1 /*- 2 * Copyright (c) 1982, 1986, 1991, 1993, 1995 3 * The Regents of the University of California. 4 * Copyright (c) 2007-2009 Robert N. M. Watson 5 * Copyright (c) 2010-2011 Juniper Networks, Inc. 6 * All rights reserved. 7 * 8 * Portions of this software were developed by Robert N. M. Watson under 9 * contract to Juniper Networks, Inc. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. Neither the name of the University nor the names of its contributors 20 * may be used to endorse or promote products derived from this software 21 * without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 33 * SUCH DAMAGE. 34 * 35 * @(#)in_pcb.c 8.4 (Berkeley) 5/24/95 36 */ 37 38 #include <sys/cdefs.h> 39 __FBSDID("$FreeBSD$"); 40 41 #include "opt_ddb.h" 42 #include "opt_ipsec.h" 43 #include "opt_inet.h" 44 #include "opt_inet6.h" 45 #include "opt_ratelimit.h" 46 #include "opt_pcbgroup.h" 47 #include "opt_rss.h" 48 49 #include <sys/param.h> 50 #include <sys/systm.h> 51 #include <sys/lock.h> 52 #include <sys/malloc.h> 53 #include <sys/mbuf.h> 54 #include <sys/callout.h> 55 #include <sys/eventhandler.h> 56 #include <sys/domain.h> 57 #include <sys/protosw.h> 58 #include <sys/rmlock.h> 59 #include <sys/socket.h> 60 #include <sys/socketvar.h> 61 #include <sys/sockio.h> 62 #include <sys/priv.h> 63 #include <sys/proc.h> 64 #include <sys/refcount.h> 65 #include <sys/jail.h> 66 #include <sys/kernel.h> 67 #include <sys/sysctl.h> 68 69 #ifdef DDB 70 #include <ddb/ddb.h> 71 #endif 72 73 #include <vm/uma.h> 74 75 #include <net/if.h> 76 #include <net/if_var.h> 77 #include <net/if_types.h> 78 #include <net/if_llatbl.h> 79 #include <net/route.h> 80 #include <net/rss_config.h> 81 #include <net/vnet.h> 82 83 #if defined(INET) || defined(INET6) 84 #include <netinet/in.h> 85 #include <netinet/in_pcb.h> 86 #include <netinet/ip_var.h> 87 #include <netinet/tcp_var.h> 88 #include <netinet/udp.h> 89 #include <netinet/udp_var.h> 90 #endif 91 #ifdef INET 92 #include <netinet/in_var.h> 93 #endif 94 #ifdef INET6 95 #include <netinet/ip6.h> 96 #include <netinet6/in6_pcb.h> 97 #include <netinet6/in6_var.h> 98 #include <netinet6/ip6_var.h> 99 #endif /* INET6 */ 100 101 #include <netipsec/ipsec_support.h> 102 103 #include <security/mac/mac_framework.h> 104 105 static struct callout ipport_tick_callout; 106 107 /* 108 * These configure the range of local port addresses assigned to 109 * "unspecified" outgoing connections/packets/whatever. 110 */ 111 VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1; /* 1023 */ 112 VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART; /* 600 */ 113 VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST; /* 10000 */ 114 VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST; /* 65535 */ 115 VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO; /* 49152 */ 116 VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO; /* 65535 */ 117 118 /* 119 * Reserved ports accessible only to root. There are significant 120 * security considerations that must be accounted for when changing these, 121 * but the security benefits can be great. Please be careful. 122 */ 123 VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1; /* 1023 */ 124 VNET_DEFINE(int, ipport_reservedlow); 125 126 /* Variables dealing with random ephemeral port allocation. */ 127 VNET_DEFINE(int, ipport_randomized) = 1; /* user controlled via sysctl */ 128 VNET_DEFINE(int, ipport_randomcps) = 10; /* user controlled via sysctl */ 129 VNET_DEFINE(int, ipport_randomtime) = 45; /* user controlled via sysctl */ 130 VNET_DEFINE(int, ipport_stoprandom); /* toggled by ipport_tick */ 131 VNET_DEFINE(int, ipport_tcpallocs); 132 static VNET_DEFINE(int, ipport_tcplastcount); 133 134 #define V_ipport_tcplastcount VNET(ipport_tcplastcount) 135 136 static void in_pcbremlists(struct inpcb *inp); 137 #ifdef INET 138 static struct inpcb *in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, 139 struct in_addr faddr, u_int fport_arg, 140 struct in_addr laddr, u_int lport_arg, 141 int lookupflags, struct ifnet *ifp); 142 143 #define RANGECHK(var, min, max) \ 144 if ((var) < (min)) { (var) = (min); } \ 145 else if ((var) > (max)) { (var) = (max); } 146 147 static int 148 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS) 149 { 150 int error; 151 152 error = sysctl_handle_int(oidp, arg1, arg2, req); 153 if (error == 0) { 154 RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1); 155 RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1); 156 RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX); 157 RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX); 