1 /*- 2 * Copyright (c) 1982, 1986, 1991, 1993, 1995 3 * The Regents of the University of California. 4 * Copyright (c) 2007-2009 Robert N. M. Watson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 4. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)in_pcb.c 8.4 (Berkeley) 5/24/95 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_ddb.h" 38 #include "opt_ipsec.h" 39 #include "opt_inet6.h" 40 41 #include <sys/param.h> 42 #include <sys/systm.h> 43 #include <sys/malloc.h> 44 #include <sys/mbuf.h> 45 #include <sys/domain.h> 46 #include <sys/protosw.h> 47 #include <sys/socket.h> 48 #include <sys/socketvar.h> 49 #include <sys/priv.h> 50 #include <sys/proc.h> 51 #include <sys/jail.h> 52 #include <sys/kernel.h> 53 #include <sys/sysctl.h> 54 55 #ifdef DDB 56 #include <ddb/ddb.h> 57 #endif 58 59 #include <vm/uma.h> 60 61 #include <net/if.h> 62 #include <net/if_types.h> 63 #include <net/route.h> 64 #include <net/vnet.h> 65 66 #include <netinet/in.h> 67 #include <netinet/in_pcb.h> 68 #include <netinet/in_var.h> 69 #include <netinet/ip_var.h> 70 #include <netinet/tcp_var.h> 71 #include <netinet/udp.h> 72 #include <netinet/udp_var.h> 73 #ifdef INET6 74 #include <netinet/ip6.h> 75 #include <netinet6/ip6_var.h> 76 #endif /* INET6 */ 77 78 79 #ifdef IPSEC 80 #include <netipsec/ipsec.h> 81 #include <netipsec/key.h> 82 #endif /* IPSEC */ 83 84 #include <security/mac/mac_framework.h> 85 86 /* 87 * These configure the range of local port addresses assigned to 88 * "unspecified" outgoing connections/packets/whatever. 89 */ 90 VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1; /* 1023 */ 91 VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART; /* 600 */ 92 VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST; /* 10000 */ 93 VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST; /* 65535 */ 94 VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO; /* 49152 */ 95 VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO; /* 65535 */ 96 97 /* 98 * Reserved ports accessible only to root. There are significant 99 * security considerations that must be accounted for when changing these, 100 * but the security benefits can be great. Please be careful. 101 */ 102 VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1; /* 1023 */ 103 VNET_DEFINE(int, ipport_reservedlow); 104 105 /* Variables dealing with random ephemeral port allocation. */ 106 VNET_DEFINE(int, ipport_randomized) = 1; /* user controlled via sysctl */ 107 VNET_DEFINE(int, ipport_randomcps) = 10; /* user controlled via sysctl */ 108 VNET_DEFINE(int, ipport_randomtime) = 45; /* user controlled via sysctl */ 109 VNET_DEFINE(int, ipport_stoprandom); /* toggled by ipport_tick */ 110 VNET_DEFINE(int, ipport_tcpallocs); 111 static VNET_DEFINE(int, ipport_tcplastcount); 112 113 #define V_ipport_tcplastcount VNET(ipport_tcplastcount) 114 115 #define RANGECHK(var, min, max) \ 116 if ((var) < (min)) { (var) = (min); } \ 117 else if ((var) > (max)) { (var) = (max); } 118 119 static void in_pcbremlists(struct inpcb *inp); 120 121 static int 122 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS) 123 { 124 int error; 125 126 #ifdef VIMAGE 127 error = vnet_sysctl_handle_int(oidp, arg1, arg2, req); 128 #else 129 error = sysctl_handle_int(oidp, arg1, arg2, req); 130 #endif 131 if (error == 0) { 132 RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1); 133 RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1); 134 RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX); 135 RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX); 136 RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX); 137 RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX); 138 } 139 return (error); 140 } 141 142 #undef RANGECHK 143 144 SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, CTLFLAG_RW, 0, "IP Ports"); 145 146 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst, 147 CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_lowfirstauto), 0, 148 &sysctl_net_ipport_check, "I", ""); 149 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast, 150 CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_lowlastauto), 0, 151 &sysctl_net_ipport_check, "I", ""); 152 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, first, 153 CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_firstauto), 0, 154 &sysctl_net_ipport_check, "I", ""); 155 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, last, 156 CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_lastauto), 0, 157 &sysctl_net_ipport_check, "I", ""); 158 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst, 159 CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_hifirstauto), 0, 160 &sysctl_net_ipport_check, "I", ""); 161 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, hilast, 162 CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_hilastauto), 0, 163 &sysctl_net_ipport_check, "I", ""); 164 SYSCTL_VNET_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh, 165 CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedhigh), 0, ""); 166 SYSCTL_VNET_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow, 167 CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, ""); 168 SYSCTL_VNET_INT(_net_inet_ip_portrange, OID_AUTO, randomized, CTLFLAG_RW, 169 &VNET_NAME(ipport_randomized), 0, "Enable random port allocation"); 170 SYSCTL_VNET_INT(_net_inet_ip_portrange, OID_AUTO, randomcps, CTLFLAG_RW, 171 &VNET_NAME(ipport_randomcps), 0, "Maximum number of random port " 172 "allocations before switching to a sequental one"); 173 SYSCTL_VNET_INT(_net_inet_ip_portrange, OID_AUTO, randomtime, CTLFLAG_RW, 174 &VNET_NAME(ipport_randomtime), 0, 175 "Minimum time to keep sequental port " 176 "allocation before switching to a random one"); 177 178 /* 179 * in_pcb.c: manage the Protocol Control Blocks. 180 * 181 * NOTE: It is assumed that most of these functions will be called with 182 * the pcbinfo lock held, and often, the inpcb lock held, as these utility 183 * functions often modify hash chains or addresses in pcbs. 184 */ 185 186 /* 187 * Allocate a PCB and associate it with the socket. 188 * On success return with the PCB locked. 