcbgroup; 2433 #endif 2434 2435 KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0, 2436 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2437 KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0, 2438 ("%s: LOCKPCB not set", __func__)); 2439 2440 /* 2441 * When not using RSS, use connection groups in preference to the 2442 * reservation table when looking up 4-tuples. When using RSS, just 2443 * use the reservation table, due to the cost of the Toeplitz hash 2444 * in software. 2445 * 2446 * XXXRW: This policy belongs in the pcbgroup code, as in principle 2447 * we could be doing RSS with a non-Toeplitz hash that is affordable 2448 * in software. 2449 */ 2450 #if defined(PCBGROUP) && !defined(RSS) 2451 if (in_pcbgroup_enabled(pcbinfo)) { 2452 pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr, 2453 fport); 2454 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport, 2455 laddr, lport, lookupflags, ifp)); 2456 } 2457 #endif 2458 return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport, 2459 lookupflags, ifp)); 2460 } 2461 2462 struct inpcb * 2463 in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2464 u_int fport, struct in_addr laddr, u_int lport, int lookupflags, 2465 struct ifnet *ifp, struct mbuf *m) 2466 { 2467 #ifdef PCBGROUP 2468 struct inpcbgroup *pcbgroup; 2469 #endif 2470 2471 KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0, 2472 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2473 KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0, 2474 ("%s: LOCKPCB not set", __func__)); 2475 2476 #ifdef PCBGROUP 2477 /* 2478 * If we can use a hardware-generated hash to look up the connection 2479 * group, use that connection group to find the inpcb. Otherwise 2480 * fall back on a software hash -- or the reservation table if we're 2481 * using RSS. 2482 * 2483 * XXXRW: As above, that policy belongs in the pcbgroup code. 2484 */ 2485 if (in_pcbgroup_enabled(pcbinfo) && 2486 !(M_HASHTYPE_TEST(m, M_HASHTYPE_NONE))) { 2487 pcbgroup = in_pcbgroup_byhash(pcbinfo, M_HASHTYPE_GET(m), 2488 m->m_pkthdr.flowid); 2489 if (pcbgroup != NULL) 2490 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, 2491 fport, laddr, lport, lookupflags, ifp)); 2492 #ifndef RSS 2493 pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr, 2494 fport); 2495 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport, 2496 laddr, lport, lookupflags, ifp)); 2497 #endif 2498 } 2499 #endif 2500 return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport, 2501 lookupflags, ifp)); 2502 } 2503 #endif /* INET */ 2504 2505 /* 2506 * Insert PCB onto various hash lists. 2507 */ 2508 static int 2509 in_pcbinshash_internal(struct inpcb *inp, struct mbuf *m) 2510 { 2511 struct inpcbhead *pcbhash; 2512 struct inpcbporthead *pcbporthash; 2513 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2514 struct inpcbport *phd; 2515 u_int32_t hashkey_faddr; 2516 int so_options; 2517 2518 INP_WLOCK_ASSERT(inp); 2519 INP_HASH_WLOCK_ASSERT(pcbinfo); 2520 2521 KASSERT((inp->inp_flags & INP_INHASHLIST) == 0, 2522 ("in_pcbinshash: INP_INHASHLIST")); 2523 2524 #ifdef INET6 2525 if (inp->inp_vflag & INP_IPV6) 2526 hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr); 2527 else 2528 #endif 2529 hashkey_faddr = inp->inp_faddr.s_addr; 2530 2531 pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr, 2532 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 2533 2534 pcbporthash = &pcbinfo->ipi_porthashbase[ 2535 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)]; 2536 2537 /* 2538 * Add entry to load balance group. 