1 /*- 2 * Copyright (c) 1982, 1986, 1991, 1993, 1995 3 * The Regents of the University of California. 4 * Copyright (c) 2007-2009 Robert N. M. Watson 5 * Copyright (c) 2010-2011 Juniper Networks, Inc. 6 * All rights reserved. 7 * 8 * Portions of this software were developed by Robert N. M. Watson under 9 * contract to Juniper Networks, Inc. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 4. Neither the name of the University nor the names of its contributors 20 * may be used to endorse or promote products derived from this software 21 * without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 33 * SUCH DAMAGE. 34 * 35 * @(#)in_pcb.c 8.4 (Berkeley) 5/24/95 36 */ 37 38 #include <sys/cdefs.h> 39 __FBSDID("$FreeBSD$"); 40 41 #include "opt_ddb.h" 42 #include "opt_ipsec.h" 43 #include "opt_inet.h" 44 #include "opt_inet6.h" 45 #include "opt_pcbgroup.h" 46 #include "opt_rss.h" 47 48 #include <sys/param.h> 49 #include <sys/systm.h> 50 #include <sys/malloc.h> 51 #include <sys/mbuf.h> 52 #include <sys/callout.h> 53 #include <sys/domain.h> 54 #include <sys/protosw.h> 55 #include <sys/socket.h> 56 #include <sys/socketvar.h> 57 #include <sys/priv.h> 58 #include <sys/proc.h> 59 #include <sys/refcount.h> 60 #include <sys/jail.h> 61 #include <sys/kernel.h> 62 #include <sys/sysctl.h> 63 64 #ifdef DDB 65 #include <ddb/ddb.h> 66 #endif 67 68 #include <vm/uma.h> 69 70 #include <net/if.h> 71 #include <net/if_var.h> 72 #include <net/if_types.h> 73 #include <net/route.h> 74 #include <net/vnet.h> 75 76 #if defined(INET) || defined(INET6) 77 #include <netinet/in.h> 78 #include <netinet/in_pcb.h> 79 #include <netinet/in_rss.h> 80 #include <netinet/ip_var.h> 81 #include <netinet/tcp_var.h> 82 #include <netinet/udp.h> 83 #include <netinet/udp_var.h> 84 #endif 85 #ifdef INET 86 #include <netinet/in_var.h> 87 #endif 88 #ifdef INET6 89 #include <netinet/ip6.h> 90 #include <netinet6/in6_pcb.h> 91 #include <netinet6/in6_var.h> 92 #include <netinet6/ip6_var.h> 93 #endif /* INET6 */ 94 95 96 #ifdef IPSEC 97 #include <netipsec/ipsec.h> 98 #include <netipsec/key.h> 99 #endif /* IPSEC */ 100 101 #include <security/mac/mac_framework.h> 102 103 static struct callout ipport_tick_callout; 104 105 /* 106 * These configure the range of local port addresses assigned to 107 * "unspecified" outgoing connections/packets/whatever. 108 */ 109 VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1; /* 1023 */ 110 VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART; /* 600 */ 111 VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST; /* 10000 */ 112 VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST; /* 65535 */ 113 VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO; /* 49152 */ 114 VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO; /* 65535 */ 115 116 /* 117 * Reserved ports accessible only to root. There are significant 118 * security considerations that must be accounted for when changing these, 119 * but the security benefits can be great. Please be careful. 120 */ 121 VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1; /* 1023 */ 122 VNET_DEFINE(int, ipport_reservedlow); 123 124 /* Variables dealing with random ephemeral port allocation. */ 125 VNET_DEFINE(int, ipport_randomized) = 1; /* user controlled via sysctl */ 126 VNET_DEFINE(int, ipport_randomcps) = 10; /* user controlled via sysctl */ 127 VNET_DEFINE(int, ipport_randomtime) = 45; /* user controlled via sysctl */ 128 VNET_DEFINE(int, ipport_stoprandom); /* toggled by ipport_tick */ 129 VNET_DEFINE(int, ipport_tcpallocs); 130 static VNET_DEFINE(int, ipport_tcplastcount); 131 132 #define V_ipport_tcplastcount VNET(ipport_tcplastcount) 133 134 static void in_pcbremlists(struct inpcb *inp); 135 #ifdef INET 136 static struct inpcb *in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, 137 struct in_addr faddr, u_int fport_arg, 138 struct in_addr laddr, u_int lport_arg, 139 int lookupflags, struct ifnet *ifp); 140 141 #define RANGECHK(var, min, max) \ 142 if ((var) < (min)) { (var) = (min); } \ 143 else if ((var) > (max)) { (var) = (max); } 144 145 static int 146 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS) 147 { 148 int error; 149 150 error = sysctl_handle_int(oidp, arg1, arg2, req); 151 if (error == 0) { 152 RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1); 153 RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1); 154 RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX); 155 RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX); 156 RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX); 157 RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX); 158 } 159 return (error); 160 } 161 162 #undef RANGECHK 163 164 static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, CTLFLAG_RW, 0, 165 "IP Ports"); 166 167 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst, 168 CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_lowfirstauto), 0, 169 &sysctl_net_ipport_check, "I", ""); 170 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast, 171 CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_lowlastauto), 0, 172 &sysctl_net_ipport_check, "I", ""); 173 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, first, 174 CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_firstauto), 0, 175 &sysctl_net_ipport_check, "I", ""); 176 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, last, 177 CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_lastauto), 0, 178 &sysctl_net_ipport_check, "I", ""); 179 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst, 180 CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_hifirstauto), 0, 181 &sysctl_net_ipport_check, "I", ""); 182 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, hilast, 183 CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_hilastauto), 0, 184 &sysctl_net_ipport_check, "I", ""); 185 SYSCTL_VNET_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh, 186 CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedhigh), 0, ""); 187 SYSCTL_VNET_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow, 188 CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, ""); 189 SYSCTL_VNET_INT(_net_inet_ip_portrange, OID_AUTO, randomized, CTLFLAG_RW, 190 &VNET_NAME(ipport_randomized), 0, "Enable random port allocation"); 191 SYSCTL_VNET_INT(_net_inet_ip_portrange, OID_AUTO, randomcps, CTLFLAG_RW, 192 &VNET_NAME(ipport_randomcps), 0, "Maximum number of random port " 193 "allocations before switching to a sequental one"); 194 SYSCTL_VNET_INT(_net_inet_ip_portrange, OID_AUTO, randomtime, CTLFLAG_RW, 195 &VNET_NAME(ipport_randomtime), 0, 196 "Minimum time to keep sequental port " 197 "allocation before switching to a random one"); 198 #endif /* INET */ 199 200 /* 201 * in_pcb.c: manage the Protocol Control Blocks. 202 * 203 * NOTE: It is assumed that most of these functions will be called with 204 * the pcbinfo lock held, and often, the inpcb lock held, as these utility 205 * functions often modify hash chains or addresses in pcbs. 206 */ 207 208 /* 209 * Initialize an inpcbinfo -- we should be able to reduce the number of 210 * arguments in time. 211 */ 212 void 213 in_pcbinfo_init(struct inpcbinfo *pcbinfo, const char *name, 214 struct inpcbhead *listhead, int hash_nelements, int porthash_nelements, 215 char *inpcbzone_name, uma_init inpcbzone_init, uma_fini inpcbzone_fini, 216 uint32_t inpcbzone_flags, u_int hashfields) 217 { 218 219 INP_INFO_LOCK_INIT(pcbinfo, name); 220 INP_HASH_LOCK_INIT(pcbinfo, "pcbinfohash"); /* XXXRW: argument? */ 221 #ifdef VIMAGE 222 pcbinfo->ipi_vnet = curvnet; 223 #endif 224 pcbinfo->ipi_listhead = listhead; 225 LIST_INIT(pcbinfo->ipi_listhead); 226 pcbinfo->ipi_count = 0; 227 pcbinfo->ipi_hashbase = hashinit(hash_nelements, M_PCB, 228 &pcbinfo->ipi_hashmask); 229 pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB, 230 &pcbinfo->ipi_porthashmask); 231 #ifdef PCBGROUP 232 in_pcbgroup_init(pcbinfo, hashfields, hash_nelements); 233 #endif 234 pcbinfo->ipi_zone = uma_zcreate(inpcbzone_name, sizeof(struct inpcb), 235 NULL, NULL, inpcbzone_init, inpcbzone_fini, UMA_ALIGN_PTR, 236 inpcbzone_flags); 237 uma_zone_set_max(pcbinfo->ipi_zone, maxsockets); 238 uma_zone_set_warning(pcbinfo->ipi_zone, 239 "kern.ipc.maxsockets limit reached"); 240 } 241 242 /* 243 * Destroy an inpcbinfo. 244 */ 245 void 246 in_pcbinfo_destroy(struct inpcbinfo *pcbinfo) 247 { 248 249 KASSERT(pcbinfo->ipi_count == 0, 250 ("%s: ipi_count = %u", __func__, pcbinfo->ipi_count)); 251 252 hashdestroy(pcbinfo->ipi_hashbase, M_PCB, pcbinfo->ipi_hashmask); 253 hashdestroy(pcbinfo->ipi_porthashbase, M_PCB, 254 pcbinfo->ipi_porthashmask); 255 #ifdef PCBGROUP 256 in_pcbgroup_destroy(pcbinfo); 257 #endif 258 uma_zdestroy(pcbinfo->ipi_zone); 259 INP_HASH_LOCK_DESTROY(pcbinfo); 260 INP_INFO_LOCK_DESTROY(pcbinfo); 261 } 262 263 /* 264 * Allocate a PCB and associate it with the socket. 265 * On success return with the PCB locked. 