189 */ 190 int 191 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo) 192 { 193 struct inpcb *inp; 194 int error; 195 196 INP_INFO_WLOCK_ASSERT(pcbinfo); 197 error = 0; 198 inp = uma_zalloc(pcbinfo->ipi_zone, M_NOWAIT); 199 if (inp == NULL) 200 return (ENOBUFS); 201 bzero(inp, inp_zero_size); 202 inp->inp_pcbinfo = pcbinfo; 203 inp->inp_socket = so; 204 inp->inp_cred = crhold(so->so_cred); 205 inp->inp_inc.inc_fibnum = so->so_fibnum; 206 #ifdef MAC 207 error = mac_inpcb_init(inp, M_NOWAIT); 208 if (error != 0) 209 goto out; 210 mac_inpcb_create(so, inp); 211 #endif 212 #ifdef IPSEC 213 error = ipsec_init_policy(so, &inp->inp_sp); 214 if (error != 0) { 215 #ifdef MAC 216 mac_inpcb_destroy(inp); 217 #endif 218 goto out; 219 } 220 #endif /*IPSEC*/ 221 #ifdef INET6 222 if (INP_SOCKAF(so) == AF_INET6) { 223 inp->inp_vflag |= INP_IPV6PROTO; 224 if (V_ip6_v6only) 225 inp->inp_flags |= IN6P_IPV6_V6ONLY; 226 } 227 #endif 228 LIST_INSERT_HEAD(pcbinfo->ipi_listhead, inp, inp_list); 229 pcbinfo->ipi_count++; 230 so->so_pcb = (caddr_t)inp; 231 #ifdef INET6 232 if (V_ip6_auto_flowlabel) 233 inp->inp_flags |= IN6P_AUTOFLOWLABEL; 234 #endif 235 INP_WLOCK(inp); 236 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 237 inp->inp_refcount = 1; /* Reference from the inpcbinfo */ 238 #if defined(IPSEC) || defined(MAC) 239 out: 240 if (error != 0) { 241 crfree(inp->inp_cred); 242 uma_zfree(pcbinfo->ipi_zone, inp); 243 } 244 #endif 245 return (error); 246 } 247 248 int 249 in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred) 250 { 251 int anonport, error; 252 253 INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo); 254 INP_WLOCK_ASSERT(inp); 255 256 if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY) 257 return (EINVAL); 258 anonport = inp->inp_lport == 0 && (nam == NULL || 259 ((struct sockaddr_in *)nam)->sin_port == 0); 260 error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr, 261 &inp->inp_lport, cred); 262 if (error) 263 return (error); 264 if (in_pcbinshash(inp) != 0) { 265 inp->inp_laddr.s_addr = INADDR_ANY; 266 inp->inp_lport = 0; 267 return (EAGAIN); 268 } 269 if (anonport) 270 inp->inp_flags |= INP_ANONPORT; 271 return (0); 272 } 273 274 /* 275 * Set up a bind operation on a PCB, performing port allocation 276 * as required, but do not actually modify the PCB. Callers can 277 * either complete the bind by setting inp_laddr/inp_lport and 278 * calling in_pcbinshash(), or they can just use the resulting 279 * port and address to authorise the sending of a once-off packet. 280 * 281 * On error, the values of *laddrp and *lportp are not changed. 282 */ 283 int 284 in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp, 285 u_short *lportp, struct ucred *cred) 286 { 287 struct socket *so = inp->inp_socket; 288 unsigned short *lastport; 289 struct sockaddr_in *sin; 290 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 291 struct in_addr laddr; 292 u_short lport = 0; 293 int wild = 0, reuseport = (so->so_options & SO_REUSEPORT); 294 int error; 295 int dorandom; 296 297 /* 298 * Because no actual state changes occur here, a global write lock on 299 * the pcbinfo isn't required. 300 */ 301 INP_INFO_LOCK_ASSERT(pcbinfo); 302 INP_LOCK_ASSERT(inp); 303 304 if (TAILQ_EMPTY(&V_in_ifaddrhead)) /* XXX broken! */ 305 return (EADDRNOTAVAIL); 306 laddr.s_addr = *laddrp; 307 if (nam != NULL && laddr.s_addr != INADDR_ANY) 308 return (EINVAL); 309 if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) == 0) 310 wild = INPLOOKUP_WILDCARD; 311 if (nam == NULL) { 312 if ((error = prison_local_ip4(cred, &laddr)) != 0) 313 return (error); 314 } else { 315 sin = (struct sockaddr_in *)nam; 316 if (nam->sa_len != sizeof (*sin)) 317 return (EINVAL); 318 #ifdef notdef 319 /* 320 * We should check the family, but old programs 321 * incorrectly fail to initialize it. 322 */ 323 if (sin->sin_family != AF_INET) 324 return (EAFNOSUPPORT); 325 #endif 326 error = prison_local_ip4(cred, &sin->sin_addr); 327 if (error) 328 return (error); 329 if (sin->sin_port != *lportp) { 330 /* Don't allow the port to change. */ 331 if (*lportp != 0) 332 return (EINVAL); 333 lport = sin->sin_port; 334 } 335 /* NB: lport is left as 0 if the port isn't being changed. */ 336 if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) { 337 /* 338 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast; 339 * allow complete duplication of binding if 340 * SO_REUSEPORT is set, or if SO_REUSEADDR is set 341 * and a multicast address is bound on both 342 * new and duplicated sockets. 343 */ 344 if (so->so_options & SO_REUSEADDR) 345 reuseport = SO_REUSEADDR|SO_REUSEPORT; 346 } else if (sin->sin_addr.s_addr != INADDR_ANY) { 347 sin->sin_port = 0; /* yech... */ 348 bzero(&sin->sin_zero, sizeof(sin->sin_zero)); 349 /* 350 * Is the address a local IP address? 351 * If INP_BINDANY is set, then the socket may be bound 352 * to any endpoint address, local or not. 353 */ 354 if ((inp->inp_flags & INP_BINDANY) == 0 && 355 ifa_ifwithaddr_check((struct sockaddr *)sin) == 0) 356 return (EADDRNOTAVAIL); 357 } 358 laddr = sin->sin_addr; 359 if (lport) { 360 struct inpcb *t; 361 struct tcptw *tw; 362 363 /* GROSS */ 364 if (ntohs(lport) <= V_ipport_reservedhigh && 365 ntohs(lport) >= V_ipport_reservedlow && 366 priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT, 367 0)) 368 return (EACCES); 369 if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) && 370 priv_check_cred(inp->inp_cred, 371 PRIV_NETINET_REUSEPORT, 0) != 0) { 372 t = in_pcblookup_local(pcbinfo, sin->sin_addr, 373 lport, INPLOOKUP_WILDCARD, cred); 374 /* 375 * XXX 376 * This entire block sorely needs a rewrite. 377 */ 378 if (t && 379 ((t->inp_flags & INP_TIMEWAIT) == 0) && 380 (so->so_type != SOCK_STREAM || 381 ntohl(t->inp_faddr.s_addr) == INADDR_ANY) && 382 (ntohl(sin->sin_addr.s_addr) != INADDR_ANY || 383 ntohl(t->inp_laddr.s_addr) != INADDR_ANY || 384 (t->inp_socket->so_options & 385 SO_REUSEPORT) == 0) && 386 (inp->inp_cred->cr_uid != 387 t->inp_cred->cr_uid)) 388 return (EADDRINUSE); 389 } 390 t = in_pcblookup_local(pcbinfo, sin->sin_addr, 391 lport, wild, cred); 392 if (t && (t->inp_flags & INP_TIMEWAIT)) { 393 /* 394 * XXXRW: If an incpb has had its timewait 395 * state recycled, we treat the address as 396 * being in use (for now). This is better 397 * than a panic, but not desirable. 398 */ 399 tw = intotw(inp); 400 if (tw == NULL || 401 (reuseport & tw->tw_so_options) == 0) 402 return (EADDRINUSE); 403 } else if (t && 404 (reuseport & t->inp_socket->so_options) == 0) { 405 #ifdef INET6 406 if (ntohl(sin->sin_addr.s_addr) != 407 INADDR_ANY || 408 ntohl(t->inp_laddr.s_addr) != 409 INADDR_ANY || 410 INP_SOCKAF(so) == 411 INP_SOCKAF(t->inp_socket)) 412 #endif 413 return (EADDRINUSE); 414 } 415 } 416 } 417 if (*lportp != 0) 418 lport = *lportp; 419 if (lport == 0) { 420 u_short first, last, aux; 421 int count; 422 423 if (inp->inp_flags & INP_HIGHPORT) { 424 first = V_ipport_hifirstauto; /* sysctl */ 425 last = V_ipport_hilastauto; 426 lastport = &pcbinfo->ipi_lasthi; 427 } else if (inp->inp_flags & INP_LOWPORT) { 428 error = priv_check_cred(cred, 429 PRIV_NETINET_RESERVEDPORT, 0); 430 if (error) 431 return error; 432 first = V_ipport_lowfirstauto; /* 1023 */ 433 last = V_ipport_lowlastauto; /* 600 */ 434 lastport = &pcbinfo->ipi_lastlow; 435 } else { 436 first = V_ipport_firstauto; /* sysctl */ 437 last = V_ipport_lastauto; 438 lastport = &pcbinfo->ipi_lastport; 439 } 440 /* 441 * For UDP, use random port allocation as long as the user 442 * allows it. For TCP (and as of yet unknown) connections, 443 * use random port allocation only if the user allows it AND 444 * ipport_tick() allows it. 445 */ 446 if (V_ipport_randomized && 447 (!V_ipport_stoprandom || pcbinfo == &V_udbinfo)) 448 dorandom = 1; 449 else 450 dorandom = 0; 451 /* 452 * It makes no sense to do random port allocation if 453 * we have the only port available. 