1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1991, 1993, 1995 5 * The Regents of the University of California. 6 * Copyright (c) 2007-2009 Robert N. M. Watson 7 * Copyright (c) 2010-2011 Juniper Networks, Inc. 8 * All rights reserved. 9 * 10 * Portions of this software were developed by Robert N. M. Watson under 11 * contract to Juniper Networks, Inc. 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 3. Neither the name of the University nor the names of its contributors 22 * may be used to endorse or promote products derived from this software 23 * without specific prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 35 * SUCH DAMAGE. 36 * 37 * @(#)in_pcb.c 8.4 (Berkeley) 5/24/95 38 */ 39 40 #include <sys/cdefs.h> 41 __FBSDID("$FreeBSD$"); 42 43 #include "opt_ddb.h" 44 #include "opt_ipsec.h" 45 #include "opt_inet.h" 46 #include "opt_inet6.h" 47 #include "opt_ratelimit.h" 48 #include "opt_pcbgroup.h" 49 #include "opt_rss.h" 50 51 #include <sys/param.h> 52 #include <sys/systm.h> 53 #include <sys/lock.h> 54 #include <sys/malloc.h> 55 #include <sys/mbuf.h> 56 #include <sys/callout.h> 57 #include <sys/eventhandler.h> 58 #include <sys/domain.h> 59 #include <sys/protosw.h> 60 #include <sys/rmlock.h> 61 #include <sys/smp.h> 62 #include <sys/socket.h> 63 #include <sys/socketvar.h> 64 #include <sys/sockio.h> 65 #include <sys/priv.h> 66 #include <sys/proc.h> 67 #include <sys/refcount.h> 68 #include <sys/jail.h> 69 #include <sys/kernel.h> 70 #include <sys/sysctl.h> 71 72 #ifdef DDB 73 #include <ddb/ddb.h> 74 #endif 75 76 #include <vm/uma.h> 77 78 #include <net/if.h> 79 #include <net/if_var.h> 80 #include <net/if_types.h> 81 #include <net/if_llatbl.h> 82 #include <net/route.h> 83 #include <net/rss_config.h> 84 #include <net/vnet.h> 85 86 #if defined(INET) || defined(INET6) 87 #include <netinet/in.h> 88 #include <netinet/in_pcb.h> 89 #include <netinet/ip_var.h> 90 #include <netinet/tcp_var.h> 91 #ifdef TCPHPTS 92 #include <netinet/tcp_hpts.h> 93 #endif 94 #include <netinet/udp.h> 95 #include <netinet/udp_var.h> 96 #endif 97 #ifdef INET 98 #include <netinet/in_var.h> 99 #endif 100 #ifdef INET6 101 #include <netinet/ip6.h> 102 #include <netinet6/in6_pcb.h> 103 #include <netinet6/in6_var.h> 104 #include <netinet6/ip6_var.h> 105 #endif /* INET6 */ 106 107 #include <netipsec/ipsec_support.h> 108 109 #include <security/mac/mac_framework.h> 110 111 #define INPCBLBGROUP_SIZMIN 8 112 #define INPCBLBGROUP_SIZMAX 256 113 114 static struct callout ipport_tick_callout; 115 116 /* 117 * These configure the range of local port addresses assigned to 118 * "unspecified" outgoing connections/packets/whatever. 119 */ 120 VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1; /* 1023 */ 121 VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART; /* 600 */ 122 VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST; /* 10000 */ 123 VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST; /* 65535 */ 124 VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO; /* 49152 */ 125 VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO; /* 65535 */ 126 127 /* 128 * Reserved ports accessible only to root. There are significant 129 * security considerations that must be accounted for when changing these, 130 * but the security benefits can be great. Please be careful. 131 */ 132 VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1; /* 1023 */ 133 VNET_DEFINE(int, ipport_reservedlow); 134 135 /* Variables dealing with random ephemeral port allocation. */ 136 VNET_DEFINE(int, ipport_randomized) = 1; /* user controlled via sysctl */ 137 VNET_DEFINE(int, ipport_randomcps) = 10; /* user controlled via sysctl */ 138 VNET_DEFINE(int, ipport_randomtime) = 45; /* user controlled via sysctl */ 139 VNET_DEFINE(int, ipport_stoprandom); /* toggled by ipport_tick */ 140 VNET_DEFINE(int, ipport_tcpallocs); 141 VNET_DEFINE_STATIC(int, ipport_tcplastcount); 142 143 #define V_ipport_tcplastcount VNET(ipport_tcplastcount) 144 145 static void in_pcbremlists(struct inpcb *inp); 146 #ifdef INET 147 static struct inpcb *in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, 148 struct in_addr faddr, u_int fport_arg, 149 struct in_addr laddr, u_int lport_arg, 150 int lookupflags, struct ifnet *ifp); 151 152 #define RANGECHK(var, min, max) \ 153 if ((var) < (min)) { (var) = (min); } \ 154 else if ((var) > (max)) { (var) = (max); } 155 156 static int 157 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS) 158 { 159 int error; 160 161 error = sysctl_handle_int(oidp, arg1, arg2, req); 162 if (error == 0) { 163 RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1); 164 RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1); 165 RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX); 166 RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX); 167 RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX); 168 RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX); 169 } 170 return (error); 171 } 172 173 #undef RANGECHK 174 175 static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, CTLFLAG_RW, 0, 176 "IP Ports"); 177 178 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst, 179 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 180 &VNET_NAME(ipport_lowfirstauto), 0, &sysctl_net_ipport_check, "I", ""); 181 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast, 182 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 183 &VNET_NAME(ipport_lowlastauto), 0, &sysctl_net_ipport_check, "I", ""); 184 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first, 185 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 186 &VNET_NAME(ipport_firstauto), 0, &sysctl_net_ipport_check, "I", ""); 187 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last, 188 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 189 &VNET_NAME(ipport_lastauto), 0, &sysctl_net_ipport_check, "I", ""); 190 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst, 191 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 192 &VNET_NAME(ipport_hifirstauto), 0, &sysctl_net_ipport_check, "I", ""); 193 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast, 194 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 195 &VNET_NAME(ipport_hilastauto), 0, &sysctl_net_ipport_check, "I", ""); 196 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh, 197 CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE, 198 &VNET_NAME(ipport_reservedhigh), 0, ""); 199 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow, 200 CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, ""); 201 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized, 202 CTLFLAG_VNET | CTLFLAG_RW, 203 &VNET_NAME(ipport_randomized), 0, "Enable random port allocation"); 204 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomcps, 205 CTLFLAG_VNET | CTLFLAG_RW, 206 &VNET_NAME(ipport_randomcps), 0, "Maximum number of random port " 207 "allocations before switching to a sequental one"); 208 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomtime, 209 CTLFLAG_VNET | CTLFLAG_RW, 210 &VNET_NAME(ipport_randomtime), 0, 211 "Minimum time to keep sequental port " 212 "allocation before switching to a random one"); 213 #endif /* INET */ 214 215 /* 216 * in_pcb.c: manage the Protocol Control Blocks. 217 * 218 * NOTE: It is assumed that most of these functions will be called with 219 * the pcbinfo lock held, and often, the inpcb lock held, as these utility 220 * functions often modify hash chains or addresses in pcbs. 221 */ 222 223 static struct inpcblbgroup * 224 in_pcblbgroup_alloc(struct inpcblbgrouphead *hdr, u_char vflag, 225 uint16_t port, const union in_dependaddr *addr, int size) 226 { 227 struct inpcblbgroup *grp; 228 size_t bytes; 229 230 bytes = __offsetof(struct inpcblbgroup, il_inp[size]); 231 grp = malloc(bytes, M_PCB, M_ZERO | M_NOWAIT); 232 if (!grp) 233 return (NULL); 234 grp->il_vflag = vflag; 235 grp->il_lport = port; 236 grp->il_dependladdr = *addr; 237 grp->il_inpsiz = size; 238 CK_LIST_INSERT_HEAD(hdr, grp, il_list); 239 return (grp); 240 } 241 242 static void 243 in_pcblbgroup_free_deferred(epoch_context_t ctx) 244 { 245 struct inpcblbgroup *grp; 246 247 grp = __containerof(ctx, struct inpcblbgroup, il_epoch_ctx); 248 free(grp, M_PCB); 249 } 250 251 static void 252 in_pcblbgroup_free(struct inpcblbgroup *grp) 253 { 254 255 CK_LIST_REMOVE(grp, il_list); 256 epoch_call(net_epoch_preempt, &grp->il_epoch_ctx, 257 in_pcblbgroup_free_deferred); 258 } 259 260 static struct inpcblbgroup * 261 in_pcblbgroup_resize(struct inpcblbgrouphead *hdr, 262 struct inpcblbgroup *old_grp, int size) 263 { 264 struct inpcblbgroup *grp; 265 int i; 266 267 grp = in_pcblbgroup_alloc(hdr, old_grp->il_vflag, 268 old_grp->il_lport, &old_grp->il_dependladdr, size); 269 if (grp == NULL) 270 return (NULL); 271 272 KASSERT(old_grp->il_inpcnt < grp->il_inpsiz, 273 ("invalid new local group size %d and old local group count %d", 274 grp->il_inpsiz, old_grp->il_inpcnt)); 275 276 for (i = 0; i < old_grp->il_inpcnt; ++i) 277 grp->il_inp[i] = old_grp->il_inp[i]; 278 grp->il_inpcnt = old_grp->il_inpcnt; 279 in_pcblbgroup_free(old_grp); 280 return (grp); 281 } 282 283 /* 284 * PCB at index 'i' is removed from the group. Pull up the ones below il_inp[i] 285 * and shrink group if possible. 286 */ 287 static void 288 in_pcblbgroup_reorder(struct inpcblbgrouphead *hdr, struct inpcblbgroup **grpp, 289 int i) 290 { 291 struct inpcblbgroup *grp, *new_grp; 292 293 grp = *grpp; 294 for (; i + 1 < grp->il_inpcnt; ++i) 295 grp->il_inp[i] = grp->il_inp[i + 1]; 296 grp->il_inpcnt--; 297 298 if (grp->il_inpsiz > INPCBLBGROUP_SIZMIN && 299 grp->il_inpcnt <= grp->il_inpsiz / 4) { 300 /* Shrink this group. */ 301 new_grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz / 2); 302 if (new_grp != NULL) 303 *grpp = new_grp; 304 } 305 } 306 307 /* 308 * Add PCB to load balance group for SO_REUSEPORT_LB option. 309 */ 310 static int 311 in_pcbinslbgrouphash(struct inpcb *inp) 312 { 313 const static struct timeval interval = { 60, 0 }; 314 static struct timeval lastprint; 315 struct inpcbinfo *pcbinfo; 316 struct inpcblbgrouphead *hdr; 317 struct inpcblbgroup *grp; 318 uint32_t idx; 319 320 pcbinfo = inp->inp_pcbinfo; 321 322 INP_WLOCK_ASSERT(inp); 323 INP_HASH_WLOCK_ASSERT(pcbinfo); 324 325 /* 326 * Don't allow jailed socket to join local group. 327 */ 328 if (inp->inp_socket != NULL && jailed(inp->inp_socket->so_cred)) 329 return (0); 330 331 #ifdef INET6 332 /* 333 * Don't allow IPv4 mapped INET6 wild socket. 334 */ 335 if ((inp->inp_vflag & INP_IPV4) && 336 inp->inp_laddr.s_addr == INADDR_ANY && 337 INP_CHECK_SOCKAF(inp->inp_socket, AF_INET6)) { 338 return (0); 339 } 340 #endif 341 342 idx = INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask); 343 hdr = &pcbinfo->ipi_lbgrouphashbase[idx]; 344 CK_LIST_FOREACH(grp, hdr, il_list) { 345 if (grp->il_vflag == inp->inp_vflag && 346 grp->il_lport == inp->inp_lport && 347 memcmp(&grp->il_dependladdr, 348 &inp->inp_inc.inc_ie.ie_dependladdr, 349 sizeof(grp->il_dependladdr)) == 0) 350 break; 351 } 352 if (grp == NULL) { 353 /* Create new load balance group. */ 354 grp = in_pcblbgroup_alloc(hdr, inp->inp_vflag, 355 inp->inp_lport, &inp->inp_inc.inc_ie.ie_dependladdr, 356 INPCBLBGROUP_SIZMIN); 357 if (grp == NULL) 358 return (ENOBUFS); 359 } else if (grp->il_inpcnt == grp->il_inpsiz) { 360 if (grp->il_inpsiz >= INPCBLBGROUP_SIZMAX) { 361 if (ratecheck(&lastprint, &interval)) 362 printf("lb group port %d, limit reached\n", 363 ntohs(grp->il_lport)); 364 return (0); 365 } 366 367 /* Expand this local group. */ 368 grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz * 2); 369 if (grp == NULL) 370 return (ENOBUFS); 371 } 372 373 KASSERT(grp->il_inpcnt < grp->il_inpsiz, 374 ("invalid local group size %d and count %d", grp->il_inpsiz, 375 grp->il_inpcnt)); 376 377 grp->il_inp[grp->il_inpcnt] = inp; 378 grp->il_inpcnt++; 379 return (0); 380 } 381 382 /* 383 * Remove PCB from load balance group. 