266 */ 267 int 268 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo) 269 { 270 struct inpcb *inp; 271 int error; 272 273 INP_INFO_WLOCK_ASSERT(pcbinfo); 274 error = 0; 275 inp = uma_zalloc(pcbinfo->ipi_zone, M_NOWAIT); 276 if (inp == NULL) 277 return (ENOBUFS); 278 bzero(inp, inp_zero_size); 279 inp->inp_pcbinfo = pcbinfo; 280 inp->inp_socket = so; 281 inp->inp_cred = crhold(so->so_cred); 282 inp->inp_inc.inc_fibnum = so->so_fibnum; 283 #ifdef MAC 284 error = mac_inpcb_init(inp, M_NOWAIT); 285 if (error != 0) 286 goto out; 287 mac_inpcb_create(so, inp); 288 #endif 289 #ifdef IPSEC 290 error = ipsec_init_policy(so, &inp->inp_sp); 291 if (error != 0) { 292 #ifdef MAC 293 mac_inpcb_destroy(inp); 294 #endif 295 goto out; 296 } 297 #endif /*IPSEC*/ 298 #ifdef INET6 299 if (INP_SOCKAF(so) == AF_INET6) { 300 inp->inp_vflag |= INP_IPV6PROTO; 301 if (V_ip6_v6only) 302 inp->inp_flags |= IN6P_IPV6_V6ONLY; 303 } 304 #endif 305 LIST_INSERT_HEAD(pcbinfo->ipi_listhead, inp, inp_list); 306 pcbinfo->ipi_count++; 307 so->so_pcb = (caddr_t)inp; 308 #ifdef INET6 309 if (V_ip6_auto_flowlabel) 310 inp->inp_flags |= IN6P_AUTOFLOWLABEL; 311 #endif 312 INP_WLOCK(inp); 313 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 314 refcount_init(&inp->inp_refcount, 1); /* Reference from inpcbinfo */ 315 #if defined(IPSEC) || defined(MAC) 316 out: 317 if (error != 0) { 318 crfree(inp->inp_cred); 319 uma_zfree(pcbinfo->ipi_zone, inp); 320 } 321 #endif 322 return (error); 323 } 324 325 #ifdef INET 326 int 327 in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred) 328 { 329 int anonport, error; 330 331 INP_WLOCK_ASSERT(inp); 332 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 333 334 if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY) 335 return (EINVAL); 336 anonport = nam == NULL || ((struct sockaddr_in *)nam)->sin_port == 0; 337 error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr, 338 &inp->inp_lport, cred); 339 if (error) 340 return (error); 341 if (in_pcbinshash(inp) != 0) { 342 inp->inp_laddr.s_addr = INADDR_ANY; 343 inp->inp_lport = 0; 344 return (EAGAIN); 345 } 346 if (anonport) 347 inp->inp_flags |= INP_ANONPORT; 348 return (0); 349 } 350 #endif 351 352 /* 353 * Select a local port (number) to use. 354 */ 355 #if defined(INET) || defined(INET6) 356 int 357 in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp, 358 struct ucred *cred, int lookupflags) 359 { 360 struct inpcbinfo *pcbinfo; 361 struct inpcb *tmpinp; 362 unsigned short *lastport; 363 int count, dorandom, error; 364 u_short aux, first, last, lport; 365 #ifdef INET 366 struct in_addr laddr; 367 #endif 368 369 pcbinfo = inp->inp_pcbinfo; 370 371 /* 372 * Because no actual state changes occur here, a global write lock on 373 * the pcbinfo isn't required. 374 */ 375 INP_LOCK_ASSERT(inp); 376 INP_HASH_LOCK_ASSERT(pcbinfo); 377 378 if (inp->inp_flags & INP_HIGHPORT) { 379 first = V_ipport_hifirstauto; /* sysctl */ 380 last = V_ipport_hilastauto; 381 lastport = &pcbinfo->ipi_lasthi; 382 } else if (inp->inp_flags & INP_LOWPORT) { 383 error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT, 0); 384 if (error) 385 return (error); 386 first = V_ipport_lowfirstauto; /* 1023 */ 387 last = V_ipport_lowlastauto; /* 600 */ 388 lastport = &pcbinfo->ipi_lastlow; 389 } else { 390 first = V_ipport_firstauto; /* sysctl */ 391 last = V_ipport_lastauto; 392 lastport = &pcbinfo->ipi_lastport; 393 } 394 /* 395 * For UDP(-Lite), use random port allocation as long as the user 396 * allows it. For TCP (and as of yet unknown) connections, 397 * use random port allocation only if the user allows it AND 398 * ipport_tick() allows it. 399 */ 400 if (V_ipport_randomized && 401 (!V_ipport_stoprandom || pcbinfo == &V_udbinfo || 402 pcbinfo == &V_ulitecbinfo)) 403 dorandom = 1; 404 else 405 dorandom = 0; 406 /* 407 * It makes no sense to do random port allocation if 408 * we have the only port available. 409 */ 410 if (first == last) 411 dorandom = 0; 412 /* Make sure to not include UDP(-Lite) packets in the count. */ 413 if (pcbinfo != &V_udbinfo || pcbinfo != &V_ulitecbinfo) 414 V_ipport_tcpallocs++; 415 /* 416 * Instead of having two loops further down counting up or down 417 * make sure that first is always <= last and go with only one 418 * code path implementing all logic. 419 */ 420 if (first > last) { 421 aux = first; 422 first = last; 423 last = aux; 424 } 425 426 #ifdef INET 427 /* Make the compiler happy. */ 428 laddr.s_addr = 0; 429 if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) { 430 KASSERT(laddrp != NULL, ("%s: laddrp NULL for v4 inp %p", 431 __func__, inp)); 432 laddr = *laddrp; 433 } 434 #endif 435 tmpinp = NULL; /* Make compiler happy. */ 436 lport = *lportp; 437 438 if (dorandom) 439 *lastport = first + (arc4random() % (last - first)); 440 441 count = last - first; 442 443 do { 444 if (count-- < 0) /* completely used? */ 445 return (EADDRNOTAVAIL); 446 ++*lastport; 447 if (*lastport < first || *lastport > last) 448 *lastport = first; 449 lport = htons(*lastport); 450 451 #ifdef INET6 452 if ((inp->inp_vflag & INP_IPV6) != 0) 453 tmpinp = in6_pcblookup_local(pcbinfo, 454 &inp->in6p_laddr, lport, lookupflags, cred); 455 #endif 456 #if defined(INET) && defined(INET6) 457 else 458 #endif 459 #ifdef INET 460 tmpinp = in_pcblookup_local(pcbinfo, laddr, 461 lport, lookupflags, cred); 462 #endif 463 } while (tmpinp != NULL); 464 465 #ifdef INET 466 if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) 467 laddrp->s_addr = laddr.s_addr; 468 #endif 469 *lportp = lport; 470 471 return (0); 472 } 473 474 /* 475 * Return cached socket options. 476 */ 477 short 478 inp_so_options(const struct inpcb *inp) 479 { 480 short so_options; 481 482 so_options = 0; 483 484 if ((inp->inp_flags2 & INP_REUSEPORT) != 0) 485 so_options |= SO_REUSEPORT; 486 if ((inp->inp_flags2 & INP_REUSEADDR) != 0) 487 so_options |= SO_REUSEADDR; 488 return (so_options); 489 } 490 #endif /* INET || INET6 */ 491 492 /* 493 * Check if a new BINDMULTI socket is allowed to be created. 494 * 495 * ni points to the new inp. 496 * oi points to the exisitng inp. 497 * 498 * This checks whether the existing inp also has BINDMULTI and 499 * whether the credentials match. 500 */ 501 int 502 in_pcbbind_check_bindmulti(const struct inpcb *ni, const struct inpcb *oi) 503 { 504 /* Check permissions match */ 505 if ((ni->inp_flags2 & INP_BINDMULTI) && 506 (ni->inp_cred->cr_uid != 507 oi->inp_cred->cr_uid)) 508 return (0); 509 510 /* Check the existing inp has BINDMULTI set */ 511 if ((ni->inp_flags2 & INP_BINDMULTI) && 512 ((oi->inp_flags2 & INP_BINDMULTI) == 0)) 513 return (0); 514 515 /* 516 * We're okay - either INP_BINDMULTI isn't set on ni, or 517 * it is and it matches the checks. 518 */ 519 return (1); 520 } 521 522 #ifdef INET 523 /* 524 * Set up a bind operation on a PCB, performing port allocation 525 * as required, but do not actually modify the PCB. Callers can 526 * either complete the bind by setting inp_laddr/inp_lport and 527 * calling in_pcbinshash(), or they can just use the resulting 528 * port and address to authorise the sending of a once-off packet. 529 * 530 * On error, the values of *laddrp and *lportp are not changed. 531 */ 532 int 533 in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp, 534 u_short *lportp, struct ucred *cred) 535 { 536 struct socket *so = inp->inp_socket; 537 struct sockaddr_in *sin; 538 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 539 struct in_addr laddr; 540 u_short lport = 0; 541 int lookupflags = 0, reuseport = (so->so_options & SO_REUSEPORT); 542 int error; 543 544 /* 545 * No state changes, so read locks are sufficient here. 546 */ 547 INP_LOCK_ASSERT(inp); 548 INP_HASH_LOCK_ASSERT(pcbinfo); 549 550 if (TAILQ_EMPTY(&V_in_ifaddrhead)) /* XXX broken! */ 551 return (EADDRNOTAVAIL); 552 laddr.s_addr = *laddrp; 553 if (nam != NULL && laddr.s_addr != INADDR_ANY) 554 return (EINVAL); 555 if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) == 0) 556 lookupflags = INPLOOKUP_WILDCARD; 557 if (nam == NULL) { 558 if ((error = prison_local_ip4(cred, &laddr)) != 0) 559 return (error); 560 } else { 561 sin = (struct sockaddr_in *)nam; 562 if (nam->sa_len != sizeof (*sin)) 563 return (EINVAL); 564 #ifdef notdef 565 /* 566 * We should check the family, but old programs 567 * incorrectly fail to initialize it. 568 */ 569 if (sin->sin_family != AF_INET) 570 return (EAFNOSUPPORT); 571 #endif 572 error = prison_local_ip4(cred, &sin->sin_addr); 573 if (error) 574 return (error); 575 if (sin->sin_port != *lportp) { 576 /* Don't allow the port to change. */ 577 if (*lportp != 0) 578 return (EINVAL); 579 lport = sin->sin_port; 580 } 581 /* NB: lport is left as 0 if the port isn't being changed. */ 582 if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) { 583 /* 584 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast; 585 * allow complete duplication of binding if 586 * SO_REUSEPORT is set, or if SO_REUSEADDR is set 587 * and a multicast address is bound on both 588 * new and duplicated sockets. 589 */ 590 if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) != 0) 591 reuseport = SO_REUSEADDR|SO_REUSEPORT; 592 } else if (sin->sin_addr.s_addr != INADDR_ANY) { 593 sin->sin_port = 0; /* yech... */ 594 bzero(&sin->sin_zero, sizeof(sin->sin_zero)); 595 /* 596 * Is the address a local IP address? 597 * If INP_BINDANY is set, then the socket may be bound 598 * to any endpoint address, local or not. 599 */ 600 if ((inp->inp_flags & INP_BINDANY) == 0 && 601 ifa_ifwithaddr_check((struct sockaddr *)sin) == 0) 602 return (EADDRNOTAVAIL); 603 } 604 laddr = sin->sin_addr; 605 if (lport) { 606 struct inpcb *t; 607 struct tcptw *tw; 608 609 /* GROSS */ 610 if (ntohs(lport) <= V_ipport_reservedhigh && 611 ntohs(lport) >= V_ipport_reservedlow && 612 priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT, 613 0)) 614 return (EACCES); 615 if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) && 616 priv_check_cred(inp->inp_cred, 617 PRIV_NETINET_REUSEPORT, 0) != 0) { 618 t = in_pcblookup_local(pcbinfo, sin->sin_addr, 619 lport, INPLOOKUP_WILDCARD, cred); 620 /* 621 * XXX 622 * This entire block sorely needs a rewrite. 