454 */ 455 if (first == last) 456 dorandom = 0; 457 /* Make sure to not include UDP packets in the count. */ 458 if (pcbinfo != &V_udbinfo) 459 V_ipport_tcpallocs++; 460 /* 461 * Instead of having two loops further down counting up or down 462 * make sure that first is always <= last and go with only one 463 * code path implementing all logic. 464 */ 465 if (first > last) { 466 aux = first; 467 first = last; 468 last = aux; 469 } 470 471 if (dorandom) 472 *lastport = first + 473 (arc4random() % (last - first)); 474 475 count = last - first; 476 477 do { 478 if (count-- < 0) /* completely used? */ 479 return (EADDRNOTAVAIL); 480 ++*lastport; 481 if (*lastport < first || *lastport > last) 482 *lastport = first; 483 lport = htons(*lastport); 484 } while (in_pcblookup_local(pcbinfo, laddr, 485 lport, wild, cred)); 486 } 487 *laddrp = laddr.s_addr; 488 *lportp = lport; 489 return (0); 490 } 491 492 /* 493 * Connect from a socket to a specified address. 494 * Both address and port must be specified in argument sin. 495 * If don't have a local address for this socket yet, 496 * then pick one. 497 */ 498 int 499 in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred) 500 { 501 u_short lport, fport; 502 in_addr_t laddr, faddr; 503 int anonport, error; 504 505 INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo); 506 INP_WLOCK_ASSERT(inp); 507 508 lport = inp->inp_lport; 509 laddr = inp->inp_laddr.s_addr; 510 anonport = (lport == 0); 511 error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport, 512 NULL, cred); 513 if (error) 514 return (error); 515 516 /* Do the initial binding of the local address if required. */ 517 if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) { 518 inp->inp_lport = lport; 519 inp->inp_laddr.s_addr = laddr; 520 if (in_pcbinshash(inp) != 0) { 521 inp->inp_laddr.s_addr = INADDR_ANY; 522 inp->inp_lport = 0; 523 return (EAGAIN); 524 } 525 } 526 527 /* Commit the remaining changes. */ 528 inp->inp_lport = lport; 529 inp->inp_laddr.s_addr = laddr; 530 inp->inp_faddr.s_addr = faddr; 531 inp->inp_fport = fport; 532 in_pcbrehash(inp); 533 534 if (anonport) 535 inp->inp_flags |= INP_ANONPORT; 536 return (0); 537 } 538 539 /* 540 * Do proper source address selection on an unbound socket in case 541 * of connect. Take jails into account as well. 542 */ 543 static int 544 in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr, 545 struct ucred *cred) 546 { 547 struct ifaddr *ifa; 548 struct sockaddr *sa; 549 struct sockaddr_in *sin; 550 struct route sro; 551 int error; 552 553 KASSERT(laddr != NULL, ("%s: laddr NULL", __func__)); 554 555 error = 0; 556 bzero(&sro, sizeof(sro)); 557 558 sin = (struct sockaddr_in *)&sro.ro_dst; 559 sin->sin_family = AF_INET; 560 sin->sin_len = sizeof(struct sockaddr_in); 561 sin->sin_addr.s_addr = faddr->s_addr; 562 563 /* 564 * If route is known our src addr is taken from the i/f, 565 * else punt. 566 * 567 * Find out route to destination. 568 */ 569 if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0) 570 in_rtalloc_ign(&sro, 0, inp->inp_inc.inc_fibnum); 571 572 /* 573 * If we found a route, use the address corresponding to 574 * the outgoing interface. 575 * 576 * Otherwise assume faddr is reachable on a directly connected 577 * network and try to find a corresponding interface to take 578 * the source address from. 579 */ 580 if (sro.ro_rt == NULL || sro.ro_rt->rt_ifp == NULL) { 581 struct in_ifaddr *ia; 582 struct ifnet *ifp; 583 584 ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin)); 585 if (ia == NULL) 586 ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin)); 587 if (ia == NULL) { 588 error = ENETUNREACH; 589 goto done; 590 } 591 592 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 593 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 594 ifa_free(&ia->ia_ifa); 595 goto done; 596 } 597 598 ifp = ia->ia_ifp; 599 ifa_free(&ia->ia_ifa); 600 ia = NULL; 601 IF_ADDR_LOCK(ifp); 602 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 603 604 sa = ifa->ifa_addr; 605 if (sa->sa_family != AF_INET) 606 continue; 607 sin = (struct sockaddr_in *)sa; 608 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 609 ia = (struct in_ifaddr *)ifa; 610 break; 611 } 612 } 613 if (ia != NULL) { 614 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 615 IF_ADDR_UNLOCK(ifp); 616 goto done; 617 } 618 IF_ADDR_UNLOCK(ifp); 619 620 /* 3. As a last resort return the 'default' jail address. */ 621 error = prison_get_ip4(cred, laddr); 622 goto done; 623 } 624 625 /* 626 * If the outgoing interface on the route found is not 627 * a loopback interface, use the address from that interface. 628 * In case of jails do those three steps: 629 * 1. check if the interface address belongs to the jail. If so use it. 630 * 2. check if we have any address on the outgoing interface 631 * belonging to this jail. If so use it. 632 * 3. as a last resort return the 'default' jail address. 633 */ 634 if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) { 635 struct in_ifaddr *ia; 636 struct ifnet *ifp; 637 638 /* If not jailed, use the default returned. */ 639 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 640 ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa; 641 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 642 goto done; 643 } 644 645 /* Jailed. */ 646 /* 1. Check if the iface address belongs to the jail. */ 647 sin = (struct sockaddr_in *)sro.ro_rt->rt_ifa->ifa_addr; 648 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 649 ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa; 650 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 651 goto done; 652 } 653 654 /* 655 * 2. Check if we have any address on the outgoing interface 656 * belonging to this jail. 657 */ 658 ia = NULL; 659 ifp = sro.ro_rt->rt_ifp; 660 IF_ADDR_LOCK(ifp); 661 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 662 sa = ifa->ifa_addr; 663 if (sa->sa_family != AF_INET) 664 continue; 665 sin = (struct sockaddr_in *)sa; 666 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 667 ia = (struct in_ifaddr *)ifa; 668 break; 669 } 670 } 671 if (ia != NULL) { 672 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 673 IF_ADDR_UNLOCK(ifp); 674 goto done; 675 } 676 IF_ADDR_UNLOCK(ifp); 677 678 /* 3. As a last resort return the 'default' jail address. */ 679 error = prison_get_ip4(cred, laddr); 680 goto done; 681 } 682 683 /* 684 * The outgoing interface is marked with 'loopback net', so a route 685 * to ourselves is here. 686 * Try to find the interface of the destination address and then 687 * take the address from there. That interface is not necessarily 688 * a loopback interface. 