1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1991, 1993, 1995 5 * The Regents of the University of California. 6 * Copyright (c) 2007-2009 Robert N. M. Watson 7 * Copyright (c) 2010-2011 Juniper Networks, Inc. 8 * Copyright (c) 2021-2022 Gleb Smirnoff <glebius@FreeBSD.org> 9 * All rights reserved. 10 * 11 * Portions of this software were developed by Robert N. M. Watson under 12 * contract to Juniper Networks, Inc. 13 * 14 * Redistribution and use in source and binary forms, with or without 15 * modification, are permitted provided that the following conditions 16 * are met: 17 * 1. Redistributions of source code must retain the above copyright 18 * notice, this list of conditions and the following disclaimer. 19 * 2. Redistributions in binary form must reproduce the above copyright 20 * notice, this list of conditions and the following disclaimer in the 21 * documentation and/or other materials provided with the distribution. 22 * 3. Neither the name of the University nor the names of its contributors 23 * may be used to endorse or promote products derived from this software 24 * without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 * 38 * @(#)in_pcb.c 8.4 (Berkeley) 5/24/95 39 */ 40 41 #include <sys/cdefs.h> 42 __FBSDID("$FreeBSD$"); 43 44 #include "opt_ddb.h" 45 #include "opt_ipsec.h" 46 #include "opt_inet.h" 47 #include "opt_inet6.h" 48 #include "opt_ratelimit.h" 49 #include "opt_route.h" 50 #include "opt_rss.h" 51 52 #include <sys/param.h> 53 #include <sys/hash.h> 54 #include <sys/systm.h> 55 #include <sys/libkern.h> 56 #include <sys/lock.h> 57 #include <sys/malloc.h> 58 #include <sys/mbuf.h> 59 #include <sys/eventhandler.h> 60 #include <sys/domain.h> 61 #include <sys/protosw.h> 62 #include <sys/smp.h> 63 #include <sys/socket.h> 64 #include <sys/socketvar.h> 65 #include <sys/sockio.h> 66 #include <sys/priv.h> 67 #include <sys/proc.h> 68 #include <sys/refcount.h> 69 #include <sys/jail.h> 70 #include <sys/kernel.h> 71 #include <sys/sysctl.h> 72 73 #ifdef DDB 74 #include <ddb/ddb.h> 75 #endif 76 77 #include <vm/uma.h> 78 #include <vm/vm.h> 79 80 #include <net/if.h> 81 #include <net/if_var.h> 82 #include <net/if_private.h> 83 #include <net/if_types.h> 84 #include <net/if_llatbl.h> 85 #include <net/route.h> 86 #include <net/rss_config.h> 87 #include <net/vnet.h> 88 89 #if defined(INET) || defined(INET6) 90 #include <netinet/in.h> 91 #include <netinet/in_pcb.h> 92 #include <netinet/in_pcb_var.h> 93 #include <netinet/tcp.h> 94 #ifdef INET 95 #include <netinet/in_var.h> 96 #include <netinet/in_fib.h> 97 #endif 98 #include <netinet/ip_var.h> 99 #ifdef INET6 100 #include <netinet/ip6.h> 101 #include <netinet6/in6_pcb.h> 102 #include <netinet6/in6_var.h> 103 #include <netinet6/ip6_var.h> 104 #endif /* INET6 */ 105 #include <net/route/nhop.h> 106 #endif 107 108 #include <netipsec/ipsec_support.h> 109 110 #include <security/mac/mac_framework.h> 111 112 #define INPCBLBGROUP_SIZMIN 8 113 #define INPCBLBGROUP_SIZMAX 256 114 #define INP_FREED 0x00000200 /* See in_pcb.h. */ 115 116 /* 117 * These configure the range of local port addresses assigned to 118 * "unspecified" outgoing connections/packets/whatever. 119 */ 120 VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1; /* 1023 */ 121 VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART; /* 600 */ 122 VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST; /* 10000 */ 123 VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST; /* 65535 */ 124 VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO; /* 49152 */ 125 VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO; /* 65535 */ 126 127 /* 128 * Reserved ports accessible only to root. There are significant 129 * security considerations that must be accounted for when changing these, 130 * but the security benefits can be great. Please be careful. 131 */ 132 VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1; /* 1023 */ 133 VNET_DEFINE(int, ipport_reservedlow); 134 135 /* Enable random ephemeral port allocation by default. */ 136 VNET_DEFINE(int, ipport_randomized) = 1; 137 138 #ifdef INET 139 static struct inpcb *in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, 140 struct in_addr faddr, u_int fport_arg, 141 struct in_addr laddr, u_int lport_arg, 142 int lookupflags, struct ifnet *ifp, 143 uint8_t numa_domain); 144 145 #define RANGECHK(var, min, max) \ 146 if ((var) < (min)) { (var) = (min); } \ 147 else if ((var) > (max)) { (var) = (max); } 148 149 static int 150 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS) 151 { 152 int error; 153 154 error = sysctl_handle_int(oidp, arg1, arg2, req); 155 if (error == 0) { 156 RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1); 157 RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1); 158 RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX); 159 RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX); 160 RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX); 161 RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX); 162 } 163 return (error); 164 } 165 166 #undef RANGECHK 167 168 static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, 169 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 170 "IP Ports"); 171 172 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst, 173 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 174 &VNET_NAME(ipport_lowfirstauto), 0, &sysctl_net_ipport_check, "I", 175 ""); 176 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast, 177 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 178 &VNET_NAME(ipport_lowlastauto), 0, &sysctl_net_ipport_check, "I", 179 ""); 180 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first, 181 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 182 &VNET_NAME(ipport_firstauto), 0, &sysctl_net_ipport_check, "I", 183 ""); 184 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last, 185 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 186 &VNET_NAME(ipport_lastauto), 0, &sysctl_net_ipport_check, "I", 187 ""); 188 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst, 189 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 190 &VNET_NAME(ipport_hifirstauto), 0, &sysctl_net_ipport_check, "I", 191 ""); 192 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast, 193 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 194 &VNET_NAME(ipport_hilastauto), 0, &sysctl_net_ipport_check, "I", 195 ""); 196 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh, 197 CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE, 198 &VNET_NAME(ipport_reservedhigh), 0, ""); 199 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow, 200 CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, ""); 201 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized, 202 CTLFLAG_VNET | CTLFLAG_RW, 203 &VNET_NAME(ipport_randomized), 0, "Enable random port allocation"); 204 205 #ifdef RATELIMIT 206 counter_u64_t rate_limit_new; 207 counter_u64_t rate_limit_chg; 208 counter_u64_t rate_limit_active; 209 counter_u64_t rate_limit_alloc_fail; 210 counter_u64_t rate_limit_set_ok; 211 212 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, rl, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 213 "IP Rate Limiting"); 214 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, active, CTLFLAG_RD, 215 &rate_limit_active, "Active rate limited connections"); 216 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, alloc_fail, CTLFLAG_RD, 217 &rate_limit_alloc_fail, "Rate limited connection failures"); 218 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, set_ok, CTLFLAG_RD, 219 &rate_limit_set_ok, "Rate limited setting succeeded"); 220 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, newrl, CTLFLAG_RD, 221 &rate_limit_new, "Total Rate limit new attempts"); 222 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, chgrl, CTLFLAG_RD, 223 &rate_limit_chg, "Total Rate limited change attempts"); 224 225 #endif /* RATELIMIT */ 226 227 #endif /* INET */ 228 229 VNET_DEFINE(uint32_t, in_pcbhashseed); 230 static void 231 in_pcbhashseed_init(void) 232 { 233 234 V_in_pcbhashseed = arc4random(); 235 } 236 VNET_SYSINIT(in_pcbhashseed_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_FIRST, 237 in_pcbhashseed_init, 0); 238 239 static void in_pcbremhash(struct inpcb *); 240 241 /* 242 * in_pcb.c: manage the Protocol Control Blocks. 243 * 244 * NOTE: It is assumed that most of these functions will be called with 245 * the pcbinfo lock held, and often, the inpcb lock held, as these utility 246 * functions often modify hash chains or addresses in pcbs. 247 */ 248 249 static struct inpcblbgroup * 250 in_pcblbgroup_alloc(struct inpcblbgrouphead *hdr, struct ucred *cred, 251 u_char vflag, uint16_t port, const union in_dependaddr *addr, int size, 252 uint8_t numa_domain) 253 { 254 struct inpcblbgroup *grp; 255 size_t bytes; 256 257 bytes = __offsetof(struct inpcblbgroup, il_inp[size]); 258 grp = malloc(bytes, M_PCB, M_ZERO | M_NOWAIT); 259 if (grp == NULL) 260 return (NULL); 261 grp->il_cred = crhold(cred); 262 grp->il_vflag = vflag; 263 grp->il_lport = port; 264 grp->il_numa_domain = numa_domain; 265 grp->il_dependladdr = *addr; 266 grp->il_inpsiz = size; 267 CK_LIST_INSERT_HEAD(hdr, grp, il_list); 268 return (grp); 269 } 270 271 static void 272 in_pcblbgroup_free_deferred(epoch_context_t ctx) 273 { 274 struct inpcblbgroup *grp; 275 276 grp = __containerof(ctx, struct inpcblbgroup, il_epoch_ctx); 277 crfree(grp->il_cred); 278 free(grp, M_PCB); 279 } 280 281 static void 282 in_pcblbgroup_free(struct inpcblbgroup *grp) 283 { 284 285 CK_LIST_REMOVE(grp, il_list); 286 NET_EPOCH_CALL(in_pcblbgroup_free_deferred, &grp->il_epoch_ctx); 287 } 288 289 static struct inpcblbgroup * 290 in_pcblbgroup_resize(struct inpcblbgrouphead *hdr, 291 struct inpcblbgroup *old_grp, int size) 292 { 293 struct inpcblbgroup *grp; 294 int i; 295 296 grp = in_pcblbgroup_alloc(hdr, old_grp->il_cred, old_grp->il_vflag, 297 old_grp->il_lport, &old_grp->il_dependladdr, size, 298 old_grp->il_numa_domain); 299 if (grp == NULL) 300 return (NULL); 301 302 KASSERT(old_grp->il_inpcnt < grp->il_inpsiz, 303 ("invalid new local group size %d and old local group count %d", 304 grp->il_inpsiz, old_grp->il_inpcnt)); 305 306 for (i = 0; i < old_grp->il_inpcnt; ++i) 307 grp->il_inp[i] = old_grp->il_inp[i]; 308 grp->il_inpcnt = old_grp->il_inpcnt; 309 in_pcblbgroup_free(old_grp); 310 return (grp); 311 } 312 313 /* 314 * PCB at index 'i' is removed from the group. Pull up the ones below il_inp[i] 315 * and shrink group if possible. 316 */ 317 static void 318 in_pcblbgroup_reorder(struct inpcblbgrouphead *hdr, struct inpcblbgroup **grpp, 319 int i) 320 { 321 struct inpcblbgroup *grp, *new_grp; 322 323 grp = *grpp; 324 for (; i + 1 < grp->il_inpcnt; ++i) 325 grp->il_inp[i] = grp->il_inp[i + 1]; 326 grp->il_inpcnt--; 327 328 if (grp->il_inpsiz > INPCBLBGROUP_SIZMIN && 329 grp->il_inpcnt <= grp->il_inpsiz / 4) { 330 /* Shrink this group. */ 331 new_grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz / 2); 332 if (new_grp != NULL) 333 *grpp = new_grp; 334 } 335 } 336 337 /* 338 * Add PCB to load balance group for SO_REUSEPORT_LB option. 339 */ 340 static int 341 in_pcbinslbgrouphash(struct inpcb *inp, uint8_t numa_domain) 342 { 343 const static struct timeval interval = { 60, 0 }; 344 static struct timeval lastprint; 345 struct inpcbinfo *pcbinfo; 346 struct inpcblbgrouphead *hdr; 347 struct inpcblbgroup *grp; 348 uint32_t idx; 349 350 pcbinfo = inp->inp_pcbinfo; 351 352 INP_WLOCK_ASSERT(inp); 353 INP_HASH_WLOCK_ASSERT(pcbinfo); 354 355 #ifdef INET6 356 /* 357 * Don't allow IPv4 mapped INET6 wild socket. 