1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1991, 1993, 1995 5 * The Regents of the University of California. 6 * Copyright (c) 2007-2009 Robert N. M. Watson 7 * Copyright (c) 2010-2011 Juniper Networks, Inc. 8 * All rights reserved. 9 * 10 * Portions of this software were developed by Robert N. M. Watson under 11 * contract to Juniper Networks, Inc. 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 3. Neither the name of the University nor the names of its contributors 22 * may be used to endorse or promote products derived from this software 23 * without specific prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 35 * SUCH DAMAGE. 36 * 37 * @(#)in_pcb.c 8.4 (Berkeley) 5/24/95 38 */ 39 40 #include <sys/cdefs.h> 41 __FBSDID("$FreeBSD$"); 42 43 #include "opt_ddb.h" 44 #include "opt_ipsec.h" 45 #include "opt_inet.h" 46 #include "opt_inet6.h" 47 #include "opt_ratelimit.h" 48 #include "opt_pcbgroup.h" 49 #include "opt_rss.h" 50 51 #include <sys/param.h> 52 #include <sys/systm.h> 53 #include <sys/lock.h> 54 #include <sys/malloc.h> 55 #include <sys/mbuf.h> 56 #include <sys/callout.h> 57 #include <sys/eventhandler.h> 58 #include <sys/domain.h> 59 #include <sys/protosw.h> 60 #include <sys/rmlock.h> 61 #include <sys/smp.h> 62 #include <sys/socket.h> 63 #include <sys/socketvar.h> 64 #include <sys/sockio.h> 65 #include <sys/priv.h> 66 #include <sys/proc.h> 67 #include <sys/refcount.h> 68 #include <sys/jail.h> 69 #include <sys/kernel.h> 70 #include <sys/sysctl.h> 71 72 #ifdef DDB 73 #include <ddb/ddb.h> 74 #endif 75 76 #include <vm/uma.h> 77 78 #include <net/if.h> 79 #include <net/if_var.h> 80 #include <net/if_types.h> 81 #include <net/if_llatbl.h> 82 #include <net/route.h> 83 #include <net/rss_config.h> 84 #include <net/vnet.h> 85 86 #if defined(INET) || defined(INET6) 87 #include <netinet/in.h> 88 #include <netinet/in_pcb.h> 89 #include <netinet/ip_var.h> 90 #include <netinet/tcp_var.h> 91 #ifdef TCPHPTS 92 #include <netinet/tcp_hpts.h> 93 #endif 94 #include <netinet/udp.h> 95 #include <netinet/udp_var.h> 96 #endif 97 #ifdef INET 98 #include <netinet/in_var.h> 99 #endif 100 #ifdef INET6 101 #include <netinet/ip6.h> 102 #include <netinet6/in6_pcb.h> 103 #include <netinet6/in6_var.h> 104 #include <netinet6/ip6_var.h> 105 #endif /* INET6 */ 106 107 #include <netipsec/ipsec_support.h> 108 109 #include <security/mac/mac_framework.h> 110 111 #define INPCBLBGROUP_SIZMIN 8 112 #define INPCBLBGROUP_SIZMAX 256 113 114 static struct callout ipport_tick_callout; 115 116 /* 117 * These configure the range of local port addresses assigned to 118 * "unspecified" outgoing connections/packets/whatever. 119 */ 120 VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1; /* 1023 */ 121 VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART; /* 600 */ 122 VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST; /* 10000 */ 123 VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST; /* 65535 */ 124 VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO; /* 49152 */ 125 VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO; /* 65535 */ 126 127 /* 128 * Reserved ports accessible only to root. There are significant 129 * security considerations that must be accounted for when changing these, 130 * but the security benefits can be great. Please be careful. 131 */ 132 VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1; /* 1023 */ 133 VNET_DEFINE(int, ipport_reservedlow); 134 135 /* Variables dealing with random ephemeral port allocation. */ 136 VNET_DEFINE(int, ipport_randomized) = 1; /* user controlled via sysctl */ 137 VNET_DEFINE(int, ipport_randomcps) = 10; /* user controlled via sysctl */ 138 VNET_DEFINE(int, ipport_randomtime) = 45; /* user controlled via sysctl */ 139 VNET_DEFINE(int, ipport_stoprandom); /* toggled by ipport_tick */ 140 VNET_DEFINE(int, ipport_tcpallocs); 141 VNET_DEFINE_STATIC(int, ipport_tcplastcount); 142 143 #define V_ipport_tcplastcount VNET(ipport_tcplastcount) 144 145 static void in_pcbremlists(struct inpcb *inp); 146 #ifdef INET 147 static struct inpcb *in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, 148 struct in_addr faddr, u_int fport_arg, 149 struct in_addr laddr, u_int lport_arg, 150 int lookupflags, struct ifnet *ifp); 151 152 #define RANGECHK(var, min, max) \ 153 if ((var) < (min)) { (var) = (min); } \ 154 else if ((var) > (max)) { (var) = (max); } 155 156 static int 157 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS) 158 { 159 int error; 160 161 error = sysctl_handle_int(oidp, arg1, arg2, req); 162 if (error == 0) { 163 RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1); 164 RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1); 165 RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX); 166 RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX); 167 RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX); 168 RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX); 169 } 170 return (error); 171 } 172 173 #undef RANGECHK 174 175 static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, CTLFLAG_RW, 0, 176 "IP Ports"); 177 178 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst, 179 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 180 &VNET_NAME(ipport_lowfirstauto), 0, &sysctl_net_ipport_check, "I", ""); 181 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast, 182 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 183 &VNET_NAME(ipport_lowlastauto), 0, &sysctl_net_ipport_check, "I", ""); 184 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first, 185 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 186 &VNET_NAME(ipport_firstauto), 0, &sysctl_net_ipport_check, "I", ""); 187 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last, 188 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 189 &VNET_NAME(ipport_lastauto), 0, &sysctl_net_ipport_check, "I", ""); 190 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst, 191 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 192 &VNET_NAME(ipport_hifirstauto), 0, &sysctl_net_ipport_check, "I", ""); 193 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast, 194 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 195 &VNET_NAME(ipport_hilastauto), 0, &sysctl_net_ipport_check, "I", ""); 196 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh, 197 CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE, 198 &VNET_NAME(ipport_reservedhigh), 0, ""); 199 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow, 200 CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, ""); 201 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized, 202 CTLFLAG_VNET | CTLFLAG_RW, 203 &VNET_NAME(ipport_randomized), 0, "Enable random port allocation"); 204 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomcps, 205 CTLFLAG_VNET | CTLFLAG_RW, 206 &VNET_NAME(ipport_randomcps), 0, "Maximum number of random port " 207 "allocations before switching to a sequental one"); 208 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomtime, 209 CTLFLAG_VNET | CTLFLAG_RW, 210 &VNET_NAME(ipport_randomtime), 0, 211 "Minimum time to keep sequental port " 212 "allocation before switching to a random one"); 213 #endif /* INET */ 214 215 /* 216 * in_pcb.c: manage the Protocol Control Blocks. 217 * 218 * NOTE: It is assumed that most of these functions will be called with 219 * the pcbinfo lock held, and often, the inpcb lock held, as these utility 220 * functions often modify hash chains or addresses in pcbs. 221 */ 222 223 static struct inpcblbgroup * 224 in_pcblbgroup_alloc(struct inpcblbgrouphead *hdr, u_char vflag, 225 uint16_t port, const union in_dependaddr *addr, int size) 226 { 227 struct inpcblbgroup *grp; 228 size_t bytes; 229 230 bytes = __offsetof(struct inpcblbgroup, il_inp[size]); 231 grp = malloc(bytes, M_PCB, M_ZERO | M_NOWAIT); 232 if (!grp) 233 return (NULL); 234 grp->il_vflag = vflag; 235 grp->il_lport = port; 236 grp->il_dependladdr = *addr; 237 grp->il_inpsiz = size; 238 LIST_INSERT_HEAD(hdr, grp, il_list); 239 return (grp); 240 } 241 242 static void 243 in_pcblbgroup_free(struct inpcblbgroup *grp) 244 { 245 246 LIST_REMOVE(grp, il_list); 247 free(grp, M_PCB); 248 } 249 250 static struct inpcblbgroup * 251 in_pcblbgroup_resize(struct inpcblbgrouphead *hdr, 252 struct inpcblbgroup *old_grp, int size) 253 { 254 struct inpcblbgroup *grp; 255 int i; 256 257 grp = in_pcblbgroup_alloc(hdr, old_grp->il_vflag, 258 old_grp->il_lport, &old_grp->il_dependladdr, size); 259 if (!grp) 260 return (NULL); 261 262 KASSERT(old_grp->il_inpcnt < grp->il_inpsiz, 263 ("invalid new local group size %d and old local group count %d", 264 grp->il_inpsiz, old_grp->il_inpcnt)); 265 266 for (i = 0; i < old_grp->il_inpcnt; ++i) 267 grp->il_inp[i] = old_grp->il_inp[i]; 268 grp->il_inpcnt = old_grp->il_inpcnt; 269 in_pcblbgroup_free(old_grp); 270 return (grp); 271 } 272 273 /* 274 * PCB at index 'i' is removed from the group. Pull up the ones below il_inp[i] 275 * and shrink group if possible. 276 */ 277 static void 278 in_pcblbgroup_reorder(struct inpcblbgrouphead *hdr, struct inpcblbgroup **grpp, 279 int i) 280 { 281 struct inpcblbgroup *grp = *grpp; 282 283 for (; i + 1 < grp->il_inpcnt; ++i) 284 grp->il_inp[i] = grp->il_inp[i + 1]; 285 grp->il_inpcnt--; 286 287 if (grp->il_inpsiz > INPCBLBGROUP_SIZMIN && 288 grp->il_inpcnt <= (grp->il_inpsiz / 4)) { 289 /* Shrink this group. */ 290 struct inpcblbgroup *new_grp = 291 in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz / 2); 292 if (new_grp) 293 *grpp = new_grp; 294 } 295 return; 296 } 297 298 /* 299 * Add PCB to load balance group for SO_REUSEPORT_LB option. 300 */ 301 static int 302 in_pcbinslbgrouphash(struct inpcb *inp) 303 { 304 struct inpcbinfo *pcbinfo; 305 struct inpcblbgrouphead *hdr; 306 struct inpcblbgroup *grp; 307 uint16_t hashmask, lport; 308 uint32_t group_index; 309 struct ucred *cred; 310 static int limit_logged = 0; 311 312 pcbinfo = inp->inp_pcbinfo; 313 314 INP_WLOCK_ASSERT(inp); 315 INP_HASH_WLOCK_ASSERT(pcbinfo); 316 317 if (pcbinfo->ipi_lbgrouphashbase == NULL) 318 return (0); 319 320 hashmask = pcbinfo->ipi_lbgrouphashmask; 321 lport = inp->inp_lport; 322 group_index = INP_PCBLBGROUP_PORTHASH(lport, hashmask); 323 hdr = &pcbinfo->ipi_lbgrouphashbase[group_index]; 324 325 /* 326 * Don't allow jailed socket to join local group. 327 */ 328 if (inp->inp_socket != NULL) 329 cred = inp->inp_socket->so_cred; 330 else 331 cred = NULL; 332 if (cred != NULL && jailed(cred)) 333 return (0); 334 335 #ifdef INET6 336 /* 337 * Don't allow IPv4 mapped INET6 wild socket. 338 */ 339 if ((inp->inp_vflag & INP_IPV4) && 340 inp->inp_laddr.s_addr == INADDR_ANY && 341 INP_CHECK_SOCKAF(inp->inp_socket, AF_INET6)) { 342 return (0); 343 } 344 #endif 345 346 hdr = &pcbinfo->ipi_lbgrouphashbase[ 347 INP_PCBLBGROUP_PORTHASH(inp->inp_lport, 348 pcbinfo->ipi_lbgrouphashmask)]; 349 LIST_FOREACH(grp, hdr, il_list) { 350 if (grp->il_vflag == inp->inp_vflag && 351 grp->il_lport == inp->inp_lport && 352 memcmp(&grp->il_dependladdr, 353 &inp->inp_inc.inc_ie.ie_dependladdr, 354 sizeof(grp->il_dependladdr)) == 0) { 355 break; 356 } 357 } 358 if (grp == NULL) { 359 /* Create new load balance group. */ 360 grp = in_pcblbgroup_alloc(hdr, inp->inp_vflag, 361 inp->inp_lport, &inp->inp_inc.inc_ie.ie_dependladdr, 362 INPCBLBGROUP_SIZMIN); 363 if (!grp) 364 return (ENOBUFS); 365 } else if (grp->il_inpcnt == grp->il_inpsiz) { 366 if (grp->il_inpsiz >= INPCBLBGROUP_SIZMAX) { 367 if (!limit_logged) { 368 limit_logged = 1; 369 printf("lb group port %d, limit reached\n", 370 ntohs(grp->il_lport)); 371 } 372 return (0); 373 } 374 375 /* Expand this local group. */ 376 grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz * 2); 377 if (!grp) 378 return (ENOBUFS); 379 } 380 381 KASSERT(grp->il_inpcnt < grp->il_inpsiz, 382 ("invalid local group size %d and count %d", 383 grp->il_inpsiz, grp->il_inpcnt)); 384 385 grp->il_inp[grp->il_inpcnt] = inp; 386 grp->il_inpcnt++; 387 return (0); 388 } 389 390 /* 391 * Remove PCB from load balance group. 