2539 * Only do this if SO_REUSEPORT_LB is set. 2540 */ 2541 so_options = inp_so_options(inp); 2542 if (so_options & SO_REUSEPORT_LB) { 2543 int ret = in_pcbinslbgrouphash(inp); 2544 if (ret) { 2545 /* pcb lb group malloc fail (ret=ENOBUFS). */ 2546 return (ret); 2547 } 2548 } 2549 2550 /* 2551 * Go through port list and look for a head for this lport. 2552 */ 2553 CK_LIST_FOREACH(phd, pcbporthash, phd_hash) { 2554 if (phd->phd_port == inp->inp_lport) 2555 break; 2556 } 2557 /* 2558 * If none exists, malloc one and tack it on. 2559 */ 2560 if (phd == NULL) { 2561 phd = malloc(sizeof(struct inpcbport), M_PCB, M_NOWAIT); 2562 if (phd == NULL) { 2563 return (ENOBUFS); /* XXX */ 2564 } 2565 bzero(&phd->phd_epoch_ctx, sizeof(struct epoch_context)); 2566 phd->phd_port = inp->inp_lport; 2567 CK_LIST_INIT(&phd->phd_pcblist); 2568 CK_LIST_INSERT_HEAD(pcbporthash, phd, phd_hash); 2569 } 2570 inp->inp_phd = phd; 2571 CK_LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist); 2572 CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash); 2573 inp->inp_flags |= INP_INHASHLIST; 2574 #ifdef PCBGROUP 2575 if (m != NULL) { 2576 in_pcbgroup_update_mbuf(inp, m); 2577 } else { 2578 in_pcbgroup_update(inp); 2579 } 2580 #endif 2581 return (0); 2582 } 2583 2584 int 2585 in_pcbinshash(struct inpcb *inp) 2586 { 2587 2588 return (in_pcbinshash_internal(inp, NULL)); 2589 } 2590 2591 int 2592 in_pcbinshash_mbuf(struct inpcb *inp, struct mbuf *m) 2593 { 2594 2595 return (in_pcbinshash_internal(inp, m)); 2596 } 2597 2598 /* 2599 * Move PCB to the proper hash bucket when { faddr, fport } have been 2600 * changed. NOTE: This does not handle the case of the lport changing (the 2601 * hashed port list would have to be updated as well), so the lport must 2602 * not change after in_pcbinshash() has been called. 2603 */ 2604 void 2605 in_pcbrehash_mbuf(struct inpcb *inp, struct mbuf *m) 2606 { 2607 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2608 struct inpcbhead *head; 2609 u_int32_t hashkey_faddr; 2610 2611 INP_WLOCK_ASSERT(inp); 2612 INP_HASH_WLOCK_ASSERT(pcbinfo); 2613 2614 KASSERT(inp->inp_flags & INP_INHASHLIST, 2615 ("in_pcbrehash: !INP_INHASHLIST")); 2616 2617 #ifdef INET6 2618 if (inp->inp_vflag & INP_IPV6) 2619 hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr); 2620 else 2621 #endif 2622 hashkey_faddr = inp->inp_faddr.s_addr; 2623 2624 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr, 2625 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 2626 2627 CK_LIST_REMOVE(inp, inp_hash); 2628 CK_LIST_INSERT_HEAD(head, inp, inp_hash); 2629 2630 #ifdef PCBGROUP 2631 if (m != NULL) 2632 in_pcbgroup_update_mbuf(inp, m); 2633 else 2634 in_pcbgroup_update(inp); 2635 #endif 2636 } 2637 2638 void 2639 in_pcbrehash(struct inpcb *inp) 2640 { 2641 2642 in_pcbrehash_mbuf(inp, NULL); 2643 } 2644 2645 /* 2646 * Remove PCB from various lists. 2647 */ 2648 static void 2649 in_pcbremlists(struct inpcb *inp) 2650 { 2651 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2652 2653 #ifdef INVARIANTS 2654 if (pcbinfo == &V_tcbinfo) { 2655 NET_EPOCH_ASSERT(); 2656 } else { 2657 INP_INFO_WLOCK_ASSERT(pcbinfo); 2658 } 2659 #endif 2660 2661 INP_WLOCK_ASSERT(inp); 2662 INP_LIST_WLOCK_ASSERT(pcbinfo); 2663 2664 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 2665 if (inp->inp_flags & INP_INHASHLIST) { 2666 struct inpcbport *phd = inp->inp_phd; 2667 2668 INP_HASH_WLOCK(pcbinfo); 2669 2670 /* XXX: Only do if SO_REUSEPORT_LB set? */ 2671 in_pcbremlbgrouphash(inp); 2672 2673 CK_LIST_REMOVE(inp, inp_hash); 2674 CK_LIST_REMOVE(inp, inp_portlist); 2675 