689 * In case of jails, check that it is an address of the jail 690 * and if we cannot find, fall back to the 'default' jail address. 691 */ 692 if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) { 693 struct sockaddr_in sain; 694 struct in_ifaddr *ia; 695 696 bzero(&sain, sizeof(struct sockaddr_in)); 697 sain.sin_family = AF_INET; 698 sain.sin_len = sizeof(struct sockaddr_in); 699 sain.sin_addr.s_addr = faddr->s_addr; 700 701 ia = ifatoia(ifa_ifwithdstaddr(sintosa(&sain))); 702 if (ia == NULL) 703 ia = ifatoia(ifa_ifwithnet(sintosa(&sain))); 704 if (ia == NULL) 705 ia = ifatoia(ifa_ifwithaddr(sintosa(&sain))); 706 707 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 708 if (ia == NULL) { 709 error = ENETUNREACH; 710 goto done; 711 } 712 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 713 ifa_free(&ia->ia_ifa); 714 goto done; 715 } 716 717 /* Jailed. */ 718 if (ia != NULL) { 719 struct ifnet *ifp; 720 721 ifp = ia->ia_ifp; 722 ifa_free(&ia->ia_ifa); 723 ia = NULL; 724 IF_ADDR_LOCK(ifp); 725 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 726 727 sa = ifa->ifa_addr; 728 if (sa->sa_family != AF_INET) 729 continue; 730 sin = (struct sockaddr_in *)sa; 731 if (prison_check_ip4(cred, 732 &sin->sin_addr) == 0) { 733 ia = (struct in_ifaddr *)ifa; 734 break; 735 } 736 } 737 if (ia != NULL) { 738 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 739 IF_ADDR_UNLOCK(ifp); 740 goto done; 741 } 742 IF_ADDR_UNLOCK(ifp); 743 } 744 745 /* 3. As a last resort return the 'default' jail address. */ 746 error = prison_get_ip4(cred, laddr); 747 goto done; 748 } 749 750 done: 751 if (sro.ro_rt != NULL) 752 RTFREE(sro.ro_rt); 753 return (error); 754 } 755 756 /* 757 * Set up for a connect from a socket to the specified address. 758 * On entry, *laddrp and *lportp should contain the current local 759 * address and port for the PCB; these are updated to the values 760 * that should be placed in inp_laddr and inp_lport to complete 761 * the connect. 762 * 763 * On success, *faddrp and *fportp will be set to the remote address 764 * and port. These are not updated in the error case. 765 * 766 * If the operation fails because the connection already exists, 767 * *oinpp will be set to the PCB of that connection so that the 768 * caller can decide to override it. In all other cases, *oinpp 769 * is set to NULL. 770 */ 771 int 772 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam, 773 in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp, 774 struct inpcb **oinpp, struct ucred *cred) 775 { 776 struct sockaddr_in *sin = (struct sockaddr_in *)nam; 777 struct in_ifaddr *ia; 778 struct inpcb *oinp; 779 struct in_addr laddr, faddr; 780 u_short lport, fport; 781 int error; 782 783 /* 784 * Because a global state change doesn't actually occur here, a read 785 * lock is sufficient. 786 */ 787 INP_INFO_LOCK_ASSERT(inp->inp_pcbinfo); 788 INP_LOCK_ASSERT(inp); 789 790 if (oinpp != NULL) 791 *oinpp = NULL; 792 if (nam->sa_len != sizeof (*sin)) 793 return (EINVAL); 794 if (sin->sin_family != AF_INET) 795 return (EAFNOSUPPORT); 796 if (sin->sin_port == 0) 797 return (EADDRNOTAVAIL); 798 laddr.s_addr = *laddrp; 799 lport = *lportp; 800 faddr = sin->sin_addr; 801 fport = sin->sin_port; 802 803 if (!TAILQ_EMPTY(&V_in_ifaddrhead)) { 804 /* 805 * If the destination address is INADDR_ANY, 806 * use the primary local address. 807 * If the supplied address is INADDR_BROADCAST, 808 * and the primary interface supports broadcast, 809 * choose the broadcast address for that interface. 810 */ 811 if (faddr.s_addr == INADDR_ANY) { 812 IN_IFADDR_RLOCK(); 813 faddr = 814 IA_SIN(TAILQ_FIRST(&V_in_ifaddrhead))->sin_addr; 815 IN_IFADDR_RUNLOCK(); 816 if (cred != NULL && 817 (error = prison_get_ip4(cred, &faddr)) != 0) 818 return (error); 819 } else if (faddr.s_addr == (u_long)INADDR_BROADCAST) { 820 IN_IFADDR_RLOCK(); 821 if (TAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags & 822 IFF_BROADCAST) 823 faddr = satosin(&TAILQ_FIRST( 824 &V_in_ifaddrhead)->ia_broadaddr)->sin_addr; 825 IN_IFADDR_RUNLOCK(); 826 } 827 } 828 if (laddr.s_addr == INADDR_ANY) { 829 error = in_pcbladdr(inp, &faddr, &laddr, cred); 830 if (error) 831 return (error); 832 833 /* 834 * If the destination address is multicast and an outgoing 835 * interface has been set as a multicast option, use the 836 * address of that interface as our source address. 837 */ 838 if (IN_MULTICAST(ntohl(faddr.s_addr)) && 839 inp->inp_moptions != NULL) { 840 struct ip_moptions *imo; 841 struct ifnet *ifp; 842 843 imo = inp->inp_moptions; 844 if (imo->imo_multicast_ifp != NULL) { 845 ifp = imo->imo_multicast_ifp; 846 IN_IFADDR_RLOCK(); 847 TAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) 848 if (ia->ia_ifp == ifp) 849 break; 850 if (ia == NULL) { 851 IN_IFADDR_RUNLOCK(); 852 return (EADDRNOTAVAIL); 853 } 854 laddr = ia->ia_addr.sin_addr; 855 IN_IFADDR_RUNLOCK(); 856 } 857 } 858 } 859 860 oinp = in_pcblookup_hash(inp->inp_pcbinfo, faddr, fport, laddr, lport, 861 0, NULL); 862 if (oinp != NULL) { 863 if (oinpp != NULL) 864 *oinpp = oinp; 865 return (EADDRINUSE); 866 } 867 if (lport == 0) { 868 error = in_pcbbind_setup(inp, NULL, &laddr.s_addr, &lport, 869 cred); 870 if (error) 871 return (error); 872 } 873 *laddrp = laddr.s_addr; 874 *lportp = lport; 875 *faddrp = faddr.s_addr; 876 *fportp = fport; 877 return (0); 878 } 879 880 void 881 in_pcbdisconnect(struct inpcb *inp) 882 { 883 884 INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo); 885 INP_WLOCK_ASSERT(inp); 886 887 inp->inp_faddr.s_addr = INADDR_ANY; 888 inp->inp_fport = 0; 889 in_pcbrehash(inp); 890 } 891 892 /* 893 * in_pcbdetach() is responsibe for disassociating a socket from an inpcb. 894 * For most protocols, this will be invoked immediately prior to calling 895 * in_pcbfree(). However, with TCP the inpcb may significantly outlive the 896 * socket, in which case in_pcbfree() is deferred. 