158 RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX); 159 RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX); 160 } 161 return (error); 162 } 163 164 #undef RANGECHK 165 166 static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, CTLFLAG_RW, 0, 167 "IP Ports"); 168 169 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst, 170 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 171 &VNET_NAME(ipport_lowfirstauto), 0, &sysctl_net_ipport_check, "I", ""); 172 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast, 173 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 174 &VNET_NAME(ipport_lowlastauto), 0, &sysctl_net_ipport_check, "I", ""); 175 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first, 176 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 177 &VNET_NAME(ipport_firstauto), 0, &sysctl_net_ipport_check, "I", ""); 178 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last, 179 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 180 &VNET_NAME(ipport_lastauto), 0, &sysctl_net_ipport_check, "I", ""); 181 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst, 182 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 183 &VNET_NAME(ipport_hifirstauto), 0, &sysctl_net_ipport_check, "I", ""); 184 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast, 185 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 186 &VNET_NAME(ipport_hilastauto), 0, &sysctl_net_ipport_check, "I", ""); 187 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh, 188 CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE, 189 &VNET_NAME(ipport_reservedhigh), 0, ""); 190 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow, 191 CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, ""); 192 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized, 193 CTLFLAG_VNET | CTLFLAG_RW, 194 &VNET_NAME(ipport_randomized), 0, "Enable random port allocation"); 195 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomcps, 196 CTLFLAG_VNET | CTLFLAG_RW, 197 &VNET_NAME(ipport_randomcps), 0, "Maximum number of random port " 198 "allocations before switching to a sequental one"); 199 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomtime, 200 CTLFLAG_VNET | CTLFLAG_RW, 201 &VNET_NAME(ipport_randomtime), 0, 202 "Minimum time to keep sequental port " 203 "allocation before switching to a random one"); 204 #endif /* INET */ 205 206 /* 207 * in_pcb.c: manage the Protocol Control Blocks. 208 * 209 * NOTE: It is assumed that most of these functions will be called with 210 * the pcbinfo lock held, and often, the inpcb lock held, as these utility 211 * functions often modify hash chains or addresses in pcbs. 212 */ 213 214 /* 215 * Initialize an inpcbinfo -- we should be able to reduce the number of 216 * arguments in time. 217 */ 218 void 219 in_pcbinfo_init(struct inpcbinfo *pcbinfo, const char *name, 220 struct inpcbhead *listhead, int hash_nelements, int porthash_nelements, 221 char *inpcbzone_name, uma_init inpcbzone_init, uma_fini inpcbzone_fini, 222 uint32_t inpcbzone_flags, u_int hashfields) 223 { 224 225 INP_INFO_LOCK_INIT(pcbinfo, name); 226 INP_HASH_LOCK_INIT(pcbinfo, "pcbinfohash"); /* XXXRW: argument? */ 227 INP_LIST_LOCK_INIT(pcbinfo, "pcbinfolist"); 228 #ifdef VIMAGE 229 pcbinfo->ipi_vnet = curvnet; 230 #endif 231 pcbinfo->ipi_listhead = listhead; 232 LIST_INIT(pcbinfo->ipi_listhead); 233 pcbinfo->ipi_count = 0; 234 pcbinfo->ipi_hashbase = hashinit(hash_nelements, M_PCB, 235 &pcbinfo->ipi_hashmask); 236 pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB, 237 &pcbinfo->ipi_porthashmask); 238 #ifdef PCBGROUP 239 in_pcbgroup_init(pcbinfo, hashfields, hash_nelements); 240 #endif 241 pcbinfo->ipi_zone = uma_zcreate(inpcbzone_name, sizeof(struct inpcb), 242 NULL, NULL, inpcbzone_init, inpcbzone_fini, UMA_ALIGN_PTR, 243 inpcbzone_flags); 244 uma_zone_set_max(pcbinfo->ipi_zone, maxsockets); 245 uma_zone_set_warning(pcbinfo->ipi_zone, 246 "kern.ipc.maxsockets limit reached"); 247 } 248 249 /* 250 * Destroy an inpcbinfo. 251 */ 252 void 253 in_pcbinfo_destroy(struct inpcbinfo *pcbinfo) 254 { 255 256 KASSERT(pcbinfo->ipi_count == 0, 257 ("%s: ipi_count = %u", __func__, pcbinfo->ipi_count)); 258 259 hashdestroy(pcbinfo->ipi_hashbase, M_PCB, pcbinfo->ipi_hashmask); 260 hashdestroy(pcbinfo->ipi_porthashbase, M_PCB, 261 pcbinfo->ipi_porthashmask); 262 #ifdef PCBGROUP 263 in_pcbgroup_destroy(pcbinfo); 264 #endif 265 uma_zdestroy(pcbinfo->ipi_zone); 266 INP_LIST_LOCK_DESTROY(pcbinfo); 267 INP_HASH_LOCK_DESTROY(pcbinfo); 268 INP_INFO_LOCK_DESTROY(pcbinfo); 269 } 270 271 /* 272 * Allocate a PCB and associate it with the socket. 