384 */ 385 static void 386 in_pcbremlbgrouphash(struct inpcb *inp) 387 { 388 struct inpcbinfo *pcbinfo; 389 struct inpcblbgrouphead *hdr; 390 struct inpcblbgroup *grp; 391 int i; 392 393 pcbinfo = inp->inp_pcbinfo; 394 395 INP_WLOCK_ASSERT(inp); 396 INP_HASH_WLOCK_ASSERT(pcbinfo); 397 398 hdr = &pcbinfo->ipi_lbgrouphashbase[ 399 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask)]; 400 CK_LIST_FOREACH(grp, hdr, il_list) { 401 for (i = 0; i < grp->il_inpcnt; ++i) { 402 if (grp->il_inp[i] != inp) 403 continue; 404 405 if (grp->il_inpcnt == 1) { 406 /* We are the last, free this local group. */ 407 in_pcblbgroup_free(grp); 408 } else { 409 /* Pull up inpcbs, shrink group if possible. */ 410 in_pcblbgroup_reorder(hdr, &grp, i); 411 } 412 return; 413 } 414 } 415 } 416 417 /* 418 * Different protocols initialize their inpcbs differently - giving 419 * different name to the lock. But they all are disposed the same. 420 */ 421 static void 422 inpcb_fini(void *mem, int size) 423 { 424 struct inpcb *inp = mem; 425 426 INP_LOCK_DESTROY(inp); 427 } 428 429 /* 430 * Initialize an inpcbinfo -- we should be able to reduce the number of 431 * arguments in time. 432 */ 433 void 434 in_pcbinfo_init(struct inpcbinfo *pcbinfo, const char *name, 435 struct inpcbhead *listhead, int hash_nelements, int porthash_nelements, 436 char *inpcbzone_name, uma_init inpcbzone_init, u_int hashfields) 437 { 438 439 porthash_nelements = imin(porthash_nelements, IPPORT_MAX + 1); 440 441 INP_INFO_LOCK_INIT(pcbinfo, name); 442 INP_HASH_LOCK_INIT(pcbinfo, "pcbinfohash"); /* XXXRW: argument? */ 443 INP_LIST_LOCK_INIT(pcbinfo, "pcbinfolist"); 444 #ifdef VIMAGE 445 pcbinfo->ipi_vnet = curvnet; 446 #endif 447 pcbinfo->ipi_listhead = listhead; 448 CK_LIST_INIT(pcbinfo->ipi_listhead); 449 pcbinfo->ipi_count = 0; 450 pcbinfo->ipi_hashbase = hashinit(hash_nelements, M_PCB, 451 &pcbinfo->ipi_hashmask); 452 pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB, 453 &pcbinfo->ipi_porthashmask); 454 pcbinfo->ipi_lbgrouphashbase = hashinit(porthash_nelements, M_PCB, 455 &pcbinfo->ipi_lbgrouphashmask); 456 #ifdef PCBGROUP 457 in_pcbgroup_init(pcbinfo, hashfields, hash_nelements); 458 #endif 459 pcbinfo->ipi_zone = uma_zcreate(inpcbzone_name, sizeof(struct inpcb), 460 NULL, NULL, inpcbzone_init, inpcb_fini, UMA_ALIGN_PTR, 0); 461 uma_zone_set_max(pcbinfo->ipi_zone, maxsockets); 462 uma_zone_set_warning(pcbinfo->ipi_zone, 463 "kern.ipc.maxsockets limit reached"); 464 } 465 466 /* 467 * Destroy an inpcbinfo. 468 */ 469 void 470 in_pcbinfo_destroy(struct inpcbinfo *pcbinfo) 471 { 472 473 KASSERT(pcbinfo->ipi_count == 0, 474 ("%s: ipi_count = %u", __func__, pcbinfo->ipi_count)); 475 476 hashdestroy(pcbinfo->ipi_hashbase, M_PCB, pcbinfo->ipi_hashmask); 477 hashdestroy(pcbinfo->ipi_porthashbase, M_PCB, 478 pcbinfo->ipi_porthashmask); 479 hashdestroy(pcbinfo->ipi_lbgrouphashbase, M_PCB, 480 pcbinfo->ipi_lbgrouphashmask); 481 #ifdef PCBGROUP 482 in_pcbgroup_destroy(pcbinfo); 483 #endif 484 uma_zdestroy(pcbinfo->ipi_zone); 485 INP_LIST_LOCK_DESTROY(pcbinfo); 486 INP_HASH_LOCK_DESTROY(pcbinfo); 487 INP_INFO_LOCK_DESTROY(pcbinfo); 488 } 489 490 /* 491 * Allocate a PCB and associate it with the socket. 492 * On success return with the PCB locked. 493 */ 494 int 495 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo) 496 { 497 struct inpcb *inp; 498 int error; 499 500 #ifdef INVARIANTS 501 if (pcbinfo == &V_tcbinfo) { 502 INP_INFO_RLOCK_ASSERT(pcbinfo); 503 } else { 504 INP_INFO_WLOCK_ASSERT(pcbinfo); 505 } 506 #endif 507 508 error = 0; 509 inp = uma_zalloc(pcbinfo->ipi_zone, M_NOWAIT); 510 if (inp == NULL) 511 return (ENOBUFS); 512 bzero(&inp->inp_start_zero, inp_zero_size); 513 #ifdef NUMA 514 inp->inp_numa_domain = M_NODOM; 515 #endif 516 inp->inp_pcbinfo = pcbinfo; 517 inp->inp_socket = so; 518 inp->inp_cred = crhold(so->so_cred); 519 inp->inp_inc.inc_fibnum = so->so_fibnum; 520 #ifdef MAC 521 error = mac_inpcb_init(inp, M_NOWAIT); 522 if (error != 0) 523 goto out; 524 mac_inpcb_create(so, inp); 525 #endif 526 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 527 error = ipsec_init_pcbpolicy(inp); 528 if (error != 0) { 529 #ifdef MAC 530 mac_inpcb_destroy(inp); 531 #endif 532 goto out; 533 } 534 #endif /*IPSEC*/ 535 #ifdef INET6 536 if (INP_SOCKAF(so) == AF_INET6) { 537 inp->inp_vflag |= INP_IPV6PROTO; 538 if (V_ip6_v6only) 539 inp->inp_flags |= IN6P_IPV6_V6ONLY; 540 } 541 #endif 542 INP_WLOCK(inp); 543 INP_LIST_WLOCK(pcbinfo); 544 CK_LIST_INSERT_HEAD(pcbinfo->ipi_listhead, inp, inp_list); 545 pcbinfo->ipi_count++; 546 so->so_pcb = (caddr_t)inp; 547 #ifdef INET6 548 if (V_ip6_auto_flowlabel) 549 inp->inp_flags |= IN6P_AUTOFLOWLABEL; 550 #endif 551 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 552 refcount_init(&inp->inp_refcount, 1); /* Reference from inpcbinfo */ 553 554 /* 555 * Routes in inpcb's can cache L2 as well; they are guaranteed 556 * to be cleaned up. 557 */ 558 inp->inp_route.ro_flags = RT_LLE_CACHE; 559 INP_LIST_WUNLOCK(pcbinfo); 560 #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC) 561 out: 562 if (error != 0) { 563 crfree(inp->inp_cred); 564 uma_zfree(pcbinfo->ipi_zone, inp); 565 } 566 #endif 567 return (error); 568 } 569 570 #ifdef INET 571 int 572 in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred) 573 { 574 int anonport, error; 575 576 INP_WLOCK_ASSERT(inp); 577 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 578 579 if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY) 580 return (EINVAL); 581 anonport = nam == NULL || ((struct sockaddr_in *)nam)->sin_port == 0; 582 error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr, 583 &inp->inp_lport, cred); 584 if (error) 585 return (error); 586 if (in_pcbinshash(inp) != 0) { 587 inp->inp_laddr.s_addr = INADDR_ANY; 588 inp->inp_lport = 0; 589 return (EAGAIN); 590 } 591 if (anonport) 592 inp->inp_flags |= INP_ANONPORT; 593 return (0); 594 } 595 #endif 596 597 /* 598 * Select a local port (number) to use. 599 */ 600 #if defined(INET) || defined(INET6) 601 int 602 in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp, 603 struct ucred *cred, int lookupflags) 604 { 605 struct inpcbinfo *pcbinfo; 606 struct inpcb *tmpinp; 607 unsigned short *lastport; 608 int count, dorandom, error; 609 u_short aux, first, last, lport; 610 #ifdef INET 611 struct in_addr laddr; 612 #endif 613 614 pcbinfo = inp->inp_pcbinfo; 615 616 /* 617 * Because no actual state changes occur here, a global write lock on 618 * the pcbinfo isn't required. 619 */ 620 INP_LOCK_ASSERT(inp); 621 INP_HASH_LOCK_ASSERT(pcbinfo); 622 623 if (inp->inp_flags & INP_HIGHPORT) { 624 first = V_ipport_hifirstauto; /* sysctl */ 625 last = V_ipport_hilastauto; 626 lastport = &pcbinfo->ipi_lasthi; 627 } else if (inp->inp_flags & INP_LOWPORT) { 628 error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT); 629 if (error) 630 return (error); 631 first = V_ipport_lowfirstauto; /* 1023 */ 632 last = V_ipport_lowlastauto; /* 600 */ 633 lastport = &pcbinfo->ipi_lastlow; 634 } else { 635 first = V_ipport_firstauto; /* sysctl */ 636 last = V_ipport_lastauto; 637 lastport = &pcbinfo->ipi_lastport; 638 } 639 /* 640 * For UDP(-Lite), use random port allocation as long as the user 641 * allows it. For TCP (and as of yet unknown) connections, 642 * use random port allocation only if the user allows it AND 643 * ipport_tick() allows it. 644 */ 645 if (V_ipport_randomized && 646 (!V_ipport_stoprandom || pcbinfo == &V_udbinfo || 647 pcbinfo == &V_ulitecbinfo)) 648 dorandom = 1; 649 else 650 dorandom = 0; 651 /* 652 * It makes no sense to do random port allocation if 653 * we have the only port available. 654 */ 655 if (first == last) 656 dorandom = 0; 657 /* Make sure to not include UDP(-Lite) packets in the count. */ 658 if (pcbinfo != &V_udbinfo || pcbinfo != &V_ulitecbinfo) 659 V_ipport_tcpallocs++; 660 /* 661 * Instead of having two loops further down counting up or down 662 * make sure that first is always <= last and go with only one 663 * code path implementing all logic. 664 */ 665 if (first > last) { 666 aux = first; 667 first = last; 668 last = aux; 669 } 670 671 #ifdef INET 672 /* Make the compiler happy. */ 673 laddr.s_addr = 0; 674 if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) { 675 KASSERT(laddrp != NULL, ("%s: laddrp NULL for v4 inp %p", 676 __func__, inp)); 677 laddr = *laddrp; 678 } 679 #endif 680 tmpinp = NULL; /* Make compiler happy. */ 681 lport = *lportp; 682 683 if (dorandom) 684 *lastport = first + (arc4random() % (last - first)); 685 686 count = last - first; 687 688 do { 689 if (count-- < 0) /* completely used? */ 690 return (EADDRNOTAVAIL); 691 ++*lastport; 692 if (*lastport < first || *lastport > last) 693 *lastport = first; 694 lport = htons(*lastport); 695 696 #ifdef INET6 697 if ((inp->inp_vflag & INP_IPV6) != 0) 698 tmpinp = in6_pcblookup_local(pcbinfo, 699 &inp->in6p_laddr, lport, lookupflags, cred); 700 #endif 701 #if defined(INET) && defined(INET6) 702 else 703 #endif 704 #ifdef INET 705 tmpinp = in_pcblookup_local(pcbinfo, laddr, 706 lport, lookupflags, cred); 707 #endif 708 } while (tmpinp != NULL); 709 710 #ifdef INET 711 if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) 712 laddrp->s_addr = laddr.s_addr; 713 #endif 714 *lportp = lport; 715 716 return (0); 717 } 718 719 /* 720 * Return cached socket options. 721 */ 722 int 723 inp_so_options(const struct inpcb *inp) 724 { 725 int so_options; 726 727 so_options = 0; 728 729 if ((inp->inp_flags2 & INP_REUSEPORT_LB) != 0) 730 so_options |= SO_REUSEPORT_LB; 731 if ((inp->inp_flags2 & INP_REUSEPORT) != 0) 732 so_options |= SO_REUSEPORT; 733 if ((inp->inp_flags2 & INP_REUSEADDR) != 0) 734 so_options |= SO_REUSEADDR; 735 return (so_options); 736 } 737 #endif /* INET || INET6 */ 738 739 /* 740 * Check if a new BINDMULTI socket is allowed to be created. 741 * 742 * ni points to the new inp. 743 * oi points to the exisitng inp. 744 * 745 * This checks whether the existing inp also has BINDMULTI and 746 * whether the credentials match. 747 */ 748 int 749 in_pcbbind_check_bindmulti(const struct inpcb *ni, const struct inpcb *oi) 750 { 751 /* Check permissions match */ 752 if ((ni->inp_flags2 & INP_BINDMULTI) && 753 (ni->inp_cred->cr_uid != 754 oi->inp_cred->cr_uid)) 755 return (0); 756 757 /* Check the existing inp has BINDMULTI set */ 758 if ((ni->inp_flags2 & INP_BINDMULTI) && 759 ((oi->inp_flags2 & INP_BINDMULTI) == 0)) 760 return (0); 761 762 /* 763 * We're okay - either INP_BINDMULTI isn't set on ni, or 764 * it is and it matches the checks. 765 */ 766 return (1); 767 } 768 769 #ifdef INET 770 /* 771 * Set up a bind operation on a PCB, performing port allocation 772 * as required, but do not actually modify the PCB. Callers can 773 * either complete the bind by setting inp_laddr/inp_lport and 774 * calling in_pcbinshash(), or they can just use the resulting 775 * port and address to authorise the sending of a once-off packet. 776 * 777 * On error, the values of *laddrp and *lportp are not changed. 778 */ 779 int 780 in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp, 781 u_short *lportp, struct ucred *cred) 782 { 783 struct socket *so = inp->inp_socket; 784 struct sockaddr_in *sin; 785 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 786 struct in_addr laddr; 787 u_short lport = 0; 788 int lookupflags = 0, reuseport = (so->so_options & SO_REUSEPORT); 789 int error; 790 791 /* 792 * XXX: Maybe we could let SO_REUSEPORT_LB set SO_REUSEPORT bit here 793 * so that we don't have to add to the (already messy) code below. 794 */ 795 int reuseport_lb = (so->so_options & SO_REUSEPORT_LB); 796 797 /* 798 * No state changes, so read locks are sufficient here. 799 */ 800 INP_LOCK_ASSERT(inp); 801 INP_HASH_LOCK_ASSERT(pcbinfo); 802 803 if (CK_STAILQ_EMPTY(&V_in_ifaddrhead)) /* XXX broken! */ 804 return (EADDRNOTAVAIL); 805 laddr.s_addr = *laddrp; 806 if (nam != NULL && laddr.s_addr != INADDR_ANY) 807 return (EINVAL); 808 if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT|SO_REUSEPORT_LB)) == 0) 809 lookupflags = INPLOOKUP_WILDCARD; 810 if (nam == NULL) { 811 if ((error = prison_local_ip4(cred, &laddr)) != 0) 812 return (error); 813 } else { 814 sin = (struct sockaddr_in *)nam; 815 if (nam->sa_len != sizeof (*sin)) 816 return (EINVAL); 817 #ifdef notdef 818 /* 819 * We should check the family, but old programs 820 * incorrectly fail to initialize it. 821 */ 822 if (sin->sin_family != AF_INET) 823 return (EAFNOSUPPORT); 824 #endif 825 error = prison_local_ip4(cred, &sin->sin_addr); 826 if (error) 827 return (error); 828 if (sin->sin_port != *lportp) { 829 /* Don't allow the port to change. */ 830 if (*lportp != 0) 831 return (EINVAL); 832 lport = sin->sin_port; 833 } 834 /* NB: lport is left as 0 if the port isn't being changed. */ 835 if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) { 836 /* 837 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast; 838 * allow complete duplication of binding if 839 * SO_REUSEPORT is set, or if SO_REUSEADDR is set 840 * and a multicast address is bound on both 841 * new and duplicated sockets. 