392 */ 393 static void 394 in_pcbremlbgrouphash(struct inpcb *inp) 395 { 396 struct inpcbinfo *pcbinfo; 397 struct inpcblbgrouphead *hdr; 398 struct inpcblbgroup *grp; 399 int i; 400 401 pcbinfo = inp->inp_pcbinfo; 402 403 INP_WLOCK_ASSERT(inp); 404 INP_HASH_WLOCK_ASSERT(pcbinfo); 405 406 if (pcbinfo->ipi_lbgrouphashbase == NULL) 407 return; 408 409 hdr = &pcbinfo->ipi_lbgrouphashbase[ 410 INP_PCBLBGROUP_PORTHASH(inp->inp_lport, 411 pcbinfo->ipi_lbgrouphashmask)]; 412 413 LIST_FOREACH(grp, hdr, il_list) { 414 for (i = 0; i < grp->il_inpcnt; ++i) { 415 if (grp->il_inp[i] != inp) 416 continue; 417 418 if (grp->il_inpcnt == 1) { 419 /* We are the last, free this local group. */ 420 in_pcblbgroup_free(grp); 421 } else { 422 /* Pull up inpcbs, shrink group if possible. */ 423 in_pcblbgroup_reorder(hdr, &grp, i); 424 } 425 return; 426 } 427 } 428 } 429 430 /* 431 * Different protocols initialize their inpcbs differently - giving 432 * different name to the lock. But they all are disposed the same. 433 */ 434 static void 435 inpcb_fini(void *mem, int size) 436 { 437 struct inpcb *inp = mem; 438 439 INP_LOCK_DESTROY(inp); 440 } 441 442 /* 443 * Initialize an inpcbinfo -- we should be able to reduce the number of 444 * arguments in time. 445 */ 446 void 447 in_pcbinfo_init(struct inpcbinfo *pcbinfo, const char *name, 448 struct inpcbhead *listhead, int hash_nelements, int porthash_nelements, 449 char *inpcbzone_name, uma_init inpcbzone_init, u_int hashfields) 450 { 451 452 INP_INFO_LOCK_INIT(pcbinfo, name); 453 INP_HASH_LOCK_INIT(pcbinfo, "pcbinfohash"); /* XXXRW: argument? */ 454 INP_LIST_LOCK_INIT(pcbinfo, "pcbinfolist"); 455 #ifdef VIMAGE 456 pcbinfo->ipi_vnet = curvnet; 457 #endif 458 pcbinfo->ipi_listhead = listhead; 459 CK_LIST_INIT(pcbinfo->ipi_listhead); 460 pcbinfo->ipi_count = 0; 461 pcbinfo->ipi_hashbase = hashinit(hash_nelements, M_PCB, 462 &pcbinfo->ipi_hashmask); 463 pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB, 464 &pcbinfo->ipi_porthashmask); 465 pcbinfo->ipi_lbgrouphashbase = hashinit(hash_nelements, M_PCB, 466 &pcbinfo->ipi_lbgrouphashmask); 467 #ifdef PCBGROUP 468 in_pcbgroup_init(pcbinfo, hashfields, hash_nelements); 469 #endif 470 pcbinfo->ipi_zone = uma_zcreate(inpcbzone_name, sizeof(struct inpcb), 471 NULL, NULL, inpcbzone_init, inpcb_fini, UMA_ALIGN_PTR, 0); 472 uma_zone_set_max(pcbinfo->ipi_zone, maxsockets); 473 uma_zone_set_warning(pcbinfo->ipi_zone, 474 "kern.ipc.maxsockets limit reached"); 475 } 476 477 /* 478 * Destroy an inpcbinfo. 479 */ 480 void 481 in_pcbinfo_destroy(struct inpcbinfo *pcbinfo) 482 { 483 484 KASSERT(pcbinfo->ipi_count == 0, 485 ("%s: ipi_count = %u", __func__, pcbinfo->ipi_count)); 486 487 hashdestroy(pcbinfo->ipi_hashbase, M_PCB, pcbinfo->ipi_hashmask); 488 hashdestroy(pcbinfo->ipi_porthashbase, M_PCB, 489 pcbinfo->ipi_porthashmask); 490 hashdestroy(pcbinfo->ipi_lbgrouphashbase, M_PCB, 491 pcbinfo->ipi_lbgrouphashmask); 492 #ifdef PCBGROUP 493 in_pcbgroup_destroy(pcbinfo); 494 #endif 495 uma_zdestroy(pcbinfo->ipi_zone); 496 INP_LIST_LOCK_DESTROY(pcbinfo); 497 INP_HASH_LOCK_DESTROY(pcbinfo); 498 INP_INFO_LOCK_DESTROY(pcbinfo); 499 } 500 501 /* 502 * Allocate a PCB and associate it with the socket. 503 * On success return with the PCB locked. 504 */ 505 int 506 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo) 507 { 508 struct inpcb *inp; 509 int error; 510 511 #ifdef INVARIANTS 512 if (pcbinfo == &V_tcbinfo) { 513 INP_INFO_RLOCK_ASSERT(pcbinfo); 514 } else { 515 INP_INFO_WLOCK_ASSERT(pcbinfo); 516 } 517 #endif 518 519 error = 0; 520 inp = uma_zalloc(pcbinfo->ipi_zone, M_NOWAIT); 521 if (inp == NULL) 522 return (ENOBUFS); 523 bzero(&inp->inp_start_zero, inp_zero_size); 524 inp->inp_pcbinfo = pcbinfo; 525 inp->inp_socket = so; 526 inp->inp_cred = crhold(so->so_cred); 527 inp->inp_inc.inc_fibnum = so->so_fibnum; 528 #ifdef MAC 529 error = mac_inpcb_init(inp, M_NOWAIT); 530 if (error != 0) 531 goto out; 532 mac_inpcb_create(so, inp); 533 #endif 534 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 535 error = ipsec_init_pcbpolicy(inp); 536 if (error != 0) { 537 #ifdef MAC 538 mac_inpcb_destroy(inp); 539 #endif 540 goto out; 541 } 542 #endif /*IPSEC*/ 543 #ifdef INET6 544 if (INP_SOCKAF(so) == AF_INET6) { 545 inp->inp_vflag |= INP_IPV6PROTO; 546 if (V_ip6_v6only) 547 inp->inp_flags |= IN6P_IPV6_V6ONLY; 548 } 549 #endif 550 INP_WLOCK(inp); 551 INP_LIST_WLOCK(pcbinfo); 552 CK_LIST_INSERT_HEAD(pcbinfo->ipi_listhead, inp, inp_list); 553 pcbinfo->ipi_count++; 554 so->so_pcb = (caddr_t)inp; 555 #ifdef INET6 556 if (V_ip6_auto_flowlabel) 557 inp->inp_flags |= IN6P_AUTOFLOWLABEL; 558 #endif 559 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 560 refcount_init(&inp->inp_refcount, 1); /* Reference from inpcbinfo */ 561 562 /* 563 * Routes in inpcb's can cache L2 as well; they are guaranteed 564 * to be cleaned up. 565 */ 566 inp->inp_route.ro_flags = RT_LLE_CACHE; 567 INP_LIST_WUNLOCK(pcbinfo); 568 #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC) 569 out: 570 if (error != 0) { 571 crfree(inp->inp_cred); 572 uma_zfree(pcbinfo->ipi_zone, inp); 573 } 574 #endif 575 return (error); 576 } 577 578 #ifdef INET 579 int 580 in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred) 581 { 582 int anonport, error; 583 584 INP_WLOCK_ASSERT(inp); 585 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 586 587 if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY) 588 return (EINVAL); 589 anonport = nam == NULL || ((struct sockaddr_in *)nam)->sin_port == 0; 590 error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr, 591 &inp->inp_lport, cred); 592 if (error) 593 return (error); 594 if (in_pcbinshash(inp) != 0) { 595 inp->inp_laddr.s_addr = INADDR_ANY; 596 inp->inp_lport = 0; 597 return (EAGAIN); 598 } 599 if (anonport) 600 inp->inp_flags |= INP_ANONPORT; 601 return (0); 602 } 603 #endif 604 605 /* 606 * Select a local port (number) to use. 607 */ 608 #if defined(INET) || defined(INET6) 609 int 610 in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp, 611 struct ucred *cred, int lookupflags) 612 { 613 struct inpcbinfo *pcbinfo; 614 struct inpcb *tmpinp; 615 unsigned short *lastport; 616 int count, dorandom, error; 617 u_short aux, first, last, lport; 618 #ifdef INET 619 struct in_addr laddr; 620 #endif 621 622 pcbinfo = inp->inp_pcbinfo; 623 624 /* 625 * Because no actual state changes occur here, a global write lock on 626 * the pcbinfo isn't required. 627 */ 628 INP_LOCK_ASSERT(inp); 629 INP_HASH_LOCK_ASSERT(pcbinfo); 630 631 if (inp->inp_flags & INP_HIGHPORT) { 632 first = V_ipport_hifirstauto; /* sysctl */ 633 last = V_ipport_hilastauto; 634 lastport = &pcbinfo->ipi_lasthi; 635 } else if (inp->inp_flags & INP_LOWPORT) { 636 error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT, 0); 637 if (error) 638 return (error); 639 first = V_ipport_lowfirstauto; /* 1023 */ 640 last = V_ipport_lowlastauto; /* 600 */ 641 lastport = &pcbinfo->ipi_lastlow; 642 } else { 643 first = V_ipport_firstauto; /* sysctl */ 644 last = V_ipport_lastauto; 645 lastport = &pcbinfo->ipi_lastport; 646 } 647 /* 648 * For UDP(-Lite), use random port allocation as long as the user 649 * allows it. For TCP (and as of yet unknown) connections, 650 * use random port allocation only if the user allows it AND 651 * ipport_tick() allows it. 652 */ 653 if (V_ipport_randomized && 654 (!V_ipport_stoprandom || pcbinfo == &V_udbinfo || 655 pcbinfo == &V_ulitecbinfo)) 656 dorandom = 1; 657 else 658 dorandom = 0; 659 /* 660 * It makes no sense to do random port allocation if 661 * we have the only port available. 662 */ 663 if (first == last) 664 dorandom = 0; 665 /* Make sure to not include UDP(-Lite) packets in the count. */ 666 if (pcbinfo != &V_udbinfo || pcbinfo != &V_ulitecbinfo) 667 V_ipport_tcpallocs++; 668 /* 669 * Instead of having two loops further down counting up or down 670 * make sure that first is always <= last and go with only one 671 * code path implementing all logic. 672 */ 673 if (first > last) { 674 aux = first; 675 first = last; 676 last = aux; 677 } 678 679 #ifdef INET 680 /* Make the compiler happy. */ 681 laddr.s_addr = 0; 682 if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) { 683 KASSERT(laddrp != NULL, ("%s: laddrp NULL for v4 inp %p", 684 __func__, inp)); 685 laddr = *laddrp; 686 } 687 #endif 688 tmpinp = NULL; /* Make compiler happy. */ 689 lport = *lportp; 690 691 if (dorandom) 692 *lastport = first + (arc4random() % (last - first)); 693 694 count = last - first; 695 696 do { 697 if (count-- < 0) /* completely used? */ 698 return (EADDRNOTAVAIL); 699 ++*lastport; 700 if (*lastport < first || *lastport > last) 701 *lastport = first; 702 lport = htons(*lastport); 703 704 #ifdef INET6 705 if ((inp->inp_vflag & INP_IPV6) != 0) 706 tmpinp = in6_pcblookup_local(pcbinfo, 707 &inp->in6p_laddr, lport, lookupflags, cred); 708 #endif 709 #if defined(INET) && defined(INET6) 710 else 711 #endif 712 #ifdef INET 713 tmpinp = in_pcblookup_local(pcbinfo, laddr, 714 lport, lookupflags, cred); 715 #endif 716 } while (tmpinp != NULL); 717 718 #ifdef INET 719 if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) 720 laddrp->s_addr = laddr.s_addr; 721 #endif 722 *lportp = lport; 723 724 return (0); 725 } 726 727 /* 728 * Return cached socket options. 729 */ 730 int 731 inp_so_options(const struct inpcb *inp) 732 { 733 int so_options; 734 735 so_options = 0; 736 737 if ((inp->inp_flags2 & INP_REUSEPORT_LB) != 0) 738 so_options |= SO_REUSEPORT_LB; 739 if ((inp->inp_flags2 & INP_REUSEPORT) != 0) 740 so_options |= SO_REUSEPORT; 741 if ((inp->inp_flags2 & INP_REUSEADDR) != 0) 742 so_options |= SO_REUSEADDR; 743 return (so_options); 744 } 745 #endif /* INET || INET6 */ 746 747 /* 748 * Check if a new BINDMULTI socket is allowed to be created. 749 * 750 * ni points to the new inp. 751 * oi points to the exisitng inp. 752 * 753 * This checks whether the existing inp also has BINDMULTI and 754 * whether the credentials match. 755 */ 756 int 757 in_pcbbind_check_bindmulti(const struct inpcb *ni, const struct inpcb *oi) 758 { 759 /* Check permissions match */ 760 if ((ni->inp_flags2 & INP_BINDMULTI) && 761 (ni->inp_cred->cr_uid != 762 oi->inp_cred->cr_uid)) 763 return (0); 764 765 /* Check the existing inp has BINDMULTI set */ 766 if ((ni->inp_flags2 & INP_BINDMULTI) && 767 ((oi->inp_flags2 & INP_BINDMULTI) == 0)) 768 return (0); 769 770 /* 771 * We're okay - either INP_BINDMULTI isn't set on ni, or 772 * it is and it matches the checks. 773 */ 774 return (1); 775 } 776 777 #ifdef INET 778 /* 779 * Set up a bind operation on a PCB, performing port allocation 780 * as required, but do not actually modify the PCB. Callers can 781 * either complete the bind by setting inp_laddr/inp_lport and 782 * calling in_pcbinshash(), or they can just use the resulting 783 * port and address to authorise the sending of a once-off packet. 784 * 785 * On error, the values of *laddrp and *lportp are not changed. 786 */ 787 int 788 in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp, 789 u_short *lportp, struct ucred *cred) 790 { 791 struct socket *so = inp->inp_socket; 792 struct sockaddr_in *sin; 793 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 794 struct in_addr laddr; 795 u_short lport = 0; 796 int lookupflags = 0, reuseport = (so->so_options & SO_REUSEPORT); 797 int error; 798 799 /* 800 * XXX: Maybe we could let SO_REUSEPORT_LB set SO_REUSEPORT bit here 801 * so that we don't have to add to the (already messy) code below. 802 */ 803 int reuseport_lb = (so->so_options & SO_REUSEPORT_LB); 804 805 /* 806 * No state changes, so read locks are sufficient here. 807 */ 808 INP_LOCK_ASSERT(inp); 809 INP_HASH_LOCK_ASSERT(pcbinfo); 810 811 if (CK_STAILQ_EMPTY(&V_in_ifaddrhead)) /* XXX broken! */ 812 return (EADDRNOTAVAIL); 813 laddr.s_addr = *laddrp; 814 if (nam != NULL && laddr.s_addr != INADDR_ANY) 815 return (EINVAL); 816 if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT|SO_REUSEPORT_LB)) == 0) 817 lookupflags = INPLOOKUP_WILDCARD; 818 if (nam == NULL) { 819 if ((error = prison_local_ip4(cred, &laddr)) != 0) 820 return (error); 821 } else { 822 sin = (struct sockaddr_in *)nam; 823 if (nam->sa_len != sizeof (*sin)) 824 return (EINVAL); 825 #ifdef notdef 826 /* 827 * We should check the family, but old programs 828 * incorrectly fail to initialize it. 829 */ 830 if (sin->sin_family != AF_INET) 831 return (EAFNOSUPPORT); 832 #endif 833 error = prison_local_ip4(cred, &sin->sin_addr); 834 if (error) 835 return (error); 836 if (sin->sin_port != *lportp) { 837 /* Don't allow the port to change. */ 838 if (*lportp != 0) 839 return (EINVAL); 840 lport = sin->sin_port; 841 } 842 /* NB: lport is left as 0 if the port isn't being changed. */ 843 if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) { 844 /* 845 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast; 846 * allow complete duplication of binding if 847 * SO_REUSEPORT is set, or if SO_REUSEADDR is set 848 * and a multicast address is bound on both 849 * new and duplicated sockets. 