xref: /freebsd/sys/netinet/in_pcb.c (revision eb81f38a62c9ae246955feceedb8c043e78f871f)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1991, 1993, 1995
5  *	The Regents of the University of California.
6  * Copyright (c) 2007-2009 Robert N. M. Watson
7  * Copyright (c) 2010-2011 Juniper Networks, Inc.
8  * All rights reserved.
9  *
10  * Portions of this software were developed by Robert N. M. Watson under
11  * contract to Juniper Networks, Inc.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  *	@(#)in_pcb.c	8.4 (Berkeley) 5/24/95
38  */
39 
40 #include <sys/cdefs.h>
41 __FBSDID("$FreeBSD$");
42 
43 #include "opt_ddb.h"
44 #include "opt_ipsec.h"
45 #include "opt_inet.h"
46 #include "opt_inet6.h"
47 #include "opt_ratelimit.h"
48 #include "opt_pcbgroup.h"
49 #include "opt_rss.h"
50 
51 #include <sys/param.h>
52 #include <sys/systm.h>
53 #include <sys/lock.h>
54 #include <sys/malloc.h>
55 #include <sys/mbuf.h>
56 #include <sys/callout.h>
57 #include <sys/eventhandler.h>
58 #include <sys/domain.h>
59 #include <sys/protosw.h>
60 #include <sys/rmlock.h>
61 #include <sys/smp.h>
62 #include <sys/socket.h>
63 #include <sys/socketvar.h>
64 #include <sys/sockio.h>
65 #include <sys/priv.h>
66 #include <sys/proc.h>
67 #include <sys/refcount.h>
68 #include <sys/jail.h>
69 #include <sys/kernel.h>
70 #include <sys/sysctl.h>
71 
72 #ifdef DDB
73 #include <ddb/ddb.h>
74 #endif
75 
76 #include <vm/uma.h>
77 
78 #include <net/if.h>
79 #include <net/if_var.h>
80 #include <net/if_types.h>
81 #include <net/if_llatbl.h>
82 #include <net/route.h>
83 #include <net/rss_config.h>
84 #include <net/vnet.h>
85 
86 #if defined(INET) || defined(INET6)
87 #include <netinet/in.h>
88 #include <netinet/in_pcb.h>
89 #include <netinet/ip_var.h>
90 #include <netinet/tcp_var.h>
91 #ifdef TCPHPTS
92 #include <netinet/tcp_hpts.h>
93 #endif
94 #include <netinet/udp.h>
95 #include <netinet/udp_var.h>
96 #endif
97 #ifdef INET
98 #include <netinet/in_var.h>
99 #endif
100 #ifdef INET6
101 #include <netinet/ip6.h>
102 #include <netinet6/in6_pcb.h>
103 #include <netinet6/in6_var.h>
104 #include <netinet6/ip6_var.h>
105 #endif /* INET6 */
106 
107 #include <netipsec/ipsec_support.h>
108 
109 #include <security/mac/mac_framework.h>
110 
111 #define	INPCBLBGROUP_SIZMIN	8
112 #define	INPCBLBGROUP_SIZMAX	256
113 
114 static struct callout	ipport_tick_callout;
115 
116 /*
117  * These configure the range of local port addresses assigned to
118  * "unspecified" outgoing connections/packets/whatever.
119  */
120 VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1;	/* 1023 */
121 VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART;	/* 600 */
122 VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST;	/* 10000 */
123 VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST;	/* 65535 */
124 VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO;	/* 49152 */
125 VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO;	/* 65535 */
126 
127 /*
128  * Reserved ports accessible only to root. There are significant
129  * security considerations that must be accounted for when changing these,
130  * but the security benefits can be great. Please be careful.
131  */
132 VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1;	/* 1023 */
133 VNET_DEFINE(int, ipport_reservedlow);
134 
135 /* Variables dealing with random ephemeral port allocation. */
136 VNET_DEFINE(int, ipport_randomized) = 1;	/* user controlled via sysctl */
137 VNET_DEFINE(int, ipport_randomcps) = 10;	/* user controlled via sysctl */
138 VNET_DEFINE(int, ipport_randomtime) = 45;	/* user controlled via sysctl */
139 VNET_DEFINE(int, ipport_stoprandom);		/* toggled by ipport_tick */
140 VNET_DEFINE(int, ipport_tcpallocs);
141 VNET_DEFINE_STATIC(int, ipport_tcplastcount);
142 
143 #define	V_ipport_tcplastcount		VNET(ipport_tcplastcount)
144 
145 static void	in_pcbremlists(struct inpcb *inp);
146 #ifdef INET
147 static struct inpcb	*in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo,
148 			    struct in_addr faddr, u_int fport_arg,
149 			    struct in_addr laddr, u_int lport_arg,
150 			    int lookupflags, struct ifnet *ifp);
151 
152 #define RANGECHK(var, min, max) \
153 	if ((var) < (min)) { (var) = (min); } \
154 	else if ((var) > (max)) { (var) = (max); }
155 
156 static int
157 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS)
158 {
159 	int error;
160 
161 	error = sysctl_handle_int(oidp, arg1, arg2, req);
162 	if (error == 0) {
163 		RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1);
164 		RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1);
165 		RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX);
166 		RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX);
167 		RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX);
168 		RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX);
169 	}
170 	return (error);
171 }
172 
173 #undef RANGECHK
174 
175 static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, CTLFLAG_RW, 0,
176     "IP Ports");
177 
178 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst,
179 	CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
180 	&VNET_NAME(ipport_lowfirstauto), 0, &sysctl_net_ipport_check, "I", "");
181 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast,
182 	CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
183 	&VNET_NAME(ipport_lowlastauto), 0, &sysctl_net_ipport_check, "I", "");
184 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first,
185 	CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
186 	&VNET_NAME(ipport_firstauto), 0, &sysctl_net_ipport_check, "I", "");
187 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last,
188 	CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
189 	&VNET_NAME(ipport_lastauto), 0, &sysctl_net_ipport_check, "I", "");
190 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst,
191 	CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
192 	&VNET_NAME(ipport_hifirstauto), 0, &sysctl_net_ipport_check, "I", "");
193 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast,
194 	CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
195 	&VNET_NAME(ipport_hilastauto), 0, &sysctl_net_ipport_check, "I", "");
196 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh,
197 	CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE,
198 	&VNET_NAME(ipport_reservedhigh), 0, "");
199 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow,
200 	CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, "");
201 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized,
202 	CTLFLAG_VNET | CTLFLAG_RW,
203 	&VNET_NAME(ipport_randomized), 0, "Enable random port allocation");
204 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomcps,
205 	CTLFLAG_VNET | CTLFLAG_RW,
206 	&VNET_NAME(ipport_randomcps), 0, "Maximum number of random port "
207 	"allocations before switching to a sequental one");
208 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomtime,
209 	CTLFLAG_VNET | CTLFLAG_RW,
210 	&VNET_NAME(ipport_randomtime), 0,
211 	"Minimum time to keep sequental port "
212 	"allocation before switching to a random one");
213 #endif /* INET */
214 
215 /*
216  * in_pcb.c: manage the Protocol Control Blocks.
217  *
218  * NOTE: It is assumed that most of these functions will be called with
219  * the pcbinfo lock held, and often, the inpcb lock held, as these utility
220  * functions often modify hash chains or addresses in pcbs.
221  */
222 
223 static struct inpcblbgroup *
224 in_pcblbgroup_alloc(struct inpcblbgrouphead *hdr, u_char vflag,
225     uint16_t port, const union in_dependaddr *addr, int size)
226 {
227 	struct inpcblbgroup *grp;
228 	size_t bytes;
229 
230 	bytes = __offsetof(struct inpcblbgroup, il_inp[size]);
231 	grp = malloc(bytes, M_PCB, M_ZERO | M_NOWAIT);
232 	if (!grp)
233 		return (NULL);
234 	grp->il_vflag = vflag;
235 	grp->il_lport = port;
236 	grp->il_dependladdr = *addr;
237 	grp->il_inpsiz = size;
238 	LIST_INSERT_HEAD(hdr, grp, il_list);
239 	return (grp);
240 }
241 
242 static void
243 in_pcblbgroup_free(struct inpcblbgroup *grp)
244 {
245 
246 	LIST_REMOVE(grp, il_list);
247 	free(grp, M_PCB);
248 }
249 
250 static struct inpcblbgroup *
251 in_pcblbgroup_resize(struct inpcblbgrouphead *hdr,
252     struct inpcblbgroup *old_grp, int size)
253 {
254 	struct inpcblbgroup *grp;
255 	int i;
256 
257 	grp = in_pcblbgroup_alloc(hdr, old_grp->il_vflag,
258 	    old_grp->il_lport, &old_grp->il_dependladdr, size);
259 	if (!grp)
260 		return (NULL);
261 
262 	KASSERT(old_grp->il_inpcnt < grp->il_inpsiz,
263 	    ("invalid new local group size %d and old local group count %d",
264 	     grp->il_inpsiz, old_grp->il_inpcnt));
265 
266 	for (i = 0; i < old_grp->il_inpcnt; ++i)
267 		grp->il_inp[i] = old_grp->il_inp[i];
268 	grp->il_inpcnt = old_grp->il_inpcnt;
269 	in_pcblbgroup_free(old_grp);
270 	return (grp);
271 }
272 
273 /*
274  * PCB at index 'i' is removed from the group. Pull up the ones below il_inp[i]
275  * and shrink group if possible.
276  */
277 static void
278 in_pcblbgroup_reorder(struct inpcblbgrouphead *hdr, struct inpcblbgroup **grpp,
279     int i)
280 {
281 	struct inpcblbgroup *grp = *grpp;
282 
283 	for (; i + 1 < grp->il_inpcnt; ++i)
284 		grp->il_inp[i] = grp->il_inp[i + 1];
285 	grp->il_inpcnt--;
286 
287 	if (grp->il_inpsiz > INPCBLBGROUP_SIZMIN &&
288 	    grp->il_inpcnt <= (grp->il_inpsiz / 4)) {
289 		/* Shrink this group. */
290 		struct inpcblbgroup *new_grp =
291 		        in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz / 2);
292 		if (new_grp)
293 			*grpp = new_grp;
294 	}
295 	return;
296 }
297 
298 /*
299  * Add PCB to load balance group for SO_REUSEPORT_LB option.
300  */
301 static int
302 in_pcbinslbgrouphash(struct inpcb *inp)
303 {
304 	struct inpcbinfo *pcbinfo;
305 	struct inpcblbgrouphead *hdr;
306 	struct inpcblbgroup *grp;
307 	uint16_t hashmask, lport;
308 	uint32_t group_index;
309 	struct ucred *cred;
310 	static int limit_logged = 0;
311 
312 	pcbinfo = inp->inp_pcbinfo;
313 
314 	INP_WLOCK_ASSERT(inp);
315 	INP_HASH_WLOCK_ASSERT(pcbinfo);
316 
317 	if (pcbinfo->ipi_lbgrouphashbase == NULL)
318 		return (0);
319 
320 	hashmask = pcbinfo->ipi_lbgrouphashmask;
321 	lport = inp->inp_lport;
322 	group_index = INP_PCBLBGROUP_PORTHASH(lport, hashmask);
323 	hdr = &pcbinfo->ipi_lbgrouphashbase[group_index];
324 
325 	/*
326 	 * Don't allow jailed socket to join local group.
327 	 */
328 	if (inp->inp_socket != NULL)
329 		cred = inp->inp_socket->so_cred;
330 	else
331 		cred = NULL;
332 	if (cred != NULL && jailed(cred))
333 		return (0);
334 
335 #ifdef INET6
336 	/*
337 	 * Don't allow IPv4 mapped INET6 wild socket.
338 	 */
339 	if ((inp->inp_vflag & INP_IPV4) &&
340 	    inp->inp_laddr.s_addr == INADDR_ANY &&
341 	    INP_CHECK_SOCKAF(inp->inp_socket, AF_INET6)) {
342 		return (0);
343 	}
344 #endif
345 
346 	hdr = &pcbinfo->ipi_lbgrouphashbase[
347 	    INP_PCBLBGROUP_PORTHASH(inp->inp_lport,
348 	        pcbinfo->ipi_lbgrouphashmask)];
349 	LIST_FOREACH(grp, hdr, il_list) {
350 		if (grp->il_vflag == inp->inp_vflag &&
351 		    grp->il_lport == inp->inp_lport &&
352 		    memcmp(&grp->il_dependladdr,
353 		        &inp->inp_inc.inc_ie.ie_dependladdr,
354 		        sizeof(grp->il_dependladdr)) == 0) {
355 			break;
356 		}
357 	}
358 	if (grp == NULL) {
359 		/* Create new load balance group. */
360 		grp = in_pcblbgroup_alloc(hdr, inp->inp_vflag,
361 		    inp->inp_lport, &inp->inp_inc.inc_ie.ie_dependladdr,
362 		    INPCBLBGROUP_SIZMIN);
363 		if (!grp)
364 			return (ENOBUFS);
365 	} else if (grp->il_inpcnt == grp->il_inpsiz) {
366 		if (grp->il_inpsiz >= INPCBLBGROUP_SIZMAX) {
367 			if (!limit_logged) {
368 				limit_logged = 1;
369 				printf("lb group port %d, limit reached\n",
370 				    ntohs(grp->il_lport));
371 			}
372 			return (0);
373 		}
374 
375 		/* Expand this local group. */
376 		grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz * 2);
377 		if (!grp)
378 			return (ENOBUFS);
379 	}
380 
381 	KASSERT(grp->il_inpcnt < grp->il_inpsiz,
382 			("invalid local group size %d and count %d",
383 			 grp->il_inpsiz, grp->il_inpcnt));
384 
385 	grp->il_inp[grp->il_inpcnt] = inp;
386 	grp->il_inpcnt++;
387 	return (0);
388 }
389 
390 /*
391  * Remove PCB from load balance group.
392  */
393 static void
394 in_pcbremlbgrouphash(struct inpcb *inp)
395 {
396 	struct inpcbinfo *pcbinfo;
397 	struct inpcblbgrouphead *hdr;
398 	struct inpcblbgroup *grp;
399 	int i;
400 
401 	pcbinfo = inp->inp_pcbinfo;
402 
403 	INP_WLOCK_ASSERT(inp);
404 	INP_HASH_WLOCK_ASSERT(pcbinfo);
405 
406 	if (pcbinfo->ipi_lbgrouphashbase == NULL)
407 		return;
408 
409 	hdr = &pcbinfo->ipi_lbgrouphashbase[
410 	    INP_PCBLBGROUP_PORTHASH(inp->inp_lport,
411 	        pcbinfo->ipi_lbgrouphashmask)];
412 
413 	LIST_FOREACH(grp, hdr, il_list) {
414 		for (i = 0; i < grp->il_inpcnt; ++i) {
415 			if (grp->il_inp[i] != inp)
416 				continue;
417 
418 			if (grp->il_inpcnt == 1) {
419 				/* We are the last, free this local group. */
420 				in_pcblbgroup_free(grp);
421 			} else {
422 				/* Pull up inpcbs, shrink group if possible. */
423 				in_pcblbgroup_reorder(hdr, &grp, i);
424 			}
425 			return;
426 		}
427 	}
428 }
429 
430 /*
431  * Different protocols initialize their inpcbs differently - giving
432  * different name to the lock.  But they all are disposed the same.
433  */
434 static void
435 inpcb_fini(void *mem, int size)
436 {
437 	struct inpcb *inp = mem;
438 
439 	INP_LOCK_DESTROY(inp);
440 }
441 
442 /*
443  * Initialize an inpcbinfo -- we should be able to reduce the number of
444  * arguments in time.