if (CK_LIST_FIRST(&phd->phd_pcblist) == NULL) { 2676 CK_LIST_REMOVE(phd, phd_hash); 2677 epoch_call(net_epoch_preempt, &phd->phd_epoch_ctx, inpcbport_free); 2678 } 2679 INP_HASH_WUNLOCK(pcbinfo); 2680 inp->inp_flags &= ~INP_INHASHLIST; 2681 } 2682 CK_LIST_REMOVE(inp, inp_list); 2683 pcbinfo->ipi_count--; 2684 #ifdef PCBGROUP 2685 in_pcbgroup_remove(inp); 2686 #endif 2687 } 2688 2689 /* 2690 * Check for alternatives when higher level complains 2691 * about service problems. For now, invalidate cached 2692 * routing information. If the route was created dynamically 2693 * (by a redirect), time to try a default gateway again. 2694 */ 2695 void 2696 in_losing(struct inpcb *inp) 2697 { 2698 2699 RO_INVALIDATE_CACHE(&inp->inp_route); 2700 return; 2701 } 2702 2703 /* 2704 * A set label operation has occurred at the socket layer, propagate the 2705 * label change into the in_pcb for the socket. 2706 */ 2707 void 2708 in_pcbsosetlabel(struct socket *so) 2709 { 2710 #ifdef MAC 2711 struct inpcb *inp; 2712 2713 inp = sotoinpcb(so); 2714 KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL")); 2715 2716 INP_WLOCK(inp); 2717 SOCK_LOCK(so); 2718 mac_inpcb_sosetlabel(so, inp); 2719 SOCK_UNLOCK(so); 2720 INP_WUNLOCK(inp); 2721 #endif 2722 } 2723 2724 /* 2725 * ipport_tick runs once per second, determining if random port allocation 2726 * should be continued. If more than ipport_randomcps ports have been 2727 * allocated in the last second, then we return to sequential port 2728 * allocation. We return to random allocation only once we drop below 2729 * ipport_randomcps for at least ipport_randomtime seconds. 2730 */ 2731 static void 2732 ipport_tick(void *xtp) 2733 { 2734 VNET_ITERATOR_DECL(vnet_iter); 2735 2736 VNET_LIST_RLOCK_NOSLEEP(); 2737 VNET_FOREACH(vnet_iter) { 2738 CURVNET_SET(vnet_iter); /* XXX appease INVARIANTS here */ 2739 if (V_ipport_tcpallocs <= 2740 V_ipport_tcplastcount + V_ipport_randomcps) { 2741 if (V_ipport_stoprandom > 0) 2742 V_ipport_stoprandom--; 2743 } else 2744 V_ipport_stoprandom = V_ipport_randomtime; 2745 V_ipport_tcplastcount = V_ipport_tcpallocs; 2746 CURVNET_RESTORE(); 2747 } 2748 VNET_LIST_RUNLOCK_NOSLEEP(); 2749 callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL); 2750 } 2751 2752 static void 2753 ip_fini(void *xtp) 2754 { 2755 2756 callout_stop(&ipport_tick_callout); 2757 } 2758 2759 /* 2760 * The ipport_callout should start running at about the time we attach the 2761 * inet or inet6 domains. 2762 */ 2763 static void 2764 ipport_tick_init(const void *unused __unused) 2765 { 2766 2767 /* Start ipport_tick. */ 2768 callout_init(&ipport_tick_callout, 1); 2769 callout_reset(&ipport_tick_callout, 1, ipport_tick, NULL); 2770 EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL, 2771 SHUTDOWN_PRI_DEFAULT); 2772 } 2773 SYSINIT(ipport_tick_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_MIDDLE, 2774 ipport_tick_init, NULL); 2775 2776 void 2777 inp_wlock(struct inpcb *inp) 2778 { 2779 2780 INP_WLOCK(inp); 2781 } 2782 2783 void 2784 inp_wunlock(struct inpcb *inp) 2785 { 2786 2787 INP_WUNLOCK(inp); 2788 } 2789 2790 void 2791 inp_rlock(struct inpcb *inp) 2792 { 2793 2794 INP_RLOCK(inp); 2795 } 2796 2797 void 2798 inp_runlock(struct inpcb *inp) 2799 { 2800 2801 INP_RUNLOCK(inp); 2802 } 2803 2804 #ifdef INVARIANT_SUPPORT 2805 void 2806 inp_lock_assert(struct inpcb *inp) 2807 { 2808 2809 INP_WLOCK_ASSERT(inp); 2810 } 2811 2812 void 2813 inp_unlock_assert(struct inpcb *inp) 2814 { 2815 2816 INP_UNLOCK_ASSERT(inp); 2817 } 2818 #endif 2819 2820 void 2821 inp_apply_all(void (*func)(struct inpcb *, void *), void *arg) 2822 { 2823 struct inpcb *inp; 2824 2825 INP_INFO_WLOCK(&V_tcbinfo); 2826 CK_LIST_FOREACH(inp, V_tcbinfo.ipi_listhead, inp_list) { 2827 INP_WLOCK(inp); 2828 func(inp, arg); 2829 INP_WUNLOCK(inp); 2830 } 2831 INP_INFO_WUNLOCK(&V_tcbinfo); 2832 } 2833 2834 struct socket * 2835 inp_inpcbtosocket(struct inpcb *inp) 2836 { 2837 2838 INP_WLOCK_ASSERT(inp); 2839 return (inp->inp_socket); 2840 } 2841 2842 struct tcpcb * 2843 inp_inpcbtotcpcb(struct inpcb *inp) 2844 { 2845 2846 INP_WLOCK_ASSERT(inp); 2847 return ((struct tcpcb *)inp->inp_ppcb); 2848 } 2849 2850 int 2851 inp_ip_tos_get(const struct inpcb *inp) 2852 { 2853 2854 return (inp->inp_ip_tos); 2855 } 2856 2857 void 2858 inp_ip_tos_set(struct inpcb *inp, int val) 2859 { 2860 2861 inp->inp_ip_tos = val; 2862 } 2863 2864 void 2865 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp, 2866 uint32_t *faddr, uint16_t *fp) 2867 { 2868 2869 INP_LOCK_ASSERT(inp); 2870 *laddr = inp->inp_laddr.s_addr; 2871 *faddr = inp->inp_faddr.s_addr; 2872 *lp = inp->inp_lport; 2873 *fp = inp->inp_fport; 2874 } 2875 2876 struct inpcb * 2877 so_sotoinpcb(struct socket *so) 2878 { 2879 2880 return (sotoinpcb(so)); 2881 } 2882 2883 struct tcpcb * 2884 so_sototcpcb(struct socket *so) 2885 { 2886 2887 return (sototcpcb(so)); 2888 } 2889 2890 /* 2891 * Create an external-format (``xinpcb'') structure using the information in 2892 * the kernel-format in_pcb structure pointed to by inp. This is done to 2893 * reduce the spew of irrelevant information over this interface, to isolate 2894 * user code from changes in the kernel structure, and potentially to provide 2895 * information-hiding if we decide that some of this information should be 2896 * hidden from users. 2897 */ 2898 void 2899 in_pcbtoxinpcb(const struct inpcb *inp, struct xinpcb *xi) 2900 { 2901 2902 bzero(xi, sizeof(*xi)); 2903 xi->xi_len = sizeof(struct xinpcb); 2904 if (inp->inp_socket) 2905 sotoxsocket(inp->inp_socket, &xi->xi_socket); 2906 bcopy(&inp->inp_inc, &xi->inp_inc, sizeof(struct in_conninfo)); 2907 xi->inp_gencnt = inp->inp_gencnt; 2908 xi->inp_ppcb = (uintptr_t)inp->inp_ppcb; 2909 xi->inp_flow = inp->inp_flow; 2910 xi->inp_flowid = inp->inp_flowid; 2911 xi->inp_flowtype = inp->inp_flowtype; 2912 xi->inp_flags = inp->inp_flags; 2913 xi->inp_flags2 = inp->inp_flags2; 2914 xi->inp_rss_listen_bucket = inp->inp_rss_listen_bucket; 2915 xi->in6p_cksum = inp->in6p_cksum; 2916 xi->in6p_hops = inp->in6p_hops; 2917 xi->inp_ip_tos = inp->inp_ip_tos; 2918 xi->inp_vflag = inp->inp_vflag; 2919 xi->inp_ip_ttl = inp->inp_ip_ttl; 2920 xi->inp_ip_p = inp->inp_ip_p; 2921 xi->inp_ip_minttl = inp->inp_ip_minttl; 2922 } 2923 2924 #ifdef DDB 2925 static void 2926 db_print_indent(int indent) 2927 { 2928 int i; 2929 2930 for (i = 0; i < indent; i++) 2931 db_printf(" "); 2932 } 2933 2934 static void 2935 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent) 2936 { 2937 char faddr_str[48], laddr_str[48]; 2938 2939 db_print_indent(indent); 2940 db_printf("%s at %p\n", name, inc); 2941 2942 indent += 2; 2943 2944 #ifdef INET6 2945 if (inc->inc_flags & INC_ISIPV6) { 2946 /* IPv6. */ 2947 ip6_sprintf(laddr_str, &inc->inc6_laddr); 2948 ip6_sprintf(faddr_str, &inc->inc6_faddr); 2949 } else 2950 #endif 2951 { 2952 /* IPv4. */ 2953 inet_ntoa_r(inc->inc_laddr, laddr_str); 2954 inet_ntoa_r(inc->inc_faddr, faddr_str); 2955 } 2956 db_print_indent(indent); 2957 db_printf("inc_laddr %s inc_lport %u\n", laddr_str, 2958 ntohs(inc->inc_lport)); 2959 db_print_indent(indent); 2960 db_printf("inc_faddr %s inc_fport %u\n", faddr_str, 2961 