273 * On success return with the PCB locked. 274 */ 275 int 276 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo) 277 { 278 struct inpcb *inp; 279 int error; 280 281 #ifdef INVARIANTS 282 if (pcbinfo == &V_tcbinfo) { 283 INP_INFO_RLOCK_ASSERT(pcbinfo); 284 } else { 285 INP_INFO_WLOCK_ASSERT(pcbinfo); 286 } 287 #endif 288 289 error = 0; 290 inp = uma_zalloc(pcbinfo->ipi_zone, M_NOWAIT); 291 if (inp == NULL) 292 return (ENOBUFS); 293 bzero(inp, inp_zero_size); 294 inp->inp_pcbinfo = pcbinfo; 295 inp->inp_socket = so; 296 inp->inp_cred = crhold(so->so_cred); 297 inp->inp_inc.inc_fibnum = so->so_fibnum; 298 #ifdef MAC 299 error = mac_inpcb_init(inp, M_NOWAIT); 300 if (error != 0) 301 goto out; 302 mac_inpcb_create(so, inp); 303 #endif 304 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 305 error = ipsec_init_pcbpolicy(inp); 306 if (error != 0) { 307 #ifdef MAC 308 mac_inpcb_destroy(inp); 309 #endif 310 goto out; 311 } 312 #endif /*IPSEC*/ 313 #ifdef INET6 314 if (INP_SOCKAF(so) == AF_INET6) { 315 inp->inp_vflag |= INP_IPV6PROTO; 316 if (V_ip6_v6only) 317 inp->inp_flags |= IN6P_IPV6_V6ONLY; 318 } 319 #endif 320 INP_WLOCK(inp); 321 INP_LIST_WLOCK(pcbinfo); 322 LIST_INSERT_HEAD(pcbinfo->ipi_listhead, inp, inp_list); 323 pcbinfo->ipi_count++; 324 so->so_pcb = (caddr_t)inp; 325 #ifdef INET6 326 if (V_ip6_auto_flowlabel) 327 inp->inp_flags |= IN6P_AUTOFLOWLABEL; 328 #endif 329 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 330 refcount_init(&inp->inp_refcount, 1); /* Reference from inpcbinfo */ 331 332 /* 333 * Routes in inpcb's can cache L2 as well; they are guaranteed 334 * to be cleaned up. 335 */ 336 inp->inp_route.ro_flags = RT_LLE_CACHE; 337 INP_LIST_WUNLOCK(pcbinfo); 338 #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC) 339 out: 340 if (error != 0) { 341 crfree(inp->inp_cred); 342 uma_zfree(pcbinfo->ipi_zone, inp); 343 } 344 #endif 345 return (error); 346 } 347 348 #ifdef INET 349 int 350 in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred) 351 { 352 int anonport, error; 353 354 INP_WLOCK_ASSERT(inp); 355 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 356 357 if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY) 358 return (EINVAL); 359 anonport = nam == NULL || ((struct sockaddr_in *)nam)->sin_port == 0; 360 error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr, 361 &inp->inp_lport, cred); 362 if (error) 363 return (error); 364 if (in_pcbinshash(inp) != 0) { 365 inp->inp_laddr.s_addr = INADDR_ANY; 366 inp->inp_lport = 0; 367 return (EAGAIN); 368 } 369 if (anonport) 370 inp->inp_flags |= INP_ANONPORT; 371 return (0); 372 } 373 #endif 374 375 /* 376 * Select a local port (number) to use. 377 */ 378 #if defined(INET) || defined(INET6) 379 int 380 in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp, 381 struct ucred *cred, int lookupflags) 382 { 383 struct inpcbinfo *pcbinfo; 384 struct inpcb *tmpinp; 385 unsigned short *lastport; 386 int count, dorandom, error; 387 u_short aux, first, last, lport; 388 #ifdef INET 389 struct in_addr laddr; 390 #endif 391 392 pcbinfo = inp->inp_pcbinfo; 393 394 /* 395 * Because no actual state changes occur here, a global write lock on 396 * the pcbinfo isn't required. 397 */ 398 INP_LOCK_ASSERT(inp); 399 INP_HASH_LOCK_ASSERT(pcbinfo); 400 401 if (inp->inp_flags & INP_HIGHPORT) { 402 first = V_ipport_hifirstauto; /* sysctl */ 403 last = V_ipport_hilastauto; 404 lastport = &pcbinfo->ipi_lasthi; 405 } else if (inp->inp_flags & INP_LOWPORT) { 406 error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT, 0); 407 if (error) 408 return (error); 409 first = V_ipport_lowfirstauto; /* 1023 */ 410 last = V_ipport_lowlastauto; /* 600 */ 411 lastport = &pcbinfo->ipi_lastlow; 412 } else { 413 first = V_ipport_firstauto; /* sysctl */ 414 last = V_ipport_lastauto; 415 lastport = &pcbinfo->ipi_lastport; 416 } 417 /* 418 * For UDP(-Lite), use random port allocation as long as the user 419 * allows it. For TCP (and as of yet unknown) connections, 420 * use random port allocation only if the user allows it AND 421 * ipport_tick() allows it. 422 */ 423 if (V_ipport_randomized && 424 (!V_ipport_stoprandom || pcbinfo == &V_udbinfo || 425 pcbinfo == &V_ulitecbinfo)) 426 dorandom = 1; 427 else 428 dorandom = 0; 429 /* 430 * It makes no sense to do random port allocation if 431 * we have the only port available. 