445  */
446 void
447 in_pcbinfo_init(struct inpcbinfo *pcbinfo, const char *name,
448     struct inpcbhead *listhead, int hash_nelements, int porthash_nelements,
449     char *inpcbzone_name, uma_init inpcbzone_init, u_int hashfields)
450 {
451 
452 	INP_INFO_LOCK_INIT(pcbinfo, name);
453 	INP_HASH_LOCK_INIT(pcbinfo, "pcbinfohash");	/* XXXRW: argument? */
454 	INP_LIST_LOCK_INIT(pcbinfo, "pcbinfolist");
455 #ifdef VIMAGE
456 	pcbinfo->ipi_vnet = curvnet;
457 #endif
458 	pcbinfo->ipi_listhead = listhead;
459 	CK_LIST_INIT(pcbinfo->ipi_listhead);
460 	pcbinfo->ipi_count = 0;
461 	pcbinfo->ipi_hashbase = hashinit(hash_nelements, M_PCB,
462 	    &pcbinfo->ipi_hashmask);
463 	pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB,
464 	    &pcbinfo->ipi_porthashmask);
465 	pcbinfo->ipi_lbgrouphashbase = hashinit(hash_nelements, M_PCB,
466 	    &pcbinfo->ipi_lbgrouphashmask);
467 #ifdef PCBGROUP
468 	in_pcbgroup_init(pcbinfo, hashfields, hash_nelements);
469 #endif
470 	pcbinfo->ipi_zone = uma_zcreate(inpcbzone_name, sizeof(struct inpcb),
471 	    NULL, NULL, inpcbzone_init, inpcb_fini, UMA_ALIGN_PTR, 0);
472 	uma_zone_set_max(pcbinfo->ipi_zone, maxsockets);
473 	uma_zone_set_warning(pcbinfo->ipi_zone,
474 	    "kern.ipc.maxsockets limit reached");
475 }
476 
477 /*
478  * Destroy an inpcbinfo.
479  */
480 void
481 in_pcbinfo_destroy(struct inpcbinfo *pcbinfo)
482 {
483 
484 	KASSERT(pcbinfo->ipi_count == 0,
485 	    ("%s: ipi_count = %u", __func__, pcbinfo->ipi_count));
486 
487 	hashdestroy(pcbinfo->ipi_hashbase, M_PCB, pcbinfo->ipi_hashmask);
488 	hashdestroy(pcbinfo->ipi_porthashbase, M_PCB,
489 	    pcbinfo->ipi_porthashmask);
490 	hashdestroy(pcbinfo->ipi_lbgrouphashbase, M_PCB,
491 	    pcbinfo->ipi_lbgrouphashmask);
492 #ifdef PCBGROUP
493 	in_pcbgroup_destroy(pcbinfo);
494 #endif
495 	uma_zdestroy(pcbinfo->ipi_zone);
496 	INP_LIST_LOCK_DESTROY(pcbinfo);
497 	INP_HASH_LOCK_DESTROY(pcbinfo);
498 	INP_INFO_LOCK_DESTROY(pcbinfo);
499 }
500 
501 /*
502  * Allocate a PCB and associate it with the socket.
503  * On success return with the PCB locked.
504  */
505 int
506 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo)
507 {
508 	struct inpcb *inp;
509 	int error;
510 
511 #ifdef INVARIANTS
512 	if (pcbinfo == &V_tcbinfo) {
513 		INP_INFO_RLOCK_ASSERT(pcbinfo);
514 	} else {
515 		INP_INFO_WLOCK_ASSERT(pcbinfo);
516 	}
517 #endif
518 
519 	error = 0;
520 	inp = uma_zalloc(pcbinfo->ipi_zone, M_NOWAIT);
521 	if (inp == NULL)
522 		return (ENOBUFS);
523 	bzero(&inp->inp_start_zero, inp_zero_size);
524 	inp->inp_pcbinfo = pcbinfo;
525 	inp->inp_socket = so;
526 	inp->inp_cred = crhold(so->so_cred);
527 	inp->inp_inc.inc_fibnum = so->so_fibnum;
528 #ifdef MAC
529 	error = mac_inpcb_init(inp, M_NOWAIT);
530 	if (error != 0)
531 		goto out;
532 	mac_inpcb_create(so, inp);
533 #endif
534 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
535 	error = ipsec_init_pcbpolicy(inp);
536 	if (error != 0) {
537 #ifdef MAC
538 		mac_inpcb_destroy(inp);
539 #endif
540 		goto out;
541 	}
542 #endif /*IPSEC*/
543 #ifdef INET6
544 	if (INP_SOCKAF(so) == AF_INET6) {
545 		inp->inp_vflag |= INP_IPV6PROTO;
546 		if (V_ip6_v6only)
547 			inp->inp_flags |= IN6P_IPV6_V6ONLY;
548 	}
549 #endif
550 	INP_WLOCK(inp);
551 	INP_LIST_WLOCK(pcbinfo);
552 	CK_LIST_INSERT_HEAD(pcbinfo->ipi_listhead, inp, inp_list);
553 	pcbinfo->ipi_count++;
554 	so->so_pcb = (caddr_t)inp;
555 #ifdef INET6
556 	if (V_ip6_auto_flowlabel)
557 		inp->inp_flags |= IN6P_AUTOFLOWLABEL;
558 #endif
559 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
560 	refcount_init(&inp->inp_refcount, 1);	/* Reference from inpcbinfo */
561 
562 	/*
563 	 * Routes in inpcb's can cache L2 as well; they are guaranteed
564 	 * to be cleaned up.
565 	 */
566 	inp->inp_route.ro_flags = RT_LLE_CACHE;
567 	INP_LIST_WUNLOCK(pcbinfo);
568 #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC)
569 out:
570 	if (error != 0) {
571 		crfree(inp->inp_cred);
572 		uma_zfree(pcbinfo->ipi_zone, inp);
573 	}
574 #endif
575 	return (error);
576 }
577 
578 #ifdef INET
579 int
580 in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
581 {
582 	int anonport, error;
583 
584 	INP_WLOCK_ASSERT(inp);
585 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
586 
587 	if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY)
588 		return (EINVAL);
589 	anonport = nam == NULL || ((struct sockaddr_in *)nam)->sin_port == 0;
590 	error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr,
591 	    &inp->inp_lport, cred);
592 	if (error)
593 		return (error);
594 	if (in_pcbinshash(inp) != 0) {
595 		inp->inp_laddr.s_addr = INADDR_ANY;
596 		inp->inp_lport = 0;
597 		return (EAGAIN);
598 	}
599 	if (anonport)
600 		inp->inp_flags |= INP_ANONPORT;
601 	return (0);
602 }
603 #endif
604 
605 /*
606  * Select a local port (number) to use.
607  */
608 #if defined(INET) || defined(INET6)
609 int
610 in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp,
611     struct ucred *cred, int lookupflags)
612 {
613 	struct inpcbinfo *pcbinfo;
614 	struct inpcb *tmpinp;
615 	unsigned short *lastport;
616 	int count, dorandom, error;
617 	u_short aux, first, last, lport;
618 #ifdef INET
619 	struct in_addr laddr;
620 #endif
621 
622 	pcbinfo = inp->inp_pcbinfo;
623 
624 	/*
625 	 * Because no actual state changes occur here, a global write lock on
626 	 * the pcbinfo isn't required.
627 	 */
628 	INP_LOCK_ASSERT(inp);
629 	INP_HASH_LOCK_ASSERT(pcbinfo);
630 
631 	if (inp->inp_flags & INP_HIGHPORT) {
632 		first = V_ipport_hifirstauto;	/* sysctl */
633 		last  = V_ipport_hilastauto;
634 		lastport = &pcbinfo->ipi_lasthi;
635 	} else if (inp->inp_flags & INP_LOWPORT) {
636 		error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT, 0);
637 		if (error)
638 			return (error);
639 		first = V_ipport_lowfirstauto;	/* 1023 */
640 		last  = V_ipport_lowlastauto;	/* 600 */
641 		lastport = &pcbinfo->ipi_lastlow;
642 	} else {
643 		first = V_ipport_firstauto;	/* sysctl */
644 		last  = V_ipport_lastauto;
645 		lastport = &pcbinfo->ipi_lastport;
646 	}
647 	/*
648 	 * For UDP(-Lite), use random port allocation as long as the user
649 	 * allows it.  For TCP (and as of yet unknown) connections,
650 	 * use random port allocation only if the user allows it AND
651 	 * ipport_tick() allows it.
652 	 */
653 	if (V_ipport_randomized &&
654 		(!V_ipport_stoprandom || pcbinfo == &V_udbinfo ||
655 		pcbinfo == &V_ulitecbinfo))
656 		dorandom = 1;
657 	else
658 		dorandom = 0;
659 	/*
660 	 * It makes no sense to do random port allocation if
661 	 * we have the only port available.
662 	 */
663 	if (first == last)
664 		dorandom = 0;
665 	/* Make sure to not include UDP(-Lite) packets in the count. */
666 	if (pcbinfo != &V_udbinfo || pcbinfo != &V_ulitecbinfo)
667 		V_ipport_tcpallocs++;
668 	/*
669 	 * Instead of having two loops further down counting up or down
670 	 * make sure that first is always <= last and go with only one
671 	 * code path implementing all logic.
672 	 */
673 	if (first > last) {
674 		aux = first;
675 		first = last;
676 		last = aux;
677 	}
678 
679 #ifdef INET
680 	/* Make the compiler happy. */
681 	laddr.s_addr = 0;
682 	if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) {
683 		KASSERT(laddrp != NULL, ("%s: laddrp NULL for v4 inp %p",
684 		    __func__, inp));
685 		laddr = *laddrp;
686 	}
687 #endif
688 	tmpinp = NULL;	/* Make compiler happy. */
689 	lport = *lportp;
690 
691 	if (dorandom)
692 		*lastport = first + (arc4random() % (last - first));
693 
694 	count = last - first;
695 
696 	do {
697 		if (count-- < 0)	/* completely used? */
698 			return (EADDRNOTAVAIL);
699 		++*lastport;
700 		if (*lastport < first || *lastport > last)
701 			*lastport = first;
702 		lport = htons(*lastport);
703 
704 #ifdef INET6
705 		if ((inp->inp_vflag & INP_IPV6) != 0)
706 			tmpinp = in6_pcblookup_local(pcbinfo,
707 			    &inp->in6p_laddr, lport, lookupflags, cred);
708 #endif
709 #if defined(INET) && defined(INET6)
710 		else
711 #endif
712 #ifdef INET
713 			tmpinp = in_pcblookup_local(pcbinfo, laddr,
714 			    lport, lookupflags, cred);
715 #endif
716 	} while (tmpinp != NULL);
717 
718 #ifdef INET
719 	if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4)
720 		laddrp->s_addr = laddr.s_addr;
721 #endif
722 	*lportp = lport;
723 
724 	return (0);
725 }
726 
727 /*
728  * Return cached socket options.
729  */
730 int
731 inp_so_options(const struct inpcb *inp)
732 {
733 	int so_options;
734 
735 	so_options = 0;
736 
737 	if ((inp->inp_flags2 & INP_REUSEPORT_LB) != 0)
738 		so_options |= SO_REUSEPORT_LB;
739 	if ((inp->inp_flags2 & INP_REUSEPORT) != 0)
740 		so_options |= SO_REUSEPORT;
741 	if ((inp->inp_flags2 & INP_REUSEADDR) != 0)
742 		so_options |= SO_REUSEADDR;
743 	return (so_options);
744 }
745 #endif /* INET || INET6 */
746 
747 /*
748  * Check if a new BINDMULTI socket is allowed to be created.
749  *
750  * ni points to the new inp.
751  * oi points to the exisitng inp.
752  *
753  * This checks whether the existing inp also has BINDMULTI and
754  * whether the credentials match.
755  */
756 int
757 in_pcbbind_check_bindmulti(const struct inpcb *ni, const struct inpcb *oi)
758 {
759 	/* Check permissions match */
760 	if ((ni->inp_flags2 & INP_BINDMULTI) &&
761 	    (ni->inp_cred->cr_uid !=
762 	    oi->inp_cred->cr_uid))
763 		return (0);
764 
765 	/* Check the existing inp has BINDMULTI set */
766 	if ((ni->inp_flags2 & INP_BINDMULTI) &&
767 	    ((oi->inp_flags2 & INP_BINDMULTI) == 0))
768 		return (0);
769 
770 	/*
771 	 * We're okay - either INP_BINDMULTI isn't set on ni, or
772 	 * it is and it matches the checks.
773 	 */
774 	return (1);
775 }
776 
777 #ifdef INET
778 /*
779  * Set up a bind operation on a PCB, performing port allocation
780  * as required, but do not actually modify the PCB. Callers can
781  * either complete the bind by setting inp_laddr/inp_lport and
782  * calling in_pcbinshash(), or they can just use the resulting
783  * port and address to authorise the sending of a once-off packet.
784  *
785  * On error, the values of *laddrp and *lportp are not changed.
786  */
787 int
788 in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp,
789     u_short *lportp, struct ucred *cred)
790 {
791 	struct socket *so = inp->inp_socket;
792 	struct sockaddr_in *sin;
793 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
794 	struct in_addr laddr;
795 	u_short lport = 0;
796 	int lookupflags = 0, reuseport = (so->so_options & SO_REUSEPORT);
797 	int error;
798 
799 	/*
800 	 * XXX: Maybe we could let SO_REUSEPORT_LB set SO_REUSEPORT bit here
801 	 * so that we don't have to add to the (already messy) code below.
802 	 */
803 	int reuseport_lb = (so->so_options & SO_REUSEPORT_LB);
804 
805 	/*
806 	 * No state changes, so read locks are sufficient here.
807 	 */
808 	INP_LOCK_ASSERT(inp);
809 	INP_HASH_LOCK_ASSERT(pcbinfo);
810 
811 	if (CK_STAILQ_EMPTY(&V_in_ifaddrhead)) /* XXX broken! */
812 		return (EADDRNOTAVAIL);
813 	laddr.s_addr = *laddrp;
814 	if (nam != NULL && laddr.s_addr != INADDR_ANY)
815 		return (EINVAL);
816 	if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT|SO_REUSEPORT_LB)) == 0)
817 		lookupflags = INPLOOKUP_WILDCARD;
818 	if (nam == NULL) {
819 		if ((error = prison_local_ip4(cred, &laddr)) != 0)
820 			return (error);
821 	} else {
822 		sin = (struct sockaddr_in *)nam;
823 		if (nam->sa_len != sizeof (*sin))
824 			return (EINVAL);
825 #ifdef notdef
826 		/*
827 		 * We should check the family, but old programs
828 		 * incorrectly fail to initialize it.
829 		 */
830 		if (sin->sin_family != AF_INET)
831 			return (EAFNOSUPPORT);
832 #endif
833 		error = prison_local_ip4(cred, &sin->sin_addr);
834 		if (error)
835 			return (error);
836 		if (sin->sin_port != *lportp) {
837 			/* Don't allow the port to change. */
838 			if (*lportp != 0)
839 				return (EINVAL);
840 			lport = sin->sin_port;
841 		}
842 		/* NB: lport is left as 0 if the port isn't being changed. */
843 		if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) {
844 			/*
845 			 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast;
846 			 * allow complete duplication of binding if
847 			 * SO_REUSEPORT is set, or if SO_REUSEADDR is set
848 			 * and a multicast address is bound on both
849 			 * new and duplicated sockets.
850 			 */
851 			if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) != 0)
852 				reuseport = SO_REUSEADDR|SO_REUSEPORT;
853 			/*
854 			 * XXX: How to deal with SO_REUSEPORT_LB here?
855 			 * Treat same as SO_REUSEPORT for now.
856 			 */
857 			if ((so->so_options &
858 			    (SO_REUSEADDR|SO_REUSEPORT_LB)) != 0)
859 				reuseport_lb = SO_REUSEADDR|SO_REUSEPORT_LB;
860 		} else if (sin->sin_addr.s_addr != INADDR_ANY) {
861 			sin->sin_port = 0;		/* yech... */
862 			bzero(&sin->sin_zero, sizeof(sin->sin_zero));
863 			/*
864 			 * Is the address a local IP address?
865 			 * If INP_BINDANY is set, then the socket may be bound
866 			 * to any endpoint address, local or not.