623 */ 624 if (t && 625 ((inp->inp_flags2 & INP_BINDMULTI) == 0) && 626 ((t->inp_flags & INP_TIMEWAIT) == 0) && 627 (so->so_type != SOCK_STREAM || 628 ntohl(t->inp_faddr.s_addr) == INADDR_ANY) && 629 (ntohl(sin->sin_addr.s_addr) != INADDR_ANY || 630 ntohl(t->inp_laddr.s_addr) != INADDR_ANY || 631 (t->inp_flags2 & INP_REUSEPORT) == 0) && 632 (inp->inp_cred->cr_uid != 633 t->inp_cred->cr_uid)) 634 return (EADDRINUSE); 635 636 /* 637 * If the socket is a BINDMULTI socket, then 638 * the credentials need to match and the 639 * original socket also has to have been bound 640 * with BINDMULTI. 641 */ 642 if (t && (! in_pcbbind_check_bindmulti(inp, t))) 643 return (EADDRINUSE); 644 } 645 t = in_pcblookup_local(pcbinfo, sin->sin_addr, 646 lport, lookupflags, cred); 647 if (t && (t->inp_flags & INP_TIMEWAIT)) { 648 /* 649 * XXXRW: If an incpb has had its timewait 650 * state recycled, we treat the address as 651 * being in use (for now). This is better 652 * than a panic, but not desirable. 653 */ 654 tw = intotw(t); 655 if (tw == NULL || 656 (reuseport & tw->tw_so_options) == 0) 657 return (EADDRINUSE); 658 } else if (t && 659 ((inp->inp_flags2 & INP_BINDMULTI) == 0) && 660 (reuseport & inp_so_options(t)) == 0) { 661 #ifdef INET6 662 if (ntohl(sin->sin_addr.s_addr) != 663 INADDR_ANY || 664 ntohl(t->inp_laddr.s_addr) != 665 INADDR_ANY || 666 (inp->inp_vflag & INP_IPV6PROTO) == 0 || 667 (t->inp_vflag & INP_IPV6PROTO) == 0) 668 #endif 669 return (EADDRINUSE); 670 if (t && (! in_pcbbind_check_bindmulti(inp, t))) 671 return (EADDRINUSE); 672 } 673 } 674 } 675 if (*lportp != 0) 676 lport = *lportp; 677 if (lport == 0) { 678 error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags); 679 if (error != 0) 680 return (error); 681 682 } 683 *laddrp = laddr.s_addr; 684 *lportp = lport; 685 return (0); 686 } 687 688 /* 689 * Connect from a socket to a specified address. 690 * Both address and port must be specified in argument sin. 691 * If don't have a local address for this socket yet, 692 * then pick one. 693 */ 694 int 695 in_pcbconnect_mbuf(struct inpcb *inp, struct sockaddr *nam, 696 struct ucred *cred, struct mbuf *m) 697 { 698 u_short lport, fport; 699 in_addr_t laddr, faddr; 700 int anonport, error; 701 702 INP_WLOCK_ASSERT(inp); 703 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 704 705 lport = inp->inp_lport; 706 laddr = inp->inp_laddr.s_addr; 707 anonport = (lport == 0); 708 error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport, 709 NULL, cred); 710 if (error) 711 return (error); 712 713 /* Do the initial binding of the local address if required. */ 714 if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) { 715 inp->inp_lport = lport; 716 inp->inp_laddr.s_addr = laddr; 717 if (in_pcbinshash(inp) != 0) { 718 inp->inp_laddr.s_addr = INADDR_ANY; 719 inp->inp_lport = 0; 720 return (EAGAIN); 721 } 722 } 723 724 /* Commit the remaining changes. */ 725 inp->inp_lport = lport; 726 inp->inp_laddr.s_addr = laddr; 727 inp->inp_faddr.s_addr = faddr; 728 inp->inp_fport = fport; 729 in_pcbrehash_mbuf(inp, m); 730 731 if (anonport) 732 inp->inp_flags |= INP_ANONPORT; 733 return (0); 734 } 735 736 int 737 in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred) 738 { 739 740 return (in_pcbconnect_mbuf(inp, nam, cred, NULL)); 741 } 742 743 /* 744 * Do proper source address selection on an unbound socket in case 745 * of connect. Take jails into account as well. 746 */ 747 int 748 in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr, 749 struct ucred *cred) 750 { 751 struct ifaddr *ifa; 752 struct sockaddr *sa; 753 struct sockaddr_in *sin; 754 struct route sro; 755 int error; 756 757 KASSERT(laddr != NULL, ("%s: laddr NULL", __func__)); 758 759 /* 760 * Bypass source address selection and use the primary jail IP 761 * if requested. 762 */ 763 if (cred != NULL && !prison_saddrsel_ip4(cred, laddr)) 764 return (0); 765 766 error = 0; 767 bzero(&sro, sizeof(sro)); 768 769 sin = (struct sockaddr_in *)&sro.ro_dst; 770 sin->sin_family = AF_INET; 771 sin->sin_len = sizeof(struct sockaddr_in); 772 sin->sin_addr.s_addr = faddr->s_addr; 773 774 /* 775 * If route is known our src addr is taken from the i/f, 776 * else punt. 777 * 778 * Find out route to destination. 779 */ 780 if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0) 781 in_rtalloc_ign(&sro, 0, inp->inp_inc.inc_fibnum); 782 783 /* 784 * If we found a route, use the address corresponding to 785 * the outgoing interface. 786 * 787 * Otherwise assume faddr is reachable on a directly connected 788 * network and try to find a corresponding interface to take 789 * the source address from. 790 */ 791 if (sro.ro_rt == NULL || sro.ro_rt->rt_ifp == NULL) { 792 struct in_ifaddr *ia; 793 struct ifnet *ifp; 794 795 ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin, 796 inp->inp_socket->so_fibnum)); 797 if (ia == NULL) 798 ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0, 799 inp->inp_socket->so_fibnum)); 800 if (ia == NULL) { 801 error = ENETUNREACH; 802 goto done; 803 } 804 805 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 806 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 807 ifa_free(&ia->ia_ifa); 808 goto done; 809 } 810 811 ifp = ia->ia_ifp; 812 ifa_free(&ia->ia_ifa); 813 ia = NULL; 814 IF_ADDR_RLOCK(ifp); 815 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 816 817 sa = ifa->ifa_addr; 818 if (sa->sa_family != AF_INET) 819 continue; 820 sin = (struct sockaddr_in *)sa; 821 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 822 ia = (struct in_ifaddr *)ifa; 823 break; 824 } 825 } 826 if (ia != NULL) { 827 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 828 IF_ADDR_RUNLOCK(ifp); 829 goto done; 830 } 831 IF_ADDR_RUNLOCK(ifp); 832 833 /* 3. As a last resort return the 'default' jail address. */ 834 error = prison_get_ip4(cred, laddr); 835 goto done; 836 } 837 838 /* 839 * If the outgoing interface on the route found is not 840 * a loopback interface, use the address from that interface. 841 * In case of jails do those three steps: 842 * 1. check if the interface address belongs to the jail. If so use it. 843 * 2. check if we have any address on the outgoing interface 844 * belonging to this jail. If so use it. 845 * 3. as a last resort return the 'default' jail address. 846 */ 847 if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) { 848 struct in_ifaddr *ia; 849 struct ifnet *ifp; 850 851 /* If not jailed, use the default returned. */ 852 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 853 ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa; 854 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 855 goto done; 856 } 857 858 /* Jailed. */ 859 /* 1. Check if the iface address belongs to the jail. */ 860 sin = (struct sockaddr_in *)sro.ro_rt->rt_ifa->ifa_addr; 861 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 862 ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa; 863 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 864 goto done; 865 } 866 867 /* 868 * 2. Check if we have any address on the outgoing interface 869 * belonging to this jail. 870 */ 871 ia = NULL; 872 ifp = sro.ro_rt->rt_ifp; 873 IF_ADDR_RLOCK(ifp); 874 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 875 sa = ifa->ifa_addr; 876 if (sa->sa_family != AF_INET) 877 continue; 878 sin = (struct sockaddr_in *)sa; 879 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 880 ia = (struct in_ifaddr *)ifa; 881 break; 882 } 883 } 884 if (ia != NULL) { 885 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 886 IF_ADDR_RUNLOCK(ifp); 887 goto done; 888 } 889 IF_ADDR_RUNLOCK(ifp); 890 891 /* 3. As a last resort return the 'default' jail address. */ 892 error = prison_get_ip4(cred, laddr); 893 goto done; 894 } 895 896 /* 897 * The outgoing interface is marked with 'loopback net', so a route 898 * to ourselves is here. 899 * Try to find the interface of the destination address and then 900 * take the address from there. That interface is not necessarily 901 * a loopback interface. 902 * In case of jails, check that it is an address of the jail 903 * and if we cannot find, fall back to the 'default' jail address. 904 */ 905 if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) { 906 struct sockaddr_in sain; 907 struct in_ifaddr *ia; 908 909 bzero(&sain, sizeof(struct sockaddr_in)); 910 sain.sin_family = AF_INET; 911 sain.sin_len = sizeof(struct sockaddr_in); 912 sain.sin_addr.s_addr = faddr->s_addr; 913 914 ia = ifatoia(ifa_ifwithdstaddr(sintosa(&sain), 915 inp->inp_socket->so_fibnum)); 916 if (ia == NULL) 917 ia = ifatoia(ifa_ifwithnet(sintosa(&sain), 0, 918 inp->inp_socket->so_fibnum)); 919 if (ia == NULL) 920 ia = ifatoia(ifa_ifwithaddr(sintosa(&sain))); 921 922 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 923 if (ia == NULL) { 924 error = ENETUNREACH; 925 goto done; 926 } 927 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 928 ifa_free(&ia->ia_ifa); 929 goto done; 930 } 931 932 /* Jailed. */ 933 if (ia != NULL) { 934 struct ifnet *ifp; 935 936 ifp = ia->ia_ifp; 937 ifa_free(&ia->ia_ifa); 938 ia = NULL; 939 IF_ADDR_RLOCK(ifp); 940 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 941 942 sa = ifa->ifa_addr; 943 if (sa->sa_family != AF_INET) 944 continue; 945 sin = (struct sockaddr_in *)sa; 946 if (prison_check_ip4(cred, 947 &sin->sin_addr) == 0) { 948 ia = (struct in_ifaddr *)ifa; 949 break; 950 } 951 } 952 if (ia != NULL) { 953 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 954 IF_ADDR_RUNLOCK(ifp); 955 goto done; 956 } 957 IF_ADDR_RUNLOCK(ifp); 958 } 959 960 /* 3. As a last resort return the 'default' jail address. */ 961 error = prison_get_ip4(cred, laddr); 962 goto done; 963 } 964 965 done: 966 if (sro.ro_rt != NULL) 967 RTFREE(sro.ro_rt); 968 return (error); 969 } 970 971 /* 972 * Set up for a connect from a socket to the specified address. 