432 */ 433 if (first == last) 434 dorandom = 0; 435 /* Make sure to not include UDP(-Lite) packets in the count. */ 436 if (pcbinfo != &V_udbinfo || pcbinfo != &V_ulitecbinfo) 437 V_ipport_tcpallocs++; 438 /* 439 * Instead of having two loops further down counting up or down 440 * make sure that first is always <= last and go with only one 441 * code path implementing all logic. 442 */ 443 if (first > last) { 444 aux = first; 445 first = last; 446 last = aux; 447 } 448 449 #ifdef INET 450 /* Make the compiler happy. */ 451 laddr.s_addr = 0; 452 if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) { 453 KASSERT(laddrp != NULL, ("%s: laddrp NULL for v4 inp %p", 454 __func__, inp)); 455 laddr = *laddrp; 456 } 457 #endif 458 tmpinp = NULL; /* Make compiler happy. */ 459 lport = *lportp; 460 461 if (dorandom) 462 *lastport = first + (arc4random() % (last - first)); 463 464 count = last - first; 465 466 do { 467 if (count-- < 0) /* completely used? */ 468 return (EADDRNOTAVAIL); 469 ++*lastport; 470 if (*lastport < first || *lastport > last) 471 *lastport = first; 472 lport = htons(*lastport); 473 474 #ifdef INET6 475 if ((inp->inp_vflag & INP_IPV6) != 0) 476 tmpinp = in6_pcblookup_local(pcbinfo, 477 &inp->in6p_laddr, lport, lookupflags, cred); 478 #endif 479 #if defined(INET) && defined(INET6) 480 else 481 #endif 482 #ifdef INET 483 tmpinp = in_pcblookup_local(pcbinfo, laddr, 484 lport, lookupflags, cred); 485 #endif 486 } while (tmpinp != NULL); 487 488 #ifdef INET 489 if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) 490 laddrp->s_addr = laddr.s_addr; 491 #endif 492 *lportp = lport; 493 494 return (0); 495 } 496 497 /* 498 * Return cached socket options. 499 */ 500 short 501 inp_so_options(const struct inpcb *inp) 502 { 503 short so_options; 504 505 so_options = 0; 506 507 if ((inp->inp_flags2 & INP_REUSEPORT) != 0) 508 so_options |= SO_REUSEPORT; 509 if ((inp->inp_flags2 & INP_REUSEADDR) != 0) 510 so_options |= SO_REUSEADDR; 511 return (so_options); 512 } 513 #endif /* INET || INET6 */ 514 515 /* 516 * Check if a new BINDMULTI socket is allowed to be created. 517 * 518 * ni points to the new inp. 519 * oi points to the exisitng inp. 520 * 521 * This checks whether the existing inp also has BINDMULTI and 522 * whether the credentials match. 523 */ 524 int 525 in_pcbbind_check_bindmulti(const struct inpcb *ni, const struct inpcb *oi) 526 { 527 /* Check permissions match */ 528 if ((ni->inp_flags2 & INP_BINDMULTI) && 529 (ni->inp_cred->cr_uid != 530 oi->inp_cred->cr_uid)) 531 return (0); 532 533 /* Check the existing inp has BINDMULTI set */ 534 if ((ni->inp_flags2 & INP_BINDMULTI) && 535 ((oi->inp_flags2 & INP_BINDMULTI) == 0)) 536 return (0); 537 538 /* 539 * We're okay - either INP_BINDMULTI isn't set on ni, or 540 * it is and it matches the checks. 541 */ 542 return (1); 543 } 544 545 #ifdef INET 546 /* 547 * Set up a bind operation on a PCB, performing port allocation 548 * as required, but do not actually modify the PCB. Callers can 549 * either complete the bind by setting inp_laddr/inp_lport and 550 * calling in_pcbinshash(), or they can just use the resulting 551 * port and address to authorise the sending of a once-off packet. 552 * 553 * On error, the values of *laddrp and *lportp are not changed. 554 */ 555 int 556 in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp, 557 u_short *lportp, struct ucred *cred) 558 { 559 struct socket *so = inp->inp_socket; 560 struct sockaddr_in *sin; 561 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 562 struct in_addr laddr; 563 u_short lport = 0; 564 int lookupflags = 0, reuseport = (so->so_options & SO_REUSEPORT); 565 int error; 566 567 /* 568 * No state changes, so read locks are sufficient here. 569 */ 570 INP_LOCK_ASSERT(inp); 571 INP_HASH_LOCK_ASSERT(pcbinfo); 572 573 if (TAILQ_EMPTY(&V_in_ifaddrhead)) /* XXX broken! */ 574 return (EADDRNOTAVAIL); 575 laddr.s_addr = *laddrp; 576 if (nam != NULL && laddr.s_addr != INADDR_ANY) 577 return (EINVAL); 578 if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) == 0) 579 lookupflags = INPLOOKUP_WILDCARD; 580 if (nam == NULL) { 581 if ((error = prison_local_ip4(cred, &laddr)) != 0) 582 return (error); 583 } else { 584 sin = (struct sockaddr_in *)nam; 585 if (nam->sa_len != sizeof (*sin)) 586 return (EINVAL); 587 #ifdef notdef 588 /* 589 * We should check the family, but old programs 590 * incorrectly fail to initialize it. 591 */ 592 if (sin->sin_family != AF_INET) 593 return (EAFNOSUPPORT); 594 #endif 595 error = prison_local_ip4(cred, &sin->sin_addr); 596 if (error) 597 return (error); 598 if (sin->sin_port != *lportp) { 599 /* Don't allow the port to change. */ 600 if (*lportp != 0) 601 return (EINVAL); 602 lport = sin->sin_port; 603 } 604 /* NB: lport is left as 0 if the port isn't being changed. */ 605 if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) { 606 /* 607 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast; 608 * allow complete duplication of binding if 609 * SO_REUSEPORT is set, or if SO_REUSEADDR is set 610 * and a multicast address is bound on both 611 * new and duplicated sockets. 