xref: /freebsd/sys/netinet/in_pcb.c (revision f02f7422801bb39f5eaab8fc383fa7b70c467ff9)
1 /*-
2  * Copyright (c) 1982, 1986, 1991, 1993, 1995
3  *	The Regents of the University of California.
4  * Copyright (c) 2007-2009 Robert N. M. Watson
5  * Copyright (c) 2010-2011 Juniper Networks, Inc.
6  * All rights reserved.
7  *
8  * Portions of this software were developed by Robert N. M. Watson under
9  * contract to Juniper Networks, Inc.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 4. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *	@(#)in_pcb.c	8.4 (Berkeley) 5/24/95
36  */
37 
38 #include <sys/cdefs.h>
39 __FBSDID("$FreeBSD$");
40 
41 #include "opt_ddb.h"
42 #include "opt_ipsec.h"
43 #include "opt_inet.h"
44 #include "opt_inet6.h"
45 #include "opt_pcbgroup.h"
46 #include "opt_rss.h"
47 
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/malloc.h>
51 #include <sys/mbuf.h>
52 #include <sys/callout.h>
53 #include <sys/domain.h>
54 #include <sys/protosw.h>
55 #include <sys/socket.h>
56 #include <sys/socketvar.h>
57 #include <sys/priv.h>
58 #include <sys/proc.h>
59 #include <sys/refcount.h>
60 #include <sys/jail.h>
61 #include <sys/kernel.h>
62 #include <sys/sysctl.h>
63 
64 #ifdef DDB
65 #include <ddb/ddb.h>
66 #endif
67 
68 #include <vm/uma.h>
69 
70 #include <net/if.h>
71 #include <net/if_var.h>
72 #include <net/if_types.h>
73 #include <net/route.h>
74 #include <net/vnet.h>
75 
76 #if defined(INET) || defined(INET6)
77 #include <netinet/in.h>
78 #include <netinet/in_pcb.h>
79 #include <netinet/in_rss.h>
80 #include <netinet/ip_var.h>
81 #include <netinet/tcp_var.h>
82 #include <netinet/udp.h>
83 #include <netinet/udp_var.h>
84 #endif
85 #ifdef INET
86 #include <netinet/in_var.h>
87 #endif
88 #ifdef INET6
89 #include <netinet/ip6.h>
90 #include <netinet6/in6_pcb.h>
91 #include <netinet6/in6_var.h>
92 #include <netinet6/ip6_var.h>
93 #endif /* INET6 */
94 
95 
96 #ifdef IPSEC
97 #include <netipsec/ipsec.h>
98 #include <netipsec/key.h>
99 #endif /* IPSEC */
100 
101 #include <security/mac/mac_framework.h>
102 
103 static struct callout	ipport_tick_callout;
104 
105 /*
106  * These configure the range of local port addresses assigned to
107  * "unspecified" outgoing connections/packets/whatever.
108  */
109 VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1;	/* 1023 */
110 VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART;	/* 600 */
111 VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST;	/* 10000 */
112 VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST;	/* 65535 */
113 VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO;	/* 49152 */
114 VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO;	/* 65535 */
115 
116 /*
117  * Reserved ports accessible only to root. There are significant
118  * security considerations that must be accounted for when changing these,
119  * but the security benefits can be great. Please be careful.
120  */
121 VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1;	/* 1023 */
122 VNET_DEFINE(int, ipport_reservedlow);
123 
124 /* Variables dealing with random ephemeral port allocation. */
125 VNET_DEFINE(int, ipport_randomized) = 1;	/* user controlled via sysctl */
126 VNET_DEFINE(int, ipport_randomcps) = 10;	/* user controlled via sysctl */
127 VNET_DEFINE(int, ipport_randomtime) = 45;	/* user controlled via sysctl */
128 VNET_DEFINE(int, ipport_stoprandom);		/* toggled by ipport_tick */
129 VNET_DEFINE(int, ipport_tcpallocs);
130 static VNET_DEFINE(int, ipport_tcplastcount);
131 
132 #define	V_ipport_tcplastcount		VNET(ipport_tcplastcount)
133 
134 static void	in_pcbremlists(struct inpcb *inp);
135 #ifdef INET
136 static struct inpcb	*in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo,
137 			    struct in_addr faddr, u_int fport_arg,
138 			    struct in_addr laddr, u_int lport_arg,
139 			    int lookupflags, struct ifnet *ifp);
140 
141 #define RANGECHK(var, min, max) \
142 	if ((var) < (min)) { (var) = (min); } \
143 	else if ((var) > (max)) { (var) = (max); }
144 
145 static int
146 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS)
147 {
148 	int error;
149 
150 	error = sysctl_handle_int(oidp, arg1, arg2, req);
151 	if (error == 0) {
152 		RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1);
153 		RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1);
154 		RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX);
155 		RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX);
156 		RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX);
157 		RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX);
158 	}
159 	return (error);
160 }
161 
162 #undef RANGECHK
163 
164 static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, CTLFLAG_RW, 0,
165     "IP Ports");
166 
167 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst,
168 	CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_lowfirstauto), 0,
169 	&sysctl_net_ipport_check, "I", "");
170 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast,
171 	CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_lowlastauto), 0,
172 	&sysctl_net_ipport_check, "I", "");
173 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, first,
174 	CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_firstauto), 0,
175 	&sysctl_net_ipport_check, "I", "");
176 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, last,
177 	CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_lastauto), 0,
178 	&sysctl_net_ipport_check, "I", "");
179 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst,
180 	CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_hifirstauto), 0,
181 	&sysctl_net_ipport_check, "I", "");
182 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, hilast,
183 	CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_hilastauto), 0,
184 	&sysctl_net_ipport_check, "I", "");
185 SYSCTL_VNET_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh,
186 	CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedhigh), 0, "");
187 SYSCTL_VNET_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow,
188 	CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, "");
189 SYSCTL_VNET_INT(_net_inet_ip_portrange, OID_AUTO, randomized, CTLFLAG_RW,
190 	&VNET_NAME(ipport_randomized), 0, "Enable random port allocation");
191 SYSCTL_VNET_INT(_net_inet_ip_portrange, OID_AUTO, randomcps, CTLFLAG_RW,
192 	&VNET_NAME(ipport_randomcps), 0, "Maximum number of random port "
193 	"allocations before switching to a sequental one");
194 SYSCTL_VNET_INT(_net_inet_ip_portrange, OID_AUTO, randomtime, CTLFLAG_RW,
195 	&VNET_NAME(ipport_randomtime), 0,
196 	"Minimum time to keep sequental port "
197 	"allocation before switching to a random one");
198 #endif /* INET */
199 
200 /*
201  * in_pcb.c: manage the Protocol Control Blocks.
202  *
203  * NOTE: It is assumed that most of these functions will be called with
204  * the pcbinfo lock held, and often, the inpcb lock held, as these utility
205  * functions often modify hash chains or addresses in pcbs.
206  */
207 
208 /*
209  * Initialize an inpcbinfo -- we should be able to reduce the number of
210  * arguments in time.
211  */
212 void
213 in_pcbinfo_init(struct inpcbinfo *pcbinfo, const char *name,
214     struct inpcbhead *listhead, int hash_nelements, int porthash_nelements,
215     char *inpcbzone_name, uma_init inpcbzone_init, uma_fini inpcbzone_fini,
216     uint32_t inpcbzone_flags, u_int hashfields)
217 {
218 
219 	INP_INFO_LOCK_INIT(pcbinfo, name);
220 	INP_HASH_LOCK_INIT(pcbinfo, "pcbinfohash");	/* XXXRW: argument? */
221 #ifdef VIMAGE
222 	pcbinfo->ipi_vnet = curvnet;
223 #endif
224 	pcbinfo->ipi_listhead = listhead;
225 	LIST_INIT(pcbinfo->ipi_listhead);
226 	pcbinfo->ipi_count = 0;
227 	pcbinfo->ipi_hashbase = hashinit(hash_nelements, M_PCB,
228 	    &pcbinfo->ipi_hashmask);
229 	pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB,
230 	    &pcbinfo->ipi_porthashmask);
231 #ifdef PCBGROUP
232 	in_pcbgroup_init(pcbinfo, hashfields, hash_nelements);
233 #endif
234 	pcbinfo->ipi_zone = uma_zcreate(inpcbzone_name, sizeof(struct inpcb),
235 	    NULL, NULL, inpcbzone_init, inpcbzone_fini, UMA_ALIGN_PTR,
236 	    inpcbzone_flags);
237 	uma_zone_set_max(pcbinfo->ipi_zone, maxsockets);
238 	uma_zone_set_warning(pcbinfo->ipi_zone,
239 	    "kern.ipc.maxsockets limit reached");
240 }
241 
242 /*
243  * Destroy an inpcbinfo.
244  */
245 void
246 in_pcbinfo_destroy(struct inpcbinfo *pcbinfo)
247 {
248 
249 	KASSERT(pcbinfo->ipi_count == 0,
250 	    ("%s: ipi_count = %u", __func__, pcbinfo->ipi_count));
251 
252 	hashdestroy(pcbinfo->ipi_hashbase, M_PCB, pcbinfo->ipi_hashmask);
253 	hashdestroy(pcbinfo->ipi_porthashbase, M_PCB,
254 	    pcbinfo->ipi_porthashmask);
255 #ifdef PCBGROUP
256 	in_pcbgroup_destroy(pcbinfo);
257 #endif
258 	uma_zdestroy(pcbinfo->ipi_zone);
259 	INP_HASH_LOCK_DESTROY(pcbinfo);
260 	INP_INFO_LOCK_DESTROY(pcbinfo);
261 }
262 
263 /*
264  * Allocate a PCB and associate it with the socket.
265  * On success return with the PCB locked.
266  */
267 int
268 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo)
269 {
270 	struct inpcb *inp;
271 	int error;
272 
273 	INP_INFO_WLOCK_ASSERT(pcbinfo);
274 	error = 0;
275 	inp = uma_zalloc(pcbinfo->ipi_zone, M_NOWAIT);
276 	if (inp == NULL)
277 		return (ENOBUFS);
278 	bzero(inp, inp_zero_size);
279 	inp->inp_pcbinfo = pcbinfo;
280 	inp->inp_socket = so;
281 	inp->inp_cred = crhold(so->so_cred);
282 	inp->inp_inc.inc_fibnum = so->so_fibnum;
283 #ifdef MAC
284 	error = mac_inpcb_init(inp, M_NOWAIT);
285 	if (error != 0)
286 		goto out;
287 	mac_inpcb_create(so, inp);
288 #endif
289 #ifdef IPSEC
290 	error = ipsec_init_policy(so, &inp->inp_sp);
291 	if (error != 0) {
292 #ifdef MAC
293 		mac_inpcb_destroy(inp);
294 #endif
295 		goto out;
296 	}
297 #endif /*IPSEC*/
298 #ifdef INET6
299 	if (INP_SOCKAF(so) == AF_INET6) {
300 		inp->inp_vflag |= INP_IPV6PROTO;
301 		if (V_ip6_v6only)
302 			inp->inp_flags |= IN6P_IPV6_V6ONLY;
303 	}
304 #endif
305 	LIST_INSERT_HEAD(pcbinfo->ipi_listhead, inp, inp_list);
306 	pcbinfo->ipi_count++;
307 	so->so_pcb = (caddr_t)inp;
308 #ifdef INET6
309 	if (V_ip6_auto_flowlabel)
310 		inp->inp_flags |= IN6P_AUTOFLOWLABEL;
311 #endif
312 	INP_WLOCK(inp);
313 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
314 	refcount_init(&inp->inp_refcount, 1);	/* Reference from inpcbinfo */
315 #if defined(IPSEC) || defined(MAC)
316 out:
317 	if (error != 0) {
318 		crfree(inp->inp_cred);
319 		uma_zfree(pcbinfo->ipi_zone, inp);
320 	}
321 #endif
322 	return (error);
323 }
324 
325 #ifdef INET
326 int
327 in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
328 {
329 	int anonport, error;
330 
331 	INP_WLOCK_ASSERT(inp);
332 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
333 
334 	if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY)
335 		return (EINVAL);
336 	anonport = nam == NULL || ((struct sockaddr_in *)nam)->sin_port == 0;
337 	error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr,
338 	    &inp->inp_lport, cred);
339 	if (error)
340 		return (error);
341 	if (in_pcbinshash(inp) != 0) {
342 		inp->inp_laddr.s_addr = INADDR_ANY;
343 		inp->inp_lport = 0;
344 		return (EAGAIN);
345 	}
346 	if (anonport)
347 		inp->inp_flags |= INP_ANONPORT;
348 	return (0);
349 }
350 #endif
351 
352 /*
353  * Select a local port (number) to use.