842 */ 843 if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) != 0) 844 reuseport = SO_REUSEADDR|SO_REUSEPORT; 845 /* 846 * XXX: How to deal with SO_REUSEPORT_LB here? 847 * Treat same as SO_REUSEPORT for now. 848 */ 849 if ((so->so_options & 850 (SO_REUSEADDR|SO_REUSEPORT_LB)) != 0) 851 reuseport_lb = SO_REUSEADDR|SO_REUSEPORT_LB; 852 } else if (sin->sin_addr.s_addr != INADDR_ANY) { 853 sin->sin_port = 0; /* yech... */ 854 bzero(&sin->sin_zero, sizeof(sin->sin_zero)); 855 /* 856 * Is the address a local IP address? 857 * If INP_BINDANY is set, then the socket may be bound 858 * to any endpoint address, local or not. 859 */ 860 if ((inp->inp_flags & INP_BINDANY) == 0 && 861 ifa_ifwithaddr_check((struct sockaddr *)sin) == 0) 862 return (EADDRNOTAVAIL); 863 } 864 laddr = sin->sin_addr; 865 if (lport) { 866 struct inpcb *t; 867 struct tcptw *tw; 868 869 /* GROSS */ 870 if (ntohs(lport) <= V_ipport_reservedhigh && 871 ntohs(lport) >= V_ipport_reservedlow && 872 priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT)) 873 return (EACCES); 874 if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) && 875 priv_check_cred(inp->inp_cred, PRIV_NETINET_REUSEPORT) != 0) { 876 t = in_pcblookup_local(pcbinfo, sin->sin_addr, 877 lport, INPLOOKUP_WILDCARD, cred); 878 /* 879 * XXX 880 * This entire block sorely needs a rewrite. 881 */ 882 if (t && 883 ((inp->inp_flags2 & INP_BINDMULTI) == 0) && 884 ((t->inp_flags & INP_TIMEWAIT) == 0) && 885 (so->so_type != SOCK_STREAM || 886 ntohl(t->inp_faddr.s_addr) == INADDR_ANY) && 887 (ntohl(sin->sin_addr.s_addr) != INADDR_ANY || 888 ntohl(t->inp_laddr.s_addr) != INADDR_ANY || 889 (t->inp_flags2 & INP_REUSEPORT) || 890 (t->inp_flags2 & INP_REUSEPORT_LB) == 0) && 891 (inp->inp_cred->cr_uid != 892 t->inp_cred->cr_uid)) 893 return (EADDRINUSE); 894 895 /* 896 * If the socket is a BINDMULTI socket, then 897 * the credentials need to match and the 898 * original socket also has to have been bound 899 * with BINDMULTI. 900 */ 901 if (t && (! in_pcbbind_check_bindmulti(inp, t))) 902 return (EADDRINUSE); 903 } 904 t = in_pcblookup_local(pcbinfo, sin->sin_addr, 905 lport, lookupflags, cred); 906 if (t && (t->inp_flags & INP_TIMEWAIT)) { 907 /* 908 * XXXRW: If an incpb has had its timewait 909 * state recycled, we treat the address as 910 * being in use (for now). This is better 911 * than a panic, but not desirable. 912 */ 913 tw = intotw(t); 914 if (tw == NULL || 915 ((reuseport & tw->tw_so_options) == 0 && 916 (reuseport_lb & 917 tw->tw_so_options) == 0)) { 918 return (EADDRINUSE); 919 } 920 } else if (t && 921 ((inp->inp_flags2 & INP_BINDMULTI) == 0) && 922 (reuseport & inp_so_options(t)) == 0 && 923 (reuseport_lb & inp_so_options(t)) == 0) { 924 #ifdef INET6 925 if (ntohl(sin->sin_addr.s_addr) != 926 INADDR_ANY || 927 ntohl(t->inp_laddr.s_addr) != 928 INADDR_ANY || 929 (inp->inp_vflag & INP_IPV6PROTO) == 0 || 930 (t->inp_vflag & INP_IPV6PROTO) == 0) 931 #endif 932 return (EADDRINUSE); 933 if (t && (! in_pcbbind_check_bindmulti(inp, t))) 934 return (EADDRINUSE); 935 } 936 } 937 } 938 if (*lportp != 0) 939 lport = *lportp; 940 if (lport == 0) { 941 error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags); 942 if (error != 0) 943 return (error); 944 945 } 946 *laddrp = laddr.s_addr; 947 *lportp = lport; 948 return (0); 949 } 950 951 /* 952 * Connect from a socket to a specified address. 953 * Both address and port must be specified in argument sin. 954 * If don't have a local address for this socket yet, 955 * then pick one. 956 */ 957 int 958 in_pcbconnect_mbuf(struct inpcb *inp, struct sockaddr *nam, 959 struct ucred *cred, struct mbuf *m) 960 { 961 u_short lport, fport; 962 in_addr_t laddr, faddr; 963 int anonport, error; 964 965 INP_WLOCK_ASSERT(inp); 966 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 967 968 lport = inp->inp_lport; 969 laddr = inp->inp_laddr.s_addr; 970 anonport = (lport == 0); 971 error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport, 972 NULL, cred); 973 if (error) 974 return (error); 975 976 /* Do the initial binding of the local address if required. */ 977 if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) { 978 inp->inp_lport = lport; 979 inp->inp_laddr.s_addr = laddr; 980 if (in_pcbinshash(inp) != 0) { 981 inp->inp_laddr.s_addr = INADDR_ANY; 982 inp->inp_lport = 0; 983 return (EAGAIN); 984 } 985 } 986 987 /* Commit the remaining changes. */ 988 inp->inp_lport = lport; 989 inp->inp_laddr.s_addr = laddr; 990 inp->inp_faddr.s_addr = faddr; 991 inp->inp_fport = fport; 992 in_pcbrehash_mbuf(inp, m); 993 994 if (anonport) 995 inp->inp_flags |= INP_ANONPORT; 996 return (0); 997 } 998 999 int 1000 in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred) 1001 { 1002 1003 return (in_pcbconnect_mbuf(inp, nam, cred, NULL)); 1004 } 1005 1006 /* 1007 * Do proper source address selection on an unbound socket in case 1008 * of connect. Take jails into account as well. 1009 */ 1010 int 1011 in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr, 1012 struct ucred *cred) 1013 { 1014 struct ifaddr *ifa; 1015 struct sockaddr *sa; 1016 struct sockaddr_in *sin; 1017 struct route sro; 1018 struct epoch_tracker et; 1019 int error; 1020 1021 KASSERT(laddr != NULL, ("%s: laddr NULL", __func__)); 1022 /* 1023 * Bypass source address selection and use the primary jail IP 1024 * if requested. 1025 */ 1026 if (cred != NULL && !prison_saddrsel_ip4(cred, laddr)) 1027 return (0); 1028 1029 error = 0; 1030 bzero(&sro, sizeof(sro)); 1031 1032 sin = (struct sockaddr_in *)&sro.ro_dst; 1033 sin->sin_family = AF_INET; 1034 sin->sin_len = sizeof(struct sockaddr_in); 1035 sin->sin_addr.s_addr = faddr->s_addr; 1036 1037 /* 1038 * If route is known our src addr is taken from the i/f, 1039 * else punt. 1040 * 1041 * Find out route to destination. 1042 */ 1043 if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0) 1044 in_rtalloc_ign(&sro, 0, inp->inp_inc.inc_fibnum); 1045 1046 /* 1047 * If we found a route, use the address corresponding to 1048 * the outgoing interface. 1049 * 1050 * Otherwise assume faddr is reachable on a directly connected 1051 * network and try to find a corresponding interface to take 1052 * the source address from. 1053 */ 1054 NET_EPOCH_ENTER(et); 1055 if (sro.ro_rt == NULL || sro.ro_rt->rt_ifp == NULL) { 1056 struct in_ifaddr *ia; 1057 struct ifnet *ifp; 1058 1059 ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin, 1060 inp->inp_socket->so_fibnum)); 1061 if (ia == NULL) { 1062 ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0, 1063 inp->inp_socket->so_fibnum)); 1064 1065 } 1066 if (ia == NULL) { 1067 error = ENETUNREACH; 1068 goto done; 1069 } 1070 1071 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 1072 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1073 goto done; 1074 } 1075 1076 ifp = ia->ia_ifp; 1077 ia = NULL; 1078 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1079 1080 sa = ifa->ifa_addr; 1081 if (sa->sa_family != AF_INET) 1082 continue; 1083 sin = (struct sockaddr_in *)sa; 1084 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 1085 ia = (struct in_ifaddr *)ifa; 1086 break; 1087 } 1088 } 1089 if (ia != NULL) { 1090 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1091 goto done; 1092 } 1093 1094 /* 3. As a last resort return the 'default' jail address. */ 1095 error = prison_get_ip4(cred, laddr); 1096 goto done; 1097 } 1098 1099 /* 1100 * If the outgoing interface on the route found is not 1101 * a loopback interface, use the address from that interface. 1102 * In case of jails do those three steps: 1103 * 1. check if the interface address belongs to the jail. If so use it. 1104 * 2. check if we have any address on the outgoing interface 1105 * belonging to this jail. If so use it. 1106 * 3. as a last resort return the 'default' jail address. 1107 */ 1108 if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) { 1109 struct in_ifaddr *ia; 1110 struct ifnet *ifp; 1111 1112 /* If not jailed, use the default returned. */ 1113 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 1114 ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa; 1115 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1116 goto done; 1117 } 1118 1119 /* Jailed. */ 1120 /* 1. Check if the iface address belongs to the jail. */ 1121 sin = (struct sockaddr_in *)sro.ro_rt->rt_ifa->ifa_addr; 1122 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 1123 ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa; 1124 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1125 goto done; 1126 } 1127 1128 /* 1129 * 2. Check if we have any address on the outgoing interface 1130 * belonging to this jail. 1131 */ 1132 ia = NULL; 1133 ifp = sro.ro_rt->rt_ifp; 1134 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1135 sa = ifa->ifa_addr; 1136 if (sa->sa_family != AF_INET) 1137 continue; 1138 sin = (struct sockaddr_in *)sa; 1139 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 1140 ia = (struct in_ifaddr *)ifa; 1141 break; 1142 } 1143 } 1144 if (ia != NULL) { 1145 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1146 goto done; 1147 } 1148 1149 /* 3. As a last resort return the 'default' jail address. */ 1150 error = prison_get_ip4(cred, laddr); 1151 goto done; 1152 } 1153 1154 /* 1155 * The outgoing interface is marked with 'loopback net', so a route 1156 * to ourselves is here. 1157 * Try to find the interface of the destination address and then 1158 * take the address from there. That interface is not necessarily 1159 * a loopback interface. 1160 * In case of jails, check that it is an address of the jail 1161 * and if we cannot find, fall back to the 'default' jail address. 1162 */ 1163 if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) { 1164 struct sockaddr_in sain; 1165 struct in_ifaddr *ia; 1166 1167 bzero(&sain, sizeof(struct sockaddr_in)); 1168 sain.sin_family = AF_INET; 1169 sain.sin_len = sizeof(struct sockaddr_in); 1170 sain.sin_addr.s_addr = faddr->s_addr; 1171 1172 ia = ifatoia(ifa_ifwithdstaddr(sintosa(&sain), 1173 inp->inp_socket->so_fibnum)); 1174 if (ia == NULL) 1175 ia = ifatoia(ifa_ifwithnet(sintosa(&sain), 0, 1176 inp->inp_socket->so_fibnum)); 1177 if (ia == NULL) 1178 ia = ifatoia(ifa_ifwithaddr(sintosa(&sain))); 1179 1180 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 1181 if (ia == NULL) { 1182 error = ENETUNREACH; 1183 goto done; 1184 } 1185 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1186 goto done; 1187 } 1188 1189 /* Jailed. */ 1190 if (ia != NULL) { 1191 struct ifnet *ifp; 1192 1193 ifp = ia->ia_ifp; 1194 ia = NULL; 1195 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1196 sa = ifa->ifa_addr; 1197 if (sa->sa_family != AF_INET) 1198 continue; 1199 sin = (struct sockaddr_in *)sa; 1200 if (prison_check_ip4(cred, 1201 &sin->sin_addr) == 0) { 1202 ia = (struct in_ifaddr *)ifa; 1203 break; 1204 } 1205 } 1206 if (ia != NULL) { 1207 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1208 goto done; 1209 } 1210 } 1211 1212 /* 3. As a last resort return the 'default' jail address. */ 1213 error = prison_get_ip4(cred, laddr); 1214 goto done; 1215 } 1216 1217 done: 1218 NET_EPOCH_EXIT(et); 1219 if (sro.ro_rt != NULL) 1220 RTFREE(sro.ro_rt); 1221 return (error); 1222 } 1223 1224 /* 1225 * Set up for a connect from a socket to the specified address. 1226 * On entry, *laddrp and *lportp should contain the current local 1227 * address and port for the PCB; these are updated to the values 1228 * that should be placed in inp_laddr and inp_lport to complete 1229 * the connect. 