358 */ 359 if ((inp->inp_vflag & INP_IPV4) && 360 inp->inp_laddr.s_addr == INADDR_ANY && 361 INP_CHECK_SOCKAF(inp->inp_socket, AF_INET6)) { 362 return (0); 363 } 364 #endif 365 366 idx = INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask); 367 hdr = &pcbinfo->ipi_lbgrouphashbase[idx]; 368 CK_LIST_FOREACH(grp, hdr, il_list) { 369 if (grp->il_cred->cr_prison == inp->inp_cred->cr_prison && 370 grp->il_vflag == inp->inp_vflag && 371 grp->il_lport == inp->inp_lport && 372 grp->il_numa_domain == numa_domain && 373 memcmp(&grp->il_dependladdr, 374 &inp->inp_inc.inc_ie.ie_dependladdr, 375 sizeof(grp->il_dependladdr)) == 0) { 376 break; 377 } 378 } 379 if (grp == NULL) { 380 /* Create new load balance group. */ 381 grp = in_pcblbgroup_alloc(hdr, inp->inp_cred, inp->inp_vflag, 382 inp->inp_lport, &inp->inp_inc.inc_ie.ie_dependladdr, 383 INPCBLBGROUP_SIZMIN, numa_domain); 384 if (grp == NULL) 385 return (ENOBUFS); 386 } else if (grp->il_inpcnt == grp->il_inpsiz) { 387 if (grp->il_inpsiz >= INPCBLBGROUP_SIZMAX) { 388 if (ratecheck(&lastprint, &interval)) 389 printf("lb group port %d, limit reached\n", 390 ntohs(grp->il_lport)); 391 return (0); 392 } 393 394 /* Expand this local group. */ 395 grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz * 2); 396 if (grp == NULL) 397 return (ENOBUFS); 398 } 399 400 KASSERT(grp->il_inpcnt < grp->il_inpsiz, 401 ("invalid local group size %d and count %d", grp->il_inpsiz, 402 grp->il_inpcnt)); 403 404 grp->il_inp[grp->il_inpcnt] = inp; 405 grp->il_inpcnt++; 406 return (0); 407 } 408 409 /* 410 * Remove PCB from load balance group. 411 */ 412 static void 413 in_pcbremlbgrouphash(struct inpcb *inp) 414 { 415 struct inpcbinfo *pcbinfo; 416 struct inpcblbgrouphead *hdr; 417 struct inpcblbgroup *grp; 418 int i; 419 420 pcbinfo = inp->inp_pcbinfo; 421 422 INP_WLOCK_ASSERT(inp); 423 INP_HASH_WLOCK_ASSERT(pcbinfo); 424 425 hdr = &pcbinfo->ipi_lbgrouphashbase[ 426 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask)]; 427 CK_LIST_FOREACH(grp, hdr, il_list) { 428 for (i = 0; i < grp->il_inpcnt; ++i) { 429 if (grp->il_inp[i] != inp) 430 continue; 431 432 if (grp->il_inpcnt == 1) { 433 /* We are the last, free this local group. */ 434 in_pcblbgroup_free(grp); 435 } else { 436 /* Pull up inpcbs, shrink group if possible. */ 437 in_pcblbgroup_reorder(hdr, &grp, i); 438 } 439 return; 440 } 441 } 442 } 443 444 int 445 in_pcblbgroup_numa(struct inpcb *inp, int arg) 446 { 447 struct inpcbinfo *pcbinfo; 448 struct inpcblbgrouphead *hdr; 449 struct inpcblbgroup *grp; 450 int err, i; 451 uint8_t numa_domain; 452 453 switch (arg) { 454 case TCP_REUSPORT_LB_NUMA_NODOM: 455 numa_domain = M_NODOM; 456 break; 457 case TCP_REUSPORT_LB_NUMA_CURDOM: 458 numa_domain = PCPU_GET(domain); 459 break; 460 default: 461 if (arg < 0 || arg >= vm_ndomains) 462 return (EINVAL); 463 numa_domain = arg; 464 } 465 466 err = 0; 467 pcbinfo = inp->inp_pcbinfo; 468 INP_WLOCK_ASSERT(inp); 469 INP_HASH_WLOCK(pcbinfo); 470 hdr = &pcbinfo->ipi_lbgrouphashbase[ 471 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask)]; 472 CK_LIST_FOREACH(grp, hdr, il_list) { 473 for (i = 0; i < grp->il_inpcnt; ++i) { 474 if (grp->il_inp[i] != inp) 475 continue; 476 477 if (grp->il_numa_domain == numa_domain) { 478 goto abort_with_hash_wlock; 479 } 480 481 /* Remove it from the old group. */ 482 in_pcbremlbgrouphash(inp); 483 484 /* Add it to the new group based on numa domain. */ 485 in_pcbinslbgrouphash(inp, numa_domain); 486 goto abort_with_hash_wlock; 487 } 488 } 489 err = ENOENT; 490 abort_with_hash_wlock: 491 INP_HASH_WUNLOCK(pcbinfo); 492 return (err); 493 } 494 495 /* Make sure it is safe to use hashinit(9) on CK_LIST. */ 496 CTASSERT(sizeof(struct inpcbhead) == sizeof(LIST_HEAD(, inpcb))); 497 498 /* 499 * Initialize an inpcbinfo - a per-VNET instance of connections db. 500 */ 501 void 502 in_pcbinfo_init(struct inpcbinfo *pcbinfo, struct inpcbstorage *pcbstor, 503 u_int hash_nelements, u_int porthash_nelements) 504 { 505 506 mtx_init(&pcbinfo->ipi_lock, pcbstor->ips_infolock_name, NULL, MTX_DEF); 507 mtx_init(&pcbinfo->ipi_hash_lock, pcbstor->ips_hashlock_name, 508 NULL, MTX_DEF); 509 #ifdef VIMAGE 510 pcbinfo->ipi_vnet = curvnet; 511 #endif 512 CK_LIST_INIT(&pcbinfo->ipi_listhead); 513 pcbinfo->ipi_count = 0; 514 pcbinfo->ipi_hashbase = hashinit(hash_nelements, M_PCB, 515 &pcbinfo->ipi_hashmask); 516 porthash_nelements = imin(porthash_nelements, IPPORT_MAX + 1); 517 pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB, 518 &pcbinfo->ipi_porthashmask); 519 pcbinfo->ipi_lbgrouphashbase = hashinit(porthash_nelements, M_PCB, 520 &pcbinfo->ipi_lbgrouphashmask); 521 pcbinfo->ipi_zone = pcbstor->ips_zone; 522 pcbinfo->ipi_portzone = pcbstor->ips_portzone; 523 pcbinfo->ipi_smr = uma_zone_get_smr(pcbinfo->ipi_zone); 524 } 525 526 /* 527 * Destroy an inpcbinfo. 528 */ 529 void 530 in_pcbinfo_destroy(struct inpcbinfo *pcbinfo) 531 { 532 533 KASSERT(pcbinfo->ipi_count == 0, 534 ("%s: ipi_count = %u", __func__, pcbinfo->ipi_count)); 535 536 hashdestroy(pcbinfo->ipi_hashbase, M_PCB, pcbinfo->ipi_hashmask); 537 hashdestroy(pcbinfo->ipi_porthashbase, M_PCB, 538 pcbinfo->ipi_porthashmask); 539 hashdestroy(pcbinfo->ipi_lbgrouphashbase, M_PCB, 540 pcbinfo->ipi_lbgrouphashmask); 541 mtx_destroy(&pcbinfo->ipi_hash_lock); 542 mtx_destroy(&pcbinfo->ipi_lock); 543 } 544 545 /* 546 * Initialize a pcbstorage - per protocol zones to allocate inpcbs. 547 */ 548 static void inpcb_dtor(void *, int, void *); 549 static void inpcb_fini(void *, int); 550 void 551 in_pcbstorage_init(void *arg) 552 { 553 struct inpcbstorage *pcbstor = arg; 554 555 pcbstor->ips_zone = uma_zcreate(pcbstor->ips_zone_name, 556 pcbstor->ips_size, NULL, inpcb_dtor, pcbstor->ips_pcbinit, 557 inpcb_fini, UMA_ALIGN_CACHE, UMA_ZONE_SMR); 558 pcbstor->ips_portzone = uma_zcreate(pcbstor->ips_portzone_name, 559 sizeof(struct inpcbport), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 560 uma_zone_set_smr(pcbstor->ips_portzone, 561 uma_zone_get_smr(pcbstor->ips_zone)); 562 } 563 564 /* 565 * Destroy a pcbstorage - used by unloadable protocols. 566 */ 567 void 568 in_pcbstorage_destroy(void *arg) 569 { 570 struct inpcbstorage *pcbstor = arg; 571 572 uma_zdestroy(pcbstor->ips_zone); 573 uma_zdestroy(pcbstor->ips_portzone); 574 } 575 576 /* 577 * Allocate a PCB and associate it with the socket. 578 * On success return with the PCB locked. 579 */ 580 int 581 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo) 582 { 583 struct inpcb *inp; 584 #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC) 585 int error; 586 #endif 587 588 inp = uma_zalloc_smr(pcbinfo->ipi_zone, M_NOWAIT); 589 if (inp == NULL) 590 return (ENOBUFS); 591 bzero(&inp->inp_start_zero, inp_zero_size); 592 #ifdef NUMA 593 inp->inp_numa_domain = M_NODOM; 594 #endif 595 inp->inp_pcbinfo = pcbinfo; 596 inp->inp_socket = so; 597 inp->inp_cred = crhold(so->so_cred); 598 inp->inp_inc.inc_fibnum = so->so_fibnum; 599 #ifdef MAC 600 error = mac_inpcb_init(inp, M_NOWAIT); 601 if (error != 0) 602 goto out; 603 mac_inpcb_create(so, inp); 604 #endif 605 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 606 error = ipsec_init_pcbpolicy(inp); 607 if (error != 0) { 608 #ifdef MAC 609 mac_inpcb_destroy(inp); 610 #endif 611 goto out; 612 } 613 #endif /*IPSEC*/ 614 #ifdef INET6 615 if (INP_SOCKAF(so) == AF_INET6) { 616 inp->inp_vflag |= INP_IPV6PROTO | INP_IPV6; 617 if (V_ip6_v6only) 618 inp->inp_flags |= IN6P_IPV6_V6ONLY; 619 #ifdef INET 620 else 621 inp->inp_vflag |= INP_IPV4; 622 #endif 623 if (V_ip6_auto_flowlabel) 624 inp->inp_flags |= IN6P_AUTOFLOWLABEL; 625 inp->in6p_hops = -1; /* use kernel default */ 626 } 627 #endif 628 #if defined(INET) && defined(INET6) 629 else 630 #endif 631 #ifdef INET 632 inp->inp_vflag |= INP_IPV4; 633 #endif 634 /* 635 * Routes in inpcb's can cache L2 as well; they are guaranteed 636 * to be cleaned up. 637 */ 638 inp->inp_route.ro_flags = RT_LLE_CACHE; 639 refcount_init(&inp->inp_refcount, 1); /* Reference from socket. */ 640 INP_WLOCK(inp); 641 INP_INFO_WLOCK(pcbinfo); 642 pcbinfo->ipi_count++; 643 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 644 CK_LIST_INSERT_HEAD(&pcbinfo->ipi_listhead, inp, inp_list); 645 INP_INFO_WUNLOCK(pcbinfo); 646 so->so_pcb = inp; 647 648 return (0); 649 650 #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC) 651 out: 652 uma_zfree_smr(pcbinfo->ipi_zone, inp); 653 return (error); 654 #endif 655 } 656 657 #ifdef INET 658 int 659 in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred) 660 { 661 int anonport, error; 662 663 KASSERT(nam == NULL || nam->sa_family == AF_INET, 664 ("%s: invalid address family for %p", __func__, nam)); 665 KASSERT(nam == NULL || nam->sa_len == sizeof(struct sockaddr_in), 666 ("%s: invalid address length for %p", __func__, nam)); 667 INP_WLOCK_ASSERT(inp); 668 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 669 670 if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY) 671 return (EINVAL); 672 anonport = nam == NULL || ((struct sockaddr_in *)nam)->sin_port == 0; 673 error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr, 674 &inp->inp_lport, cred); 675 if (error) 676 return (error); 677 if (in_pcbinshash(inp) != 0) { 678 inp->inp_laddr.s_addr = INADDR_ANY; 679 inp->inp_lport = 0; 680 return (EAGAIN); 681 } 682 if (anonport) 683 inp->inp_flags |= INP_ANONPORT; 684 return (0); 685 } 686 #endif 687 688 #if defined(INET) || defined(INET6) 689 /* 690 * Assign a local port like in_pcb_lport(), but also used with connect() 691 * and a foreign address and port. If fsa is non-NULL, choose a local port 692 * that is unused with those, otherwise one that is completely unused. 693 * lsa can be NULL for IPv6. 694 */ 695 int 696 in_pcb_lport_dest(struct inpcb *inp, struct sockaddr *lsa, u_short *lportp, 697 struct sockaddr *fsa, u_short fport, struct ucred *cred, int lookupflags) 698 { 699 struct inpcbinfo *pcbinfo; 700 struct inpcb *tmpinp; 701 unsigned short *lastport; 702 int count, error; 703 u_short aux, first, last, lport; 704 #ifdef INET 705 struct in_addr laddr, faddr; 706 #endif 707 #ifdef INET6 708 struct in6_addr *laddr6, *faddr6; 709 #endif 710 711 pcbinfo = inp->inp_pcbinfo; 712 713 /* 714 * Because no actual state changes occur here, a global write lock on 715 * the pcbinfo isn't required. 716 */ 717 INP_LOCK_ASSERT(inp); 718 INP_HASH_LOCK_ASSERT(pcbinfo); 719 720 if (inp->inp_flags & INP_HIGHPORT) { 721 first = V_ipport_hifirstauto; /* sysctl */ 722 last = V_ipport_hilastauto; 723 lastport = &pcbinfo->ipi_lasthi; 724 } else if (inp->inp_flags & INP_LOWPORT) { 725 error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT); 726 if (error) 727 return (error); 728 first = V_ipport_lowfirstauto; /* 1023 */ 729 last = V_ipport_lowlastauto; /* 600 */ 730 lastport = &pcbinfo->ipi_lastlow; 731 } else { 732 first = V_ipport_firstauto; /* sysctl */ 733 last = V_ipport_lastauto; 734 lastport = &pcbinfo->ipi_lastport; 735 } 736 737 /* 738 * Instead of having two loops further down counting up or down 739 * make sure that first is always <= last and go with only one 740 * code path implementing all logic. 741 */ 742 if (first > last) { 743 aux = first; 744 first = last; 745 last = aux; 746 } 747 748 #ifdef INET 749 laddr.s_addr = INADDR_ANY; /* used by INET6+INET below too */ 750 if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) { 751 if (lsa != NULL) 752 laddr = ((struct sockaddr_in *)lsa)->sin_addr; 753 if (fsa != NULL) 754 faddr = ((struct sockaddr_in *)fsa)->sin_addr; 755 } 756 #endif 757 #ifdef INET6 758 laddr6 = NULL; 759 if ((inp->inp_vflag & INP_IPV6) != 0) { 760 if (lsa != NULL) 761 laddr6 = &((struct sockaddr_in6 *)lsa)->sin6_addr; 762 if (fsa != NULL) 763 faddr6 = &((struct sockaddr_in6 *)fsa)->sin6_addr; 764 } 765 #endif 766 767 tmpinp = NULL; 768 lport = *lportp; 769 770 if (V_ipport_randomized) 771 *lastport = first + (arc4random() % (last - first)); 772 773 count = last - first; 774 775 do { 776 if (count-- < 0) /* completely used? */ 777 return (EADDRNOTAVAIL); 778 ++*lastport; 779 if (*lastport < first || *lastport > last) 780 *lastport = first; 781 lport = htons(*lastport); 782 783 if (fsa != NULL) { 784 #ifdef INET 785 if (lsa->sa_family == AF_INET) { 786 tmpinp = in_pcblookup_hash_locked(pcbinfo, 787 faddr, fport, laddr, lport, lookupflags, 788 NULL, M_NODOM); 789 } 790 #endif 791 #ifdef INET6 792 if (lsa->sa_family == AF_INET6) { 793 tmpinp = in6_pcblookup_hash_locked(pcbinfo, 794 faddr6, fport, laddr6, lport, lookupflags, 795 NULL, M_NODOM); 796 } 797 #endif 798 } else { 799 #ifdef INET6 800 if ((inp->inp_vflag & INP_IPV6) != 0) { 801 tmpinp = in6_pcblookup_local(pcbinfo, 802 &inp->in6p_laddr, lport, lookupflags, cred); 803 #ifdef INET 804 if (tmpinp == NULL && 805 (inp->inp_vflag & INP_IPV4)) 806 tmpinp = in_pcblookup_local(pcbinfo, 807 laddr, lport, lookupflags, cred); 808 #endif 809 } 810 #endif 811 #if defined(INET) && defined(INET6) 812 else 813 #endif 814 #ifdef INET 815 tmpinp = in_pcblookup_local(pcbinfo, laddr, 816 lport, lookupflags, cred); 817 #endif 818 } 819 } while (tmpinp != NULL); 820 821 *lportp = lport; 822 823 return (0); 824 } 825 826 /* 827 * Select a local port (number) to use. 828 */ 829 int 830 in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp, 831 struct ucred *cred, int lookupflags) 832 { 833 struct sockaddr_in laddr; 834 835 if (laddrp) { 836 bzero(&laddr, sizeof(laddr)); 837 laddr.sin_family = AF_INET; 838 laddr.sin_addr = *laddrp; 839 } 840 return (in_pcb_lport_dest(inp, laddrp ? (struct sockaddr *) &laddr : 841 NULL, lportp, NULL, 0, cred, lookupflags)); 842 } 843 844 /* 845 * Return cached socket options. 