612 */ 613 if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) != 0) 614 reuseport = SO_REUSEADDR|SO_REUSEPORT; 615 } else if (sin->sin_addr.s_addr != INADDR_ANY) { 616 sin->sin_port = 0; /* yech... */ 617 bzero(&sin->sin_zero, sizeof(sin->sin_zero)); 618 /* 619 * Is the address a local IP address? 620 * If INP_BINDANY is set, then the socket may be bound 621 * to any endpoint address, local or not. 622 */ 623 if ((inp->inp_flags & INP_BINDANY) == 0 && 624 ifa_ifwithaddr_check((struct sockaddr *)sin) == 0) 625 return (EADDRNOTAVAIL); 626 } 627 laddr = sin->sin_addr; 628 if (lport) { 629 struct inpcb *t; 630 struct tcptw *tw; 631 632 /* GROSS */ 633 if (ntohs(lport) <= V_ipport_reservedhigh && 634 ntohs(lport) >= V_ipport_reservedlow && 635 priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT, 636 0)) 637 return (EACCES); 638 if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) && 639 priv_check_cred(inp->inp_cred, 640 PRIV_NETINET_REUSEPORT, 0) != 0) { 641 t = in_pcblookup_local(pcbinfo, sin->sin_addr, 642 lport, INPLOOKUP_WILDCARD, cred); 643 /* 644 * XXX 645 * This entire block sorely needs a rewrite. 646 */ 647 if (t && 648 ((inp->inp_flags2 & INP_BINDMULTI) == 0) && 649 ((t->inp_flags & INP_TIMEWAIT) == 0) && 650 (so->so_type != SOCK_STREAM || 651 ntohl(t->inp_faddr.s_addr) == INADDR_ANY) && 652 (ntohl(sin->sin_addr.s_addr) != INADDR_ANY || 653 ntohl(t->inp_laddr.s_addr) != INADDR_ANY || 654 (t->inp_flags2 & INP_REUSEPORT) == 0) && 655 (inp->inp_cred->cr_uid != 656 t->inp_cred->cr_uid)) 657 return (EADDRINUSE); 658 659 /* 660 * If the socket is a BINDMULTI socket, then 661 * the credentials need to match and the 662 * original socket also has to have been bound 663 * with BINDMULTI. 664 */ 665 if (t && (! in_pcbbind_check_bindmulti(inp, t))) 666 return (EADDRINUSE); 667 } 668 t = in_pcblookup_local(pcbinfo, sin->sin_addr, 669 lport, lookupflags, cred); 670 if (t && (t->inp_flags & INP_TIMEWAIT)) { 671 /* 672 * XXXRW: If an incpb has had its timewait 673 * state recycled, we treat the address as 674 * being in use (for now). This is better 675 * than a panic, but not desirable. 676 */ 677 tw = intotw(t); 678 if (tw == NULL || 679 (reuseport & tw->tw_so_options) == 0) 680 return (EADDRINUSE); 681 } else if (t && 682 ((inp->inp_flags2 & INP_BINDMULTI) == 0) && 683 (reuseport & inp_so_options(t)) == 0) { 684 #ifdef INET6 685 if (ntohl(sin->sin_addr.s_addr) != 686 INADDR_ANY || 687 ntohl(t->inp_laddr.s_addr) != 688 INADDR_ANY || 689 (inp->inp_vflag & INP_IPV6PROTO) == 0 || 690 (t->inp_vflag & INP_IPV6PROTO) == 0) 691 #endif 692 return (EADDRINUSE); 693 if (t && (! in_pcbbind_check_bindmulti(inp, t))) 694 return (EADDRINUSE); 695 } 696 } 697 } 698 if (*lportp != 0) 699 lport = *lportp; 700 if (lport == 0) { 701 error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags); 702 if (error != 0) 703 return (error); 704 705 } 706 *laddrp = laddr.s_addr; 707 *lportp = lport; 708 return (0); 709 } 710 711 /* 712 * Connect from a socket to a specified address. 713 * Both address and port must be specified in argument sin. 714 * If don't have a local address for this socket yet, 715 * then pick one. 716 */ 717 int 718 in_pcbconnect_mbuf(struct inpcb *inp, struct sockaddr *nam, 719 struct ucred *cred, struct mbuf *m) 720 { 721 u_short lport, fport; 722 in_addr_t laddr, faddr; 723 int anonport, error; 724 725 INP_WLOCK_ASSERT(inp); 726 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 727 728 lport = inp->inp_lport; 729 laddr = inp->inp_laddr.s_addr; 730 anonport = (lport == 0); 731 error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport, 732 NULL, cred); 733 if (error) 734 return (error); 735 736 /* Do the initial binding of the local address if required. */ 737 if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) { 738 inp->inp_lport = lport; 739 inp->inp_laddr.s_addr = laddr; 740 if (in_pcbinshash(inp) != 0) { 741 inp->inp_laddr.s_addr = INADDR_ANY; 742 inp->inp_lport = 0; 743 return (EAGAIN); 744 } 745 } 746 747 /* Commit the remaining changes. */ 748 inp->inp_lport = lport; 749 inp->inp_laddr.s_addr = laddr; 750 inp->inp_faddr.s_addr = faddr; 751 inp->inp_fport = fport; 752 