897 */ 898 void 899 in_pcbdetach(struct inpcb *inp) 900 { 901 902 KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__)); 903 904 inp->inp_socket->so_pcb = NULL; 905 inp->inp_socket = NULL; 906 } 907 908 /* 909 * in_pcbfree_internal() frees an inpcb that has been detached from its 910 * socket, and whose reference count has reached 0. It will also remove the 911 * inpcb from any global lists it might remain on. 912 */ 913 static void 914 in_pcbfree_internal(struct inpcb *inp) 915 { 916 struct inpcbinfo *ipi = inp->inp_pcbinfo; 917 918 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); 919 KASSERT(inp->inp_refcount == 0, ("%s: refcount !0", __func__)); 920 921 INP_INFO_WLOCK_ASSERT(ipi); 922 INP_WLOCK_ASSERT(inp); 923 924 #ifdef IPSEC 925 if (inp->inp_sp != NULL) 926 ipsec_delete_pcbpolicy(inp); 927 #endif /* IPSEC */ 928 inp->inp_gencnt = ++ipi->ipi_gencnt; 929 in_pcbremlists(inp); 930 #ifdef INET6 931 if (inp->inp_vflag & INP_IPV6PROTO) { 932 ip6_freepcbopts(inp->in6p_outputopts); 933 if (inp->in6p_moptions != NULL) 934 ip6_freemoptions(inp->in6p_moptions); 935 } 936 #endif 937 if (inp->inp_options) 938 (void)m_free(inp->inp_options); 939 if (inp->inp_moptions != NULL) 940 inp_freemoptions(inp->inp_moptions); 941 inp->inp_vflag = 0; 942 crfree(inp->inp_cred); 943 944 #ifdef MAC 945 mac_inpcb_destroy(inp); 946 #endif 947 INP_WUNLOCK(inp); 948 uma_zfree(ipi->ipi_zone, inp); 949 } 950 951 /* 952 * in_pcbref() bumps the reference count on an inpcb in order to maintain 953 * stability of an inpcb pointer despite the inpcb lock being released. This 954 * is used in TCP when the inpcbinfo lock needs to be acquired or upgraded, 955 * but where the inpcb lock is already held. 956 * 957 * While the inpcb will not be freed, releasing the inpcb lock means that the 958 * connection's state may change, so the caller should be careful to 959 * revalidate any cached state on reacquiring the lock. Drop the reference 960 * using in_pcbrele(). 961 */ 962 void 963 in_pcbref(struct inpcb *inp) 964 { 965 966 INP_WLOCK_ASSERT(inp); 967 968 KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__)); 969 970 inp->inp_refcount++; 971 } 972 973 /* 974 * Drop a refcount on an inpcb elevated using in_pcbref(); because a call to 975 * in_pcbfree() may have been made between in_pcbref() and in_pcbrele(), we 976 * return a flag indicating whether or not the inpcb remains valid. If it is 977 * valid, we return with the inpcb lock held. 978 */ 979 int 980 in_pcbrele(struct inpcb *inp) 981 { 982 #ifdef INVARIANTS 983 struct inpcbinfo *ipi = inp->inp_pcbinfo; 984 #endif 985 986 KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__)); 987 988 INP_INFO_WLOCK_ASSERT(ipi); 989 INP_WLOCK_ASSERT(inp); 990 991 inp->inp_refcount--; 992 if (inp->inp_refcount > 0) 993 return (0); 994 in_pcbfree_internal(inp); 995 return (1); 996 } 997 998 /* 999 * Unconditionally schedule an inpcb to be freed by decrementing its 1000 * reference count, which should occur only after the inpcb has been detached 1001 * from its socket. If another thread holds a temporary reference (acquired 1002 * using in_pcbref()) then the free is deferred until that reference is 1003 * released using in_pcbrele(), but the inpcb is still unlocked. 1004 */ 1005 void 1006 in_pcbfree(struct inpcb *inp) 1007 { 1008 #ifdef INVARIANTS 1009 struct inpcbinfo *ipi = inp->inp_pcbinfo; 1010 #endif 1011 1012 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", 1013 __func__)); 1014 1015 INP_INFO_WLOCK_ASSERT(ipi); 1016 INP_WLOCK_ASSERT(inp); 1017 1018 if (!in_pcbrele(inp)) 1019 INP_WUNLOCK(inp); 1020 } 1021 1022 /* 1023 * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and 1024 * port reservation, and preventing it from being returned by inpcb lookups. 1025 * 1026 * It is used by TCP to mark an inpcb as unused and avoid future packet 1027 * delivery or event notification when a socket remains open but TCP has 1028 * closed. This might occur as a result of a shutdown()-initiated TCP close 1029 * or a RST on the wire, and allows the port binding to be reused while still 1030 * maintaining the invariant that so_pcb always points to a valid inpcb until 1031 * in_pcbdetach(). 1032 * 1033 * XXXRW: An inp_lport of 0 is used to indicate that the inpcb is not on hash 1034 * lists, but can lead to confusing netstat output, as open sockets with 1035 * closed TCP connections will no longer appear to have their bound port 1036 * number. An explicit flag would be better, as it would allow us to leave 1037 * the port number intact after the connection is dropped. 1038 * 1039 * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by 1040 * in_pcbnotifyall() and in_pcbpurgeif0()? 1041 */ 1042 void 1043 in_pcbdrop(struct inpcb *inp) 1044 { 1045 1046 INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo); 1047 INP_WLOCK_ASSERT(inp); 1048 1049 inp->inp_flags |= INP_DROPPED; 1050 if (inp->inp_flags & INP_INHASHLIST) { 1051 struct inpcbport *phd = inp->inp_phd; 1052 1053 LIST_REMOVE(inp, inp_hash); 1054 LIST_REMOVE(inp, inp_portlist); 1055 if (LIST_FIRST(&phd->phd_pcblist) == NULL) { 1056 LIST_REMOVE(phd, phd_hash); 1057 free(phd, M_PCB); 1058 } 1059 inp->inp_flags &= ~INP_INHASHLIST; 1060 } 1061 } 1062 1063 /* 1064 * Common routines to return the socket addresses associated with inpcbs. 1065 */ 1066 struct sockaddr * 1067 in_sockaddr(in_port_t port, struct in_addr *addr_p) 1068 { 1069 struct sockaddr_in *sin; 1070 1071 sin = malloc(sizeof *sin, M_SONAME, 1072 M_WAITOK | M_ZERO); 1073 sin->sin_family = AF_INET; 1074 sin->sin_len = sizeof(*sin); 1075 sin->sin_addr = *addr_p; 1076 sin->sin_port = port; 1077 1078 return (struct sockaddr *)sin; 1079 } 1080 1081 int 1082 in_getsockaddr(struct socket *so, struct sockaddr **nam) 1083 { 1084 struct inpcb *inp; 1085 struct in_addr addr; 1086 in_port_t port; 1087 1088 inp = sotoinpcb(so); 1089 KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL")); 1090 1091 INP_RLOCK(inp); 1092 port = inp->inp_lport; 1093 addr = inp->inp_laddr; 1094 INP_RUNLOCK(inp); 1095 1096 *nam = in_sockaddr(port, &addr); 1097 return 0; 1098 } 1099 1100 int 1101 in_getpeeraddr(struct socket *so, struct sockaddr **nam) 1102 { 1103 struct inpcb *inp; 1104 struct in_addr addr; 1105 in_port_t port; 1106 1107 inp = sotoinpcb(so); 1108 KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL")); 1109 1110 INP_RLOCK(inp); 1111 port = inp->inp_fport; 1112 addr = inp->inp_faddr; 1113 INP_RUNLOCK(inp); 1114 1115 *nam = in_sockaddr(port, &addr); 1116 return 0; 1117 } 1118 1119 void 1120 in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno, 1121 struct inpcb *(*notify)(struct inpcb *, int)) 1122 { 1123 struct inpcb *inp, *inp_temp; 1124 1125 INP_INFO_WLOCK(pcbinfo); 1126 LIST_FOREACH_SAFE(inp, pcbinfo->ipi_listhead, inp_list, inp_temp) { 1127 INP_WLOCK(inp); 1128 #ifdef INET6 1129 if ((inp->inp_vflag & INP_IPV4) == 0) { 1130 INP_WUNLOCK(inp); 1131 continue; 1132 } 1133 #endif 1134 if (inp->inp_faddr.s_addr != faddr.s_addr || 1135 inp->inp_socket == NULL) { 1136 INP_WUNLOCK(inp); 1137 continue; 1138 } 1139 if ((*notify)(inp, errno)) 1140 INP_WUNLOCK(inp); 1141 } 1142 INP_INFO_WUNLOCK(pcbinfo); 1143 } 1144 1145 void 1146 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp) 1147 { 1148 struct inpcb *inp; 1149 struct ip_moptions *imo; 1150 int i, gap; 1151 1152 INP_INFO_RLOCK(pcbinfo); 1153 LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) { 1154 INP_WLOCK(inp); 1155 imo = inp->inp_moptions; 1156 if ((inp->inp_vflag & INP_IPV4) && 1157 imo != NULL) { 1158 /* 1159 * Unselect the outgoing interface if it is being 1160 * detached. 