354  */
355 #if defined(INET) || defined(INET6)
356 int
357 in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp,
358     struct ucred *cred, int lookupflags)
359 {
360 	struct inpcbinfo *pcbinfo;
361 	struct inpcb *tmpinp;
362 	unsigned short *lastport;
363 	int count, dorandom, error;
364 	u_short aux, first, last, lport;
365 #ifdef INET
366 	struct in_addr laddr;
367 #endif
368 
369 	pcbinfo = inp->inp_pcbinfo;
370 
371 	/*
372 	 * Because no actual state changes occur here, a global write lock on
373 	 * the pcbinfo isn't required.
374 	 */
375 	INP_LOCK_ASSERT(inp);
376 	INP_HASH_LOCK_ASSERT(pcbinfo);
377 
378 	if (inp->inp_flags & INP_HIGHPORT) {
379 		first = V_ipport_hifirstauto;	/* sysctl */
380 		last  = V_ipport_hilastauto;
381 		lastport = &pcbinfo->ipi_lasthi;
382 	} else if (inp->inp_flags & INP_LOWPORT) {
383 		error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT, 0);
384 		if (error)
385 			return (error);
386 		first = V_ipport_lowfirstauto;	/* 1023 */
387 		last  = V_ipport_lowlastauto;	/* 600 */
388 		lastport = &pcbinfo->ipi_lastlow;
389 	} else {
390 		first = V_ipport_firstauto;	/* sysctl */
391 		last  = V_ipport_lastauto;
392 		lastport = &pcbinfo->ipi_lastport;
393 	}
394 	/*
395 	 * For UDP(-Lite), use random port allocation as long as the user
396 	 * allows it.  For TCP (and as of yet unknown) connections,
397 	 * use random port allocation only if the user allows it AND
398 	 * ipport_tick() allows it.
399 	 */
400 	if (V_ipport_randomized &&
401 		(!V_ipport_stoprandom || pcbinfo == &V_udbinfo ||
402 		pcbinfo == &V_ulitecbinfo))
403 		dorandom = 1;
404 	else
405 		dorandom = 0;
406 	/*
407 	 * It makes no sense to do random port allocation if
408 	 * we have the only port available.
409 	 */
410 	if (first == last)
411 		dorandom = 0;
412 	/* Make sure to not include UDP(-Lite) packets in the count. */
413 	if (pcbinfo != &V_udbinfo || pcbinfo != &V_ulitecbinfo)
414 		V_ipport_tcpallocs++;
415 	/*
416 	 * Instead of having two loops further down counting up or down
417 	 * make sure that first is always <= last and go with only one
418 	 * code path implementing all logic.
419 	 */
420 	if (first > last) {
421 		aux = first;
422 		first = last;
423 		last = aux;
424 	}
425 
426 #ifdef INET
427 	/* Make the compiler happy. */
428 	laddr.s_addr = 0;
429 	if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) {
430 		KASSERT(laddrp != NULL, ("%s: laddrp NULL for v4 inp %p",
431 		    __func__, inp));
432 		laddr = *laddrp;
433 	}
434 #endif
435 	tmpinp = NULL;	/* Make compiler happy. */
436 	lport = *lportp;
437 
438 	if (dorandom)
439 		*lastport = first + (arc4random() % (last - first));
440 
441 	count = last - first;
442 
443 	do {
444 		if (count-- < 0)	/* completely used? */
445 			return (EADDRNOTAVAIL);
446 		++*lastport;
447 		if (*lastport < first || *lastport > last)
448 			*lastport = first;
449 		lport = htons(*lastport);
450 
451 #ifdef INET6
452 		if ((inp->inp_vflag & INP_IPV6) != 0)
453 			tmpinp = in6_pcblookup_local(pcbinfo,
454 			    &inp->in6p_laddr, lport, lookupflags, cred);
455 #endif
456 #if defined(INET) && defined(INET6)
457 		else
458 #endif
459 #ifdef INET
460 			tmpinp = in_pcblookup_local(pcbinfo, laddr,
461 			    lport, lookupflags, cred);
462 #endif
463 	} while (tmpinp != NULL);
464 
465 #ifdef INET
466 	if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4)
467 		laddrp->s_addr = laddr.s_addr;
468 #endif
469 	*lportp = lport;
470 
471 	return (0);
472 }
473 
474 /*
475  * Return cached socket options.
476  */
477 short
478 inp_so_options(const struct inpcb *inp)
479 {
480    short so_options;
481 
482    so_options = 0;
483 
484    if ((inp->inp_flags2 & INP_REUSEPORT) != 0)
485 	   so_options |= SO_REUSEPORT;
486    if ((inp->inp_flags2 & INP_REUSEADDR) != 0)
487 	   so_options |= SO_REUSEADDR;
488    return (so_options);
489 }
490 #endif /* INET || INET6 */
491 
492 /*
493  * Check if a new BINDMULTI socket is allowed to be created.
494  *
495  * ni points to the new inp.
496  * oi points to the exisitng inp.
497  *
498  * This checks whether the existing inp also has BINDMULTI and
499  * whether the credentials match.
500  */
501 int
502 in_pcbbind_check_bindmulti(const struct inpcb *ni, const struct inpcb *oi)
503 {
504 	/* Check permissions match */
505 	if ((ni->inp_flags2 & INP_BINDMULTI) &&
506 	    (ni->inp_cred->cr_uid !=
507 	    oi->inp_cred->cr_uid))
508 		return (0);
509 
510 	/* Check the existing inp has BINDMULTI set */
511 	if ((ni->inp_flags2 & INP_BINDMULTI) &&
512 	    ((oi->inp_flags2 & INP_BINDMULTI) == 0))
513 		return (0);
514 
515 	/*
516 	 * We're okay - either INP_BINDMULTI isn't set on ni, or
517 	 * it is and it matches the checks.
518 	 */
519 	return (1);
520 }
521 
522 #ifdef INET
523 /*
524  * Set up a bind operation on a PCB, performing port allocation
525  * as required, but do not actually modify the PCB. Callers can
526  * either complete the bind by setting inp_laddr/inp_lport and
527  * calling in_pcbinshash(), or they can just use the resulting
528  * port and address to authorise the sending of a once-off packet.
529  *
530  * On error, the values of *laddrp and *lportp are not changed.
531  */
532 int
533 in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp,
534     u_short *lportp, struct ucred *cred)
535 {
536 	struct socket *so = inp->inp_socket;
537 	struct sockaddr_in *sin;
538 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
539 	struct in_addr laddr;
540 	u_short lport = 0;
541 	int lookupflags = 0, reuseport = (so->so_options & SO_REUSEPORT);
542 	int error;
543 
544 	/*
545 	 * No state changes, so read locks are sufficient here.
546 	 */
547 	INP_LOCK_ASSERT(inp);
548 	INP_HASH_LOCK_ASSERT(pcbinfo);
549 
550 	if (TAILQ_EMPTY(&V_in_ifaddrhead)) /* XXX broken! */
551 		return (EADDRNOTAVAIL);
552 	laddr.s_addr = *laddrp;
553 	if (nam != NULL && laddr.s_addr != INADDR_ANY)
554 		return (EINVAL);
555 	if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) == 0)
556 		lookupflags = INPLOOKUP_WILDCARD;
557 	if (nam == NULL) {
558 		if ((error = prison_local_ip4(cred, &laddr)) != 0)
559 			return (error);
560 	} else {
561 		sin = (struct sockaddr_in *)nam;
562 		if (nam->sa_len != sizeof (*sin))
563 			return (EINVAL);
564 #ifdef notdef
565 		/*
566 		 * We should check the family, but old programs
567 		 * incorrectly fail to initialize it.
568 		 */
569 		if (sin->sin_family != AF_INET)
570 			return (EAFNOSUPPORT);
571 #endif
572 		error = prison_local_ip4(cred, &sin->sin_addr);
573 		if (error)
574 			return (error);
575 		if (sin->sin_port != *lportp) {
576 			/* Don't allow the port to change. */
577 			if (*lportp != 0)
578 				return (EINVAL);
579 			lport = sin->sin_port;
580 		}
581 		/* NB: lport is left as 0 if the port isn't being changed. */
582 		if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) {
583 			/*
584 			 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast;
585 			 * allow complete duplication of binding if
586 			 * SO_REUSEPORT is set, or if SO_REUSEADDR is set
587 			 * and a multicast address is bound on both
588 			 * new and duplicated sockets.
589 			 */
590 			if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) != 0)
591 				reuseport = SO_REUSEADDR|SO_REUSEPORT;
592 		} else if (sin->sin_addr.s_addr != INADDR_ANY) {
593 			sin->sin_port = 0;		/* yech... */
594 			bzero(&sin->sin_zero, sizeof(sin->sin_zero));
595 			/*
596 			 * Is the address a local IP address?
597 			 * If INP_BINDANY is set, then the socket may be bound
598 			 * to any endpoint address, local or not.
599 			 */
600 			if ((inp->inp_flags & INP_BINDANY) == 0 &&
601 			    ifa_ifwithaddr_check((struct sockaddr *)sin) == 0)
602 				return (EADDRNOTAVAIL);
603 		}
604 		laddr = sin->sin_addr;
605 		if (lport) {
606 			struct inpcb *t;
607 			struct tcptw *tw;
608 
609 			/* GROSS */
610 			if (ntohs(lport) <= V_ipport_reservedhigh &&
611 			    ntohs(lport) >= V_ipport_reservedlow &&
612 			    priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT,
613 			    0))
614 				return (EACCES);
615 			if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) &&
616 			    priv_check_cred(inp->inp_cred,
617 			    PRIV_NETINET_REUSEPORT, 0) != 0) {
618 				t = in_pcblookup_local(pcbinfo, sin->sin_addr,
619 				    lport, INPLOOKUP_WILDCARD, cred);
620 	/*
621 	 * XXX
622 	 * This entire block sorely needs a rewrite.
623 	 */
624 				if (t &&
625 				    ((inp->inp_flags2 & INP_BINDMULTI) == 0) &&
626 				    ((t->inp_flags & INP_TIMEWAIT) == 0) &&
627 				    (so->so_type != SOCK_STREAM ||
628 				     ntohl(t->inp_faddr.s_addr) == INADDR_ANY) &&
629 				    (ntohl(sin->sin_addr.s_addr) != INADDR_ANY ||
630 				     ntohl(t->inp_laddr.s_addr) != INADDR_ANY ||
631 				     (t->inp_flags2 & INP_REUSEPORT) == 0) &&
632 				    (inp->inp_cred->cr_uid !=
633 				     t->inp_cred->cr_uid))
634 					return (EADDRINUSE);
635 
636 				/*
637 				 * If the socket is a BINDMULTI socket, then
638 				 * the credentials need to match and the
639 				 * original socket also has to have been bound
640 				 * with BINDMULTI.
641 				 */
642 				if (t && (! in_pcbbind_check_bindmulti(inp, t)))
643 					return (EADDRINUSE);
644 			}
645 			t = in_pcblookup_local(pcbinfo, sin->sin_addr,
646 			    lport, lookupflags, cred);
647 			if (t && (t->inp_flags & INP_TIMEWAIT)) {
648 				/*
649 				 * XXXRW: If an incpb has had its timewait
650 				 * state recycled, we treat the address as
651 				 * being in use (for now).  This is better
652 				 * than a panic, but not desirable.