846 */ 847 int 848 inp_so_options(const struct inpcb *inp) 849 { 850 int so_options; 851 852 so_options = 0; 853 854 if ((inp->inp_flags2 & INP_REUSEPORT_LB) != 0) 855 so_options |= SO_REUSEPORT_LB; 856 if ((inp->inp_flags2 & INP_REUSEPORT) != 0) 857 so_options |= SO_REUSEPORT; 858 if ((inp->inp_flags2 & INP_REUSEADDR) != 0) 859 so_options |= SO_REUSEADDR; 860 return (so_options); 861 } 862 #endif /* INET || INET6 */ 863 864 /* 865 * Check if a new BINDMULTI socket is allowed to be created. 866 * 867 * ni points to the new inp. 868 * oi points to the existing inp. 869 * 870 * This checks whether the existing inp also has BINDMULTI and 871 * whether the credentials match. 872 */ 873 int 874 in_pcbbind_check_bindmulti(const struct inpcb *ni, const struct inpcb *oi) 875 { 876 /* Check permissions match */ 877 if ((ni->inp_flags2 & INP_BINDMULTI) && 878 (ni->inp_cred->cr_uid != 879 oi->inp_cred->cr_uid)) 880 return (0); 881 882 /* Check the existing inp has BINDMULTI set */ 883 if ((ni->inp_flags2 & INP_BINDMULTI) && 884 ((oi->inp_flags2 & INP_BINDMULTI) == 0)) 885 return (0); 886 887 /* 888 * We're okay - either INP_BINDMULTI isn't set on ni, or 889 * it is and it matches the checks. 890 */ 891 return (1); 892 } 893 894 #ifdef INET 895 /* 896 * Set up a bind operation on a PCB, performing port allocation 897 * as required, but do not actually modify the PCB. Callers can 898 * either complete the bind by setting inp_laddr/inp_lport and 899 * calling in_pcbinshash(), or they can just use the resulting 900 * port and address to authorise the sending of a once-off packet. 901 * 902 * On error, the values of *laddrp and *lportp are not changed. 903 */ 904 int 905 in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp, 906 u_short *lportp, struct ucred *cred) 907 { 908 struct socket *so = inp->inp_socket; 909 struct sockaddr_in *sin; 910 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 911 struct in_addr laddr; 912 u_short lport = 0; 913 int lookupflags = 0, reuseport = (so->so_options & SO_REUSEPORT); 914 int error; 915 916 /* 917 * XXX: Maybe we could let SO_REUSEPORT_LB set SO_REUSEPORT bit here 918 * so that we don't have to add to the (already messy) code below. 919 */ 920 int reuseport_lb = (so->so_options & SO_REUSEPORT_LB); 921 922 /* 923 * No state changes, so read locks are sufficient here. 924 */ 925 INP_LOCK_ASSERT(inp); 926 INP_HASH_LOCK_ASSERT(pcbinfo); 927 928 laddr.s_addr = *laddrp; 929 if (nam != NULL && laddr.s_addr != INADDR_ANY) 930 return (EINVAL); 931 if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT|SO_REUSEPORT_LB)) == 0) 932 lookupflags = INPLOOKUP_WILDCARD; 933 if (nam == NULL) { 934 if ((error = prison_local_ip4(cred, &laddr)) != 0) 935 return (error); 936 } else { 937 sin = (struct sockaddr_in *)nam; 938 KASSERT(sin->sin_family == AF_INET, 939 ("%s: invalid family for address %p", __func__, sin)); 940 KASSERT(sin->sin_len == sizeof(*sin), 941 ("%s: invalid length for address %p", __func__, sin)); 942 943 error = prison_local_ip4(cred, &sin->sin_addr); 944 if (error) 945 return (error); 946 if (sin->sin_port != *lportp) { 947 /* Don't allow the port to change. */ 948 if (*lportp != 0) 949 return (EINVAL); 950 lport = sin->sin_port; 951 } 952 /* NB: lport is left as 0 if the port isn't being changed. */ 953 if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) { 954 /* 955 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast; 956 * allow complete duplication of binding if 957 * SO_REUSEPORT is set, or if SO_REUSEADDR is set 958 * and a multicast address is bound on both 959 * new and duplicated sockets. 960 */ 961 if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) != 0) 962 reuseport = SO_REUSEADDR|SO_REUSEPORT; 963 /* 964 * XXX: How to deal with SO_REUSEPORT_LB here? 965 * Treat same as SO_REUSEPORT for now. 966 */ 967 if ((so->so_options & 968 (SO_REUSEADDR|SO_REUSEPORT_LB)) != 0) 969 reuseport_lb = SO_REUSEADDR|SO_REUSEPORT_LB; 970 } else if (sin->sin_addr.s_addr != INADDR_ANY) { 971 sin->sin_port = 0; /* yech... */ 972 bzero(&sin->sin_zero, sizeof(sin->sin_zero)); 973 /* 974 * Is the address a local IP address? 975 * If INP_BINDANY is set, then the socket may be bound 976 * to any endpoint address, local or not. 977 */ 978 if ((inp->inp_flags & INP_BINDANY) == 0 && 979 ifa_ifwithaddr_check((struct sockaddr *)sin) == 0) 980 return (EADDRNOTAVAIL); 981 } 982 laddr = sin->sin_addr; 983 if (lport) { 984 struct inpcb *t; 985 986 /* GROSS */ 987 if (ntohs(lport) <= V_ipport_reservedhigh && 988 ntohs(lport) >= V_ipport_reservedlow && 989 priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT)) 990 return (EACCES); 991 if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) && 992 priv_check_cred(inp->inp_cred, PRIV_NETINET_REUSEPORT) != 0) { 993 t = in_pcblookup_local(pcbinfo, sin->sin_addr, 994 lport, INPLOOKUP_WILDCARD, cred); 995 /* 996 * XXX 997 * This entire block sorely needs a rewrite. 998 */ 999 if (t && 1000 ((inp->inp_flags2 & INP_BINDMULTI) == 0) && 1001 (so->so_type != SOCK_STREAM || 1002 ntohl(t->inp_faddr.s_addr) == INADDR_ANY) && 1003 (ntohl(sin->sin_addr.s_addr) != INADDR_ANY || 1004 ntohl(t->inp_laddr.s_addr) != INADDR_ANY || 1005 (t->inp_flags2 & INP_REUSEPORT) || 1006 (t->inp_flags2 & INP_REUSEPORT_LB) == 0) && 1007 (inp->inp_cred->cr_uid != 1008 t->inp_cred->cr_uid)) 1009 return (EADDRINUSE); 1010 1011 /* 1012 * If the socket is a BINDMULTI socket, then 1013 * the credentials need to match and the 1014 * original socket also has to have been bound 1015 * with BINDMULTI. 1016 */ 1017 if (t && (! in_pcbbind_check_bindmulti(inp, t))) 1018 return (EADDRINUSE); 1019 } 1020 t = in_pcblookup_local(pcbinfo, sin->sin_addr, 1021 lport, lookupflags, cred); 1022 if (t && ((inp->inp_flags2 & INP_BINDMULTI) == 0) && 1023 (reuseport & inp_so_options(t)) == 0 && 1024 (reuseport_lb & inp_so_options(t)) == 0) { 1025 #ifdef INET6 1026 if (ntohl(sin->sin_addr.s_addr) != 1027 INADDR_ANY || 1028 ntohl(t->inp_laddr.s_addr) != 1029 INADDR_ANY || 1030 (inp->inp_vflag & INP_IPV6PROTO) == 0 || 1031 (t->inp_vflag & INP_IPV6PROTO) == 0) 1032 #endif 1033 return (EADDRINUSE); 1034 if (t && (! in_pcbbind_check_bindmulti(inp, t))) 1035 return (EADDRINUSE); 1036 } 1037 } 1038 } 1039 if (*lportp != 0) 1040 lport = *lportp; 1041 if (lport == 0) { 1042 error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags); 1043 if (error != 0) 1044 return (error); 1045 } 1046 *laddrp = laddr.s_addr; 1047 *lportp = lport; 1048 return (0); 1049 } 1050 1051 /* 1052 * Connect from a socket to a specified address. 1053 * Both address and port must be specified in argument sin. 1054 * If don't have a local address for this socket yet, 1055 * then pick one. 1056 */ 1057 int 1058 in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred, 1059 bool rehash) 1060 { 1061 u_short lport, fport; 1062 in_addr_t laddr, faddr; 1063 int anonport, error; 1064 1065 INP_WLOCK_ASSERT(inp); 1066 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 1067 1068 lport = inp->inp_lport; 1069 laddr = inp->inp_laddr.s_addr; 1070 anonport = (lport == 0); 1071 error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport, 1072 NULL, cred); 1073 if (error) 1074 return (error); 1075 1076 /* Do the initial binding of the local address if required. */ 1077 if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) { 1078 KASSERT(rehash == true, 1079 ("Rehashing required for unbound inps")); 1080 inp->inp_lport = lport; 1081 inp->inp_laddr.s_addr = laddr; 1082 if (in_pcbinshash(inp) != 0) { 1083 inp->inp_laddr.s_addr = INADDR_ANY; 1084 inp->inp_lport = 0; 1085 return (EAGAIN); 1086 } 1087 } 1088 1089 /* Commit the remaining changes. */ 1090 inp->inp_lport = lport; 1091 inp->inp_laddr.s_addr = laddr; 1092 inp->inp_faddr.s_addr = faddr; 1093 inp->inp_fport = fport; 1094 if (rehash) { 1095 in_pcbrehash(inp); 1096 } else { 1097 in_pcbinshash(inp); 1098 } 1099 1100 if (anonport) 1101 inp->inp_flags |= INP_ANONPORT; 1102 return (0); 1103 } 1104 1105 /* 1106 * Do proper source address selection on an unbound socket in case 1107 * of connect. Take jails into account as well. 1108 */ 1109 int 1110 in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr, 1111 struct ucred *cred) 1112 { 1113 struct ifaddr *ifa; 1114 struct sockaddr *sa; 1115 struct sockaddr_in *sin, dst; 1116 struct nhop_object *nh; 1117 int error; 1118 1119 NET_EPOCH_ASSERT(); 1120 KASSERT(laddr != NULL, ("%s: laddr NULL", __func__)); 1121 1122 /* 1123 * Bypass source address selection and use the primary jail IP 1124 * if requested. 1125 */ 1126 if (!prison_saddrsel_ip4(cred, laddr)) 1127 return (0); 1128 1129 error = 0; 1130 1131 nh = NULL; 1132 bzero(&dst, sizeof(dst)); 1133 sin = &dst; 1134 sin->sin_family = AF_INET; 1135 sin->sin_len = sizeof(struct sockaddr_in); 1136 sin->sin_addr.s_addr = faddr->s_addr; 1137 1138 /* 1139 * If route is known our src addr is taken from the i/f, 1140 * else punt. 1141 * 1142 * Find out route to destination. 1143 */ 1144 if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0) 1145 nh = fib4_lookup(inp->inp_inc.inc_fibnum, *faddr, 1146 0, NHR_NONE, 0); 1147 1148 /* 1149 * If we found a route, use the address corresponding to 1150 * the outgoing interface. 1151 * 1152 * Otherwise assume faddr is reachable on a directly connected 1153 * network and try to find a corresponding interface to take 1154 * the source address from. 1155 */ 1156 if (nh == NULL || nh->nh_ifp == NULL) { 1157 struct in_ifaddr *ia; 1158 struct ifnet *ifp; 1159 1160 ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin, 1161 inp->inp_socket->so_fibnum)); 1162 if (ia == NULL) { 1163 ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0, 1164 inp->inp_socket->so_fibnum)); 1165 } 1166 if (ia == NULL) { 1167 error = ENETUNREACH; 1168 goto done; 1169 } 1170 1171 if (!prison_flag(cred, PR_IP4)) { 1172 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1173 goto done; 1174 } 1175 1176 ifp = ia->ia_ifp; 1177 ia = NULL; 1178 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1179 sa = ifa->ifa_addr; 1180 if (sa->sa_family != AF_INET) 1181 continue; 1182 sin = (struct sockaddr_in *)sa; 1183 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 1184 ia = (struct in_ifaddr *)ifa; 1185 break; 1186 } 1187 } 1188 if (ia != NULL) { 1189 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1190 goto done; 1191 } 1192 1193 /* 3. As a last resort return the 'default' jail address. */ 1194 error = prison_get_ip4(cred, laddr); 1195 goto done; 1196 } 1197 1198 /* 1199 * If the outgoing interface on the route found is not 1200 * a loopback interface, use the address from that interface. 1201 * In case of jails do those three steps: 1202 * 1. check if the interface address belongs to the jail. If so use it. 1203 * 2. check if we have any address on the outgoing interface 1204 * belonging to this jail. If so use it. 1205 * 3. as a last resort return the 'default' jail address. 