850 */ 851 if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) != 0) 852 reuseport = SO_REUSEADDR|SO_REUSEPORT; 853 /* 854 * XXX: How to deal with SO_REUSEPORT_LB here? 855 * Treat same as SO_REUSEPORT for now. 856 */ 857 if ((so->so_options & 858 (SO_REUSEADDR|SO_REUSEPORT_LB)) != 0) 859 reuseport_lb = SO_REUSEADDR|SO_REUSEPORT_LB; 860 } else if (sin->sin_addr.s_addr != INADDR_ANY) { 861 sin->sin_port = 0; /* yech... */ 862 bzero(&sin->sin_zero, sizeof(sin->sin_zero)); 863 /* 864 * Is the address a local IP address? 865 * If INP_BINDANY is set, then the socket may be bound 866 * to any endpoint address, local or not. 867 */ 868 if ((inp->inp_flags & INP_BINDANY) == 0 && 869 ifa_ifwithaddr_check((struct sockaddr *)sin) == 0) 870 return (EADDRNOTAVAIL); 871 } 872 laddr = sin->sin_addr; 873 if (lport) { 874 struct inpcb *t; 875 struct tcptw *tw; 876 877 /* GROSS */ 878 if (ntohs(lport) <= V_ipport_reservedhigh && 879 ntohs(lport) >= V_ipport_reservedlow && 880 priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT, 881 0)) 882 return (EACCES); 883 if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) && 884 priv_check_cred(inp->inp_cred, 885 PRIV_NETINET_REUSEPORT, 0) != 0) { 886 t = in_pcblookup_local(pcbinfo, sin->sin_addr, 887 lport, INPLOOKUP_WILDCARD, cred); 888 /* 889 * XXX 890 * This entire block sorely needs a rewrite. 891 */ 892 if (t && 893 ((inp->inp_flags2 & INP_BINDMULTI) == 0) && 894 ((t->inp_flags & INP_TIMEWAIT) == 0) && 895 (so->so_type != SOCK_STREAM || 896 ntohl(t->inp_faddr.s_addr) == INADDR_ANY) && 897 (ntohl(sin->sin_addr.s_addr) != INADDR_ANY || 898 ntohl(t->inp_laddr.s_addr) != INADDR_ANY || 899 (t->inp_flags2 & INP_REUSEPORT) || 900 (t->inp_flags2 & INP_REUSEPORT_LB) == 0) && 901 (inp->inp_cred->cr_uid != 902 t->inp_cred->cr_uid)) 903 return (EADDRINUSE); 904 905 /* 906 * If the socket is a BINDMULTI socket, then 907 * the credentials need to match and the 908 * original socket also has to have been bound 909 * with BINDMULTI. 910 */ 911 if (t && (! in_pcbbind_check_bindmulti(inp, t))) 912 return (EADDRINUSE); 913 } 914 t = in_pcblookup_local(pcbinfo, sin->sin_addr, 915 lport, lookupflags, cred); 916 if (t && (t->inp_flags & INP_TIMEWAIT)) { 917 /* 918 * XXXRW: If an incpb has had its timewait 919 * state recycled, we treat the address as 920 * being in use (for now). This is better 921 * than a panic, but not desirable. 922 */ 923 tw = intotw(t); 924 if (tw == NULL || 925 ((reuseport & tw->tw_so_options) == 0 && 926 (reuseport_lb & 927 tw->tw_so_options) == 0)) { 928 return (EADDRINUSE); 929 } 930 } else if (t && 931 ((inp->inp_flags2 & INP_BINDMULTI) == 0) && 932 (reuseport & inp_so_options(t)) == 0 && 933 (reuseport_lb & inp_so_options(t)) == 0) { 934 #ifdef INET6 935 if (ntohl(sin->sin_addr.s_addr) != 936 INADDR_ANY || 937 ntohl(t->inp_laddr.s_addr) != 938 INADDR_ANY || 939 (inp->inp_vflag & INP_IPV6PROTO) == 0 || 940 (t->inp_vflag & INP_IPV6PROTO) == 0) 941 #endif 942 return (EADDRINUSE); 943 if (t && (! in_pcbbind_check_bindmulti(inp, t))) 944 return (EADDRINUSE); 945 } 946 } 947 } 948 if (*lportp != 0) 949 lport = *lportp; 950 if (lport == 0) { 951 error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags); 952 if (error != 0) 953 return (error); 954 955 } 956 *laddrp = laddr.s_addr; 957 *lportp = lport; 958 return (0); 959 } 960 961 /* 962 * Connect from a socket to a specified address. 963 * Both address and port must be specified in argument sin. 964 * If don't have a local address for this socket yet, 965 * then pick one. 966 */ 967 int 968 in_pcbconnect_mbuf(struct inpcb *inp, struct sockaddr *nam, 969 struct ucred *cred, struct mbuf *m) 970 { 971 u_short lport, fport; 972 in_addr_t laddr, faddr; 973 int anonport, error; 974 975 INP_WLOCK_ASSERT(inp); 976 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 977 978 lport = inp->inp_lport; 979 laddr = inp->inp_laddr.s_addr; 980 anonport = (lport == 0); 981 error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport, 982 NULL, cred); 983 if (error) 984 return (error); 985 986 /* Do the initial binding of the local address if required. */ 987 if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) { 988 inp->inp_lport = lport; 989 inp->inp_laddr.s_addr = laddr; 990 if (in_pcbinshash(inp) != 0) { 991 inp->inp_laddr.s_addr = INADDR_ANY; 992 inp->inp_lport = 0; 993 return (EAGAIN); 994 } 995 } 996 997 /* Commit the remaining changes. */ 998 inp->inp_lport = lport; 999 inp->inp_laddr.s_addr = laddr; 1000 inp->inp_faddr.s_addr = faddr; 1001 inp->inp_fport = fport; 1002 in_pcbrehash_mbuf(inp, m); 1003 1004 if (anonport) 1005 inp->inp_flags |= INP_ANONPORT; 1006 return (0); 1007 } 1008 1009 int 1010 in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred) 1011 { 1012 1013 return (in_pcbconnect_mbuf(inp, nam, cred, NULL)); 1014 } 1015 1016 /* 1017 * Do proper source address selection on an unbound socket in case 1018 * of connect. Take jails into account as well. 1019 */ 1020 int 1021 in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr, 1022 struct ucred *cred) 1023 { 1024 struct ifaddr *ifa; 1025 struct sockaddr *sa; 1026 struct sockaddr_in *sin; 1027 struct route sro; 1028 int error; 1029 1030 KASSERT(laddr != NULL, ("%s: laddr NULL", __func__)); 1031 /* 1032 * Bypass source address selection and use the primary jail IP 1033 * if requested. 1034 */ 1035 if (cred != NULL && !prison_saddrsel_ip4(cred, laddr)) 1036 return (0); 1037 1038 error = 0; 1039 bzero(&sro, sizeof(sro)); 1040 1041 sin = (struct sockaddr_in *)&sro.ro_dst; 1042 sin->sin_family = AF_INET; 1043 sin->sin_len = sizeof(struct sockaddr_in); 1044 sin->sin_addr.s_addr = faddr->s_addr; 1045 1046 /* 1047 * If route is known our src addr is taken from the i/f, 1048 * else punt. 1049 * 1050 * Find out route to destination. 1051 */ 1052 if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0) 1053 in_rtalloc_ign(&sro, 0, inp->inp_inc.inc_fibnum); 1054 1055 /* 1056 * If we found a route, use the address corresponding to 1057 * the outgoing interface. 1058 * 1059 * Otherwise assume faddr is reachable on a directly connected 1060 * network and try to find a corresponding interface to take 1061 * the source address from. 1062 */ 1063 NET_EPOCH_ENTER(); 1064 if (sro.ro_rt == NULL || sro.ro_rt->rt_ifp == NULL) { 1065 struct in_ifaddr *ia; 1066 struct ifnet *ifp; 1067 1068 ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin, 1069 inp->inp_socket->so_fibnum)); 1070 if (ia == NULL) { 1071 ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0, 1072 inp->inp_socket->so_fibnum)); 1073 1074 } 1075 if (ia == NULL) { 1076 error = ENETUNREACH; 1077 goto done; 1078 } 1079 1080 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 1081 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1082 goto done; 1083 } 1084 1085 ifp = ia->ia_ifp; 1086 ia = NULL; 1087 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1088 1089 sa = ifa->ifa_addr; 1090 if (sa->sa_family != AF_INET) 1091 continue; 1092 sin = (struct sockaddr_in *)sa; 1093 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 1094 ia = (struct in_ifaddr *)ifa; 1095 break; 1096 } 1097 } 1098 if (ia != NULL) { 1099 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1100 goto done; 1101 } 1102 1103 /* 3. As a last resort return the 'default' jail address. */ 1104 error = prison_get_ip4(cred, laddr); 1105 goto done; 1106 } 1107 1108 /* 1109 * If the outgoing interface on the route found is not 1110 * a loopback interface, use the address from that interface. 1111 * In case of jails do those three steps: 1112 * 1. check if the interface address belongs to the jail. If so use it. 1113 * 2. check if we have any address on the outgoing interface 1114 * belonging to this jail. If so use it. 1115 * 3. as a last resort return the 'default' jail address. 1116 */ 1117 if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) { 1118 struct in_ifaddr *ia; 1119 struct ifnet *ifp; 1120 1121 /* If not jailed, use the default returned. */ 1122 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 1123 ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa; 1124 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1125 goto done; 1126 } 1127 1128 /* Jailed. */ 1129 /* 1. Check if the iface address belongs to the jail. */ 1130 sin = (struct sockaddr_in *)sro.ro_rt->rt_ifa->ifa_addr; 1131 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 1132 ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa; 1133 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1134 goto done; 1135 } 1136 1137 /* 1138 * 2. Check if we have any address on the outgoing interface 1139 * belonging to this jail. 1140 */ 1141 ia = NULL; 1142 ifp = sro.ro_rt->rt_ifp; 1143 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1144 sa = ifa->ifa_addr; 1145 if (sa->sa_family != AF_INET) 1146 continue; 1147 sin = (struct sockaddr_in *)sa; 1148 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 1149 ia = (struct in_ifaddr *)ifa; 1150 break; 1151 } 1152 } 1153 if (ia != NULL) { 1154 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1155 goto done; 1156 } 1157 1158 /* 3. As a last resort return the 'default' jail address. */ 1159 error = prison_get_ip4(cred, laddr); 1160 goto done; 1161 } 1162 1163 /* 1164 * The outgoing interface is marked with 'loopback net', so a route 1165 * to ourselves is here. 1166 * Try to find the interface of the destination address and then 1167 * take the address from there. That interface is not necessarily 1168 * a loopback interface. 1169 * In case of jails, check that it is an address of the jail 1170 * and if we cannot find, fall back to the 'default' jail address. 1171 */ 1172 if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) { 1173 struct sockaddr_in sain; 1174 struct in_ifaddr *ia; 1175 1176 bzero(&sain, sizeof(struct sockaddr_in)); 1177 sain.sin_family = AF_INET; 1178 sain.sin_len = sizeof(struct sockaddr_in); 1179 sain.sin_addr.s_addr = faddr->s_addr; 1180 1181 ia = ifatoia(ifa_ifwithdstaddr(sintosa(&sain), 1182 inp->inp_socket->so_fibnum)); 1183 if (ia == NULL) 1184 ia = ifatoia(ifa_ifwithnet(sintosa(&sain), 0, 1185 inp->inp_socket->so_fibnum)); 1186 if (ia == NULL) 1187 ia = ifatoia(ifa_ifwithaddr(sintosa(&sain))); 1188 1189 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 1190 if (ia == NULL) { 1191 error = ENETUNREACH; 1192 goto done; 1193 } 1194 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1195 goto done; 1196 } 1197 1198 /* Jailed. */ 1199 if (ia != NULL) { 1200 struct ifnet *ifp; 1201 1202 ifp = ia->ia_ifp; 1203 ia = NULL; 1204 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1205 sa = ifa->ifa_addr; 1206 if (sa->sa_family != AF_INET) 1207 continue; 1208 sin = (struct sockaddr_in *)sa; 1209 if (prison_check_ip4(cred, 1210 &sin->sin_addr) == 0) { 1211 ia = (struct in_ifaddr *)ifa; 1212 break; 1213 } 1214 } 1215 if (ia != NULL) { 1216 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1217 goto done; 1218 } 1219 } 1220 1221 /* 3. As a last resort return the 'default' jail address. */ 1222 error = prison_get_ip4(cred, laddr); 1223 goto done; 1224 } 1225 1226 done: 1227 NET_EPOCH_EXIT(); 1228 if (sro.ro_rt != NULL) 1229 RTFREE(sro.ro_rt); 1230 return (error); 1231 } 1232 1233 /* 1234 * Set up for a connect from a socket to the specified address. 1235 * On entry, *laddrp and *lportp should contain the current local 1236 * address and port for the PCB; these are updated to the values 1237 * that should be placed in inp_laddr and inp_lport to complete 1238 * the connect. 