867 			 */
868 			if ((inp->inp_flags & INP_BINDANY) == 0 &&
869 			    ifa_ifwithaddr_check((struct sockaddr *)sin) == 0)
870 				return (EADDRNOTAVAIL);
871 		}
872 		laddr = sin->sin_addr;
873 		if (lport) {
874 			struct inpcb *t;
875 			struct tcptw *tw;
876 
877 			/* GROSS */
878 			if (ntohs(lport) <= V_ipport_reservedhigh &&
879 			    ntohs(lport) >= V_ipport_reservedlow &&
880 			    priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT,
881 			    0))
882 				return (EACCES);
883 			if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) &&
884 			    priv_check_cred(inp->inp_cred,
885 			    PRIV_NETINET_REUSEPORT, 0) != 0) {
886 				t = in_pcblookup_local(pcbinfo, sin->sin_addr,
887 				    lport, INPLOOKUP_WILDCARD, cred);
888 	/*
889 	 * XXX
890 	 * This entire block sorely needs a rewrite.
891 	 */
892 				if (t &&
893 				    ((inp->inp_flags2 & INP_BINDMULTI) == 0) &&
894 				    ((t->inp_flags & INP_TIMEWAIT) == 0) &&
895 				    (so->so_type != SOCK_STREAM ||
896 				     ntohl(t->inp_faddr.s_addr) == INADDR_ANY) &&
897 				    (ntohl(sin->sin_addr.s_addr) != INADDR_ANY ||
898 				     ntohl(t->inp_laddr.s_addr) != INADDR_ANY ||
899 				     (t->inp_flags2 & INP_REUSEPORT) ||
900 				     (t->inp_flags2 & INP_REUSEPORT_LB) == 0) &&
901 				    (inp->inp_cred->cr_uid !=
902 				     t->inp_cred->cr_uid))
903 					return (EADDRINUSE);
904 
905 				/*
906 				 * If the socket is a BINDMULTI socket, then
907 				 * the credentials need to match and the
908 				 * original socket also has to have been bound
909 				 * with BINDMULTI.
910 				 */
911 				if (t && (! in_pcbbind_check_bindmulti(inp, t)))
912 					return (EADDRINUSE);
913 			}
914 			t = in_pcblookup_local(pcbinfo, sin->sin_addr,
915 			    lport, lookupflags, cred);
916 			if (t && (t->inp_flags & INP_TIMEWAIT)) {
917 				/*
918 				 * XXXRW: If an incpb has had its timewait
919 				 * state recycled, we treat the address as
920 				 * being in use (for now).  This is better
921 				 * than a panic, but not desirable.
922 				 */
923 				tw = intotw(t);
924 				if (tw == NULL ||
925 				    ((reuseport & tw->tw_so_options) == 0 &&
926 					(reuseport_lb &
927 				            tw->tw_so_options) == 0)) {
928 					return (EADDRINUSE);
929 				}
930 			} else if (t &&
931 				   ((inp->inp_flags2 & INP_BINDMULTI) == 0) &&
932 				   (reuseport & inp_so_options(t)) == 0 &&
933 				   (reuseport_lb & inp_so_options(t)) == 0) {
934 #ifdef INET6
935 				if (ntohl(sin->sin_addr.s_addr) !=
936 				    INADDR_ANY ||
937 				    ntohl(t->inp_laddr.s_addr) !=
938 				    INADDR_ANY ||
939 				    (inp->inp_vflag & INP_IPV6PROTO) == 0 ||
940 				    (t->inp_vflag & INP_IPV6PROTO) == 0)
941 #endif
942 						return (EADDRINUSE);
943 				if (t && (! in_pcbbind_check_bindmulti(inp, t)))
944 					return (EADDRINUSE);
945 			}
946 		}
947 	}
948 	if (*lportp != 0)
949 		lport = *lportp;
950 	if (lport == 0) {
951 		error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags);
952 		if (error != 0)
953 			return (error);
954 
955 	}
956 	*laddrp = laddr.s_addr;
957 	*lportp = lport;
958 	return (0);
959 }
960 
961 /*
962  * Connect from a socket to a specified address.
963  * Both address and port must be specified in argument sin.
964  * If don't have a local address for this socket yet,
965  * then pick one.
966  */
967 int
968 in_pcbconnect_mbuf(struct inpcb *inp, struct sockaddr *nam,
969     struct ucred *cred, struct mbuf *m)
970 {
971 	u_short lport, fport;
972 	in_addr_t laddr, faddr;
973 	int anonport, error;
974 
975 	INP_WLOCK_ASSERT(inp);
976 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
977 
978 	lport = inp->inp_lport;
979 	laddr = inp->inp_laddr.s_addr;
980 	anonport = (lport == 0);
981 	error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport,
982 	    NULL, cred);
983 	if (error)
984 		return (error);
985 
986 	/* Do the initial binding of the local address if required. */
987 	if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) {
988 		inp->inp_lport = lport;
989 		inp->inp_laddr.s_addr = laddr;
990 		if (in_pcbinshash(inp) != 0) {
991 			inp->inp_laddr.s_addr = INADDR_ANY;
992 			inp->inp_lport = 0;
993 			return (EAGAIN);
994 		}
995 	}
996 
997 	/* Commit the remaining changes. */
998 	inp->inp_lport = lport;
999 	inp->inp_laddr.s_addr = laddr;
1000 	inp->inp_faddr.s_addr = faddr;
1001 	inp->inp_fport = fport;
1002 	in_pcbrehash_mbuf(inp, m);
1003 
1004 	if (anonport)
1005 		inp->inp_flags |= INP_ANONPORT;
1006 	return (0);
1007 }
1008 
1009 int
1010 in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
1011 {
1012 
1013 	return (in_pcbconnect_mbuf(inp, nam, cred, NULL));
1014 }
1015 
1016 /*
1017  * Do proper source address selection on an unbound socket in case
1018  * of connect. Take jails into account as well.
1019  */
1020 int
1021 in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr,
1022     struct ucred *cred)
1023 {
1024 	struct ifaddr *ifa;
1025 	struct sockaddr *sa;
1026 	struct sockaddr_in *sin;
1027 	struct route sro;
1028 	int error;
1029 
1030 	KASSERT(laddr != NULL, ("%s: laddr NULL", __func__));
1031 	/*
1032 	 * Bypass source address selection and use the primary jail IP
1033 	 * if requested.
1034 	 */
1035 	if (cred != NULL && !prison_saddrsel_ip4(cred, laddr))
1036 		return (0);
1037 
1038 	error = 0;
1039 	bzero(&sro, sizeof(sro));
1040 
1041 	sin = (struct sockaddr_in *)&sro.ro_dst;
1042 	sin->sin_family = AF_INET;
1043 	sin->sin_len = sizeof(struct sockaddr_in);
1044 	sin->sin_addr.s_addr = faddr->s_addr;
1045 
1046 	/*
1047 	 * If route is known our src addr is taken from the i/f,
1048 	 * else punt.
1049 	 *
1050 	 * Find out route to destination.
1051 	 */
1052 	if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0)
1053 		in_rtalloc_ign(&sro, 0, inp->inp_inc.inc_fibnum);
1054 
1055 	/*
1056 	 * If we found a route, use the address corresponding to
1057 	 * the outgoing interface.
1058 	 *
1059 	 * Otherwise assume faddr is reachable on a directly connected
1060 	 * network and try to find a corresponding interface to take
1061 	 * the source address from.
1062 	 */
1063 	NET_EPOCH_ENTER();
1064 	if (sro.ro_rt == NULL || sro.ro_rt->rt_ifp == NULL) {
1065 		struct in_ifaddr *ia;
1066 		struct ifnet *ifp;
1067 
1068 		ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin,
1069 					inp->inp_socket->so_fibnum));
1070 		if (ia == NULL) {
1071 			ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0,
1072 						inp->inp_socket->so_fibnum));
1073 
1074 		}
1075 		if (ia == NULL) {
1076 			error = ENETUNREACH;
1077 			goto done;
1078 		}
1079 
1080 		if (cred == NULL || !prison_flag(cred, PR_IP4)) {
1081 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1082 			goto done;
1083 		}
1084 
1085 		ifp = ia->ia_ifp;
1086 		ia = NULL;
1087 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1088 
1089 			sa = ifa->ifa_addr;
1090 			if (sa->sa_family != AF_INET)
1091 				continue;
1092 			sin = (struct sockaddr_in *)sa;
1093 			if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
1094 				ia = (struct in_ifaddr *)ifa;
1095 				break;
1096 			}
1097 		}
1098 		if (ia != NULL) {
1099 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1100 			goto done;
1101 		}
1102 
1103 		/* 3. As a last resort return the 'default' jail address. */
1104 		error = prison_get_ip4(cred, laddr);
1105 		goto done;
1106 	}
1107 
1108 	/*
1109 	 * If the outgoing interface on the route found is not
1110 	 * a loopback interface, use the address from that interface.
1111 	 * In case of jails do those three steps:
1112 	 * 1. check if the interface address belongs to the jail. If so use it.
1113 	 * 2. check if we have any address on the outgoing interface
1114 	 *    belonging to this jail. If so use it.
1115 	 * 3. as a last resort return the 'default' jail address.
1116 	 */
1117 	if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) {
1118 		struct in_ifaddr *ia;
1119 		struct ifnet *ifp;
1120 
1121 		/* If not jailed, use the default returned. */
1122 		if (cred == NULL || !prison_flag(cred, PR_IP4)) {
1123 			ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa;
1124 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1125 			goto done;
1126 		}
1127 
1128 		/* Jailed. */
1129 		/* 1. Check if the iface address belongs to the jail. */
1130 		sin = (struct sockaddr_in *)sro.ro_rt->rt_ifa->ifa_addr;
1131 		if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
1132 			ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa;
1133 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1134 			goto done;
1135 		}
1136 
1137 		/*
1138 		 * 2. Check if we have any address on the outgoing interface
1139 		 *    belonging to this jail.
1140 		 */
1141 		ia = NULL;
1142 		ifp = sro.ro_rt->rt_ifp;
1143 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1144 			sa = ifa->ifa_addr;
1145 			if (sa->sa_family != AF_INET)
1146 				continue;
1147 			sin = (struct sockaddr_in *)sa;
1148 			if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
1149 				ia = (struct in_ifaddr *)ifa;
1150 				break;
1151 			}
1152 		}
1153 		if (ia != NULL) {
1154 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1155 			goto done;
1156 		}
1157 
1158 		/* 3. As a last resort return the 'default' jail address. */
1159 		error = prison_get_ip4(cred, laddr);
1160 		goto done;
1161 	}
1162 
1163 	/*
1164 	 * The outgoing interface is marked with 'loopback net', so a route
1165 	 * to ourselves is here.
1166 	 * Try to find the interface of the destination address and then
1167 	 * take the address from there. That interface is not necessarily
1168 	 * a loopback interface.
1169 	 * In case of jails, check that it is an address of the jail
1170 	 * and if we cannot find, fall back to the 'default' jail address.
1171 	 */
1172 	if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) {
1173 		struct sockaddr_in sain;
1174 		struct in_ifaddr *ia;
1175 
1176 		bzero(&sain, sizeof(struct sockaddr_in));
1177 		sain.sin_family = AF_INET;
1178 		sain.sin_len = sizeof(struct sockaddr_in);
1179 		sain.sin_addr.s_addr = faddr->s_addr;
1180 
1181 		ia = ifatoia(ifa_ifwithdstaddr(sintosa(&sain),
1182 					inp->inp_socket->so_fibnum));
1183 		if (ia == NULL)
1184 			ia = ifatoia(ifa_ifwithnet(sintosa(&sain), 0,
1185 						inp->inp_socket->so_fibnum));
1186 		if (ia == NULL)
1187 			ia = ifatoia(ifa_ifwithaddr(sintosa(&sain)));
1188 
1189 		if (cred == NULL || !prison_flag(cred, PR_IP4)) {
1190 			if (ia == NULL) {
1191 				error = ENETUNREACH;
1192 				goto done;
1193 			}
1194 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1195 			goto done;
1196 		}
1197 
1198 		/* Jailed. */
1199 		if (ia != NULL) {
1200 			struct ifnet *ifp;
1201 
1202 			ifp = ia->ia_ifp;
1203 			ia = NULL;
1204 			CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1205 				sa = ifa->ifa_addr;
1206 				if (sa->sa_family != AF_INET)
1207 					continue;
1208 				sin = (struct sockaddr_in *)sa;
1209 				if (prison_check_ip4(cred,
1210 				    &sin->sin_addr) == 0) {
1211 					ia = (struct in_ifaddr *)ifa;
1212 					break;
1213 				}
1214 			}
1215 			if (ia != NULL) {
1216 				laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1217 				goto done;
1218 			}
1219 		}
1220 
1221 		/* 3. As a last resort return the 'default' jail address. */
1222 		error = prison_get_ip4(cred, laddr);
1223 		goto done;
1224 	}
1225 
1226 done:
1227 	NET_EPOCH_EXIT();
1228 	if (sro.ro_rt != NULL)
1229 		RTFREE(sro.ro_rt);
1230 	return (error);
1231 }
1232 
1233 /*
1234  * Set up for a connect from a socket to the specified address.
1235  * On entry, *laddrp and *lportp should contain the current local
1236  * address and port for the PCB; these are updated to the values
1237  * that should be placed in inp_laddr and inp_lport to complete
1238  * the connect.
1239  *
1240  * On success, *faddrp and *fportp will be set to the remote address
1241  * and port. These are not updated in the error case.
1242  *
1243  * If the operation fails because the connection already exists,
1244  * *oinpp will be set to the PCB of that connection so that the
1245  * caller can decide to override it. In all other cases, *oinpp
1246  * is set to NULL.
1247  */
1248 int
1249 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam,
1250     in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp,
1251     struct inpcb **oinpp, struct ucred *cred)
1252 {
1253 	struct rm_priotracker in_ifa_tracker;
1254 	struct sockaddr_in *sin = (struct sockaddr_in *)nam;
1255 	struct in_ifaddr *ia;
1256 	struct inpcb *oinp;
1257 	struct in_addr laddr, faddr;
1258 	u_short lport, fport;
1259 	int error;
1260 
1261 	/*
1262 	 * Because a global state change doesn't actually occur here, a read
1263 	 * lock is sufficient.
1264 	 */
1265 	INP_LOCK_ASSERT(inp);
1266 	INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo);
1267 
1268 	if (oinpp != NULL)
1269 		*oinpp = NULL;
1270 	if (nam->sa_len != sizeof (*sin))
1271 		return (EINVAL);
1272 	if (sin->sin_family != AF_INET)
1273 		return (EAFNOSUPPORT);
1274 	if (sin->sin_port == 0)
1275 		return (EADDRNOTAVAIL);
1276 	laddr.s_addr = *laddrp;
1277 	lport = *lportp;
1278 	faddr = sin->sin_addr;
1279 	fport = sin->sin_port;
1280 
1281 	if (!CK_STAILQ_EMPTY(&V_in_ifaddrhead)) {
1282 		/*
1283 		 * If the destination address is INADDR_ANY,
1284 		 * use the primary local address.
1285 		 * If the supplied address is INADDR_BROADCAST,
1286 		 * and the primary interface supports broadcast,
1287 		 * choose the broadcast address for that interface.
1288 		 */
1289 		if (faddr.s_addr == INADDR_ANY) {
1290 			IN_IFADDR_RLOCK(&in_ifa_tracker);
1291 			faddr =
1292 			    IA_SIN(CK_STAILQ_FIRST(&V_in_ifaddrhead))->sin_addr;
1293 			IN_IFADDR_RUNLOCK(&in_ifa_tracker);
1294 			if (cred != NULL &&
1295 			    (error = prison_get_ip4(cred, &faddr)) != 0)
1296 				return (error);
1297 		} else if (faddr.s_addr == (u_long)INADDR_BROADCAST) {
1298 			IN_IFADDR_RLOCK(&in_ifa_tracker);
1299 			if (CK_STAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags &
1300 			    IFF_BROADCAST)
1301 				faddr = satosin(&CK_STAILQ_FIRST(
1302 				    &V_in_ifaddrhead)->ia_broadaddr)->sin_addr;
1303 			IN_IFADDR_RUNLOCK(&in_ifa_tracker);
1304 		}
1305 	}
1306 	if (laddr.s_addr == INADDR_ANY) {
1307 		error = in_pcbladdr(inp, &faddr, &laddr, cred);
1308 		/*
1309 		 * If the destination address is multicast and an outgoing
1310 		 * interface has been set as a multicast option, prefer the
1311 		 * address of that interface as our source address.