653 				 */
654 				tw = intotw(t);
655 				if (tw == NULL ||
656 				    (reuseport & tw->tw_so_options) == 0)
657 					return (EADDRINUSE);
658 			} else if (t &&
659 			    ((inp->inp_flags2 & INP_BINDMULTI) == 0) &&
660 			    (reuseport & inp_so_options(t)) == 0) {
661 #ifdef INET6
662 				if (ntohl(sin->sin_addr.s_addr) !=
663 				    INADDR_ANY ||
664 				    ntohl(t->inp_laddr.s_addr) !=
665 				    INADDR_ANY ||
666 				    (inp->inp_vflag & INP_IPV6PROTO) == 0 ||
667 				    (t->inp_vflag & INP_IPV6PROTO) == 0)
668 #endif
669 				return (EADDRINUSE);
670 				if (t && (! in_pcbbind_check_bindmulti(inp, t)))
671 					return (EADDRINUSE);
672 			}
673 		}
674 	}
675 	if (*lportp != 0)
676 		lport = *lportp;
677 	if (lport == 0) {
678 		error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags);
679 		if (error != 0)
680 			return (error);
681 
682 	}
683 	*laddrp = laddr.s_addr;
684 	*lportp = lport;
685 	return (0);
686 }
687 
688 /*
689  * Connect from a socket to a specified address.
690  * Both address and port must be specified in argument sin.
691  * If don't have a local address for this socket yet,
692  * then pick one.
693  */
694 int
695 in_pcbconnect_mbuf(struct inpcb *inp, struct sockaddr *nam,
696     struct ucred *cred, struct mbuf *m)
697 {
698 	u_short lport, fport;
699 	in_addr_t laddr, faddr;
700 	int anonport, error;
701 
702 	INP_WLOCK_ASSERT(inp);
703 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
704 
705 	lport = inp->inp_lport;
706 	laddr = inp->inp_laddr.s_addr;
707 	anonport = (lport == 0);
708 	error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport,
709 	    NULL, cred);
710 	if (error)
711 		return (error);
712 
713 	/* Do the initial binding of the local address if required. */
714 	if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) {
715 		inp->inp_lport = lport;
716 		inp->inp_laddr.s_addr = laddr;
717 		if (in_pcbinshash(inp) != 0) {
718 			inp->inp_laddr.s_addr = INADDR_ANY;
719 			inp->inp_lport = 0;
720 			return (EAGAIN);
721 		}
722 	}
723 
724 	/* Commit the remaining changes. */
725 	inp->inp_lport = lport;
726 	inp->inp_laddr.s_addr = laddr;
727 	inp->inp_faddr.s_addr = faddr;
728 	inp->inp_fport = fport;
729 	in_pcbrehash_mbuf(inp, m);
730 
731 	if (anonport)
732 		inp->inp_flags |= INP_ANONPORT;
733 	return (0);
734 }
735 
736 int
737 in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
738 {
739 
740 	return (in_pcbconnect_mbuf(inp, nam, cred, NULL));
741 }
742 
743 /*
744  * Do proper source address selection on an unbound socket in case
745  * of connect. Take jails into account as well.
746  */
747 int
748 in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr,
749     struct ucred *cred)
750 {
751 	struct ifaddr *ifa;
752 	struct sockaddr *sa;
753 	struct sockaddr_in *sin;
754 	struct route sro;
755 	int error;
756 
757 	KASSERT(laddr != NULL, ("%s: laddr NULL", __func__));
758 
759 	/*
760 	 * Bypass source address selection and use the primary jail IP
761 	 * if requested.
762 	 */
763 	if (cred != NULL && !prison_saddrsel_ip4(cred, laddr))
764 		return (0);
765 
766 	error = 0;
767 	bzero(&sro, sizeof(sro));
768 
769 	sin = (struct sockaddr_in *)&sro.ro_dst;
770 	sin->sin_family = AF_INET;
771 	sin->sin_len = sizeof(struct sockaddr_in);
772 	sin->sin_addr.s_addr = faddr->s_addr;
773 
774 	/*
775 	 * If route is known our src addr is taken from the i/f,
776 	 * else punt.
777 	 *
778 	 * Find out route to destination.
779 	 */
780 	if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0)
781 		in_rtalloc_ign(&sro, 0, inp->inp_inc.inc_fibnum);
782 
783 	/*
784 	 * If we found a route, use the address corresponding to
785 	 * the outgoing interface.
786 	 *
787 	 * Otherwise assume faddr is reachable on a directly connected
788 	 * network and try to find a corresponding interface to take
789 	 * the source address from.
790 	 */
791 	if (sro.ro_rt == NULL || sro.ro_rt->rt_ifp == NULL) {
792 		struct in_ifaddr *ia;
793 		struct ifnet *ifp;
794 
795 		ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin,
796 					inp->inp_socket->so_fibnum));
797 		if (ia == NULL)
798 			ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0,
799 						inp->inp_socket->so_fibnum));
800 		if (ia == NULL) {
801 			error = ENETUNREACH;
802 			goto done;
803 		}
804 
805 		if (cred == NULL || !prison_flag(cred, PR_IP4)) {
806 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
807 			ifa_free(&ia->ia_ifa);
808 			goto done;
809 		}
810 
811 		ifp = ia->ia_ifp;
812 		ifa_free(&ia->ia_ifa);
813 		ia = NULL;
814 		IF_ADDR_RLOCK(ifp);
815 		TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
816 
817 			sa = ifa->ifa_addr;
818 			if (sa->sa_family != AF_INET)
819 				continue;
820 			sin = (struct sockaddr_in *)sa;
821 			if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
822 				ia = (struct in_ifaddr *)ifa;
823 				break;
824 			}
825 		}
826 		if (ia != NULL) {
827 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
828 			IF_ADDR_RUNLOCK(ifp);
829 			goto done;
830 		}
831 		IF_ADDR_RUNLOCK(ifp);
832 
833 		/* 3. As a last resort return the 'default' jail address. */
834 		error = prison_get_ip4(cred, laddr);
835 		goto done;
836 	}
837 
838 	/*
839 	 * If the outgoing interface on the route found is not
840 	 * a loopback interface, use the address from that interface.
841 	 * In case of jails do those three steps:
842 	 * 1. check if the interface address belongs to the jail. If so use it.
843 	 * 2. check if we have any address on the outgoing interface
844 	 *    belonging to this jail. If so use it.
845 	 * 3. as a last resort return the 'default' jail address.
846 	 */
847 	if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) {
848 		struct in_ifaddr *ia;
849 		struct ifnet *ifp;
850 
851 		/* If not jailed, use the default returned. */
852 		if (cred == NULL || !prison_flag(cred, PR_IP4)) {
853 			ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa;
854 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
855 			goto done;
856 		}
857 
858 		/* Jailed. */
859 		/* 1. Check if the iface address belongs to the jail. */
860 		sin = (struct sockaddr_in *)sro.ro_rt->rt_ifa->ifa_addr;
861 		if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
862 			ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa;
863 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
864 			goto done;
865 		}
866 
867 		/*
868 		 * 2. Check if we have any address on the outgoing interface
869 		 *    belonging to this jail.
870 		 */
871 		ia = NULL;
872 		ifp = sro.ro_rt->rt_ifp;
873 		IF_ADDR_RLOCK(ifp);
874 		TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
875 			sa = ifa->ifa_addr;
876 			if (sa->sa_family != AF_INET)
877 				continue;
878 			sin = (struct sockaddr_in *)sa;
879 			if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
880 				ia = (struct in_ifaddr *)ifa;
881 				break;
882 			}
883 		}
884 		if (ia != NULL) {
885 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
886 			IF_ADDR_RUNLOCK(ifp);
887 			goto done;
888 		}
889 		IF_ADDR_RUNLOCK(ifp);
890 
891 		/* 3. As a last resort return the 'default' jail address. */
892 		error = prison_get_ip4(cred, laddr);
893 		goto done;
894 	}
895 
896 	/*
897 	 * The outgoing interface is marked with 'loopback net', so a route
898 	 * to ourselves is here.
899 	 * Try to find the interface of the destination address and then
900 	 * take the address from there. That interface is not necessarily
901 	 * a loopback interface.
902 	 * In case of jails, check that it is an address of the jail
903 	 * and if we cannot find, fall back to the 'default' jail address.
904 	 */
905 	if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) {
906 		struct sockaddr_in sain;
907 		struct in_ifaddr *ia;
908 
909 		bzero(&sain, sizeof(struct sockaddr_in));
910 		sain.sin_family = AF_INET;
911 		sain.sin_len = sizeof(struct sockaddr_in);
912 		sain.sin_addr.s_addr = faddr->s_addr;
913 
914 		ia = ifatoia(ifa_ifwithdstaddr(sintosa(&sain),
915 					inp->inp_socket->so_fibnum));
916 		if (ia == NULL)
917 			ia = ifatoia(ifa_ifwithnet(sintosa(&sain), 0,
918 						inp->inp_socket->so_fibnum));
919 		if (ia == NULL)
920 			ia = ifatoia(ifa_ifwithaddr(sintosa(&sain)));
921 
922 		if (cred == NULL || !prison_flag(cred, PR_IP4)) {
923 			if (ia == NULL) {
924 				error = ENETUNREACH;
925 				goto done;
926 			}
927 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
928 			ifa_free(&ia->ia_ifa);
929 			goto done;
930 		}
931 
932 		/* Jailed. */
933 		if (ia != NULL) {
934 			struct ifnet *ifp;
935 
936 			ifp = ia->ia_ifp;
937 			ifa_free(&ia->ia_ifa);
938 			ia = NULL;
939 			IF_ADDR_RLOCK(ifp);
940 			TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
941 
942 				sa = ifa->ifa_addr;
943 				if (sa->sa_family != AF_INET)
944 					continue;
945 				sin = (struct sockaddr_in *)sa;
946 				if (prison_check_ip4(cred,
947 				    &sin->sin_addr) == 0) {
948 					ia = (struct in_ifaddr *)ifa;
949 					break;
950 				}
951 			}
952 			if (ia != NULL) {
953 				laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
954 				IF_ADDR_RUNLOCK(ifp);
955 				goto done;
956 			}
957 			IF_ADDR_RUNLOCK(ifp);
958 		}
959 
960 		/* 3. As a last resort return the 'default' jail address. */
961 		error = prison_get_ip4(cred, laddr);
962 		goto done;
963 	}
964 
965 done:
966 	if (sro.ro_rt != NULL)
967 		RTFREE(sro.ro_rt);
968 	return (error);
969 }
970 
971 /*
972  * Set up for a connect from a socket to the specified address.
973  * On entry, *laddrp and *lportp should contain the current local
974  * address and port for the PCB; these are updated to the values
975  * that should be placed in inp_laddr and inp_lport to complete
976  * the connect.
977  *
978  * On success, *faddrp and *fportp will be set to the remote address
979  * and port. These are not updated in the error case.
980  *
981  * If the operation fails because the connection already exists,
982  * *oinpp will be set to the PCB of that connection so that the
983  * caller can decide to override it. In all other cases, *oinpp
984  * is set to NULL.
985  */
986 int
987 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam,
988     in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp,
989     struct inpcb **oinpp, struct ucred *cred)
990 {
991 	struct sockaddr_in *sin = (struct sockaddr_in *)nam;
992 	struct in_ifaddr *ia;
993 	struct inpcb *oinp;
994 	struct in_addr laddr, faddr;
995 	u_short lport, fport;
996 	int error;
997 
998 	/*
999 	 * Because a global state change doesn't actually occur here, a read
1000 	 * lock is sufficient.
1001 	 */
1002 	INP_LOCK_ASSERT(inp);
1003 	INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo);
1004 
1005 	if (oinpp != NULL)
1006 		*oinpp = NULL;
1007 	if (nam->sa_len != sizeof (*sin))
1008 		return (EINVAL);
1009 	if (sin->sin_family != AF_INET)
1010 		return (EAFNOSUPPORT);
1011 	if (sin->sin_port == 0)
1012 		return (EADDRNOTAVAIL);
1013 	laddr.s_addr = *laddrp;
1014 	lport = *lportp;
1015 	faddr = sin->sin_addr;
1016 	fport = sin->sin_port;
1017 
1018 	if (!TAILQ_EMPTY(&V_in_ifaddrhead)) {
1019 		/*
1020 		 * If the destination address is INADDR_ANY,
1021 		 * use the primary local address.