1239 * 1240 * On success, *faddrp and *fportp will be set to the remote address 1241 * and port. These are not updated in the error case. 1242 * 1243 * If the operation fails because the connection already exists, 1244 * *oinpp will be set to the PCB of that connection so that the 1245 * caller can decide to override it. In all other cases, *oinpp 1246 * is set to NULL. 1247 */ 1248 int 1249 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam, 1250 in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp, 1251 struct inpcb **oinpp, struct ucred *cred) 1252 { 1253 struct rm_priotracker in_ifa_tracker; 1254 struct sockaddr_in *sin = (struct sockaddr_in *)nam; 1255 struct in_ifaddr *ia; 1256 struct inpcb *oinp; 1257 struct in_addr laddr, faddr; 1258 u_short lport, fport; 1259 int error; 1260 1261 /* 1262 * Because a global state change doesn't actually occur here, a read 1263 * lock is sufficient. 1264 */ 1265 INP_LOCK_ASSERT(inp); 1266 INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo); 1267 1268 if (oinpp != NULL) 1269 *oinpp = NULL; 1270 if (nam->sa_len != sizeof (*sin)) 1271 return (EINVAL); 1272 if (sin->sin_family != AF_INET) 1273 return (EAFNOSUPPORT); 1274 if (sin->sin_port == 0) 1275 return (EADDRNOTAVAIL); 1276 laddr.s_addr = *laddrp; 1277 lport = *lportp; 1278 faddr = sin->sin_addr; 1279 fport = sin->sin_port; 1280 1281 if (!CK_STAILQ_EMPTY(&V_in_ifaddrhead)) { 1282 /* 1283 * If the destination address is INADDR_ANY, 1284 * use the primary local address. 1285 * If the supplied address is INADDR_BROADCAST, 1286 * and the primary interface supports broadcast, 1287 * choose the broadcast address for that interface. 1288 */ 1289 if (faddr.s_addr == INADDR_ANY) { 1290 IN_IFADDR_RLOCK(&in_ifa_tracker); 1291 faddr = 1292 IA_SIN(CK_STAILQ_FIRST(&V_in_ifaddrhead))->sin_addr; 1293 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 1294 if (cred != NULL && 1295 (error = prison_get_ip4(cred, &faddr)) != 0) 1296 return (error); 1297 } else if (faddr.s_addr == (u_long)INADDR_BROADCAST) { 1298 IN_IFADDR_RLOCK(&in_ifa_tracker); 1299 if (CK_STAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags & 1300 IFF_BROADCAST) 1301 faddr = satosin(&CK_STAILQ_FIRST( 1302 &V_in_ifaddrhead)->ia_broadaddr)->sin_addr; 1303 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 1304 } 1305 } 1306 if (laddr.s_addr == INADDR_ANY) { 1307 error = in_pcbladdr(inp, &faddr, &laddr, cred); 1308 /* 1309 * If the destination address is multicast and an outgoing 1310 * interface has been set as a multicast option, prefer the 1311 * address of that interface as our source address. 1312 */ 1313 if (IN_MULTICAST(ntohl(faddr.s_addr)) && 1314 inp->inp_moptions != NULL) { 1315 struct ip_moptions *imo; 1316 struct ifnet *ifp; 1317 1318 imo = inp->inp_moptions; 1319 if (imo->imo_multicast_ifp != NULL) { 1320 ifp = imo->imo_multicast_ifp; 1321 IN_IFADDR_RLOCK(&in_ifa_tracker); 1322 CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) { 1323 if ((ia->ia_ifp == ifp) && 1324 (cred == NULL || 1325 prison_check_ip4(cred, 1326 &ia->ia_addr.sin_addr) == 0)) 1327 break; 1328 } 1329 if (ia == NULL) 1330 error = EADDRNOTAVAIL; 1331 else { 1332 laddr = ia->ia_addr.sin_addr; 1333 error = 0; 1334 } 1335 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 1336 } 1337 } 1338 if (error) 1339 return (error); 1340 } 1341 oinp = in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr, fport, 1342 laddr, lport, 0, NULL); 1343 if (oinp != NULL) { 1344 if (oinpp != NULL) 1345 *oinpp = oinp; 1346 return (EADDRINUSE); 1347 } 1348 if (lport == 0) { 1349 error = in_pcbbind_setup(inp, NULL, &laddr.s_addr, &lport, 1350 cred); 1351 if (error) 1352 return (error); 1353 } 1354 *laddrp = laddr.s_addr; 1355 *lportp = lport; 1356 *faddrp = faddr.s_addr; 1357 *fportp = fport; 1358 return (0); 1359 } 1360 1361 void 1362 in_pcbdisconnect(struct inpcb *inp) 1363 { 1364 1365 INP_WLOCK_ASSERT(inp); 1366 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 1367 1368 inp->inp_faddr.s_addr = INADDR_ANY; 1369 inp->inp_fport = 0; 1370 in_pcbrehash(inp); 1371 } 1372 #endif /* INET */ 1373 1374 /* 1375 * in_pcbdetach() is responsibe for disassociating a socket from an inpcb. 1376 * For most protocols, this will be invoked immediately prior to calling 1377 * in_pcbfree(). However, with TCP the inpcb may significantly outlive the 1378 * socket, in which case in_pcbfree() is deferred. 1379 */ 1380 void 1381 in_pcbdetach(struct inpcb *inp) 1382 { 1383 1384 KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__)); 1385 1386 #ifdef RATELIMIT 1387 if (inp->inp_snd_tag != NULL) 1388 in_pcbdetach_txrtlmt(inp); 1389 #endif 1390 inp->inp_socket->so_pcb = NULL; 1391 inp->inp_socket = NULL; 1392 } 1393 1394 /* 1395 * in_pcbref() bumps the reference count on an inpcb in order to maintain 1396 * stability of an inpcb pointer despite the inpcb lock being released. This 1397 * is used in TCP when the inpcbinfo lock needs to be acquired or upgraded, 1398 * but where the inpcb lock may already held, or when acquiring a reference 1399 * via a pcbgroup. 1400 * 1401 * in_pcbref() should be used only to provide brief memory stability, and 1402 * must always be followed by a call to INP_WLOCK() and in_pcbrele() to 1403 * garbage collect the inpcb if it has been in_pcbfree()'d from another 1404 * context. Until in_pcbrele() has returned that the inpcb is still valid, 1405 * lock and rele are the *only* safe operations that may be performed on the 1406 * inpcb. 1407 * 1408 * While the inpcb will not be freed, releasing the inpcb lock means that the 1409 * connection's state may change, so the caller should be careful to 1410 * revalidate any cached state on reacquiring the lock. Drop the reference 1411 * using in_pcbrele(). 1412 */ 1413 void 1414 in_pcbref(struct inpcb *inp) 1415 { 1416 1417 KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__)); 1418 1419 refcount_acquire(&inp->inp_refcount); 1420 } 1421 1422 /* 1423 * Drop a refcount on an inpcb elevated using in_pcbref(); because a call to 1424 * in_pcbfree() may have been made between in_pcbref() and in_pcbrele(), we 1425 * return a flag indicating whether or not the inpcb remains valid. If it is 1426 * valid, we return with the inpcb lock held. 1427 * 1428 * Notice that, unlike in_pcbref(), the inpcb lock must be held to drop a 1429 * reference on an inpcb. Historically more work was done here (actually, in 1430 * in_pcbfree_internal()) but has been moved to in_pcbfree() to avoid the 1431 * need for the pcbinfo lock in in_pcbrele(). Deferring the free is entirely 1432 * about memory stability (and continued use of the write lock). 1433 */ 1434 int 1435 in_pcbrele_rlocked(struct inpcb *inp) 1436 { 1437 struct inpcbinfo *pcbinfo; 1438 1439 KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__)); 1440 1441 INP_RLOCK_ASSERT(inp); 1442 1443 if (refcount_release(&inp->inp_refcount) == 0) { 1444 /* 1445 * If the inpcb has been freed, let the caller know, even if 1446 * this isn't the last reference. 1447 */ 1448 if (inp->inp_flags2 & INP_FREED) { 1449 INP_RUNLOCK(inp); 1450 return (1); 1451 } 1452 return (0); 1453 } 1454 1455 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); 1456 #ifdef TCPHPTS 1457 if (inp->inp_in_hpts || inp->inp_in_input) { 1458 struct tcp_hpts_entry *hpts; 1459 /* 1460 * We should not be on the hpts at 1461 * this point in any form. we must 1462 * get the lock to be sure. 1463 */ 1464 hpts = tcp_hpts_lock(inp); 1465 if (inp->inp_in_hpts) 1466 panic("Hpts:%p inp:%p at free still on hpts", 1467 hpts, inp); 1468 mtx_unlock(&hpts->p_mtx); 1469 hpts = tcp_input_lock(inp); 1470 if (inp->inp_in_input) 1471 panic("Hpts:%p inp:%p at free still on input hpts", 1472 hpts, inp); 1473 mtx_unlock(&hpts->p_mtx); 1474 } 1475 #endif 1476 INP_RUNLOCK(inp); 1477 pcbinfo = inp->inp_pcbinfo; 1478 uma_zfree(pcbinfo->ipi_zone, inp); 1479 return (1); 1480 } 1481 1482 int 1483 in_pcbrele_wlocked(struct inpcb *inp) 1484 { 1485 struct inpcbinfo *pcbinfo; 1486 1487 KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__)); 1488 1489 INP_WLOCK_ASSERT(inp); 1490 1491 if (refcount_release(&inp->inp_refcount) == 0) { 1492 /* 1493 * If the inpcb has been freed, let the caller know, even if 1494 * this isn't the last reference. 1495 */ 1496 if (inp->inp_flags2 & INP_FREED) { 1497 INP_WUNLOCK(inp); 1498 return (1); 1499 } 1500 return (0); 1501 } 1502 1503 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); 1504 #ifdef TCPHPTS 1505 if (inp->inp_in_hpts || inp->inp_in_input) { 1506 struct tcp_hpts_entry *hpts; 1507 /* 1508 * We should not be on the hpts at 1509 * this point in any form. we must 1510 * get the lock to be sure. 1511 */ 1512 hpts = tcp_hpts_lock(inp); 1513 if (inp->inp_in_hpts) 1514 panic("Hpts:%p inp:%p at free still on hpts", 1515 hpts, inp); 1516 mtx_unlock(&hpts->p_mtx); 1517 hpts = tcp_input_lock(inp); 1518 if (inp->inp_in_input) 1519 panic("Hpts:%p inp:%p at free still on input hpts", 1520 hpts, inp); 1521 mtx_unlock(&hpts->p_mtx); 1522 } 1523 #endif 1524 INP_WUNLOCK(inp); 1525 pcbinfo = inp->inp_pcbinfo; 1526 uma_zfree(pcbinfo->ipi_zone, inp); 1527 return (1); 1528 } 1529 1530 /* 1531 * Temporary wrapper. 1532 */ 1533 int 1534 in_pcbrele(struct inpcb *inp) 1535 { 1536 1537 return (in_pcbrele_wlocked(inp)); 1538 } 1539 1540 void 1541 in_pcblist_rele_rlocked(epoch_context_t ctx) 1542 { 1543 struct in_pcblist *il; 1544 struct inpcb *inp; 1545 struct inpcbinfo *pcbinfo; 1546 int i, n; 1547 1548 il = __containerof(ctx, struct in_pcblist, il_epoch_ctx); 1549 pcbinfo = il->il_pcbinfo; 1550 n = il->il_count; 1551 INP_INFO_WLOCK(pcbinfo); 1552 for (i = 0; i < n; i++) { 1553 inp = il->il_inp_list[i]; 1554 INP_RLOCK(inp); 1555 if (!in_pcbrele_rlocked(inp)) 1556 INP_RUNLOCK(inp); 1557 } 1558 INP_INFO_WUNLOCK(pcbinfo); 1559 free(il, M_TEMP); 1560 } 1561 1562 static void 1563 inpcbport_free(epoch_context_t ctx) 1564 { 1565 struct inpcbport *phd; 1566 1567 phd = __containerof(ctx, struct inpcbport, phd_epoch_ctx); 1568 free(phd, M_PCB); 1569 } 1570 1571 static void 1572 in_pcbfree_deferred(epoch_context_t ctx) 1573 { 1574 struct inpcb *inp; 1575 int released __unused; 1576 1577 inp = __containerof(ctx, struct inpcb, inp_epoch_ctx); 1578 1579 INP_WLOCK(inp); 1580 #ifdef INET 1581 struct ip_moptions *imo = inp->inp_moptions; 1582 inp->inp_moptions = NULL; 1583 #endif 1584 /* XXXRW: Do as much as possible here. */ 1585 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1586 if (inp->inp_sp != NULL) 1587 ipsec_delete_pcbpolicy(inp); 1588 #endif 1589 #ifdef INET6 1590 struct ip6_moptions *im6o = NULL; 1591 if (inp->inp_vflag & INP_IPV6PROTO) { 1592 ip6_freepcbopts(inp->in6p_outputopts); 1593 im6o = inp->in6p_moptions; 1594 inp->in6p_moptions = NULL; 1595 } 1596 #endif 1597 if (inp->inp_options) 1598 (void)m_free(inp->inp_options); 1599 inp->inp_vflag = 0; 1600 crfree(inp->inp_cred); 1601 #ifdef MAC 1602 mac_inpcb_destroy(inp); 1603 #endif 1604 released = in_pcbrele_wlocked(inp); 1605 MPASS(released); 1606 #ifdef INET6 1607 ip6_freemoptions(im6o); 1608 #endif 1609 #ifdef INET 1610 inp_freemoptions(imo); 1611 #endif 1612 } 1613 1614 /* 1615 * Unconditionally schedule an inpcb to be freed by decrementing its 1616 * reference count, which should occur only after the inpcb has been detached 1617 * from its socket. If another thread holds a temporary reference (acquired 1618 * using in_pcbref()) then the free is deferred until that reference is 1619 * released using in_pcbrele(), but the inpcb is still unlocked. Almost all 1620 * work, including removal from global lists, is done in this context, where 1621 * the pcbinfo lock is held. 1622 */ 1623 void 1624 in_pcbfree(struct inpcb *inp) 1625 { 1626 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 1627 1628 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); 1629 KASSERT((inp->inp_flags2 & INP_FREED) == 0, 1630 ("%s: called twice for pcb %p", __func__, inp)); 1631 if (inp->inp_flags2 & INP_FREED) { 1632 INP_WUNLOCK(inp); 1633 return; 1634 } 1635 1636 #ifdef INVARIANTS 1637 if (pcbinfo == &V_tcbinfo) { 1638 INP_INFO_LOCK_ASSERT(pcbinfo); 1639 } else { 1640 INP_INFO_WLOCK_ASSERT(pcbinfo); 1641 } 1642 #endif 1643 INP_WLOCK_ASSERT(inp); 1644 INP_LIST_WLOCK(pcbinfo); 1645 in_pcbremlists(inp); 1646 INP_LIST_WUNLOCK(pcbinfo); 1647 RO_INVALIDATE_CACHE(&inp->inp_route); 1648 /* mark as destruction in progress */ 1649 inp->inp_flags2 |= INP_FREED; 1650 INP_WUNLOCK(inp); 1651 epoch_call(net_epoch_preempt, &inp->inp_epoch_ctx, in_pcbfree_deferred); 1652 } 1653 1654 /* 1655 * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and 1656 * port reservation, and preventing it from being returned by inpcb lookups. 