in_pcbrehash_mbuf(inp, m); 753 754 if (anonport) 755 inp->inp_flags |= INP_ANONPORT; 756 return (0); 757 } 758 759 int 760 in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred) 761 { 762 763 return (in_pcbconnect_mbuf(inp, nam, cred, NULL)); 764 } 765 766 /* 767 * Do proper source address selection on an unbound socket in case 768 * of connect. Take jails into account as well. 769 */ 770 int 771 in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr, 772 struct ucred *cred) 773 { 774 struct ifaddr *ifa; 775 struct sockaddr *sa; 776 struct sockaddr_in *sin; 777 struct route sro; 778 int error; 779 780 KASSERT(laddr != NULL, ("%s: laddr NULL", __func__)); 781 782 /* 783 * Bypass source address selection and use the primary jail IP 784 * if requested. 785 */ 786 if (cred != NULL && !prison_saddrsel_ip4(cred, laddr)) 787 return (0); 788 789 error = 0; 790 bzero(&sro, sizeof(sro)); 791 792 sin = (struct sockaddr_in *)&sro.ro_dst; 793 sin->sin_family = AF_INET; 794 sin->sin_len = sizeof(struct sockaddr_in); 795 sin->sin_addr.s_addr = faddr->s_addr; 796 797 /* 798 * If route is known our src addr is taken from the i/f, 799 * else punt. 800 * 801 * Find out route to destination. 802 */ 803 if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0) 804 in_rtalloc_ign(&sro, 0, inp->inp_inc.inc_fibnum); 805 806 /* 807 * If we found a route, use the address corresponding to 808 * the outgoing interface. 809 * 810 * Otherwise assume faddr is reachable on a directly connected 811 * network and try to find a corresponding interface to take 812 * the source address from. 813 */ 814 if (sro.ro_rt == NULL || sro.ro_rt->rt_ifp == NULL) { 815 struct in_ifaddr *ia; 816 struct ifnet *ifp; 817 818 ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin, 819 inp->inp_socket->so_fibnum)); 820 if (ia == NULL) 821 ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0, 822 inp->inp_socket->so_fibnum)); 823 if (ia == NULL) { 824 error = ENETUNREACH; 825 goto done; 826 } 827 828 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 829 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 830 ifa_free(&ia->ia_ifa); 831 goto done; 832 } 833 834 ifp = ia->ia_ifp; 835 ifa_free(&ia->ia_ifa); 836 ia = NULL; 837 IF_ADDR_RLOCK(ifp); 838 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 839 840 sa = ifa->ifa_addr; 841 if (sa->sa_family != AF_INET) 842 continue; 843 sin = (struct sockaddr_in *)sa; 844 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 845 ia = (struct in_ifaddr *)ifa; 846 break; 847 } 848 } 849 if (ia != NULL) { 850 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 851 IF_ADDR_RUNLOCK(ifp); 852 goto done; 853 } 854 IF_ADDR_RUNLOCK(ifp); 855 856 /* 3. As a last resort return the 'default' jail address. */ 857 error = prison_get_ip4(cred, laddr); 858 goto done; 859 } 860 861 /* 862 * If the outgoing interface on the route found is not 863 * a loopback interface, use the address from that interface. 864 * In case of jails do those three steps: 865 * 1. check if the interface address belongs to the jail. If so use it. 866 * 2. check if we have any address on the outgoing interface 867 * belonging to this jail. If so use it. 868 * 3. as a last resort return the 'default' jail address. 869 */ 870 if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) { 871 struct in_ifaddr *ia; 872 struct ifnet *ifp; 873 874 /* If not jailed, use the default returned. */ 875 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 876 ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa; 877 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 878 goto done; 879 } 880 881 /* Jailed. */ 882 /* 1. Check if the iface address belongs to the jail. */ 883 sin = (struct sockaddr_in *)sro.ro_rt->rt_ifa->ifa_addr; 884 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 885 ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa; 886 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 887 goto done; 888 } 889 890 /* 891 * 2. Check if we have any address on the outgoing interface 892 * belonging to this jail. 893 */ 894 ia = NULL; 895 ifp = sro.ro_rt->rt_ifp; 896 IF_ADDR_RLOCK(ifp); 897 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 898 sa = ifa->ifa_addr; 899 if (sa->sa_family != AF_INET) 900 continue; 901 sin = (struct sockaddr_in *)sa; 902 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 903 ia = (struct in_ifaddr *)ifa; 904 break; 905 } 906 } 907 if (ia != NULL) { 908 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 909 IF_ADDR_RUNLOCK(ifp); 910 goto done; 911 } 912 IF_ADDR_RUNLOCK(ifp); 913 914 /* 3. As a last resort return the 'default' jail address. */ 915 error = prison_get_ip4(cred, laddr); 916 goto done; 917 } 918 919 /* 920 * The outgoing interface is marked with 'loopback net', so a route 921 * to ourselves is here. 922 * Try to find the interface of the destination address and then 923 * take the address from there. That interface is not necessarily 924 * a loopback interface. 