1312 		 */
1313 		if (IN_MULTICAST(ntohl(faddr.s_addr)) &&
1314 		    inp->inp_moptions != NULL) {
1315 			struct ip_moptions *imo;
1316 			struct ifnet *ifp;
1317 
1318 			imo = inp->inp_moptions;
1319 			if (imo->imo_multicast_ifp != NULL) {
1320 				ifp = imo->imo_multicast_ifp;
1321 				IN_IFADDR_RLOCK(&in_ifa_tracker);
1322 				CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) {
1323 					if ((ia->ia_ifp == ifp) &&
1324 					    (cred == NULL ||
1325 					    prison_check_ip4(cred,
1326 					    &ia->ia_addr.sin_addr) == 0))
1327 						break;
1328 				}
1329 				if (ia == NULL)
1330 					error = EADDRNOTAVAIL;
1331 				else {
1332 					laddr = ia->ia_addr.sin_addr;
1333 					error = 0;
1334 				}
1335 				IN_IFADDR_RUNLOCK(&in_ifa_tracker);
1336 			}
1337 		}
1338 		if (error)
1339 			return (error);
1340 	}
1341 	oinp = in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr, fport,
1342 	    laddr, lport, 0, NULL);
1343 	if (oinp != NULL) {
1344 		if (oinpp != NULL)
1345 			*oinpp = oinp;
1346 		return (EADDRINUSE);
1347 	}
1348 	if (lport == 0) {
1349 		error = in_pcbbind_setup(inp, NULL, &laddr.s_addr, &lport,
1350 		    cred);
1351 		if (error)
1352 			return (error);
1353 	}
1354 	*laddrp = laddr.s_addr;
1355 	*lportp = lport;
1356 	*faddrp = faddr.s_addr;
1357 	*fportp = fport;
1358 	return (0);
1359 }
1360 
1361 void
1362 in_pcbdisconnect(struct inpcb *inp)
1363 {
1364 
1365 	INP_WLOCK_ASSERT(inp);
1366 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
1367 
1368 	inp->inp_faddr.s_addr = INADDR_ANY;
1369 	inp->inp_fport = 0;
1370 	in_pcbrehash(inp);
1371 }
1372 #endif /* INET */
1373 
1374 /*
1375  * in_pcbdetach() is responsibe for disassociating a socket from an inpcb.
1376  * For most protocols, this will be invoked immediately prior to calling
1377  * in_pcbfree().  However, with TCP the inpcb may significantly outlive the
1378  * socket, in which case in_pcbfree() is deferred.
1379  */
1380 void
1381 in_pcbdetach(struct inpcb *inp)
1382 {
1383 
1384 	KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__));
1385 
1386 #ifdef RATELIMIT
1387 	if (inp->inp_snd_tag != NULL)
1388 		in_pcbdetach_txrtlmt(inp);
1389 #endif
1390 	inp->inp_socket->so_pcb = NULL;
1391 	inp->inp_socket = NULL;
1392 }
1393 
1394 /*
1395  * in_pcbref() bumps the reference count on an inpcb in order to maintain
1396  * stability of an inpcb pointer despite the inpcb lock being released.  This
1397  * is used in TCP when the inpcbinfo lock needs to be acquired or upgraded,
1398  * but where the inpcb lock may already held, or when acquiring a reference
1399  * via a pcbgroup.
1400  *
1401  * in_pcbref() should be used only to provide brief memory stability, and
1402  * must always be followed by a call to INP_WLOCK() and in_pcbrele() to
1403  * garbage collect the inpcb if it has been in_pcbfree()'d from another
1404  * context.  Until in_pcbrele() has returned that the inpcb is still valid,
1405  * lock and rele are the *only* safe operations that may be performed on the
1406  * inpcb.
1407  *
1408  * While the inpcb will not be freed, releasing the inpcb lock means that the
1409  * connection's state may change, so the caller should be careful to
1410  * revalidate any cached state on reacquiring the lock.  Drop the reference
1411  * using in_pcbrele().
1412  */
1413 void
1414 in_pcbref(struct inpcb *inp)
1415 {
1416 
1417 	KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1418 
1419 	refcount_acquire(&inp->inp_refcount);
1420 }
1421 
1422 /*
1423  * Drop a refcount on an inpcb elevated using in_pcbref(); because a call to
1424  * in_pcbfree() may have been made between in_pcbref() and in_pcbrele(), we
1425  * return a flag indicating whether or not the inpcb remains valid.  If it is
1426  * valid, we return with the inpcb lock held.
1427  *
1428  * Notice that, unlike in_pcbref(), the inpcb lock must be held to drop a
1429  * reference on an inpcb.  Historically more work was done here (actually, in
1430  * in_pcbfree_internal()) but has been moved to in_pcbfree() to avoid the
1431  * need for the pcbinfo lock in in_pcbrele().  Deferring the free is entirely
1432  * about memory stability (and continued use of the write lock).
1433  */
1434 int
1435 in_pcbrele_rlocked(struct inpcb *inp)
1436 {
1437 	struct inpcbinfo *pcbinfo;
1438 
1439 	KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1440 
1441 	INP_RLOCK_ASSERT(inp);
1442 
1443 	if (refcount_release(&inp->inp_refcount) == 0) {
1444 		/*
1445 		 * If the inpcb has been freed, let the caller know, even if
1446 		 * this isn't the last reference.
1447 		 */
1448 		if (inp->inp_flags2 & INP_FREED) {
1449 			INP_RUNLOCK(inp);
1450 			return (1);
1451 		}
1452 		return (0);
1453 	}
1454 
1455 	KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1456 #ifdef TCPHPTS
1457 	if (inp->inp_in_hpts || inp->inp_in_input) {
1458 		struct tcp_hpts_entry *hpts;
1459 		/*
1460 		 * We should not be on the hpts at
1461 		 * this point in any form. we must
1462 		 * get the lock to be sure.
1463 		 */
1464 		hpts = tcp_hpts_lock(inp);
1465 		if (inp->inp_in_hpts)
1466 			panic("Hpts:%p inp:%p at free still on hpts",
1467 			      hpts, inp);
1468 		mtx_unlock(&hpts->p_mtx);
1469 		hpts = tcp_input_lock(inp);
1470 		if (inp->inp_in_input)
1471 			panic("Hpts:%p inp:%p at free still on input hpts",
1472 			      hpts, inp);
1473 		mtx_unlock(&hpts->p_mtx);
1474 	}
1475 #endif
1476 	INP_RUNLOCK(inp);
1477 	pcbinfo = inp->inp_pcbinfo;
1478 	uma_zfree(pcbinfo->ipi_zone, inp);
1479 	return (1);
1480 }
1481 
1482 int
1483 in_pcbrele_wlocked(struct inpcb *inp)
1484 {
1485 	struct inpcbinfo *pcbinfo;
1486 
1487 	KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1488 
1489 	INP_WLOCK_ASSERT(inp);
1490 
1491 	if (refcount_release(&inp->inp_refcount) == 0) {
1492 		/*
1493 		 * If the inpcb has been freed, let the caller know, even if
1494 		 * this isn't the last reference.
1495 		 */
1496 		if (inp->inp_flags2 & INP_FREED) {
1497 			INP_WUNLOCK(inp);
1498 			return (1);
1499 		}
1500 		return (0);
1501 	}
1502 
1503 	KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1504 #ifdef TCPHPTS
1505 	if (inp->inp_in_hpts || inp->inp_in_input) {
1506 		struct tcp_hpts_entry *hpts;
1507 		/*
1508 		 * We should not be on the hpts at
1509 		 * this point in any form. we must
1510 		 * get the lock to be sure.
1511 		 */
1512 		hpts = tcp_hpts_lock(inp);
1513 		if (inp->inp_in_hpts)
1514 			panic("Hpts:%p inp:%p at free still on hpts",
1515 			      hpts, inp);
1516 		mtx_unlock(&hpts->p_mtx);
1517 		hpts = tcp_input_lock(inp);
1518 		if (inp->inp_in_input)
1519 			panic("Hpts:%p inp:%p at free still on input hpts",
1520 			      hpts, inp);
1521 		mtx_unlock(&hpts->p_mtx);
1522 	}
1523 #endif
1524 	INP_WUNLOCK(inp);
1525 	pcbinfo = inp->inp_pcbinfo;
1526 	uma_zfree(pcbinfo->ipi_zone, inp);
1527 	return (1);
1528 }
1529 
1530 /*
1531  * Temporary wrapper.
1532  */
1533 int
1534 in_pcbrele(struct inpcb *inp)
1535 {
1536 
1537 	return (in_pcbrele_wlocked(inp));
1538 }
1539 
1540 void
1541 in_pcblist_rele_rlocked(epoch_context_t ctx)
1542 {
1543 	struct in_pcblist *il;
1544 	struct inpcb *inp;
1545 	struct inpcbinfo *pcbinfo;
1546 	int i, n;
1547 
1548 	il = __containerof(ctx, struct in_pcblist, il_epoch_ctx);
1549 	pcbinfo = il->il_pcbinfo;
1550 	n = il->il_count;
1551 	INP_INFO_WLOCK(pcbinfo);
1552 	for (i = 0; i < n; i++) {
1553 		inp = il->il_inp_list[i];
1554 		INP_RLOCK(inp);
1555 		if (!in_pcbrele_rlocked(inp))
1556 			INP_RUNLOCK(inp);
1557 	}
1558 	INP_INFO_WUNLOCK(pcbinfo);
1559 	free(il, M_TEMP);
1560 }
1561 
1562 static void
1563 inpcbport_free(epoch_context_t ctx)
1564 {
1565 	struct inpcbport *phd;
1566 
1567 	phd = __containerof(ctx, struct inpcbport, phd_epoch_ctx);
1568 	free(phd, M_PCB);
1569 }
1570 
1571 static void
1572 in_pcbfree_deferred(epoch_context_t ctx)
1573 {
1574 	struct inpcb *inp;
1575 	int released __unused;
1576 
1577 	inp = __containerof(ctx, struct inpcb, inp_epoch_ctx);
1578 
1579 	INP_WLOCK(inp);
1580 #ifdef INET
1581 	struct ip_moptions *imo = inp->inp_moptions;
1582 	inp->inp_moptions = NULL;
1583 #endif
1584 	/* XXXRW: Do as much as possible here. */
1585 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
1586 	if (inp->inp_sp != NULL)
1587 		ipsec_delete_pcbpolicy(inp);
1588 #endif
1589 #ifdef INET6
1590 	struct ip6_moptions *im6o = NULL;
1591 	if (inp->inp_vflag & INP_IPV6PROTO) {
1592 		ip6_freepcbopts(inp->in6p_outputopts);
1593 		im6o = inp->in6p_moptions;
1594 		inp->in6p_moptions = NULL;
1595 	}
1596 #endif
1597 	if (inp->inp_options)
1598 		(void)m_free(inp->inp_options);
1599 	inp->inp_vflag = 0;
1600 	crfree(inp->inp_cred);
1601 #ifdef MAC
1602 	mac_inpcb_destroy(inp);
1603 #endif
1604 	released = in_pcbrele_wlocked(inp);
1605 	MPASS(released);
1606 #ifdef INET6
1607 	ip6_freemoptions(im6o);
1608 #endif
1609 #ifdef INET
1610 	inp_freemoptions(imo);
1611 #endif
1612 }
1613 
1614 /*
1615  * Unconditionally schedule an inpcb to be freed by decrementing its
1616  * reference count, which should occur only after the inpcb has been detached
1617  * from its socket.  If another thread holds a temporary reference (acquired
1618  * using in_pcbref()) then the free is deferred until that reference is
1619  * released using in_pcbrele(), but the inpcb is still unlocked.  Almost all
1620  * work, including removal from global lists, is done in this context, where
1621  * the pcbinfo lock is held.
1622  */
1623 void
1624 in_pcbfree(struct inpcb *inp)
1625 {
1626 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1627 
1628 	KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1629 	KASSERT((inp->inp_flags2 & INP_FREED) == 0,
1630 	    ("%s: called twice for pcb %p", __func__, inp));
1631 	if (inp->inp_flags2 & INP_FREED) {
1632 		INP_WUNLOCK(inp);
1633 		return;
1634 	}
1635 
1636 #ifdef INVARIANTS
1637 	if (pcbinfo == &V_tcbinfo) {
1638 		INP_INFO_LOCK_ASSERT(pcbinfo);
1639 	} else {
1640 		INP_INFO_WLOCK_ASSERT(pcbinfo);
1641 	}
1642 #endif
1643 	INP_WLOCK_ASSERT(inp);
1644 	INP_LIST_WLOCK(pcbinfo);
1645 	in_pcbremlists(inp);
1646 	INP_LIST_WUNLOCK(pcbinfo);
1647 	RO_INVALIDATE_CACHE(&inp->inp_route);
1648 	/* mark as destruction in progress */
1649 	inp->inp_flags2 |= INP_FREED;
1650 	INP_WUNLOCK(inp);
1651 	epoch_call(net_epoch_preempt, &inp->inp_epoch_ctx, in_pcbfree_deferred);
1652 }
1653 
1654 /*
1655  * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and
1656  * port reservation, and preventing it from being returned by inpcb lookups.
1657  *
1658  * It is used by TCP to mark an inpcb as unused and avoid future packet
1659  * delivery or event notification when a socket remains open but TCP has
1660  * closed.  This might occur as a result of a shutdown()-initiated TCP close
1661  * or a RST on the wire, and allows the port binding to be reused while still
1662  * maintaining the invariant that so_pcb always points to a valid inpcb until
1663  * in_pcbdetach().
1664  *
1665  * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by
1666  * in_pcbnotifyall() and in_pcbpurgeif0()?
1667  */
1668 void
1669 in_pcbdrop(struct inpcb *inp)
1670 {
1671 
1672 	INP_WLOCK_ASSERT(inp);
1673 #ifdef INVARIANTS
1674 	if (inp->inp_socket != NULL && inp->inp_ppcb != NULL)
1675 		MPASS(inp->inp_refcount > 1);
1676 #endif
1677 
1678 	/*
1679 	 * XXXRW: Possibly we should protect the setting of INP_DROPPED with
1680 	 * the hash lock...?
1681 	 */
1682 	inp->inp_flags |= INP_DROPPED;
1683 	if (inp->inp_flags & INP_INHASHLIST) {
1684 		struct inpcbport *phd = inp->inp_phd;
1685 
1686 		INP_HASH_WLOCK(inp->inp_pcbinfo);
1687 		in_pcbremlbgrouphash(inp);
1688 		CK_LIST_REMOVE(inp, inp_hash);
1689 		CK_LIST_REMOVE(inp, inp_portlist);
1690 		if (CK_LIST_FIRST(&phd->phd_pcblist) == NULL) {
1691 			CK_LIST_REMOVE(phd, phd_hash);
1692 			epoch_call(net_epoch_preempt, &phd->phd_epoch_ctx, inpcbport_free);
1693 		}
1694 		INP_HASH_WUNLOCK(inp->inp_pcbinfo);
1695 		inp->inp_flags &= ~INP_INHASHLIST;
1696 #ifdef PCBGROUP
1697 		in_pcbgroup_remove(inp);
1698 #endif
1699 	}
1700 }
1701 
1702 #ifdef INET
1703 /*
1704  * Common routines to return the socket addresses associated with inpcbs.