973 * On entry, *laddrp and *lportp should contain the current local 974 * address and port for the PCB; these are updated to the values 975 * that should be placed in inp_laddr and inp_lport to complete 976 * the connect. 977 * 978 * On success, *faddrp and *fportp will be set to the remote address 979 * and port. These are not updated in the error case. 980 * 981 * If the operation fails because the connection already exists, 982 * *oinpp will be set to the PCB of that connection so that the 983 * caller can decide to override it. In all other cases, *oinpp 984 * is set to NULL. 985 */ 986 int 987 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam, 988 in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp, 989 struct inpcb **oinpp, struct ucred *cred) 990 { 991 struct sockaddr_in *sin = (struct sockaddr_in *)nam; 992 struct in_ifaddr *ia; 993 struct inpcb *oinp; 994 struct in_addr laddr, faddr; 995 u_short lport, fport; 996 int error; 997 998 /* 999 * Because a global state change doesn't actually occur here, a read 1000 * lock is sufficient. 1001 */ 1002 INP_LOCK_ASSERT(inp); 1003 INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo); 1004 1005 if (oinpp != NULL) 1006 *oinpp = NULL; 1007 if (nam->sa_len != sizeof (*sin)) 1008 return (EINVAL); 1009 if (sin->sin_family != AF_INET) 1010 return (EAFNOSUPPORT); 1011 if (sin->sin_port == 0) 1012 return (EADDRNOTAVAIL); 1013 laddr.s_addr = *laddrp; 1014 lport = *lportp; 1015 faddr = sin->sin_addr; 1016 fport = sin->sin_port; 1017 1018 if (!TAILQ_EMPTY(&V_in_ifaddrhead)) { 1019 /* 1020 * If the destination address is INADDR_ANY, 1021 * use the primary local address. 1022 * If the supplied address is INADDR_BROADCAST, 1023 * and the primary interface supports broadcast, 1024 * choose the broadcast address for that interface. 1025 */ 1026 if (faddr.s_addr == INADDR_ANY) { 1027 IN_IFADDR_RLOCK(); 1028 faddr = 1029 IA_SIN(TAILQ_FIRST(&V_in_ifaddrhead))->sin_addr; 1030 IN_IFADDR_RUNLOCK(); 1031 if (cred != NULL && 1032 (error = prison_get_ip4(cred, &faddr)) != 0) 1033 return (error); 1034 } else if (faddr.s_addr == (u_long)INADDR_BROADCAST) { 1035 IN_IFADDR_RLOCK(); 1036 if (TAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags & 1037 IFF_BROADCAST) 1038 faddr = satosin(&TAILQ_FIRST( 1039 &V_in_ifaddrhead)->ia_broadaddr)->sin_addr; 1040 IN_IFADDR_RUNLOCK(); 1041 } 1042 } 1043 if (laddr.s_addr == INADDR_ANY) { 1044 error = in_pcbladdr(inp, &faddr, &laddr, cred); 1045 /* 1046 * If the destination address is multicast and an outgoing 1047 * interface has been set as a multicast option, prefer the 1048 * address of that interface as our source address. 1049 */ 1050 if (IN_MULTICAST(ntohl(faddr.s_addr)) && 1051 inp->inp_moptions != NULL) { 1052 struct ip_moptions *imo; 1053 struct ifnet *ifp; 1054 1055 imo = inp->inp_moptions; 1056 if (imo->imo_multicast_ifp != NULL) { 1057 ifp = imo->imo_multicast_ifp; 1058 IN_IFADDR_RLOCK(); 1059 TAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) { 1060 if ((ia->ia_ifp == ifp) && 1061 (cred == NULL || 1062 prison_check_ip4(cred, 1063 &ia->ia_addr.sin_addr) == 0)) 1064 break; 1065 } 1066 if (ia == NULL) 1067 error = EADDRNOTAVAIL; 1068 else { 1069 laddr = ia->ia_addr.sin_addr; 1070 error = 0; 1071 } 1072 IN_IFADDR_RUNLOCK(); 1073 } 1074 } 1075 if (error) 1076 return (error); 1077 } 1078 oinp = in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr, fport, 1079 laddr, lport, 0, NULL); 1080 if (oinp != NULL) { 1081 if (oinpp != NULL) 1082 *oinpp = oinp; 1083 return (EADDRINUSE); 1084 } 1085 if (lport == 0) { 1086 error = in_pcbbind_setup(inp, NULL, &laddr.s_addr, &lport, 1087 cred); 1088 if (error) 1089 return (error); 1090 } 1091 *laddrp = laddr.s_addr; 1092 *lportp = lport; 1093 *faddrp = faddr.s_addr; 1094 *fportp = fport; 1095 return (0); 1096 } 1097 1098 void 1099 in_pcbdisconnect(struct inpcb *inp) 1100 { 1101 1102 INP_WLOCK_ASSERT(inp); 1103 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 1104 1105 inp->inp_faddr.s_addr = INADDR_ANY; 1106 inp->inp_fport = 0; 1107 in_pcbrehash(inp); 1108 } 1109 #endif /* INET */ 1110 1111 /* 1112 * in_pcbdetach() is responsibe for disassociating a socket from an inpcb. 1113 * For most protocols, this will be invoked immediately prior to calling 1114 * in_pcbfree(). However, with TCP the inpcb may significantly outlive the 1115 * socket, in which case in_pcbfree() is deferred. 1116 */ 1117 void 1118 in_pcbdetach(struct inpcb *inp) 1119 { 1120 1121 KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__)); 1122 1123 inp->inp_socket->so_pcb = NULL; 1124 inp->inp_socket = NULL; 1125 } 1126 1127 /* 1128 * in_pcbref() bumps the reference count on an inpcb in order to maintain 1129 * stability of an inpcb pointer despite the inpcb lock being released. This 1130 * is used in TCP when the inpcbinfo lock needs to be acquired or upgraded, 1131 * but where the inpcb lock may already held, or when acquiring a reference 1132 * via a pcbgroup. 1133 * 1134 * in_pcbref() should be used only to provide brief memory stability, and 1135 * must always be followed by a call to INP_WLOCK() and in_pcbrele() to 1136 * garbage collect the inpcb if it has been in_pcbfree()'d from another 1137 * context. Until in_pcbrele() has returned that the inpcb is still valid, 1138 * lock and rele are the *only* safe operations that may be performed on the 1139 * inpcb. 1140 * 1141 * While the inpcb will not be freed, releasing the inpcb lock means that the 1142 * connection's state may change, so the caller should be careful to 1143 * revalidate any cached state on reacquiring the lock. Drop the reference 1144 * using in_pcbrele(). 1145 */ 1146 void 1147 in_pcbref(struct inpcb *inp) 1148 { 1149 1150 KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__)); 1151 1152 refcount_acquire(&inp->inp_refcount); 1153 } 1154 1155 /* 1156 * Drop a refcount on an inpcb elevated using in_pcbref(); because a call to 1157 * in_pcbfree() may have been made between in_pcbref() and in_pcbrele(), we 1158 * return a flag indicating whether or not the inpcb remains valid. If it is 1159 * valid, we return with the inpcb lock held. 1160 * 1161 * Notice that, unlike in_pcbref(), the inpcb lock must be held to drop a 1162 * reference on an inpcb. Historically more work was done here (actually, in 1163 * in_pcbfree_internal()) but has been moved to in_pcbfree() to avoid the 1164 * need for the pcbinfo lock in in_pcbrele(). Deferring the free is entirely 1165 * about memory stability (and continued use of the write lock). 1166 */ 1167 int 1168 in_pcbrele_rlocked(struct inpcb *inp) 1169 { 1170 struct inpcbinfo *pcbinfo; 1171 1172 KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__)); 1173 1174 INP_RLOCK_ASSERT(inp); 1175 1176 if (refcount_release(&inp->inp_refcount) == 0) { 1177 /* 1178 * If the inpcb has been freed, let the caller know, even if 1179 * this isn't the last reference. 1180 */ 1181 if (inp->inp_flags2 & INP_FREED) { 1182 INP_RUNLOCK(inp); 1183 return (1); 1184 } 1185 return (0); 1186 } 1187 1188 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); 1189 1190 INP_RUNLOCK(inp); 1191 pcbinfo = inp->inp_pcbinfo; 1192 uma_zfree(pcbinfo->ipi_zone, inp); 1193 return (1); 1194 } 1195 1196 int 1197 in_pcbrele_wlocked(struct inpcb *inp) 1198 { 1199 struct inpcbinfo *pcbinfo; 1200 1201 KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__)); 1202 1203 INP_WLOCK_ASSERT(inp); 1204 1205 if (refcount_release(&inp->inp_refcount) == 0) 1206 return (0); 1207 1208 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); 1209 1210 INP_WUNLOCK(inp); 1211 pcbinfo = inp->inp_pcbinfo; 1212 uma_zfree(pcbinfo->ipi_zone, inp); 1213 return (1); 1214 } 1215 1216 /* 1217 * Temporary wrapper. 1218 */ 1219 int 1220 in_pcbrele(struct inpcb *inp) 1221 { 1222 1223 return (in_pcbrele_wlocked(inp)); 1224 } 1225 1226 /* 1227 * Unconditionally schedule an inpcb to be freed by decrementing its 1228 * reference count, which should occur only after the inpcb has been detached 1229 * from its socket. If another thread holds a temporary reference (acquired 1230 * using in_pcbref()) then the free is deferred until that reference is 1231 * released using in_pcbrele(), but the inpcb is still unlocked. Almost all 1232 * work, including removal from global lists, is done in this context, where 1233 * the pcbinfo lock is held. 1234 */ 1235 void 1236 in_pcbfree(struct inpcb *inp) 1237 { 1238 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 1239 1240 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); 1241 1242 INP_INFO_WLOCK_ASSERT(pcbinfo); 1243 INP_WLOCK_ASSERT(inp); 1244 1245 /* XXXRW: Do as much as possible here. */ 1246 #ifdef IPSEC 1247 if (inp->inp_sp != NULL) 1248 ipsec_delete_pcbpolicy(inp); 1249 #endif 1250 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 1251 in_pcbremlists(inp); 1252 #ifdef INET6 1253 if (inp->inp_vflag & INP_IPV6PROTO) { 1254 ip6_freepcbopts(inp->in6p_outputopts); 1255 if (inp->in6p_moptions != NULL) 1256 ip6_freemoptions(inp->in6p_moptions); 1257 } 1258 #endif 1259 if (inp->inp_options) 1260 (void)m_free(inp->inp_options); 1261 #ifdef INET 1262 if (inp->inp_moptions != NULL) 1263 inp_freemoptions(inp->inp_moptions); 1264 #endif 1265 inp->inp_vflag = 0; 1266 inp->inp_flags2 |= INP_FREED; 1267 crfree(inp->inp_cred); 1268 #ifdef MAC 1269 mac_inpcb_destroy(inp); 1270 #endif 1271 if (!in_pcbrele_wlocked(inp)) 1272 INP_WUNLOCK(inp); 1273 } 1274 1275 /* 1276 * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and 1277 * port reservation, and preventing it from being returned by inpcb lookups. 