1022 		 * If the supplied address is INADDR_BROADCAST,
1023 		 * and the primary interface supports broadcast,
1024 		 * choose the broadcast address for that interface.
1025 		 */
1026 		if (faddr.s_addr == INADDR_ANY) {
1027 			IN_IFADDR_RLOCK();
1028 			faddr =
1029 			    IA_SIN(TAILQ_FIRST(&V_in_ifaddrhead))->sin_addr;
1030 			IN_IFADDR_RUNLOCK();
1031 			if (cred != NULL &&
1032 			    (error = prison_get_ip4(cred, &faddr)) != 0)
1033 				return (error);
1034 		} else if (faddr.s_addr == (u_long)INADDR_BROADCAST) {
1035 			IN_IFADDR_RLOCK();
1036 			if (TAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags &
1037 			    IFF_BROADCAST)
1038 				faddr = satosin(&TAILQ_FIRST(
1039 				    &V_in_ifaddrhead)->ia_broadaddr)->sin_addr;
1040 			IN_IFADDR_RUNLOCK();
1041 		}
1042 	}
1043 	if (laddr.s_addr == INADDR_ANY) {
1044 		error = in_pcbladdr(inp, &faddr, &laddr, cred);
1045 		/*
1046 		 * If the destination address is multicast and an outgoing
1047 		 * interface has been set as a multicast option, prefer the
1048 		 * address of that interface as our source address.
1049 		 */
1050 		if (IN_MULTICAST(ntohl(faddr.s_addr)) &&
1051 		    inp->inp_moptions != NULL) {
1052 			struct ip_moptions *imo;
1053 			struct ifnet *ifp;
1054 
1055 			imo = inp->inp_moptions;
1056 			if (imo->imo_multicast_ifp != NULL) {
1057 				ifp = imo->imo_multicast_ifp;
1058 				IN_IFADDR_RLOCK();
1059 				TAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) {
1060 					if ((ia->ia_ifp == ifp) &&
1061 					    (cred == NULL ||
1062 					    prison_check_ip4(cred,
1063 					    &ia->ia_addr.sin_addr) == 0))
1064 						break;
1065 				}
1066 				if (ia == NULL)
1067 					error = EADDRNOTAVAIL;
1068 				else {
1069 					laddr = ia->ia_addr.sin_addr;
1070 					error = 0;
1071 				}
1072 				IN_IFADDR_RUNLOCK();
1073 			}
1074 		}
1075 		if (error)
1076 			return (error);
1077 	}
1078 	oinp = in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr, fport,
1079 	    laddr, lport, 0, NULL);
1080 	if (oinp != NULL) {
1081 		if (oinpp != NULL)
1082 			*oinpp = oinp;
1083 		return (EADDRINUSE);
1084 	}
1085 	if (lport == 0) {
1086 		error = in_pcbbind_setup(inp, NULL, &laddr.s_addr, &lport,
1087 		    cred);
1088 		if (error)
1089 			return (error);
1090 	}
1091 	*laddrp = laddr.s_addr;
1092 	*lportp = lport;
1093 	*faddrp = faddr.s_addr;
1094 	*fportp = fport;
1095 	return (0);
1096 }
1097 
1098 void
1099 in_pcbdisconnect(struct inpcb *inp)
1100 {
1101 
1102 	INP_WLOCK_ASSERT(inp);
1103 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
1104 
1105 	inp->inp_faddr.s_addr = INADDR_ANY;
1106 	inp->inp_fport = 0;
1107 	in_pcbrehash(inp);
1108 }
1109 #endif /* INET */
1110 
1111 /*
1112  * in_pcbdetach() is responsibe for disassociating a socket from an inpcb.
1113  * For most protocols, this will be invoked immediately prior to calling
1114  * in_pcbfree().  However, with TCP the inpcb may significantly outlive the
1115  * socket, in which case in_pcbfree() is deferred.
1116  */
1117 void
1118 in_pcbdetach(struct inpcb *inp)
1119 {
1120 
1121 	KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__));
1122 
1123 	inp->inp_socket->so_pcb = NULL;
1124 	inp->inp_socket = NULL;
1125 }
1126 
1127 /*
1128  * in_pcbref() bumps the reference count on an inpcb in order to maintain
1129  * stability of an inpcb pointer despite the inpcb lock being released.  This
1130  * is used in TCP when the inpcbinfo lock needs to be acquired or upgraded,
1131  * but where the inpcb lock may already held, or when acquiring a reference
1132  * via a pcbgroup.
1133  *
1134  * in_pcbref() should be used only to provide brief memory stability, and
1135  * must always be followed by a call to INP_WLOCK() and in_pcbrele() to
1136  * garbage collect the inpcb if it has been in_pcbfree()'d from another
1137  * context.  Until in_pcbrele() has returned that the inpcb is still valid,
1138  * lock and rele are the *only* safe operations that may be performed on the
1139  * inpcb.
1140  *
1141  * While the inpcb will not be freed, releasing the inpcb lock means that the
1142  * connection's state may change, so the caller should be careful to
1143  * revalidate any cached state on reacquiring the lock.  Drop the reference
1144  * using in_pcbrele().
1145  */
1146 void
1147 in_pcbref(struct inpcb *inp)
1148 {
1149 
1150 	KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1151 
1152 	refcount_acquire(&inp->inp_refcount);
1153 }
1154 
1155 /*
1156  * Drop a refcount on an inpcb elevated using in_pcbref(); because a call to
1157  * in_pcbfree() may have been made between in_pcbref() and in_pcbrele(), we
1158  * return a flag indicating whether or not the inpcb remains valid.  If it is
1159  * valid, we return with the inpcb lock held.
1160  *
1161  * Notice that, unlike in_pcbref(), the inpcb lock must be held to drop a
1162  * reference on an inpcb.  Historically more work was done here (actually, in
1163  * in_pcbfree_internal()) but has been moved to in_pcbfree() to avoid the
1164  * need for the pcbinfo lock in in_pcbrele().  Deferring the free is entirely
1165  * about memory stability (and continued use of the write lock).
1166  */
1167 int
1168 in_pcbrele_rlocked(struct inpcb *inp)
1169 {
1170 	struct inpcbinfo *pcbinfo;
1171 
1172 	KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1173 
1174 	INP_RLOCK_ASSERT(inp);
1175 
1176 	if (refcount_release(&inp->inp_refcount) == 0) {
1177 		/*
1178 		 * If the inpcb has been freed, let the caller know, even if
1179 		 * this isn't the last reference.
1180 		 */
1181 		if (inp->inp_flags2 & INP_FREED) {
1182 			INP_RUNLOCK(inp);
1183 			return (1);
1184 		}
1185 		return (0);
1186 	}
1187 
1188 	KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1189 
1190 	INP_RUNLOCK(inp);
1191 	pcbinfo = inp->inp_pcbinfo;
1192 	uma_zfree(pcbinfo->ipi_zone, inp);
1193 	return (1);
1194 }
1195 
1196 int
1197 in_pcbrele_wlocked(struct inpcb *inp)
1198 {
1199 	struct inpcbinfo *pcbinfo;
1200 
1201 	KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1202 
1203 	INP_WLOCK_ASSERT(inp);
1204 
1205 	if (refcount_release(&inp->inp_refcount) == 0)
1206 		return (0);
1207 
1208 	KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1209 
1210 	INP_WUNLOCK(inp);
1211 	pcbinfo = inp->inp_pcbinfo;
1212 	uma_zfree(pcbinfo->ipi_zone, inp);
1213 	return (1);
1214 }
1215 
1216 /*
1217  * Temporary wrapper.
1218  */
1219 int
1220 in_pcbrele(struct inpcb *inp)
1221 {
1222 
1223 	return (in_pcbrele_wlocked(inp));
1224 }
1225 
1226 /*
1227  * Unconditionally schedule an inpcb to be freed by decrementing its
1228  * reference count, which should occur only after the inpcb has been detached
1229  * from its socket.  If another thread holds a temporary reference (acquired
1230  * using in_pcbref()) then the free is deferred until that reference is
1231  * released using in_pcbrele(), but the inpcb is still unlocked.  Almost all
1232  * work, including removal from global lists, is done in this context, where
1233  * the pcbinfo lock is held.
1234  */
1235 void
1236 in_pcbfree(struct inpcb *inp)
1237 {
1238 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1239 
1240 	KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1241 
1242 	INP_INFO_WLOCK_ASSERT(pcbinfo);
1243 	INP_WLOCK_ASSERT(inp);
1244 
1245 	/* XXXRW: Do as much as possible here. */
1246 #ifdef IPSEC
1247 	if (inp->inp_sp != NULL)
1248 		ipsec_delete_pcbpolicy(inp);
1249 #endif
1250 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
1251 	in_pcbremlists(inp);
1252 #ifdef INET6
1253 	if (inp->inp_vflag & INP_IPV6PROTO) {
1254 		ip6_freepcbopts(inp->in6p_outputopts);
1255 		if (inp->in6p_moptions != NULL)
1256 			ip6_freemoptions(inp->in6p_moptions);
1257 	}
1258 #endif
1259 	if (inp->inp_options)
1260 		(void)m_free(inp->inp_options);
1261 #ifdef INET
1262 	if (inp->inp_moptions != NULL)
1263 		inp_freemoptions(inp->inp_moptions);
1264 #endif
1265 	inp->inp_vflag = 0;
1266 	inp->inp_flags2 |= INP_FREED;
1267 	crfree(inp->inp_cred);
1268 #ifdef MAC
1269 	mac_inpcb_destroy(inp);
1270 #endif
1271 	if (!in_pcbrele_wlocked(inp))
1272 		INP_WUNLOCK(inp);
1273 }
1274 
1275 /*
1276  * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and
1277  * port reservation, and preventing it from being returned by inpcb lookups.
1278  *
1279  * It is used by TCP to mark an inpcb as unused and avoid future packet
1280  * delivery or event notification when a socket remains open but TCP has
1281  * closed.  This might occur as a result of a shutdown()-initiated TCP close
1282  * or a RST on the wire, and allows the port binding to be reused while still
1283  * maintaining the invariant that so_pcb always points to a valid inpcb until
1284  * in_pcbdetach().
1285  *
1286  * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by
1287  * in_pcbnotifyall() and in_pcbpurgeif0()?
1288  */
1289 void
1290 in_pcbdrop(struct inpcb *inp)
1291 {
1292 
1293 	INP_WLOCK_ASSERT(inp);
1294 
1295 	/*
1296 	 * XXXRW: Possibly we should protect the setting of INP_DROPPED with
1297 	 * the hash lock...?
1298 	 */
1299 	inp->inp_flags |= INP_DROPPED;
1300 	if (inp->inp_flags & INP_INHASHLIST) {
1301 		struct inpcbport *phd = inp->inp_phd;
1302 
1303 		INP_HASH_WLOCK(inp->inp_pcbinfo);
1304 		LIST_REMOVE(inp, inp_hash);
1305 		LIST_REMOVE(inp, inp_portlist);
1306 		if (LIST_FIRST(&phd->phd_pcblist) == NULL) {
1307 			LIST_REMOVE(phd, phd_hash);
1308 			free(phd, M_PCB);
1309 		}
1310 		INP_HASH_WUNLOCK(inp->inp_pcbinfo);
1311 		inp->inp_flags &= ~INP_INHASHLIST;
1312 #ifdef PCBGROUP
1313 		in_pcbgroup_remove(inp);
1314 #endif
1315 	}
1316 }
1317 
1318 #ifdef INET
1319 /*
1320  * Common routines to return the socket addresses associated with inpcbs.