1230 * 1231 * On success, *faddrp and *fportp will be set to the remote address 1232 * and port. These are not updated in the error case. 1233 * 1234 * If the operation fails because the connection already exists, 1235 * *oinpp will be set to the PCB of that connection so that the 1236 * caller can decide to override it. In all other cases, *oinpp 1237 * is set to NULL. 1238 */ 1239 int 1240 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam, 1241 in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp, 1242 struct inpcb **oinpp, struct ucred *cred) 1243 { 1244 struct rm_priotracker in_ifa_tracker; 1245 struct sockaddr_in *sin = (struct sockaddr_in *)nam; 1246 struct in_ifaddr *ia; 1247 struct inpcb *oinp; 1248 struct in_addr laddr, faddr; 1249 u_short lport, fport; 1250 int error; 1251 1252 /* 1253 * Because a global state change doesn't actually occur here, a read 1254 * lock is sufficient. 1255 */ 1256 INP_LOCK_ASSERT(inp); 1257 INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo); 1258 1259 if (oinpp != NULL) 1260 *oinpp = NULL; 1261 if (nam->sa_len != sizeof (*sin)) 1262 return (EINVAL); 1263 if (sin->sin_family != AF_INET) 1264 return (EAFNOSUPPORT); 1265 if (sin->sin_port == 0) 1266 return (EADDRNOTAVAIL); 1267 laddr.s_addr = *laddrp; 1268 lport = *lportp; 1269 faddr = sin->sin_addr; 1270 fport = sin->sin_port; 1271 1272 if (!CK_STAILQ_EMPTY(&V_in_ifaddrhead)) { 1273 /* 1274 * If the destination address is INADDR_ANY, 1275 * use the primary local address. 1276 * If the supplied address is INADDR_BROADCAST, 1277 * and the primary interface supports broadcast, 1278 * choose the broadcast address for that interface. 1279 */ 1280 if (faddr.s_addr == INADDR_ANY) { 1281 IN_IFADDR_RLOCK(&in_ifa_tracker); 1282 faddr = 1283 IA_SIN(CK_STAILQ_FIRST(&V_in_ifaddrhead))->sin_addr; 1284 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 1285 if (cred != NULL && 1286 (error = prison_get_ip4(cred, &faddr)) != 0) 1287 return (error); 1288 } else if (faddr.s_addr == (u_long)INADDR_BROADCAST) { 1289 IN_IFADDR_RLOCK(&in_ifa_tracker); 1290 if (CK_STAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags & 1291 IFF_BROADCAST) 1292 faddr = satosin(&CK_STAILQ_FIRST( 1293 &V_in_ifaddrhead)->ia_broadaddr)->sin_addr; 1294 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 1295 } 1296 } 1297 if (laddr.s_addr == INADDR_ANY) { 1298 error = in_pcbladdr(inp, &faddr, &laddr, cred); 1299 /* 1300 * If the destination address is multicast and an outgoing 1301 * interface has been set as a multicast option, prefer the 1302 * address of that interface as our source address. 1303 */ 1304 if (IN_MULTICAST(ntohl(faddr.s_addr)) && 1305 inp->inp_moptions != NULL) { 1306 struct ip_moptions *imo; 1307 struct ifnet *ifp; 1308 1309 imo = inp->inp_moptions; 1310 if (imo->imo_multicast_ifp != NULL) { 1311 ifp = imo->imo_multicast_ifp; 1312 IN_IFADDR_RLOCK(&in_ifa_tracker); 1313 CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) { 1314 if ((ia->ia_ifp == ifp) && 1315 (cred == NULL || 1316 prison_check_ip4(cred, 1317 &ia->ia_addr.sin_addr) == 0)) 1318 break; 1319 } 1320 if (ia == NULL) 1321 error = EADDRNOTAVAIL; 1322 else { 1323 laddr = ia->ia_addr.sin_addr; 1324 error = 0; 1325 } 1326 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 1327 } 1328 } 1329 if (error) 1330 return (error); 1331 } 1332 oinp = in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr, fport, 1333 laddr, lport, 0, NULL); 1334 if (oinp != NULL) { 1335 if (oinpp != NULL) 1336 *oinpp = oinp; 1337 return (EADDRINUSE); 1338 } 1339 if (lport == 0) { 1340 error = in_pcbbind_setup(inp, NULL, &laddr.s_addr, &lport, 1341 cred); 1342 if (error) 1343 return (error); 1344 } 1345 *laddrp = laddr.s_addr; 1346 *lportp = lport; 1347 *faddrp = faddr.s_addr; 1348 *fportp = fport; 1349 return (0); 1350 } 1351 1352 void 1353 in_pcbdisconnect(struct inpcb *inp) 1354 { 1355 1356 INP_WLOCK_ASSERT(inp); 1357 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 1358 1359 inp->inp_faddr.s_addr = INADDR_ANY; 1360 inp->inp_fport = 0; 1361 in_pcbrehash(inp); 1362 } 1363 #endif /* INET */ 1364 1365 /* 1366 * in_pcbdetach() is responsibe for disassociating a socket from an inpcb. 1367 * For most protocols, this will be invoked immediately prior to calling 1368 * in_pcbfree(). However, with TCP the inpcb may significantly outlive the 1369 * socket, in which case in_pcbfree() is deferred. 1370 */ 1371 void 1372 in_pcbdetach(struct inpcb *inp) 1373 { 1374 1375 KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__)); 1376 1377 #ifdef RATELIMIT 1378 if (inp->inp_snd_tag != NULL) 1379 in_pcbdetach_txrtlmt(inp); 1380 #endif 1381 inp->inp_socket->so_pcb = NULL; 1382 inp->inp_socket = NULL; 1383 } 1384 1385 /* 1386 * in_pcbref() bumps the reference count on an inpcb in order to maintain 1387 * stability of an inpcb pointer despite the inpcb lock being released. This 1388 * is used in TCP when the inpcbinfo lock needs to be acquired or upgraded, 1389 * but where the inpcb lock may already held, or when acquiring a reference 1390 * via a pcbgroup. 1391 * 1392 * in_pcbref() should be used only to provide brief memory stability, and 1393 * must always be followed by a call to INP_WLOCK() and in_pcbrele() to 1394 * garbage collect the inpcb if it has been in_pcbfree()'d from another 1395 * context. Until in_pcbrele() has returned that the inpcb is still valid, 1396 * lock and rele are the *only* safe operations that may be performed on the 1397 * inpcb. 1398 * 1399 * While the inpcb will not be freed, releasing the inpcb lock means that the 1400 * connection's state may change, so the caller should be careful to 1401 * revalidate any cached state on reacquiring the lock. Drop the reference 1402 * using in_pcbrele(). 1403 */ 1404 void 1405 in_pcbref(struct inpcb *inp) 1406 { 1407 1408 KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__)); 1409 1410 refcount_acquire(&inp->inp_refcount); 1411 } 1412 1413 /* 1414 * Drop a refcount on an inpcb elevated using in_pcbref(); because a call to 1415 * in_pcbfree() may have been made between in_pcbref() and in_pcbrele(), we 1416 * return a flag indicating whether or not the inpcb remains valid. If it is 1417 * valid, we return with the inpcb lock held. 1418 * 1419 * Notice that, unlike in_pcbref(), the inpcb lock must be held to drop a 1420 * reference on an inpcb. Historically more work was done here (actually, in 1421 * in_pcbfree_internal()) but has been moved to in_pcbfree() to avoid the 1422 * need for the pcbinfo lock in in_pcbrele(). Deferring the free is entirely 1423 * about memory stability (and continued use of the write lock). 1424 */ 1425 int 1426 in_pcbrele_rlocked(struct inpcb *inp) 1427 { 1428 struct inpcbinfo *pcbinfo; 1429 1430 KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__)); 1431 1432 INP_RLOCK_ASSERT(inp); 1433 1434 if (refcount_release(&inp->inp_refcount) == 0) { 1435 /* 1436 * If the inpcb has been freed, let the caller know, even if 1437 * this isn't the last reference. 1438 */ 1439 if (inp->inp_flags2 & INP_FREED) { 1440 INP_RUNLOCK(inp); 1441 return (1); 1442 } 1443 return (0); 1444 } 1445 1446 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); 1447 #ifdef TCPHPTS 1448 if (inp->inp_in_hpts || inp->inp_in_input) { 1449 struct tcp_hpts_entry *hpts; 1450 /* 1451 * We should not be on the hpts at 1452 * this point in any form. we must 1453 * get the lock to be sure. 1454 */ 1455 hpts = tcp_hpts_lock(inp); 1456 if (inp->inp_in_hpts) 1457 panic("Hpts:%p inp:%p at free still on hpts", 1458 hpts, inp); 1459 mtx_unlock(&hpts->p_mtx); 1460 hpts = tcp_input_lock(inp); 1461 if (inp->inp_in_input) 1462 panic("Hpts:%p inp:%p at free still on input hpts", 1463 hpts, inp); 1464 mtx_unlock(&hpts->p_mtx); 1465 } 1466 #endif 1467 INP_RUNLOCK(inp); 1468 pcbinfo = inp->inp_pcbinfo; 1469 uma_zfree(pcbinfo->ipi_zone, inp); 1470 return (1); 1471 } 1472 1473 int 1474 in_pcbrele_wlocked(struct inpcb *inp) 1475 { 1476 struct inpcbinfo *pcbinfo; 1477 1478 KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__)); 1479 1480 INP_WLOCK_ASSERT(inp); 1481 1482 if (refcount_release(&inp->inp_refcount) == 0) { 1483 /* 1484 * If the inpcb has been freed, let the caller know, even if 1485 * this isn't the last reference. 1486 */ 1487 if (inp->inp_flags2 & INP_FREED) { 1488 INP_WUNLOCK(inp); 1489 return (1); 1490 } 1491 return (0); 1492 } 1493 1494 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); 1495 #ifdef TCPHPTS 1496 if (inp->inp_in_hpts || inp->inp_in_input) { 1497 struct tcp_hpts_entry *hpts; 1498 /* 1499 * We should not be on the hpts at 1500 * this point in any form. we must 1501 * get the lock to be sure. 1502 */ 1503 hpts = tcp_hpts_lock(inp); 1504 if (inp->inp_in_hpts) 1505 panic("Hpts:%p inp:%p at free still on hpts", 1506 hpts, inp); 1507 mtx_unlock(&hpts->p_mtx); 1508 hpts = tcp_input_lock(inp); 1509 if (inp->inp_in_input) 1510 panic("Hpts:%p inp:%p at free still on input hpts", 1511 hpts, inp); 1512 mtx_unlock(&hpts->p_mtx); 1513 } 1514 #endif 1515 INP_WUNLOCK(inp); 1516 pcbinfo = inp->inp_pcbinfo; 1517 uma_zfree(pcbinfo->ipi_zone, inp); 1518 return (1); 1519 } 1520 1521 /* 1522 * Temporary wrapper. 1523 */ 1524 int 1525 in_pcbrele(struct inpcb *inp) 1526 { 1527 1528 return (in_pcbrele_wlocked(inp)); 1529 } 1530 1531 void 1532 in_pcblist_rele_rlocked(epoch_context_t ctx) 1533 { 1534 struct in_pcblist *il; 1535 struct inpcb *inp; 1536 struct inpcbinfo *pcbinfo; 1537 int i, n; 1538 1539 il = __containerof(ctx, struct in_pcblist, il_epoch_ctx); 1540 pcbinfo = il->il_pcbinfo; 1541 n = il->il_count; 1542 INP_INFO_WLOCK(pcbinfo); 1543 for (i = 0; i < n; i++) { 1544 inp = il->il_inp_list[i]; 1545 INP_RLOCK(inp); 1546 if (!in_pcbrele_rlocked(inp)) 1547 INP_RUNLOCK(inp); 1548 } 1549 INP_INFO_WUNLOCK(pcbinfo); 1550 free(il, M_TEMP); 1551 } 1552 1553 static void 1554 inpcbport_free(epoch_context_t ctx) 1555 { 1556 struct inpcbport *phd; 1557 1558 phd = __containerof(ctx, struct inpcbport, phd_epoch_ctx); 1559 free(phd, M_PCB); 1560 } 1561 1562 static void 1563 in_pcbfree_deferred(epoch_context_t ctx) 1564 { 1565 struct inpcb *inp; 1566 int released __unused; 1567 1568 inp = __containerof(ctx, struct inpcb, inp_epoch_ctx); 1569 1570 INP_WLOCK(inp); 1571 CURVNET_SET(inp->inp_vnet); 1572 #ifdef INET 1573 struct ip_moptions *imo = inp->inp_moptions; 1574 inp->inp_moptions = NULL; 1575 #endif 1576 /* XXXRW: Do as much as possible here. */ 1577 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1578 if (inp->inp_sp != NULL) 1579 ipsec_delete_pcbpolicy(inp); 1580 #endif 1581 #ifdef INET6 1582 struct ip6_moptions *im6o = NULL; 1583 if (inp->inp_vflag & INP_IPV6PROTO) { 1584 ip6_freepcbopts(inp->in6p_outputopts); 1585 im6o = inp->in6p_moptions; 1586 inp->in6p_moptions = NULL; 1587 } 1588 #endif 1589 if (inp->inp_options) 1590 (void)m_free(inp->inp_options); 1591 inp->inp_vflag = 0; 1592 crfree(inp->inp_cred); 1593 #ifdef MAC 1594 mac_inpcb_destroy(inp); 1595 #endif 1596 released = in_pcbrele_wlocked(inp); 1597 MPASS(released); 1598 #ifdef INET6 1599 ip6_freemoptions(im6o); 1600 #endif 1601 #ifdef INET 1602 inp_freemoptions(imo); 1603 #endif 1604 CURVNET_RESTORE(); 1605 } 1606 1607 /* 1608 * Unconditionally schedule an inpcb to be freed by decrementing its 1609 * reference count, which should occur only after the inpcb has been detached 1610 * from its socket. If another thread holds a temporary reference (acquired 1611 * using in_pcbref()) then the free is deferred until that reference is 1612 * released using in_pcbrele(), but the inpcb is still unlocked. Almost all 1613 * work, including removal from global lists, is done in this context, where 1614 * the pcbinfo lock is held. 1615 */ 1616 void 1617 in_pcbfree(struct inpcb *inp) 1618 { 1619 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 1620 1621 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); 1622 KASSERT((inp->inp_flags2 & INP_FREED) == 0, 1623 ("%s: called twice for pcb %p", __func__, inp)); 1624 if (inp->inp_flags2 & INP_FREED) { 1625 INP_WUNLOCK(inp); 1626 return; 1627 } 1628 1629 #ifdef INVARIANTS 1630 if (pcbinfo == &V_tcbinfo) { 1631 INP_INFO_LOCK_ASSERT(pcbinfo); 1632 } else { 1633 INP_INFO_WLOCK_ASSERT(pcbinfo); 1634 } 1635 #endif 1636 INP_WLOCK_ASSERT(inp); 1637 INP_LIST_WLOCK(pcbinfo); 1638 in_pcbremlists(inp); 1639 INP_LIST_WUNLOCK(pcbinfo); 1640 RO_INVALIDATE_CACHE(&inp->inp_route); 1641 /* mark as destruction in progress */ 1642 inp->inp_flags2 |= INP_FREED; 1643 INP_WUNLOCK(inp); 1644 epoch_call(net_epoch_preempt, &inp->inp_epoch_ctx, in_pcbfree_deferred); 1645 } 1646 1647 /* 1648 * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and 1649 * port reservation, and preventing it from being returned by inpcb lookups. 