1206 */ 1207 if ((nh->nh_ifp->if_flags & IFF_LOOPBACK) == 0) { 1208 struct in_ifaddr *ia; 1209 struct ifnet *ifp; 1210 1211 /* If not jailed, use the default returned. */ 1212 if (!prison_flag(cred, PR_IP4)) { 1213 ia = (struct in_ifaddr *)nh->nh_ifa; 1214 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1215 goto done; 1216 } 1217 1218 /* Jailed. */ 1219 /* 1. Check if the iface address belongs to the jail. */ 1220 sin = (struct sockaddr_in *)nh->nh_ifa->ifa_addr; 1221 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 1222 ia = (struct in_ifaddr *)nh->nh_ifa; 1223 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1224 goto done; 1225 } 1226 1227 /* 1228 * 2. Check if we have any address on the outgoing interface 1229 * belonging to this jail. 1230 */ 1231 ia = NULL; 1232 ifp = nh->nh_ifp; 1233 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1234 sa = ifa->ifa_addr; 1235 if (sa->sa_family != AF_INET) 1236 continue; 1237 sin = (struct sockaddr_in *)sa; 1238 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 1239 ia = (struct in_ifaddr *)ifa; 1240 break; 1241 } 1242 } 1243 if (ia != NULL) { 1244 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1245 goto done; 1246 } 1247 1248 /* 3. As a last resort return the 'default' jail address. */ 1249 error = prison_get_ip4(cred, laddr); 1250 goto done; 1251 } 1252 1253 /* 1254 * The outgoing interface is marked with 'loopback net', so a route 1255 * to ourselves is here. 1256 * Try to find the interface of the destination address and then 1257 * take the address from there. That interface is not necessarily 1258 * a loopback interface. 1259 * In case of jails, check that it is an address of the jail 1260 * and if we cannot find, fall back to the 'default' jail address. 1261 */ 1262 if ((nh->nh_ifp->if_flags & IFF_LOOPBACK) != 0) { 1263 struct in_ifaddr *ia; 1264 1265 ia = ifatoia(ifa_ifwithdstaddr(sintosa(&dst), 1266 inp->inp_socket->so_fibnum)); 1267 if (ia == NULL) 1268 ia = ifatoia(ifa_ifwithnet(sintosa(&dst), 0, 1269 inp->inp_socket->so_fibnum)); 1270 if (ia == NULL) 1271 ia = ifatoia(ifa_ifwithaddr(sintosa(&dst))); 1272 1273 if (!prison_flag(cred, PR_IP4)) { 1274 if (ia == NULL) { 1275 error = ENETUNREACH; 1276 goto done; 1277 } 1278 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1279 goto done; 1280 } 1281 1282 /* Jailed. */ 1283 if (ia != NULL) { 1284 struct ifnet *ifp; 1285 1286 ifp = ia->ia_ifp; 1287 ia = NULL; 1288 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1289 sa = ifa->ifa_addr; 1290 if (sa->sa_family != AF_INET) 1291 continue; 1292 sin = (struct sockaddr_in *)sa; 1293 if (prison_check_ip4(cred, 1294 &sin->sin_addr) == 0) { 1295 ia = (struct in_ifaddr *)ifa; 1296 break; 1297 } 1298 } 1299 if (ia != NULL) { 1300 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1301 goto done; 1302 } 1303 } 1304 1305 /* 3. As a last resort return the 'default' jail address. */ 1306 error = prison_get_ip4(cred, laddr); 1307 goto done; 1308 } 1309 1310 done: 1311 return (error); 1312 } 1313 1314 /* 1315 * Set up for a connect from a socket to the specified address. 1316 * On entry, *laddrp and *lportp should contain the current local 1317 * address and port for the PCB; these are updated to the values 1318 * that should be placed in inp_laddr and inp_lport to complete 1319 * the connect. 1320 * 1321 * On success, *faddrp and *fportp will be set to the remote address 1322 * and port. These are not updated in the error case. 1323 * 1324 * If the operation fails because the connection already exists, 1325 * *oinpp will be set to the PCB of that connection so that the 1326 * caller can decide to override it. In all other cases, *oinpp 1327 * is set to NULL. 1328 */ 1329 int 1330 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam, 1331 in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp, 1332 struct inpcb **oinpp, struct ucred *cred) 1333 { 1334 struct sockaddr_in *sin = (struct sockaddr_in *)nam; 1335 struct in_ifaddr *ia; 1336 struct inpcb *oinp; 1337 struct in_addr laddr, faddr; 1338 u_short lport, fport; 1339 int error; 1340 1341 KASSERT(sin->sin_family == AF_INET, 1342 ("%s: invalid address family for %p", __func__, sin)); 1343 KASSERT(sin->sin_len == sizeof(*sin), 1344 ("%s: invalid address length for %p", __func__, sin)); 1345 1346 /* 1347 * Because a global state change doesn't actually occur here, a read 1348 * lock is sufficient. 1349 */ 1350 NET_EPOCH_ASSERT(); 1351 INP_LOCK_ASSERT(inp); 1352 INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo); 1353 1354 if (oinpp != NULL) 1355 *oinpp = NULL; 1356 if (sin->sin_port == 0) 1357 return (EADDRNOTAVAIL); 1358 laddr.s_addr = *laddrp; 1359 lport = *lportp; 1360 faddr = sin->sin_addr; 1361 fport = sin->sin_port; 1362 #ifdef ROUTE_MPATH 1363 if (CALC_FLOWID_OUTBOUND) { 1364 uint32_t hash_val, hash_type; 1365 1366 hash_val = fib4_calc_software_hash(laddr, faddr, 0, fport, 1367 inp->inp_socket->so_proto->pr_protocol, &hash_type); 1368 1369 inp->inp_flowid = hash_val; 1370 inp->inp_flowtype = hash_type; 1371 } 1372 #endif 1373 if (!CK_STAILQ_EMPTY(&V_in_ifaddrhead)) { 1374 /* 1375 * If the destination address is INADDR_ANY, 1376 * use the primary local address. 1377 * If the supplied address is INADDR_BROADCAST, 1378 * and the primary interface supports broadcast, 1379 * choose the broadcast address for that interface. 1380 */ 1381 if (faddr.s_addr == INADDR_ANY) { 1382 faddr = 1383 IA_SIN(CK_STAILQ_FIRST(&V_in_ifaddrhead))->sin_addr; 1384 if ((error = prison_get_ip4(cred, &faddr)) != 0) 1385 return (error); 1386 } else if (faddr.s_addr == (u_long)INADDR_BROADCAST) { 1387 if (CK_STAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags & 1388 IFF_BROADCAST) 1389 faddr = satosin(&CK_STAILQ_FIRST( 1390 &V_in_ifaddrhead)->ia_broadaddr)->sin_addr; 1391 } 1392 } 1393 if (laddr.s_addr == INADDR_ANY) { 1394 error = in_pcbladdr(inp, &faddr, &laddr, cred); 1395 /* 1396 * If the destination address is multicast and an outgoing 1397 * interface has been set as a multicast option, prefer the 1398 * address of that interface as our source address. 1399 */ 1400 if (IN_MULTICAST(ntohl(faddr.s_addr)) && 1401 inp->inp_moptions != NULL) { 1402 struct ip_moptions *imo; 1403 struct ifnet *ifp; 1404 1405 imo = inp->inp_moptions; 1406 if (imo->imo_multicast_ifp != NULL) { 1407 ifp = imo->imo_multicast_ifp; 1408 CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) { 1409 if (ia->ia_ifp == ifp && 1410 prison_check_ip4(cred, 1411 &ia->ia_addr.sin_addr) == 0) 1412 break; 1413 } 1414 if (ia == NULL) 1415 error = EADDRNOTAVAIL; 1416 else { 1417 laddr = ia->ia_addr.sin_addr; 1418 error = 0; 1419 } 1420 } 1421 } 1422 if (error) 1423 return (error); 1424 } 1425 1426 if (lport != 0) { 1427 oinp = in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr, 1428 fport, laddr, lport, 0, NULL, M_NODOM); 1429 if (oinp != NULL) { 1430 if (oinpp != NULL) 1431 *oinpp = oinp; 1432 return (EADDRINUSE); 1433 } 1434 } else { 1435 struct sockaddr_in lsin, fsin; 1436 1437 bzero(&lsin, sizeof(lsin)); 1438 bzero(&fsin, sizeof(fsin)); 1439 lsin.sin_family = AF_INET; 1440 lsin.sin_addr = laddr; 1441 fsin.sin_family = AF_INET; 1442 fsin.sin_addr = faddr; 1443 error = in_pcb_lport_dest(inp, (struct sockaddr *) &lsin, 1444 &lport, (struct sockaddr *)& fsin, fport, cred, 1445 INPLOOKUP_WILDCARD); 1446 if (error) 1447 return (error); 1448 } 1449 *laddrp = laddr.s_addr; 1450 *lportp = lport; 1451 *faddrp = faddr.s_addr; 1452 *fportp = fport; 1453 return (0); 1454 } 1455 1456 void 1457 in_pcbdisconnect(struct inpcb *inp) 1458 { 1459 1460 INP_WLOCK_ASSERT(inp); 1461 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 1462 1463 inp->inp_faddr.s_addr = INADDR_ANY; 1464 inp->inp_fport = 0; 1465 in_pcbrehash(inp); 1466 } 1467 #endif /* INET */ 1468 1469 /* 1470 * in_pcbdetach() is responsibe for disassociating a socket from an inpcb. 1471 * For most protocols, this will be invoked immediately prior to calling 1472 * in_pcbfree(). However, with TCP the inpcb may significantly outlive the 1473 * socket, in which case in_pcbfree() is deferred. 1474 */ 1475 void 1476 in_pcbdetach(struct inpcb *inp) 1477 { 1478 1479 KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__)); 1480 1481 #ifdef RATELIMIT 1482 if (inp->inp_snd_tag != NULL) 1483 in_pcbdetach_txrtlmt(inp); 1484 #endif 1485 inp->inp_socket->so_pcb = NULL; 1486 inp->inp_socket = NULL; 1487 } 1488 1489 /* 1490 * inpcb hash lookups are protected by SMR section. 1491 * 1492 * Once desired pcb has been found, switching from SMR section to a pcb 1493 * lock is performed with inp_smr_lock(). We can not use INP_(W|R)LOCK 1494 * here because SMR is a critical section. 1495 * In 99%+ cases inp_smr_lock() would obtain the lock immediately. 1496 */ 1497 static inline void 1498 inp_lock(struct inpcb *inp, const inp_lookup_t lock) 1499 { 1500 1501 lock == INPLOOKUP_RLOCKPCB ? 1502 rw_rlock(&inp->inp_lock) : rw_wlock(&inp->inp_lock); 1503 } 1504 1505 static inline void 1506 inp_unlock(struct inpcb *inp, const inp_lookup_t lock) 1507 { 1508 1509 lock == INPLOOKUP_RLOCKPCB ? 1510 rw_runlock(&inp->inp_lock) : rw_wunlock(&inp->inp_lock); 1511 } 1512 1513 static inline int 1514 inp_trylock(struct inpcb *inp, const inp_lookup_t lock) 1515 { 1516 1517 return (lock == INPLOOKUP_RLOCKPCB ? 1518 rw_try_rlock(&inp->inp_lock) : rw_try_wlock(&inp->inp_lock)); 1519 } 1520 1521 static inline bool 1522 in_pcbrele(struct inpcb *inp, const inp_lookup_t lock) 1523 { 1524 1525 return (lock == INPLOOKUP_RLOCKPCB ? 1526 in_pcbrele_rlocked(inp) : in_pcbrele_wlocked(inp)); 1527 } 1528 1529 static inline bool 1530 _inp_smr_lock(struct inpcb *inp, const inp_lookup_t lock, const int ignflags) 1531 { 1532 1533 MPASS(lock == INPLOOKUP_RLOCKPCB || lock == INPLOOKUP_WLOCKPCB); 1534 SMR_ASSERT_ENTERED(inp->inp_pcbinfo->ipi_smr); 1535 1536 if (__predict_true(inp_trylock(inp, lock))) { 1537 if (__predict_false(inp->inp_flags & ignflags)) { 1538 smr_exit(inp->inp_pcbinfo->ipi_smr); 1539 inp_unlock(inp, lock); 1540 return (false); 1541 } 1542 smr_exit(inp->inp_pcbinfo->ipi_smr); 1543 return (true); 1544 } 1545 1546 if (__predict_true(refcount_acquire_if_not_zero(&inp->inp_refcount))) { 1547 smr_exit(inp->inp_pcbinfo->ipi_smr); 1548 inp_lock(inp, lock); 1549 if (__predict_false(in_pcbrele(inp, lock))) 1550 return (false); 1551 /* 1552 * inp acquired through refcount & lock for sure didn't went 1553 * through uma_zfree(). However, it may have already went 1554 * through in_pcbfree() and has another reference, that 1555 * prevented its release by our in_pcbrele(). 1556 */ 1557 if (__predict_false(inp->inp_flags & ignflags)) { 1558 inp_unlock(inp, lock); 1559 return (false); 1560 } 1561 return (true); 1562 } else { 1563 smr_exit(inp->inp_pcbinfo->ipi_smr); 1564 return (false); 1565 } 1566 } 1567 1568 bool 1569 inp_smr_lock(struct inpcb *inp, const inp_lookup_t lock) 1570 { 1571 1572 /* 1573 * in_pcblookup() family of functions ignore not only freed entries, 1574 * that may be found due to lockless access to the hash, but dropped 1575 * entries, too. 1576 */ 1577 return (_inp_smr_lock(inp, lock, INP_FREED | INP_DROPPED)); 1578 } 1579 1580 /* 1581 * inp_next() - inpcb hash/list traversal iterator 1582 * 1583 * Requires initialized struct inpcb_iterator for context. 1584 * The structure can be initialized with INP_ITERATOR() or INP_ALL_ITERATOR(). 1585 * 1586 * - Iterator can have either write-lock or read-lock semantics, that can not 1587 * be changed later. 1588 * - Iterator can iterate either over all pcbs list (INP_ALL_LIST), or through 1589 * a single hash slot. Note: only rip_input() does the latter. 1590 * - Iterator may have optional bool matching function. The matching function 1591 * will be executed for each inpcb in the SMR context, so it can not acquire 1592 * locks and can safely access only immutable fields of inpcb. 1593 * 1594 * A fresh initialized iterator has NULL inpcb in its context and that 1595 * means that inp_next() call would return the very first inpcb on the list 1596 * locked with desired semantic. In all following calls the context pointer 1597 * shall hold the current inpcb pointer. The KPI user is not supposed to 1598 * unlock the current inpcb! Upon end of traversal inp_next() will return NULL 1599 * and write NULL to its context. After end of traversal an iterator can be 1600 * reused. 