1278 * 1279 * It is used by TCP to mark an inpcb as unused and avoid future packet 1280 * delivery or event notification when a socket remains open but TCP has 1281 * closed. This might occur as a result of a shutdown()-initiated TCP close 1282 * or a RST on the wire, and allows the port binding to be reused while still 1283 * maintaining the invariant that so_pcb always points to a valid inpcb until 1284 * in_pcbdetach(). 1285 * 1286 * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by 1287 * in_pcbnotifyall() and in_pcbpurgeif0()? 1288 */ 1289 void 1290 in_pcbdrop(struct inpcb *inp) 1291 { 1292 1293 INP_WLOCK_ASSERT(inp); 1294 1295 /* 1296 * XXXRW: Possibly we should protect the setting of INP_DROPPED with 1297 * the hash lock...? 1298 */ 1299 inp->inp_flags |= INP_DROPPED; 1300 if (inp->inp_flags & INP_INHASHLIST) { 1301 struct inpcbport *phd = inp->inp_phd; 1302 1303 INP_HASH_WLOCK(inp->inp_pcbinfo); 1304 LIST_REMOVE(inp, inp_hash); 1305 LIST_REMOVE(inp, inp_portlist); 1306 if (LIST_FIRST(&phd->phd_pcblist) == NULL) { 1307 LIST_REMOVE(phd, phd_hash); 1308 free(phd, M_PCB); 1309 } 1310 INP_HASH_WUNLOCK(inp->inp_pcbinfo); 1311 inp->inp_flags &= ~INP_INHASHLIST; 1312 #ifdef PCBGROUP 1313 in_pcbgroup_remove(inp); 1314 #endif 1315 } 1316 } 1317 1318 #ifdef INET 1319 /* 1320 * Common routines to return the socket addresses associated with inpcbs. 1321 */ 1322 struct sockaddr * 1323 in_sockaddr(in_port_t port, struct in_addr *addr_p) 1324 { 1325 struct sockaddr_in *sin; 1326 1327 sin = malloc(sizeof *sin, M_SONAME, 1328 M_WAITOK | M_ZERO); 1329 sin->sin_family = AF_INET; 1330 sin->sin_len = sizeof(*sin); 1331 sin->sin_addr = *addr_p; 1332 sin->sin_port = port; 1333 1334 return (struct sockaddr *)sin; 1335 } 1336 1337 int 1338 in_getsockaddr(struct socket *so, struct sockaddr **nam) 1339 { 1340 struct inpcb *inp; 1341 struct in_addr addr; 1342 in_port_t port; 1343 1344 inp = sotoinpcb(so); 1345 KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL")); 1346 1347 INP_RLOCK(inp); 1348 port = inp->inp_lport; 1349 addr = inp->inp_laddr; 1350 INP_RUNLOCK(inp); 1351 1352 *nam = in_sockaddr(port, &addr); 1353 return 0; 1354 } 1355 1356 int 1357 in_getpeeraddr(struct socket *so, struct sockaddr **nam) 1358 { 1359 struct inpcb *inp; 1360 struct in_addr addr; 1361 in_port_t port; 1362 1363 inp = sotoinpcb(so); 1364 KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL")); 1365 1366 INP_RLOCK(inp); 1367 port = inp->inp_fport; 1368 addr = inp->inp_faddr; 1369 INP_RUNLOCK(inp); 1370 1371 *nam = in_sockaddr(port, &addr); 1372 return 0; 1373 } 1374 1375 void 1376 in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno, 1377 struct inpcb *(*notify)(struct inpcb *, int)) 1378 { 1379 struct inpcb *inp, *inp_temp; 1380 1381 INP_INFO_WLOCK(pcbinfo); 1382 LIST_FOREACH_SAFE(inp, pcbinfo->ipi_listhead, inp_list, inp_temp) { 1383 INP_WLOCK(inp); 1384 #ifdef INET6 1385 if ((inp->inp_vflag & INP_IPV4) == 0) { 1386 INP_WUNLOCK(inp); 1387 continue; 1388 } 1389 #endif 1390 if (inp->inp_faddr.s_addr != faddr.s_addr || 1391 inp->inp_socket == NULL) { 1392 INP_WUNLOCK(inp); 1393 continue; 1394 } 1395 if ((*notify)(inp, errno)) 1396 INP_WUNLOCK(inp); 1397 } 1398 INP_INFO_WUNLOCK(pcbinfo); 1399 } 1400 1401 void 1402 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp) 1403 { 1404 struct inpcb *inp; 1405 struct ip_moptions *imo; 1406 int i, gap; 1407 1408 INP_INFO_RLOCK(pcbinfo); 1409 LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) { 1410 INP_WLOCK(inp); 1411 imo = inp->inp_moptions; 1412 if ((inp->inp_vflag & INP_IPV4) && 1413 imo != NULL) { 1414 /* 1415 * Unselect the outgoing interface if it is being 1416 * detached. 1417 */ 1418 if (imo->imo_multicast_ifp == ifp) 1419 imo->imo_multicast_ifp = NULL; 1420 1421 /* 1422 * Drop multicast group membership if we joined 1423 * through the interface being detached. 1424 */ 1425 for (i = 0, gap = 0; i < imo->imo_num_memberships; 1426 i++) { 1427 if (imo->imo_membership[i]->inm_ifp == ifp) { 1428 in_delmulti(imo->imo_membership[i]); 1429 gap++; 1430 } else if (gap != 0) 1431 imo->imo_membership[i - gap] = 1432 imo->imo_membership[i]; 1433 } 1434 imo->imo_num_memberships -= gap; 1435 } 1436 INP_WUNLOCK(inp); 1437 } 1438 INP_INFO_RUNLOCK(pcbinfo); 1439 } 1440 1441 /* 1442 * Lookup a PCB based on the local address and port. Caller must hold the 1443 * hash lock. No inpcb locks or references are acquired. 1444 */ 1445 #define INP_LOOKUP_MAPPED_PCB_COST 3 1446 struct inpcb * 1447 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr, 1448 u_short lport, int lookupflags, struct ucred *cred) 1449 { 1450 struct inpcb *inp; 1451 #ifdef INET6 1452 int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST; 1453 #else 1454 int matchwild = 3; 1455 #endif 1456 int wildcard; 1457 1458 KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0, 1459 ("%s: invalid lookup flags %d", __func__, lookupflags)); 1460 1461 INP_HASH_LOCK_ASSERT(pcbinfo); 1462 1463 if ((lookupflags & INPLOOKUP_WILDCARD) == 0) { 1464 struct inpcbhead *head; 1465 /* 1466 * Look for an unconnected (wildcard foreign addr) PCB that 1467 * matches the local address and port we're looking for. 1468 */ 1469 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport, 1470 0, pcbinfo->ipi_hashmask)]; 1471 LIST_FOREACH(inp, head, inp_hash) { 1472 #ifdef INET6 1473 /* XXX inp locking */ 1474 if ((inp->inp_vflag & INP_IPV4) == 0) 1475 continue; 1476 #endif 1477 if (inp->inp_faddr.s_addr == INADDR_ANY && 1478 inp->inp_laddr.s_addr == laddr.s_addr && 1479 inp->inp_lport == lport) { 1480 /* 1481 * Found? 1482 */ 1483 if (cred == NULL || 1484 prison_equal_ip4(cred->cr_prison, 1485 inp->inp_cred->cr_prison)) 1486 return (inp); 1487 } 1488 } 1489 /* 1490 * Not found. 1491 */ 1492 return (NULL); 1493 } else { 1494 struct inpcbporthead *porthash; 1495 struct inpcbport *phd; 1496 struct inpcb *match = NULL; 1497 /* 1498 * Best fit PCB lookup. 1499 * 1500 * First see if this local port is in use by looking on the 1501 * port hash list. 1502 */ 1503 porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport, 1504 pcbinfo->ipi_porthashmask)]; 1505 LIST_FOREACH(phd, porthash, phd_hash) { 1506 if (phd->phd_port == lport) 1507 break; 1508 } 1509 if (phd != NULL) { 1510 /* 1511 * Port is in use by one or more PCBs. Look for best 1512 * fit. 1513 */ 1514 LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) { 1515 wildcard = 0; 1516 if (cred != NULL && 1517 !prison_equal_ip4(inp->inp_cred->cr_prison, 1518 cred->cr_prison)) 1519 continue; 1520 #ifdef INET6 1521 /* XXX inp locking */ 1522 if ((inp->inp_vflag & INP_IPV4) == 0) 1523 continue; 1524 /* 1525 * We never select the PCB that has 1526 * INP_IPV6 flag and is bound to :: if 1527 * we have another PCB which is bound 1528 * to 0.0.0.0. If a PCB has the 1529 * INP_IPV6 flag, then we set its cost 1530 * higher than IPv4 only PCBs. 1531 * 1532 * Note that the case only happens 1533 * when a socket is bound to ::, under 1534 * the condition that the use of the 1535 * mapped address is allowed. 1536 */ 1537 if ((inp->inp_vflag & INP_IPV6) != 0) 1538 wildcard += INP_LOOKUP_MAPPED_PCB_COST; 1539 #endif 1540 if (inp->inp_faddr.s_addr != INADDR_ANY) 1541 wildcard++; 1542 if (inp->inp_laddr.s_addr != INADDR_ANY) { 1543 if (laddr.s_addr == INADDR_ANY) 1544 wildcard++; 1545 else if (inp->inp_laddr.s_addr != laddr.s_addr) 1546 continue; 1547 } else { 1548 if (laddr.s_addr != INADDR_ANY) 1549 wildcard++; 1550 } 1551 if (wildcard < matchwild) { 1552 match = inp; 1553 matchwild = wildcard; 1554 if (matchwild == 0) 1555 break; 1556 } 1557 } 1558 } 1559 return (match); 1560 } 1561 } 1562 #undef INP_LOOKUP_MAPPED_PCB_COST 1563 1564 #ifdef PCBGROUP 1565 /* 1566 * Lookup PCB in hash list, using pcbgroup tables. 1567 */ 1568 static struct inpcb * 1569 in_pcblookup_group(struct inpcbinfo *pcbinfo, struct inpcbgroup *pcbgroup, 1570 struct in_addr faddr, u_int fport_arg, struct in_addr laddr, 1571 u_int lport_arg, int lookupflags, struct ifnet *ifp) 1572 { 1573 struct inpcbhead *head; 1574 struct inpcb *inp, *tmpinp; 1575 u_short fport = fport_arg, lport = lport_arg; 1576 1577 /* 1578 * First look for an exact match. 1579 */ 1580 tmpinp = NULL; 1581 INP_GROUP_LOCK(pcbgroup); 1582 head = &pcbgroup->ipg_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport, 1583 pcbgroup->ipg_hashmask)]; 1584 LIST_FOREACH(inp, head, inp_pcbgrouphash) { 1585 #ifdef INET6 1586 /* XXX inp locking */ 1587 if ((inp->inp_vflag & INP_IPV4) == 0) 1588 continue; 1589 #endif 1590 if (inp->inp_faddr.s_addr == faddr.s_addr && 1591 inp->inp_laddr.s_addr == laddr.s_addr && 1592 inp->inp_fport == fport && 1593 inp->inp_lport == lport) { 1594 /* 1595 * XXX We should be able to directly return 1596 * the inp here, without any checks. 