1161 */ 1162 if (imo->imo_multicast_ifp == ifp) 1163 imo->imo_multicast_ifp = NULL; 1164 1165 /* 1166 * Drop multicast group membership if we joined 1167 * through the interface being detached. 1168 */ 1169 for (i = 0, gap = 0; i < imo->imo_num_memberships; 1170 i++) { 1171 if (imo->imo_membership[i]->inm_ifp == ifp) { 1172 in_delmulti(imo->imo_membership[i]); 1173 gap++; 1174 } else if (gap != 0) 1175 imo->imo_membership[i - gap] = 1176 imo->imo_membership[i]; 1177 } 1178 imo->imo_num_memberships -= gap; 1179 } 1180 INP_WUNLOCK(inp); 1181 } 1182 INP_INFO_RUNLOCK(pcbinfo); 1183 } 1184 1185 /* 1186 * Lookup a PCB based on the local address and port. 1187 */ 1188 #define INP_LOOKUP_MAPPED_PCB_COST 3 1189 struct inpcb * 1190 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr, 1191 u_short lport, int wild_okay, struct ucred *cred) 1192 { 1193 struct inpcb *inp; 1194 #ifdef INET6 1195 int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST; 1196 #else 1197 int matchwild = 3; 1198 #endif 1199 int wildcard; 1200 1201 INP_INFO_LOCK_ASSERT(pcbinfo); 1202 1203 if (!wild_okay) { 1204 struct inpcbhead *head; 1205 /* 1206 * Look for an unconnected (wildcard foreign addr) PCB that 1207 * matches the local address and port we're looking for. 1208 */ 1209 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport, 1210 0, pcbinfo->ipi_hashmask)]; 1211 LIST_FOREACH(inp, head, inp_hash) { 1212 #ifdef INET6 1213 /* XXX inp locking */ 1214 if ((inp->inp_vflag & INP_IPV4) == 0) 1215 continue; 1216 #endif 1217 if (inp->inp_faddr.s_addr == INADDR_ANY && 1218 inp->inp_laddr.s_addr == laddr.s_addr && 1219 inp->inp_lport == lport) { 1220 /* 1221 * Found? 1222 */ 1223 if (cred == NULL || 1224 prison_equal_ip4(cred->cr_prison, 1225 inp->inp_cred->cr_prison)) 1226 return (inp); 1227 } 1228 } 1229 /* 1230 * Not found. 1231 */ 1232 return (NULL); 1233 } else { 1234 struct inpcbporthead *porthash; 1235 struct inpcbport *phd; 1236 struct inpcb *match = NULL; 1237 /* 1238 * Best fit PCB lookup. 1239 * 1240 * First see if this local port is in use by looking on the 1241 * port hash list. 1242 */ 1243 porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport, 1244 pcbinfo->ipi_porthashmask)]; 1245 LIST_FOREACH(phd, porthash, phd_hash) { 1246 if (phd->phd_port == lport) 1247 break; 1248 } 1249 if (phd != NULL) { 1250 /* 1251 * Port is in use by one or more PCBs. Look for best 1252 * fit. 1253 */ 1254 LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) { 1255 wildcard = 0; 1256 if (cred != NULL && 1257 !prison_equal_ip4(inp->inp_cred->cr_prison, 1258 cred->cr_prison)) 1259 continue; 1260 #ifdef INET6 1261 /* XXX inp locking */ 1262 if ((inp->inp_vflag & INP_IPV4) == 0) 1263 continue; 1264 /* 1265 * We never select the PCB that has 1266 * INP_IPV6 flag and is bound to :: if 1267 * we have another PCB which is bound 1268 * to 0.0.0.0. If a PCB has the 1269 * INP_IPV6 flag, then we set its cost 1270 * higher than IPv4 only PCBs. 1271 * 1272 * Note that the case only happens 1273 * when a socket is bound to ::, under 1274 * the condition that the use of the 1275 * mapped address is allowed. 1276 */ 1277 if ((inp->inp_vflag & INP_IPV6) != 0) 1278 wildcard += INP_LOOKUP_MAPPED_PCB_COST; 1279 #endif 1280 if (inp->inp_faddr.s_addr != INADDR_ANY) 1281 wildcard++; 1282 if (inp->inp_laddr.s_addr != INADDR_ANY) { 1283 if (laddr.s_addr == INADDR_ANY) 1284 wildcard++; 1285 else if (inp->inp_laddr.s_addr != laddr.s_addr) 1286 continue; 1287 } else { 1288 if (laddr.s_addr != INADDR_ANY) 1289 wildcard++; 1290 } 1291 if (wildcard < matchwild) { 1292 match = inp; 1293 matchwild = wildcard; 1294 if (matchwild == 0) 1295 break; 1296 } 1297 } 1298 } 1299 return (match); 1300 } 1301 } 1302 #undef INP_LOOKUP_MAPPED_PCB_COST 1303 1304 /* 1305 * Lookup PCB in hash list. 1306 */ 1307 struct inpcb * 1308 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr, 1309 u_int fport_arg, struct in_addr laddr, u_int lport_arg, int wildcard, 1310 struct ifnet *ifp) 1311 { 1312 struct inpcbhead *head; 1313 struct inpcb *inp, *tmpinp; 1314 u_short fport = fport_arg, lport = lport_arg; 1315 1316 INP_INFO_LOCK_ASSERT(pcbinfo); 1317 1318 /* 1319 * First look for an exact match. 1320 */ 1321 tmpinp = NULL; 1322 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport, 1323 pcbinfo->ipi_hashmask)]; 1324 LIST_FOREACH(inp, head, inp_hash) { 1325 #ifdef INET6 1326 /* XXX inp locking */ 1327 if ((inp->inp_vflag & INP_IPV4) == 0) 1328 continue; 1329 #endif 1330 if (inp->inp_faddr.s_addr == faddr.s_addr && 1331 inp->inp_laddr.s_addr == laddr.s_addr && 1332 inp->inp_fport == fport && 1333 inp->inp_lport == lport) { 1334 /* 1335 * XXX We should be able to directly return 1336 * the inp here, without any checks. 1337 * Well unless both bound with SO_REUSEPORT? 1338 */ 1339 if (prison_flag(inp->inp_cred, PR_IP4)) 1340 return (inp); 1341 if (tmpinp == NULL) 1342 tmpinp = inp; 1343 } 1344 } 1345 if (tmpinp != NULL) 1346 return (tmpinp); 1347 1348 /* 1349 * Then look for a wildcard match, if requested. 1350 */ 1351 if (wildcard == INPLOOKUP_WILDCARD) { 1352 struct inpcb *local_wild = NULL, *local_exact = NULL; 1353 #ifdef INET6 1354 struct inpcb *local_wild_mapped = NULL; 1355 #endif 1356 struct inpcb *jail_wild = NULL; 1357 int injail; 1358 1359 /* 1360 * Order of socket selection - we always prefer jails. 1361 * 1. jailed, non-wild. 1362 * 2. jailed, wild. 1363 * 3. non-jailed, non-wild. 1364 * 4. non-jailed, wild. 1365 */ 1366 1367 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport, 1368 0, pcbinfo->ipi_hashmask)]; 1369 LIST_FOREACH(inp, head, inp_hash) { 1370 #ifdef INET6 1371 /* XXX inp locking */ 1372 if ((inp->inp_vflag & INP_IPV4) == 0) 1373 continue; 1374 #endif 1375 if (inp->inp_faddr.s_addr != INADDR_ANY || 1376 inp->inp_lport != lport) 1377 continue; 1378 1379 /* XXX inp locking */ 1380 if (ifp && ifp->if_type == IFT_FAITH && 1381 (inp->inp_flags & INP_FAITH) == 0) 1382 continue; 1383 1384 injail = prison_flag(inp->inp_cred, PR_IP4); 1385 if (injail) { 1386 if (prison_check_ip4(inp->inp_cred, 1387 &laddr) != 0) 1388 continue; 1389 } else { 1390 if (local_exact != NULL) 1391 continue; 1392 } 1393 1394 if (inp->inp_laddr.s_addr == laddr.s_addr) { 1395 if (injail) 1396 return (inp); 1397 else 1398 local_exact = inp; 1399 } else if (inp->inp_laddr.s_addr == INADDR_ANY) { 1400 #ifdef INET6 1401 /* XXX inp locking, NULL check */ 1402 if (inp->inp_vflag & INP_IPV6PROTO) 1403 local_wild_mapped = inp; 1404 else 1405 #endif /* INET6 */ 1406 if (injail) 1407 jail_wild = inp; 1408 else 1409 local_wild = inp; 1410 } 1411 } /* LIST_FOREACH */ 1412 if (jail_wild != NULL) 1413 return (jail_wild); 1414 if (local_exact != NULL) 1415 return (local_exact); 1416 if (local_wild != NULL) 1417 return (local_wild); 1418 #ifdef INET6 1419 if (local_wild_mapped != NULL) 1420 return (local_wild_mapped); 1421 #endif /* defined(INET6) */ 1422 } /* if (wildcard == INPLOOKUP_WILDCARD) */ 1423 1424 return (NULL); 1425 } 1426 1427 /* 1428 * Insert PCB onto various hash lists. 