1601 * 1602 * List traversals have the following features/constraints: 1603 * - New entries won't be seen, as they are always added to the head of a list. 1604 * - Removed entries won't stop traversal as long as they are not added to 1605 * a different list. This is violated by in_pcbrehash(). 1606 */ 1607 #define II_LIST_FIRST(ipi, hash) \ 1608 (((hash) == INP_ALL_LIST) ? \ 1609 CK_LIST_FIRST(&(ipi)->ipi_listhead) : \ 1610 CK_LIST_FIRST(&(ipi)->ipi_hashbase[(hash)])) 1611 #define II_LIST_NEXT(inp, hash) \ 1612 (((hash) == INP_ALL_LIST) ? \ 1613 CK_LIST_NEXT((inp), inp_list) : \ 1614 CK_LIST_NEXT((inp), inp_hash)) 1615 #define II_LOCK_ASSERT(inp, lock) \ 1616 rw_assert(&(inp)->inp_lock, \ 1617 (lock) == INPLOOKUP_RLOCKPCB ? RA_RLOCKED : RA_WLOCKED ) 1618 struct inpcb * 1619 inp_next(struct inpcb_iterator *ii) 1620 { 1621 const struct inpcbinfo *ipi = ii->ipi; 1622 inp_match_t *match = ii->match; 1623 void *ctx = ii->ctx; 1624 inp_lookup_t lock = ii->lock; 1625 int hash = ii->hash; 1626 struct inpcb *inp; 1627 1628 if (ii->inp == NULL) { /* First call. */ 1629 smr_enter(ipi->ipi_smr); 1630 /* This is unrolled CK_LIST_FOREACH(). */ 1631 for (inp = II_LIST_FIRST(ipi, hash); 1632 inp != NULL; 1633 inp = II_LIST_NEXT(inp, hash)) { 1634 if (match != NULL && (match)(inp, ctx) == false) 1635 continue; 1636 if (__predict_true(_inp_smr_lock(inp, lock, INP_FREED))) 1637 break; 1638 else { 1639 smr_enter(ipi->ipi_smr); 1640 MPASS(inp != II_LIST_FIRST(ipi, hash)); 1641 inp = II_LIST_FIRST(ipi, hash); 1642 if (inp == NULL) 1643 break; 1644 } 1645 } 1646 1647 if (inp == NULL) 1648 smr_exit(ipi->ipi_smr); 1649 else 1650 ii->inp = inp; 1651 1652 return (inp); 1653 } 1654 1655 /* Not a first call. */ 1656 smr_enter(ipi->ipi_smr); 1657 restart: 1658 inp = ii->inp; 1659 II_LOCK_ASSERT(inp, lock); 1660 next: 1661 inp = II_LIST_NEXT(inp, hash); 1662 if (inp == NULL) { 1663 smr_exit(ipi->ipi_smr); 1664 goto found; 1665 } 1666 1667 if (match != NULL && (match)(inp, ctx) == false) 1668 goto next; 1669 1670 if (__predict_true(inp_trylock(inp, lock))) { 1671 if (__predict_false(inp->inp_flags & INP_FREED)) { 1672 /* 1673 * Entries are never inserted in middle of a list, thus 1674 * as long as we are in SMR, we can continue traversal. 1675 * Jump to 'restart' should yield in the same result, 1676 * but could produce unnecessary looping. Could this 1677 * looping be unbound? 1678 */ 1679 inp_unlock(inp, lock); 1680 goto next; 1681 } else { 1682 smr_exit(ipi->ipi_smr); 1683 goto found; 1684 } 1685 } 1686 1687 /* 1688 * Can't obtain lock immediately, thus going hard. Once we exit the 1689 * SMR section we can no longer jump to 'next', and our only stable 1690 * anchoring point is ii->inp, which we keep locked for this case, so 1691 * we jump to 'restart'. 1692 */ 1693 if (__predict_true(refcount_acquire_if_not_zero(&inp->inp_refcount))) { 1694 smr_exit(ipi->ipi_smr); 1695 inp_lock(inp, lock); 1696 if (__predict_false(in_pcbrele(inp, lock))) { 1697 smr_enter(ipi->ipi_smr); 1698 goto restart; 1699 } 1700 /* 1701 * See comment in inp_smr_lock(). 1702 */ 1703 if (__predict_false(inp->inp_flags & INP_FREED)) { 1704 inp_unlock(inp, lock); 1705 smr_enter(ipi->ipi_smr); 1706 goto restart; 1707 } 1708 } else 1709 goto next; 1710 1711 found: 1712 inp_unlock(ii->inp, lock); 1713 ii->inp = inp; 1714 1715 return (ii->inp); 1716 } 1717 1718 /* 1719 * in_pcbref() bumps the reference count on an inpcb in order to maintain 1720 * stability of an inpcb pointer despite the inpcb lock being released or 1721 * SMR section exited. 1722 * 1723 * To free a reference later in_pcbrele_(r|w)locked() must be performed. 1724 */ 1725 void 1726 in_pcbref(struct inpcb *inp) 1727 { 1728 u_int old __diagused; 1729 1730 old = refcount_acquire(&inp->inp_refcount); 1731 KASSERT(old > 0, ("%s: refcount 0", __func__)); 1732 } 1733 1734 /* 1735 * Drop a refcount on an inpcb elevated using in_pcbref(), potentially 1736 * freeing the pcb, if the reference was very last. 1737 */ 1738 bool 1739 in_pcbrele_rlocked(struct inpcb *inp) 1740 { 1741 1742 INP_RLOCK_ASSERT(inp); 1743 1744 if (refcount_release(&inp->inp_refcount) == 0) 1745 return (false); 1746 1747 MPASS(inp->inp_flags & INP_FREED); 1748 MPASS(inp->inp_socket == NULL); 1749 MPASS(inp->inp_in_hpts == 0); 1750 INP_RUNLOCK(inp); 1751 uma_zfree_smr(inp->inp_pcbinfo->ipi_zone, inp); 1752 return (true); 1753 } 1754 1755 bool 1756 in_pcbrele_wlocked(struct inpcb *inp) 1757 { 1758 1759 INP_WLOCK_ASSERT(inp); 1760 1761 if (refcount_release(&inp->inp_refcount) == 0) 1762 return (false); 1763 1764 MPASS(inp->inp_flags & INP_FREED); 1765 MPASS(inp->inp_socket == NULL); 1766 MPASS(inp->inp_in_hpts == 0); 1767 INP_WUNLOCK(inp); 1768 uma_zfree_smr(inp->inp_pcbinfo->ipi_zone, inp); 1769 return (true); 1770 } 1771 1772 /* 1773 * Unconditionally schedule an inpcb to be freed by decrementing its 1774 * reference count, which should occur only after the inpcb has been detached 1775 * from its socket. If another thread holds a temporary reference (acquired 1776 * using in_pcbref()) then the free is deferred until that reference is 1777 * released using in_pcbrele_(r|w)locked(), but the inpcb is still unlocked. 1778 * Almost all work, including removal from global lists, is done in this 1779 * context, where the pcbinfo lock is held. 1780 */ 1781 void 1782 in_pcbfree(struct inpcb *inp) 1783 { 1784 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 1785 #ifdef INET 1786 struct ip_moptions *imo; 1787 #endif 1788 #ifdef INET6 1789 struct ip6_moptions *im6o; 1790 #endif 1791 1792 INP_WLOCK_ASSERT(inp); 1793 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); 1794 KASSERT((inp->inp_flags & INP_FREED) == 0, 1795 ("%s: called twice for pcb %p", __func__, inp)); 1796 1797 inp->inp_flags |= INP_FREED; 1798 INP_INFO_WLOCK(pcbinfo); 1799 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 1800 pcbinfo->ipi_count--; 1801 CK_LIST_REMOVE(inp, inp_list); 1802 INP_INFO_WUNLOCK(pcbinfo); 1803 1804 if (inp->inp_flags & INP_INHASHLIST) 1805 in_pcbremhash(inp); 1806 1807 RO_INVALIDATE_CACHE(&inp->inp_route); 1808 #ifdef MAC 1809 mac_inpcb_destroy(inp); 1810 #endif 1811 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1812 if (inp->inp_sp != NULL) 1813 ipsec_delete_pcbpolicy(inp); 1814 #endif 1815 #ifdef INET 1816 if (inp->inp_options) 1817 (void)m_free(inp->inp_options); 1818 imo = inp->inp_moptions; 1819 #endif 1820 #ifdef INET6 1821 if (inp->inp_vflag & INP_IPV6PROTO) { 1822 ip6_freepcbopts(inp->in6p_outputopts); 1823 im6o = inp->in6p_moptions; 1824 } else 1825 im6o = NULL; 1826 #endif 1827 1828 if (__predict_false(in_pcbrele_wlocked(inp) == false)) { 1829 INP_WUNLOCK(inp); 1830 } 1831 #ifdef INET6 1832 ip6_freemoptions(im6o); 1833 #endif 1834 #ifdef INET 1835 inp_freemoptions(imo); 1836 #endif 1837 /* Destruction is finalized in inpcb_dtor(). */ 1838 } 1839 1840 static void 1841 inpcb_dtor(void *mem, int size, void *arg) 1842 { 1843 struct inpcb *inp = mem; 1844 1845 crfree(inp->inp_cred); 1846 #ifdef INVARIANTS 1847 inp->inp_cred = NULL; 1848 #endif 1849 } 1850 1851 /* 1852 * Different protocols initialize their inpcbs differently - giving 1853 * different name to the lock. But they all are disposed the same. 1854 */ 1855 static void 1856 inpcb_fini(void *mem, int size) 1857 { 1858 struct inpcb *inp = mem; 1859 1860 INP_LOCK_DESTROY(inp); 1861 } 1862 1863 /* 1864 * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and 1865 * port reservation, and preventing it from being returned by inpcb lookups. 1866 * 1867 * It is used by TCP to mark an inpcb as unused and avoid future packet 1868 * delivery or event notification when a socket remains open but TCP has 1869 * closed. This might occur as a result of a shutdown()-initiated TCP close 1870 * or a RST on the wire, and allows the port binding to be reused while still 1871 * maintaining the invariant that so_pcb always points to a valid inpcb until 1872 * in_pcbdetach(). 1873 * 1874 * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by 1875 * in_pcbnotifyall() and in_pcbpurgeif0()? 1876 */ 1877 void 1878 in_pcbdrop(struct inpcb *inp) 1879 { 1880 1881 INP_WLOCK_ASSERT(inp); 1882 #ifdef INVARIANTS 1883 if (inp->inp_socket != NULL && inp->inp_ppcb != NULL) 1884 MPASS(inp->inp_refcount > 1); 1885 #endif 1886 1887 inp->inp_flags |= INP_DROPPED; 1888 if (inp->inp_flags & INP_INHASHLIST) 1889 in_pcbremhash(inp); 1890 } 1891 1892 #ifdef INET 1893 /* 1894 * Common routines to return the socket addresses associated with inpcbs. 1895 */ 1896 struct sockaddr * 1897 in_sockaddr(in_port_t port, struct in_addr *addr_p) 1898 { 1899 struct sockaddr_in *sin; 1900 1901 sin = malloc(sizeof *sin, M_SONAME, 1902 M_WAITOK | M_ZERO); 1903 sin->sin_family = AF_INET; 1904 sin->sin_len = sizeof(*sin); 1905 sin->sin_addr = *addr_p; 1906 sin->sin_port = port; 1907 1908 return (struct sockaddr *)sin; 1909 } 1910 1911 int 1912 in_getsockaddr(struct socket *so, struct sockaddr **nam) 1913 { 1914 struct inpcb *inp; 1915 struct in_addr addr; 1916 in_port_t port; 1917 1918 inp = sotoinpcb(so); 1919 KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL")); 1920 1921 INP_RLOCK(inp); 1922 port = inp->inp_lport; 1923 addr = inp->inp_laddr; 1924 INP_RUNLOCK(inp); 1925 1926 *nam = in_sockaddr(port, &addr); 1927 return 0; 1928 } 1929 1930 int 1931 in_getpeeraddr(struct socket *so, struct sockaddr **nam) 1932 { 1933 struct inpcb *inp; 1934 struct in_addr addr; 1935 in_port_t port; 1936 1937 inp = sotoinpcb(so); 1938 KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL")); 1939 1940 INP_RLOCK(inp); 1941 port = inp->inp_fport; 1942 addr = inp->inp_faddr; 1943 INP_RUNLOCK(inp); 1944 1945 *nam = in_sockaddr(port, &addr); 1946 return 0; 1947 } 1948 1949 void 1950 in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno, 1951 struct inpcb *(*notify)(struct inpcb *, int)) 1952 { 1953 struct inpcb *inp, *inp_temp; 1954 1955 INP_INFO_WLOCK(pcbinfo); 1956 CK_LIST_FOREACH_SAFE(inp, &pcbinfo->ipi_listhead, inp_list, inp_temp) { 1957 INP_WLOCK(inp); 1958 #ifdef INET6 1959 if ((inp->inp_vflag & INP_IPV4) == 0) { 1960 INP_WUNLOCK(inp); 1961 continue; 1962 } 1963 #endif 1964 if (inp->inp_faddr.s_addr != faddr.s_addr || 1965 inp->inp_socket == NULL) { 1966 INP_WUNLOCK(inp); 1967 continue; 1968 } 1969 if ((*notify)(inp, errno)) 1970 INP_WUNLOCK(inp); 1971 } 1972 INP_INFO_WUNLOCK(pcbinfo); 1973 } 1974 1975 static bool 1976 inp_v4_multi_match(const struct inpcb *inp, void *v __unused) 1977 { 1978 1979 if ((inp->inp_vflag & INP_IPV4) && inp->inp_moptions != NULL) 1980 return (true); 1981 else 1982 return (false); 1983 } 1984 1985 void 1986 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp) 1987 { 1988 struct inpcb_iterator inpi = INP_ITERATOR(pcbinfo, INPLOOKUP_WLOCKPCB, 1989 inp_v4_multi_match, NULL); 1990 struct inpcb *inp; 1991 struct in_multi *inm; 1992 struct in_mfilter *imf; 1993 struct ip_moptions *imo; 1994 1995 IN_MULTI_LOCK_ASSERT(); 1996 1997 while ((inp = inp_next(&inpi)) != NULL) { 1998 INP_WLOCK_ASSERT(inp); 1999 2000 imo = inp->inp_moptions; 2001 /* 2002 * Unselect the outgoing interface if it is being 2003 * detached. 2004 */ 2005 if (imo->imo_multicast_ifp == ifp) 2006 imo->imo_multicast_ifp = NULL; 2007 2008 /* 2009 * Drop multicast group membership if we joined 2010 * through the interface being detached. 2011 * 2012 * XXX This can all be deferred to an epoch_call 2013 */ 2014 restart: 2015 IP_MFILTER_FOREACH(imf, &imo->imo_head) { 2016 if ((inm = imf->imf_inm) == NULL) 2017 continue; 2018 if (inm->inm_ifp != ifp) 2019 continue; 2020 ip_mfilter_remove(&imo->imo_head, imf); 2021 in_leavegroup_locked(inm, NULL); 2022 ip_mfilter_free(imf); 2023 goto restart; 2024 } 2025 } 2026 } 2027 2028 /* 2029 * Lookup a PCB based on the local address and port. Caller must hold the 2030 * hash lock. No inpcb locks or references are acquired. 