1321  */
1322 struct sockaddr *
1323 in_sockaddr(in_port_t port, struct in_addr *addr_p)
1324 {
1325 	struct sockaddr_in *sin;
1326 
1327 	sin = malloc(sizeof *sin, M_SONAME,
1328 		M_WAITOK | M_ZERO);
1329 	sin->sin_family = AF_INET;
1330 	sin->sin_len = sizeof(*sin);
1331 	sin->sin_addr = *addr_p;
1332 	sin->sin_port = port;
1333 
1334 	return (struct sockaddr *)sin;
1335 }
1336 
1337 int
1338 in_getsockaddr(struct socket *so, struct sockaddr **nam)
1339 {
1340 	struct inpcb *inp;
1341 	struct in_addr addr;
1342 	in_port_t port;
1343 
1344 	inp = sotoinpcb(so);
1345 	KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL"));
1346 
1347 	INP_RLOCK(inp);
1348 	port = inp->inp_lport;
1349 	addr = inp->inp_laddr;
1350 	INP_RUNLOCK(inp);
1351 
1352 	*nam = in_sockaddr(port, &addr);
1353 	return 0;
1354 }
1355 
1356 int
1357 in_getpeeraddr(struct socket *so, struct sockaddr **nam)
1358 {
1359 	struct inpcb *inp;
1360 	struct in_addr addr;
1361 	in_port_t port;
1362 
1363 	inp = sotoinpcb(so);
1364 	KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL"));
1365 
1366 	INP_RLOCK(inp);
1367 	port = inp->inp_fport;
1368 	addr = inp->inp_faddr;
1369 	INP_RUNLOCK(inp);
1370 
1371 	*nam = in_sockaddr(port, &addr);
1372 	return 0;
1373 }
1374 
1375 void
1376 in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno,
1377     struct inpcb *(*notify)(struct inpcb *, int))
1378 {
1379 	struct inpcb *inp, *inp_temp;
1380 
1381 	INP_INFO_WLOCK(pcbinfo);
1382 	LIST_FOREACH_SAFE(inp, pcbinfo->ipi_listhead, inp_list, inp_temp) {
1383 		INP_WLOCK(inp);
1384 #ifdef INET6
1385 		if ((inp->inp_vflag & INP_IPV4) == 0) {
1386 			INP_WUNLOCK(inp);
1387 			continue;
1388 		}
1389 #endif
1390 		if (inp->inp_faddr.s_addr != faddr.s_addr ||
1391 		    inp->inp_socket == NULL) {
1392 			INP_WUNLOCK(inp);
1393 			continue;
1394 		}
1395 		if ((*notify)(inp, errno))
1396 			INP_WUNLOCK(inp);
1397 	}
1398 	INP_INFO_WUNLOCK(pcbinfo);
1399 }
1400 
1401 void
1402 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp)
1403 {
1404 	struct inpcb *inp;
1405 	struct ip_moptions *imo;
1406 	int i, gap;
1407 
1408 	INP_INFO_RLOCK(pcbinfo);
1409 	LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) {
1410 		INP_WLOCK(inp);
1411 		imo = inp->inp_moptions;
1412 		if ((inp->inp_vflag & INP_IPV4) &&
1413 		    imo != NULL) {
1414 			/*
1415 			 * Unselect the outgoing interface if it is being
1416 			 * detached.
1417 			 */
1418 			if (imo->imo_multicast_ifp == ifp)
1419 				imo->imo_multicast_ifp = NULL;
1420 
1421 			/*
1422 			 * Drop multicast group membership if we joined
1423 			 * through the interface being detached.
1424 			 */
1425 			for (i = 0, gap = 0; i < imo->imo_num_memberships;
1426 			    i++) {
1427 				if (imo->imo_membership[i]->inm_ifp == ifp) {
1428 					in_delmulti(imo->imo_membership[i]);
1429 					gap++;
1430 				} else if (gap != 0)
1431 					imo->imo_membership[i - gap] =
1432 					    imo->imo_membership[i];
1433 			}
1434 			imo->imo_num_memberships -= gap;
1435 		}
1436 		INP_WUNLOCK(inp);
1437 	}
1438 	INP_INFO_RUNLOCK(pcbinfo);
1439 }
1440 
1441 /*
1442  * Lookup a PCB based on the local address and port.  Caller must hold the
1443  * hash lock.  No inpcb locks or references are acquired.
1444  */
1445 #define INP_LOOKUP_MAPPED_PCB_COST	3
1446 struct inpcb *
1447 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr,
1448     u_short lport, int lookupflags, struct ucred *cred)
1449 {
1450 	struct inpcb *inp;
1451 #ifdef INET6
1452 	int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST;
1453 #else
1454 	int matchwild = 3;
1455 #endif
1456 	int wildcard;
1457 
1458 	KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0,
1459 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
1460 
1461 	INP_HASH_LOCK_ASSERT(pcbinfo);
1462 
1463 	if ((lookupflags & INPLOOKUP_WILDCARD) == 0) {
1464 		struct inpcbhead *head;
1465 		/*
1466 		 * Look for an unconnected (wildcard foreign addr) PCB that
1467 		 * matches the local address and port we're looking for.
1468 		 */
1469 		head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
1470 		    0, pcbinfo->ipi_hashmask)];
1471 		LIST_FOREACH(inp, head, inp_hash) {
1472 #ifdef INET6
1473 			/* XXX inp locking */
1474 			if ((inp->inp_vflag & INP_IPV4) == 0)
1475 				continue;
1476 #endif
1477 			if (inp->inp_faddr.s_addr == INADDR_ANY &&
1478 			    inp->inp_laddr.s_addr == laddr.s_addr &&
1479 			    inp->inp_lport == lport) {
1480 				/*
1481 				 * Found?
1482 				 */
1483 				if (cred == NULL ||
1484 				    prison_equal_ip4(cred->cr_prison,
1485 					inp->inp_cred->cr_prison))
1486 					return (inp);
1487 			}
1488 		}
1489 		/*
1490 		 * Not found.
1491 		 */
1492 		return (NULL);
1493 	} else {
1494 		struct inpcbporthead *porthash;
1495 		struct inpcbport *phd;
1496 		struct inpcb *match = NULL;
1497 		/*
1498 		 * Best fit PCB lookup.
1499 		 *
1500 		 * First see if this local port is in use by looking on the
1501 		 * port hash list.
1502 		 */
1503 		porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport,
1504 		    pcbinfo->ipi_porthashmask)];
1505 		LIST_FOREACH(phd, porthash, phd_hash) {
1506 			if (phd->phd_port == lport)
1507 				break;
1508 		}
1509 		if (phd != NULL) {
1510 			/*
1511 			 * Port is in use by one or more PCBs. Look for best
1512 			 * fit.
1513 			 */
1514 			LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) {
1515 				wildcard = 0;
1516 				if (cred != NULL &&
1517 				    !prison_equal_ip4(inp->inp_cred->cr_prison,
1518 					cred->cr_prison))
1519 					continue;
1520 #ifdef INET6
1521 				/* XXX inp locking */
1522 				if ((inp->inp_vflag & INP_IPV4) == 0)
1523 					continue;
1524 				/*
1525 				 * We never select the PCB that has
1526 				 * INP_IPV6 flag and is bound to :: if
1527 				 * we have another PCB which is bound
1528 				 * to 0.0.0.0.  If a PCB has the
1529 				 * INP_IPV6 flag, then we set its cost
1530 				 * higher than IPv4 only PCBs.
1531 				 *
1532 				 * Note that the case only happens
1533 				 * when a socket is bound to ::, under
1534 				 * the condition that the use of the
1535 				 * mapped address is allowed.
1536 				 */
1537 				if ((inp->inp_vflag & INP_IPV6) != 0)
1538 					wildcard += INP_LOOKUP_MAPPED_PCB_COST;
1539 #endif
1540 				if (inp->inp_faddr.s_addr != INADDR_ANY)
1541 					wildcard++;
1542 				if (inp->inp_laddr.s_addr != INADDR_ANY) {
1543 					if (laddr.s_addr == INADDR_ANY)
1544 						wildcard++;
1545 					else if (inp->inp_laddr.s_addr != laddr.s_addr)
1546 						continue;
1547 				} else {
1548 					if (laddr.s_addr != INADDR_ANY)
1549 						wildcard++;
1550 				}
1551 				if (wildcard < matchwild) {
1552 					match = inp;
1553 					matchwild = wildcard;
1554 					if (matchwild == 0)
1555 						break;
1556 				}
1557 			}
1558 		}
1559 		return (match);
1560 	}
1561 }
1562 #undef INP_LOOKUP_MAPPED_PCB_COST
1563 
1564 #ifdef PCBGROUP
1565 /*
1566  * Lookup PCB in hash list, using pcbgroup tables.
1567  */
1568 static struct inpcb *
1569 in_pcblookup_group(struct inpcbinfo *pcbinfo, struct inpcbgroup *pcbgroup,
1570     struct in_addr faddr, u_int fport_arg, struct in_addr laddr,
1571     u_int lport_arg, int lookupflags, struct ifnet *ifp)
1572 {
1573 	struct inpcbhead *head;
1574 	struct inpcb *inp, *tmpinp;
1575 	u_short fport = fport_arg, lport = lport_arg;
1576 
1577 	/*
1578 	 * First look for an exact match.
1579 	 */
1580 	tmpinp = NULL;
1581 	INP_GROUP_LOCK(pcbgroup);
1582 	head = &pcbgroup->ipg_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport,
1583 	    pcbgroup->ipg_hashmask)];
1584 	LIST_FOREACH(inp, head, inp_pcbgrouphash) {
1585 #ifdef INET6
1586 		/* XXX inp locking */
1587 		if ((inp->inp_vflag & INP_IPV4) == 0)
1588 			continue;
1589 #endif
1590 		if (inp->inp_faddr.s_addr == faddr.s_addr &&
1591 		    inp->inp_laddr.s_addr == laddr.s_addr &&
1592 		    inp->inp_fport == fport &&
1593 		    inp->inp_lport == lport) {
1594 			/*
1595 			 * XXX We should be able to directly return
1596 			 * the inp here, without any checks.
1597 			 * Well unless both bound with SO_REUSEPORT?
1598 			 */
1599 			if (prison_flag(inp->inp_cred, PR_IP4))
1600 				goto found;
1601 			if (tmpinp == NULL)
1602 				tmpinp = inp;
1603 		}
1604 	}
1605 	if (tmpinp != NULL) {
1606 		inp = tmpinp;
1607 		goto found;
1608 	}
1609 
1610 #ifdef	RSS
1611 	/*
1612 	 * For incoming connections, we may wish to do a wildcard
1613 	 * match for an RSS-local socket.
1614 	 */
1615 	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
1616 		struct inpcb *local_wild = NULL, *local_exact = NULL;
1617 #ifdef INET6
1618 		struct inpcb *local_wild_mapped = NULL;
1619 #endif
1620 		struct inpcb *jail_wild = NULL;
1621 		struct inpcbhead *head;
1622 		int injail;
1623 
1624 		/*
1625 		 * Order of socket selection - we always prefer jails.
1626 		 *      1. jailed, non-wild.
1627 		 *      2. jailed, wild.
1628 		 *      3. non-jailed, non-wild.
1629 		 *      4. non-jailed, wild.