1705  */
1706 struct sockaddr *
1707 in_sockaddr(in_port_t port, struct in_addr *addr_p)
1708 {
1709 	struct sockaddr_in *sin;
1710 
1711 	sin = malloc(sizeof *sin, M_SONAME,
1712 		M_WAITOK | M_ZERO);
1713 	sin->sin_family = AF_INET;
1714 	sin->sin_len = sizeof(*sin);
1715 	sin->sin_addr = *addr_p;
1716 	sin->sin_port = port;
1717 
1718 	return (struct sockaddr *)sin;
1719 }
1720 
1721 int
1722 in_getsockaddr(struct socket *so, struct sockaddr **nam)
1723 {
1724 	struct inpcb *inp;
1725 	struct in_addr addr;
1726 	in_port_t port;
1727 
1728 	inp = sotoinpcb(so);
1729 	KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL"));
1730 
1731 	INP_RLOCK(inp);
1732 	port = inp->inp_lport;
1733 	addr = inp->inp_laddr;
1734 	INP_RUNLOCK(inp);
1735 
1736 	*nam = in_sockaddr(port, &addr);
1737 	return 0;
1738 }
1739 
1740 int
1741 in_getpeeraddr(struct socket *so, struct sockaddr **nam)
1742 {
1743 	struct inpcb *inp;
1744 	struct in_addr addr;
1745 	in_port_t port;
1746 
1747 	inp = sotoinpcb(so);
1748 	KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL"));
1749 
1750 	INP_RLOCK(inp);
1751 	port = inp->inp_fport;
1752 	addr = inp->inp_faddr;
1753 	INP_RUNLOCK(inp);
1754 
1755 	*nam = in_sockaddr(port, &addr);
1756 	return 0;
1757 }
1758 
1759 void
1760 in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno,
1761     struct inpcb *(*notify)(struct inpcb *, int))
1762 {
1763 	struct inpcb *inp, *inp_temp;
1764 
1765 	INP_INFO_WLOCK(pcbinfo);
1766 	CK_LIST_FOREACH_SAFE(inp, pcbinfo->ipi_listhead, inp_list, inp_temp) {
1767 		INP_WLOCK(inp);
1768 #ifdef INET6
1769 		if ((inp->inp_vflag & INP_IPV4) == 0) {
1770 			INP_WUNLOCK(inp);
1771 			continue;
1772 		}
1773 #endif
1774 		if (inp->inp_faddr.s_addr != faddr.s_addr ||
1775 		    inp->inp_socket == NULL) {
1776 			INP_WUNLOCK(inp);
1777 			continue;
1778 		}
1779 		if ((*notify)(inp, errno))
1780 			INP_WUNLOCK(inp);
1781 	}
1782 	INP_INFO_WUNLOCK(pcbinfo);
1783 }
1784 
1785 void
1786 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp)
1787 {
1788 	struct inpcb *inp;
1789 	struct ip_moptions *imo;
1790 	int i, gap;
1791 
1792 	INP_INFO_WLOCK(pcbinfo);
1793 	CK_LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) {
1794 		INP_WLOCK(inp);
1795 		imo = inp->inp_moptions;
1796 		if ((inp->inp_vflag & INP_IPV4) &&
1797 		    imo != NULL) {
1798 			/*
1799 			 * Unselect the outgoing interface if it is being
1800 			 * detached.
1801 			 */
1802 			if (imo->imo_multicast_ifp == ifp)
1803 				imo->imo_multicast_ifp = NULL;
1804 
1805 			/*
1806 			 * Drop multicast group membership if we joined
1807 			 * through the interface being detached.
1808 			 *
1809 			 * XXX This can all be deferred to an epoch_call
1810 			 */
1811 			for (i = 0, gap = 0; i < imo->imo_num_memberships;
1812 			    i++) {
1813 				if (imo->imo_membership[i]->inm_ifp == ifp) {
1814 					IN_MULTI_LOCK_ASSERT();
1815 					in_leavegroup_locked(imo->imo_membership[i], NULL);
1816 					gap++;
1817 				} else if (gap != 0)
1818 					imo->imo_membership[i - gap] =
1819 					    imo->imo_membership[i];
1820 			}
1821 			imo->imo_num_memberships -= gap;
1822 		}
1823 		INP_WUNLOCK(inp);
1824 	}
1825 	INP_INFO_WUNLOCK(pcbinfo);
1826 }
1827 
1828 /*
1829  * Lookup a PCB based on the local address and port.  Caller must hold the
1830  * hash lock.  No inpcb locks or references are acquired.
1831  */
1832 #define INP_LOOKUP_MAPPED_PCB_COST	3
1833 struct inpcb *
1834 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr,
1835     u_short lport, int lookupflags, struct ucred *cred)
1836 {
1837 	struct inpcb *inp;
1838 #ifdef INET6
1839 	int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST;
1840 #else
1841 	int matchwild = 3;
1842 #endif
1843 	int wildcard;
1844 
1845 	KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0,
1846 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
1847 
1848 	INP_HASH_LOCK_ASSERT(pcbinfo);
1849 
1850 	if ((lookupflags & INPLOOKUP_WILDCARD) == 0) {
1851 		struct inpcbhead *head;
1852 		/*
1853 		 * Look for an unconnected (wildcard foreign addr) PCB that
1854 		 * matches the local address and port we're looking for.
1855 		 */
1856 		head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
1857 		    0, pcbinfo->ipi_hashmask)];
1858 		CK_LIST_FOREACH(inp, head, inp_hash) {
1859 #ifdef INET6
1860 			/* XXX inp locking */
1861 			if ((inp->inp_vflag & INP_IPV4) == 0)
1862 				continue;
1863 #endif
1864 			if (inp->inp_faddr.s_addr == INADDR_ANY &&
1865 			    inp->inp_laddr.s_addr == laddr.s_addr &&
1866 			    inp->inp_lport == lport) {
1867 				/*
1868 				 * Found?
1869 				 */
1870 				if (cred == NULL ||
1871 				    prison_equal_ip4(cred->cr_prison,
1872 					inp->inp_cred->cr_prison))
1873 					return (inp);
1874 			}
1875 		}
1876 		/*
1877 		 * Not found.
1878 		 */
1879 		return (NULL);
1880 	} else {
1881 		struct inpcbporthead *porthash;
1882 		struct inpcbport *phd;
1883 		struct inpcb *match = NULL;
1884 		/*
1885 		 * Best fit PCB lookup.
1886 		 *
1887 		 * First see if this local port is in use by looking on the
1888 		 * port hash list.
1889 		 */
1890 		porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport,
1891 		    pcbinfo->ipi_porthashmask)];
1892 		CK_LIST_FOREACH(phd, porthash, phd_hash) {
1893 			if (phd->phd_port == lport)
1894 				break;
1895 		}
1896 		if (phd != NULL) {
1897 			/*
1898 			 * Port is in use by one or more PCBs. Look for best
1899 			 * fit.
1900 			 */
1901 			CK_LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) {
1902 				wildcard = 0;
1903 				if (cred != NULL &&
1904 				    !prison_equal_ip4(inp->inp_cred->cr_prison,
1905 					cred->cr_prison))
1906 					continue;
1907 #ifdef INET6
1908 				/* XXX inp locking */
1909 				if ((inp->inp_vflag & INP_IPV4) == 0)
1910 					continue;
1911 				/*
1912 				 * We never select the PCB that has
1913 				 * INP_IPV6 flag and is bound to :: if
1914 				 * we have another PCB which is bound
1915 				 * to 0.0.0.0.  If a PCB has the
1916 				 * INP_IPV6 flag, then we set its cost
1917 				 * higher than IPv4 only PCBs.
1918 				 *
1919 				 * Note that the case only happens
1920 				 * when a socket is bound to ::, under
1921 				 * the condition that the use of the
1922 				 * mapped address is allowed.
1923 				 */
1924 				if ((inp->inp_vflag & INP_IPV6) != 0)
1925 					wildcard += INP_LOOKUP_MAPPED_PCB_COST;
1926 #endif
1927 				if (inp->inp_faddr.s_addr != INADDR_ANY)
1928 					wildcard++;
1929 				if (inp->inp_laddr.s_addr != INADDR_ANY) {
1930 					if (laddr.s_addr == INADDR_ANY)
1931 						wildcard++;
1932 					else if (inp->inp_laddr.s_addr != laddr.s_addr)
1933 						continue;
1934 				} else {
1935 					if (laddr.s_addr != INADDR_ANY)
1936 						wildcard++;
1937 				}
1938 				if (wildcard < matchwild) {
1939 					match = inp;
1940 					matchwild = wildcard;
1941 					if (matchwild == 0)
1942 						break;
1943 				}
1944 			}
1945 		}
1946 		return (match);
1947 	}
1948 }
1949 #undef INP_LOOKUP_MAPPED_PCB_COST
1950 
1951 static struct inpcb *
1952 in_pcblookup_lbgroup(const struct inpcbinfo *pcbinfo,
1953     const struct in_addr *laddr, uint16_t lport, const struct in_addr *faddr,
1954     uint16_t fport, int lookupflags)
1955 {
1956 	struct inpcb *local_wild;
1957 	const struct inpcblbgrouphead *hdr;
1958 	struct inpcblbgroup *grp;
1959 	uint32_t idx;
1960 
1961 	INP_HASH_LOCK_ASSERT(pcbinfo);
1962 
1963 	hdr = &pcbinfo->ipi_lbgrouphashbase[INP_PCBLBGROUP_PORTHASH(lport,
1964 	    pcbinfo->ipi_lbgrouphashmask)];
1965 
1966 	/*
1967 	 * Order of socket selection:
1968 	 * 1. non-wild.
1969 	 * 2. wild (if lookupflags contains INPLOOKUP_WILDCARD).
1970 	 *
1971 	 * NOTE:
1972 	 * - Load balanced group does not contain jailed sockets
1973 	 * - Load balanced group does not contain IPv4 mapped INET6 wild sockets
1974 	 */
1975 	local_wild = NULL;
1976 	LIST_FOREACH(grp, hdr, il_list) {
1977 #ifdef INET6
1978 		if (!(grp->il_vflag & INP_IPV4))
1979 			continue;
1980 #endif
1981 		if (grp->il_lport != lport)
1982 			continue;
1983 
1984 		idx = INP_PCBLBGROUP_PKTHASH(faddr->s_addr, lport, fport) %
1985 		    grp->il_inpcnt;
1986 		if (grp->il_laddr.s_addr == laddr->s_addr)
1987 			return (grp->il_inp[idx]);
1988 		if (grp->il_laddr.s_addr == INADDR_ANY &&
1989 		    (lookupflags & INPLOOKUP_WILDCARD) != 0)
1990 			local_wild = grp->il_inp[idx];
1991 	}
1992 	return (local_wild);
1993 }
1994 
1995 #ifdef PCBGROUP
1996 /*
1997  * Lookup PCB in hash list, using pcbgroup tables.
1998  */
1999 static struct inpcb *
2000 in_pcblookup_group(struct inpcbinfo *pcbinfo, struct inpcbgroup *pcbgroup,
2001     struct in_addr faddr, u_int fport_arg, struct in_addr laddr,
2002     u_int lport_arg, int lookupflags, struct ifnet *ifp)
2003 {
2004 	struct inpcbhead *head;
2005 	struct inpcb *inp, *tmpinp;
2006 	u_short fport = fport_arg, lport = lport_arg;
2007 	bool locked;
2008 
2009 	/*
2010 	 * First look for an exact match.
2011 	 */
2012 	tmpinp = NULL;
2013 	INP_GROUP_LOCK(pcbgroup);
2014 	head = &pcbgroup->ipg_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport,
2015 	    pcbgroup->ipg_hashmask)];
2016 	CK_LIST_FOREACH(inp, head, inp_pcbgrouphash) {
2017 #ifdef INET6
2018 		/* XXX inp locking */
2019 		if ((inp->inp_vflag & INP_IPV4) == 0)
2020 			continue;
2021 #endif
2022 		if (inp->inp_faddr.s_addr == faddr.s_addr &&
2023 		    inp->inp_laddr.s_addr == laddr.s_addr &&
2024 		    inp->inp_fport == fport &&
2025 		    inp->inp_lport == lport) {
2026 			/*
2027 			 * XXX We should be able to directly return
2028 			 * the inp here, without any checks.
2029 			 * Well unless both bound with SO_REUSEPORT?
2030 			 */
2031 			if (prison_flag(inp->inp_cred, PR_IP4))
2032 				goto found;
2033 			if (tmpinp == NULL)
2034 				tmpinp = inp;
2035 		}
2036 	}
2037 	if (tmpinp != NULL) {
2038 		inp = tmpinp;
2039 		goto found;
2040 	}
2041 
2042 #ifdef	RSS
2043 	/*
2044 	 * For incoming connections, we may wish to do a wildcard
2045 	 * match for an RSS-local socket.
2046 	 */
2047 	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
2048 		struct inpcb *local_wild = NULL, *local_exact = NULL;
2049 #ifdef INET6
2050 		struct inpcb *local_wild_mapped = NULL;
2051 #endif
2052 		struct inpcb *jail_wild = NULL;
2053 		struct inpcbhead *head;
2054 		int injail;
2055 
2056 		/*
2057 		 * Order of socket selection - we always prefer jails.
2058 		 *      1. jailed, non-wild.
2059 		 *      2. jailed, wild.
2060 		 *      3. non-jailed, non-wild.
2061 		 *      4. non-jailed, wild.
2062 		 */
2063 
2064 		head = &pcbgroup->ipg_hashbase[INP_PCBHASH(INADDR_ANY,
2065 		    lport, 0, pcbgroup->ipg_hashmask)];
2066 		CK_LIST_FOREACH(inp, head, inp_pcbgrouphash) {
2067 #ifdef INET6
2068 			/* XXX inp locking */
2069 			if ((inp->inp_vflag & INP_IPV4) == 0)
2070 				continue;
2071 #endif
2072 			if (inp->inp_faddr.s_addr != INADDR_ANY ||
2073 			    inp->inp_lport != lport)
2074 				continue;
2075 
2076 			injail = prison_flag(inp->inp_cred, PR_IP4);
2077 			if (injail) {
2078 				if (prison_check_ip4(inp->inp_cred,
2079 				    &laddr) != 0)
2080 					continue;
2081 			} else {
2082 				if (local_exact != NULL)
2083 					continue;
2084 			}
2085 
2086 			if (inp->inp_laddr.s_addr == laddr.s_addr) {
2087 				if (injail)
2088 					goto found;
2089 				else
2090 					local_exact = inp;
2091 			} else if (inp->inp_laddr.s_addr == INADDR_ANY) {
2092 #ifdef INET6
2093 				/* XXX inp locking, NULL check */
2094 				if (inp->inp_vflag & INP_IPV6PROTO)
2095 					local_wild_mapped = inp;
2096 				else
2097 #endif
2098 					if (injail)
2099 						jail_wild = inp;
2100 					else
2101 						local_wild = inp;
2102 			}
2103 		} /* LIST_FOREACH */
2104 
2105 		inp = jail_wild;
2106 		if (inp == NULL)
2107 			inp = local_exact;
2108 		if (inp == NULL)
2109 			inp = local_wild;
2110 #ifdef INET6
2111 		if (inp == NULL)
2112 			inp = local_wild_mapped;
2113 #endif
2114 		if (inp != NULL)
2115 			goto found;
2116 	}
2117 #endif
2118 
2119 	/*
2120 	 * Then look for a wildcard match, if requested.
2121 	 */
2122 	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
2123 		struct inpcb *local_wild = NULL, *local_exact = NULL;
2124 #ifdef INET6
2125 		struct inpcb *local_wild_mapped = NULL;
2126 #endif
2127 		struct inpcb *jail_wild = NULL;
2128 		struct inpcbhead *head;
2129 		int injail;
2130 
2131 		/*
2132 		 * Order of socket selection - we always prefer jails.
2133 		 *      1. jailed, non-wild.
2134 		 *      2. jailed, wild.
2135 		 *      3. non-jailed, non-wild.
2136 		 *      4. non-jailed, wild.