925 * In case of jails, check that it is an address of the jail 926 * and if we cannot find, fall back to the 'default' jail address. 927 */ 928 if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) { 929 struct sockaddr_in sain; 930 struct in_ifaddr *ia; 931 932 bzero(&sain, sizeof(struct sockaddr_in)); 933 sain.sin_family = AF_INET; 934 sain.sin_len = sizeof(struct sockaddr_in); 935 sain.sin_addr.s_addr = faddr->s_addr; 936 937 ia = ifatoia(ifa_ifwithdstaddr(sintosa(&sain), 938 inp->inp_socket->so_fibnum)); 939 if (ia == NULL) 940 ia = ifatoia(ifa_ifwithnet(sintosa(&sain), 0, 941 inp->inp_socket->so_fibnum)); 942 if (ia == NULL) 943 ia = ifatoia(ifa_ifwithaddr(sintosa(&sain))); 944 945 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 946 if (ia == NULL) { 947 error = ENETUNREACH; 948 goto done; 949 } 950 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 951 ifa_free(&ia->ia_ifa); 952 goto done; 953 } 954 955 /* Jailed. */ 956 if (ia != NULL) { 957 struct ifnet *ifp; 958 959 ifp = ia->ia_ifp; 960 ifa_free(&ia->ia_ifa); 961 ia = NULL; 962 IF_ADDR_RLOCK(ifp); 963 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 964 965 sa = ifa->ifa_addr; 966 if (sa->sa_family != AF_INET) 967 continue; 968 sin = (struct sockaddr_in *)sa; 969 if (prison_check_ip4(cred, 970 &sin->sin_addr) == 0) { 971 ia = (struct in_ifaddr *)ifa; 972 break; 973 } 974 } 975 if (ia != NULL) { 976 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 977 IF_ADDR_RUNLOCK(ifp); 978 goto done; 979 } 980 IF_ADDR_RUNLOCK(ifp); 981 } 982 983 /* 3. As a last resort return the 'default' jail address. */ 984 error = prison_get_ip4(cred, laddr); 985 goto done; 986 } 987 988 done: 989 if (sro.ro_rt != NULL) 990 RTFREE(sro.ro_rt); 991 return (error); 992 } 993 994 /* 995 * Set up for a connect from a socket to the specified address. 996 * On entry, *laddrp and *lportp should contain the current local 997 * address and port for the PCB; these are updated to the values 998 * that should be placed in inp_laddr and inp_lport to complete 999 * the connect. 1000 * 1001 * On success, *faddrp and *fportp will be set to the remote address 1002 * and port. These are not updated in the error case. 1003 * 1004 * If the operation fails because the connection already exists, 1005 * *oinpp will be set to the PCB of that connection so that the 1006 * caller can decide to override it. In all other cases, *oinpp 1007 * is set to NULL. 1008 */ 1009 int 1010 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam, 1011 in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp, 1012 struct inpcb **oinpp, struct ucred *cred) 1013 { 1014 struct rm_priotracker in_ifa_tracker; 1015 struct sockaddr_in *sin = (struct sockaddr_in *)nam; 1016 struct in_ifaddr *ia; 1017 struct inpcb *oinp; 1018 struct in_addr laddr, faddr; 1019 u_short lport, fport; 1020 int error; 1021 1022 /* 1023 * Because a global state change doesn't actually occur here, a read 1024 * lock is sufficient. 1025 */ 1026 INP_LOCK_ASSERT(inp); 1027 INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo); 1028 1029 if (oinpp != NULL) 1030 *oinpp = NULL; 1031 if (nam->sa_len != sizeof (*sin)) 1032 return (EINVAL); 1033 if (sin->sin_family != AF_INET) 1034 return (EAFNOSUPPORT); 1035 if (sin->sin_port == 0) 1036 return (EADDRNOTAVAIL); 1037 laddr.s_addr = *laddrp; 1038 lport = *lportp; 1039 faddr = sin->sin_addr; 1040 fport = sin->sin_port; 1041 1042 if (!TAILQ_EMPTY(&V_in_ifaddrhead)) { 1043 /* 1044 * If the destination address is INADDR_ANY, 1045 * use the primary local address. 1046 * If the supplied address is INADDR_BROADCAST, 1047 * and the primary interface supports broadcast, 1048 * choose the broadcast address for that interface. 1049 */ 1050 if (faddr.s_addr == INADDR_ANY) { 1051 IN_IFADDR_RLOCK(&in_ifa_tracker); 1052 faddr = 1053 IA_SIN(TAILQ_FIRST(&V_in_ifaddrhead))->sin_addr; 1054 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 1055 if (cred != NULL && 1056 (error = prison_get_ip4(cred, &faddr)) != 0) 1057 return (error); 1058 } else if (faddr.s_addr == (u_long)INADDR_BROADCAST) { 1059 IN_IFADDR_RLOCK(&in_ifa_tracker); 1060 if (TAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags & 1061 IFF_BROADCAST) 1062 faddr = satosin(&TAILQ_FIRST( 1063 &V_in_ifaddrhead)->ia_broadaddr)->sin_addr; 1064 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 1065 } 1066 } 1067 if (laddr.s_addr == INADDR_ANY) { 1068 error = in_pcbladdr(inp, &faddr, &laddr, cred); 1069 /* 1070 * If the destination address is multicast and an outgoing 1071 * interface has been set as a multicast option, prefer the 1072 * address of that interface as our source address. 