1650 * 1651 * It is used by TCP to mark an inpcb as unused and avoid future packet 1652 * delivery or event notification when a socket remains open but TCP has 1653 * closed. This might occur as a result of a shutdown()-initiated TCP close 1654 * or a RST on the wire, and allows the port binding to be reused while still 1655 * maintaining the invariant that so_pcb always points to a valid inpcb until 1656 * in_pcbdetach(). 1657 * 1658 * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by 1659 * in_pcbnotifyall() and in_pcbpurgeif0()? 1660 */ 1661 void 1662 in_pcbdrop(struct inpcb *inp) 1663 { 1664 1665 INP_WLOCK_ASSERT(inp); 1666 #ifdef INVARIANTS 1667 if (inp->inp_socket != NULL && inp->inp_ppcb != NULL) 1668 MPASS(inp->inp_refcount > 1); 1669 #endif 1670 1671 /* 1672 * XXXRW: Possibly we should protect the setting of INP_DROPPED with 1673 * the hash lock...? 1674 */ 1675 inp->inp_flags |= INP_DROPPED; 1676 if (inp->inp_flags & INP_INHASHLIST) { 1677 struct inpcbport *phd = inp->inp_phd; 1678 1679 INP_HASH_WLOCK(inp->inp_pcbinfo); 1680 in_pcbremlbgrouphash(inp); 1681 CK_LIST_REMOVE(inp, inp_hash); 1682 CK_LIST_REMOVE(inp, inp_portlist); 1683 if (CK_LIST_FIRST(&phd->phd_pcblist) == NULL) { 1684 CK_LIST_REMOVE(phd, phd_hash); 1685 epoch_call(net_epoch_preempt, &phd->phd_epoch_ctx, inpcbport_free); 1686 } 1687 INP_HASH_WUNLOCK(inp->inp_pcbinfo); 1688 inp->inp_flags &= ~INP_INHASHLIST; 1689 #ifdef PCBGROUP 1690 in_pcbgroup_remove(inp); 1691 #endif 1692 } 1693 } 1694 1695 #ifdef INET 1696 /* 1697 * Common routines to return the socket addresses associated with inpcbs. 1698 */ 1699 struct sockaddr * 1700 in_sockaddr(in_port_t port, struct in_addr *addr_p) 1701 { 1702 struct sockaddr_in *sin; 1703 1704 sin = malloc(sizeof *sin, M_SONAME, 1705 M_WAITOK | M_ZERO); 1706 sin->sin_family = AF_INET; 1707 sin->sin_len = sizeof(*sin); 1708 sin->sin_addr = *addr_p; 1709 sin->sin_port = port; 1710 1711 return (struct sockaddr *)sin; 1712 } 1713 1714 int 1715 in_getsockaddr(struct socket *so, struct sockaddr **nam) 1716 { 1717 struct inpcb *inp; 1718 struct in_addr addr; 1719 in_port_t port; 1720 1721 inp = sotoinpcb(so); 1722 KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL")); 1723 1724 INP_RLOCK(inp); 1725 port = inp->inp_lport; 1726 addr = inp->inp_laddr; 1727 INP_RUNLOCK(inp); 1728 1729 *nam = in_sockaddr(port, &addr); 1730 return 0; 1731 } 1732 1733 int 1734 in_getpeeraddr(struct socket *so, struct sockaddr **nam) 1735 { 1736 struct inpcb *inp; 1737 struct in_addr addr; 1738 in_port_t port; 1739 1740 inp = sotoinpcb(so); 1741 KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL")); 1742 1743 INP_RLOCK(inp); 1744 port = inp->inp_fport; 1745 addr = inp->inp_faddr; 1746 INP_RUNLOCK(inp); 1747 1748 *nam = in_sockaddr(port, &addr); 1749 return 0; 1750 } 1751 1752 void 1753 in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno, 1754 struct inpcb *(*notify)(struct inpcb *, int)) 1755 { 1756 struct inpcb *inp, *inp_temp; 1757 1758 INP_INFO_WLOCK(pcbinfo); 1759 CK_LIST_FOREACH_SAFE(inp, pcbinfo->ipi_listhead, inp_list, inp_temp) { 1760 INP_WLOCK(inp); 1761 #ifdef INET6 1762 if ((inp->inp_vflag & INP_IPV4) == 0) { 1763 INP_WUNLOCK(inp); 1764 continue; 1765 } 1766 #endif 1767 if (inp->inp_faddr.s_addr != faddr.s_addr || 1768 inp->inp_socket == NULL) { 1769 INP_WUNLOCK(inp); 1770 continue; 1771 } 1772 if ((*notify)(inp, errno)) 1773 INP_WUNLOCK(inp); 1774 } 1775 INP_INFO_WUNLOCK(pcbinfo); 1776 } 1777 1778 void 1779 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp) 1780 { 1781 struct inpcb *inp; 1782 struct ip_moptions *imo; 1783 int i, gap; 1784 1785 INP_INFO_WLOCK(pcbinfo); 1786 CK_LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) { 1787 INP_WLOCK(inp); 1788 imo = inp->inp_moptions; 1789 if ((inp->inp_vflag & INP_IPV4) && 1790 imo != NULL) { 1791 /* 1792 * Unselect the outgoing interface if it is being 1793 * detached. 1794 */ 1795 if (imo->imo_multicast_ifp == ifp) 1796 imo->imo_multicast_ifp = NULL; 1797 1798 /* 1799 * Drop multicast group membership if we joined 1800 * through the interface being detached. 1801 * 1802 * XXX This can all be deferred to an epoch_call 1803 */ 1804 for (i = 0, gap = 0; i < imo->imo_num_memberships; 1805 i++) { 1806 if (imo->imo_membership[i]->inm_ifp == ifp) { 1807 IN_MULTI_LOCK_ASSERT(); 1808 in_leavegroup_locked(imo->imo_membership[i], NULL); 1809 gap++; 1810 } else if (gap != 0) 1811 imo->imo_membership[i - gap] = 1812 imo->imo_membership[i]; 1813 } 1814 imo->imo_num_memberships -= gap; 1815 } 1816 INP_WUNLOCK(inp); 1817 } 1818 INP_INFO_WUNLOCK(pcbinfo); 1819 } 1820 1821 /* 1822 * Lookup a PCB based on the local address and port. Caller must hold the 1823 * hash lock. No inpcb locks or references are acquired. 1824 */ 1825 #define INP_LOOKUP_MAPPED_PCB_COST 3 1826 struct inpcb * 1827 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr, 1828 u_short lport, int lookupflags, struct ucred *cred) 1829 { 1830 struct inpcb *inp; 1831 #ifdef INET6 1832 int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST; 1833 #else 1834 int matchwild = 3; 1835 #endif 1836 int wildcard; 1837 1838 KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0, 1839 ("%s: invalid lookup flags %d", __func__, lookupflags)); 1840 1841 INP_HASH_LOCK_ASSERT(pcbinfo); 1842 1843 if ((lookupflags & INPLOOKUP_WILDCARD) == 0) { 1844 struct inpcbhead *head; 1845 /* 1846 * Look for an unconnected (wildcard foreign addr) PCB that 1847 * matches the local address and port we're looking for. 1848 */ 1849 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport, 1850 0, pcbinfo->ipi_hashmask)]; 1851 CK_LIST_FOREACH(inp, head, inp_hash) { 1852 #ifdef INET6 1853 /* XXX inp locking */ 1854 if ((inp->inp_vflag & INP_IPV4) == 0) 1855 continue; 1856 #endif 1857 if (inp->inp_faddr.s_addr == INADDR_ANY && 1858 inp->inp_laddr.s_addr == laddr.s_addr && 1859 inp->inp_lport == lport) { 1860 /* 1861 * Found? 1862 */ 1863 if (cred == NULL || 1864 prison_equal_ip4(cred->cr_prison, 1865 inp->inp_cred->cr_prison)) 1866 return (inp); 1867 } 1868 } 1869 /* 1870 * Not found. 1871 */ 1872 return (NULL); 1873 } else { 1874 struct inpcbporthead *porthash; 1875 struct inpcbport *phd; 1876 struct inpcb *match = NULL; 1877 /* 1878 * Best fit PCB lookup. 1879 * 1880 * First see if this local port is in use by looking on the 1881 * port hash list. 1882 */ 1883 porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport, 1884 pcbinfo->ipi_porthashmask)]; 1885 CK_LIST_FOREACH(phd, porthash, phd_hash) { 1886 if (phd->phd_port == lport) 1887 break; 1888 } 1889 if (phd != NULL) { 1890 /* 1891 * Port is in use by one or more PCBs. Look for best 1892 * fit. 1893 */ 1894 CK_LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) { 1895 wildcard = 0; 1896 if (cred != NULL && 1897 !prison_equal_ip4(inp->inp_cred->cr_prison, 1898 cred->cr_prison)) 1899 continue; 1900 #ifdef INET6 1901 /* XXX inp locking */ 1902 if ((inp->inp_vflag & INP_IPV4) == 0) 1903 continue; 1904 /* 1905 * We never select the PCB that has 1906 * INP_IPV6 flag and is bound to :: if 1907 * we have another PCB which is bound 1908 * to 0.0.0.0. If a PCB has the 1909 * INP_IPV6 flag, then we set its cost 1910 * higher than IPv4 only PCBs. 1911 * 1912 * Note that the case only happens 1913 * when a socket is bound to ::, under 1914 * the condition that the use of the 1915 * mapped address is allowed. 1916 */ 1917 if ((inp->inp_vflag & INP_IPV6) != 0) 1918 wildcard += INP_LOOKUP_MAPPED_PCB_COST; 1919 #endif 1920 if (inp->inp_faddr.s_addr != INADDR_ANY) 1921 wildcard++; 1922 if (inp->inp_laddr.s_addr != INADDR_ANY) { 1923 if (laddr.s_addr == INADDR_ANY) 1924 wildcard++; 1925 else if (inp->inp_laddr.s_addr != laddr.s_addr) 1926 continue; 1927 } else { 1928 if (laddr.s_addr != INADDR_ANY) 1929 wildcard++; 1930 } 1931 if (wildcard < matchwild) { 1932 match = inp; 1933 matchwild = wildcard; 1934 if (matchwild == 0) 1935 break; 1936 } 1937 } 1938 } 1939 return (match); 1940 } 1941 } 1942 #undef INP_LOOKUP_MAPPED_PCB_COST 1943 1944 static struct inpcb * 1945 in_pcblookup_lbgroup(const struct inpcbinfo *pcbinfo, 1946 const struct in_addr *laddr, uint16_t lport, const struct in_addr *faddr, 1947 uint16_t fport, int lookupflags) 1948 { 1949 struct inpcb *local_wild; 1950 const struct inpcblbgrouphead *hdr; 1951 struct inpcblbgroup *grp; 1952 uint32_t idx; 1953 1954 INP_HASH_LOCK_ASSERT(pcbinfo); 1955 1956 hdr = &pcbinfo->ipi_lbgrouphashbase[ 1957 INP_PCBPORTHASH(lport, pcbinfo->ipi_lbgrouphashmask)]; 1958 1959 /* 1960 * Order of socket selection: 1961 * 1. non-wild. 1962 * 2. wild (if lookupflags contains INPLOOKUP_WILDCARD). 1963 * 1964 * NOTE: 1965 * - Load balanced group does not contain jailed sockets 1966 * - Load balanced group does not contain IPv4 mapped INET6 wild sockets 1967 */ 1968 local_wild = NULL; 1969 CK_LIST_FOREACH(grp, hdr, il_list) { 1970 #ifdef INET6 1971 if (!(grp->il_vflag & INP_IPV4)) 1972 continue; 1973 #endif 1974 if (grp->il_lport != lport) 1975 continue; 1976 1977 idx = INP_PCBLBGROUP_PKTHASH(faddr->s_addr, lport, fport) % 1978 grp->il_inpcnt; 1979 if (grp->il_laddr.s_addr == laddr->s_addr) 1980 return (grp->il_inp[idx]); 1981 if (grp->il_laddr.s_addr == INADDR_ANY && 1982 (lookupflags & INPLOOKUP_WILDCARD) != 0) 1983 local_wild = grp->il_inp[idx]; 1984 } 1985 return (local_wild); 1986 } 1987 1988 #ifdef PCBGROUP 1989 /* 1990 * Lookup PCB in hash list, using pcbgroup tables. 1991 */ 1992 static struct inpcb * 1993 in_pcblookup_group(struct inpcbinfo *pcbinfo, struct inpcbgroup *pcbgroup, 1994 struct in_addr faddr, u_int fport_arg, struct in_addr laddr, 1995 u_int lport_arg, int lookupflags, struct ifnet *ifp) 1996 { 1997 struct inpcbhead *head; 1998 struct inpcb *inp, *tmpinp; 1999 u_short fport = fport_arg, lport = lport_arg; 2000 bool locked; 2001 2002 /* 2003 * First look for an exact match. 2004 */ 2005 tmpinp = NULL; 2006 INP_GROUP_LOCK(pcbgroup); 2007 head = &pcbgroup->ipg_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport, 2008 pcbgroup->ipg_hashmask)]; 2009 CK_LIST_FOREACH(inp, head, inp_pcbgrouphash) { 2010 #ifdef INET6 2011 /* XXX inp locking */ 2012 if ((inp->inp_vflag & INP_IPV4) == 0) 2013 continue; 2014 #endif 2015 if (inp->inp_faddr.s_addr == faddr.s_addr && 2016 inp->inp_laddr.s_addr == laddr.s_addr && 2017 inp->inp_fport == fport && 2018 inp->inp_lport == lport) { 2019 /* 2020 * XXX We should be able to directly return 2021 * the inp here, without any checks. 2022 * Well unless both bound with SO_REUSEPORT? 2023 */ 2024 if (prison_flag(inp->inp_cred, PR_IP4)) 2025 goto found; 2026 if (tmpinp == NULL) 2027 tmpinp = inp; 2028 } 2029 } 2030 if (tmpinp != NULL) { 2031 inp = tmpinp; 2032 goto found; 2033 } 2034 2035 #ifdef RSS 2036 /* 2037 * For incoming connections, we may wish to do a wildcard 2038 * match for an RSS-local socket. 2039 */ 2040 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 2041 struct inpcb *local_wild = NULL, *local_exact = NULL; 2042 #ifdef INET6 2043 struct inpcb *local_wild_mapped = NULL; 2044 #endif 2045 struct inpcb *jail_wild = NULL; 2046 struct inpcbhead *head; 2047 int injail; 2048 2049 /* 2050 * Order of socket selection - we always prefer jails. 2051 * 1. jailed, non-wild. 2052 * 2. jailed, wild. 2053 * 3. non-jailed, non-wild. 2054 * 4. non-jailed, wild. 2055 */ 2056 2057 head = &pcbgroup->ipg_hashbase[INP_PCBHASH(INADDR_ANY, 2058 lport, 0, pcbgroup->ipg_hashmask)]; 2059 CK_LIST_FOREACH(inp, head, inp_pcbgrouphash) { 2060 #ifdef INET6 2061 /* XXX inp locking */ 2062 if ((inp->inp_vflag & INP_IPV4) == 0) 2063 continue; 2064 #endif 2065 if (inp->inp_faddr.s_addr != INADDR_ANY || 2066 inp->inp_lport != lport) 2067 continue; 2068 2069 injail = prison_flag(inp->inp_cred, PR_IP4); 2070 if (injail) { 2071 if (prison_check_ip4(inp->inp_cred, 2072 &laddr) != 0) 2073 continue; 2074 } else { 2075 if (local_exact != NULL) 2076 continue; 2077 } 2078 2079 if (inp->inp_laddr.s_addr == laddr.s_addr) { 2080 if (injail) 2081 goto found; 2082 else 2083 local_exact = inp; 2084 } else if (inp->inp_laddr.s_addr == INADDR_ANY) { 2085 #ifdef INET6 2086 /* XXX inp locking, NULL check */ 2087 if (inp->inp_vflag & INP_IPV6PROTO) 2088 local_wild_mapped = inp; 2089 else 2090 #endif 2091 if (injail) 2092 jail_wild = inp; 2093 else 2094 local_wild = inp; 2095 } 2096 } /* LIST_FOREACH */ 2097 2098 inp = jail_wild; 2099 if (inp == NULL) 2100 inp = local_exact; 2101 if (inp == NULL) 2102 inp = local_wild; 2103 #ifdef INET6 2104 if (inp == NULL) 2105 inp = local_wild_mapped; 2106 #endif 2107 if (inp != NULL) 2108 goto found; 2109 } 2110 #endif 2111 2112 /* 2113 * Then look for a wildcard match, if requested. 