2137 		 */
2138 		head = &pcbinfo->ipi_wildbase[INP_PCBHASH(INADDR_ANY, lport,
2139 		    0, pcbinfo->ipi_wildmask)];
2140 		CK_LIST_FOREACH(inp, head, inp_pcbgroup_wild) {
2141 #ifdef INET6
2142 			/* XXX inp locking */
2143 			if ((inp->inp_vflag & INP_IPV4) == 0)
2144 				continue;
2145 #endif
2146 			if (inp->inp_faddr.s_addr != INADDR_ANY ||
2147 			    inp->inp_lport != lport)
2148 				continue;
2149 
2150 			injail = prison_flag(inp->inp_cred, PR_IP4);
2151 			if (injail) {
2152 				if (prison_check_ip4(inp->inp_cred,
2153 				    &laddr) != 0)
2154 					continue;
2155 			} else {
2156 				if (local_exact != NULL)
2157 					continue;
2158 			}
2159 
2160 			if (inp->inp_laddr.s_addr == laddr.s_addr) {
2161 				if (injail)
2162 					goto found;
2163 				else
2164 					local_exact = inp;
2165 			} else if (inp->inp_laddr.s_addr == INADDR_ANY) {
2166 #ifdef INET6
2167 				/* XXX inp locking, NULL check */
2168 				if (inp->inp_vflag & INP_IPV6PROTO)
2169 					local_wild_mapped = inp;
2170 				else
2171 #endif
2172 					if (injail)
2173 						jail_wild = inp;
2174 					else
2175 						local_wild = inp;
2176 			}
2177 		} /* LIST_FOREACH */
2178 		inp = jail_wild;
2179 		if (inp == NULL)
2180 			inp = local_exact;
2181 		if (inp == NULL)
2182 			inp = local_wild;
2183 #ifdef INET6
2184 		if (inp == NULL)
2185 			inp = local_wild_mapped;
2186 #endif
2187 		if (inp != NULL)
2188 			goto found;
2189 	} /* if (lookupflags & INPLOOKUP_WILDCARD) */
2190 	INP_GROUP_UNLOCK(pcbgroup);
2191 	return (NULL);
2192 
2193 found:
2194 	if (lookupflags & INPLOOKUP_WLOCKPCB)
2195 		locked = INP_TRY_WLOCK(inp);
2196 	else if (lookupflags & INPLOOKUP_RLOCKPCB)
2197 		locked = INP_TRY_RLOCK(inp);
2198 	else
2199 		panic("%s: locking bug", __func__);
2200 	if (__predict_false(locked && (inp->inp_flags2 & INP_FREED))) {
2201 		if (lookupflags & INPLOOKUP_WLOCKPCB)
2202 			INP_WUNLOCK(inp);
2203 		else
2204 			INP_RUNLOCK(inp);
2205 		return (NULL);
2206 	} else if (!locked)
2207 		in_pcbref(inp);
2208 	INP_GROUP_UNLOCK(pcbgroup);
2209 	if (!locked) {
2210 		if (lookupflags & INPLOOKUP_WLOCKPCB) {
2211 			INP_WLOCK(inp);
2212 			if (in_pcbrele_wlocked(inp))
2213 				return (NULL);
2214 		} else {
2215 			INP_RLOCK(inp);
2216 			if (in_pcbrele_rlocked(inp))
2217 				return (NULL);
2218 		}
2219 	}
2220 #ifdef INVARIANTS
2221 	if (lookupflags & INPLOOKUP_WLOCKPCB)
2222 		INP_WLOCK_ASSERT(inp);
2223 	else
2224 		INP_RLOCK_ASSERT(inp);
2225 #endif
2226 	return (inp);
2227 }
2228 #endif /* PCBGROUP */
2229 
2230 /*
2231  * Lookup PCB in hash list, using pcbinfo tables.  This variation assumes
2232  * that the caller has locked the hash list, and will not perform any further
2233  * locking or reference operations on either the hash list or the connection.
2234  */
2235 static struct inpcb *
2236 in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2237     u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags,
2238     struct ifnet *ifp)
2239 {
2240 	struct inpcbhead *head;
2241 	struct inpcb *inp, *tmpinp;
2242 	u_short fport = fport_arg, lport = lport_arg;
2243 
2244 #ifdef INVARIANTS
2245 	KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0,
2246 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
2247 	if (!mtx_owned(&pcbinfo->ipi_hash_lock))
2248 		MPASS(in_epoch_verbose(net_epoch_preempt, 1));
2249 #endif
2250 	/*
2251 	 * First look for an exact match.
2252 	 */
2253 	tmpinp = NULL;
2254 	head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport,
2255 	    pcbinfo->ipi_hashmask)];
2256 	CK_LIST_FOREACH(inp, head, inp_hash) {
2257 #ifdef INET6
2258 		/* XXX inp locking */
2259 		if ((inp->inp_vflag & INP_IPV4) == 0)
2260 			continue;
2261 #endif
2262 		if (inp->inp_faddr.s_addr == faddr.s_addr &&
2263 		    inp->inp_laddr.s_addr == laddr.s_addr &&
2264 		    inp->inp_fport == fport &&
2265 		    inp->inp_lport == lport) {
2266 			/*
2267 			 * XXX We should be able to directly return
2268 			 * the inp here, without any checks.
2269 			 * Well unless both bound with SO_REUSEPORT?
2270 			 */
2271 			if (prison_flag(inp->inp_cred, PR_IP4))
2272 				return (inp);
2273 			if (tmpinp == NULL)
2274 				tmpinp = inp;
2275 		}
2276 	}
2277 	if (tmpinp != NULL)
2278 		return (tmpinp);
2279 
2280 	/*
2281 	 * Then look in lb group (for wildcard match).
2282 	 */
2283 	if (pcbinfo->ipi_lbgrouphashbase != NULL &&
2284 		(lookupflags & INPLOOKUP_WILDCARD)) {
2285 		inp = in_pcblookup_lbgroup(pcbinfo, &laddr, lport, &faddr,
2286 		    fport, lookupflags);
2287 		if (inp != NULL) {
2288 			return (inp);
2289 		}
2290 	}
2291 
2292 	/*
2293 	 * Then look for a wildcard match, if requested.
2294 	 */
2295 	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
2296 		struct inpcb *local_wild = NULL, *local_exact = NULL;
2297 #ifdef INET6
2298 		struct inpcb *local_wild_mapped = NULL;
2299 #endif
2300 		struct inpcb *jail_wild = NULL;
2301 		int injail;
2302 
2303 		/*
2304 		 * Order of socket selection - we always prefer jails.
2305 		 *      1. jailed, non-wild.
2306 		 *      2. jailed, wild.
2307 		 *      3. non-jailed, non-wild.
2308 		 *      4. non-jailed, wild.
2309 		 */
2310 
2311 		head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
2312 		    0, pcbinfo->ipi_hashmask)];
2313 		CK_LIST_FOREACH(inp, head, inp_hash) {
2314 #ifdef INET6
2315 			/* XXX inp locking */
2316 			if ((inp->inp_vflag & INP_IPV4) == 0)
2317 				continue;
2318 #endif
2319 			if (inp->inp_faddr.s_addr != INADDR_ANY ||
2320 			    inp->inp_lport != lport)
2321 				continue;
2322 
2323 			injail = prison_flag(inp->inp_cred, PR_IP4);
2324 			if (injail) {
2325 				if (prison_check_ip4(inp->inp_cred,
2326 				    &laddr) != 0)
2327 					continue;
2328 			} else {
2329 				if (local_exact != NULL)
2330 					continue;
2331 			}
2332 
2333 			if (inp->inp_laddr.s_addr == laddr.s_addr) {
2334 				if (injail)
2335 					return (inp);
2336 				else
2337 					local_exact = inp;
2338 			} else if (inp->inp_laddr.s_addr == INADDR_ANY) {
2339 #ifdef INET6
2340 				/* XXX inp locking, NULL check */
2341 				if (inp->inp_vflag & INP_IPV6PROTO)
2342 					local_wild_mapped = inp;
2343 				else
2344 #endif
2345 					if (injail)
2346 						jail_wild = inp;
2347 					else
2348 						local_wild = inp;
2349 			}
2350 		} /* LIST_FOREACH */
2351 		if (jail_wild != NULL)
2352 			return (jail_wild);
2353 		if (local_exact != NULL)
2354 			return (local_exact);
2355 		if (local_wild != NULL)
2356 			return (local_wild);
2357 #ifdef INET6
2358 		if (local_wild_mapped != NULL)
2359 			return (local_wild_mapped);
2360 #endif
2361 	} /* if ((lookupflags & INPLOOKUP_WILDCARD) != 0) */
2362 
2363 	return (NULL);
2364 }
2365 
2366 /*
2367  * Lookup PCB in hash list, using pcbinfo tables.  This variation locks the
2368  * hash list lock, and will return the inpcb locked (i.e., requires
2369  * INPLOOKUP_LOCKPCB).
2370  */
2371 static struct inpcb *
2372 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2373     u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
2374     struct ifnet *ifp)
2375 {
2376 	struct inpcb *inp;
2377 
2378 	INP_HASH_RLOCK(pcbinfo);
2379 	inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport,
2380 	    (lookupflags & ~(INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)), ifp);
2381 	if (inp != NULL) {
2382 		if (lookupflags & INPLOOKUP_WLOCKPCB) {
2383 			INP_WLOCK(inp);
2384 			if (__predict_false(inp->inp_flags2 & INP_FREED)) {
2385 				INP_WUNLOCK(inp);
2386 				inp = NULL;
2387 			}
2388 		} else if (lookupflags & INPLOOKUP_RLOCKPCB) {
2389 			INP_RLOCK(inp);
2390 			if (__predict_false(inp->inp_flags2 & INP_FREED)) {
2391 				INP_RUNLOCK(inp);
2392 				inp = NULL;
2393 			}
2394 		} else
2395 			panic("%s: locking bug", __func__);
2396 #ifdef INVARIANTS
2397 		if (inp != NULL) {
2398 			if (lookupflags & INPLOOKUP_WLOCKPCB)
2399 				INP_WLOCK_ASSERT(inp);
2400 			else
2401 				INP_RLOCK_ASSERT(inp);
2402 		}
2403 #endif
2404 	}
2405 	INP_HASH_RUNLOCK(pcbinfo);
2406 	return (inp);
2407 }
2408 
2409 /*
2410  * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf
2411  * from which a pre-calculated hash value may be extracted.
2412  *
2413  * Possibly more of this logic should be in in_pcbgroup.c.
2414  */
2415 struct inpcb *
2416 in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport,
2417     struct in_addr laddr, u_int lport, int lookupflags, struct ifnet *ifp)
2418 {
2419 #if defined(PCBGROUP) && !defined(RSS)
2420 	struct inpcbgroup *pcbgroup;
2421 #endif
2422 
2423 	KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0,
2424 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
2425 	KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
2426 	    ("%s: LOCKPCB not set", __func__));
2427 
2428 	/*
2429 	 * When not using RSS, use connection groups in preference to the
2430 	 * reservation table when looking up 4-tuples.  When using RSS, just
2431 	 * use the reservation table, due to the cost of the Toeplitz hash
2432 	 * in software.
2433 	 *
2434 	 * XXXRW: This policy belongs in the pcbgroup code, as in principle
2435 	 * we could be doing RSS with a non-Toeplitz hash that is affordable
2436 	 * in software.
2437 	 */
2438 #if defined(PCBGROUP) && !defined(RSS)
2439 	if (in_pcbgroup_enabled(pcbinfo)) {
2440 		pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr,
2441 		    fport);
2442 		return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport,
2443 		    laddr, lport, lookupflags, ifp));
2444 	}
2445 #endif
2446 	return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport,
2447 	    lookupflags, ifp));
2448 }
2449 
2450 struct inpcb *
2451 in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2452     u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
2453     struct ifnet *ifp, struct mbuf *m)
2454 {
2455 #ifdef PCBGROUP
2456 	struct inpcbgroup *pcbgroup;
2457 #endif
2458 
2459 	KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0,
2460 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
2461 	KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
2462 	    ("%s: LOCKPCB not set", __func__));
2463 
2464 #ifdef PCBGROUP
2465 	/*
2466 	 * If we can use a hardware-generated hash to look up the connection
2467 	 * group, use that connection group to find the inpcb.  Otherwise
2468 	 * fall back on a software hash -- or the reservation table if we're
2469 	 * using RSS.
2470 	 *
2471 	 * XXXRW: As above, that policy belongs in the pcbgroup code.
2472 	 */
2473 	if (in_pcbgroup_enabled(pcbinfo) &&
2474 	    !(M_HASHTYPE_TEST(m, M_HASHTYPE_NONE))) {
2475 		pcbgroup = in_pcbgroup_byhash(pcbinfo, M_HASHTYPE_GET(m),
2476 		    m->m_pkthdr.flowid);
2477 		if (pcbgroup != NULL)
2478 			return (in_pcblookup_group(pcbinfo, pcbgroup, faddr,
2479 			    fport, laddr, lport, lookupflags, ifp));
2480 #ifndef RSS
2481 		pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr,
2482 		    fport);
2483 		return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport,
2484 		    laddr, lport, lookupflags, ifp));
2485 #endif
2486 	}
2487 #endif
2488 	return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport,
2489 	    lookupflags, ifp));
2490 }
2491 #endif /* INET */
2492 
2493 /*
2494  * Insert PCB onto various hash lists.
2495  */
2496 static int
2497 in_pcbinshash_internal(struct inpcb *inp, int do_pcbgroup_update)
2498 {
2499 	struct inpcbhead *pcbhash;
2500 	struct inpcbporthead *pcbporthash;
2501 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2502 	struct inpcbport *phd;
2503 	u_int32_t hashkey_faddr;
2504 	int so_options;
2505 
2506 	INP_WLOCK_ASSERT(inp);
2507 	INP_HASH_WLOCK_ASSERT(pcbinfo);
2508 
2509 	KASSERT((inp->inp_flags & INP_INHASHLIST) == 0,
2510 	    ("in_pcbinshash: INP_INHASHLIST"));
2511 
2512 #ifdef INET6
2513 	if (inp->inp_vflag & INP_IPV6)
2514 		hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr);
2515 	else
2516 #endif
2517 	hashkey_faddr = inp->inp_faddr.s_addr;
2518 
2519 	pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
2520 		 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
2521 
2522 	pcbporthash = &pcbinfo->ipi_porthashbase[
2523 	    INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)];
2524 
2525 	/*
2526 	 * Add entry to load balance group.
2527 	 * Only do this if SO_REUSEPORT_LB is set.
2528 	 */
2529 	so_options = inp_so_options(inp);
2530 	if (so_options & SO_REUSEPORT_LB) {
2531 		int ret = in_pcbinslbgrouphash(inp);
2532 		if (ret) {
2533 			/* pcb lb group malloc fail (ret=ENOBUFS). */
2534 			return (ret);
2535 		}
2536 	}
2537 
2538 	/*
2539 	 * Go through port list and look for a head for this lport.
2540 	 */
2541 	CK_LIST_FOREACH(phd, pcbporthash, phd_hash) {
2542 		if (phd->phd_port == inp->inp_lport)
2543 			break;
2544 	}
2545 	/*
2546 	 * If none exists, malloc one and tack it on.
2547 	 */
2548 	if (phd == NULL) {
2549 		phd = malloc(sizeof(struct inpcbport), M_PCB, M_NOWAIT);
2550 		if (phd == NULL) {
2551 			return (ENOBUFS); /* XXX */
2552 		}
2553 		bzero(&phd->phd_epoch_ctx, sizeof(struct epoch_context));
2554 		phd->phd_port = inp->inp_lport;
2555 		CK_LIST_INIT(&phd->phd_pcblist);
2556 		CK_LIST_INSERT_HEAD(pcbporthash, phd, phd_hash);
2557 	}
2558 	inp->inp_phd = phd;
2559 	CK_LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist);
2560 	CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash);
2561 	inp->inp_flags |= INP_INHASHLIST;
2562 #ifdef PCBGROUP
2563 	if (do_pcbgroup_update)
2564 		in_pcbgroup_update(inp);
2565 #endif
2566 	return (0);
2567 }
2568 
2569 /*
2570  * For now, there are two public interfaces to insert an inpcb into the hash
2571  * lists -- one that does update pcbgroups, and one that doesn't.  The latter
2572  * is used only in the TCP syncache, where in_pcbinshash is called before the
2573  * full 4-tuple is set for the inpcb, and we don't want to install in the
2574  * pcbgroup until later.
2575  *
2576  * XXXRW: This seems like a misfeature.  in_pcbinshash should always update
2577  * connection groups, and partially initialised inpcbs should not be exposed
2578  * to either reservation hash tables or pcbgroups.