ntohs(inc->inc_fport)); 2962 } 2963 2964 static void 2965 db_print_inpflags(int inp_flags) 2966 { 2967 int comma; 2968 2969 comma = 0; 2970 if (inp_flags & INP_RECVOPTS) { 2971 db_printf("%sINP_RECVOPTS", comma ? ", " : ""); 2972 comma = 1; 2973 } 2974 if (inp_flags & INP_RECVRETOPTS) { 2975 db_printf("%sINP_RECVRETOPTS", comma ? ", " : ""); 2976 comma = 1; 2977 } 2978 if (inp_flags & INP_RECVDSTADDR) { 2979 db_printf("%sINP_RECVDSTADDR", comma ? ", " : ""); 2980 comma = 1; 2981 } 2982 if (inp_flags & INP_ORIGDSTADDR) { 2983 db_printf("%sINP_ORIGDSTADDR", comma ? ", " : ""); 2984 comma = 1; 2985 } 2986 if (inp_flags & INP_HDRINCL) { 2987 db_printf("%sINP_HDRINCL", comma ? ", " : ""); 2988 comma = 1; 2989 } 2990 if (inp_flags & INP_HIGHPORT) { 2991 db_printf("%sINP_HIGHPORT", comma ? ", " : ""); 2992 comma = 1; 2993 } 2994 if (inp_flags & INP_LOWPORT) { 2995 db_printf("%sINP_LOWPORT", comma ? ", " : ""); 2996 comma = 1; 2997 } 2998 if (inp_flags & INP_ANONPORT) { 2999 db_printf("%sINP_ANONPORT", comma ? ", " : ""); 3000 comma = 1; 3001 } 3002 if (inp_flags & INP_RECVIF) { 3003 db_printf("%sINP_RECVIF", comma ? ", " : ""); 3004 comma = 1; 3005 } 3006 if (inp_flags & INP_MTUDISC) { 3007 db_printf("%sINP_MTUDISC", comma ? ", " : ""); 3008 comma = 1; 3009 } 3010 if (inp_flags & INP_RECVTTL) { 3011 db_printf("%sINP_RECVTTL", comma ? ", " : ""); 3012 comma = 1; 3013 } 3014 if (inp_flags & INP_DONTFRAG) { 3015 db_printf("%sINP_DONTFRAG", comma ? ", " : ""); 3016 comma = 1; 3017 } 3018 if (inp_flags & INP_RECVTOS) { 3019 db_printf("%sINP_RECVTOS", comma ? ", " : ""); 3020 comma = 1; 3021 } 3022 if (inp_flags & IN6P_IPV6_V6ONLY) { 3023 db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : ""); 3024 comma = 1; 3025 } 3026 if (inp_flags & IN6P_PKTINFO) { 3027 db_printf("%sIN6P_PKTINFO", comma ? ", " : ""); 3028 comma = 1; 3029 } 3030 if (inp_flags & IN6P_HOPLIMIT) { 3031 db_printf("%sIN6P_HOPLIMIT", comma ? ", " : ""); 3032 comma = 1; 3033 } 3034 if (inp_flags & IN6P_HOPOPTS) { 3035 db_printf("%sIN6P_HOPOPTS", comma ? ", " : ""); 3036 comma = 1; 3037 } 3038 if (inp_flags & IN6P_DSTOPTS) { 3039 db_printf("%sIN6P_DSTOPTS", comma ? ", " : ""); 3040 comma = 1; 3041 } 3042 if (inp_flags & IN6P_RTHDR) { 3043 db_printf("%sIN6P_RTHDR", comma ? ", " : ""); 3044 comma = 1; 3045 } 3046 if (inp_flags & IN6P_RTHDRDSTOPTS) { 3047 db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : ""); 3048 comma = 1; 3049 } 3050 if (inp_flags & IN6P_TCLASS) { 3051 db_printf("%sIN6P_TCLASS", comma ? ", " : ""); 3052 comma = 1; 3053 } 3054 if (inp_flags & IN6P_AUTOFLOWLABEL) { 3055 db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : ""); 3056 comma = 1; 3057 } 3058 if (inp_flags & INP_TIMEWAIT) { 3059 db_printf("%sINP_TIMEWAIT", comma ? ", " : ""); 3060 comma = 1; 3061 } 3062 if (inp_flags & INP_ONESBCAST) { 3063 db_printf("%sINP_ONESBCAST", comma ? ", " : ""); 3064 comma = 1; 3065 } 3066 if (inp_flags & INP_DROPPED) { 3067 db_printf("%sINP_DROPPED", comma ? ", " : ""); 3068 comma = 1; 3069 } 3070 if (inp_flags & INP_SOCKREF) { 3071 db_printf("%sINP_SOCKREF", comma ? ", " : ""); 3072 comma = 1; 3073 } 3074 if (inp_flags & IN6P_RFC2292) { 3075 db_printf("%sIN6P_RFC2292", comma ? ", " : ""); 3076 comma = 1; 3077 } 3078 if (inp_flags & IN6P_MTU) { 3079 db_printf("IN6P_MTU%s", comma ? ", " : ""); 3080 comma = 1; 3081 } 3082 } 3083 3084 static void 3085 db_print_inpvflag(u_char inp_vflag) 3086 { 3087 int comma; 3088 3089 comma = 0; 3090 if (inp_vflag & INP_IPV4) { 3091 db_printf("%sINP_IPV4", comma ? ", " : ""); 3092 comma = 1; 3093 } 3094 if (inp_vflag & INP_IPV6) { 3095 db_printf("%sINP_IPV6", comma ? ", " : ""); 3096 comma = 1; 3097 } 3098 if (inp_vflag & INP_IPV6PROTO) { 3099 db_printf("%sINP_IPV6PROTO", comma ? ", " : ""); 3100 comma = 1; 3101 } 3102 } 3103 3104 static void 3105 db_print_inpcb(struct inpcb *inp, const char *name, int indent) 3106 { 3107 3108 db_print_indent(indent); 3109 db_printf("%s at %p\n", name, inp); 3110 3111 indent += 2; 3112 3113 db_print_indent(indent); 3114 db_printf("inp_flow: 0x%x\n", inp->inp_flow); 3115 3116 db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent); 3117 3118 db_print_indent(indent); 3119 db_printf("inp_ppcb: %p inp_pcbinfo: %p inp_socket: %p\n", 3120 inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket); 3121 3122 db_print_indent(indent); 3123 db_printf("inp_label: %p inp_flags: 0x%x (", 3124 inp->inp_label, inp->inp_flags); 3125 db_print_inpflags(inp->inp_flags); 3126 db_printf(")\n"); 3127 3128 db_print_indent(indent); 3129 db_printf("inp_sp: %p inp_vflag: 0x%x (", inp->inp_sp, 3130 inp->inp_vflag); 3131 db_print_inpvflag(inp->inp_vflag); 3132 db_printf(")\n"); 3133 3134 db_print_indent(indent); 3135 db_printf("inp_ip_ttl: %d inp_ip_p: %d inp_ip_minttl: %d\n", 3136 inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl); 3137 3138 db_print_indent(indent); 3139 #ifdef INET6 3140 if (inp->inp_vflag & INP_IPV6) { 3141 db_printf("in6p_options: %p in6p_outputopts: %p " 3142 "in6p_moptions: %p\n", inp->in6p_options, 3143 inp->in6p_outputopts, inp->in6p_moptions); 3144 db_printf("in6p_icmp6filt: %p in6p_cksum %d " 3145 "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum, 3146 inp->in6p_hops); 3147 } else 3148 #endif 3149 { 3150 db_printf("inp_ip_tos: %d inp_ip_options: %p " 3151 "inp_ip_moptions: %p\n", inp->inp_ip_tos, 3152 inp->inp_options, inp->inp_moptions); 3153 } 3154 3155 db_print_indent(indent); 3156 db_printf("inp_phd: %p inp_gencnt: %ju\n", inp->inp_phd, 3157 (uintmax_t)inp->inp_gencnt); 3158 } 3159 3160 DB_SHOW_COMMAND(inpcb, db_show_inpcb) 3161 { 3162 struct inpcb *inp; 3163 3164 if (!have_addr) { 3165 db_printf("usage: show inpcb <addr>\n"); 3166 return; 3167 } 3168 inp = (struct inpcb *)addr; 3169 3170 db_print_inpcb(inp, "inpcb", 0); 3171 } 3172 #endif /* DDB */ 3173 3174 #ifdef RATELIMIT 3175 /* 3176 * Modify TX rate limit based on the existing "inp->inp_snd_tag", 3177 * if any. 3178 */ 3179 int 3180 in_pcbmodify_txrtlmt(struct inpcb *inp, uint32_t max_pacing_rate) 3181 { 3182 union if_snd_tag_modify_params params = { 3183 .rate_limit.max_rate = max_pacing_rate, 3184 .rate_limit.flags = M_NOWAIT, 3185 }; 3186 struct m_snd_tag *mst; 3187 struct ifnet *ifp; 3188 int error; 3189 3190 mst = inp->inp_snd_tag; 3191 if (mst == NULL) 3192 return (EINVAL); 3193 3194 ifp = mst->ifp; 3195 if (ifp == NULL) 3196 return (EINVAL); 3197 3198 if (ifp->if_snd_tag_modify == NULL) { 3199 error = EOPNOTSUPP; 3200 } else { 3201 error = ifp->if_snd_tag_modify(mst, ¶ms); 3202 } 3203 return (error); 3204 } 3205 3206 /* 3207 * Query existing TX rate limit based on the existing 3208 * "inp->inp_snd_tag", if any. 3209 */ 3210 int 3211 in_pcbquery_txrtlmt(struct inpcb *inp, uint32_t *p_max_pacing_rate) 3212 { 3213 union if_snd_tag_query_params params = { }; 3214 struct m_snd_tag *mst; 3215 struct ifnet *ifp; 3216 int error; 3217 3218 mst = inp->inp_snd_tag; 3219 if (mst == NULL) 3220 return (EINVAL); 3221 3222 ifp = mst->ifp; 3223 if (ifp == NULL) 3224 return (EINVAL); 3225 3226 if (ifp->if_snd_tag_query == NULL) { 3227 error = EOPNOTSUPP; 3228 } else { 3229 error = ifp->if_snd_tag_query(mst, ¶ms); 3230 if (error == 0 && p_max_pacing_rate != NULL) 3231 *p_max_pacing_rate = params.rate_limit.max_rate; 3232 } 3233 return (error); 3234 } 3235 3236 /* 3237 * Query existing TX queue level based on the existing 3238 * "inp->inp_snd_tag", if any. 3239 */ 3240 int 3241 in_pcbquery_txrlevel(struct inpcb *inp, uint32_t *p_txqueue_level) 3242 { 3243 union if_snd_tag_query_params params = { }; 3244 struct m_snd_tag *mst; 3245 struct ifnet *ifp; 3246 int error; 3247 3248 mst = inp->inp_snd_tag; 3249 if (mst == NULL) 3250 return (EINVAL); 3251 3252 ifp = mst->ifp; 3253 if (ifp == NULL) 3254 return (EINVAL); 3255 3256 if (ifp->if_snd_tag_query == NULL) 3257 return (EOPNOTSUPP); 3258 3259 error = ifp->if_snd_tag_query(mst, ¶ms); 3260 if (error == 0 && p_txqueue_level != NULL) 3261 *p_txqueue_level = params.rate_limit.queue_level; 3262 return (error); 3263 } 3264 3265 /* 3266 * Allocate a new TX rate limit send tag from the network interface 3267 * given by the "ifp" argument and save it in "inp->inp_snd_tag": 3268 */ 3269 int 3270 in_pcbattach_txrtlmt(struct inpcb *inp, struct ifnet *ifp, 3271 uint32_t flowtype, uint32_t flowid, uint32_t max_pacing_rate, struct m_snd_tag **st) 3272 3273 { 3274 union if_snd_tag_alloc_params params = { 3275 .rate_limit.hdr.type = (max_pacing_rate == -1U) ? 3276 IF_SND_TAG_TYPE_UNLIMITED : IF_SND_TAG_TYPE_RATE_LIMIT, 3277 .rate_limit.hdr.flowid = flowid, 3278 .rate_limit.hdr.flowtype = flowtype, 3279 .rate_limit.max_rate = max_pacing_rate, 3280 .rate_limit.flags = M_NOWAIT, 3281 }; 3282 int error; 3283 3284 INP_WLOCK_ASSERT(inp); 3285 3286 if (*st != NULL) 3287 return (EINVAL); 3288 3289 if (ifp->if_snd_tag_alloc == NULL) { 3290 error = EOPNOTSUPP; 3291 } else { 3292 error = ifp->if_snd_tag_alloc(ifp, ¶ms, &inp->inp_snd_tag); 3293 3294 #ifdef INET 3295 if (error == 0) { 3296 counter_u64_add(rate_limit_set_ok, 1); 3297 counter_u64_add(rate_limit_active, 1); 3298 } else 3299 counter_u64_add(rate_limit_alloc_fail, 1); 3300 #endif 3301 } 3302 return (error); 3303 } 3304 3305 void 3306 in_pcbdetach_tag(struct ifnet *ifp, struct m_snd_tag *mst) 3307 { 3308 if (ifp == NULL) 3309 return; 3310 3311 /* 3312 * If the device was detached while we still had reference(s) 3313 * on the ifp, we assume if_snd_tag_free() was replaced with 3314 * stubs. 3315 */ 3316 ifp->if_snd_tag_free(mst); 3317 3318 /* release reference count on network interface */ 3319 if_rele(ifp); 3320 #ifdef INET 3321 counter_u64_add(rate_limit_active, -1); 3322 #endif 3323 } 3324 3325 /* 3326 * Free an existing TX rate limit tag based on the "inp->inp_snd_tag", 3327 * if any: 3328 */ 3329 void 3330 in_pcbdetach_txrtlmt(struct inpcb *inp) 3331 { 3332 struct m_snd_tag *mst; 3333 3334 INP_WLOCK_ASSERT(inp); 3335 3336 mst = inp->inp_snd_tag; 3337 inp->inp_snd_tag = NULL; 3338 3339 if (mst == NULL) 3340 return; 3341 3342 m_snd_tag_rele(mst); 3343 } 3344 3345 int 3346 in_pcboutput_txrtlmt_locked(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb, uint32_t max_pacing_rate) 3347 { 3348 int error; 3349 3350 /* 3351 * If the existing send tag is for the wrong interface due to 3352 * a route change, first drop the existing tag. Set the 3353 * CHANGED flag so that we will keep trying to allocate a new 3354 * tag if we fail to allocate one this time. 3355 */ 3356 if (inp->inp_snd_tag != NULL && inp->inp_snd_tag->ifp != ifp) { 3357 in_pcbdetach_txrtlmt(inp); 3358 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 3359 } 3360 3361 /* 3362 * NOTE: When attaching to a network interface a reference is 3363 * made to ensure the network interface doesn't go away until 3364 * all ratelimit connections are gone. The network interface 3365 * pointers compared below represent valid network interfaces, 3366 * except when comparing towards NULL. 3367 */ 3368 if (max_pacing_rate == 0 && inp->inp_snd_tag == NULL) { 3369 error = 0; 3370 } else if (!