1630 		 */
1631 
1632 		head = &pcbgroup->ipg_hashbase[INP_PCBHASH(INADDR_ANY,
1633 		    lport, 0, pcbgroup->ipg_hashmask)];
1634 		LIST_FOREACH(inp, head, inp_pcbgrouphash) {
1635 #ifdef INET6
1636 			/* XXX inp locking */
1637 			if ((inp->inp_vflag & INP_IPV4) == 0)
1638 				continue;
1639 #endif
1640 			if (inp->inp_faddr.s_addr != INADDR_ANY ||
1641 			    inp->inp_lport != lport)
1642 				continue;
1643 
1644 			/* XXX inp locking */
1645 			if (ifp && ifp->if_type == IFT_FAITH &&
1646 			    (inp->inp_flags & INP_FAITH) == 0)
1647 				continue;
1648 
1649 			injail = prison_flag(inp->inp_cred, PR_IP4);
1650 			if (injail) {
1651 				if (prison_check_ip4(inp->inp_cred,
1652 				    &laddr) != 0)
1653 					continue;
1654 			} else {
1655 				if (local_exact != NULL)
1656 					continue;
1657 			}
1658 
1659 			if (inp->inp_laddr.s_addr == laddr.s_addr) {
1660 				if (injail)
1661 					goto found;
1662 				else
1663 					local_exact = inp;
1664 			} else if (inp->inp_laddr.s_addr == INADDR_ANY) {
1665 #ifdef INET6
1666 				/* XXX inp locking, NULL check */
1667 				if (inp->inp_vflag & INP_IPV6PROTO)
1668 					local_wild_mapped = inp;
1669 				else
1670 #endif
1671 					if (injail)
1672 						jail_wild = inp;
1673 					else
1674 						local_wild = inp;
1675 			}
1676 		} /* LIST_FOREACH */
1677 
1678 		inp = jail_wild;
1679 		if (inp == NULL)
1680 			inp = local_exact;
1681 		if (inp == NULL)
1682 			inp = local_wild;
1683 #ifdef INET6
1684 		if (inp == NULL)
1685 			inp = local_wild_mapped;
1686 #endif
1687 		if (inp != NULL)
1688 			goto found;
1689 	}
1690 #endif
1691 
1692 	/*
1693 	 * Then look for a wildcard match, if requested.
1694 	 */
1695 	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
1696 		struct inpcb *local_wild = NULL, *local_exact = NULL;
1697 #ifdef INET6
1698 		struct inpcb *local_wild_mapped = NULL;
1699 #endif
1700 		struct inpcb *jail_wild = NULL;
1701 		struct inpcbhead *head;
1702 		int injail;
1703 
1704 		/*
1705 		 * Order of socket selection - we always prefer jails.
1706 		 *      1. jailed, non-wild.
1707 		 *      2. jailed, wild.
1708 		 *      3. non-jailed, non-wild.
1709 		 *      4. non-jailed, wild.
1710 		 */
1711 		head = &pcbinfo->ipi_wildbase[INP_PCBHASH(INADDR_ANY, lport,
1712 		    0, pcbinfo->ipi_wildmask)];
1713 		LIST_FOREACH(inp, head, inp_pcbgroup_wild) {
1714 #ifdef INET6
1715 			/* XXX inp locking */
1716 			if ((inp->inp_vflag & INP_IPV4) == 0)
1717 				continue;
1718 #endif
1719 			if (inp->inp_faddr.s_addr != INADDR_ANY ||
1720 			    inp->inp_lport != lport)
1721 				continue;
1722 
1723 			/* XXX inp locking */
1724 			if (ifp && ifp->if_type == IFT_FAITH &&
1725 			    (inp->inp_flags & INP_FAITH) == 0)
1726 				continue;
1727 
1728 			injail = prison_flag(inp->inp_cred, PR_IP4);
1729 			if (injail) {
1730 				if (prison_check_ip4(inp->inp_cred,
1731 				    &laddr) != 0)
1732 					continue;
1733 			} else {
1734 				if (local_exact != NULL)
1735 					continue;
1736 			}
1737 
1738 			if (inp->inp_laddr.s_addr == laddr.s_addr) {
1739 				if (injail)
1740 					goto found;
1741 				else
1742 					local_exact = inp;
1743 			} else if (inp->inp_laddr.s_addr == INADDR_ANY) {
1744 #ifdef INET6
1745 				/* XXX inp locking, NULL check */
1746 				if (inp->inp_vflag & INP_IPV6PROTO)
1747 					local_wild_mapped = inp;
1748 				else
1749 #endif
1750 					if (injail)
1751 						jail_wild = inp;
1752 					else
1753 						local_wild = inp;
1754 			}
1755 		} /* LIST_FOREACH */
1756 		inp = jail_wild;
1757 		if (inp == NULL)
1758 			inp = local_exact;
1759 		if (inp == NULL)
1760 			inp = local_wild;
1761 #ifdef INET6
1762 		if (inp == NULL)
1763 			inp = local_wild_mapped;
1764 #endif
1765 		if (inp != NULL)
1766 			goto found;
1767 	} /* if (lookupflags & INPLOOKUP_WILDCARD) */
1768 	INP_GROUP_UNLOCK(pcbgroup);
1769 	return (NULL);
1770 
1771 found:
1772 	in_pcbref(inp);
1773 	INP_GROUP_UNLOCK(pcbgroup);
1774 	if (lookupflags & INPLOOKUP_WLOCKPCB) {
1775 		INP_WLOCK(inp);
1776 		if (in_pcbrele_wlocked(inp))
1777 			return (NULL);
1778 	} else if (lookupflags & INPLOOKUP_RLOCKPCB) {
1779 		INP_RLOCK(inp);
1780 		if (in_pcbrele_rlocked(inp))
1781 			return (NULL);
1782 	} else
1783 		panic("%s: locking bug", __func__);
1784 	return (inp);
1785 }
1786 #endif /* PCBGROUP */
1787 
1788 /*
1789  * Lookup PCB in hash list, using pcbinfo tables.  This variation assumes
1790  * that the caller has locked the hash list, and will not perform any further
1791  * locking or reference operations on either the hash list or the connection.
1792  */
1793 static struct inpcb *
1794 in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr,
1795     u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags,
1796     struct ifnet *ifp)
1797 {
1798 	struct inpcbhead *head;
1799 	struct inpcb *inp, *tmpinp;
1800 	u_short fport = fport_arg, lport = lport_arg;
1801 
1802 	KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0,
1803 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
1804 
1805 	INP_HASH_LOCK_ASSERT(pcbinfo);
1806 
1807 	/*
1808 	 * First look for an exact match.
1809 	 */
1810 	tmpinp = NULL;
1811 	head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport,
1812 	    pcbinfo->ipi_hashmask)];
1813 	LIST_FOREACH(inp, head, inp_hash) {
1814 #ifdef INET6
1815 		/* XXX inp locking */
1816 		if ((inp->inp_vflag & INP_IPV4) == 0)
1817 			continue;
1818 #endif
1819 		if (inp->inp_faddr.s_addr == faddr.s_addr &&
1820 		    inp->inp_laddr.s_addr == laddr.s_addr &&
1821 		    inp->inp_fport == fport &&
1822 		    inp->inp_lport == lport) {
1823 			/*
1824 			 * XXX We should be able to directly return
1825 			 * the inp here, without any checks.
1826 			 * Well unless both bound with SO_REUSEPORT?
1827 			 */
1828 			if (prison_flag(inp->inp_cred, PR_IP4))
1829 				return (inp);
1830 			if (tmpinp == NULL)
1831 				tmpinp = inp;
1832 		}
1833 	}
1834 	if (tmpinp != NULL)
1835 		return (tmpinp);
1836 
1837 	/*
1838 	 * Then look for a wildcard match, if requested.
1839 	 */
1840 	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
1841 		struct inpcb *local_wild = NULL, *local_exact = NULL;
1842 #ifdef INET6
1843 		struct inpcb *local_wild_mapped = NULL;
1844 #endif
1845 		struct inpcb *jail_wild = NULL;
1846 		int injail;
1847 
1848 		/*
1849 		 * Order of socket selection - we always prefer jails.
1850 		 *      1. jailed, non-wild.
1851 		 *      2. jailed, wild.
1852 		 *      3. non-jailed, non-wild.
1853 		 *      4. non-jailed, wild.
1854 		 */
1855 
1856 		head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
1857 		    0, pcbinfo->ipi_hashmask)];
1858 		LIST_FOREACH(inp, head, inp_hash) {
1859 #ifdef INET6
1860 			/* XXX inp locking */
1861 			if ((inp->inp_vflag & INP_IPV4) == 0)
1862 				continue;
1863 #endif
1864 			if (inp->inp_faddr.s_addr != INADDR_ANY ||
1865 			    inp->inp_lport != lport)
1866 				continue;
1867 
1868 			/* XXX inp locking */
1869 			if (ifp && ifp->if_type == IFT_FAITH &&
1870 			    (inp->inp_flags & INP_FAITH) == 0)
1871 				continue;
1872 
1873 			injail = prison_flag(inp->inp_cred, PR_IP4);
1874 			if (injail) {
1875 				if (prison_check_ip4(inp->inp_cred,
1876 				    &laddr) != 0)
1877 					continue;
1878 			} else {
1879 				if (local_exact != NULL)
1880 					continue;
1881 			}
1882 
1883 			if (inp->inp_laddr.s_addr == laddr.s_addr) {
1884 				if (injail)
1885 					return (inp);
1886 				else
1887 					local_exact = inp;
1888 			} else if (inp->inp_laddr.s_addr == INADDR_ANY) {
1889 #ifdef INET6
1890 				/* XXX inp locking, NULL check */
1891 				if (inp->inp_vflag & INP_IPV6PROTO)
1892 					local_wild_mapped = inp;
1893 				else
1894 #endif
1895 					if (injail)
1896 						jail_wild = inp;
1897 					else
1898 						local_wild = inp;
1899 			}
1900 		} /* LIST_FOREACH */
1901 		if (jail_wild != NULL)
1902 			return (jail_wild);
1903 		if (local_exact != NULL)
1904 			return (local_exact);
1905 		if (local_wild != NULL)
1906 			return (local_wild);
1907 #ifdef INET6
1908 		if (local_wild_mapped != NULL)
1909 			return (local_wild_mapped);
1910 #endif
1911 	} /* if ((lookupflags & INPLOOKUP_WILDCARD) != 0) */
1912 
1913 	return (NULL);
1914 }
1915 
1916 /*
1917  * Lookup PCB in hash list, using pcbinfo tables.  This variation locks the
1918  * hash list lock, and will return the inpcb locked (i.e., requires
1919  * INPLOOKUP_LOCKPCB).
1920  */
1921 static struct inpcb *
1922 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr,
1923     u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
1924     struct ifnet *ifp)
1925 {
1926 	struct inpcb *inp;
1927 
1928 	INP_HASH_RLOCK(pcbinfo);
1929 	inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport,
1930 	    (lookupflags & ~(INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)), ifp);
1931 	if (inp != NULL) {
1932 		in_pcbref(inp);
1933 		INP_HASH_RUNLOCK(pcbinfo);
1934 		if (lookupflags & INPLOOKUP_WLOCKPCB) {
1935 			INP_WLOCK(inp);
1936 			if (in_pcbrele_wlocked(inp))
1937 				return (NULL);
1938 		} else if (lookupflags & INPLOOKUP_RLOCKPCB) {
1939 			INP_RLOCK(inp);
1940 			if (in_pcbrele_rlocked(inp))
1941 				return (NULL);
1942 		} else
1943 			panic("%s: locking bug", __func__);
1944 	} else
1945 		INP_HASH_RUNLOCK(pcbinfo);
1946 	return (inp);
1947 }
1948 
1949 /*
1950  * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf
1951  * from which a pre-calculated hash value may be extracted.
1952  *
1953  * Possibly more of this logic should be in in_pcbgroup.c.
1954  */
1955 struct inpcb *
1956 in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport,
1957     struct in_addr laddr, u_int lport, int lookupflags, struct ifnet *ifp)
1958 {
1959 #if defined(PCBGROUP) && !defined(RSS)
1960 	struct inpcbgroup *pcbgroup;
1961 #endif
1962 
1963 	KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0,
1964 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
1965 	KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
1966 	    ("%s: LOCKPCB not set", __func__));
1967 
1968 	/*
1969 	 * When not using RSS, use connection groups in preference to the
1970 	 * reservation table when looking up 4-tuples.  When using RSS, just
1971 	 * use the reservation table, due to the cost of the Toeplitz hash
1972 	 * in software.
1973 	 *
1974 	 * XXXRW: This policy belongs in the pcbgroup code, as in principle
1975 	 * we could be doing RSS with a non-Toeplitz hash that is affordable
1976 	 * in software.