2579  */
2580 int
2581 in_pcbinshash(struct inpcb *inp)
2582 {
2583 
2584 	return (in_pcbinshash_internal(inp, 1));
2585 }
2586 
2587 int
2588 in_pcbinshash_nopcbgroup(struct inpcb *inp)
2589 {
2590 
2591 	return (in_pcbinshash_internal(inp, 0));
2592 }
2593 
2594 /*
2595  * Move PCB to the proper hash bucket when { faddr, fport } have  been
2596  * changed. NOTE: This does not handle the case of the lport changing (the
2597  * hashed port list would have to be updated as well), so the lport must
2598  * not change after in_pcbinshash() has been called.
2599  */
2600 void
2601 in_pcbrehash_mbuf(struct inpcb *inp, struct mbuf *m)
2602 {
2603 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2604 	struct inpcbhead *head;
2605 	u_int32_t hashkey_faddr;
2606 
2607 	INP_WLOCK_ASSERT(inp);
2608 	INP_HASH_WLOCK_ASSERT(pcbinfo);
2609 
2610 	KASSERT(inp->inp_flags & INP_INHASHLIST,
2611 	    ("in_pcbrehash: !INP_INHASHLIST"));
2612 
2613 #ifdef INET6
2614 	if (inp->inp_vflag & INP_IPV6)
2615 		hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr);
2616 	else
2617 #endif
2618 	hashkey_faddr = inp->inp_faddr.s_addr;
2619 
2620 	head = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
2621 		inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
2622 
2623 	CK_LIST_REMOVE(inp, inp_hash);
2624 	CK_LIST_INSERT_HEAD(head, inp, inp_hash);
2625 
2626 #ifdef PCBGROUP
2627 	if (m != NULL)
2628 		in_pcbgroup_update_mbuf(inp, m);
2629 	else
2630 		in_pcbgroup_update(inp);
2631 #endif
2632 }
2633 
2634 void
2635 in_pcbrehash(struct inpcb *inp)
2636 {
2637 
2638 	in_pcbrehash_mbuf(inp, NULL);
2639 }
2640 
2641 /*
2642  * Remove PCB from various lists.
2643  */
2644 static void
2645 in_pcbremlists(struct inpcb *inp)
2646 {
2647 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2648 
2649 #ifdef INVARIANTS
2650 	if (pcbinfo == &V_tcbinfo) {
2651 		INP_INFO_RLOCK_ASSERT(pcbinfo);
2652 	} else {
2653 		INP_INFO_WLOCK_ASSERT(pcbinfo);
2654 	}
2655 #endif
2656 
2657 	INP_WLOCK_ASSERT(inp);
2658 	INP_LIST_WLOCK_ASSERT(pcbinfo);
2659 
2660 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
2661 	if (inp->inp_flags & INP_INHASHLIST) {
2662 		struct inpcbport *phd = inp->inp_phd;
2663 
2664 		INP_HASH_WLOCK(pcbinfo);
2665 
2666 		/* XXX: Only do if SO_REUSEPORT_LB set? */
2667 		in_pcbremlbgrouphash(inp);
2668 
2669 		CK_LIST_REMOVE(inp, inp_hash);
2670 		CK_LIST_REMOVE(inp, inp_portlist);
2671 		if (CK_LIST_FIRST(&phd->phd_pcblist) == NULL) {
2672 			CK_LIST_REMOVE(phd, phd_hash);
2673 			epoch_call(net_epoch_preempt, &phd->phd_epoch_ctx, inpcbport_free);
2674 		}
2675 		INP_HASH_WUNLOCK(pcbinfo);
2676 		inp->inp_flags &= ~INP_INHASHLIST;
2677 	}
2678 	CK_LIST_REMOVE(inp, inp_list);
2679 	pcbinfo->ipi_count--;
2680 #ifdef PCBGROUP
2681 	in_pcbgroup_remove(inp);
2682 #endif
2683 }
2684 
2685 /*
2686  * Check for alternatives when higher level complains
2687  * about service problems.  For now, invalidate cached
2688  * routing information.  If the route was created dynamically
2689  * (by a redirect), time to try a default gateway again.
2690  */
2691 void
2692 in_losing(struct inpcb *inp)
2693 {
2694 
2695 	RO_INVALIDATE_CACHE(&inp->inp_route);
2696 	return;
2697 }
2698 
2699 /*
2700  * A set label operation has occurred at the socket layer, propagate the
2701  * label change into the in_pcb for the socket.
2702  */
2703 void
2704 in_pcbsosetlabel(struct socket *so)
2705 {
2706 #ifdef MAC
2707 	struct inpcb *inp;
2708 
2709 	inp = sotoinpcb(so);
2710 	KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL"));
2711 
2712 	INP_WLOCK(inp);
2713 	SOCK_LOCK(so);
2714 	mac_inpcb_sosetlabel(so, inp);
2715 	SOCK_UNLOCK(so);
2716 	INP_WUNLOCK(inp);
2717 #endif
2718 }
2719 
2720 /*
2721  * ipport_tick runs once per second, determining if random port allocation
2722  * should be continued.  If more than ipport_randomcps ports have been
2723  * allocated in the last second, then we return to sequential port
2724  * allocation. We return to random allocation only once we drop below
2725  * ipport_randomcps for at least ipport_randomtime seconds.
2726  */
2727 static void
2728 ipport_tick(void *xtp)
2729 {
2730 	VNET_ITERATOR_DECL(vnet_iter);
2731 
2732 	VNET_LIST_RLOCK_NOSLEEP();
2733 	VNET_FOREACH(vnet_iter) {
2734 		CURVNET_SET(vnet_iter);	/* XXX appease INVARIANTS here */
2735 		if (V_ipport_tcpallocs <=
2736 		    V_ipport_tcplastcount + V_ipport_randomcps) {
2737 			if (V_ipport_stoprandom > 0)
2738 				V_ipport_stoprandom--;
2739 		} else
2740 			V_ipport_stoprandom = V_ipport_randomtime;
2741 		V_ipport_tcplastcount = V_ipport_tcpallocs;
2742 		CURVNET_RESTORE();
2743 	}
2744 	VNET_LIST_RUNLOCK_NOSLEEP();
2745 	callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL);
2746 }
2747 
2748 static void
2749 ip_fini(void *xtp)
2750 {
2751 
2752 	callout_stop(&ipport_tick_callout);
2753 }
2754 
2755 /*
2756  * The ipport_callout should start running at about the time we attach the
2757  * inet or inet6 domains.
2758  */
2759 static void
2760 ipport_tick_init(const void *unused __unused)
2761 {
2762 
2763 	/* Start ipport_tick. */
2764 	callout_init(&ipport_tick_callout, 1);
2765 	callout_reset(&ipport_tick_callout, 1, ipport_tick, NULL);
2766 	EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL,
2767 		SHUTDOWN_PRI_DEFAULT);
2768 }
2769 SYSINIT(ipport_tick_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_MIDDLE,
2770     ipport_tick_init, NULL);
2771 
2772 void
2773 inp_wlock(struct inpcb *inp)
2774 {
2775 
2776 	INP_WLOCK(inp);
2777 }
2778 
2779 void
2780 inp_wunlock(struct inpcb *inp)
2781 {
2782 
2783 	INP_WUNLOCK(inp);
2784 }
2785 
2786 void
2787 inp_rlock(struct inpcb *inp)
2788 {
2789 
2790 	INP_RLOCK(inp);
2791 }
2792 
2793 void
2794 inp_runlock(struct inpcb *inp)
2795 {
2796 
2797 	INP_RUNLOCK(inp);
2798 }
2799 
2800 #ifdef INVARIANT_SUPPORT
2801 void
2802 inp_lock_assert(struct inpcb *inp)
2803 {
2804 
2805 	INP_WLOCK_ASSERT(inp);
2806 }
2807 
2808 void
2809 inp_unlock_assert(struct inpcb *inp)
2810 {
2811 
2812 	INP_UNLOCK_ASSERT(inp);
2813 }
2814 #endif
2815 
2816 void
2817 inp_apply_all(void (*func)(struct inpcb *, void *), void *arg)
2818 {
2819 	struct inpcb *inp;
2820 
2821 	INP_INFO_WLOCK(&V_tcbinfo);
2822 	CK_LIST_FOREACH(inp, V_tcbinfo.ipi_listhead, inp_list) {
2823 		INP_WLOCK(inp);
2824 		func(inp, arg);
2825 		INP_WUNLOCK(inp);
2826 	}
2827 	INP_INFO_WUNLOCK(&V_tcbinfo);
2828 }
2829 
2830 struct socket *
2831 inp_inpcbtosocket(struct inpcb *inp)
2832 {
2833 
2834 	INP_WLOCK_ASSERT(inp);
2835 	return (inp->inp_socket);
2836 }
2837 
2838 struct tcpcb *
2839 inp_inpcbtotcpcb(struct inpcb *inp)
2840 {
2841 
2842 	INP_WLOCK_ASSERT(inp);
2843 	return ((struct tcpcb *)inp->inp_ppcb);
2844 }
2845 
2846 int
2847 inp_ip_tos_get(const struct inpcb *inp)
2848 {
2849 
2850 	return (inp->inp_ip_tos);
2851 }
2852 
2853 void
2854 inp_ip_tos_set(struct inpcb *inp, int val)
2855 {
2856 
2857 	inp->inp_ip_tos = val;
2858 }
2859 
2860 void
2861 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp,
2862     uint32_t *faddr, uint16_t *fp)
2863 {
2864 
2865 	INP_LOCK_ASSERT(inp);
2866 	*laddr = inp->inp_laddr.s_addr;
2867 	*faddr = inp->inp_faddr.s_addr;
2868 	*lp = inp->inp_lport;
2869 	*fp = inp->inp_fport;
2870 }
2871 
2872 struct inpcb *
2873 so_sotoinpcb(struct socket *so)
2874 {
2875 
2876 	return (sotoinpcb(so));
2877 }
2878 
2879 struct tcpcb *
2880 so_sototcpcb(struct socket *so)
2881 {
2882 
2883 	return (sototcpcb(so));
2884 }
2885 
2886 /*
2887  * Create an external-format (``xinpcb'') structure using the information in
2888  * the kernel-format in_pcb structure pointed to by inp.  This is done to
2889  * reduce the spew of irrelevant information over this interface, to isolate
2890  * user code from changes in the kernel structure, and potentially to provide
2891  * information-hiding if we decide that some of this information should be
2892  * hidden from users.
2893  */
2894 void
2895 in_pcbtoxinpcb(const struct inpcb *inp, struct xinpcb *xi)
2896 {
2897 
2898 	xi->xi_len = sizeof(struct xinpcb);
2899 	if (inp->inp_socket)
2900 		sotoxsocket(inp->inp_socket, &xi->xi_socket);
2901 	else
2902 		bzero(&xi->xi_socket, sizeof(struct xsocket));
2903 	bcopy(&inp->inp_inc, &xi->inp_inc, sizeof(struct in_conninfo));
2904 	xi->inp_gencnt = inp->inp_gencnt;
2905 	xi->inp_ppcb = (uintptr_t)inp->inp_ppcb;
2906 	xi->inp_flow = inp->inp_flow;
2907 	xi->inp_flowid = inp->inp_flowid;
2908 	xi->inp_flowtype = inp->inp_flowtype;
2909 	xi->inp_flags = inp->inp_flags;
2910 	xi->inp_flags2 = inp->inp_flags2;
2911 	xi->inp_rss_listen_bucket = inp->inp_rss_listen_bucket;
2912 	xi->in6p_cksum = inp->in6p_cksum;
2913 	xi->in6p_hops = inp->in6p_hops;
2914 	xi->inp_ip_tos = inp->inp_ip_tos;
2915 	xi->inp_vflag = inp->inp_vflag;
2916 	xi->inp_ip_ttl = inp->inp_ip_ttl;
2917 	xi->inp_ip_p = inp->inp_ip_p;
2918 	xi->inp_ip_minttl = inp->inp_ip_minttl;
2919 }
2920 
2921 #ifdef DDB
2922 static void
2923 db_print_indent(int indent)
2924 {
2925 	int i;
2926 
2927 	for (i = 0; i < indent; i++)
2928 		db_printf(" ");
2929 }
2930 
2931 static void
2932 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent)
2933 {
2934 	char faddr_str[48], laddr_str[48];
2935 
2936 	db_print_indent(indent);
2937 	db_printf("%s at %p\n", name, inc);
2938 
2939 	indent += 2;
2940 
2941 #ifdef INET6
2942 	if (inc->inc_flags & INC_ISIPV6) {
2943 		/* IPv6. */
2944 		ip6_sprintf(laddr_str, &inc->inc6_laddr);
2945 		ip6_sprintf(faddr_str, &inc->inc6_faddr);
2946 	} else
2947 #endif
2948 	{
2949 		/* IPv4. */
2950 		inet_ntoa_r(inc->inc_laddr, laddr_str);
2951 		inet_ntoa_r(inc->inc_faddr, faddr_str);
2952 	}
2953 	db_print_indent(indent);
2954 	db_printf("inc_laddr %s   inc_lport %u\n", laddr_str,
2955 	    ntohs(inc->inc_lport));
2956 	db_print_indent(indent);
2957 	db_printf("inc_faddr %s   inc_fport %u\n", faddr_str,
2958 	    ntohs(inc->inc_fport));
2959 }
2960 
2961 static void
2962 db_print_inpflags(int inp_flags)
2963 {
2964 	int comma;
2965 
2966 	comma = 0;
2967 	if (inp_flags & INP_RECVOPTS) {
2968 		db_printf("%sINP_RECVOPTS", comma ? ", " : "");
2969 		comma = 1;
2970 	}
2971 	if (inp_flags & INP_RECVRETOPTS) {
2972 		db_printf("%sINP_RECVRETOPTS", comma ? ", " : "");
2973 		comma = 1;
2974 	}
2975 	if (inp_flags & INP_RECVDSTADDR) {
2976 		db_printf("%sINP_RECVDSTADDR", comma ? ", " : "");
2977 		comma = 1;
2978 	}
2979 	if (inp_flags & INP_ORIGDSTADDR) {
2980 		db_printf("%sINP_ORIGDSTADDR", comma ? ", " : "");
2981 		comma = 1;
2982 	}
2983 	if (inp_flags & INP_HDRINCL) {
2984 		db_printf("%sINP_HDRINCL", comma ? ", " : "");
2985 		comma = 1;
2986 	}
2987 	if (inp_flags & INP_HIGHPORT) {
2988 		db_printf("%sINP_HIGHPORT", comma ? ", " : "");
2989 		comma = 1;
2990 	}
2991 	if (inp_flags & INP_LOWPORT) {
2992 		db_printf("%sINP_LOWPORT", comma ? ", " : "");
2993 		comma = 1;
2994 	}
2995 	if (inp_flags & INP_ANONPORT) {
2996 		db_printf("%sINP_ANONPORT", comma ? ", " : "");
2997 		comma = 1;
2998 	}
2999 	if (inp_flags & INP_RECVIF) {
3000 		db_printf("%sINP_RECVIF", comma ? ", " : "");
3001 		comma = 1;
3002 	}
3003 	if (inp_flags & INP_MTUDISC) {
3004 		db_printf("%sINP_MTUDISC", comma ? ", " : "");
3005 		comma = 1;
3006 	}
3007 	if (inp_flags & INP_RECVTTL) {
3008 		db_printf("%sINP_RECVTTL", comma ? ", " : "");
3009 		comma = 1;
3010 	}
3011 	if (inp_flags & INP_DONTFRAG) {
3012 		db_printf("%sINP_DONTFRAG", comma ? ", " : "");
3013 		comma = 1;
3014 	}
3015 	if (inp_flags & INP_RECVTOS) {
3016 		db_printf("%sINP_RECVTOS", comma ? ", " : "");
3017 		comma = 1;
3018 	}
3019 	if (inp_flags & IN6P_IPV6_V6ONLY) {
3020 		db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : "");
3021 		comma = 1;
3022 	}
3023 	if (inp_flags & IN6P_PKTINFO) {
3024 		db_printf("%sIN6P_PKTINFO", comma ? ", " : "");
3025 		comma = 1;
3026 	}
3027 	if (inp_flags & IN6P_HOPLIMIT) {