2031 */ 2032 #define INP_LOOKUP_MAPPED_PCB_COST 3 2033 struct inpcb * 2034 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr, 2035 u_short lport, int lookupflags, struct ucred *cred) 2036 { 2037 struct inpcb *inp; 2038 #ifdef INET6 2039 int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST; 2040 #else 2041 int matchwild = 3; 2042 #endif 2043 int wildcard; 2044 2045 KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0, 2046 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2047 INP_HASH_LOCK_ASSERT(pcbinfo); 2048 2049 if ((lookupflags & INPLOOKUP_WILDCARD) == 0) { 2050 struct inpcbhead *head; 2051 /* 2052 * Look for an unconnected (wildcard foreign addr) PCB that 2053 * matches the local address and port we're looking for. 2054 */ 2055 head = &pcbinfo->ipi_hashbase[INP_PCBHASH_WILD(lport, 2056 pcbinfo->ipi_hashmask)]; 2057 CK_LIST_FOREACH(inp, head, inp_hash) { 2058 #ifdef INET6 2059 /* XXX inp locking */ 2060 if ((inp->inp_vflag & INP_IPV4) == 0) 2061 continue; 2062 #endif 2063 if (inp->inp_faddr.s_addr == INADDR_ANY && 2064 inp->inp_laddr.s_addr == laddr.s_addr && 2065 inp->inp_lport == lport) { 2066 /* 2067 * Found? 2068 */ 2069 if (prison_equal_ip4(cred->cr_prison, 2070 inp->inp_cred->cr_prison)) 2071 return (inp); 2072 } 2073 } 2074 /* 2075 * Not found. 2076 */ 2077 return (NULL); 2078 } else { 2079 struct inpcbporthead *porthash; 2080 struct inpcbport *phd; 2081 struct inpcb *match = NULL; 2082 /* 2083 * Best fit PCB lookup. 2084 * 2085 * First see if this local port is in use by looking on the 2086 * port hash list. 2087 */ 2088 porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport, 2089 pcbinfo->ipi_porthashmask)]; 2090 CK_LIST_FOREACH(phd, porthash, phd_hash) { 2091 if (phd->phd_port == lport) 2092 break; 2093 } 2094 if (phd != NULL) { 2095 /* 2096 * Port is in use by one or more PCBs. Look for best 2097 * fit. 2098 */ 2099 CK_LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) { 2100 wildcard = 0; 2101 if (!prison_equal_ip4(inp->inp_cred->cr_prison, 2102 cred->cr_prison)) 2103 continue; 2104 #ifdef INET6 2105 /* XXX inp locking */ 2106 if ((inp->inp_vflag & INP_IPV4) == 0) 2107 continue; 2108 /* 2109 * We never select the PCB that has 2110 * INP_IPV6 flag and is bound to :: if 2111 * we have another PCB which is bound 2112 * to 0.0.0.0. If a PCB has the 2113 * INP_IPV6 flag, then we set its cost 2114 * higher than IPv4 only PCBs. 2115 * 2116 * Note that the case only happens 2117 * when a socket is bound to ::, under 2118 * the condition that the use of the 2119 * mapped address is allowed. 2120 */ 2121 if ((inp->inp_vflag & INP_IPV6) != 0) 2122 wildcard += INP_LOOKUP_MAPPED_PCB_COST; 2123 #endif 2124 if (inp->inp_faddr.s_addr != INADDR_ANY) 2125 wildcard++; 2126 if (inp->inp_laddr.s_addr != INADDR_ANY) { 2127 if (laddr.s_addr == INADDR_ANY) 2128 wildcard++; 2129 else if (inp->inp_laddr.s_addr != laddr.s_addr) 2130 continue; 2131 } else { 2132 if (laddr.s_addr != INADDR_ANY) 2133 wildcard++; 2134 } 2135 if (wildcard < matchwild) { 2136 match = inp; 2137 matchwild = wildcard; 2138 if (matchwild == 0) 2139 break; 2140 } 2141 } 2142 } 2143 return (match); 2144 } 2145 } 2146 #undef INP_LOOKUP_MAPPED_PCB_COST 2147 2148 static bool 2149 in_pcblookup_lb_numa_match(const struct inpcblbgroup *grp, int domain) 2150 { 2151 return (domain == M_NODOM || domain == grp->il_numa_domain); 2152 } 2153 2154 static struct inpcb * 2155 in_pcblookup_lbgroup(const struct inpcbinfo *pcbinfo, 2156 const struct in_addr *laddr, uint16_t lport, const struct in_addr *faddr, 2157 uint16_t fport, int lookupflags, int domain) 2158 { 2159 const struct inpcblbgrouphead *hdr; 2160 struct inpcblbgroup *grp; 2161 struct inpcblbgroup *jail_exact, *jail_wild, *local_exact, *local_wild; 2162 2163 INP_HASH_LOCK_ASSERT(pcbinfo); 2164 2165 hdr = &pcbinfo->ipi_lbgrouphashbase[ 2166 INP_PCBPORTHASH(lport, pcbinfo->ipi_lbgrouphashmask)]; 2167 2168 /* 2169 * Search for an LB group match based on the following criteria: 2170 * - prefer jailed groups to non-jailed groups 2171 * - prefer exact source address matches to wildcard matches 2172 * - prefer groups bound to the specified NUMA domain 2173 */ 2174 jail_exact = jail_wild = local_exact = local_wild = NULL; 2175 CK_LIST_FOREACH(grp, hdr, il_list) { 2176 bool injail; 2177 2178 #ifdef INET6 2179 if (!(grp->il_vflag & INP_IPV4)) 2180 continue; 2181 #endif 2182 if (grp->il_lport != lport) 2183 continue; 2184 2185 injail = prison_flag(grp->il_cred, PR_IP4) != 0; 2186 if (injail && prison_check_ip4_locked(grp->il_cred->cr_prison, 2187 laddr) != 0) 2188 continue; 2189 2190 if (grp->il_laddr.s_addr == laddr->s_addr) { 2191 if (injail) { 2192 jail_exact = grp; 2193 if (in_pcblookup_lb_numa_match(grp, domain)) 2194 /* This is a perfect match. */ 2195 goto out; 2196 } else if (local_exact == NULL || 2197 in_pcblookup_lb_numa_match(grp, domain)) { 2198 local_exact = grp; 2199 } 2200 } else if (grp->il_laddr.s_addr == INADDR_ANY && 2201 (lookupflags & INPLOOKUP_WILDCARD) != 0) { 2202 if (injail) { 2203 if (jail_wild == NULL || 2204 in_pcblookup_lb_numa_match(grp, domain)) 2205 jail_wild = grp; 2206 } else if (local_wild == NULL || 2207 in_pcblookup_lb_numa_match(grp, domain)) { 2208 local_wild = grp; 2209 } 2210 } 2211 } 2212 2213 if (jail_exact != NULL) 2214 grp = jail_exact; 2215 else if (jail_wild != NULL) 2216 grp = jail_wild; 2217 else if (local_exact != NULL) 2218 grp = local_exact; 2219 else 2220 grp = local_wild; 2221 if (grp == NULL) 2222 return (NULL); 2223 out: 2224 return (grp->il_inp[INP_PCBLBGROUP_PKTHASH(faddr, lport, fport) % 2225 grp->il_inpcnt]); 2226 } 2227 2228 /* 2229 * Lookup PCB in hash list, using pcbinfo tables. This variation assumes 2230 * that the caller has either locked the hash list, which usually happens 2231 * for bind(2) operations, or is in SMR section, which happens when sorting 2232 * out incoming packets. 2233 */ 2234 static struct inpcb * 2235 in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2236 u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags, 2237 struct ifnet *ifp, uint8_t numa_domain) 2238 { 2239 struct inpcbhead *head; 2240 struct inpcb *inp, *tmpinp; 2241 u_short fport = fport_arg, lport = lport_arg; 2242 2243 KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0, 2244 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2245 INP_HASH_LOCK_ASSERT(pcbinfo); 2246 2247 /* 2248 * First look for an exact match. 2249 */ 2250 tmpinp = NULL; 2251 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(&faddr, lport, fport, 2252 pcbinfo->ipi_hashmask)]; 2253 CK_LIST_FOREACH(inp, head, inp_hash) { 2254 #ifdef INET6 2255 /* XXX inp locking */ 2256 if ((inp->inp_vflag & INP_IPV4) == 0) 2257 continue; 2258 #endif 2259 if (inp->inp_faddr.s_addr == faddr.s_addr && 2260 inp->inp_laddr.s_addr == laddr.s_addr && 2261 inp->inp_fport == fport && 2262 inp->inp_lport == lport) { 2263 /* 2264 * XXX We should be able to directly return 2265 * the inp here, without any checks. 2266 * Well unless both bound with SO_REUSEPORT? 2267 */ 2268 if (prison_flag(inp->inp_cred, PR_IP4)) 2269 return (inp); 2270 if (tmpinp == NULL) 2271 tmpinp = inp; 2272 } 2273 } 2274 if (tmpinp != NULL) 2275 return (tmpinp); 2276 2277 /* 2278 * Then look for a wildcard match, if requested. 2279 */ 2280 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 2281 struct inpcb *local_wild = NULL, *local_exact = NULL; 2282 #ifdef INET6 2283 struct inpcb *local_wild_mapped = NULL; 2284 #endif 2285 struct inpcb *jail_wild = NULL; 2286 int injail; 2287 2288 /* 2289 * First see if an LB group matches the request before scanning 2290 * all sockets on this port. 2291 */ 2292 inp = in_pcblookup_lbgroup(pcbinfo, &laddr, lport, &faddr, 2293 fport, lookupflags, numa_domain); 2294 if (inp != NULL) 2295 return (inp); 2296 2297 /* 2298 * Order of socket selection - we always prefer jails. 2299 * 1. jailed, non-wild. 2300 * 2. jailed, wild. 2301 * 3. non-jailed, non-wild. 2302 * 4. non-jailed, wild. 2303 */ 2304 2305 head = &pcbinfo->ipi_hashbase[INP_PCBHASH_WILD(lport, 2306 pcbinfo->ipi_hashmask)]; 2307 CK_LIST_FOREACH(inp, head, inp_hash) { 2308 #ifdef INET6 2309 /* XXX inp locking */ 2310 if ((inp->inp_vflag & INP_IPV4) == 0) 2311 continue; 2312 #endif 2313 if (inp->inp_faddr.s_addr != INADDR_ANY || 2314 inp->inp_lport != lport) 2315 continue; 2316 2317 injail = prison_flag(inp->inp_cred, PR_IP4); 2318 if (injail) { 2319 if (prison_check_ip4_locked( 2320 inp->inp_cred->cr_prison, &laddr) != 0) 2321 continue; 2322 } else { 2323 if (local_exact != NULL) 2324 continue; 2325 } 2326 2327 if (inp->inp_laddr.s_addr == laddr.s_addr) { 2328 if (injail) 2329 return (inp); 2330 else 2331 local_exact = inp; 2332 } else if (inp->inp_laddr.s_addr == INADDR_ANY) { 2333 #ifdef INET6 2334 /* XXX inp locking, NULL check */ 2335 if (inp->inp_vflag & INP_IPV6PROTO) 2336 local_wild_mapped = inp; 2337 else 2338 #endif 2339 if (injail) 2340 jail_wild = inp; 2341 else 2342 local_wild = inp; 2343 } 2344 } /* LIST_FOREACH */ 2345 if (jail_wild != NULL) 2346 return (jail_wild); 2347 if (local_exact != NULL) 2348 return (local_exact); 2349 if (local_wild != NULL) 2350 return (local_wild); 2351 #ifdef INET6 2352 if (local_wild_mapped != NULL) 2353 return (local_wild_mapped); 2354 #endif 2355 } /* if ((lookupflags & INPLOOKUP_WILDCARD) != 0) */ 2356 2357 return (NULL); 2358 } 2359 2360 /* 2361 * Lookup PCB in hash list, using pcbinfo tables. This variation locks the 2362 * hash list lock, and will return the inpcb locked (i.e., requires 2363 * INPLOOKUP_LOCKPCB). 2364 */ 2365 static struct inpcb * 2366 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2367 u_int fport, struct in_addr laddr, u_int lport, int lookupflags, 2368 struct ifnet *ifp, uint8_t numa_domain) 2369 { 2370 struct inpcb *inp; 2371 2372 smr_enter(pcbinfo->ipi_smr); 2373 inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport, 2374 lookupflags & INPLOOKUP_WILDCARD, ifp, numa_domain); 2375 if (inp != NULL) { 2376 if (__predict_false(inp_smr_lock(inp, 2377 (lookupflags & INPLOOKUP_LOCKMASK)) == false)) 2378 inp = NULL; 2379 } else 2380 smr_exit(pcbinfo->ipi_smr); 2381 2382 return (inp); 2383 } 2384 2385 /* 2386 * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf 2387 * from which a pre-calculated hash value may be extracted. 2388 */ 2389 struct inpcb * 2390 in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport, 2391 struct in_addr laddr, u_int lport, int lookupflags, struct ifnet *ifp) 2392 { 2393 2394 KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0, 2395 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2396 KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0, 2397 ("%s: LOCKPCB not set", __func__)); 2398 2399 return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport, 2400 lookupflags, ifp, M_NODOM)); 2401 } 2402 2403 struct inpcb * 2404 in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2405 u_int fport, struct in_addr laddr, u_int lport, int lookupflags, 2406 struct ifnet *ifp, struct mbuf *m) 2407 { 2408 2409 KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0, 2410 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2411 KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0, 2412 ("%s: LOCKPCB not set", __func__)); 2413 2414 return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport, 2415 lookupflags, ifp, m->m_pkthdr.numa_domain)); 2416 } 2417 #endif /* INET */ 2418 2419 /* 2420 * Insert PCB onto various hash lists. 2421 */ 2422 int 2423 in_pcbinshash(struct inpcb *inp) 2424 { 2425 struct inpcbhead *pcbhash; 2426 struct inpcbporthead *pcbporthash; 2427 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2428 struct inpcbport *phd; 2429 2430 INP_WLOCK_ASSERT(inp); 2431 INP_HASH_WLOCK_ASSERT(pcbinfo); 2432 2433 KASSERT((inp->inp_flags & INP_INHASHLIST) == 0, 2434 ("in_pcbinshash: INP_INHASHLIST")); 2435 2436 #ifdef INET6 2437 if (inp->inp_vflag & INP_IPV6) 2438 pcbhash = &pcbinfo->ipi_hashbase[INP6_PCBHASH(&inp->in6p_faddr, 2439 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 2440 else 2441 #endif 2442 pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(&inp->inp_faddr, 2443 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 2444 2445 pcbporthash = &pcbinfo->ipi_porthashbase[ 2446 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)]; 2447 2448 /* 2449 * Add entry to load balance group. 