1657 * 1658 * It is used by TCP to mark an inpcb as unused and avoid future packet 1659 * delivery or event notification when a socket remains open but TCP has 1660 * closed. This might occur as a result of a shutdown()-initiated TCP close 1661 * or a RST on the wire, and allows the port binding to be reused while still 1662 * maintaining the invariant that so_pcb always points to a valid inpcb until 1663 * in_pcbdetach(). 1664 * 1665 * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by 1666 * in_pcbnotifyall() and in_pcbpurgeif0()? 1667 */ 1668 void 1669 in_pcbdrop(struct inpcb *inp) 1670 { 1671 1672 INP_WLOCK_ASSERT(inp); 1673 #ifdef INVARIANTS 1674 if (inp->inp_socket != NULL && inp->inp_ppcb != NULL) 1675 MPASS(inp->inp_refcount > 1); 1676 #endif 1677 1678 /* 1679 * XXXRW: Possibly we should protect the setting of INP_DROPPED with 1680 * the hash lock...? 1681 */ 1682 inp->inp_flags |= INP_DROPPED; 1683 if (inp->inp_flags & INP_INHASHLIST) { 1684 struct inpcbport *phd = inp->inp_phd; 1685 1686 INP_HASH_WLOCK(inp->inp_pcbinfo); 1687 in_pcbremlbgrouphash(inp); 1688 CK_LIST_REMOVE(inp, inp_hash); 1689 CK_LIST_REMOVE(inp, inp_portlist); 1690 if (CK_LIST_FIRST(&phd->phd_pcblist) == NULL) { 1691 CK_LIST_REMOVE(phd, phd_hash); 1692 epoch_call(net_epoch_preempt, &phd->phd_epoch_ctx, inpcbport_free); 1693 } 1694 INP_HASH_WUNLOCK(inp->inp_pcbinfo); 1695 inp->inp_flags &= ~INP_INHASHLIST; 1696 #ifdef PCBGROUP 1697 in_pcbgroup_remove(inp); 1698 #endif 1699 } 1700 } 1701 1702 #ifdef INET 1703 /* 1704 * Common routines to return the socket addresses associated with inpcbs. 1705 */ 1706 struct sockaddr * 1707 in_sockaddr(in_port_t port, struct in_addr *addr_p) 1708 { 1709 struct sockaddr_in *sin; 1710 1711 sin = malloc(sizeof *sin, M_SONAME, 1712 M_WAITOK | M_ZERO); 1713 sin->sin_family = AF_INET; 1714 sin->sin_len = sizeof(*sin); 1715 sin->sin_addr = *addr_p; 1716 sin->sin_port = port; 1717 1718 return (struct sockaddr *)sin; 1719 } 1720 1721 int 1722 in_getsockaddr(struct socket *so, struct sockaddr **nam) 1723 { 1724 struct inpcb *inp; 1725 struct in_addr addr; 1726 in_port_t port; 1727 1728 inp = sotoinpcb(so); 1729 KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL")); 1730 1731 INP_RLOCK(inp); 1732 port = inp->inp_lport; 1733 addr = inp->inp_laddr; 1734 INP_RUNLOCK(inp); 1735 1736 *nam = in_sockaddr(port, &addr); 1737 return 0; 1738 } 1739 1740 int 1741 in_getpeeraddr(struct socket *so, struct sockaddr **nam) 1742 { 1743 struct inpcb *inp; 1744 struct in_addr addr; 1745 in_port_t port; 1746 1747 inp = sotoinpcb(so); 1748 KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL")); 1749 1750 INP_RLOCK(inp); 1751 port = inp->inp_fport; 1752 addr = inp->inp_faddr; 1753 INP_RUNLOCK(inp); 1754 1755 *nam = in_sockaddr(port, &addr); 1756 return 0; 1757 } 1758 1759 void 1760 in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno, 1761 struct inpcb *(*notify)(struct inpcb *, int)) 1762 { 1763 struct inpcb *inp, *inp_temp; 1764 1765 INP_INFO_WLOCK(pcbinfo); 1766 CK_LIST_FOREACH_SAFE(inp, pcbinfo->ipi_listhead, inp_list, inp_temp) { 1767 INP_WLOCK(inp); 1768 #ifdef INET6 1769 if ((inp->inp_vflag & INP_IPV4) == 0) { 1770 INP_WUNLOCK(inp); 1771 continue; 1772 } 1773 #endif 1774 if (inp->inp_faddr.s_addr != faddr.s_addr || 1775 inp->inp_socket == NULL) { 1776 INP_WUNLOCK(inp); 1777 continue; 1778 } 1779 if ((*notify)(inp, errno)) 1780 INP_WUNLOCK(inp); 1781 } 1782 INP_INFO_WUNLOCK(pcbinfo); 1783 } 1784 1785 void 1786 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp) 1787 { 1788 struct inpcb *inp; 1789 struct ip_moptions *imo; 1790 int i, gap; 1791 1792 INP_INFO_WLOCK(pcbinfo); 1793 CK_LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) { 1794 INP_WLOCK(inp); 1795 imo = inp->inp_moptions; 1796 if ((inp->inp_vflag & INP_IPV4) && 1797 imo != NULL) { 1798 /* 1799 * Unselect the outgoing interface if it is being 1800 * detached. 1801 */ 1802 if (imo->imo_multicast_ifp == ifp) 1803 imo->imo_multicast_ifp = NULL; 1804 1805 /* 1806 * Drop multicast group membership if we joined 1807 * through the interface being detached. 1808 * 1809 * XXX This can all be deferred to an epoch_call 1810 */ 1811 for (i = 0, gap = 0; i < imo->imo_num_memberships; 1812 i++) { 1813 if (imo->imo_membership[i]->inm_ifp == ifp) { 1814 IN_MULTI_LOCK_ASSERT(); 1815 in_leavegroup_locked(imo->imo_membership[i], NULL); 1816 gap++; 1817 } else if (gap != 0) 1818 imo->imo_membership[i - gap] = 1819 imo->imo_membership[i]; 1820 } 1821 imo->imo_num_memberships -= gap; 1822 } 1823 INP_WUNLOCK(inp); 1824 } 1825 INP_INFO_WUNLOCK(pcbinfo); 1826 } 1827 1828 /* 1829 * Lookup a PCB based on the local address and port. Caller must hold the 1830 * hash lock. No inpcb locks or references are acquired. 1831 */ 1832 #define INP_LOOKUP_MAPPED_PCB_COST 3 1833 struct inpcb * 1834 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr, 1835 u_short lport, int lookupflags, struct ucred *cred) 1836 { 1837 struct inpcb *inp; 1838 #ifdef INET6 1839 int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST; 1840 #else 1841 int matchwild = 3; 1842 #endif 1843 int wildcard; 1844 1845 KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0, 1846 ("%s: invalid lookup flags %d", __func__, lookupflags)); 1847 1848 INP_HASH_LOCK_ASSERT(pcbinfo); 1849 1850 if ((lookupflags & INPLOOKUP_WILDCARD) == 0) { 1851 struct inpcbhead *head; 1852 /* 1853 * Look for an unconnected (wildcard foreign addr) PCB that 1854 * matches the local address and port we're looking for. 1855 */ 1856 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport, 1857 0, pcbinfo->ipi_hashmask)]; 1858 CK_LIST_FOREACH(inp, head, inp_hash) { 1859 #ifdef INET6 1860 /* XXX inp locking */ 1861 if ((inp->inp_vflag & INP_IPV4) == 0) 1862 continue; 1863 #endif 1864 if (inp->inp_faddr.s_addr == INADDR_ANY && 1865 inp->inp_laddr.s_addr == laddr.s_addr && 1866 inp->inp_lport == lport) { 1867 /* 1868 * Found? 1869 */ 1870 if (cred == NULL || 1871 prison_equal_ip4(cred->cr_prison, 1872 inp->inp_cred->cr_prison)) 1873 return (inp); 1874 } 1875 } 1876 /* 1877 * Not found. 1878 */ 1879 return (NULL); 1880 } else { 1881 struct inpcbporthead *porthash; 1882 struct inpcbport *phd; 1883 struct inpcb *match = NULL; 1884 /* 1885 * Best fit PCB lookup. 1886 * 1887 * First see if this local port is in use by looking on the 1888 * port hash list. 1889 */ 1890 porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport, 1891 pcbinfo->ipi_porthashmask)]; 1892 CK_LIST_FOREACH(phd, porthash, phd_hash) { 1893 if (phd->phd_port == lport) 1894 break; 1895 } 1896 if (phd != NULL) { 1897 /* 1898 * Port is in use by one or more PCBs. Look for best 1899 * fit. 1900 */ 1901 CK_LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) { 1902 wildcard = 0; 1903 if (cred != NULL && 1904 !prison_equal_ip4(inp->inp_cred->cr_prison, 1905 cred->cr_prison)) 1906 continue; 1907 #ifdef INET6 1908 /* XXX inp locking */ 1909 if ((inp->inp_vflag & INP_IPV4) == 0) 1910 continue; 1911 /* 1912 * We never select the PCB that has 1913 * INP_IPV6 flag and is bound to :: if 1914 * we have another PCB which is bound 1915 * to 0.0.0.0. If a PCB has the 1916 * INP_IPV6 flag, then we set its cost 1917 * higher than IPv4 only PCBs. 1918 * 1919 * Note that the case only happens 1920 * when a socket is bound to ::, under 1921 * the condition that the use of the 1922 * mapped address is allowed. 1923 */ 1924 if ((inp->inp_vflag & INP_IPV6) != 0) 1925 wildcard += INP_LOOKUP_MAPPED_PCB_COST; 1926 #endif 1927 if (inp->inp_faddr.s_addr != INADDR_ANY) 1928 wildcard++; 1929 if (inp->inp_laddr.s_addr != INADDR_ANY) { 1930 if (laddr.s_addr == INADDR_ANY) 1931 wildcard++; 1932 else if (inp->inp_laddr.s_addr != laddr.s_addr) 1933 continue; 1934 } else { 1935 if (laddr.s_addr != INADDR_ANY) 1936 wildcard++; 1937 } 1938 if (wildcard < matchwild) { 1939 match = inp; 1940 matchwild = wildcard; 1941 if (matchwild == 0) 1942 break; 1943 } 1944 } 1945 } 1946 return (match); 1947 } 1948 } 1949 #undef INP_LOOKUP_MAPPED_PCB_COST 1950 1951 static struct inpcb * 1952 in_pcblookup_lbgroup(const struct inpcbinfo *pcbinfo, 1953 const struct in_addr *laddr, uint16_t lport, const struct in_addr *faddr, 1954 uint16_t fport, int lookupflags) 1955 { 1956 struct inpcb *local_wild; 1957 const struct inpcblbgrouphead *hdr; 1958 struct inpcblbgroup *grp; 1959 uint32_t idx; 1960 1961 INP_HASH_LOCK_ASSERT(pcbinfo); 1962 1963 hdr = &pcbinfo->ipi_lbgrouphashbase[INP_PCBLBGROUP_PORTHASH(lport, 1964 pcbinfo->ipi_lbgrouphashmask)]; 1965 1966 /* 1967 * Order of socket selection: 1968 * 1. non-wild. 1969 * 2. wild (if lookupflags contains INPLOOKUP_WILDCARD). 1970 * 1971 * NOTE: 1972 * - Load balanced group does not contain jailed sockets 1973 * - Load balanced group does not contain IPv4 mapped INET6 wild sockets 1974 */ 1975 local_wild = NULL; 1976 LIST_FOREACH(grp, hdr, il_list) { 1977 #ifdef INET6 1978 if (!(grp->il_vflag & INP_IPV4)) 1979 continue; 1980 #endif 1981 if (grp->il_lport != lport) 1982 continue; 1983 1984 idx = INP_PCBLBGROUP_PKTHASH(faddr->s_addr, lport, fport) % 1985 grp->il_inpcnt; 1986 if (grp->il_laddr.s_addr == laddr->s_addr) 1987 return (grp->il_inp[idx]); 1988 if (grp->il_laddr.s_addr == INADDR_ANY && 1989 (lookupflags & INPLOOKUP_WILDCARD) != 0) 1990 local_wild = grp->il_inp[idx]; 1991 } 1992 return (local_wild); 1993 } 1994 1995 #ifdef PCBGROUP 1996 /* 1997 * Lookup PCB in hash list, using pcbgroup tables. 1998 */ 1999 static struct inpcb * 2000 in_pcblookup_group(struct inpcbinfo *pcbinfo, struct inpcbgroup *pcbgroup, 2001 struct in_addr faddr, u_int fport_arg, struct in_addr laddr, 2002 u_int lport_arg, int lookupflags, struct ifnet *ifp) 2003 { 2004 struct inpcbhead *head; 2005 struct inpcb *inp, *tmpinp; 2006 u_short fport = fport_arg, lport = lport_arg; 2007 bool locked; 2008 2009 /* 2010 * First look for an exact match. 2011 */ 2012 tmpinp = NULL; 2013 INP_GROUP_LOCK(pcbgroup); 2014 head = &pcbgroup->ipg_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport, 2015 pcbgroup->ipg_hashmask)]; 2016 CK_LIST_FOREACH(inp, head, inp_pcbgrouphash) { 2017 #ifdef INET6 2018 /* XXX inp locking */ 2019 if ((inp->inp_vflag & INP_IPV4) == 0) 2020 continue; 2021 #endif 2022 if (inp->inp_faddr.s_addr == faddr.s_addr && 2023 inp->inp_laddr.s_addr == laddr.s_addr && 2024 inp->inp_fport == fport && 2025 inp->inp_lport == lport) { 2026 /* 2027 * XXX We should be able to directly return 2028 * the inp here, without any checks. 2029 * Well unless both bound with SO_REUSEPORT? 2030 */ 2031 if (prison_flag(inp->inp_cred, PR_IP4)) 2032 goto found; 2033 if (tmpinp == NULL) 2034 tmpinp = inp; 2035 } 2036 } 2037 if (tmpinp != NULL) { 2038 inp = tmpinp; 2039 goto found; 2040 } 2041 2042 #ifdef RSS 2043 /* 2044 * For incoming connections, we may wish to do a wildcard 2045 * match for an RSS-local socket. 2046 */ 2047 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 2048 struct inpcb *local_wild = NULL, *local_exact = NULL; 2049 #ifdef INET6 2050 struct inpcb *local_wild_mapped = NULL; 2051 #endif 2052 struct inpcb *jail_wild = NULL; 2053 struct inpcbhead *head; 2054 int injail; 2055 2056 /* 2057 * Order of socket selection - we always prefer jails. 2058 * 1. jailed, non-wild. 2059 * 2. jailed, wild. 2060 * 3. non-jailed, non-wild. 2061 * 4. non-jailed, wild. 2062 */ 2063 2064 head = &pcbgroup->ipg_hashbase[INP_PCBHASH(INADDR_ANY, 2065 lport, 0, pcbgroup->ipg_hashmask)]; 2066 CK_LIST_FOREACH(inp, head, inp_pcbgrouphash) { 2067 #ifdef INET6 2068 /* XXX inp locking */ 2069 if ((inp->inp_vflag & INP_IPV4) == 0) 2070 continue; 2071 #endif 2072 if (inp->inp_faddr.s_addr != INADDR_ANY || 2073 inp->inp_lport != lport) 2074 continue; 2075 2076 injail = prison_flag(inp->inp_cred, PR_IP4); 2077 if (injail) { 2078 if (prison_check_ip4(inp->inp_cred, 2079 &laddr) != 0) 2080 continue; 2081 } else { 2082 if (local_exact != NULL) 2083 continue; 2084 } 2085 2086 if (inp->inp_laddr.s_addr == laddr.s_addr) { 2087 if (injail) 2088 goto found; 2089 else 2090 local_exact = inp; 2091 } else if (inp->inp_laddr.s_addr == INADDR_ANY) { 2092 #ifdef INET6 2093 /* XXX inp locking, NULL check */ 2094 if (inp->inp_vflag & INP_IPV6PROTO) 2095 local_wild_mapped = inp; 2096 else 2097 #endif 2098 if (injail) 2099 jail_wild = inp; 2100 else 2101 local_wild = inp; 2102 } 2103 } /* LIST_FOREACH */ 2104 2105 inp = jail_wild; 2106 if (inp == NULL) 2107 inp = local_exact; 2108 if (inp == NULL) 2109 inp = local_wild; 2110 #ifdef INET6 2111 if (inp == NULL) 2112 inp = local_wild_mapped; 2113 #endif 2114 if (inp != NULL) 2115 goto found; 2116 } 2117 #endif 2118 2119 /* 2120 * Then look for a wildcard match, if requested. 