3028 		db_printf("%sIN6P_HOPLIMIT", comma ? ", " : "");
3029 		comma = 1;
3030 	}
3031 	if (inp_flags & IN6P_HOPOPTS) {
3032 		db_printf("%sIN6P_HOPOPTS", comma ? ", " : "");
3033 		comma = 1;
3034 	}
3035 	if (inp_flags & IN6P_DSTOPTS) {
3036 		db_printf("%sIN6P_DSTOPTS", comma ? ", " : "");
3037 		comma = 1;
3038 	}
3039 	if (inp_flags & IN6P_RTHDR) {
3040 		db_printf("%sIN6P_RTHDR", comma ? ", " : "");
3041 		comma = 1;
3042 	}
3043 	if (inp_flags & IN6P_RTHDRDSTOPTS) {
3044 		db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : "");
3045 		comma = 1;
3046 	}
3047 	if (inp_flags & IN6P_TCLASS) {
3048 		db_printf("%sIN6P_TCLASS", comma ? ", " : "");
3049 		comma = 1;
3050 	}
3051 	if (inp_flags & IN6P_AUTOFLOWLABEL) {
3052 		db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : "");
3053 		comma = 1;
3054 	}
3055 	if (inp_flags & INP_TIMEWAIT) {
3056 		db_printf("%sINP_TIMEWAIT", comma ? ", " : "");
3057 		comma  = 1;
3058 	}
3059 	if (inp_flags & INP_ONESBCAST) {
3060 		db_printf("%sINP_ONESBCAST", comma ? ", " : "");
3061 		comma  = 1;
3062 	}
3063 	if (inp_flags & INP_DROPPED) {
3064 		db_printf("%sINP_DROPPED", comma ? ", " : "");
3065 		comma  = 1;
3066 	}
3067 	if (inp_flags & INP_SOCKREF) {
3068 		db_printf("%sINP_SOCKREF", comma ? ", " : "");
3069 		comma  = 1;
3070 	}
3071 	if (inp_flags & IN6P_RFC2292) {
3072 		db_printf("%sIN6P_RFC2292", comma ? ", " : "");
3073 		comma = 1;
3074 	}
3075 	if (inp_flags & IN6P_MTU) {
3076 		db_printf("IN6P_MTU%s", comma ? ", " : "");
3077 		comma = 1;
3078 	}
3079 }
3080 
3081 static void
3082 db_print_inpvflag(u_char inp_vflag)
3083 {
3084 	int comma;
3085 
3086 	comma = 0;
3087 	if (inp_vflag & INP_IPV4) {
3088 		db_printf("%sINP_IPV4", comma ? ", " : "");
3089 		comma  = 1;
3090 	}
3091 	if (inp_vflag & INP_IPV6) {
3092 		db_printf("%sINP_IPV6", comma ? ", " : "");
3093 		comma  = 1;
3094 	}
3095 	if (inp_vflag & INP_IPV6PROTO) {
3096 		db_printf("%sINP_IPV6PROTO", comma ? ", " : "");
3097 		comma  = 1;
3098 	}
3099 }
3100 
3101 static void
3102 db_print_inpcb(struct inpcb *inp, const char *name, int indent)
3103 {
3104 
3105 	db_print_indent(indent);
3106 	db_printf("%s at %p\n", name, inp);
3107 
3108 	indent += 2;
3109 
3110 	db_print_indent(indent);
3111 	db_printf("inp_flow: 0x%x\n", inp->inp_flow);
3112 
3113 	db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent);
3114 
3115 	db_print_indent(indent);
3116 	db_printf("inp_ppcb: %p   inp_pcbinfo: %p   inp_socket: %p\n",
3117 	    inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket);
3118 
3119 	db_print_indent(indent);
3120 	db_printf("inp_label: %p   inp_flags: 0x%x (",
3121 	   inp->inp_label, inp->inp_flags);
3122 	db_print_inpflags(inp->inp_flags);
3123 	db_printf(")\n");
3124 
3125 	db_print_indent(indent);
3126 	db_printf("inp_sp: %p   inp_vflag: 0x%x (", inp->inp_sp,
3127 	    inp->inp_vflag);
3128 	db_print_inpvflag(inp->inp_vflag);
3129 	db_printf(")\n");
3130 
3131 	db_print_indent(indent);
3132 	db_printf("inp_ip_ttl: %d   inp_ip_p: %d   inp_ip_minttl: %d\n",
3133 	    inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl);
3134 
3135 	db_print_indent(indent);
3136 #ifdef INET6
3137 	if (inp->inp_vflag & INP_IPV6) {
3138 		db_printf("in6p_options: %p   in6p_outputopts: %p   "
3139 		    "in6p_moptions: %p\n", inp->in6p_options,
3140 		    inp->in6p_outputopts, inp->in6p_moptions);
3141 		db_printf("in6p_icmp6filt: %p   in6p_cksum %d   "
3142 		    "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum,
3143 		    inp->in6p_hops);
3144 	} else
3145 #endif
3146 	{
3147 		db_printf("inp_ip_tos: %d   inp_ip_options: %p   "
3148 		    "inp_ip_moptions: %p\n", inp->inp_ip_tos,
3149 		    inp->inp_options, inp->inp_moptions);
3150 	}
3151 
3152 	db_print_indent(indent);
3153 	db_printf("inp_phd: %p   inp_gencnt: %ju\n", inp->inp_phd,
3154 	    (uintmax_t)inp->inp_gencnt);
3155 }
3156 
3157 DB_SHOW_COMMAND(inpcb, db_show_inpcb)
3158 {
3159 	struct inpcb *inp;
3160 
3161 	if (!have_addr) {
3162 		db_printf("usage: show inpcb <addr>\n");
3163 		return;
3164 	}
3165 	inp = (struct inpcb *)addr;
3166 
3167 	db_print_inpcb(inp, "inpcb", 0);
3168 }
3169 #endif /* DDB */
3170 
3171 #ifdef RATELIMIT
3172 /*
3173  * Modify TX rate limit based on the existing "inp->inp_snd_tag",
3174  * if any.
3175  */
3176 int
3177 in_pcbmodify_txrtlmt(struct inpcb *inp, uint32_t max_pacing_rate)
3178 {
3179 	union if_snd_tag_modify_params params = {
3180 		.rate_limit.max_rate = max_pacing_rate,
3181 	};
3182 	struct m_snd_tag *mst;
3183 	struct ifnet *ifp;
3184 	int error;
3185 
3186 	mst = inp->inp_snd_tag;
3187 	if (mst == NULL)
3188 		return (EINVAL);
3189 
3190 	ifp = mst->ifp;
3191 	if (ifp == NULL)
3192 		return (EINVAL);
3193 
3194 	if (ifp->if_snd_tag_modify == NULL) {
3195 		error = EOPNOTSUPP;
3196 	} else {
3197 		error = ifp->if_snd_tag_modify(mst, &params);
3198 	}
3199 	return (error);
3200 }
3201 
3202 /*
3203  * Query existing TX rate limit based on the existing
3204  * "inp->inp_snd_tag", if any.
3205  */
3206 int
3207 in_pcbquery_txrtlmt(struct inpcb *inp, uint32_t *p_max_pacing_rate)
3208 {
3209 	union if_snd_tag_query_params params = { };
3210 	struct m_snd_tag *mst;
3211 	struct ifnet *ifp;
3212 	int error;
3213 
3214 	mst = inp->inp_snd_tag;
3215 	if (mst == NULL)
3216 		return (EINVAL);
3217 
3218 	ifp = mst->ifp;
3219 	if (ifp == NULL)
3220 		return (EINVAL);
3221 
3222 	if (ifp->if_snd_tag_query == NULL) {
3223 		error = EOPNOTSUPP;
3224 	} else {
3225 		error = ifp->if_snd_tag_query(mst, &params);
3226 		if (error == 0 &&  p_max_pacing_rate != NULL)
3227 			*p_max_pacing_rate = params.rate_limit.max_rate;
3228 	}
3229 	return (error);
3230 }
3231 
3232 /*
3233  * Query existing TX queue level based on the existing
3234  * "inp->inp_snd_tag", if any.
3235  */
3236 int
3237 in_pcbquery_txrlevel(struct inpcb *inp, uint32_t *p_txqueue_level)
3238 {
3239 	union if_snd_tag_query_params params = { };
3240 	struct m_snd_tag *mst;
3241 	struct ifnet *ifp;
3242 	int error;
3243 
3244 	mst = inp->inp_snd_tag;
3245 	if (mst == NULL)
3246 		return (EINVAL);
3247 
3248 	ifp = mst->ifp;
3249 	if (ifp == NULL)
3250 		return (EINVAL);
3251 
3252 	if (ifp->if_snd_tag_query == NULL)
3253 		return (EOPNOTSUPP);
3254 
3255 	error = ifp->if_snd_tag_query(mst, &params);
3256 	if (error == 0 &&  p_txqueue_level != NULL)
3257 		*p_txqueue_level = params.rate_limit.queue_level;
3258 	return (error);
3259 }
3260 
3261 /*
3262  * Allocate a new TX rate limit send tag from the network interface
3263  * given by the "ifp" argument and save it in "inp->inp_snd_tag":
3264  */
3265 int
3266 in_pcbattach_txrtlmt(struct inpcb *inp, struct ifnet *ifp,
3267     uint32_t flowtype, uint32_t flowid, uint32_t max_pacing_rate)
3268 {
3269 	union if_snd_tag_alloc_params params = {
3270 		.rate_limit.hdr.type = (max_pacing_rate == -1U) ?
3271 		    IF_SND_TAG_TYPE_UNLIMITED : IF_SND_TAG_TYPE_RATE_LIMIT,
3272 		.rate_limit.hdr.flowid = flowid,
3273 		.rate_limit.hdr.flowtype = flowtype,
3274 		.rate_limit.max_rate = max_pacing_rate,
3275 	};
3276 	int error;
3277 
3278 	INP_WLOCK_ASSERT(inp);
3279 
3280 	if (inp->inp_snd_tag != NULL)
3281 		return (EINVAL);
3282 
3283 	if (ifp->if_snd_tag_alloc == NULL) {
3284 		error = EOPNOTSUPP;
3285 	} else {
3286 		error = ifp->if_snd_tag_alloc(ifp, &params, &inp->inp_snd_tag);
3287 
3288 		/*
3289 		 * At success increment the refcount on
3290 		 * the send tag's network interface:
3291 		 */
3292 		if (error == 0)
3293 			if_ref(inp->inp_snd_tag->ifp);
3294 	}
3295 	return (error);
3296 }
3297 
3298 /*
3299  * Free an existing TX rate limit tag based on the "inp->inp_snd_tag",
3300  * if any:
3301  */
3302 void
3303 in_pcbdetach_txrtlmt(struct inpcb *inp)
3304 {
3305 	struct m_snd_tag *mst;
3306 	struct ifnet *ifp;
3307 
3308 	INP_WLOCK_ASSERT(inp);
3309 
3310 	mst = inp->inp_snd_tag;
3311 	inp->inp_snd_tag = NULL;
3312 
3313 	if (mst == NULL)
3314 		return;
3315 
3316 	ifp = mst->ifp;
3317 	if (ifp == NULL)
3318 		return;
3319 
3320 	/*
3321 	 * If the device was detached while we still had reference(s)
3322 	 * on the ifp, we assume if_snd_tag_free() was replaced with
3323 	 * stubs.
3324 	 */
3325 	ifp->if_snd_tag_free(mst);
3326 
3327 	/* release reference count on network interface */
3328 	if_rele(ifp);
3329 }
3330 
3331 /*
3332  * This function should be called when the INP_RATE_LIMIT_CHANGED flag
3333  * is set in the fast path and will attach/detach/modify the TX rate
3334  * limit send tag based on the socket's so_max_pacing_rate value.
3335  */
3336 void
3337 in_pcboutput_txrtlmt(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb)
3338 {
3339 	struct socket *socket;
3340 	uint32_t max_pacing_rate;
3341 	bool did_upgrade;
3342 	int error;
3343 
3344 	if (inp == NULL)
3345 		return;
3346 
3347 	socket = inp->inp_socket;
3348 	if (socket == NULL)
3349 		return;
3350 
3351 	if (!INP_WLOCKED(inp)) {
3352 		/*
3353 		 * NOTE: If the write locking fails, we need to bail
3354 		 * out and use the non-ratelimited ring for the
3355 		 * transmit until there is a new chance to get the
3356 		 * write lock.
3357 		 */
3358 		if (!INP_TRY_UPGRADE(inp))
3359 			return;
3360 		did_upgrade = 1;
3361 	} else {
3362 		did_upgrade = 0;
3363 	}
3364 
3365 	/*
3366 	 * NOTE: The so_max_pacing_rate value is read unlocked,
3367 	 * because atomic updates are not required since the variable
3368 	 * is checked at every mbuf we send. It is assumed that the
3369 	 * variable read itself will be atomic.
3370 	 */
3371 	max_pacing_rate = socket->so_max_pacing_rate;
3372 
3373 	/*
3374 	 * NOTE: When attaching to a network interface a reference is
3375 	 * made to ensure the network interface doesn't go away until
3376 	 * all ratelimit connections are gone. The network interface
3377 	 * pointers compared below represent valid network interfaces,
3378 	 * except when comparing towards NULL.
3379 	 */
3380 	if (max_pacing_rate == 0 && inp->inp_snd_tag == NULL) {
3381 		error = 0;
3382 	} else if (!(ifp->if_capenable & IFCAP_TXRTLMT)) {
3383 		if (inp->inp_snd_tag != NULL)
3384 			in_pcbdetach_txrtlmt(inp);
3385 		error = 0;
3386 	} else if (inp->inp_snd_tag == NULL) {
3387 		/*
3388 		 * In order to utilize packet pacing with RSS, we need
3389 		 * to wait until there is a valid RSS hash before we
3390 		 * can proceed:
3391 		 */
3392 		if (M_HASHTYPE_GET(mb) == M_HASHTYPE_NONE) {
3393 			error = EAGAIN;
3394 		} else {
3395 			error = in_pcbattach_txrtlmt(inp, ifp, M_HASHTYPE_GET(mb),
3396 			    mb->m_pkthdr.flowid, max_pacing_rate);
3397 		}
3398 	} else {
3399 		error = in_pcbmodify_txrtlmt(inp, max_pacing_rate);
3400 	}
3401 	if (error == 0 || error == EOPNOTSUPP)
3402 		inp->inp_flags2 &= ~INP_RATE_LIMIT_CHANGED;
3403 	if (did_upgrade)
3404 		INP_DOWNGRADE(inp);
3405 }
3406 
3407 /*
3408  * Track route changes for TX rate limiting.
3409  */
3410 void
3411 in_pcboutput_eagain(struct inpcb *inp)
3412 {
3413 	struct socket *socket;
3414 	bool did_upgrade;
3415 
3416 	if (inp == NULL)
3417 		return;
3418 
3419 	socket = inp->inp_socket;
3420 	if (socket == NULL)
3421 		return;
3422 
3423 	if (inp->inp_snd_tag == NULL)
3424 		return;
3425 
3426 	if (!INP_WLOCKED(inp)) {
3427 		/*
3428 		 * NOTE: If the write locking fails, we need to bail
3429 		 * out and use the non-ratelimited ring for the
3430 		 * transmit until there is a new chance to get the
3431 		 * write lock.
3432 		 */
3433 		if (!INP_TRY_UPGRADE(inp))
3434 			return;
3435 		did_upgrade = 1;
3436 	} else {
3437 		did_upgrade = 0;
3438 	}
3439 
3440 	/* detach rate limiting */
3441 	in_pcbdetach_txrtlmt(inp);
3442 
3443 	/* make sure new mbuf send tag allocation is made */
3444 	inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED;
3445 
3446 	if (did_upgrade)
3447 		INP_DOWNGRADE(inp);
3448 }
3449 #endif /* RATELIMIT */
3450