2450 * Only do this if SO_REUSEPORT_LB is set. 2451 */ 2452 if ((inp->inp_flags2 & INP_REUSEPORT_LB) != 0) { 2453 int error = in_pcbinslbgrouphash(inp, M_NODOM); 2454 if (error != 0) 2455 return (error); 2456 } 2457 2458 /* 2459 * Go through port list and look for a head for this lport. 2460 */ 2461 CK_LIST_FOREACH(phd, pcbporthash, phd_hash) { 2462 if (phd->phd_port == inp->inp_lport) 2463 break; 2464 } 2465 2466 /* 2467 * If none exists, malloc one and tack it on. 2468 */ 2469 if (phd == NULL) { 2470 phd = uma_zalloc_smr(pcbinfo->ipi_portzone, M_NOWAIT); 2471 if (phd == NULL) { 2472 if ((inp->inp_flags2 & INP_REUSEPORT_LB) != 0) 2473 in_pcbremlbgrouphash(inp); 2474 return (ENOMEM); 2475 } 2476 phd->phd_port = inp->inp_lport; 2477 CK_LIST_INIT(&phd->phd_pcblist); 2478 CK_LIST_INSERT_HEAD(pcbporthash, phd, phd_hash); 2479 } 2480 inp->inp_phd = phd; 2481 CK_LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist); 2482 CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash); 2483 inp->inp_flags |= INP_INHASHLIST; 2484 2485 return (0); 2486 } 2487 2488 static void 2489 in_pcbremhash(struct inpcb *inp) 2490 { 2491 struct inpcbport *phd = inp->inp_phd; 2492 2493 INP_WLOCK_ASSERT(inp); 2494 MPASS(inp->inp_flags & INP_INHASHLIST); 2495 2496 INP_HASH_WLOCK(inp->inp_pcbinfo); 2497 if ((inp->inp_flags2 & INP_REUSEPORT_LB) != 0) 2498 in_pcbremlbgrouphash(inp); 2499 CK_LIST_REMOVE(inp, inp_hash); 2500 CK_LIST_REMOVE(inp, inp_portlist); 2501 if (CK_LIST_FIRST(&phd->phd_pcblist) == NULL) { 2502 CK_LIST_REMOVE(phd, phd_hash); 2503 uma_zfree_smr(inp->inp_pcbinfo->ipi_portzone, phd); 2504 } 2505 INP_HASH_WUNLOCK(inp->inp_pcbinfo); 2506 inp->inp_flags &= ~INP_INHASHLIST; 2507 } 2508 2509 /* 2510 * Move PCB to the proper hash bucket when { faddr, fport } have been 2511 * changed. NOTE: This does not handle the case of the lport changing (the 2512 * hashed port list would have to be updated as well), so the lport must 2513 * not change after in_pcbinshash() has been called. 2514 * 2515 * XXXGL: a race between this function and SMR-protected hash iterator 2516 * will lead to iterator traversing a possibly wrong hash list. However, 2517 * this race should have been here since change from rwlock to epoch. 2518 */ 2519 void 2520 in_pcbrehash(struct inpcb *inp) 2521 { 2522 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2523 struct inpcbhead *head; 2524 2525 INP_WLOCK_ASSERT(inp); 2526 INP_HASH_WLOCK_ASSERT(pcbinfo); 2527 2528 KASSERT(inp->inp_flags & INP_INHASHLIST, 2529 ("in_pcbrehash: !INP_INHASHLIST")); 2530 2531 #ifdef INET6 2532 if (inp->inp_vflag & INP_IPV6) 2533 head = &pcbinfo->ipi_hashbase[INP6_PCBHASH(&inp->in6p_faddr, 2534 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 2535 else 2536 #endif 2537 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(&inp->inp_faddr, 2538 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 2539 2540 CK_LIST_REMOVE(inp, inp_hash); 2541 CK_LIST_INSERT_HEAD(head, inp, inp_hash); 2542 } 2543 2544 /* 2545 * Check for alternatives when higher level complains 2546 * about service problems. For now, invalidate cached 2547 * routing information. If the route was created dynamically 2548 * (by a redirect), time to try a default gateway again. 2549 */ 2550 void 2551 in_losing(struct inpcb *inp) 2552 { 2553 2554 RO_INVALIDATE_CACHE(&inp->inp_route); 2555 return; 2556 } 2557 2558 /* 2559 * A set label operation has occurred at the socket layer, propagate the 2560 * label change into the in_pcb for the socket. 2561 */ 2562 void 2563 in_pcbsosetlabel(struct socket *so) 2564 { 2565 #ifdef MAC 2566 struct inpcb *inp; 2567 2568 inp = sotoinpcb(so); 2569 KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL")); 2570 2571 INP_WLOCK(inp); 2572 SOCK_LOCK(so); 2573 mac_inpcb_sosetlabel(so, inp); 2574 SOCK_UNLOCK(so); 2575 INP_WUNLOCK(inp); 2576 #endif 2577 } 2578 2579 void 2580 inp_wlock(struct inpcb *inp) 2581 { 2582 2583 INP_WLOCK(inp); 2584 } 2585 2586 void 2587 inp_wunlock(struct inpcb *inp) 2588 { 2589 2590 INP_WUNLOCK(inp); 2591 } 2592 2593 void 2594 inp_rlock(struct inpcb *inp) 2595 { 2596 2597 INP_RLOCK(inp); 2598 } 2599 2600 void 2601 inp_runlock(struct inpcb *inp) 2602 { 2603 2604 INP_RUNLOCK(inp); 2605 } 2606 2607 #ifdef INVARIANT_SUPPORT 2608 void 2609 inp_lock_assert(struct inpcb *inp) 2610 { 2611 2612 INP_WLOCK_ASSERT(inp); 2613 } 2614 2615 void 2616 inp_unlock_assert(struct inpcb *inp) 2617 { 2618 2619 INP_UNLOCK_ASSERT(inp); 2620 } 2621 #endif 2622 2623 void 2624 inp_apply_all(struct inpcbinfo *pcbinfo, 2625 void (*func)(struct inpcb *, void *), void *arg) 2626 { 2627 struct inpcb_iterator inpi = INP_ALL_ITERATOR(pcbinfo, 2628 INPLOOKUP_WLOCKPCB); 2629 struct inpcb *inp; 2630 2631 while ((inp = inp_next(&inpi)) != NULL) 2632 func(inp, arg); 2633 } 2634 2635 struct socket * 2636 inp_inpcbtosocket(struct inpcb *inp) 2637 { 2638 2639 INP_WLOCK_ASSERT(inp); 2640 return (inp->inp_socket); 2641 } 2642 2643 struct tcpcb * 2644 inp_inpcbtotcpcb(struct inpcb *inp) 2645 { 2646 2647 INP_WLOCK_ASSERT(inp); 2648 return ((struct tcpcb *)inp->inp_ppcb); 2649 } 2650 2651 int 2652 inp_ip_tos_get(const struct inpcb *inp) 2653 { 2654 2655 return (inp->inp_ip_tos); 2656 } 2657 2658 void 2659 inp_ip_tos_set(struct inpcb *inp, int val) 2660 { 2661 2662 inp->inp_ip_tos = val; 2663 } 2664 2665 void 2666 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp, 2667 uint32_t *faddr, uint16_t *fp) 2668 { 2669 2670 INP_LOCK_ASSERT(inp); 2671 *laddr = inp->inp_laddr.s_addr; 2672 *faddr = inp->inp_faddr.s_addr; 2673 *lp = inp->inp_lport; 2674 *fp = inp->inp_fport; 2675 } 2676 2677 struct inpcb * 2678 so_sotoinpcb(struct socket *so) 2679 { 2680 2681 return (sotoinpcb(so)); 2682 } 2683 2684 /* 2685 * Create an external-format (``xinpcb'') structure using the information in 2686 * the kernel-format in_pcb structure pointed to by inp. This is done to 2687 * reduce the spew of irrelevant information over this interface, to isolate 2688 * user code from changes in the kernel structure, and potentially to provide 2689 * information-hiding if we decide that some of this information should be 2690 * hidden from users. 2691 */ 2692 void 2693 in_pcbtoxinpcb(const struct inpcb *inp, struct xinpcb *xi) 2694 { 2695 2696 bzero(xi, sizeof(*xi)); 2697 xi->xi_len = sizeof(struct xinpcb); 2698 if (inp->inp_socket) 2699 sotoxsocket(inp->inp_socket, &xi->xi_socket); 2700 bcopy(&inp->inp_inc, &xi->inp_inc, sizeof(struct in_conninfo)); 2701 xi->inp_gencnt = inp->inp_gencnt; 2702 xi->inp_ppcb = (uintptr_t)inp->inp_ppcb; 2703 xi->inp_flow = inp->inp_flow; 2704 xi->inp_flowid = inp->inp_flowid; 2705 xi->inp_flowtype = inp->inp_flowtype; 2706 xi->inp_flags = inp->inp_flags; 2707 xi->inp_flags2 = inp->inp_flags2; 2708 xi->inp_rss_listen_bucket = inp->inp_rss_listen_bucket; 2709 xi->in6p_cksum = inp->in6p_cksum; 2710 xi->in6p_hops = inp->in6p_hops; 2711 xi->inp_ip_tos = inp->inp_ip_tos; 2712 xi->inp_vflag = inp->inp_vflag; 2713 xi->inp_ip_ttl = inp->inp_ip_ttl; 2714 xi->inp_ip_p = inp->inp_ip_p; 2715 xi->inp_ip_minttl = inp->inp_ip_minttl; 2716 } 2717 2718 int 2719 sysctl_setsockopt(SYSCTL_HANDLER_ARGS, struct inpcbinfo *pcbinfo, 2720 int (*ctloutput_set)(struct inpcb *, struct sockopt *)) 2721 { 2722 struct sockopt sopt; 2723 struct inpcb_iterator inpi = INP_ALL_ITERATOR(pcbinfo, 2724 INPLOOKUP_WLOCKPCB); 2725 struct inpcb *inp; 2726 struct sockopt_parameters *params; 2727 struct socket *so; 2728 int error; 2729 char buf[1024]; 2730 2731 if (req->oldptr != NULL || req->oldlen != 0) 2732 return (EINVAL); 2733 if (req->newptr == NULL) 2734 return (EPERM); 2735 if (req->newlen > sizeof(buf)) 2736 return (ENOMEM); 2737 error = SYSCTL_IN(req, buf, req->newlen); 2738 if (error != 0) 2739 return (error); 2740 if (req->newlen < sizeof(struct sockopt_parameters)) 2741 return (EINVAL); 2742 params = (struct sockopt_parameters *)buf; 2743 sopt.sopt_level = params->sop_level; 2744 sopt.sopt_name = params->sop_optname; 2745 sopt.sopt_dir = SOPT_SET; 2746 sopt.sopt_val = params->sop_optval; 2747 sopt.sopt_valsize = req->newlen - sizeof(struct sockopt_parameters); 2748 sopt.sopt_td = NULL; 2749 #ifdef INET6 2750 if (params->sop_inc.inc_flags & INC_ISIPV6) { 2751 if (IN6_IS_SCOPE_LINKLOCAL(¶ms->sop_inc.inc6_laddr)) 2752 params->sop_inc.inc6_laddr.s6_addr16[1] = 2753 htons(params->sop_inc.inc6_zoneid & 0xffff); 2754 if (IN6_IS_SCOPE_LINKLOCAL(¶ms->sop_inc.inc6_faddr)) 2755 params->sop_inc.inc6_faddr.s6_addr16[1] = 2756 htons(params->sop_inc.inc6_zoneid & 0xffff); 2757 } 2758 #endif 2759 if (params->sop_inc.inc_lport != htons(0)) { 2760 if (params->sop_inc.inc_fport == htons(0)) 2761 inpi.hash = INP_PCBHASH_WILD(params->sop_inc.inc_lport, 2762 pcbinfo->ipi_hashmask); 2763 else 2764 #ifdef INET6 2765 if (params->sop_inc.inc_flags & INC_ISIPV6) 2766 inpi.hash = INP6_PCBHASH( 2767 ¶ms->sop_inc.inc6_faddr, 2768 params->sop_inc.inc_lport, 2769 params->sop_inc.inc_fport, 2770 pcbinfo->ipi_hashmask); 2771 else 2772 #endif 2773 inpi.hash = INP_PCBHASH( 2774 ¶ms->sop_inc.inc_faddr, 2775 params->sop_inc.inc_lport, 2776 params->sop_inc.inc_fport, 2777 pcbinfo->ipi_hashmask); 2778 } 2779 while ((inp = inp_next(&inpi)) != NULL) 2780 if (inp->inp_gencnt == params->sop_id) { 2781 if (inp->inp_flags & INP_DROPPED) { 2782 INP_WUNLOCK(inp); 2783 return (ECONNRESET); 2784 } 2785 so = inp->inp_socket; 2786 KASSERT(so != NULL, ("inp_socket == NULL")); 2787 soref(so); 2788 error = (*ctloutput_set)(inp, &sopt); 2789 sorele(so); 2790 break; 2791 } 2792 if (inp == NULL) 2793 error = ESRCH; 2794 return (error); 2795 } 2796 2797 #ifdef DDB 2798 static void 2799 db_print_indent(int indent) 2800 { 2801 int i; 2802 2803 for (i = 0; i < indent; i++) 2804 db_printf(" "); 2805 } 2806 2807 static void 2808 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent) 2809 { 2810 char faddr_str[48], laddr_str[48]; 2811 2812 db_print_indent(indent); 2813 db_printf("%s at %p\n", name, inc); 2814 2815 indent += 2; 2816 2817 #ifdef INET6 2818 if (inc->inc_flags & INC_ISIPV6) { 2819 /* IPv6. */ 2820 ip6_sprintf(laddr_str, &inc->inc6_laddr); 2821 ip6_sprintf(faddr_str, &inc->inc6_faddr); 2822 } else 2823 #endif 2824 { 2825 /* IPv4. */ 2826 inet_ntoa_r(inc->inc_laddr, laddr_str); 2827 inet_ntoa_r(inc->inc_faddr, faddr_str); 2828 } 2829 db_print_indent(indent); 2830 db_printf("inc_laddr %s inc_lport %u\n", laddr_str, 2831 ntohs(inc->inc_lport)); 2832 db_print_indent(indent); 2833 db_printf("inc_faddr %s inc_fport %u\n", faddr_str, 2834 ntohs(inc->inc_fport)); 2835 } 2836 2837 static void 2838 db_print_inpflags(int inp_flags) 2839 { 2840 int comma; 2841 2842 comma = 0; 2843 if (inp_flags & INP_RECVOPTS) { 2844 db_printf("%sINP_RECVOPTS", comma ? ", " : ""); 2845 comma = 1; 2846 } 2847 if (inp_flags & INP_RECVRETOPTS) { 2848 db_printf("%sINP_RECVRETOPTS", comma ? ", " : ""); 2849 comma = 1; 2850 } 2851 if (inp_flags & INP_RECVDSTADDR) { 2852 db_printf("%sINP_RECVDSTADDR", comma ? ", " : ""); 2853 comma = 1; 2854 } 2855 if (inp_flags & INP_ORIGDSTADDR) { 2856 db_printf("%sINP_ORIGDSTADDR", comma ? ", " : ""); 2857 comma = 1; 2858 } 2859 if (inp_flags & INP_HDRINCL) { 2860 db_printf("%sINP_HDRINCL", comma ? ", " : ""); 2861 comma = 1; 2862 } 2863 if (inp_flags & INP_HIGHPORT) { 2864 db_printf("%sINP_HIGHPORT", comma ? ", " : ""); 2865 comma = 1; 2866 } 2867 if (inp_flags & INP_LOWPORT) { 2868 db_printf("%sINP_LOWPORT", comma ? ", " : ""); 2869 comma = 1; 2870 } 2871 if (inp_flags & INP_ANONPORT) { 2872 db_printf("%sINP_ANONPORT", comma ? ", " : ""); 2873 comma = 1; 2874 } 2875 if (inp_flags & INP_RECVIF) { 2876 db_printf("%sINP_RECVIF", comma ? ", " : ""); 2877 comma = 1; 2878 } 2879 if (inp_flags & INP_MTUDISC) { 2880 db_printf("%sINP_MTUDISC", comma ? ", " : ""); 2881 comma = 1; 2882 } 2883 if (inp_flags & INP_RECVTTL) { 2884 db_printf("%sINP_RECVTTL", comma ? ", " : ""); 2885 comma = 1; 2886 } 2887 if (inp_flags & INP_DONTFRAG) { 2888 db_printf("%sINP_DONTFRAG", comma ? ", " : ""); 2889 comma = 1; 2890 } 2891 if (inp_flags & INP_RECVTOS) { 2892 db_printf("%sINP_RECVTOS", comma ? ", " : ""); 2893 comma = 1; 2894 } 2895 if (inp_flags & IN6P_IPV6_V6ONLY) { 2896 db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : ""); 2897 comma = 1; 2898 } 2899 if (inp_flags & IN6P_PKTINFO) { 2900 db_printf("%sIN6P_PKTINFO", comma ? ", " : ""); 