1597 * Well unless both bound with SO_REUSEPORT? 1598 */ 1599 if (prison_flag(inp->inp_cred, PR_IP4)) 1600 goto found; 1601 if (tmpinp == NULL) 1602 tmpinp = inp; 1603 } 1604 } 1605 if (tmpinp != NULL) { 1606 inp = tmpinp; 1607 goto found; 1608 } 1609 1610 #ifdef RSS 1611 /* 1612 * For incoming connections, we may wish to do a wildcard 1613 * match for an RSS-local socket. 1614 */ 1615 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 1616 struct inpcb *local_wild = NULL, *local_exact = NULL; 1617 #ifdef INET6 1618 struct inpcb *local_wild_mapped = NULL; 1619 #endif 1620 struct inpcb *jail_wild = NULL; 1621 struct inpcbhead *head; 1622 int injail; 1623 1624 /* 1625 * Order of socket selection - we always prefer jails. 1626 * 1. jailed, non-wild. 1627 * 2. jailed, wild. 1628 * 3. non-jailed, non-wild. 1629 * 4. non-jailed, wild. 1630 */ 1631 1632 head = &pcbgroup->ipg_hashbase[INP_PCBHASH(INADDR_ANY, 1633 lport, 0, pcbgroup->ipg_hashmask)]; 1634 LIST_FOREACH(inp, head, inp_pcbgrouphash) { 1635 #ifdef INET6 1636 /* XXX inp locking */ 1637 if ((inp->inp_vflag & INP_IPV4) == 0) 1638 continue; 1639 #endif 1640 if (inp->inp_faddr.s_addr != INADDR_ANY || 1641 inp->inp_lport != lport) 1642 continue; 1643 1644 /* XXX inp locking */ 1645 if (ifp && ifp->if_type == IFT_FAITH && 1646 (inp->inp_flags & INP_FAITH) == 0) 1647 continue; 1648 1649 injail = prison_flag(inp->inp_cred, PR_IP4); 1650 if (injail) { 1651 if (prison_check_ip4(inp->inp_cred, 1652 &laddr) != 0) 1653 continue; 1654 } else { 1655 if (local_exact != NULL) 1656 continue; 1657 } 1658 1659 if (inp->inp_laddr.s_addr == laddr.s_addr) { 1660 if (injail) 1661 goto found; 1662 else 1663 local_exact = inp; 1664 } else if (inp->inp_laddr.s_addr == INADDR_ANY) { 1665 #ifdef INET6 1666 /* XXX inp locking, NULL check */ 1667 if (inp->inp_vflag & INP_IPV6PROTO) 1668 local_wild_mapped = inp; 1669 else 1670 #endif 1671 if (injail) 1672 jail_wild = inp; 1673 else 1674 local_wild = inp; 1675 } 1676 } /* LIST_FOREACH */ 1677 1678 inp = jail_wild; 1679 if (inp == NULL) 1680 inp = local_exact; 1681 if (inp == NULL) 1682 inp = local_wild; 1683 #ifdef INET6 1684 if (inp == NULL) 1685 inp = local_wild_mapped; 1686 #endif 1687 if (inp != NULL) 1688 goto found; 1689 } 1690 #endif 1691 1692 /* 1693 * Then look for a wildcard match, if requested. 1694 */ 1695 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 1696 struct inpcb *local_wild = NULL, *local_exact = NULL; 1697 #ifdef INET6 1698 struct inpcb *local_wild_mapped = NULL; 1699 #endif 1700 struct inpcb *jail_wild = NULL; 1701 struct inpcbhead *head; 1702 int injail; 1703 1704 /* 1705 * Order of socket selection - we always prefer jails. 1706 * 1. jailed, non-wild. 1707 * 2. jailed, wild. 1708 * 3. non-jailed, non-wild. 1709 * 4. non-jailed, wild. 1710 */ 1711 head = &pcbinfo->ipi_wildbase[INP_PCBHASH(INADDR_ANY, lport, 1712 0, pcbinfo->ipi_wildmask)]; 1713 LIST_FOREACH(inp, head, inp_pcbgroup_wild) { 1714 #ifdef INET6 1715 /* XXX inp locking */ 1716 if ((inp->inp_vflag & INP_IPV4) == 0) 1717 continue; 1718 #endif 1719 if (inp->inp_faddr.s_addr != INADDR_ANY || 1720 inp->inp_lport != lport) 1721 continue; 1722 1723 /* XXX inp locking */ 1724 if (ifp && ifp->if_type == IFT_FAITH && 1725 (inp->inp_flags & INP_FAITH) == 0) 1726 continue; 1727 1728 injail = prison_flag(inp->inp_cred, PR_IP4); 1729 if (injail) { 1730 if (prison_check_ip4(inp->inp_cred, 1731 &laddr) != 0) 1732 continue; 1733 } else { 1734 if (local_exact != NULL) 1735 continue; 1736 } 1737 1738 if (inp->inp_laddr.s_addr == laddr.s_addr) { 1739 if (injail) 1740 goto found; 1741 else 1742 local_exact = inp; 1743 } else if (inp->inp_laddr.s_addr == INADDR_ANY) { 1744 #ifdef INET6 1745 /* XXX inp locking, NULL check */ 1746 if (inp->inp_vflag & INP_IPV6PROTO) 1747 local_wild_mapped = inp; 1748 else 1749 #endif 1750 if (injail) 1751 jail_wild = inp; 1752 else 1753 local_wild = inp; 1754 } 1755 } /* LIST_FOREACH */ 1756 inp = jail_wild; 1757 if (inp == NULL) 1758 inp = local_exact; 1759 if (inp == NULL) 1760 inp = local_wild; 1761 #ifdef INET6 1762 if (inp == NULL) 1763 inp = local_wild_mapped; 1764 #endif 1765 if (inp != NULL) 1766 goto found; 1767 } /* if (lookupflags & INPLOOKUP_WILDCARD) */ 1768 INP_GROUP_UNLOCK(pcbgroup); 1769 return (NULL); 1770 1771 found: 1772 in_pcbref(inp); 1773 INP_GROUP_UNLOCK(pcbgroup); 1774 if (lookupflags & INPLOOKUP_WLOCKPCB) { 1775 INP_WLOCK(inp); 1776 if (in_pcbrele_wlocked(inp)) 1777 return (NULL); 1778 } else if (lookupflags & INPLOOKUP_RLOCKPCB) { 1779 INP_RLOCK(inp); 1780 if (in_pcbrele_rlocked(inp)) 1781 return (NULL); 1782 } else 1783 panic("%s: locking bug", __func__); 1784 return (inp); 1785 } 1786 #endif /* PCBGROUP */ 1787 1788 /* 1789 * Lookup PCB in hash list, using pcbinfo tables. This variation assumes 1790 * that the caller has locked the hash list, and will not perform any further 1791 * locking or reference operations on either the hash list or the connection. 1792 */ 1793 static struct inpcb * 1794 in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr, 1795 u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags, 1796 struct ifnet *ifp) 1797 { 1798 struct inpcbhead *head; 1799 struct inpcb *inp, *tmpinp; 1800 u_short fport = fport_arg, lport = lport_arg; 1801 1802 KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0, 1803 ("%s: invalid lookup flags %d", __func__, lookupflags)); 1804 1805 INP_HASH_LOCK_ASSERT(pcbinfo); 1806 1807 /* 1808 * First look for an exact match. 1809 */ 1810 tmpinp = NULL; 1811 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport, 1812 pcbinfo->ipi_hashmask)]; 1813 LIST_FOREACH(inp, head, inp_hash) { 1814 #ifdef INET6 1815 /* XXX inp locking */ 1816 if ((inp->inp_vflag & INP_IPV4) == 0) 1817 continue; 1818 #endif 1819 if (inp->inp_faddr.s_addr == faddr.s_addr && 1820 inp->inp_laddr.s_addr == laddr.s_addr && 1821 inp->inp_fport == fport && 1822 inp->inp_lport == lport) { 1823 /* 1824 * XXX We should be able to directly return 1825 * the inp here, without any checks. 1826 * Well unless both bound with SO_REUSEPORT? 1827 */ 1828 if (prison_flag(inp->inp_cred, PR_IP4)) 1829 return (inp); 1830 if (tmpinp == NULL) 1831 tmpinp = inp; 1832 } 1833 } 1834 if (tmpinp != NULL) 1835 return (tmpinp); 1836 1837 /* 1838 * Then look for a wildcard match, if requested. 1839 */ 1840 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 1841 struct inpcb *local_wild = NULL, *local_exact = NULL; 1842 #ifdef INET6 1843 struct inpcb *local_wild_mapped = NULL; 1844 #endif 1845 struct inpcb *jail_wild = NULL; 1846 int injail; 1847 1848 /* 1849 * Order of socket selection - we always prefer jails. 1850 * 1. jailed, non-wild. 1851 * 2. jailed, wild. 1852 * 3. non-jailed, non-wild. 1853 * 4. non-jailed, wild. 1854 */ 1855 1856 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport, 1857 0, pcbinfo->ipi_hashmask)]; 1858 LIST_FOREACH(inp, head, inp_hash) { 1859 #ifdef INET6 1860 /* XXX inp locking */ 1861 if ((inp->inp_vflag & INP_IPV4) == 0) 1862 continue; 1863 #endif 1864 if (inp->inp_faddr.s_addr != INADDR_ANY || 1865 inp->inp_lport != lport) 1866 continue; 1867 1868 /* XXX inp locking */ 1869 if (ifp && ifp->if_type == IFT_FAITH && 1870 (inp->inp_flags & INP_FAITH) == 0) 1871 continue; 1872 1873 injail = prison_flag(inp->inp_cred, PR_IP4); 1874 if (injail) { 1875 if (prison_check_ip4(inp->inp_cred, 1876 &laddr) != 0) 1877 continue; 1878 } else { 1879 if (local_exact != NULL) 1880 continue; 1881 } 1882 1883 if (inp->inp_laddr.s_addr == laddr.s_addr) { 1884 if (injail) 1885 return (inp); 1886 else 1887 local_exact = inp; 1888 } else if (inp->inp_laddr.s_addr == INADDR_ANY) { 1889 #ifdef INET6 1890 /* XXX inp locking, NULL check */ 1891 if (inp->inp_vflag & INP_IPV6PROTO) 1892 local_wild_mapped = inp; 1893 else 1894 #endif 1895 if (injail) 1896 jail_wild = inp; 1897 else 1898 local_wild = inp; 1899 } 1900 } /* LIST_FOREACH */ 1901 if (jail_wild != NULL) 1902 return (jail_wild); 1903 if (local_exact != NULL) 1904 return (local_exact); 1905 if (local_wild != NULL) 1906 return (local_wild); 1907 #ifdef INET6 1908 if (local_wild_mapped != NULL) 1909 return (local_wild_mapped); 1910 #endif 1911 } /* if ((lookupflags & INPLOOKUP_WILDCARD) != 0) */ 1912 1913 return (NULL); 1914 } 1915 1916 /* 1917 * Lookup PCB in hash list, using pcbinfo tables. This variation locks the 1918 * hash list lock, and will return the inpcb locked (i.e., requires 1919 * INPLOOKUP_LOCKPCB). 1920 */ 1921 static struct inpcb * 1922 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr, 1923 u_int fport, struct in_addr laddr, u_int lport, int lookupflags, 1924 struct ifnet *ifp) 1925 { 1926 struct inpcb *inp; 1927 1928 INP_HASH_RLOCK(pcbinfo); 1929 inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport, 1930 (lookupflags & ~(INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)), ifp); 1931 if (inp != NULL) { 1932 in_pcbref(inp); 1933 INP_HASH_RUNLOCK(pcbinfo); 1934 if (lookupflags & INPLOOKUP_WLOCKPCB) { 1935 INP_WLOCK(inp); 1936 if (in_pcbrele_wlocked(inp)) 1937 return (NULL); 1938 } else if (lookupflags & INPLOOKUP_RLOCKPCB) { 1939 INP_RLOCK(inp); 1940 if (in_pcbrele_rlocked(inp)) 1941 return (NULL); 1942 } else 1943 panic("%s: locking bug", __func__); 1944 } else 1945 INP_HASH_RUNLOCK(pcbinfo); 1946 return (inp); 1947 } 1948 1949 /* 1950 * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf 1951 * from which a pre-calculated hash value may be extracted. 