2121 */ 2122 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 2123 struct inpcb *local_wild = NULL, *local_exact = NULL; 2124 #ifdef INET6 2125 struct inpcb *local_wild_mapped = NULL; 2126 #endif 2127 struct inpcb *jail_wild = NULL; 2128 struct inpcbhead *head; 2129 int injail; 2130 2131 /* 2132 * Order of socket selection - we always prefer jails. 2133 * 1. jailed, non-wild. 2134 * 2. jailed, wild. 2135 * 3. non-jailed, non-wild. 2136 * 4. non-jailed, wild. 2137 */ 2138 head = &pcbinfo->ipi_wildbase[INP_PCBHASH(INADDR_ANY, lport, 2139 0, pcbinfo->ipi_wildmask)]; 2140 CK_LIST_FOREACH(inp, head, inp_pcbgroup_wild) { 2141 #ifdef INET6 2142 /* XXX inp locking */ 2143 if ((inp->inp_vflag & INP_IPV4) == 0) 2144 continue; 2145 #endif 2146 if (inp->inp_faddr.s_addr != INADDR_ANY || 2147 inp->inp_lport != lport) 2148 continue; 2149 2150 injail = prison_flag(inp->inp_cred, PR_IP4); 2151 if (injail) { 2152 if (prison_check_ip4(inp->inp_cred, 2153 &laddr) != 0) 2154 continue; 2155 } else { 2156 if (local_exact != NULL) 2157 continue; 2158 } 2159 2160 if (inp->inp_laddr.s_addr == laddr.s_addr) { 2161 if (injail) 2162 goto found; 2163 else 2164 local_exact = inp; 2165 } else if (inp->inp_laddr.s_addr == INADDR_ANY) { 2166 #ifdef INET6 2167 /* XXX inp locking, NULL check */ 2168 if (inp->inp_vflag & INP_IPV6PROTO) 2169 local_wild_mapped = inp; 2170 else 2171 #endif 2172 if (injail) 2173 jail_wild = inp; 2174 else 2175 local_wild = inp; 2176 } 2177 } /* LIST_FOREACH */ 2178 inp = jail_wild; 2179 if (inp == NULL) 2180 inp = local_exact; 2181 if (inp == NULL) 2182 inp = local_wild; 2183 #ifdef INET6 2184 if (inp == NULL) 2185 inp = local_wild_mapped; 2186 #endif 2187 if (inp != NULL) 2188 goto found; 2189 } /* if (lookupflags & INPLOOKUP_WILDCARD) */ 2190 INP_GROUP_UNLOCK(pcbgroup); 2191 return (NULL); 2192 2193 found: 2194 if (lookupflags & INPLOOKUP_WLOCKPCB) 2195 locked = INP_TRY_WLOCK(inp); 2196 else if (lookupflags & INPLOOKUP_RLOCKPCB) 2197 locked = INP_TRY_RLOCK(inp); 2198 else 2199 panic("%s: locking bug", __func__); 2200 if (__predict_false(locked && (inp->inp_flags2 & INP_FREED))) { 2201 if (lookupflags & INPLOOKUP_WLOCKPCB) 2202 INP_WUNLOCK(inp); 2203 else 2204 INP_RUNLOCK(inp); 2205 return (NULL); 2206 } else if (!locked) 2207 in_pcbref(inp); 2208 INP_GROUP_UNLOCK(pcbgroup); 2209 if (!locked) { 2210 if (lookupflags & INPLOOKUP_WLOCKPCB) { 2211 INP_WLOCK(inp); 2212 if (in_pcbrele_wlocked(inp)) 2213 return (NULL); 2214 } else { 2215 INP_RLOCK(inp); 2216 if (in_pcbrele_rlocked(inp)) 2217 return (NULL); 2218 } 2219 } 2220 #ifdef INVARIANTS 2221 if (lookupflags & INPLOOKUP_WLOCKPCB) 2222 INP_WLOCK_ASSERT(inp); 2223 else 2224 INP_RLOCK_ASSERT(inp); 2225 #endif 2226 return (inp); 2227 } 2228 #endif /* PCBGROUP */ 2229 2230 /* 2231 * Lookup PCB in hash list, using pcbinfo tables. This variation assumes 2232 * that the caller has locked the hash list, and will not perform any further 2233 * locking or reference operations on either the hash list or the connection. 2234 */ 2235 static struct inpcb * 2236 in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2237 u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags, 2238 struct ifnet *ifp) 2239 { 2240 struct inpcbhead *head; 2241 struct inpcb *inp, *tmpinp; 2242 u_short fport = fport_arg, lport = lport_arg; 2243 2244 #ifdef INVARIANTS 2245 KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0, 2246 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2247 if (!mtx_owned(&pcbinfo->ipi_hash_lock)) 2248 MPASS(in_epoch_verbose(net_epoch_preempt, 1)); 2249 #endif 2250 /* 2251 * First look for an exact match. 2252 */ 2253 tmpinp = NULL; 2254 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport, 2255 pcbinfo->ipi_hashmask)]; 2256 CK_LIST_FOREACH(inp, head, inp_hash) { 2257 #ifdef INET6 2258 /* XXX inp locking */ 2259 if ((inp->inp_vflag & INP_IPV4) == 0) 2260 continue; 2261 #endif 2262 if (inp->inp_faddr.s_addr == faddr.s_addr && 2263 inp->inp_laddr.s_addr == laddr.s_addr && 2264 inp->inp_fport == fport && 2265 inp->inp_lport == lport) { 2266 /* 2267 * XXX We should be able to directly return 2268 * the inp here, without any checks. 2269 * Well unless both bound with SO_REUSEPORT? 2270 */ 2271 if (prison_flag(inp->inp_cred, PR_IP4)) 2272 return (inp); 2273 if (tmpinp == NULL) 2274 tmpinp = inp; 2275 } 2276 } 2277 if (tmpinp != NULL) 2278 return (tmpinp); 2279 2280 /* 2281 * Then look in lb group (for wildcard match). 2282 */ 2283 if (pcbinfo->ipi_lbgrouphashbase != NULL && 2284 (lookupflags & INPLOOKUP_WILDCARD)) { 2285 inp = in_pcblookup_lbgroup(pcbinfo, &laddr, lport, &faddr, 2286 fport, lookupflags); 2287 if (inp != NULL) { 2288 return (inp); 2289 } 2290 } 2291 2292 /* 2293 * Then look for a wildcard match, if requested. 2294 */ 2295 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 2296 struct inpcb *local_wild = NULL, *local_exact = NULL; 2297 #ifdef INET6 2298 struct inpcb *local_wild_mapped = NULL; 2299 #endif 2300 struct inpcb *jail_wild = NULL; 2301 int injail; 2302 2303 /* 2304 * Order of socket selection - we always prefer jails. 2305 * 1. jailed, non-wild. 2306 * 2. jailed, wild. 2307 * 3. non-jailed, non-wild. 2308 * 4. non-jailed, wild. 2309 */ 2310 2311 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport, 2312 0, pcbinfo->ipi_hashmask)]; 2313 CK_LIST_FOREACH(inp, head, inp_hash) { 2314 #ifdef INET6 2315 /* XXX inp locking */ 2316 if ((inp->inp_vflag & INP_IPV4) == 0) 2317 continue; 2318 #endif 2319 if (inp->inp_faddr.s_addr != INADDR_ANY || 2320 inp->inp_lport != lport) 2321 continue; 2322 2323 injail = prison_flag(inp->inp_cred, PR_IP4); 2324 if (injail) { 2325 if (prison_check_ip4(inp->inp_cred, 2326 &laddr) != 0) 2327 continue; 2328 } else { 2329 if (local_exact != NULL) 2330 continue; 2331 } 2332 2333 if (inp->inp_laddr.s_addr == laddr.s_addr) { 2334 if (injail) 2335 return (inp); 2336 else 2337 local_exact = inp; 2338 } else if (inp->inp_laddr.s_addr == INADDR_ANY) { 2339 #ifdef INET6 2340 /* XXX inp locking, NULL check */ 2341 if (inp->inp_vflag & INP_IPV6PROTO) 2342 local_wild_mapped = inp; 2343 else 2344 #endif 2345 if (injail) 2346 jail_wild = inp; 2347 else 2348 local_wild = inp; 2349 } 2350 } /* LIST_FOREACH */ 2351 if (jail_wild != NULL) 2352 return (jail_wild); 2353 if (local_exact != NULL) 2354 return (local_exact); 2355 if (local_wild != NULL) 2356 return (local_wild); 2357 #ifdef INET6 2358 if (local_wild_mapped != NULL) 2359 return (local_wild_mapped); 2360 #endif 2361 } /* if ((lookupflags & INPLOOKUP_WILDCARD) != 0) */ 2362 2363 return (NULL); 2364 } 2365 2366 /* 2367 * Lookup PCB in hash list, using pcbinfo tables. This variation locks the 2368 * hash list lock, and will return the inpcb locked (i.e., requires 2369 * INPLOOKUP_LOCKPCB). 2370 */ 2371 static struct inpcb * 2372 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2373 u_int fport, struct in_addr laddr, u_int lport, int lookupflags, 2374 struct ifnet *ifp) 2375 { 2376 struct inpcb *inp; 2377 2378 INP_HASH_RLOCK(pcbinfo); 2379 inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport, 2380 (lookupflags & ~(INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)), ifp); 2381 if (inp != NULL) { 2382 if (lookupflags & INPLOOKUP_WLOCKPCB) { 2383 INP_WLOCK(inp); 2384 if (__predict_false(inp->inp_flags2 & INP_FREED)) { 2385 INP_WUNLOCK(inp); 2386 inp = NULL; 2387 } 2388 } else if (lookupflags & INPLOOKUP_RLOCKPCB) { 2389 INP_RLOCK(inp); 2390 if (__predict_false(inp->inp_flags2 & INP_FREED)) { 2391 INP_RUNLOCK(inp); 2392 inp = NULL; 2393 } 2394 } else 2395 panic("%s: locking bug", __func__); 2396 #ifdef INVARIANTS 2397 if (inp != NULL) { 2398 if (lookupflags & INPLOOKUP_WLOCKPCB) 2399 INP_WLOCK_ASSERT(inp); 2400 else 2401 INP_RLOCK_ASSERT(inp); 2402 } 2403 #endif 2404 } 2405 INP_HASH_RUNLOCK(pcbinfo); 2406 return (inp); 2407 } 2408 2409 /* 2410 * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf 2411 * from which a pre-calculated hash value may be extracted. 2412 * 2413 * Possibly more of this logic should be in in_pcbgroup.c. 2414 */ 2415 struct inpcb * 2416 in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport, 2417 struct in_addr laddr, u_int lport, int lookupflags, struct ifnet *ifp) 2418 { 2419 #if defined(PCBGROUP) && !defined(RSS) 2420 struct inpcbgroup *pcbgroup; 2421 #endif 2422 2423 KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0, 2424 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2425 KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0, 2426 ("%s: LOCKPCB not set", __func__)); 2427 2428 /* 2429 * When not using RSS, use connection groups in preference to the 2430 * reservation table when looking up 4-tuples. When using RSS, just 2431 * use the reservation table, due to the cost of the Toeplitz hash 2432 * in software. 2433 * 2434 * XXXRW: This policy belongs in the pcbgroup code, as in principle 2435 * we could be doing RSS with a non-Toeplitz hash that is affordable 2436 * in software. 2437 */ 2438 #if defined(PCBGROUP) && !defined(RSS) 2439 if (in_pcbgroup_enabled(pcbinfo)) { 2440 pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr, 2441 fport); 2442 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport, 2443 laddr, lport, lookupflags, ifp)); 2444 } 2445 #endif 2446 return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport, 2447 lookupflags, ifp)); 2448 } 2449 2450 struct inpcb * 2451 in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2452 u_int fport, struct in_addr laddr, u_int lport, int lookupflags, 2453 struct ifnet *ifp, struct mbuf *m) 2454 { 2455 #ifdef PCBGROUP 2456 struct inpcbgroup *pcbgroup; 2457 #endif 2458 2459 KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0, 2460 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2461 KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0, 2462 ("%s: LOCKPCB not set", __func__)); 2463 2464 #ifdef PCBGROUP 2465 /* 2466 * If we can use a hardware-generated hash to look up the connection 2467 * group, use that connection group to find the inpcb. Otherwise 2468 * fall back on a software hash -- or the reservation table if we're 2469 * using RSS. 2470 * 2471 * XXXRW: As above, that policy belongs in the pcbgroup code. 2472 */ 2473 if (in_pcbgroup_enabled(pcbinfo) && 2474 !(M_HASHTYPE_TEST(m, M_HASHTYPE_NONE))) { 2475 pcbgroup = in_pcbgroup_byhash(pcbinfo, M_HASHTYPE_GET(m), 2476 m->m_pkthdr.flowid); 2477 if (pcbgroup != NULL) 2478 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, 2479 fport, laddr, lport, lookupflags, ifp)); 2480 #ifndef RSS 2481 pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr, 2482 fport); 2483 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport, 2484 laddr, lport, lookupflags, ifp)); 2485 #endif 2486 } 2487 #endif 2488 return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport, 2489 lookupflags, ifp)); 2490 } 2491 #endif /* INET */ 2492 2493 /* 2494 * Insert PCB onto various hash lists. 2495 */ 2496 static int 2497 in_pcbinshash_internal(struct inpcb *inp, int do_pcbgroup_update) 2498 { 2499 struct inpcbhead *pcbhash; 2500 struct inpcbporthead *pcbporthash; 2501 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2502 struct inpcbport *phd; 2503 u_int32_t hashkey_faddr; 2504 int so_options; 2505 2506 INP_WLOCK_ASSERT(inp); 2507 INP_HASH_WLOCK_ASSERT(pcbinfo); 2508 2509 KASSERT((inp->inp_flags & INP_INHASHLIST) == 0, 2510 ("in_pcbinshash: INP_INHASHLIST")); 2511 2512 #ifdef INET6 2513 if (inp->inp_vflag & INP_IPV6) 2514 hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr); 2515 else 2516 #endif 2517 hashkey_faddr = inp->inp_faddr.s_addr; 2518 2519 pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr, 2520 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 2521 2522 pcbporthash = &pcbinfo->ipi_porthashbase[ 2523 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)]; 2524 2525 /* 2526 * Add entry to load balance group. 