2114 */ 2115 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 2116 struct inpcb *local_wild = NULL, *local_exact = NULL; 2117 #ifdef INET6 2118 struct inpcb *local_wild_mapped = NULL; 2119 #endif 2120 struct inpcb *jail_wild = NULL; 2121 struct inpcbhead *head; 2122 int injail; 2123 2124 /* 2125 * Order of socket selection - we always prefer jails. 2126 * 1. jailed, non-wild. 2127 * 2. jailed, wild. 2128 * 3. non-jailed, non-wild. 2129 * 4. non-jailed, wild. 2130 */ 2131 head = &pcbinfo->ipi_wildbase[INP_PCBHASH(INADDR_ANY, lport, 2132 0, pcbinfo->ipi_wildmask)]; 2133 CK_LIST_FOREACH(inp, head, inp_pcbgroup_wild) { 2134 #ifdef INET6 2135 /* XXX inp locking */ 2136 if ((inp->inp_vflag & INP_IPV4) == 0) 2137 continue; 2138 #endif 2139 if (inp->inp_faddr.s_addr != INADDR_ANY || 2140 inp->inp_lport != lport) 2141 continue; 2142 2143 injail = prison_flag(inp->inp_cred, PR_IP4); 2144 if (injail) { 2145 if (prison_check_ip4(inp->inp_cred, 2146 &laddr) != 0) 2147 continue; 2148 } else { 2149 if (local_exact != NULL) 2150 continue; 2151 } 2152 2153 if (inp->inp_laddr.s_addr == laddr.s_addr) { 2154 if (injail) 2155 goto found; 2156 else 2157 local_exact = inp; 2158 } else if (inp->inp_laddr.s_addr == INADDR_ANY) { 2159 #ifdef INET6 2160 /* XXX inp locking, NULL check */ 2161 if (inp->inp_vflag & INP_IPV6PROTO) 2162 local_wild_mapped = inp; 2163 else 2164 #endif 2165 if (injail) 2166 jail_wild = inp; 2167 else 2168 local_wild = inp; 2169 } 2170 } /* LIST_FOREACH */ 2171 inp = jail_wild; 2172 if (inp == NULL) 2173 inp = local_exact; 2174 if (inp == NULL) 2175 inp = local_wild; 2176 #ifdef INET6 2177 if (inp == NULL) 2178 inp = local_wild_mapped; 2179 #endif 2180 if (inp != NULL) 2181 goto found; 2182 } /* if (lookupflags & INPLOOKUP_WILDCARD) */ 2183 INP_GROUP_UNLOCK(pcbgroup); 2184 return (NULL); 2185 2186 found: 2187 if (lookupflags & INPLOOKUP_WLOCKPCB) 2188 locked = INP_TRY_WLOCK(inp); 2189 else if (lookupflags & INPLOOKUP_RLOCKPCB) 2190 locked = INP_TRY_RLOCK(inp); 2191 else 2192 panic("%s: locking bug", __func__); 2193 if (__predict_false(locked && (inp->inp_flags2 & INP_FREED))) { 2194 if (lookupflags & INPLOOKUP_WLOCKPCB) 2195 INP_WUNLOCK(inp); 2196 else 2197 INP_RUNLOCK(inp); 2198 return (NULL); 2199 } else if (!locked) 2200 in_pcbref(inp); 2201 INP_GROUP_UNLOCK(pcbgroup); 2202 if (!locked) { 2203 if (lookupflags & INPLOOKUP_WLOCKPCB) { 2204 INP_WLOCK(inp); 2205 if (in_pcbrele_wlocked(inp)) 2206 return (NULL); 2207 } else { 2208 INP_RLOCK(inp); 2209 if (in_pcbrele_rlocked(inp)) 2210 return (NULL); 2211 } 2212 } 2213 #ifdef INVARIANTS 2214 if (lookupflags & INPLOOKUP_WLOCKPCB) 2215 INP_WLOCK_ASSERT(inp); 2216 else 2217 INP_RLOCK_ASSERT(inp); 2218 #endif 2219 return (inp); 2220 } 2221 #endif /* PCBGROUP */ 2222 2223 /* 2224 * Lookup PCB in hash list, using pcbinfo tables. This variation assumes 2225 * that the caller has locked the hash list, and will not perform any further 2226 * locking or reference operations on either the hash list or the connection. 2227 */ 2228 static struct inpcb * 2229 in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2230 u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags, 2231 struct ifnet *ifp) 2232 { 2233 struct inpcbhead *head; 2234 struct inpcb *inp, *tmpinp; 2235 u_short fport = fport_arg, lport = lport_arg; 2236 2237 #ifdef INVARIANTS 2238 KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0, 2239 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2240 if (!mtx_owned(&pcbinfo->ipi_hash_lock)) 2241 MPASS(in_epoch_verbose(net_epoch_preempt, 1)); 2242 #endif 2243 /* 2244 * First look for an exact match. 2245 */ 2246 tmpinp = NULL; 2247 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport, 2248 pcbinfo->ipi_hashmask)]; 2249 CK_LIST_FOREACH(inp, head, inp_hash) { 2250 #ifdef INET6 2251 /* XXX inp locking */ 2252 if ((inp->inp_vflag & INP_IPV4) == 0) 2253 continue; 2254 #endif 2255 if (inp->inp_faddr.s_addr == faddr.s_addr && 2256 inp->inp_laddr.s_addr == laddr.s_addr && 2257 inp->inp_fport == fport && 2258 inp->inp_lport == lport) { 2259 /* 2260 * XXX We should be able to directly return 2261 * the inp here, without any checks. 2262 * Well unless both bound with SO_REUSEPORT? 2263 */ 2264 if (prison_flag(inp->inp_cred, PR_IP4)) 2265 return (inp); 2266 if (tmpinp == NULL) 2267 tmpinp = inp; 2268 } 2269 } 2270 if (tmpinp != NULL) 2271 return (tmpinp); 2272 2273 /* 2274 * Then look in lb group (for wildcard match). 2275 */ 2276 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 2277 inp = in_pcblookup_lbgroup(pcbinfo, &laddr, lport, &faddr, 2278 fport, lookupflags); 2279 if (inp != NULL) 2280 return (inp); 2281 } 2282 2283 /* 2284 * Then look for a wildcard match, if requested. 2285 */ 2286 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 2287 struct inpcb *local_wild = NULL, *local_exact = NULL; 2288 #ifdef INET6 2289 struct inpcb *local_wild_mapped = NULL; 2290 #endif 2291 struct inpcb *jail_wild = NULL; 2292 int injail; 2293 2294 /* 2295 * Order of socket selection - we always prefer jails. 2296 * 1. jailed, non-wild. 2297 * 2. jailed, wild. 2298 * 3. non-jailed, non-wild. 2299 * 4. non-jailed, wild. 2300 */ 2301 2302 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport, 2303 0, pcbinfo->ipi_hashmask)]; 2304 CK_LIST_FOREACH(inp, head, inp_hash) { 2305 #ifdef INET6 2306 /* XXX inp locking */ 2307 if ((inp->inp_vflag & INP_IPV4) == 0) 2308 continue; 2309 #endif 2310 if (inp->inp_faddr.s_addr != INADDR_ANY || 2311 inp->inp_lport != lport) 2312 continue; 2313 2314 injail = prison_flag(inp->inp_cred, PR_IP4); 2315 if (injail) { 2316 if (prison_check_ip4(inp->inp_cred, 2317 &laddr) != 0) 2318 continue; 2319 } else { 2320 if (local_exact != NULL) 2321 continue; 2322 } 2323 2324 if (inp->inp_laddr.s_addr == laddr.s_addr) { 2325 if (injail) 2326 return (inp); 2327 else 2328 local_exact = inp; 2329 } else if (inp->inp_laddr.s_addr == INADDR_ANY) { 2330 #ifdef INET6 2331 /* XXX inp locking, NULL check */ 2332 if (inp->inp_vflag & INP_IPV6PROTO) 2333 local_wild_mapped = inp; 2334 else 2335 #endif 2336 if (injail) 2337 jail_wild = inp; 2338 else 2339 local_wild = inp; 2340 } 2341 } /* LIST_FOREACH */ 2342 if (jail_wild != NULL) 2343 return (jail_wild); 2344 if (local_exact != NULL) 2345 return (local_exact); 2346 if (local_wild != NULL) 2347 return (local_wild); 2348 #ifdef INET6 2349 if (local_wild_mapped != NULL) 2350 return (local_wild_mapped); 2351 #endif 2352 } /* if ((lookupflags & INPLOOKUP_WILDCARD) != 0) */ 2353 2354 return (NULL); 2355 } 2356 2357 /* 2358 * Lookup PCB in hash list, using pcbinfo tables. This variation locks the 2359 * hash list lock, and will return the inpcb locked (i.e., requires 2360 * INPLOOKUP_LOCKPCB). 2361 */ 2362 static struct inpcb * 2363 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2364 u_int fport, struct in_addr laddr, u_int lport, int lookupflags, 2365 struct ifnet *ifp) 2366 { 2367 struct inpcb *inp; 2368 2369 INP_HASH_RLOCK(pcbinfo); 2370 inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport, 2371 (lookupflags & ~(INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)), ifp); 2372 if (inp != NULL) { 2373 if (lookupflags & INPLOOKUP_WLOCKPCB) { 2374 INP_WLOCK(inp); 2375 if (__predict_false(inp->inp_flags2 & INP_FREED)) { 2376 INP_WUNLOCK(inp); 2377 inp = NULL; 2378 } 2379 } else if (lookupflags & INPLOOKUP_RLOCKPCB) { 2380 INP_RLOCK(inp); 2381 if (__predict_false(inp->inp_flags2 & INP_FREED)) { 2382 INP_RUNLOCK(inp); 2383 inp = NULL; 2384 } 2385 } else 2386 panic("%s: locking bug", __func__); 2387 #ifdef INVARIANTS 2388 if (inp != NULL) { 2389 if (lookupflags & INPLOOKUP_WLOCKPCB) 2390 INP_WLOCK_ASSERT(inp); 2391 else 2392 INP_RLOCK_ASSERT(inp); 2393 } 2394 #endif 2395 } 2396 INP_HASH_RUNLOCK(pcbinfo); 2397 return (inp); 2398 } 2399 2400 /* 2401 * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf 2402 * from which a pre-calculated hash value may be extracted. 2403 * 2404 * Possibly more of this logic should be in in_pcbgroup.c. 2405 */ 2406 struct inpcb * 2407 in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport, 2408 struct in_addr laddr, u_int lport, int lookupflags, struct ifnet *ifp) 2409 { 2410 #if defined(PCBGROUP) && !defined(RSS) 2411 struct inpcbgroup *pcbgroup; 2412 #endif 2413 2414 KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0, 2415 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2416 KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0, 2417 ("%s: LOCKPCB not set", __func__)); 2418 2419 /* 2420 * When not using RSS, use connection groups in preference to the 2421 * reservation table when looking up 4-tuples. When using RSS, just 2422 * use the reservation table, due to the cost of the Toeplitz hash 2423 * in software. 2424 * 2425 * XXXRW: This policy belongs in the pcbgroup code, as in principle 2426 * we could be doing RSS with a non-Toeplitz hash that is affordable 2427 * in software. 2428 */ 2429 #if defined(PCBGROUP) && !defined(RSS) 2430 if (in_pcbgroup_enabled(pcbinfo)) { 2431 pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr, 2432 fport); 2433 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport, 2434 laddr, lport, lookupflags, ifp)); 2435 } 2436 #endif 2437 return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport, 2438 lookupflags, ifp)); 2439 } 2440 2441 struct inpcb * 2442 in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2443 u_int fport, struct in_addr laddr, u_int lport, int lookupflags, 2444 struct ifnet *ifp, struct mbuf *m) 2445 { 2446 #ifdef PCBGROUP 2447 struct inpcbgroup *pcbgroup; 2448 #endif 2449 2450 KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0, 2451 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2452 KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0, 2453 ("%s: LOCKPCB not set", __func__)); 2454 2455 #ifdef PCBGROUP 2456 /* 2457 * If we can use a hardware-generated hash to look up the connection 2458 * group, use that connection group to find the inpcb. Otherwise 2459 * fall back on a software hash -- or the reservation table if we're 2460 * using RSS. 2461 * 2462 * XXXRW: As above, that policy belongs in the pcbgroup code. 2463 */ 2464 if (in_pcbgroup_enabled(pcbinfo) && 2465 !(M_HASHTYPE_TEST(m, M_HASHTYPE_NONE))) { 2466 pcbgroup = in_pcbgroup_byhash(pcbinfo, M_HASHTYPE_GET(m), 2467 m->m_pkthdr.flowid); 2468 if (pcbgroup != NULL) 2469 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, 2470 fport, laddr, lport, lookupflags, ifp)); 2471 #ifndef RSS 2472 pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr, 2473 fport); 2474 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport, 2475 laddr, lport, lookupflags, ifp)); 2476 #endif 2477 } 2478 #endif 2479 return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport, 2480 lookupflags, ifp)); 2481 } 2482 #endif /* INET */ 2483 2484 /* 2485 * Insert PCB onto various hash lists. 2486 */ 2487 static int 2488 in_pcbinshash_internal(struct inpcb *inp, int do_pcbgroup_update) 2489 { 2490 struct inpcbhead *pcbhash; 2491 struct inpcbporthead *pcbporthash; 2492 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2493 struct inpcbport *phd; 2494 u_int32_t hashkey_faddr; 2495 int so_options; 2496 2497 INP_WLOCK_ASSERT(inp); 2498 INP_HASH_WLOCK_ASSERT(pcbinfo); 2499 2500 KASSERT((inp->inp_flags & INP_INHASHLIST) == 0, 2501 ("in_pcbinshash: INP_INHASHLIST")); 2502 2503 #ifdef INET6 2504 if (inp->inp_vflag & INP_IPV6) 2505 hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr); 2506 else 2507 #endif 2508 hashkey_faddr = inp->inp_faddr.s_addr; 2509 2510 pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr, 2511 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 2512 2513 pcbporthash = &pcbinfo->ipi_porthashbase[ 2514 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)]; 2515 2516 /* 2517 * Add entry to load balance group. 