1952 * 1953 * Possibly more of this logic should be in in_pcbgroup.c. 1954 */ 1955 struct inpcb * 1956 in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport, 1957 struct in_addr laddr, u_int lport, int lookupflags, struct ifnet *ifp) 1958 { 1959 #if defined(PCBGROUP) && !defined(RSS) 1960 struct inpcbgroup *pcbgroup; 1961 #endif 1962 1963 KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0, 1964 ("%s: invalid lookup flags %d", __func__, lookupflags)); 1965 KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0, 1966 ("%s: LOCKPCB not set", __func__)); 1967 1968 /* 1969 * When not using RSS, use connection groups in preference to the 1970 * reservation table when looking up 4-tuples. When using RSS, just 1971 * use the reservation table, due to the cost of the Toeplitz hash 1972 * in software. 1973 * 1974 * XXXRW: This policy belongs in the pcbgroup code, as in principle 1975 * we could be doing RSS with a non-Toeplitz hash that is affordable 1976 * in software. 1977 */ 1978 #if defined(PCBGROUP) && !defined(RSS) 1979 if (in_pcbgroup_enabled(pcbinfo)) { 1980 pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr, 1981 fport); 1982 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport, 1983 laddr, lport, lookupflags, ifp)); 1984 } 1985 #endif 1986 return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport, 1987 lookupflags, ifp)); 1988 } 1989 1990 struct inpcb * 1991 in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr, 1992 u_int fport, struct in_addr laddr, u_int lport, int lookupflags, 1993 struct ifnet *ifp, struct mbuf *m) 1994 { 1995 #ifdef PCBGROUP 1996 struct inpcbgroup *pcbgroup; 1997 #endif 1998 1999 KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0, 2000 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2001 KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0, 2002 ("%s: LOCKPCB not set", __func__)); 2003 2004 #ifdef PCBGROUP 2005 /* 2006 * If we can use a hardware-generated hash to look up the connection 2007 * group, use that connection group to find the inpcb. Otherwise 2008 * fall back on a software hash -- or the reservation table if we're 2009 * using RSS. 2010 * 2011 * XXXRW: As above, that policy belongs in the pcbgroup code. 2012 */ 2013 if (in_pcbgroup_enabled(pcbinfo) && 2014 !(M_HASHTYPE_TEST(m, M_HASHTYPE_NONE))) { 2015 pcbgroup = in_pcbgroup_byhash(pcbinfo, M_HASHTYPE_GET(m), 2016 m->m_pkthdr.flowid); 2017 if (pcbgroup != NULL) 2018 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, 2019 fport, laddr, lport, lookupflags, ifp)); 2020 #ifndef RSS 2021 pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr, 2022 fport); 2023 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport, 2024 laddr, lport, lookupflags, ifp)); 2025 #endif 2026 } 2027 #endif 2028 return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport, 2029 lookupflags, ifp)); 2030 } 2031 #endif /* INET */ 2032 2033 /* 2034 * Insert PCB onto various hash lists. 2035 */ 2036 static int 2037 in_pcbinshash_internal(struct inpcb *inp, int do_pcbgroup_update) 2038 { 2039 struct inpcbhead *pcbhash; 2040 struct inpcbporthead *pcbporthash; 2041 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2042 struct inpcbport *phd; 2043 u_int32_t hashkey_faddr; 2044 2045 INP_WLOCK_ASSERT(inp); 2046 INP_HASH_WLOCK_ASSERT(pcbinfo); 2047 2048 KASSERT((inp->inp_flags & INP_INHASHLIST) == 0, 2049 ("in_pcbinshash: INP_INHASHLIST")); 2050 2051 #ifdef INET6 2052 if (inp->inp_vflag & INP_IPV6) 2053 hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr); 2054 else 2055 #endif 2056 hashkey_faddr = inp->inp_faddr.s_addr; 2057 2058 pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr, 2059 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 2060 2061 pcbporthash = &pcbinfo->ipi_porthashbase[ 2062 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)]; 2063 2064 /* 2065 * Go through port list and look for a head for this lport. 2066 */ 2067 LIST_FOREACH(phd, pcbporthash, phd_hash) { 2068 if (phd->phd_port == inp->inp_lport) 2069 break; 2070 } 2071 /* 2072 * If none exists, malloc one and tack it on. 2073 */ 2074 if (phd == NULL) { 2075 phd = malloc(sizeof(struct inpcbport), M_PCB, M_NOWAIT); 2076 if (phd == NULL) { 2077 return (ENOBUFS); /* XXX */ 2078 } 2079 phd->phd_port = inp->inp_lport; 2080 LIST_INIT(&phd->phd_pcblist); 2081 LIST_INSERT_HEAD(pcbporthash, phd, phd_hash); 2082 } 2083 inp->inp_phd = phd; 2084 LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist); 2085 LIST_INSERT_HEAD(pcbhash, inp, inp_hash); 2086 inp->inp_flags |= INP_INHASHLIST; 2087 #ifdef PCBGROUP 2088 if (do_pcbgroup_update) 2089 in_pcbgroup_update(inp); 2090 #endif 2091 return (0); 2092 } 2093 2094 /* 2095 * For now, there are two public interfaces to insert an inpcb into the hash 2096 * lists -- one that does update pcbgroups, and one that doesn't. The latter 2097 * is used only in the TCP syncache, where in_pcbinshash is called before the 2098 * full 4-tuple is set for the inpcb, and we don't want to install in the 2099 * pcbgroup until later. 2100 * 2101 * XXXRW: This seems like a misfeature. in_pcbinshash should always update 2102 * connection groups, and partially initialised inpcbs should not be exposed 2103 * to either reservation hash tables or pcbgroups. 2104 */ 2105 int 2106 in_pcbinshash(struct inpcb *inp) 2107 { 2108 2109 return (in_pcbinshash_internal(inp, 1)); 2110 } 2111 2112 int 2113 in_pcbinshash_nopcbgroup(struct inpcb *inp) 2114 { 2115 2116 return (in_pcbinshash_internal(inp, 0)); 2117 } 2118 2119 /* 2120 * Move PCB to the proper hash bucket when { faddr, fport } have been 2121 * changed. NOTE: This does not handle the case of the lport changing (the 2122 * hashed port list would have to be updated as well), so the lport must 2123 * not change after in_pcbinshash() has been called. 2124 */ 2125 void 2126 in_pcbrehash_mbuf(struct inpcb *inp, struct mbuf *m) 2127 { 2128 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2129 struct inpcbhead *head; 2130 u_int32_t hashkey_faddr; 2131 2132 INP_WLOCK_ASSERT(inp); 2133 INP_HASH_WLOCK_ASSERT(pcbinfo); 2134 2135 KASSERT(inp->inp_flags & INP_INHASHLIST, 2136 ("in_pcbrehash: !INP_INHASHLIST")); 2137 2138 #ifdef INET6 2139 if (inp->inp_vflag & INP_IPV6) 2140 hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr); 2141 else 2142 #endif 2143 hashkey_faddr = inp->inp_faddr.s_addr; 2144 2145 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr, 2146 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 2147 2148 LIST_REMOVE(inp, inp_hash); 2149 LIST_INSERT_HEAD(head, inp, inp_hash); 2150 2151 #ifdef PCBGROUP 2152 if (m != NULL) 2153 in_pcbgroup_update_mbuf(inp, m); 2154 else 2155 in_pcbgroup_update(inp); 2156 #endif 2157 } 2158 2159 void 2160 in_pcbrehash(struct inpcb *inp) 2161 { 2162 2163 in_pcbrehash_mbuf(inp, NULL); 2164 } 2165 2166 /* 2167 * Remove PCB from various lists. 2168 */ 2169 static void 2170 in_pcbremlists(struct inpcb *inp) 2171 { 2172 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2173 2174 INP_INFO_WLOCK_ASSERT(pcbinfo); 2175 INP_WLOCK_ASSERT(inp); 2176 2177 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 2178 if (inp->inp_flags & INP_INHASHLIST) { 2179 struct inpcbport *phd = inp->inp_phd; 2180 2181 INP_HASH_WLOCK(pcbinfo); 2182 LIST_REMOVE(inp, inp_hash); 2183 LIST_REMOVE(inp, inp_portlist); 2184 if (LIST_FIRST(&phd->phd_pcblist) == NULL) { 2185 LIST_REMOVE(phd, phd_hash); 2186 free(phd, M_PCB); 2187 } 2188 INP_HASH_WUNLOCK(pcbinfo); 2189 inp->inp_flags &= ~INP_INHASHLIST; 2190 } 2191 LIST_REMOVE(inp, inp_list); 2192 pcbinfo->ipi_count--; 2193 #ifdef PCBGROUP 2194 in_pcbgroup_remove(inp); 2195 #endif 2196 } 2197 2198 /* 2199 * A set label operation has occurred at the socket layer, propagate the 2200 * label change into the in_pcb for the socket. 2201 */ 2202 void 2203 in_pcbsosetlabel(struct socket *so) 2204 { 2205 #ifdef MAC 2206 struct inpcb *inp; 2207 2208 inp = sotoinpcb(so); 2209 KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL")); 2210 2211 INP_WLOCK(inp); 2212 SOCK_LOCK(so); 2213 mac_inpcb_sosetlabel(so, inp); 2214 SOCK_UNLOCK(so); 2215 INP_WUNLOCK(inp); 2216 #endif 2217 } 2218 2219 /* 2220 * ipport_tick runs once per second, determining if random port allocation 2221 * should be continued. If more than ipport_randomcps ports have been 2222 * allocated in the last second, then we return to sequential port 2223 * allocation. We return to random allocation only once we drop below 2224 * ipport_randomcps for at least ipport_randomtime seconds. 2225 */ 2226 static void 2227 ipport_tick(void *xtp) 2228 { 2229 VNET_ITERATOR_DECL(vnet_iter); 2230 2231 VNET_LIST_RLOCK_NOSLEEP(); 2232 VNET_FOREACH(vnet_iter) { 2233 CURVNET_SET(vnet_iter); /* XXX appease INVARIANTS here */ 2234 if (V_ipport_tcpallocs <= 2235 V_ipport_tcplastcount + V_ipport_randomcps) { 2236 if (V_ipport_stoprandom > 0) 2237 V_ipport_stoprandom--; 2238 } else 2239 V_ipport_stoprandom = V_ipport_randomtime; 2240 V_ipport_tcplastcount = V_ipport_tcpallocs; 2241 CURVNET_RESTORE(); 2242 } 2243 VNET_LIST_RUNLOCK_NOSLEEP(); 2244 callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL); 2245 } 2246 2247 static void 2248 ip_fini(void *xtp) 2249 { 2250 2251 callout_stop(&ipport_tick_callout); 2252 } 2253 2254 /* 2255 * The ipport_callout should start running at about the time we attach the 2256 * inet or inet6 domains. 