(ifp->if_capenable & IFCAP_TXRTLMT)) { 3371 if (inp->inp_snd_tag != NULL) 3372 in_pcbdetach_txrtlmt(inp); 3373 error = 0; 3374 } else if (inp->inp_snd_tag == NULL) { 3375 /* 3376 * In order to utilize packet pacing with RSS, we need 3377 * to wait until there is a valid RSS hash before we 3378 * can proceed: 3379 */ 3380 if (M_HASHTYPE_GET(mb) == M_HASHTYPE_NONE) { 3381 error = EAGAIN; 3382 } else { 3383 error = in_pcbattach_txrtlmt(inp, ifp, M_HASHTYPE_GET(mb), 3384 mb->m_pkthdr.flowid, max_pacing_rate, &inp->inp_snd_tag); 3385 } 3386 } else { 3387 error = in_pcbmodify_txrtlmt(inp, max_pacing_rate); 3388 } 3389 if (error == 0 || error == EOPNOTSUPP) 3390 inp->inp_flags2 &= ~INP_RATE_LIMIT_CHANGED; 3391 3392 return (error); 3393 } 3394 3395 /* 3396 * This function should be called when the INP_RATE_LIMIT_CHANGED flag 3397 * is set in the fast path and will attach/detach/modify the TX rate 3398 * limit send tag based on the socket's so_max_pacing_rate value. 3399 */ 3400 void 3401 in_pcboutput_txrtlmt(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb) 3402 { 3403 struct socket *socket; 3404 uint32_t max_pacing_rate; 3405 bool did_upgrade; 3406 int error; 3407 3408 if (inp == NULL) 3409 return; 3410 3411 socket = inp->inp_socket; 3412 if (socket == NULL) 3413 return; 3414 3415 if (!INP_WLOCKED(inp)) { 3416 /* 3417 * NOTE: If the write locking fails, we need to bail 3418 * out and use the non-ratelimited ring for the 3419 * transmit until there is a new chance to get the 3420 * write lock. 3421 */ 3422 if (!INP_TRY_UPGRADE(inp)) 3423 return; 3424 did_upgrade = 1; 3425 } else { 3426 did_upgrade = 0; 3427 } 3428 3429 /* 3430 * NOTE: The so_max_pacing_rate value is read unlocked, 3431 * because atomic updates are not required since the variable 3432 * is checked at every mbuf we send. It is assumed that the 3433 * variable read itself will be atomic. 3434 */ 3435 max_pacing_rate = socket->so_max_pacing_rate; 3436 3437 error = in_pcboutput_txrtlmt_locked(inp, ifp, mb, max_pacing_rate); 3438 3439 if (did_upgrade) 3440 INP_DOWNGRADE(inp); 3441 } 3442 3443 /* 3444 * Track route changes for TX rate limiting. 3445 */ 3446 void 3447 in_pcboutput_eagain(struct inpcb *inp) 3448 { 3449 bool did_upgrade; 3450 3451 if (inp == NULL) 3452 return; 3453 3454 if (inp->inp_snd_tag == NULL) 3455 return; 3456 3457 if (!INP_WLOCKED(inp)) { 3458 /* 3459 * NOTE: If the write locking fails, we need to bail 3460 * out and use the non-ratelimited ring for the 3461 * transmit until there is a new chance to get the 3462 * write lock. 3463 */ 3464 if (!INP_TRY_UPGRADE(inp)) 3465 return; 3466 did_upgrade = 1; 3467 } else { 3468 did_upgrade = 0; 3469 } 3470 3471 /* detach rate limiting */ 3472 in_pcbdetach_txrtlmt(inp); 3473 3474 /* make sure new mbuf send tag allocation is made */ 3475 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 3476 3477 if (did_upgrade) 3478 INP_DOWNGRADE(inp); 3479 } 3480 3481 #ifdef INET 3482 static void 3483 rl_init(void *st) 3484 { 3485 rate_limit_active = counter_u64_alloc(M_WAITOK); 3486 rate_limit_alloc_fail = counter_u64_alloc(M_WAITOK); 3487 rate_limit_set_ok = counter_u64_alloc(M_WAITOK); 3488 } 3489 3490 SYSINIT(rl, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, rl_init, NULL); 3491 #endif 3492 #endif /* RATELIMIT */ 3493