2901 comma = 1; 2902 } 2903 if (inp_flags & IN6P_HOPLIMIT) { 2904 db_printf("%sIN6P_HOPLIMIT", comma ? ", " : ""); 2905 comma = 1; 2906 } 2907 if (inp_flags & IN6P_HOPOPTS) { 2908 db_printf("%sIN6P_HOPOPTS", comma ? ", " : ""); 2909 comma = 1; 2910 } 2911 if (inp_flags & IN6P_DSTOPTS) { 2912 db_printf("%sIN6P_DSTOPTS", comma ? ", " : ""); 2913 comma = 1; 2914 } 2915 if (inp_flags & IN6P_RTHDR) { 2916 db_printf("%sIN6P_RTHDR", comma ? ", " : ""); 2917 comma = 1; 2918 } 2919 if (inp_flags & IN6P_RTHDRDSTOPTS) { 2920 db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : ""); 2921 comma = 1; 2922 } 2923 if (inp_flags & IN6P_TCLASS) { 2924 db_printf("%sIN6P_TCLASS", comma ? ", " : ""); 2925 comma = 1; 2926 } 2927 if (inp_flags & IN6P_AUTOFLOWLABEL) { 2928 db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : ""); 2929 comma = 1; 2930 } 2931 if (inp_flags & INP_ONESBCAST) { 2932 db_printf("%sINP_ONESBCAST", comma ? ", " : ""); 2933 comma = 1; 2934 } 2935 if (inp_flags & INP_DROPPED) { 2936 db_printf("%sINP_DROPPED", comma ? ", " : ""); 2937 comma = 1; 2938 } 2939 if (inp_flags & INP_SOCKREF) { 2940 db_printf("%sINP_SOCKREF", comma ? ", " : ""); 2941 comma = 1; 2942 } 2943 if (inp_flags & IN6P_RFC2292) { 2944 db_printf("%sIN6P_RFC2292", comma ? ", " : ""); 2945 comma = 1; 2946 } 2947 if (inp_flags & IN6P_MTU) { 2948 db_printf("IN6P_MTU%s", comma ? ", " : ""); 2949 comma = 1; 2950 } 2951 } 2952 2953 static void 2954 db_print_inpvflag(u_char inp_vflag) 2955 { 2956 int comma; 2957 2958 comma = 0; 2959 if (inp_vflag & INP_IPV4) { 2960 db_printf("%sINP_IPV4", comma ? ", " : ""); 2961 comma = 1; 2962 } 2963 if (inp_vflag & INP_IPV6) { 2964 db_printf("%sINP_IPV6", comma ? ", " : ""); 2965 comma = 1; 2966 } 2967 if (inp_vflag & INP_IPV6PROTO) { 2968 db_printf("%sINP_IPV6PROTO", comma ? ", " : ""); 2969 comma = 1; 2970 } 2971 } 2972 2973 static void 2974 db_print_inpcb(struct inpcb *inp, const char *name, int indent) 2975 { 2976 2977 db_print_indent(indent); 2978 db_printf("%s at %p\n", name, inp); 2979 2980 indent += 2; 2981 2982 db_print_indent(indent); 2983 db_printf("inp_flow: 0x%x\n", inp->inp_flow); 2984 2985 db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent); 2986 2987 db_print_indent(indent); 2988 db_printf("inp_ppcb: %p inp_pcbinfo: %p inp_socket: %p\n", 2989 inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket); 2990 2991 db_print_indent(indent); 2992 db_printf("inp_label: %p inp_flags: 0x%x (", 2993 inp->inp_label, inp->inp_flags); 2994 db_print_inpflags(inp->inp_flags); 2995 db_printf(")\n"); 2996 2997 db_print_indent(indent); 2998 db_printf("inp_sp: %p inp_vflag: 0x%x (", inp->inp_sp, 2999 inp->inp_vflag); 3000 db_print_inpvflag(inp->inp_vflag); 3001 db_printf(")\n"); 3002 3003 db_print_indent(indent); 3004 db_printf("inp_ip_ttl: %d inp_ip_p: %d inp_ip_minttl: %d\n", 3005 inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl); 3006 3007 db_print_indent(indent); 3008 #ifdef INET6 3009 if (inp->inp_vflag & INP_IPV6) { 3010 db_printf("in6p_options: %p in6p_outputopts: %p " 3011 "in6p_moptions: %p\n", inp->in6p_options, 3012 inp->in6p_outputopts, inp->in6p_moptions); 3013 db_printf("in6p_icmp6filt: %p in6p_cksum %d " 3014 "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum, 3015 inp->in6p_hops); 3016 } else 3017 #endif 3018 { 3019 db_printf("inp_ip_tos: %d inp_ip_options: %p " 3020 "inp_ip_moptions: %p\n", inp->inp_ip_tos, 3021 inp->inp_options, inp->inp_moptions); 3022 } 3023 3024 db_print_indent(indent); 3025 db_printf("inp_phd: %p inp_gencnt: %ju\n", inp->inp_phd, 3026 (uintmax_t)inp->inp_gencnt); 3027 } 3028 3029 DB_SHOW_COMMAND(inpcb, db_show_inpcb) 3030 { 3031 struct inpcb *inp; 3032 3033 if (!have_addr) { 3034 db_printf("usage: show inpcb <addr>\n"); 3035 return; 3036 } 3037 inp = (struct inpcb *)addr; 3038 3039 db_print_inpcb(inp, "inpcb", 0); 3040 } 3041 #endif /* DDB */ 3042 3043 #ifdef RATELIMIT 3044 /* 3045 * Modify TX rate limit based on the existing "inp->inp_snd_tag", 3046 * if any. 3047 */ 3048 int 3049 in_pcbmodify_txrtlmt(struct inpcb *inp, uint32_t max_pacing_rate) 3050 { 3051 union if_snd_tag_modify_params params = { 3052 .rate_limit.max_rate = max_pacing_rate, 3053 .rate_limit.flags = M_NOWAIT, 3054 }; 3055 struct m_snd_tag *mst; 3056 int error; 3057 3058 mst = inp->inp_snd_tag; 3059 if (mst == NULL) 3060 return (EINVAL); 3061 3062 if (mst->sw->snd_tag_modify == NULL) { 3063 error = EOPNOTSUPP; 3064 } else { 3065 error = mst->sw->snd_tag_modify(mst, ¶ms); 3066 } 3067 return (error); 3068 } 3069 3070 /* 3071 * Query existing TX rate limit based on the existing 3072 * "inp->inp_snd_tag", if any. 3073 */ 3074 int 3075 in_pcbquery_txrtlmt(struct inpcb *inp, uint32_t *p_max_pacing_rate) 3076 { 3077 union if_snd_tag_query_params params = { }; 3078 struct m_snd_tag *mst; 3079 int error; 3080 3081 mst = inp->inp_snd_tag; 3082 if (mst == NULL) 3083 return (EINVAL); 3084 3085 if (mst->sw->snd_tag_query == NULL) { 3086 error = EOPNOTSUPP; 3087 } else { 3088 error = mst->sw->snd_tag_query(mst, ¶ms); 3089 if (error == 0 && p_max_pacing_rate != NULL) 3090 *p_max_pacing_rate = params.rate_limit.max_rate; 3091 } 3092 return (error); 3093 } 3094 3095 /* 3096 * Query existing TX queue level based on the existing 3097 * "inp->inp_snd_tag", if any. 3098 */ 3099 int 3100 in_pcbquery_txrlevel(struct inpcb *inp, uint32_t *p_txqueue_level) 3101 { 3102 union if_snd_tag_query_params params = { }; 3103 struct m_snd_tag *mst; 3104 int error; 3105 3106 mst = inp->inp_snd_tag; 3107 if (mst == NULL) 3108 return (EINVAL); 3109 3110 if (mst->sw->snd_tag_query == NULL) 3111 return (EOPNOTSUPP); 3112 3113 error = mst->sw->snd_tag_query(mst, ¶ms); 3114 if (error == 0 && p_txqueue_level != NULL) 3115 *p_txqueue_level = params.rate_limit.queue_level; 3116 return (error); 3117 } 3118 3119 /* 3120 * Allocate a new TX rate limit send tag from the network interface 3121 * given by the "ifp" argument and save it in "inp->inp_snd_tag": 3122 */ 3123 int 3124 in_pcbattach_txrtlmt(struct inpcb *inp, struct ifnet *ifp, 3125 uint32_t flowtype, uint32_t flowid, uint32_t max_pacing_rate, struct m_snd_tag **st) 3126 3127 { 3128 union if_snd_tag_alloc_params params = { 3129 .rate_limit.hdr.type = (max_pacing_rate == -1U) ? 3130 IF_SND_TAG_TYPE_UNLIMITED : IF_SND_TAG_TYPE_RATE_LIMIT, 3131 .rate_limit.hdr.flowid = flowid, 3132 .rate_limit.hdr.flowtype = flowtype, 3133 .rate_limit.hdr.numa_domain = inp->inp_numa_domain, 3134 .rate_limit.max_rate = max_pacing_rate, 3135 .rate_limit.flags = M_NOWAIT, 3136 }; 3137 int error; 3138 3139 INP_WLOCK_ASSERT(inp); 3140 3141 /* 3142 * If there is already a send tag, or the INP is being torn 3143 * down, allocating a new send tag is not allowed. Else send 3144 * tags may leak. 3145 */ 3146 if (*st != NULL || (inp->inp_flags & INP_DROPPED) != 0) 3147 return (EINVAL); 3148 3149 error = m_snd_tag_alloc(ifp, ¶ms, st); 3150 #ifdef INET 3151 if (error == 0) { 3152 counter_u64_add(rate_limit_set_ok, 1); 3153 counter_u64_add(rate_limit_active, 1); 3154 } else if (error != EOPNOTSUPP) 3155 counter_u64_add(rate_limit_alloc_fail, 1); 3156 #endif 3157 return (error); 3158 } 3159 3160 void 3161 in_pcbdetach_tag(struct m_snd_tag *mst) 3162 { 3163 3164 m_snd_tag_rele(mst); 3165 #ifdef INET 3166 counter_u64_add(rate_limit_active, -1); 3167 #endif 3168 } 3169 3170 /* 3171 * Free an existing TX rate limit tag based on the "inp->inp_snd_tag", 3172 * if any: 3173 */ 3174 void 3175 in_pcbdetach_txrtlmt(struct inpcb *inp) 3176 { 3177 struct m_snd_tag *mst; 3178 3179 INP_WLOCK_ASSERT(inp); 3180 3181 mst = inp->inp_snd_tag; 3182 inp->inp_snd_tag = NULL; 3183 3184 if (mst == NULL) 3185 return; 3186 3187 m_snd_tag_rele(mst); 3188 #ifdef INET 3189 counter_u64_add(rate_limit_active, -1); 3190 #endif 3191 } 3192 3193 int 3194 in_pcboutput_txrtlmt_locked(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb, uint32_t max_pacing_rate) 3195 { 3196 int error; 3197 3198 /* 3199 * If the existing send tag is for the wrong interface due to 3200 * a route change, first drop the existing tag. Set the 3201 * CHANGED flag so that we will keep trying to allocate a new 3202 * tag if we fail to allocate one this time. 3203 */ 3204 if (inp->inp_snd_tag != NULL && inp->inp_snd_tag->ifp != ifp) { 3205 in_pcbdetach_txrtlmt(inp); 3206 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 3207 } 3208 3209 /* 3210 * NOTE: When attaching to a network interface a reference is 3211 * made to ensure the network interface doesn't go away until 3212 * all ratelimit connections are gone. The network interface 3213 * pointers compared below represent valid network interfaces, 3214 * except when comparing towards NULL. 3215 */ 3216 if (max_pacing_rate == 0 && inp->inp_snd_tag == NULL) { 3217 error = 0; 3218 } else if (!(ifp->if_capenable & IFCAP_TXRTLMT)) { 3219 if (inp->inp_snd_tag != NULL) 3220 in_pcbdetach_txrtlmt(inp); 3221 error = 0; 3222 } else if (inp->inp_snd_tag == NULL) { 3223 /* 3224 * In order to utilize packet pacing with RSS, we need 3225 * to wait until there is a valid RSS hash before we 3226 * can proceed: 3227 */ 3228 if (M_HASHTYPE_GET(mb) == M_HASHTYPE_NONE) { 3229 error = EAGAIN; 3230 } else { 3231 error = in_pcbattach_txrtlmt(inp, ifp, M_HASHTYPE_GET(mb), 3232 mb->m_pkthdr.flowid, max_pacing_rate, &inp->inp_snd_tag); 3233 } 3234 } else { 3235 error = in_pcbmodify_txrtlmt(inp, max_pacing_rate); 3236 } 3237 if (error == 0 || error == EOPNOTSUPP) 3238 inp->inp_flags2 &= ~INP_RATE_LIMIT_CHANGED; 3239 3240 return (error); 3241 } 3242 3243 /* 3244 * This function should be called when the INP_RATE_LIMIT_CHANGED flag 3245 * is set in the fast path and will attach/detach/modify the TX rate 3246 * limit send tag based on the socket's so_max_pacing_rate value. 3247 */ 3248 void 3249 in_pcboutput_txrtlmt(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb) 3250 { 3251 struct socket *socket; 3252 uint32_t max_pacing_rate; 3253 bool did_upgrade; 3254 3255 if (inp == NULL) 3256 return; 3257 3258 socket = inp->inp_socket; 3259 if (socket == NULL) 3260 return; 3261 3262 if (!INP_WLOCKED(inp)) { 3263 /* 3264 * NOTE: If the write locking fails, we need to bail 3265 * out and use the non-ratelimited ring for the 3266 * transmit until there is a new chance to get the 3267 * write lock. 3268 */ 3269 if (!INP_TRY_UPGRADE(inp)) 3270 return; 3271 did_upgrade = 1; 3272 } else { 3273 did_upgrade = 0; 3274 } 3275 3276 /* 3277 * NOTE: The so_max_pacing_rate value is read unlocked, 3278 * because atomic updates are not required since the variable 3279 * is checked at every mbuf we send. It is assumed that the 3280 * variable read itself will be atomic. 3281 */ 3282 max_pacing_rate = socket->so_max_pacing_rate; 3283 3284 in_pcboutput_txrtlmt_locked(inp, ifp, mb, max_pacing_rate); 3285 3286 if (did_upgrade) 3287 INP_DOWNGRADE(inp); 3288 } 3289 3290 /* 3291 * Track route changes for TX rate limiting. 3292 */ 3293 void 3294 in_pcboutput_eagain(struct inpcb *inp) 3295 { 3296 bool did_upgrade; 3297 3298 if (inp == NULL) 3299 return; 3300 3301 if (inp->inp_snd_tag == NULL) 3302 return; 3303 3304 if (!INP_WLOCKED(inp)) { 3305 /* 3306 * NOTE: If the write locking fails, we need to bail 3307 * out and use the non-ratelimited ring for the 3308 * transmit until there is a new chance to get the 3309 * write lock. 3310 */ 3311 if (!INP_TRY_UPGRADE(inp)) 3312 return; 3313 did_upgrade = 1; 3314 } else { 3315 did_upgrade = 0; 3316 } 3317 3318 /* detach rate limiting */ 3319 in_pcbdetach_txrtlmt(inp); 3320 3321 /* make sure new mbuf send tag allocation is made */ 3322 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 3323 3324 if (did_upgrade) 3325 INP_DOWNGRADE(inp); 3326 } 3327 3328 #ifdef INET 3329 static void 3330 rl_init(void *st) 3331 { 3332 rate_limit_new = counter_u64_alloc(M_WAITOK); 3333 rate_limit_chg = counter_u64_alloc(M_WAITOK); 3334 rate_limit_active = counter_u64_alloc(M_WAITOK); 3335 rate_limit_alloc_fail = counter_u64_alloc(M_WAITOK); 3336 rate_limit_set_ok = counter_u64_alloc(M_WAITOK); 3337 } 3338 3339 SYSINIT(rl, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, rl_init, NULL); 3340 #endif 3341 #endif /* RATELIMIT */ 3342