2527 * Only do this if SO_REUSEPORT_LB is set. 2528 */ 2529 so_options = inp_so_options(inp); 2530 if (so_options & SO_REUSEPORT_LB) { 2531 int ret = in_pcbinslbgrouphash(inp); 2532 if (ret) { 2533 /* pcb lb group malloc fail (ret=ENOBUFS). */ 2534 return (ret); 2535 } 2536 } 2537 2538 /* 2539 * Go through port list and look for a head for this lport. 2540 */ 2541 CK_LIST_FOREACH(phd, pcbporthash, phd_hash) { 2542 if (phd->phd_port == inp->inp_lport) 2543 break; 2544 } 2545 /* 2546 * If none exists, malloc one and tack it on. 2547 */ 2548 if (phd == NULL) { 2549 phd = malloc(sizeof(struct inpcbport), M_PCB, M_NOWAIT); 2550 if (phd == NULL) { 2551 return (ENOBUFS); /* XXX */ 2552 } 2553 bzero(&phd->phd_epoch_ctx, sizeof(struct epoch_context)); 2554 phd->phd_port = inp->inp_lport; 2555 CK_LIST_INIT(&phd->phd_pcblist); 2556 CK_LIST_INSERT_HEAD(pcbporthash, phd, phd_hash); 2557 } 2558 inp->inp_phd = phd; 2559 CK_LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist); 2560 CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash); 2561 inp->inp_flags |= INP_INHASHLIST; 2562 #ifdef PCBGROUP 2563 if (do_pcbgroup_update) 2564 in_pcbgroup_update(inp); 2565 #endif 2566 return (0); 2567 } 2568 2569 /* 2570 * For now, there are two public interfaces to insert an inpcb into the hash 2571 * lists -- one that does update pcbgroups, and one that doesn't. The latter 2572 * is used only in the TCP syncache, where in_pcbinshash is called before the 2573 * full 4-tuple is set for the inpcb, and we don't want to install in the 2574 * pcbgroup until later. 2575 * 2576 * XXXRW: This seems like a misfeature. in_pcbinshash should always update 2577 * connection groups, and partially initialised inpcbs should not be exposed 2578 * to either reservation hash tables or pcbgroups. 2579 */ 2580 int 2581 in_pcbinshash(struct inpcb *inp) 2582 { 2583 2584 return (in_pcbinshash_internal(inp, 1)); 2585 } 2586 2587 int 2588 in_pcbinshash_nopcbgroup(struct inpcb *inp) 2589 { 2590 2591 return (in_pcbinshash_internal(inp, 0)); 2592 } 2593 2594 /* 2595 * Move PCB to the proper hash bucket when { faddr, fport } have been 2596 * changed. NOTE: This does not handle the case of the lport changing (the 2597 * hashed port list would have to be updated as well), so the lport must 2598 * not change after in_pcbinshash() has been called. 2599 */ 2600 void 2601 in_pcbrehash_mbuf(struct inpcb *inp, struct mbuf *m) 2602 { 2603 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2604 struct inpcbhead *head; 2605 u_int32_t hashkey_faddr; 2606 2607 INP_WLOCK_ASSERT(inp); 2608 INP_HASH_WLOCK_ASSERT(pcbinfo); 2609 2610 KASSERT(inp->inp_flags & INP_INHASHLIST, 2611 ("in_pcbrehash: !INP_INHASHLIST")); 2612 2613 #ifdef INET6 2614 if (inp->inp_vflag & INP_IPV6) 2615 hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr); 2616 else 2617 #endif 2618 hashkey_faddr = inp->inp_faddr.s_addr; 2619 2620 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr, 2621 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 2622 2623 CK_LIST_REMOVE(inp, inp_hash); 2624 CK_LIST_INSERT_HEAD(head, inp, inp_hash); 2625 2626 #ifdef PCBGROUP 2627 if (m != NULL) 2628 in_pcbgroup_update_mbuf(inp, m); 2629 else 2630 in_pcbgroup_update(inp); 2631 #endif 2632 } 2633 2634 void 2635 in_pcbrehash(struct inpcb *inp) 2636 { 2637 2638 in_pcbrehash_mbuf(inp, NULL); 2639 } 2640 2641 /* 2642 * Remove PCB from various lists. 2643 */ 2644 static void 2645 in_pcbremlists(struct inpcb *inp) 2646 { 2647 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2648 2649 #ifdef INVARIANTS 2650 if (pcbinfo == &V_tcbinfo) { 2651 INP_INFO_RLOCK_ASSERT(pcbinfo); 2652 } else { 2653 INP_INFO_WLOCK_ASSERT(pcbinfo); 2654 } 2655 #endif 2656 2657 INP_WLOCK_ASSERT(inp); 2658 INP_LIST_WLOCK_ASSERT(pcbinfo); 2659 2660 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 2661 if (inp->inp_flags & INP_INHASHLIST) { 2662 struct inpcbport *phd = inp->inp_phd; 2663 2664 INP_HASH_WLOCK(pcbinfo); 2665 2666 /* XXX: Only do if SO_REUSEPORT_LB set? */ 2667 in_pcbremlbgrouphash(inp); 2668 2669 CK_LIST_REMOVE(inp, inp_hash); 2670 CK_LIST_REMOVE(inp, inp_portlist); 2671 if (CK_LIST_FIRST(&phd->phd_pcblist) == NULL) { 2672 CK_LIST_REMOVE(phd, phd_hash); 2673 epoch_call(net_epoch_preempt, &phd->phd_epoch_ctx, inpcbport_free); 2674 } 2675 INP_HASH_WUNLOCK(pcbinfo); 2676 inp->inp_flags &= ~INP_INHASHLIST; 2677 } 2678 CK_LIST_REMOVE(inp, inp_list); 2679 pcbinfo->ipi_count--; 2680 #ifdef PCBGROUP 2681 in_pcbgroup_remove(inp); 2682 #endif 2683 } 2684 2685 /* 2686 * Check for alternatives when higher level complains 2687 * about service problems. For now, invalidate cached 2688 * routing information. If the route was created dynamically 2689 * (by a redirect), time to try a default gateway again. 2690 */ 2691 void 2692 in_losing(struct inpcb *inp) 2693 { 2694 2695 RO_INVALIDATE_CACHE(&inp->inp_route); 2696 return; 2697 } 2698 2699 /* 2700 * A set label operation has occurred at the socket layer, propagate the 2701 * label change into the in_pcb for the socket. 2702 */ 2703 void 2704 in_pcbsosetlabel(struct socket *so) 2705 { 2706 #ifdef MAC 2707 struct inpcb *inp; 2708 2709 inp = sotoinpcb(so); 2710 KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL")); 2711 2712 INP_WLOCK(inp); 2713 SOCK_LOCK(so); 2714 mac_inpcb_sosetlabel(so, inp); 2715 SOCK_UNLOCK(so); 2716 INP_WUNLOCK(inp); 2717 #endif 2718 } 2719 2720 /* 2721 * ipport_tick runs once per second, determining if random port allocation 2722 * should be continued. If more than ipport_randomcps ports have been 2723 * allocated in the last second, then we return to sequential port 2724 * allocation. We return to random allocation only once we drop below 2725 * ipport_randomcps for at least ipport_randomtime seconds. 2726 */ 2727 static void 2728 ipport_tick(void *xtp) 2729 { 2730 VNET_ITERATOR_DECL(vnet_iter); 2731 2732 VNET_LIST_RLOCK_NOSLEEP(); 2733 VNET_FOREACH(vnet_iter) { 2734 CURVNET_SET(vnet_iter); /* XXX appease INVARIANTS here */ 2735 if (V_ipport_tcpallocs <= 2736 V_ipport_tcplastcount + V_ipport_randomcps) { 2737 if (V_ipport_stoprandom > 0) 2738 V_ipport_stoprandom--; 2739 } else 2740 V_ipport_stoprandom = V_ipport_randomtime; 2741 V_ipport_tcplastcount = V_ipport_tcpallocs; 2742 CURVNET_RESTORE(); 2743 } 2744 VNET_LIST_RUNLOCK_NOSLEEP(); 2745 callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL); 2746 } 2747 2748 static void 2749 ip_fini(void *xtp) 2750 { 2751 2752 callout_stop(&ipport_tick_callout); 2753 } 2754 2755 /* 2756 * The ipport_callout should start running at about the time we attach the 2757 * inet or inet6 domains. 2758 */ 2759 static void 2760 ipport_tick_init(const void *unused __unused) 2761 { 2762 2763 /* Start ipport_tick. */ 2764 callout_init(&ipport_tick_callout, 1); 2765 callout_reset(&ipport_tick_callout, 1, ipport_tick, NULL); 2766 EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL, 2767 SHUTDOWN_PRI_DEFAULT); 2768 } 2769 SYSINIT(ipport_tick_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_MIDDLE, 2770 ipport_tick_init, NULL); 2771 2772 void 2773 inp_wlock(struct inpcb *inp) 2774 { 2775 2776 INP_WLOCK(inp); 2777 } 2778 2779 void 2780 inp_wunlock(struct inpcb *inp) 2781 { 2782 2783 INP_WUNLOCK(inp); 2784 } 2785 2786 void 2787 inp_rlock(struct inpcb *inp) 2788 { 2789 2790 INP_RLOCK(inp); 2791 } 2792 2793 void 2794 inp_runlock(struct inpcb *inp) 2795 { 2796 2797 INP_RUNLOCK(inp); 2798 } 2799 2800 #ifdef INVARIANT_SUPPORT 2801 void 2802 inp_lock_assert(struct inpcb *inp) 2803 { 2804 2805 INP_WLOCK_ASSERT(inp); 2806 } 2807 2808 void 2809 inp_unlock_assert(struct inpcb *inp) 2810 { 2811 2812 INP_UNLOCK_ASSERT(inp); 2813 } 2814 #endif 2815 2816 void 2817 inp_apply_all(void (*func)(struct inpcb *, void *), void *arg) 2818 { 2819 struct inpcb *inp; 2820 2821 INP_INFO_WLOCK(&V_tcbinfo); 2822 CK_LIST_FOREACH(inp, V_tcbinfo.ipi_listhead, inp_list) { 2823 INP_WLOCK(inp); 2824 func(inp, arg); 2825 INP_WUNLOCK(inp); 2826 } 2827 INP_INFO_WUNLOCK(&V_tcbinfo); 2828 } 2829 2830 struct socket * 2831 inp_inpcbtosocket(struct inpcb *inp) 2832 { 2833 2834 INP_WLOCK_ASSERT(inp); 2835 return (inp->inp_socket); 2836 } 2837 2838 struct tcpcb * 2839 inp_inpcbtotcpcb(struct inpcb *inp) 2840 { 2841 2842 INP_WLOCK_ASSERT(inp); 2843 return ((struct tcpcb *)inp->inp_ppcb); 2844 } 2845 2846 int 2847 inp_ip_tos_get(const struct inpcb *inp) 2848 { 2849 2850 return (inp->inp_ip_tos); 2851 } 2852 2853 void 2854 inp_ip_tos_set(struct inpcb *inp, int val) 2855 { 2856 2857 inp->inp_ip_tos = val; 2858 } 2859 2860 void 2861 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp, 2862 uint32_t *faddr, uint16_t *fp) 2863 { 2864 2865 INP_LOCK_ASSERT(inp); 2866 *laddr = inp->inp_laddr.s_addr; 2867 *faddr = inp->inp_faddr.s_addr; 2868 *lp = inp->inp_lport; 2869 *fp = inp->inp_fport; 2870 } 2871 2872 struct inpcb * 2873 so_sotoinpcb(struct socket *so) 2874 { 2875 2876 return (sotoinpcb(so)); 2877 } 2878 2879 struct tcpcb * 2880 so_sototcpcb(struct socket *so) 2881 { 2882 2883 return (sototcpcb(so)); 2884 } 2885 2886 /* 2887 * Create an external-format (``xinpcb'') structure using the information in 2888 * the kernel-format in_pcb structure pointed to by inp. This is done to 2889 * reduce the spew of irrelevant information over this interface, to isolate 2890 * user code from changes in the kernel structure, and potentially to provide 2891 * information-hiding if we decide that some of this information should be 2892 * hidden from users. 2893 */ 2894 void 2895 in_pcbtoxinpcb(const struct inpcb *inp, struct xinpcb *xi) 2896 { 2897 2898 xi->xi_len = sizeof(struct xinpcb); 2899 if (inp->inp_socket) 2900 sotoxsocket(inp->inp_socket, &xi->xi_socket); 2901 else 2902 bzero(&xi->xi_socket, sizeof(struct xsocket)); 2903 bcopy(&inp->inp_inc, &xi->inp_inc, sizeof(struct in_conninfo)); 2904 xi->inp_gencnt = inp->inp_gencnt; 2905 xi->inp_ppcb = (uintptr_t)inp->inp_ppcb; 2906 xi->inp_flow = inp->inp_flow; 2907 xi->inp_flowid = inp->inp_flowid; 2908 xi->inp_flowtype = inp->inp_flowtype; 2909 xi->inp_flags = inp->inp_flags; 2910 xi->inp_flags2 = inp->inp_flags2; 2911 xi->inp_rss_listen_bucket = inp->inp_rss_listen_bucket; 2912 xi->in6p_cksum = inp->in6p_cksum; 2913 xi->in6p_hops = inp->in6p_hops; 2914 xi->inp_ip_tos = inp->inp_ip_tos; 2915 xi->inp_vflag = inp->inp_vflag; 2916 xi->inp_ip_ttl = inp->inp_ip_ttl; 2917 xi->inp_ip_p = inp->inp_ip_p; 2918 xi->inp_ip_minttl = inp->inp_ip_minttl; 2919 } 2920 2921 #ifdef DDB 2922 static void 2923 db_print_indent(int indent) 2924 { 2925 int i; 2926 2927 for (i = 0; i < indent; i++) 2928 db_printf(" "); 2929 } 2930 2931 static void 2932 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent) 2933 { 2934 char faddr_str[48], laddr_str[48]; 2935 2936 db_print_indent(indent); 2937 db_printf("%s at %p\n", name, inc); 2938 2939 indent += 2; 2940 2941 #ifdef INET6 2942 if (inc->inc_flags & INC_ISIPV6) { 2943 /* IPv6. */ 2944 ip6_sprintf(laddr_str, &inc->inc6_laddr); 2945 ip6_sprintf(faddr_str, &inc->inc6_faddr); 2946 } else 2947 #endif 2948 { 2949 /* IPv4. */ 2950 inet_ntoa_r(inc->inc_laddr, laddr_str); 2951 inet_ntoa_r(inc->inc_faddr, faddr_str); 2952 } 2953 db_print_indent(indent); 2954 db_printf("inc_laddr %s inc_lport %u\n", laddr_str, 2955 ntohs(inc->inc_lport)); 2956 db_print_indent(indent); 2957 db_printf("inc_faddr %s inc_fport %u\n", faddr_str, 2958 ntohs(inc->inc_fport)); 2959 } 2960 2961 static void 2962 db_print_inpflags(int inp_flags) 2963 { 2964 int comma; 2965 2966 comma = 0; 2967 if (inp_flags & INP_RECVOPTS) { 2968 db_printf("%sINP_RECVOPTS", comma ? ", " : ""); 2969 comma = 1; 2970 } 2971 if (inp_flags & INP_RECVRETOPTS) { 2972 db_printf("%sINP_RECVRETOPTS", comma ? ", " : ""); 2973 comma = 1; 2974 } 2975 if (inp_flags & INP_RECVDSTADDR) { 2976 db_printf("%sINP_RECVDSTADDR", comma ? ", " : ""); 2977 comma = 1; 2978 } 2979 if (inp_flags & INP_ORIGDSTADDR) { 2980 db_printf("%sINP_ORIGDSTADDR", comma ? ", " : ""); 2981 comma = 1; 2982 } 2983 if (inp_flags & INP_HDRINCL) { 2984 db_printf("%sINP_HDRINCL", comma ? ", " : ""); 2985 comma = 1; 2986 } 2987 if (inp_flags & INP_HIGHPORT) { 2988 db_printf("%sINP_HIGHPORT", comma ? ", " : ""); 2989 comma = 1; 2990 } 2991 if (inp_flags & INP_LOWPORT) { 2992 db_printf("%sINP_LOWPORT", comma ? ", " : ""); 2993 comma = 1; 2994 } 2995 if (inp_flags & INP_ANONPORT) { 2996 db_printf("%sINP_ANONPORT", comma ? ", " : ""); 2997 comma = 1; 2998 } 2999 if (inp_flags & INP_RECVIF) { 3000 db_printf("%sINP_RECVIF", comma ? ", " : ""); 3001 comma = 1; 3002 } 3003 if (inp_flags & INP_MTUDISC) { 3004 db_printf("%sINP_MTUDISC", comma ? ", " : ""); 3005 comma = 1; 3006 } 3007 if (inp_flags & INP_RECVTTL) { 3008 db_printf("%sINP_RECVTTL", comma ? ", " : ""); 3009 comma = 1; 3010 } 3011 if (inp_flags & INP_DONTFRAG) { 3012 db_printf("%sINP_DONTFRAG", comma ? ", " : ""); 3013 comma = 1; 3014 } 3015 if (inp_flags & INP_RECVTOS) { 3016 db_printf("%sINP_RECVTOS", comma ? ", " : ""); 3017 comma = 1; 3018 } 3019 if (inp_flags & IN6P_IPV6_V6ONLY) { 3020 db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : ""); 3021 comma = 1; 3022 } 3023 if (inp_flags & IN6P_PKTINFO) { 3024 db_printf("%sIN6P_PKTINFO", comma ? ", " : ""); 3025 comma = 1; 3026 } 3027 if (inp_flags & IN6P_HOPLIMIT) { 3028 db_printf("%sIN6P_HOPLIMIT", comma ? ", " : ""); 3029 comma = 1; 3030 } 3031 if (inp_flags & IN6P_HOPOPTS) { 3032 db_printf("%sIN6P_HOPOPTS", comma ? ", " : ""); 3033 comma = 1; 3034 } 3035 if (inp_flags & IN6P_DSTOPTS) { 3036 db_printf("%sIN6P_DSTOPTS", comma ? ", " : ""); 3037 comma = 1; 3038 } 3039 if (inp_flags & IN6P_RTHDR) { 3040 db_printf("%sIN6P_RTHDR", comma ? ", " : ""); 3041 comma = 1; 3042 } 3043 if (inp_flags & IN6P_RTHDRDSTOPTS) { 3044 db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : ""); 3045 comma = 1; 3046 } 3047 if (inp_flags & IN6P_TCLASS) { 3048 db_printf("%sIN6P_TCLASS", comma ? ", " : ""); 3049 comma = 1; 3050 } 3051 if (inp_flags & IN6P_AUTOFLOWLABEL) { 3052 db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : ""); 3053 comma = 1; 3054 } 3055 if (inp_flags & INP_TIMEWAIT) { 3056 db_printf("%sINP_TIMEWAIT", comma ? ", " : ""); 3057 comma = 1; 3058 } 3059 if (inp_flags & INP_ONESBCAST) { 3060 db_printf("%sINP_ONESBCAST", comma ? ", " : ""); 3061 comma = 1; 3062 } 3063 if (inp_flags & INP_DROPPED) { 3064 db_printf("%sINP_DROPPED", comma ? ", " : ""); 3065 comma = 1; 3066 } 3067 if (inp_flags & INP_SOCKREF) { 3068 db_printf("%sINP_SOCKREF", comma ? ", " : ""); 3069 comma = 1; 3070 } 3071 if (inp_flags & IN6P_RFC2292) { 3072 db_printf("%sIN6P_RFC2292", comma ? ", " : ""); 3073 comma = 1; 3074 } 3075 if (inp_flags & IN6P_MTU) { 3076 db_printf("IN6P_MTU%s", comma ? ", " : ""); 3077 comma = 1; 3078 } 3079 } 3080 3081 static void 3082 db_print_inpvflag(u_char inp_vflag) 3083 { 3084 int comma; 3085 3086 comma = 0; 3087 if (inp_vflag & INP_IPV4) { 3088 db_printf("%sINP_IPV4", comma ? ", " : ""); 3089 comma = 1; 3090 } 3091 if (inp_vflag & INP_IPV6) { 3092 db_printf("%sINP_IPV6", comma ? ", " : ""); 3093 comma = 1; 3094 } 3095 if (inp_vflag & INP_IPV6PROTO) { 3096 db_printf("%sINP_IPV6PROTO", comma ? ", " : ""); 3097 comma = 1; 3098 } 3099 } 3100 3101 static void 3102 db_print_inpcb(struct inpcb *inp, const char *name, int indent) 3103 { 3104 3105 db_print_indent(indent); 3106 db_printf("%s at %p\n", name, inp); 3107 3108 indent += 2; 3109 3110 db_print_indent(indent); 3111 db_printf("inp_flow: 0x%x\n", inp->inp_flow); 3112 3113 db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent); 3114 3115 db_print_indent(indent); 3116 db_printf("inp_ppcb: %p inp_pcbinfo: %p inp_socket: %p\n", 3117 inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket); 3118 3119 db_print_indent(indent); 3120 db_printf("inp_label: %p inp_flags: 0x%x (", 3121 inp->inp_label, inp->inp_flags); 3122 db_print_inpflags(inp->inp_flags); 3123 db_printf(")\n"); 3124 3125 db_print_indent(indent); 3126 db_printf("inp_sp: %p inp_vflag: 0x%x (", inp->inp_sp, 3127 inp->inp_vflag); 3128 db_print_inpvflag(inp->inp_vflag); 3129 db_printf(")\n"); 3130 3131 db_print_indent(indent); 3132 db_printf("inp_ip_ttl: %d inp_ip_p: %d inp_ip_minttl: %d\n", 3133 inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl); 3134 3135 db_print_indent(indent); 3136 #ifdef INET6 3137 if (inp->inp_vflag & INP_IPV6) { 3138 db_printf("in6p_options: %p in6p_outputopts: %p " 3139 "in6p_moptions: %p\n", inp->in6p_options, 3140 inp->in6p_outputopts, inp->in6p_moptions); 3141 db_printf("in6p_icmp6filt: %p in6p_cksum %d " 3142 "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum, 3143 inp->in6p_hops); 3144 } else 3145 #endif 3146 { 3147 db_printf("inp_ip_tos: %d inp_ip_options: %p " 3148 "inp_ip_moptions: %p\n", inp->inp_ip_tos, 3149 inp->inp_options, inp->inp_moptions); 3150 } 3151 3152 db_print_indent(indent); 3153 db_printf("inp_phd: %p inp_gencnt: %ju\n", inp->inp_phd, 3154 (uintmax_t)inp->inp_gencnt); 3155 } 3156 3157 DB_SHOW_COMMAND(inpcb, db_show_inpcb) 3158 { 3159 struct inpcb *inp; 3160 3161 if (!have_addr) { 3162 db_printf("usage: show inpcb <addr>\n"); 3163 return; 3164 } 3165 inp = (struct inpcb *)addr; 3166 3167 db_print_inpcb(inp, "inpcb", 0); 3168 } 3169 #endif /* DDB */ 3170 3171 #ifdef RATELIMIT 3172 /* 3173 * Modify TX rate limit based on the existing "inp->inp_snd_tag", 3174 * if any. 3175 */ 3176 int 3177 in_pcbmodify_txrtlmt(struct inpcb *inp, uint32_t max_pacing_rate) 3178 { 3179 union if_snd_tag_modify_params params = { 3180 .rate_limit.max_rate = max_pacing_rate, 3181 }; 3182 struct m_snd_tag *mst; 3183 struct ifnet *ifp; 3184 int error; 3185 3186 mst = inp->inp_snd_tag; 3187 if (mst == NULL) 3188 return (EINVAL); 3189 3190 ifp = mst->ifp; 3191 if (ifp == NULL) 3192 return (EINVAL); 3193 3194 if (ifp->if_snd_tag_modify == NULL) { 3195 error = EOPNOTSUPP; 3196 } else { 3197 error = ifp->if_snd_tag_modify(mst, ¶ms); 3198 } 3199 return (error); 3200 } 3201 3202 /* 3203 * Query existing TX rate limit based on the existing 3204 * "inp->inp_snd_tag", if any. 3205 */ 3206 int 3207 in_pcbquery_txrtlmt(struct inpcb *inp, uint32_t *p_max_pacing_rate) 3208 { 3209 union if_snd_tag_query_params params = { }; 3210 struct m_snd_tag *mst; 3211 struct ifnet *ifp; 3212 int error; 3213 3214 mst = inp->inp_snd_tag; 3215 if (mst == NULL) 3216 return (EINVAL); 3217 3218 ifp = mst->ifp; 3219 if (ifp == NULL) 3220 return (EINVAL); 3221 3222 if (ifp->if_snd_tag_query == NULL) { 3223 error = EOPNOTSUPP; 3224 } else { 3225 error = ifp->if_snd_tag_query(mst, ¶ms); 3226 if (error == 0 && p_max_pacing_rate != NULL) 3227 *p_max_pacing_rate = params.rate_limit.max_rate; 3228 } 3229 return (error); 3230 } 3231 3232 /* 3233 * Query existing TX queue level based on the existing 3234 * "inp->inp_snd_tag", if any. 3235 */ 3236 int 3237 in_pcbquery_txrlevel(struct inpcb *inp, uint32_t *p_txqueue_level) 3238 { 3239 union if_snd_tag_query_params params = { }; 3240 struct m_snd_tag *mst; 3241 struct ifnet *ifp; 3242 int error; 3243 3244 mst = inp->inp_snd_tag; 3245 if (mst == NULL) 3246 return (EINVAL); 3247 3248 ifp = mst->ifp; 3249 if (ifp == NULL) 3250 return (EINVAL); 3251 3252 if (ifp->if_snd_tag_query == NULL) 3253 return (EOPNOTSUPP); 3254 3255 error = ifp->if_snd_tag_query(mst, ¶ms); 3256 if (error == 0 && p_txqueue_level != NULL) 3257 *p_txqueue_level = params.rate_limit.queue_level; 3258 return (error); 3259 } 3260 3261 /* 3262 * Allocate a new TX rate limit send tag from the network interface 3263 * given by the "ifp" argument and save it in "inp->inp_snd_tag": 3264 */ 3265 int 3266 in_pcbattach_txrtlmt(struct inpcb *inp, struct ifnet *ifp, 3267 uint32_t flowtype, uint32_t flowid, uint32_t max_pacing_rate) 3268 { 3269 union if_snd_tag_alloc_params params = { 3270 .rate_limit.hdr.type = (max_pacing_rate == -1U) ? 3271 IF_SND_TAG_TYPE_UNLIMITED : IF_SND_TAG_TYPE_RATE_LIMIT, 3272 .rate_limit.hdr.flowid = flowid, 3273 .rate_limit.hdr.flowtype = flowtype, 3274 .rate_limit.max_rate = max_pacing_rate, 3275 }; 3276 int error; 3277 3278 INP_WLOCK_ASSERT(inp); 3279 3280 if (inp->inp_snd_tag != NULL) 3281 return (EINVAL); 3282 3283 if (ifp->if_snd_tag_alloc == NULL) { 3284 error = EOPNOTSUPP; 3285 } else { 3286 error = ifp->if_snd_tag_alloc(ifp, ¶ms, &inp->inp_snd_tag); 3287 3288 /* 3289 * At success increment the refcount on 3290 * the send tag's network interface: 3291 */ 3292 if (error == 0) 3293 if_ref(inp->inp_snd_tag->ifp); 3294 } 3295 return (error); 3296 } 3297 3298 /* 3299 * Free an existing TX rate limit tag based on the "inp->inp_snd_tag", 3300 * if any: 3301 */ 3302 void 3303 in_pcbdetach_txrtlmt(struct inpcb *inp) 3304 { 3305 struct m_snd_tag *mst; 3306 struct ifnet *ifp; 3307 3308 INP_WLOCK_ASSERT(inp); 3309 3310 mst = inp->inp_snd_tag; 3311 inp->inp_snd_tag = NULL; 3312 3313 if (mst == NULL) 3314 return; 3315 3316 ifp = mst->ifp; 3317 if (ifp == NULL) 3318 return; 3319 3320 /* 3321 * If the device was detached while we still had reference(s) 3322 * on the ifp, we assume if_snd_tag_free() was replaced with 3323 * stubs. 3324 */ 3325 ifp->if_snd_tag_free(mst); 3326 3327 /* release reference count on network interface */ 3328 if_rele(ifp); 3329 } 3330 3331 /* 3332 * This function should be called when the INP_RATE_LIMIT_CHANGED flag 3333 * is set in the fast path and will attach/detach/modify the TX rate 3334 * limit send tag based on the socket's so_max_pacing_rate value. 3335 */ 3336 void 3337 in_pcboutput_txrtlmt(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb) 3338 { 3339 struct socket *socket; 3340 uint32_t max_pacing_rate; 3341 bool did_upgrade; 3342 int error; 3343 3344 if (inp == NULL) 3345 return; 3346 3347 socket = inp->inp_socket; 3348 if (socket == NULL) 3349 return; 3350 3351 if (!INP_WLOCKED(inp)) { 3352 /* 3353 * NOTE: If the write locking fails, we need to bail 3354 * out and use the non-ratelimited ring for the 3355 * transmit until there is a new chance to get the 3356 * write lock. 3357 */ 3358 if (!INP_TRY_UPGRADE(inp)) 3359 return; 3360 did_upgrade = 1; 3361 } else { 3362 did_upgrade = 0; 3363 } 3364 3365 /* 3366 * NOTE: The so_max_pacing_rate value is read unlocked, 3367 * because atomic updates are not required since the variable 3368 * is checked at every mbuf we send. It is assumed that the 3369 * variable read itself will be atomic. 3370 */ 3371 max_pacing_rate = socket->so_max_pacing_rate; 3372 3373 /* 3374 * NOTE: When attaching to a network interface a reference is 3375 * made to ensure the network interface doesn't go away until 3376 * all ratelimit connections are gone. The network interface 3377 * pointers compared below represent valid network interfaces, 3378 * except when comparing towards NULL. 3379 */ 3380 if (max_pacing_rate == 0 && inp->inp_snd_tag == NULL) { 3381 error = 0; 3382 } else if (!(ifp->if_capenable & IFCAP_TXRTLMT)) { 3383 if (inp->inp_snd_tag != NULL) 3384 in_pcbdetach_txrtlmt(inp); 3385 error = 0; 3386 } else if (inp->inp_snd_tag == NULL) { 3387 /* 3388 * In order to utilize packet pacing with RSS, we need 3389 * to wait until there is a valid RSS hash before we 3390 * can proceed: 3391 */ 3392 if (M_HASHTYPE_GET(mb) == M_HASHTYPE_NONE) { 3393 error = EAGAIN; 3394 } else { 3395 error = in_pcbattach_txrtlmt(inp, ifp, M_HASHTYPE_GET(mb), 3396 mb->m_pkthdr.flowid, max_pacing_rate); 3397 } 3398 } else { 3399 error = in_pcbmodify_txrtlmt(inp, max_pacing_rate); 3400 } 3401 if (error == 0 || error == EOPNOTSUPP) 3402 inp->inp_flags2 &= ~INP_RATE_LIMIT_CHANGED; 3403 if (did_upgrade) 3404 INP_DOWNGRADE(inp); 3405 } 3406 3407 /* 3408 * Track route changes for TX rate limiting. 3409 */ 3410 void 3411 in_pcboutput_eagain(struct inpcb *inp) 3412 { 3413 struct socket *socket; 3414 bool did_upgrade; 3415 3416 if (inp == NULL) 3417 return; 3418 3419 socket = inp->inp_socket; 3420 if (socket == NULL) 3421 return; 3422 3423 if (inp->inp_snd_tag == NULL) 3424 return; 3425 3426 if (!INP_WLOCKED(inp)) { 3427 /* 3428 * NOTE: If the write locking fails, we need to bail 3429 * out and use the non-ratelimited ring for the 3430 * transmit until there is a new chance to get the 3431 * write lock. 3432 */ 3433 if (!INP_TRY_UPGRADE(inp)) 3434 return; 3435 did_upgrade = 1; 3436 } else { 3437 did_upgrade = 0; 3438 } 3439 3440 /* detach rate limiting */ 3441 in_pcbdetach_txrtlmt(inp); 3442 3443 /* make sure new mbuf send tag allocation is made */ 3444 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 3445 3446 if (did_upgrade) 3447 INP_DOWNGRADE(inp); 3448 } 3449 #endif /* RATELIMIT */ 3450