2518 * Only do this if SO_REUSEPORT_LB is set. 2519 */ 2520 so_options = inp_so_options(inp); 2521 if (so_options & SO_REUSEPORT_LB) { 2522 int ret = in_pcbinslbgrouphash(inp); 2523 if (ret) { 2524 /* pcb lb group malloc fail (ret=ENOBUFS). */ 2525 return (ret); 2526 } 2527 } 2528 2529 /* 2530 * Go through port list and look for a head for this lport. 2531 */ 2532 CK_LIST_FOREACH(phd, pcbporthash, phd_hash) { 2533 if (phd->phd_port == inp->inp_lport) 2534 break; 2535 } 2536 /* 2537 * If none exists, malloc one and tack it on. 2538 */ 2539 if (phd == NULL) { 2540 phd = malloc(sizeof(struct inpcbport), M_PCB, M_NOWAIT); 2541 if (phd == NULL) { 2542 return (ENOBUFS); /* XXX */ 2543 } 2544 bzero(&phd->phd_epoch_ctx, sizeof(struct epoch_context)); 2545 phd->phd_port = inp->inp_lport; 2546 CK_LIST_INIT(&phd->phd_pcblist); 2547 CK_LIST_INSERT_HEAD(pcbporthash, phd, phd_hash); 2548 } 2549 inp->inp_phd = phd; 2550 CK_LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist); 2551 CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash); 2552 inp->inp_flags |= INP_INHASHLIST; 2553 #ifdef PCBGROUP 2554 if (do_pcbgroup_update) 2555 in_pcbgroup_update(inp); 2556 #endif 2557 return (0); 2558 } 2559 2560 /* 2561 * For now, there are two public interfaces to insert an inpcb into the hash 2562 * lists -- one that does update pcbgroups, and one that doesn't. The latter 2563 * is used only in the TCP syncache, where in_pcbinshash is called before the 2564 * full 4-tuple is set for the inpcb, and we don't want to install in the 2565 * pcbgroup until later. 2566 * 2567 * XXXRW: This seems like a misfeature. in_pcbinshash should always update 2568 * connection groups, and partially initialised inpcbs should not be exposed 2569 * to either reservation hash tables or pcbgroups. 2570 */ 2571 int 2572 in_pcbinshash(struct inpcb *inp) 2573 { 2574 2575 return (in_pcbinshash_internal(inp, 1)); 2576 } 2577 2578 int 2579 in_pcbinshash_nopcbgroup(struct inpcb *inp) 2580 { 2581 2582 return (in_pcbinshash_internal(inp, 0)); 2583 } 2584 2585 /* 2586 * Move PCB to the proper hash bucket when { faddr, fport } have been 2587 * changed. NOTE: This does not handle the case of the lport changing (the 2588 * hashed port list would have to be updated as well), so the lport must 2589 * not change after in_pcbinshash() has been called. 2590 */ 2591 void 2592 in_pcbrehash_mbuf(struct inpcb *inp, struct mbuf *m) 2593 { 2594 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2595 struct inpcbhead *head; 2596 u_int32_t hashkey_faddr; 2597 2598 INP_WLOCK_ASSERT(inp); 2599 INP_HASH_WLOCK_ASSERT(pcbinfo); 2600 2601 KASSERT(inp->inp_flags & INP_INHASHLIST, 2602 ("in_pcbrehash: !INP_INHASHLIST")); 2603 2604 #ifdef INET6 2605 if (inp->inp_vflag & INP_IPV6) 2606 hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr); 2607 else 2608 #endif 2609 hashkey_faddr = inp->inp_faddr.s_addr; 2610 2611 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr, 2612 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 2613 2614 CK_LIST_REMOVE(inp, inp_hash); 2615 CK_LIST_INSERT_HEAD(head, inp, inp_hash); 2616 2617 #ifdef PCBGROUP 2618 if (m != NULL) 2619 in_pcbgroup_update_mbuf(inp, m); 2620 else 2621 in_pcbgroup_update(inp); 2622 #endif 2623 } 2624 2625 void 2626 in_pcbrehash(struct inpcb *inp) 2627 { 2628 2629 in_pcbrehash_mbuf(inp, NULL); 2630 } 2631 2632 /* 2633 * Remove PCB from various lists. 2634 */ 2635 static void 2636 in_pcbremlists(struct inpcb *inp) 2637 { 2638 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2639 2640 #ifdef INVARIANTS 2641 if (pcbinfo == &V_tcbinfo) { 2642 INP_INFO_RLOCK_ASSERT(pcbinfo); 2643 } else { 2644 INP_INFO_WLOCK_ASSERT(pcbinfo); 2645 } 2646 #endif 2647 2648 INP_WLOCK_ASSERT(inp); 2649 INP_LIST_WLOCK_ASSERT(pcbinfo); 2650 2651 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 2652 if (inp->inp_flags & INP_INHASHLIST) { 2653 struct inpcbport *phd = inp->inp_phd; 2654 2655 INP_HASH_WLOCK(pcbinfo); 2656 2657 /* XXX: Only do if SO_REUSEPORT_LB set? */ 2658 in_pcbremlbgrouphash(inp); 2659 2660 CK_LIST_REMOVE(inp, inp_hash); 2661 CK_LIST_REMOVE(inp, inp_portlist); 2662 if (CK_LIST_FIRST(&phd->phd_pcblist) == NULL) { 2663 CK_LIST_REMOVE(phd, phd_hash); 2664 epoch_call(net_epoch_preempt, &phd->phd_epoch_ctx, inpcbport_free); 2665 } 2666 INP_HASH_WUNLOCK(pcbinfo); 2667 inp->inp_flags &= ~INP_INHASHLIST; 2668 } 2669 CK_LIST_REMOVE(inp, inp_list); 2670 pcbinfo->ipi_count--; 2671 #ifdef PCBGROUP 2672 in_pcbgroup_remove(inp); 2673 #endif 2674 } 2675 2676 /* 2677 * Check for alternatives when higher level complains 2678 * about service problems. For now, invalidate cached 2679 * routing information. If the route was created dynamically 2680 * (by a redirect), time to try a default gateway again. 2681 */ 2682 void 2683 in_losing(struct inpcb *inp) 2684 { 2685 2686 RO_INVALIDATE_CACHE(&inp->inp_route); 2687 return; 2688 } 2689 2690 /* 2691 * A set label operation has occurred at the socket layer, propagate the 2692 * label change into the in_pcb for the socket. 2693 */ 2694 void 2695 in_pcbsosetlabel(struct socket *so) 2696 { 2697 #ifdef MAC 2698 struct inpcb *inp; 2699 2700 inp = sotoinpcb(so); 2701 KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL")); 2702 2703 INP_WLOCK(inp); 2704 SOCK_LOCK(so); 2705 mac_inpcb_sosetlabel(so, inp); 2706 SOCK_UNLOCK(so); 2707 INP_WUNLOCK(inp); 2708 #endif 2709 } 2710 2711 /* 2712 * ipport_tick runs once per second, determining if random port allocation 2713 * should be continued. If more than ipport_randomcps ports have been 2714 * allocated in the last second, then we return to sequential port 2715 * allocation. We return to random allocation only once we drop below 2716 * ipport_randomcps for at least ipport_randomtime seconds. 2717 */ 2718 static void 2719 ipport_tick(void *xtp) 2720 { 2721 VNET_ITERATOR_DECL(vnet_iter); 2722 2723 VNET_LIST_RLOCK_NOSLEEP(); 2724 VNET_FOREACH(vnet_iter) { 2725 CURVNET_SET(vnet_iter); /* XXX appease INVARIANTS here */ 2726 if (V_ipport_tcpallocs <= 2727 V_ipport_tcplastcount + V_ipport_randomcps) { 2728 if (V_ipport_stoprandom > 0) 2729 V_ipport_stoprandom--; 2730 } else 2731 V_ipport_stoprandom = V_ipport_randomtime; 2732 V_ipport_tcplastcount = V_ipport_tcpallocs; 2733 CURVNET_RESTORE(); 2734 } 2735 VNET_LIST_RUNLOCK_NOSLEEP(); 2736 callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL); 2737 } 2738 2739 static void 2740 ip_fini(void *xtp) 2741 { 2742 2743 callout_stop(&ipport_tick_callout); 2744 } 2745 2746 /* 2747 * The ipport_callout should start running at about the time we attach the 2748 * inet or inet6 domains. 2749 */ 2750 static void 2751 ipport_tick_init(const void *unused __unused) 2752 { 2753 2754 /* Start ipport_tick. */ 2755 callout_init(&ipport_tick_callout, 1); 2756 callout_reset(&ipport_tick_callout, 1, ipport_tick, NULL); 2757 EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL, 2758 SHUTDOWN_PRI_DEFAULT); 2759 } 2760 SYSINIT(ipport_tick_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_MIDDLE, 2761 ipport_tick_init, NULL); 2762 2763 void 2764 inp_wlock(struct inpcb *inp) 2765 { 2766 2767 INP_WLOCK(inp); 2768 } 2769 2770 void 2771 inp_wunlock(struct inpcb *inp) 2772 { 2773 2774 INP_WUNLOCK(inp); 2775 } 2776 2777 void 2778 inp_rlock(struct inpcb *inp) 2779 { 2780 2781 INP_RLOCK(inp); 2782 } 2783 2784 void 2785 inp_runlock(struct inpcb *inp) 2786 { 2787 2788 INP_RUNLOCK(inp); 2789 } 2790 2791 #ifdef INVARIANT_SUPPORT 2792 void 2793 inp_lock_assert(struct inpcb *inp) 2794 { 2795 2796 INP_WLOCK_ASSERT(inp); 2797 } 2798 2799 void 2800 inp_unlock_assert(struct inpcb *inp) 2801 { 2802 2803 INP_UNLOCK_ASSERT(inp); 2804 } 2805 #endif 2806 2807 void 2808 inp_apply_all(void (*func)(struct inpcb *, void *), void *arg) 2809 { 2810 struct inpcb *inp; 2811 2812 INP_INFO_WLOCK(&V_tcbinfo); 2813 CK_LIST_FOREACH(inp, V_tcbinfo.ipi_listhead, inp_list) { 2814 INP_WLOCK(inp); 2815 func(inp, arg); 2816 INP_WUNLOCK(inp); 2817 } 2818 INP_INFO_WUNLOCK(&V_tcbinfo); 2819 } 2820 2821 struct socket * 2822 inp_inpcbtosocket(struct inpcb *inp) 2823 { 2824 2825 INP_WLOCK_ASSERT(inp); 2826 return (inp->inp_socket); 2827 } 2828 2829 struct tcpcb * 2830 inp_inpcbtotcpcb(struct inpcb *inp) 2831 { 2832 2833 INP_WLOCK_ASSERT(inp); 2834 return ((struct tcpcb *)inp->inp_ppcb); 2835 } 2836 2837 int 2838 inp_ip_tos_get(const struct inpcb *inp) 2839 { 2840 2841 return (inp->inp_ip_tos); 2842 } 2843 2844 void 2845 inp_ip_tos_set(struct inpcb *inp, int val) 2846 { 2847 2848 inp->inp_ip_tos = val; 2849 } 2850 2851 void 2852 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp, 2853 uint32_t *faddr, uint16_t *fp) 2854 { 2855 2856 INP_LOCK_ASSERT(inp); 2857 *laddr = inp->inp_laddr.s_addr; 2858 *faddr = inp->inp_faddr.s_addr; 2859 *lp = inp->inp_lport; 2860 *fp = inp->inp_fport; 2861 } 2862 2863 struct inpcb * 2864 so_sotoinpcb(struct socket *so) 2865 { 2866 2867 return (sotoinpcb(so)); 2868 } 2869 2870 struct tcpcb * 2871 so_sototcpcb(struct socket *so) 2872 { 2873 2874 return (sototcpcb(so)); 2875 } 2876 2877 /* 2878 * Create an external-format (``xinpcb'') structure using the information in 2879 * the kernel-format in_pcb structure pointed to by inp. This is done to 2880 * reduce the spew of irrelevant information over this interface, to isolate 2881 * user code from changes in the kernel structure, and potentially to provide 2882 * information-hiding if we decide that some of this information should be 2883 * hidden from users. 2884 */ 2885 void 2886 in_pcbtoxinpcb(const struct inpcb *inp, struct xinpcb *xi) 2887 { 2888 2889 bzero(xi, sizeof(*xi)); 2890 xi->xi_len = sizeof(struct xinpcb); 2891 if (inp->inp_socket) 2892 sotoxsocket(inp->inp_socket, &xi->xi_socket); 2893 bcopy(&inp->inp_inc, &xi->inp_inc, sizeof(struct in_conninfo)); 2894 xi->inp_gencnt = inp->inp_gencnt; 2895 xi->inp_ppcb = (uintptr_t)inp->inp_ppcb; 2896 xi->inp_flow = inp->inp_flow; 2897 xi->inp_flowid = inp->inp_flowid; 2898 xi->inp_flowtype = inp->inp_flowtype; 2899 xi->inp_flags = inp->inp_flags; 2900 xi->inp_flags2 = inp->inp_flags2; 2901 xi->inp_rss_listen_bucket = inp->inp_rss_listen_bucket; 2902 xi->in6p_cksum = inp->in6p_cksum; 2903 xi->in6p_hops = inp->in6p_hops; 2904 xi->inp_ip_tos = inp->inp_ip_tos; 2905 xi->inp_vflag = inp->inp_vflag; 2906 xi->inp_ip_ttl = inp->inp_ip_ttl; 2907 xi->inp_ip_p = inp->inp_ip_p; 2908 xi->inp_ip_minttl = inp->inp_ip_minttl; 2909 } 2910 2911 #ifdef DDB 2912 static void 2913 db_print_indent(int indent) 2914 { 2915 int i; 2916 2917 for (i = 0; i < indent; i++) 2918 db_printf(" "); 2919 } 2920 2921 static void 2922 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent) 2923 { 2924 char faddr_str[48], laddr_str[48]; 2925 2926 db_print_indent(indent); 2927 db_printf("%s at %p\n", name, inc); 2928 2929 indent += 2; 2930 2931 #ifdef INET6 2932 if (inc->inc_flags & INC_ISIPV6) { 2933 /* IPv6. */ 2934 ip6_sprintf(laddr_str, &inc->inc6_laddr); 2935 ip6_sprintf(faddr_str, &inc->inc6_faddr); 2936 } else 2937 #endif 2938 { 2939 /* IPv4. */ 2940 inet_ntoa_r(inc->inc_laddr, laddr_str); 2941 inet_ntoa_r(inc->inc_faddr, faddr_str); 2942 } 2943 db_print_indent(indent); 2944 db_printf("inc_laddr %s inc_lport %u\n", laddr_str, 2945 ntohs(inc->inc_lport)); 2946 db_print_indent(indent); 2947 db_printf("inc_faddr %s inc_fport %u\n", faddr_str, 2948 ntohs(inc->inc_fport)); 2949 } 2950 2951 static void 2952 db_print_inpflags(int inp_flags) 2953 { 2954 int comma; 2955 2956 comma = 0; 2957 if (inp_flags & INP_RECVOPTS) { 2958 db_printf("%sINP_RECVOPTS", comma ? ", " : ""); 2959 comma = 1; 2960 } 2961 if (inp_flags & INP_RECVRETOPTS) { 2962 db_printf("%sINP_RECVRETOPTS", comma ? ", " : ""); 2963 comma = 1; 2964 } 2965 if (inp_flags & INP_RECVDSTADDR) { 2966 db_printf("%sINP_RECVDSTADDR", comma ? ", " : ""); 2967 comma = 1; 2968 } 2969 if (inp_flags & INP_ORIGDSTADDR) { 2970 db_printf("%sINP_ORIGDSTADDR", comma ? ", " : ""); 2971 comma = 1; 2972 } 2973 if (inp_flags & INP_HDRINCL) { 2974 db_printf("%sINP_HDRINCL", comma ? ", " : ""); 2975 comma = 1; 2976 } 2977 if (inp_flags & INP_HIGHPORT) { 2978 db_printf("%sINP_HIGHPORT", comma ? ", " : ""); 2979 comma = 1; 2980 } 2981 if (inp_flags & INP_LOWPORT) { 2982 db_printf("%sINP_LOWPORT", comma ? ", " : ""); 2983 comma = 1; 2984 } 2985 if (inp_flags & INP_ANONPORT) { 2986 db_printf("%sINP_ANONPORT", comma ? ", " : ""); 2987 comma = 1; 2988 } 2989 if (inp_flags & INP_RECVIF) { 2990 db_printf("%sINP_RECVIF", comma ? ", " : ""); 2991 comma = 1; 2992 } 2993 if (inp_flags & INP_MTUDISC) { 2994 db_printf("%sINP_MTUDISC", comma ? ", " : ""); 2995 comma = 1; 2996 } 2997 if (inp_flags & INP_RECVTTL) { 2998 db_printf("%sINP_RECVTTL", comma ? ", " : ""); 2999 comma = 1; 3000 } 3001 if (inp_flags & INP_DONTFRAG) { 3002 db_printf("%sINP_DONTFRAG", comma ? ", " : ""); 3003 comma = 1; 3004 } 3005 if (inp_flags & INP_RECVTOS) { 3006 db_printf("%sINP_RECVTOS", comma ? ", " : ""); 3007 comma = 1; 3008 } 3009 if (inp_flags & IN6P_IPV6_V6ONLY) { 3010 db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : ""); 3011 comma = 1; 3012 } 3013 if (inp_flags & IN6P_PKTINFO) { 3014 db_printf("%sIN6P_PKTINFO", comma ? ", " : ""); 3015 comma = 1; 3016 } 3017 if (inp_flags & IN6P_HOPLIMIT) { 3018 db_printf("%sIN6P_HOPLIMIT", comma ? ", " : ""); 3019 comma = 1; 3020 } 3021 if (inp_flags & IN6P_HOPOPTS) { 3022 db_printf("%sIN6P_HOPOPTS", comma ? ", " : ""); 3023 comma = 1; 3024 } 3025 if (inp_flags & IN6P_DSTOPTS) { 3026 db_printf("%sIN6P_DSTOPTS", comma ? ", " : ""); 3027 comma = 1; 3028 } 3029 if (inp_flags & IN6P_RTHDR) { 3030 db_printf("%sIN6P_RTHDR", comma ? ", " : ""); 3031 comma = 1; 3032 } 3033 if (inp_flags & IN6P_RTHDRDSTOPTS) { 3034 db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : ""); 3035 comma = 1; 3036 } 3037 if (inp_flags & IN6P_TCLASS) { 3038 db_printf("%sIN6P_TCLASS", comma ? ", " : ""); 3039 comma = 1; 3040 } 3041 if (inp_flags & IN6P_AUTOFLOWLABEL) { 3042 db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : ""); 3043 comma = 1; 3044 } 3045 if (inp_flags & INP_TIMEWAIT) { 3046 db_printf("%sINP_TIMEWAIT", comma ? ", " : ""); 3047 comma = 1; 3048 } 3049 if (inp_flags & INP_ONESBCAST) { 3050 db_printf("%sINP_ONESBCAST", comma ? ", " : ""); 3051 comma = 1; 3052 } 3053 if (inp_flags & INP_DROPPED) { 3054 db_printf("%sINP_DROPPED", comma ? ", " : ""); 3055 comma = 1; 3056 } 3057 if (inp_flags & INP_SOCKREF) { 3058 db_printf("%sINP_SOCKREF", comma ? ", " : ""); 3059 comma = 1; 3060 } 3061 if (inp_flags & IN6P_RFC2292) { 3062 db_printf("%sIN6P_RFC2292", comma ? ", " : ""); 3063 comma = 1; 3064 } 3065 if (inp_flags & IN6P_MTU) { 3066 db_printf("IN6P_MTU%s", comma ? ", " : ""); 3067 comma = 1; 3068 } 3069 } 3070 3071 static void 3072 db_print_inpvflag(u_char inp_vflag) 3073 { 3074 int comma; 3075 3076 comma = 0; 3077 if (inp_vflag & INP_IPV4) { 3078 db_printf("%sINP_IPV4", comma ? ", " : ""); 3079 comma = 1; 3080 } 3081 if (inp_vflag & INP_IPV6) { 3082 db_printf("%sINP_IPV6", comma ? ", " : ""); 3083 comma = 1; 3084 } 3085 if (inp_vflag & INP_IPV6PROTO) { 3086 db_printf("%sINP_IPV6PROTO", comma ? ", " : ""); 3087 comma = 1; 3088 } 3089 } 3090 3091 static void 3092 db_print_inpcb(struct inpcb *inp, const char *name, int indent) 3093 { 3094 3095 db_print_indent(indent); 3096 db_printf("%s at %p\n", name, inp); 3097 3098 indent += 2; 3099 3100 db_print_indent(indent); 3101 db_printf("inp_flow: 0x%x\n", inp->inp_flow); 3102 3103 db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent); 3104 3105 db_print_indent(indent); 3106 db_printf("inp_ppcb: %p inp_pcbinfo: %p inp_socket: %p\n", 3107 inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket); 3108 3109 db_print_indent(indent); 3110 db_printf("inp_label: %p inp_flags: 0x%x (", 3111 inp->inp_label, inp->inp_flags); 3112 db_print_inpflags(inp->inp_flags); 3113 db_printf(")\n"); 3114 3115 db_print_indent(indent); 3116 db_printf("inp_sp: %p inp_vflag: 0x%x (", inp->inp_sp, 3117 inp->inp_vflag); 3118 db_print_inpvflag(inp->inp_vflag); 3119 db_printf(")\n"); 3120 3121 db_print_indent(indent); 3122 db_printf("inp_ip_ttl: %d inp_ip_p: %d inp_ip_minttl: %d\n", 3123 inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl); 3124 3125 db_print_indent(indent); 3126 #ifdef INET6 3127 if (inp->inp_vflag & INP_IPV6) { 3128 db_printf("in6p_options: %p in6p_outputopts: %p " 3129 "in6p_moptions: %p\n", inp->in6p_options, 3130 inp->in6p_outputopts, inp->in6p_moptions); 3131 db_printf("in6p_icmp6filt: %p in6p_cksum %d " 3132 "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum, 3133 inp->in6p_hops); 3134 } else 3135 #endif 3136 { 3137 db_printf("inp_ip_tos: %d inp_ip_options: %p " 3138 "inp_ip_moptions: %p\n", inp->inp_ip_tos, 3139 inp->inp_options, inp->inp_moptions); 3140 } 3141 3142 db_print_indent(indent); 3143 db_printf("inp_phd: %p inp_gencnt: %ju\n", inp->inp_phd, 3144 (uintmax_t)inp->inp_gencnt); 3145 } 3146 3147 DB_SHOW_COMMAND(inpcb, db_show_inpcb) 3148 { 3149 struct inpcb *inp; 3150 3151 if (!have_addr) { 3152 db_printf("usage: show inpcb <addr>\n"); 3153 return; 3154 } 3155 inp = (struct inpcb *)addr; 3156 3157 db_print_inpcb(inp, "inpcb", 0); 3158 } 3159 #endif /* DDB */ 3160 3161 #ifdef RATELIMIT 3162 /* 3163 * Modify TX rate limit based on the existing "inp->inp_snd_tag", 3164 * if any. 3165 */ 3166 int 3167 in_pcbmodify_txrtlmt(struct inpcb *inp, uint32_t max_pacing_rate) 3168 { 3169 union if_snd_tag_modify_params params = { 3170 .rate_limit.max_rate = max_pacing_rate, 3171 }; 3172 struct m_snd_tag *mst; 3173 struct ifnet *ifp; 3174 int error; 3175 3176 mst = inp->inp_snd_tag; 3177 if (mst == NULL) 3178 return (EINVAL); 3179 3180 ifp = mst->ifp; 3181 if (ifp == NULL) 3182 return (EINVAL); 3183 3184 if (ifp->if_snd_tag_modify == NULL) { 3185 error = EOPNOTSUPP; 3186 } else { 3187 error = ifp->if_snd_tag_modify(mst, ¶ms); 3188 } 3189 return (error); 3190 } 3191 3192 /* 3193 * Query existing TX rate limit based on the existing 3194 * "inp->inp_snd_tag", if any. 3195 */ 3196 int 3197 in_pcbquery_txrtlmt(struct inpcb *inp, uint32_t *p_max_pacing_rate) 3198 { 3199 union if_snd_tag_query_params params = { }; 3200 struct m_snd_tag *mst; 3201 struct ifnet *ifp; 3202 int error; 3203 3204 mst = inp->inp_snd_tag; 3205 if (mst == NULL) 3206 return (EINVAL); 3207 3208 ifp = mst->ifp; 3209 if (ifp == NULL) 3210 return (EINVAL); 3211 3212 if (ifp->if_snd_tag_query == NULL) { 3213 error = EOPNOTSUPP; 3214 } else { 3215 error = ifp->if_snd_tag_query(mst, ¶ms); 3216 if (error == 0 && p_max_pacing_rate != NULL) 3217 *p_max_pacing_rate = params.rate_limit.max_rate; 3218 } 3219 return (error); 3220 } 3221 3222 /* 3223 * Query existing TX queue level based on the existing 3224 * "inp->inp_snd_tag", if any. 3225 */ 3226 int 3227 in_pcbquery_txrlevel(struct inpcb *inp, uint32_t *p_txqueue_level) 3228 { 3229 union if_snd_tag_query_params params = { }; 3230 struct m_snd_tag *mst; 3231 struct ifnet *ifp; 3232 int error; 3233 3234 mst = inp->inp_snd_tag; 3235 if (mst == NULL) 3236 return (EINVAL); 3237 3238 ifp = mst->ifp; 3239 if (ifp == NULL) 3240 return (EINVAL); 3241 3242 if (ifp->if_snd_tag_query == NULL) 3243 return (EOPNOTSUPP); 3244 3245 error = ifp->if_snd_tag_query(mst, ¶ms); 3246 if (error == 0 && p_txqueue_level != NULL) 3247 *p_txqueue_level = params.rate_limit.queue_level; 3248 return (error); 3249 } 3250 3251 /* 3252 * Allocate a new TX rate limit send tag from the network interface 3253 * given by the "ifp" argument and save it in "inp->inp_snd_tag": 3254 */ 3255 int 3256 in_pcbattach_txrtlmt(struct inpcb *inp, struct ifnet *ifp, 3257 uint32_t flowtype, uint32_t flowid, uint32_t max_pacing_rate) 3258 { 3259 union if_snd_tag_alloc_params params = { 3260 .rate_limit.hdr.type = (max_pacing_rate == -1U) ? 3261 IF_SND_TAG_TYPE_UNLIMITED : IF_SND_TAG_TYPE_RATE_LIMIT, 3262 .rate_limit.hdr.flowid = flowid, 3263 .rate_limit.hdr.flowtype = flowtype, 3264 .rate_limit.max_rate = max_pacing_rate, 3265 }; 3266 int error; 3267 3268 INP_WLOCK_ASSERT(inp); 3269 3270 if (inp->inp_snd_tag != NULL) 3271 return (EINVAL); 3272 3273 if (ifp->if_snd_tag_alloc == NULL) { 3274 error = EOPNOTSUPP; 3275 } else { 3276 error = ifp->if_snd_tag_alloc(ifp, ¶ms, &inp->inp_snd_tag); 3277 3278 /* 3279 * At success increment the refcount on 3280 * the send tag's network interface: 3281 */ 3282 if (error == 0) 3283 if_ref(inp->inp_snd_tag->ifp); 3284 } 3285 return (error); 3286 } 3287 3288 /* 3289 * Free an existing TX rate limit tag based on the "inp->inp_snd_tag", 3290 * if any: 3291 */ 3292 void 3293 in_pcbdetach_txrtlmt(struct inpcb *inp) 3294 { 3295 struct m_snd_tag *mst; 3296 struct ifnet *ifp; 3297 3298 INP_WLOCK_ASSERT(inp); 3299 3300 mst = inp->inp_snd_tag; 3301 inp->inp_snd_tag = NULL; 3302 3303 if (mst == NULL) 3304 return; 3305 3306 ifp = mst->ifp; 3307 if (ifp == NULL) 3308 return; 3309 3310 /* 3311 * If the device was detached while we still had reference(s) 3312 * on the ifp, we assume if_snd_tag_free() was replaced with 3313 * stubs. 3314 */ 3315 ifp->if_snd_tag_free(mst); 3316 3317 /* release reference count on network interface */ 3318 if_rele(ifp); 3319 } 3320 3321 /* 3322 * This function should be called when the INP_RATE_LIMIT_CHANGED flag 3323 * is set in the fast path and will attach/detach/modify the TX rate 3324 * limit send tag based on the socket's so_max_pacing_rate value. 3325 */ 3326 void 3327 in_pcboutput_txrtlmt(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb) 3328 { 3329 struct socket *socket; 3330 uint32_t max_pacing_rate; 3331 bool did_upgrade; 3332 int error; 3333 3334 if (inp == NULL) 3335 return; 3336 3337 socket = inp->inp_socket; 3338 if (socket == NULL) 3339 return; 3340 3341 if (!INP_WLOCKED(inp)) { 3342 /* 3343 * NOTE: If the write locking fails, we need to bail 3344 * out and use the non-ratelimited ring for the 3345 * transmit until there is a new chance to get the 3346 * write lock. 3347 */ 3348 if (!INP_TRY_UPGRADE(inp)) 3349 return; 3350 did_upgrade = 1; 3351 } else { 3352 did_upgrade = 0; 3353 } 3354 3355 /* 3356 * NOTE: The so_max_pacing_rate value is read unlocked, 3357 * because atomic updates are not required since the variable 3358 * is checked at every mbuf we send. It is assumed that the 3359 * variable read itself will be atomic. 3360 */ 3361 max_pacing_rate = socket->so_max_pacing_rate; 3362 3363 /* 3364 * NOTE: When attaching to a network interface a reference is 3365 * made to ensure the network interface doesn't go away until 3366 * all ratelimit connections are gone. The network interface 3367 * pointers compared below represent valid network interfaces, 3368 * except when comparing towards NULL. 3369 */ 3370 if (max_pacing_rate == 0 && inp->inp_snd_tag == NULL) { 3371 error = 0; 3372 } else if (!(ifp->if_capenable & IFCAP_TXRTLMT)) { 3373 if (inp->inp_snd_tag != NULL) 3374 in_pcbdetach_txrtlmt(inp); 3375 error = 0; 3376 } else if (inp->inp_snd_tag == NULL) { 3377 /* 3378 * In order to utilize packet pacing with RSS, we need 3379 * to wait until there is a valid RSS hash before we 3380 * can proceed: 3381 */ 3382 if (M_HASHTYPE_GET(mb) == M_HASHTYPE_NONE) { 3383 error = EAGAIN; 3384 } else { 3385 error = in_pcbattach_txrtlmt(inp, ifp, M_HASHTYPE_GET(mb), 3386 mb->m_pkthdr.flowid, max_pacing_rate); 3387 } 3388 } else { 3389 error = in_pcbmodify_txrtlmt(inp, max_pacing_rate); 3390 } 3391 if (error == 0 || error == EOPNOTSUPP) 3392 inp->inp_flags2 &= ~INP_RATE_LIMIT_CHANGED; 3393 if (did_upgrade) 3394 INP_DOWNGRADE(inp); 3395 } 3396 3397 /* 3398 * Track route changes for TX rate limiting. 3399 */ 3400 void 3401 in_pcboutput_eagain(struct inpcb *inp) 3402 { 3403 bool did_upgrade; 3404 3405 if (inp == NULL) 3406 return; 3407 3408 if (inp->inp_snd_tag == NULL) 3409 return; 3410 3411 if (!INP_WLOCKED(inp)) { 3412 /* 3413 * NOTE: If the write locking fails, we need to bail 3414 * out and use the non-ratelimited ring for the 3415 * transmit until there is a new chance to get the 3416 * write lock. 3417 */ 3418 if (!INP_TRY_UPGRADE(inp)) 3419 return; 3420 did_upgrade = 1; 3421 } else { 3422 did_upgrade = 0; 3423 } 3424 3425 /* detach rate limiting */ 3426 in_pcbdetach_txrtlmt(inp); 3427 3428 /* make sure new mbuf send tag allocation is made */ 3429 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 3430 3431 if (did_upgrade) 3432 INP_DOWNGRADE(inp); 3433 } 3434 #endif /* RATELIMIT */ 3435