2257 */ 2258 static void 2259 ipport_tick_init(const void *unused __unused) 2260 { 2261 2262 /* Start ipport_tick. */ 2263 callout_init(&ipport_tick_callout, CALLOUT_MPSAFE); 2264 callout_reset(&ipport_tick_callout, 1, ipport_tick, NULL); 2265 EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL, 2266 SHUTDOWN_PRI_DEFAULT); 2267 } 2268 SYSINIT(ipport_tick_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_MIDDLE, 2269 ipport_tick_init, NULL); 2270 2271 void 2272 inp_wlock(struct inpcb *inp) 2273 { 2274 2275 INP_WLOCK(inp); 2276 } 2277 2278 void 2279 inp_wunlock(struct inpcb *inp) 2280 { 2281 2282 INP_WUNLOCK(inp); 2283 } 2284 2285 void 2286 inp_rlock(struct inpcb *inp) 2287 { 2288 2289 INP_RLOCK(inp); 2290 } 2291 2292 void 2293 inp_runlock(struct inpcb *inp) 2294 { 2295 2296 INP_RUNLOCK(inp); 2297 } 2298 2299 #ifdef INVARIANTS 2300 void 2301 inp_lock_assert(struct inpcb *inp) 2302 { 2303 2304 INP_WLOCK_ASSERT(inp); 2305 } 2306 2307 void 2308 inp_unlock_assert(struct inpcb *inp) 2309 { 2310 2311 INP_UNLOCK_ASSERT(inp); 2312 } 2313 #endif 2314 2315 void 2316 inp_apply_all(void (*func)(struct inpcb *, void *), void *arg) 2317 { 2318 struct inpcb *inp; 2319 2320 INP_INFO_RLOCK(&V_tcbinfo); 2321 LIST_FOREACH(inp, V_tcbinfo.ipi_listhead, inp_list) { 2322 INP_WLOCK(inp); 2323 func(inp, arg); 2324 INP_WUNLOCK(inp); 2325 } 2326 INP_INFO_RUNLOCK(&V_tcbinfo); 2327 } 2328 2329 struct socket * 2330 inp_inpcbtosocket(struct inpcb *inp) 2331 { 2332 2333 INP_WLOCK_ASSERT(inp); 2334 return (inp->inp_socket); 2335 } 2336 2337 struct tcpcb * 2338 inp_inpcbtotcpcb(struct inpcb *inp) 2339 { 2340 2341 INP_WLOCK_ASSERT(inp); 2342 return ((struct tcpcb *)inp->inp_ppcb); 2343 } 2344 2345 int 2346 inp_ip_tos_get(const struct inpcb *inp) 2347 { 2348 2349 return (inp->inp_ip_tos); 2350 } 2351 2352 void 2353 inp_ip_tos_set(struct inpcb *inp, int val) 2354 { 2355 2356 inp->inp_ip_tos = val; 2357 } 2358 2359 void 2360 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp, 2361 uint32_t *faddr, uint16_t *fp) 2362 { 2363 2364 INP_LOCK_ASSERT(inp); 2365 *laddr = inp->inp_laddr.s_addr; 2366 *faddr = inp->inp_faddr.s_addr; 2367 *lp = inp->inp_lport; 2368 *fp = inp->inp_fport; 2369 } 2370 2371 struct inpcb * 2372 so_sotoinpcb(struct socket *so) 2373 { 2374 2375 return (sotoinpcb(so)); 2376 } 2377 2378 struct tcpcb * 2379 so_sototcpcb(struct socket *so) 2380 { 2381 2382 return (sototcpcb(so)); 2383 } 2384 2385 #ifdef DDB 2386 static void 2387 db_print_indent(int indent) 2388 { 2389 int i; 2390 2391 for (i = 0; i < indent; i++) 2392 db_printf(" "); 2393 } 2394 2395 static void 2396 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent) 2397 { 2398 char faddr_str[48], laddr_str[48]; 2399 2400 db_print_indent(indent); 2401 db_printf("%s at %p\n", name, inc); 2402 2403 indent += 2; 2404 2405 #ifdef INET6 2406 if (inc->inc_flags & INC_ISIPV6) { 2407 /* IPv6. */ 2408 ip6_sprintf(laddr_str, &inc->inc6_laddr); 2409 ip6_sprintf(faddr_str, &inc->inc6_faddr); 2410 } else 2411 #endif 2412 { 2413 /* IPv4. */ 2414 inet_ntoa_r(inc->inc_laddr, laddr_str); 2415 inet_ntoa_r(inc->inc_faddr, faddr_str); 2416 } 2417 db_print_indent(indent); 2418 db_printf("inc_laddr %s inc_lport %u\n", laddr_str, 2419 ntohs(inc->inc_lport)); 2420 db_print_indent(indent); 2421 db_printf("inc_faddr %s inc_fport %u\n", faddr_str, 2422 ntohs(inc->inc_fport)); 2423 } 2424 2425 static void 2426 db_print_inpflags(int inp_flags) 2427 { 2428 int comma; 2429 2430 comma = 0; 2431 if (inp_flags & INP_RECVOPTS) { 2432 db_printf("%sINP_RECVOPTS", comma ? ", " : ""); 2433 comma = 1; 2434 } 2435 if (inp_flags & INP_RECVRETOPTS) { 2436 db_printf("%sINP_RECVRETOPTS", comma ? ", " : ""); 2437 comma = 1; 2438 } 2439 if (inp_flags & INP_RECVDSTADDR) { 2440 db_printf("%sINP_RECVDSTADDR", comma ? ", " : ""); 2441 comma = 1; 2442 } 2443 if (inp_flags & INP_HDRINCL) { 2444 db_printf("%sINP_HDRINCL", comma ? ", " : ""); 2445 comma = 1; 2446 } 2447 if (inp_flags & INP_HIGHPORT) { 2448 db_printf("%sINP_HIGHPORT", comma ? ", " : ""); 2449 comma = 1; 2450 } 2451 if (inp_flags & INP_LOWPORT) { 2452 db_printf("%sINP_LOWPORT", comma ? ", " : ""); 2453 comma = 1; 2454 } 2455 if (inp_flags & INP_ANONPORT) { 2456 db_printf("%sINP_ANONPORT", comma ? ", " : ""); 2457 comma = 1; 2458 } 2459 if (inp_flags & INP_RECVIF) { 2460 db_printf("%sINP_RECVIF", comma ? ", " : ""); 2461 comma = 1; 2462 } 2463 if (inp_flags & INP_MTUDISC) { 2464 db_printf("%sINP_MTUDISC", comma ? ", " : ""); 2465 comma = 1; 2466 } 2467 if (inp_flags & INP_FAITH) { 2468 db_printf("%sINP_FAITH", comma ? ", " : ""); 2469 comma = 1; 2470 } 2471 if (inp_flags & INP_RECVTTL) { 2472 db_printf("%sINP_RECVTTL", comma ? ", " : ""); 2473 comma = 1; 2474 } 2475 if (inp_flags & INP_DONTFRAG) { 2476 db_printf("%sINP_DONTFRAG", comma ? ", " : ""); 2477 comma = 1; 2478 } 2479 if (inp_flags & INP_RECVTOS) { 2480 db_printf("%sINP_RECVTOS", comma ? ", " : ""); 2481 comma = 1; 2482 } 2483 if (inp_flags & IN6P_IPV6_V6ONLY) { 2484 db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : ""); 2485 comma = 1; 2486 } 2487 if (inp_flags & IN6P_PKTINFO) { 2488 db_printf("%sIN6P_PKTINFO", comma ? ", " : ""); 2489 comma = 1; 2490 } 2491 if (inp_flags & IN6P_HOPLIMIT) { 2492 db_printf("%sIN6P_HOPLIMIT", comma ? ", " : ""); 2493 comma = 1; 2494 } 2495 if (inp_flags & IN6P_HOPOPTS) { 2496 db_printf("%sIN6P_HOPOPTS", comma ? ", " : ""); 2497 comma = 1; 2498 } 2499 if (inp_flags & IN6P_DSTOPTS) { 2500 db_printf("%sIN6P_DSTOPTS", comma ? ", " : ""); 2501 comma = 1; 2502 } 2503 if (inp_flags & IN6P_RTHDR) { 2504 db_printf("%sIN6P_RTHDR", comma ? ", " : ""); 2505 comma = 1; 2506 } 2507 if (inp_flags & IN6P_RTHDRDSTOPTS) { 2508 db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : ""); 2509 comma = 1; 2510 } 2511 if (inp_flags & IN6P_TCLASS) { 2512 db_printf("%sIN6P_TCLASS", comma ? ", " : ""); 2513 comma = 1; 2514 } 2515 if (inp_flags & IN6P_AUTOFLOWLABEL) { 2516 db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : ""); 2517 comma = 1; 2518 } 2519 if (inp_flags & INP_TIMEWAIT) { 2520 db_printf("%sINP_TIMEWAIT", comma ? ", " : ""); 2521 comma = 1; 2522 } 2523 if (inp_flags & INP_ONESBCAST) { 2524 db_printf("%sINP_ONESBCAST", comma ? ", " : ""); 2525 comma = 1; 2526 } 2527 if (inp_flags & INP_DROPPED) { 2528 db_printf("%sINP_DROPPED", comma ? ", " : ""); 2529 comma = 1; 2530 } 2531 if (inp_flags & INP_SOCKREF) { 2532 db_printf("%sINP_SOCKREF", comma ? ", " : ""); 2533 comma = 1; 2534 } 2535 if (inp_flags & IN6P_RFC2292) { 2536 db_printf("%sIN6P_RFC2292", comma ? ", " : ""); 2537 comma = 1; 2538 } 2539 if (inp_flags & IN6P_MTU) { 2540 db_printf("IN6P_MTU%s", comma ? ", " : ""); 2541 comma = 1; 2542 } 2543 } 2544 2545 static void 2546 db_print_inpvflag(u_char inp_vflag) 2547 { 2548 int comma; 2549 2550 comma = 0; 2551 if (inp_vflag & INP_IPV4) { 2552 db_printf("%sINP_IPV4", comma ? ", " : ""); 2553 comma = 1; 2554 } 2555 if (inp_vflag & INP_IPV6) { 2556 db_printf("%sINP_IPV6", comma ? ", " : ""); 2557 comma = 1; 2558 } 2559 if (inp_vflag & INP_IPV6PROTO) { 2560 db_printf("%sINP_IPV6PROTO", comma ? ", " : ""); 2561 comma = 1; 2562 } 2563 } 2564 2565 static void 2566 db_print_inpcb(struct inpcb *inp, const char *name, int indent) 2567 { 2568 2569 db_print_indent(indent); 2570 db_printf("%s at %p\n", name, inp); 2571 2572 indent += 2; 2573 2574 db_print_indent(indent); 2575 db_printf("inp_flow: 0x%x\n", inp->inp_flow); 2576 2577 db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent); 2578 2579 db_print_indent(indent); 2580 db_printf("inp_ppcb: %p inp_pcbinfo: %p inp_socket: %p\n", 2581 inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket); 2582 2583 db_print_indent(indent); 2584 db_printf("inp_label: %p inp_flags: 0x%x (", 2585 inp->inp_label, inp->inp_flags); 2586 db_print_inpflags(inp->inp_flags); 2587 db_printf(")\n"); 2588 2589 db_print_indent(indent); 2590 db_printf("inp_sp: %p inp_vflag: 0x%x (", inp->inp_sp, 2591 inp->inp_vflag); 2592 db_print_inpvflag(inp->inp_vflag); 2593 db_printf(")\n"); 2594 2595 db_print_indent(indent); 2596 db_printf("inp_ip_ttl: %d inp_ip_p: %d inp_ip_minttl: %d\n", 2597 inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl); 2598 2599 db_print_indent(indent); 2600 #ifdef INET6 2601 if (inp->inp_vflag & INP_IPV6) { 2602 db_printf("in6p_options: %p in6p_outputopts: %p " 2603 "in6p_moptions: %p\n", inp->in6p_options, 2604 inp->in6p_outputopts, inp->in6p_moptions); 2605 db_printf("in6p_icmp6filt: %p in6p_cksum %d " 2606 "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum, 2607 inp->in6p_hops); 2608 } else 2609 #endif 2610 { 2611 db_printf("inp_ip_tos: %d inp_ip_options: %p " 2612 "inp_ip_moptions: %p\n", inp->inp_ip_tos, 2613 inp->inp_options, inp->inp_moptions); 2614 } 2615 2616 db_print_indent(indent); 2617 db_printf("inp_phd: %p inp_gencnt: %ju\n", inp->inp_phd, 2618 (uintmax_t)inp->inp_gencnt); 2619 } 2620 2621 DB_SHOW_COMMAND(inpcb, db_show_inpcb) 2622 { 2623 struct inpcb *inp; 2624 2625 if (!have_addr) { 2626 db_printf("usage: show inpcb <addr>\n"); 2627 return; 2628 } 2629 inp = (struct inpcb *)addr; 2630 2631 db_print_inpcb(inp, "inpcb", 0); 2632 } 2633 #endif /* DDB */ 2634