1977 	 */
1978 #if defined(PCBGROUP) && !defined(RSS)
1979 	if (in_pcbgroup_enabled(pcbinfo)) {
1980 		pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr,
1981 		    fport);
1982 		return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport,
1983 		    laddr, lport, lookupflags, ifp));
1984 	}
1985 #endif
1986 	return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport,
1987 	    lookupflags, ifp));
1988 }
1989 
1990 struct inpcb *
1991 in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr,
1992     u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
1993     struct ifnet *ifp, struct mbuf *m)
1994 {
1995 #ifdef PCBGROUP
1996 	struct inpcbgroup *pcbgroup;
1997 #endif
1998 
1999 	KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0,
2000 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
2001 	KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
2002 	    ("%s: LOCKPCB not set", __func__));
2003 
2004 #ifdef PCBGROUP
2005 	/*
2006 	 * If we can use a hardware-generated hash to look up the connection
2007 	 * group, use that connection group to find the inpcb.  Otherwise
2008 	 * fall back on a software hash -- or the reservation table if we're
2009 	 * using RSS.
2010 	 *
2011 	 * XXXRW: As above, that policy belongs in the pcbgroup code.
2012 	 */
2013 	if (in_pcbgroup_enabled(pcbinfo) &&
2014 	    !(M_HASHTYPE_TEST(m, M_HASHTYPE_NONE))) {
2015 		pcbgroup = in_pcbgroup_byhash(pcbinfo, M_HASHTYPE_GET(m),
2016 		    m->m_pkthdr.flowid);
2017 		if (pcbgroup != NULL)
2018 			return (in_pcblookup_group(pcbinfo, pcbgroup, faddr,
2019 			    fport, laddr, lport, lookupflags, ifp));
2020 #ifndef RSS
2021 		pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr,
2022 		    fport);
2023 		return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport,
2024 		    laddr, lport, lookupflags, ifp));
2025 #endif
2026 	}
2027 #endif
2028 	return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport,
2029 	    lookupflags, ifp));
2030 }
2031 #endif /* INET */
2032 
2033 /*
2034  * Insert PCB onto various hash lists.
2035  */
2036 static int
2037 in_pcbinshash_internal(struct inpcb *inp, int do_pcbgroup_update)
2038 {
2039 	struct inpcbhead *pcbhash;
2040 	struct inpcbporthead *pcbporthash;
2041 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2042 	struct inpcbport *phd;
2043 	u_int32_t hashkey_faddr;
2044 
2045 	INP_WLOCK_ASSERT(inp);
2046 	INP_HASH_WLOCK_ASSERT(pcbinfo);
2047 
2048 	KASSERT((inp->inp_flags & INP_INHASHLIST) == 0,
2049 	    ("in_pcbinshash: INP_INHASHLIST"));
2050 
2051 #ifdef INET6
2052 	if (inp->inp_vflag & INP_IPV6)
2053 		hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr);
2054 	else
2055 #endif
2056 	hashkey_faddr = inp->inp_faddr.s_addr;
2057 
2058 	pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
2059 		 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
2060 
2061 	pcbporthash = &pcbinfo->ipi_porthashbase[
2062 	    INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)];
2063 
2064 	/*
2065 	 * Go through port list and look for a head for this lport.
2066 	 */
2067 	LIST_FOREACH(phd, pcbporthash, phd_hash) {
2068 		if (phd->phd_port == inp->inp_lport)
2069 			break;
2070 	}
2071 	/*
2072 	 * If none exists, malloc one and tack it on.
2073 	 */
2074 	if (phd == NULL) {
2075 		phd = malloc(sizeof(struct inpcbport), M_PCB, M_NOWAIT);
2076 		if (phd == NULL) {
2077 			return (ENOBUFS); /* XXX */
2078 		}
2079 		phd->phd_port = inp->inp_lport;
2080 		LIST_INIT(&phd->phd_pcblist);
2081 		LIST_INSERT_HEAD(pcbporthash, phd, phd_hash);
2082 	}
2083 	inp->inp_phd = phd;
2084 	LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist);
2085 	LIST_INSERT_HEAD(pcbhash, inp, inp_hash);
2086 	inp->inp_flags |= INP_INHASHLIST;
2087 #ifdef PCBGROUP
2088 	if (do_pcbgroup_update)
2089 		in_pcbgroup_update(inp);
2090 #endif
2091 	return (0);
2092 }
2093 
2094 /*
2095  * For now, there are two public interfaces to insert an inpcb into the hash
2096  * lists -- one that does update pcbgroups, and one that doesn't.  The latter
2097  * is used only in the TCP syncache, where in_pcbinshash is called before the
2098  * full 4-tuple is set for the inpcb, and we don't want to install in the
2099  * pcbgroup until later.
2100  *
2101  * XXXRW: This seems like a misfeature.  in_pcbinshash should always update
2102  * connection groups, and partially initialised inpcbs should not be exposed
2103  * to either reservation hash tables or pcbgroups.
2104  */
2105 int
2106 in_pcbinshash(struct inpcb *inp)
2107 {
2108 
2109 	return (in_pcbinshash_internal(inp, 1));
2110 }
2111 
2112 int
2113 in_pcbinshash_nopcbgroup(struct inpcb *inp)
2114 {
2115 
2116 	return (in_pcbinshash_internal(inp, 0));
2117 }
2118 
2119 /*
2120  * Move PCB to the proper hash bucket when { faddr, fport } have  been
2121  * changed. NOTE: This does not handle the case of the lport changing (the
2122  * hashed port list would have to be updated as well), so the lport must
2123  * not change after in_pcbinshash() has been called.
2124  */
2125 void
2126 in_pcbrehash_mbuf(struct inpcb *inp, struct mbuf *m)
2127 {
2128 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2129 	struct inpcbhead *head;
2130 	u_int32_t hashkey_faddr;
2131 
2132 	INP_WLOCK_ASSERT(inp);
2133 	INP_HASH_WLOCK_ASSERT(pcbinfo);
2134 
2135 	KASSERT(inp->inp_flags & INP_INHASHLIST,
2136 	    ("in_pcbrehash: !INP_INHASHLIST"));
2137 
2138 #ifdef INET6
2139 	if (inp->inp_vflag & INP_IPV6)
2140 		hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr);
2141 	else
2142 #endif
2143 	hashkey_faddr = inp->inp_faddr.s_addr;
2144 
2145 	head = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
2146 		inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
2147 
2148 	LIST_REMOVE(inp, inp_hash);
2149 	LIST_INSERT_HEAD(head, inp, inp_hash);
2150 
2151 #ifdef PCBGROUP
2152 	if (m != NULL)
2153 		in_pcbgroup_update_mbuf(inp, m);
2154 	else
2155 		in_pcbgroup_update(inp);
2156 #endif
2157 }
2158 
2159 void
2160 in_pcbrehash(struct inpcb *inp)
2161 {
2162 
2163 	in_pcbrehash_mbuf(inp, NULL);
2164 }
2165 
2166 /*
2167  * Remove PCB from various lists.
2168  */
2169 static void
2170 in_pcbremlists(struct inpcb *inp)
2171 {
2172 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2173 
2174 	INP_INFO_WLOCK_ASSERT(pcbinfo);
2175 	INP_WLOCK_ASSERT(inp);
2176 
2177 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
2178 	if (inp->inp_flags & INP_INHASHLIST) {
2179 		struct inpcbport *phd = inp->inp_phd;
2180 
2181 		INP_HASH_WLOCK(pcbinfo);
2182 		LIST_REMOVE(inp, inp_hash);
2183 		LIST_REMOVE(inp, inp_portlist);
2184 		if (LIST_FIRST(&phd->phd_pcblist) == NULL) {
2185 			LIST_REMOVE(phd, phd_hash);
2186 			free(phd, M_PCB);
2187 		}
2188 		INP_HASH_WUNLOCK(pcbinfo);
2189 		inp->inp_flags &= ~INP_INHASHLIST;
2190 	}
2191 	LIST_REMOVE(inp, inp_list);
2192 	pcbinfo->ipi_count--;
2193 #ifdef PCBGROUP
2194 	in_pcbgroup_remove(inp);
2195 #endif
2196 }
2197 
2198 /*
2199  * A set label operation has occurred at the socket layer, propagate the
2200  * label change into the in_pcb for the socket.
2201  */
2202 void
2203 in_pcbsosetlabel(struct socket *so)
2204 {
2205 #ifdef MAC
2206 	struct inpcb *inp;
2207 
2208 	inp = sotoinpcb(so);
2209 	KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL"));
2210 
2211 	INP_WLOCK(inp);
2212 	SOCK_LOCK(so);
2213 	mac_inpcb_sosetlabel(so, inp);
2214 	SOCK_UNLOCK(so);
2215 	INP_WUNLOCK(inp);
2216 #endif
2217 }
2218 
2219 /*
2220  * ipport_tick runs once per second, determining if random port allocation
2221  * should be continued.  If more than ipport_randomcps ports have been
2222  * allocated in the last second, then we return to sequential port
2223  * allocation. We return to random allocation only once we drop below
2224  * ipport_randomcps for at least ipport_randomtime seconds.
2225  */
2226 static void
2227 ipport_tick(void *xtp)
2228 {
2229 	VNET_ITERATOR_DECL(vnet_iter);
2230 
2231 	VNET_LIST_RLOCK_NOSLEEP();
2232 	VNET_FOREACH(vnet_iter) {
2233 		CURVNET_SET(vnet_iter);	/* XXX appease INVARIANTS here */
2234 		if (V_ipport_tcpallocs <=
2235 		    V_ipport_tcplastcount + V_ipport_randomcps) {
2236 			if (V_ipport_stoprandom > 0)
2237 				V_ipport_stoprandom--;
2238 		} else
2239 			V_ipport_stoprandom = V_ipport_randomtime;
2240 		V_ipport_tcplastcount = V_ipport_tcpallocs;
2241 		CURVNET_RESTORE();
2242 	}
2243 	VNET_LIST_RUNLOCK_NOSLEEP();
2244 	callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL);
2245 }
2246 
2247 static void
2248 ip_fini(void *xtp)
2249 {
2250 
2251 	callout_stop(&ipport_tick_callout);
2252 }
2253 
2254 /*
2255  * The ipport_callout should start running at about the time we attach the
2256  * inet or inet6 domains.