1429 */ 1430 int 1431 in_pcbinshash(struct inpcb *inp) 1432 { 1433 struct inpcbhead *pcbhash; 1434 struct inpcbporthead *pcbporthash; 1435 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 1436 struct inpcbport *phd; 1437 u_int32_t hashkey_faddr; 1438 1439 INP_INFO_WLOCK_ASSERT(pcbinfo); 1440 INP_WLOCK_ASSERT(inp); 1441 KASSERT((inp->inp_flags & INP_INHASHLIST) == 0, 1442 ("in_pcbinshash: INP_INHASHLIST")); 1443 1444 #ifdef INET6 1445 if (inp->inp_vflag & INP_IPV6) 1446 hashkey_faddr = inp->in6p_faddr.s6_addr32[3] /* XXX */; 1447 else 1448 #endif /* INET6 */ 1449 hashkey_faddr = inp->inp_faddr.s_addr; 1450 1451 pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr, 1452 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 1453 1454 pcbporthash = &pcbinfo->ipi_porthashbase[ 1455 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)]; 1456 1457 /* 1458 * Go through port list and look for a head for this lport. 1459 */ 1460 LIST_FOREACH(phd, pcbporthash, phd_hash) { 1461 if (phd->phd_port == inp->inp_lport) 1462 break; 1463 } 1464 /* 1465 * If none exists, malloc one and tack it on. 1466 */ 1467 if (phd == NULL) { 1468 phd = malloc(sizeof(struct inpcbport), M_PCB, M_NOWAIT); 1469 if (phd == NULL) { 1470 return (ENOBUFS); /* XXX */ 1471 } 1472 phd->phd_port = inp->inp_lport; 1473 LIST_INIT(&phd->phd_pcblist); 1474 LIST_INSERT_HEAD(pcbporthash, phd, phd_hash); 1475 } 1476 inp->inp_phd = phd; 1477 LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist); 1478 LIST_INSERT_HEAD(pcbhash, inp, inp_hash); 1479 inp->inp_flags |= INP_INHASHLIST; 1480 return (0); 1481 } 1482 1483 /* 1484 * Move PCB to the proper hash bucket when { faddr, fport } have been 1485 * changed. NOTE: This does not handle the case of the lport changing (the 1486 * hashed port list would have to be updated as well), so the lport must 1487 * not change after in_pcbinshash() has been called. 1488 */ 1489 void 1490 in_pcbrehash(struct inpcb *inp) 1491 { 1492 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 1493 struct inpcbhead *head; 1494 u_int32_t hashkey_faddr; 1495 1496 INP_INFO_WLOCK_ASSERT(pcbinfo); 1497 INP_WLOCK_ASSERT(inp); 1498 KASSERT(inp->inp_flags & INP_INHASHLIST, 1499 ("in_pcbrehash: !INP_INHASHLIST")); 1500 1501 #ifdef INET6 1502 if (inp->inp_vflag & INP_IPV6) 1503 hashkey_faddr = inp->in6p_faddr.s6_addr32[3] /* XXX */; 1504 else 1505 #endif /* INET6 */ 1506 hashkey_faddr = inp->inp_faddr.s_addr; 1507 1508 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr, 1509 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 1510 1511 LIST_REMOVE(inp, inp_hash); 1512 LIST_INSERT_HEAD(head, inp, inp_hash); 1513 } 1514 1515 /* 1516 * Remove PCB from various lists. 1517 */ 1518 static void 1519 in_pcbremlists(struct inpcb *inp) 1520 { 1521 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 1522 1523 INP_INFO_WLOCK_ASSERT(pcbinfo); 1524 INP_WLOCK_ASSERT(inp); 1525 1526 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 1527 if (inp->inp_flags & INP_INHASHLIST) { 1528 struct inpcbport *phd = inp->inp_phd; 1529 1530 LIST_REMOVE(inp, inp_hash); 1531 LIST_REMOVE(inp, inp_portlist); 1532 if (LIST_FIRST(&phd->phd_pcblist) == NULL) { 1533 LIST_REMOVE(phd, phd_hash); 1534 free(phd, M_PCB); 1535 } 1536 inp->inp_flags &= ~INP_INHASHLIST; 1537 } 1538 LIST_REMOVE(inp, inp_list); 1539 pcbinfo->ipi_count--; 1540 } 1541 1542 /* 1543 * A set label operation has occurred at the socket layer, propagate the 1544 * label change into the in_pcb for the socket. 1545 */ 1546 void 1547 in_pcbsosetlabel(struct socket *so) 1548 { 1549 #ifdef MAC 1550 struct inpcb *inp; 1551 1552 inp = sotoinpcb(so); 1553 KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL")); 1554 1555 INP_WLOCK(inp); 1556 SOCK_LOCK(so); 1557 mac_inpcb_sosetlabel(so, inp); 1558 SOCK_UNLOCK(so); 1559 INP_WUNLOCK(inp); 1560 #endif 1561 } 1562 1563 /* 1564 * ipport_tick runs once per second, determining if random port allocation 1565 * should be continued. If more than ipport_randomcps ports have been 1566 * allocated in the last second, then we return to sequential port 1567 * allocation. We return to random allocation only once we drop below 1568 * ipport_randomcps for at least ipport_randomtime seconds. 1569 */ 1570 void 1571 ipport_tick(void *xtp) 1572 { 1573 VNET_ITERATOR_DECL(vnet_iter); 1574 1575 VNET_LIST_RLOCK_NOSLEEP(); 1576 VNET_FOREACH(vnet_iter) { 1577 CURVNET_SET(vnet_iter); /* XXX appease INVARIANTS here */ 1578 if (V_ipport_tcpallocs <= 1579 V_ipport_tcplastcount + V_ipport_randomcps) { 1580 if (V_ipport_stoprandom > 0) 1581 V_ipport_stoprandom--; 1582 } else 1583 V_ipport_stoprandom = V_ipport_randomtime; 1584 V_ipport_tcplastcount = V_ipport_tcpallocs; 1585 CURVNET_RESTORE(); 1586 } 1587 VNET_LIST_RUNLOCK_NOSLEEP(); 1588 callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL); 1589 } 1590 1591 void 1592 inp_wlock(struct inpcb *inp) 1593 { 1594 1595 INP_WLOCK(inp); 1596 } 1597 1598 void 1599 inp_wunlock(struct inpcb *inp) 1600 { 1601 1602 INP_WUNLOCK(inp); 1603 } 1604 1605 void 1606 inp_rlock(struct inpcb *inp) 1607 { 1608 1609 INP_RLOCK(inp); 1610 } 1611 1612 void 1613 inp_runlock(struct inpcb *inp) 1614 { 1615 1616 INP_RUNLOCK(inp); 1617 } 1618 1619 #ifdef INVARIANTS 1620 void 1621 inp_lock_assert(struct inpcb *inp) 1622 { 1623 1624 INP_WLOCK_ASSERT(inp); 1625 } 1626 1627 void 1628 inp_unlock_assert(struct inpcb *inp) 1629 { 1630 1631 INP_UNLOCK_ASSERT(inp); 1632 } 1633 #endif 1634 1635 void 1636 inp_apply_all(void (*func)(struct inpcb *, void *), void *arg) 1637 { 1638 struct inpcb *inp; 1639 1640 INP_INFO_RLOCK(&V_tcbinfo); 1641 LIST_FOREACH(inp, V_tcbinfo.ipi_listhead, inp_list) { 1642 INP_WLOCK(inp); 1643 func(inp, arg); 1644 INP_WUNLOCK(inp); 1645 } 1646 INP_INFO_RUNLOCK(&V_tcbinfo); 1647 } 1648 1649 struct socket * 1650 inp_inpcbtosocket(struct inpcb *inp) 1651 { 1652 1653 INP_WLOCK_ASSERT(inp); 1654 return (inp->inp_socket); 1655 } 1656 1657 struct tcpcb * 1658 inp_inpcbtotcpcb(struct inpcb *inp) 1659 { 1660 1661 INP_WLOCK_ASSERT(inp); 1662 return ((struct tcpcb *)inp->inp_ppcb); 1663 } 1664 1665 int 1666 inp_ip_tos_get(const struct inpcb *inp) 1667 { 1668 1669 return (inp->inp_ip_tos); 1670 } 1671 1672 void 1673 inp_ip_tos_set(struct inpcb *inp, int val) 1674 { 1675 1676 inp->inp_ip_tos = val; 1677 } 1678 1679 void 1680 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp, 1681 uint32_t *faddr, uint16_t *fp) 1682 { 1683 1684 INP_LOCK_ASSERT(inp); 1685 *laddr = inp->inp_laddr.s_addr; 1686 *faddr = inp->inp_faddr.s_addr; 1687 *lp = inp->inp_lport; 1688 *fp = inp->inp_fport; 1689 } 1690 1691 struct