2257  */
2258 static void
2259 ipport_tick_init(const void *unused __unused)
2260 {
2261 
2262 	/* Start ipport_tick. */
2263 	callout_init(&ipport_tick_callout, CALLOUT_MPSAFE);
2264 	callout_reset(&ipport_tick_callout, 1, ipport_tick, NULL);
2265 	EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL,
2266 		SHUTDOWN_PRI_DEFAULT);
2267 }
2268 SYSINIT(ipport_tick_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_MIDDLE,
2269     ipport_tick_init, NULL);
2270 
2271 void
2272 inp_wlock(struct inpcb *inp)
2273 {
2274 
2275 	INP_WLOCK(inp);
2276 }
2277 
2278 void
2279 inp_wunlock(struct inpcb *inp)
2280 {
2281 
2282 	INP_WUNLOCK(inp);
2283 }
2284 
2285 void
2286 inp_rlock(struct inpcb *inp)
2287 {
2288 
2289 	INP_RLOCK(inp);
2290 }
2291 
2292 void
2293 inp_runlock(struct inpcb *inp)
2294 {
2295 
2296 	INP_RUNLOCK(inp);
2297 }
2298 
2299 #ifdef INVARIANTS
2300 void
2301 inp_lock_assert(struct inpcb *inp)
2302 {
2303 
2304 	INP_WLOCK_ASSERT(inp);
2305 }
2306 
2307 void
2308 inp_unlock_assert(struct inpcb *inp)
2309 {
2310 
2311 	INP_UNLOCK_ASSERT(inp);
2312 }
2313 #endif
2314 
2315 void
2316 inp_apply_all(void (*func)(struct inpcb *, void *), void *arg)
2317 {
2318 	struct inpcb *inp;
2319 
2320 	INP_INFO_RLOCK(&V_tcbinfo);
2321 	LIST_FOREACH(inp, V_tcbinfo.ipi_listhead, inp_list) {
2322 		INP_WLOCK(inp);
2323 		func(inp, arg);
2324 		INP_WUNLOCK(inp);
2325 	}
2326 	INP_INFO_RUNLOCK(&V_tcbinfo);
2327 }
2328 
2329 struct socket *
2330 inp_inpcbtosocket(struct inpcb *inp)
2331 {
2332 
2333 	INP_WLOCK_ASSERT(inp);
2334 	return (inp->inp_socket);
2335 }
2336 
2337 struct tcpcb *
2338 inp_inpcbtotcpcb(struct inpcb *inp)
2339 {
2340 
2341 	INP_WLOCK_ASSERT(inp);
2342 	return ((struct tcpcb *)inp->inp_ppcb);
2343 }
2344 
2345 int
2346 inp_ip_tos_get(const struct inpcb *inp)
2347 {
2348 
2349 	return (inp->inp_ip_tos);
2350 }
2351 
2352 void
2353 inp_ip_tos_set(struct inpcb *inp, int val)
2354 {
2355 
2356 	inp->inp_ip_tos = val;
2357 }
2358 
2359 void
2360 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp,
2361     uint32_t *faddr, uint16_t *fp)
2362 {
2363 
2364 	INP_LOCK_ASSERT(inp);
2365 	*laddr = inp->inp_laddr.s_addr;
2366 	*faddr = inp->inp_faddr.s_addr;
2367 	*lp = inp->inp_lport;
2368 	*fp = inp->inp_fport;
2369 }
2370 
2371 struct inpcb *
2372 so_sotoinpcb(struct socket *so)
2373 {
2374 
2375 	return (sotoinpcb(so));
2376 }
2377 
2378 struct tcpcb *
2379 so_sototcpcb(struct socket *so)
2380 {
2381 
2382 	return (sototcpcb(so));
2383 }
2384 
2385 #ifdef DDB
2386 static void
2387 db_print_indent(int indent)
2388 {
2389 	int i;
2390 
2391 	for (i = 0; i < indent; i++)
2392 		db_printf(" ");
2393 }
2394 
2395 static void
2396 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent)
2397 {
2398 	char faddr_str[48], laddr_str[48];
2399 
2400 	db_print_indent(indent);
2401 	db_printf("%s at %p\n", name, inc);
2402 
2403 	indent += 2;
2404 
2405 #ifdef INET6
2406 	if (inc->inc_flags & INC_ISIPV6) {
2407 		/* IPv6. */
2408 		ip6_sprintf(laddr_str, &inc->inc6_laddr);
2409 		ip6_sprintf(faddr_str, &inc->inc6_faddr);
2410 	} else
2411 #endif
2412 	{
2413 		/* IPv4. */
2414 		inet_ntoa_r(inc->inc_laddr, laddr_str);
2415 		inet_ntoa_r(inc->inc_faddr, faddr_str);
2416 	}
2417 	db_print_indent(indent);
2418 	db_printf("inc_laddr %s   inc_lport %u\n", laddr_str,
2419 	    ntohs(inc->inc_lport));
2420 	db_print_indent(indent);
2421 	db_printf("inc_faddr %s   inc_fport %u\n", faddr_str,
2422 	    ntohs(inc->inc_fport));
2423 }
2424 
2425 static void
2426 db_print_inpflags(int inp_flags)
2427 {
2428 	int comma;
2429 
2430 	comma = 0;
2431 	if (inp_flags & INP_RECVOPTS) {
2432 		db_printf("%sINP_RECVOPTS", comma ? ", " : "");
2433 		comma = 1;
2434 	}
2435 	if (inp_flags & INP_RECVRETOPTS) {
2436 		db_printf("%sINP_RECVRETOPTS", comma ? ", " : "");
2437 		comma = 1;
2438 	}
2439 	if (inp_flags & INP_RECVDSTADDR) {
2440 		db_printf("%sINP_RECVDSTADDR", comma ? ", " : "");
2441 		comma = 1;
2442 	}
2443 	if (inp_flags & INP_HDRINCL) {
2444 		db_printf("%sINP_HDRINCL", comma ? ", " : "");
2445 		comma = 1;
2446 	}
2447 	if (inp_flags & INP_HIGHPORT) {
2448 		db_printf("%sINP_HIGHPORT", comma ? ", " : "");
2449 		comma = 1;
2450 	}
2451 	if (inp_flags & INP_LOWPORT) {
2452 		db_printf("%sINP_LOWPORT", comma ? ", " : "");
2453 		comma = 1;
2454 	}
2455 	if (inp_flags & INP_ANONPORT) {
2456 		db_printf("%sINP_ANONPORT", comma ? ", " : "");
2457 		comma = 1;
2458 	}
2459 	if (inp_flags & INP_RECVIF) {
2460 		db_printf("%sINP_RECVIF", comma ? ", " : "");
2461 		comma = 1;
2462 	}
2463 	if (inp_flags & INP_MTUDISC) {
2464 		db_printf("%sINP_MTUDISC", comma ? ", " : "");
2465 		comma = 1;
2466 	}
2467 	if (inp_flags & INP_FAITH) {
2468 		db_printf("%sINP_FAITH", comma ? ", " : "");
2469 		comma = 1;
2470 	}
2471 	if (inp_flags & INP_RECVTTL) {
2472 		db_printf("%sINP_RECVTTL", comma ? ", " : "");
2473 		comma = 1;
2474 	}
2475 	if (inp_flags & INP_DONTFRAG) {
2476 		db_printf("%sINP_DONTFRAG", comma ? ", " : "");
2477 		comma = 1;
2478 	}
2479 	if (inp_flags & INP_RECVTOS) {
2480 		db_printf("%sINP_RECVTOS", comma ? ", " : "");
2481 		comma = 1;
2482 	}
2483 	if (inp_flags & IN6P_IPV6_V6ONLY) {
2484 		db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : "");
2485 		comma = 1;
2486 	}
2487 	if (inp_flags & IN6P_PKTINFO) {
2488 		db_printf("%sIN6P_PKTINFO", comma ? ", " : "");
2489 		comma = 1;
2490 	}
2491 	if (inp_flags & IN6P_HOPLIMIT) {
2492 		db_printf("%sIN6P_HOPLIMIT", comma ? ", " : "");
2493 		comma = 1;
2494 	}
2495 	if (inp_flags & IN6P_HOPOPTS) {
2496 		db_printf("%sIN6P_HOPOPTS", comma ? ", " : "");
2497 		comma = 1;
2498 	}
2499 	if (inp_flags & IN6P_DSTOPTS) {
2500 		db_printf("%sIN6P_DSTOPTS", comma ? ", " : "");
2501 		comma = 1;
2502 	}
2503 	if (inp_flags & IN6P_RTHDR) {
2504 		db_printf("%sIN6P_RTHDR", comma ? ", " : "");
2505 		comma = 1;
2506 	}
2507 	if (inp_flags & IN6P_RTHDRDSTOPTS) {
2508 		db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : "");
2509 		comma = 1;
2510 	}
2511 	if (inp_flags & IN6P_TCLASS) {
2512 		db_printf("%sIN6P_TCLASS", comma ? ", " : "");
2513 		comma = 1;
2514 	}
2515 	if (inp_flags & IN6P_AUTOFLOWLABEL) {
2516 		db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : "");
2517 		comma = 1;
2518 	}
2519 	if (inp_flags & INP_TIMEWAIT) {
2520 		db_printf("%sINP_TIMEWAIT", comma ? ", " : "");
2521 		comma  = 1;
2522 	}
2523 	if (inp_flags & INP_ONESBCAST) {
2524 		db_printf("%sINP_ONESBCAST", comma ? ", " : "");
2525 		comma  = 1;
2526 	}
2527 	if (inp_flags & INP_DROPPED) {
2528 		db_printf("%sINP_DROPPED", comma ? ", " : "");
2529 		comma  = 1;
2530 	}
2531 	if (inp_flags & INP_SOCKREF) {
2532 		db_printf("%sINP_SOCKREF", comma ? ", " : "");
2533 		comma  = 1;
2534 	}
2535 	if (inp_flags & IN6P_RFC2292) {
2536 		db_printf("%sIN6P_RFC2292", comma ? ", " : "");
2537 		comma = 1;
2538 	}
2539 	if (inp_flags & IN6P_MTU) {
2540 		db_printf("IN6P_MTU%s", comma ? ", " : "");
2541 		comma = 1;
2542 	}
2543 }
2544 
2545 static void
2546 db_print_inpvflag(u_char inp_vflag)
2547 {
2548 	int comma;
2549 
2550 	comma = 0;
2551 	if (inp_vflag & INP_IPV4) {
2552 		db_printf("%sINP_IPV4", comma ? ", " : "");
2553 		comma  = 1;
2554 	}
2555 	if (inp_vflag & INP_IPV6) {
2556 		db_printf("%sINP_IPV6", comma ? ", " : "");
2557 		comma  = 1;
2558 	}
2559 	if (inp_vflag & INP_IPV6PROTO) {
2560 		db_printf("%sINP_IPV6PROTO", comma ? ", " : "");
2561 		comma  = 1;
2562 	}
2563 }
2564 
2565 static void
2566 db_print_inpcb(struct inpcb *inp, const char *name, int indent)
2567 {
2568 
2569 	db_print_indent(indent);
2570 	db_printf("%s at %p\n", name, inp);
2571 
2572 	indent += 2;
2573 
2574 	db_print_indent(indent);
2575 	db_printf("inp_flow: 0x%x\n", inp->inp_flow);
2576 
2577 	db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent);
2578 
2579 	db_print_indent(indent);
2580 	db_printf("inp_ppcb: %p   inp_pcbinfo: %p   inp_socket: %p\n",
2581 	    inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket);
2582 
2583 	db_print_indent(indent);
2584 	db_printf("inp_label: %p   inp_flags: 0x%x (",
2585 	   inp->inp_label, inp->inp_flags);
2586 	db_print_inpflags(inp->inp_flags);
2587 	db_printf(")\n");
2588 
2589 	db_print_indent(indent);
2590 	db_printf("inp_sp: %p   inp_vflag: 0x%x (", inp->inp_sp,
2591 	    inp->inp_vflag);
2592 	db_print_inpvflag(inp->inp_vflag);
2593 	db_printf(")\n");
2594 
2595 	db_print_indent(indent);
2596 	db_printf("inp_ip_ttl: %d   inp_ip_p: %d   inp_ip_minttl: %d\n",
2597 	    inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl);
2598 
2599 	db_print_indent(indent);
2600 #ifdef INET6
2601 	if (inp->inp_vflag & INP_IPV6) {
2602 		db_printf("in6p_options: %p   in6p_outputopts: %p   "
2603 		    "in6p_moptions: %p\n", inp->in6p_options,
2604 		    inp->in6p_outputopts, inp->in6p_moptions);
2605 		db_printf("in6p_icmp6filt: %p   in6p_cksum %d   "
2606 		    "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum,
2607 		    inp->in6p_hops);
2608 	} else
2609 #endif
2610 	{
2611 		db_printf("inp_ip_tos: %d   inp_ip_options: %p   "
2612 		    "inp_ip_moptions: %p\n", inp->inp_ip_tos,
2613 		    inp->inp_options, inp->inp_moptions);
2614 	}
2615 
2616 	db_print_indent(indent);
2617 	db_printf("inp_phd: %p   inp_gencnt: %ju\n", inp->inp_phd,
2618 	    (uintmax_t)inp->inp_gencnt);
2619 }
2620 
2621 DB_SHOW_COMMAND(inpcb, db_show_inpcb)
2622 {
2623 	struct inpcb *inp;
2624 
2625 	if (!have_addr) {
2626 		db_printf("usage: show inpcb <addr>\n");
2627 		return;
2628 	}
2629 	inp = (struct inpcb *)addr;
2630 
2631 	db_print_inpcb(inp, "inpcb", 0);
2632 }
2633 #endif /* DDB */
2634