inpcb * 1692 so_sotoinpcb(struct socket *so) 1693 { 1694 1695 return (sotoinpcb(so)); 1696 } 1697 1698 struct tcpcb * 1699 so_sototcpcb(struct socket *so) 1700 { 1701 1702 return (sototcpcb(so)); 1703 } 1704 1705 #ifdef DDB 1706 static void 1707 db_print_indent(int indent) 1708 { 1709 int i; 1710 1711 for (i = 0; i < indent; i++) 1712 db_printf(" "); 1713 } 1714 1715 static void 1716 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent) 1717 { 1718 char faddr_str[48], laddr_str[48]; 1719 1720 db_print_indent(indent); 1721 db_printf("%s at %p\n", name, inc); 1722 1723 indent += 2; 1724 1725 #ifdef INET6 1726 if (inc->inc_flags & INC_ISIPV6) { 1727 /* IPv6. */ 1728 ip6_sprintf(laddr_str, &inc->inc6_laddr); 1729 ip6_sprintf(faddr_str, &inc->inc6_faddr); 1730 } else { 1731 #endif 1732 /* IPv4. */ 1733 inet_ntoa_r(inc->inc_laddr, laddr_str); 1734 inet_ntoa_r(inc->inc_faddr, faddr_str); 1735 #ifdef INET6 1736 } 1737 #endif 1738 db_print_indent(indent); 1739 db_printf("inc_laddr %s inc_lport %u\n", laddr_str, 1740 ntohs(inc->inc_lport)); 1741 db_print_indent(indent); 1742 db_printf("inc_faddr %s inc_fport %u\n", faddr_str, 1743 ntohs(inc->inc_fport)); 1744 } 1745 1746 static void 1747 db_print_inpflags(int inp_flags) 1748 { 1749 int comma; 1750 1751 comma = 0; 1752 if (inp_flags & INP_RECVOPTS) { 1753 db_printf("%sINP_RECVOPTS", comma ? ", " : ""); 1754 comma = 1; 1755 } 1756 if (inp_flags & INP_RECVRETOPTS) { 1757 db_printf("%sINP_RECVRETOPTS", comma ? ", " : ""); 1758 comma = 1; 1759 } 1760 if (inp_flags & INP_RECVDSTADDR) { 1761 db_printf("%sINP_RECVDSTADDR", comma ? ", " : ""); 1762 comma = 1; 1763 } 1764 if (inp_flags & INP_HDRINCL) { 1765 db_printf("%sINP_HDRINCL", comma ? ", " : ""); 1766 comma = 1; 1767 } 1768 if (inp_flags & INP_HIGHPORT) { 1769 db_printf("%sINP_HIGHPORT", comma ? ", " : ""); 1770 comma = 1; 1771 } 1772 if (inp_flags & INP_LOWPORT) { 1773 db_printf("%sINP_LOWPORT", comma ? ", " : ""); 1774 comma = 1; 1775 } 1776 if (inp_flags & INP_ANONPORT) { 1777 db_printf("%sINP_ANONPORT", comma ? ", " : ""); 1778 comma = 1; 1779 } 1780 if (inp_flags & INP_RECVIF) { 1781 db_printf("%sINP_RECVIF", comma ? ", " : ""); 1782 comma = 1; 1783 } 1784 if (inp_flags & INP_MTUDISC) { 1785 db_printf("%sINP_MTUDISC", comma ? ", " : ""); 1786 comma = 1; 1787 } 1788 if (inp_flags & INP_FAITH) { 1789 db_printf("%sINP_FAITH", comma ? ", " : ""); 1790 comma = 1; 1791 } 1792 if (inp_flags & INP_RECVTTL) { 1793 db_printf("%sINP_RECVTTL", comma ? ", " : ""); 1794 comma = 1; 1795 } 1796 if (inp_flags & INP_DONTFRAG) { 1797 db_printf("%sINP_DONTFRAG", comma ? ", " : ""); 1798 comma = 1; 1799 } 1800 if (inp_flags & IN6P_IPV6_V6ONLY) { 1801 db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : ""); 1802 comma = 1; 1803 } 1804 if (inp_flags & IN6P_PKTINFO) { 1805 db_printf("%sIN6P_PKTINFO", comma ? ", " : ""); 1806 comma = 1; 1807 } 1808 if (inp_flags & IN6P_HOPLIMIT) { 1809 db_printf("%sIN6P_HOPLIMIT", comma ? ", " : ""); 1810 comma = 1; 1811 } 1812 if (inp_flags & IN6P_HOPOPTS) { 1813 db_printf("%sIN6P_HOPOPTS", comma ? ", " : ""); 1814 comma = 1; 1815 } 1816 if (inp_flags & IN6P_DSTOPTS) { 1817 db_printf("%sIN6P_DSTOPTS", comma ? ", " : ""); 1818 comma = 1; 1819 } 1820 if (inp_flags & IN6P_RTHDR) { 1821 db_printf("%sIN6P_RTHDR", comma ? ", " : ""); 1822 comma = 1; 1823 } 1824 if (inp_flags & IN6P_RTHDRDSTOPTS) { 1825 db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : ""); 1826 comma = 1; 1827 } 1828 if (inp_flags & IN6P_TCLASS) { 1829 db_printf("%sIN6P_TCLASS", comma ? ", " : ""); 1830 comma = 1; 1831 } 1832 if (inp_flags & IN6P_AUTOFLOWLABEL) { 1833 db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : ""); 1834 comma = 1; 1835 } 1836 if (inp_flags & INP_TIMEWAIT) { 1837 db_printf("%sINP_TIMEWAIT", comma ? ", " : ""); 1838 comma = 1; 1839 } 1840 if (inp_flags & INP_ONESBCAST) { 1841 db_printf("%sINP_ONESBCAST", comma ? ", " : ""); 1842 comma = 1; 1843 } 1844 if (inp_flags & INP_DROPPED) { 1845 db_printf("%sINP_DROPPED", comma ? ", " : ""); 1846 comma = 1; 1847 } 1848 if (inp_flags & INP_SOCKREF) { 1849 db_printf("%sINP_SOCKREF", comma ? ", " : ""); 1850 comma = 1; 1851 } 1852 if (inp_flags & IN6P_RFC2292) { 1853 db_printf("%sIN6P_RFC2292", comma ? ", " : ""); 1854 comma = 1; 1855 } 1856 if (inp_flags & IN6P_MTU) { 1857 db_printf("IN6P_MTU%s", comma ? ", " : ""); 1858 comma = 1; 1859 } 1860 } 1861 1862 static void 1863 db_print_inpvflag(u_char inp_vflag) 1864 { 1865 int comma; 1866 1867 comma = 0; 1868 if (inp_vflag & INP_IPV4) { 1869 db_printf("%sINP_IPV4", comma ? ", " : ""); 1870 comma = 1; 1871 } 1872 if (inp_vflag & INP_IPV6) { 1873 db_printf("%sINP_IPV6", comma ? ", " : ""); 1874 comma = 1; 1875 } 1876 if (inp_vflag & INP_IPV6PROTO) { 1877 db_printf("%sINP_IPV6PROTO", comma ? ", " : ""); 1878 comma = 1; 1879 } 1880 } 1881 1882 static void 1883 db_print_inpcb(struct inpcb *inp, const char *name, int indent) 1884 { 1885 1886 db_print_indent(indent); 1887 db_printf("%s at %p\n", name, inp); 1888 1889 indent += 2; 1890 1891 db_print_indent(indent); 1892 db_printf("inp_flow: 0x%x\n", inp->inp_flow); 1893 1894 db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent); 1895 1896 db_print_indent(indent); 1897 db_printf("inp_ppcb: %p inp_pcbinfo: %p inp_socket: %p\n", 1898 inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket); 1899 1900 db_print_indent(indent); 1901 db_printf("inp_label: %p inp_flags: 0x%x (", 1902 inp->inp_label, inp->inp_flags); 1903 db_print_inpflags(inp->inp_flags); 1904 db_printf(")\n"); 1905 1906 db_print_indent(indent); 1907 db_printf("inp_sp: %p inp_vflag: 0x%x (", inp->inp_sp, 1908 inp->inp_vflag); 1909 db_print_inpvflag(inp->inp_vflag); 1910 db_printf(")\n"); 1911 1912 db_print_indent(indent); 1913 db_printf("inp_ip_ttl: %d inp_ip_p: %d inp_ip_minttl: %d\n", 1914 inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl); 1915 1916 db_print_indent(indent); 1917 #ifdef INET6 1918 if (inp->inp_vflag & INP_IPV6) { 1919 db_printf("in6p_options: %p in6p_outputopts: %p " 1920 "in6p_moptions: %p\n", inp->in6p_options, 1921 inp->in6p_outputopts, inp->in6p_moptions); 1922 db_printf("in6p_icmp6filt: %p in6p_cksum %d " 1923 "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum, 1924 inp->in6p_hops); 1925 } else 1926 #endif 1927 { 1928 db_printf("inp_ip_tos: %d inp_ip_options: %p " 1929 "inp_ip_moptions: %p\n", inp->inp_ip_tos, 1930 inp->inp_options, inp->inp_moptions); 1931 } 1932 1933 db_print_indent(indent); 1934 db_printf("inp_phd: %p inp_gencnt: %ju\n", inp->inp_phd, 1935 (uintmax_t)inp->inp_gencnt); 1936 } 1937 1938 DB_SHOW_COMMAND(inpcb, db_show_inpcb) 1939 { 1940 struct inpcb *inp; 1941 1942 if (!have_addr) { 1943 db_printf("usage: show inpcb <addr>\n"); 1944 return; 1945 } 1946 inp = (struct inpcb *)addr; 1947 1948 db_print_inpcb(inp, "inpcb", 0); 1949 } 1950 #endif 1951