1073 */ 1074 if (IN_MULTICAST(ntohl(faddr.s_addr)) && 1075 inp->inp_moptions != NULL) { 1076 struct ip_moptions *imo; 1077 struct ifnet *ifp; 1078 1079 imo = inp->inp_moptions; 1080 if (imo->imo_multicast_ifp != NULL) { 1081 ifp = imo->imo_multicast_ifp; 1082 IN_IFADDR_RLOCK(&in_ifa_tracker); 1083 TAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) { 1084 if ((ia->ia_ifp == ifp) && 1085 (cred == NULL || 1086 prison_check_ip4(cred, 1087 &ia->ia_addr.sin_addr) == 0)) 1088 break; 1089 } 1090 if (ia == NULL) 1091 error = EADDRNOTAVAIL; 1092 else { 1093 laddr = ia->ia_addr.sin_addr; 1094 error = 0; 1095 } 1096 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 1097 } 1098 } 1099 if (error) 1100 return (error); 1101 } 1102 oinp = in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr, fport, 1103 laddr, lport, 0, NULL); 1104 if (oinp != NULL) { 1105 if (oinpp != NULL) 1106 *oinpp = oinp; 1107 return (EADDRINUSE); 1108 } 1109 if (lport == 0) { 1110 error = in_pcbbind_setup(inp, NULL, &laddr.s_addr, &lport, 1111 cred); 1112 if (error) 1113 return (error); 1114 } 1115 *laddrp = laddr.s_addr; 1116 *lportp = lport; 1117 *faddrp = faddr.s_addr; 1118 *fportp = fport; 1119 return (0); 1120 } 1121 1122 void 1123 in_pcbdisconnect(struct inpcb *inp) 1124 { 1125 1126 INP_WLOCK_ASSERT(inp); 1127 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 1128 1129 inp->inp_faddr.s_addr = INADDR_ANY; 1130 inp->inp_fport = 0; 1131 in_pcbrehash(inp); 1132 } 1133 #endif /* INET */ 1134 1135 /* 1136 * in_pcbdetach() is responsibe for disassociating a socket from an inpcb. 1137 * For most protocols, this will be invoked immediately prior to calling 1138 * in_pcbfree(). However, with TCP the inpcb may significantly outlive the 1139 * socket, in which case in_pcbfree() is deferred. 1140 */ 1141 void 1142 in_pcbdetach(struct inpcb *inp) 1143 { 1144 1145 KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__)); 1146 1147 #ifdef RATELIMIT 1148 if (inp->inp_snd_tag != NULL) 1149 in_pcbdetach_txrtlmt(inp); 1150 #endif 1151 inp->inp_socket->so_pcb = NULL; 1152 inp->inp_socket = NULL; 1153 } 1154 1155 /* 1156 * in_pcbref() bumps the reference count on an inpcb in order to maintain 1157 * stability of an inpcb pointer despite the inpcb lock being released. This 1158 * is used in TCP when the inpcbinfo lock needs to be acquired or upgraded, 1159 * but where the inpcb lock may already held, or when acquiring a reference 1160 * via a pcbgroup. 1161 * 1162 * in_pcbref() should be used only to provide brief memory stability, and 1163 * must always be followed by a call to INP_WLOCK() and in_pcbrele() to 1164 * garbage collect the inpcb if it has been in_pcbfree()'d from another 1165 * context. Until in_pcbrele() has returned that the inpcb is still valid, 1166 * lock and rele are the *only* safe operations that may be performed on the 1167 * inpcb. 1168 * 1169 * While the inpcb will not be freed, releasing the inpcb lock means that the 1170 * connection's state may change, so the caller should be careful to 1171 * revalidate any cached state on reacquiring the lock. Drop the reference 1172 * using in_pcbrele(). 1173 */ 1174 void 1175 in_pcbref(struct inpcb *inp) 1176 { 1177 1178 KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__)); 1179 1180 refcount_acquire(&inp->inp_refcount); 1181 } 1182 1183 /* 1184 * Drop a refcount on an inpcb elevated using in_pcbref(); because a call to 1185 * in_pcbfree() may have been made between in_pcbref() and in_pcbrele(), we 1186 * return a flag indicating whether or not the inpcb remains valid. If it is 1187 * valid, we return with the inpcb lock held. 1188 * 1189 * Notice that, unlike in_pcbref(), the inpcb lock must be held to drop a 1190 * reference on an inpcb. Historically more work was done here (actually, in 1191 * in_pcbfree_internal()) but has been moved to in_pcbfree() to avoid the 1192 * need for the pcbinfo lock in in_pcbrele(). Deferring the free is entirely 1193 * about memory stability (and continued use of the write lock). 1194 */ 1195 int 1196 in_pcbrele_rlocked(struct inpcb *inp) 1197 { 1198 struct inpcbinfo *pcbinfo; 1199 1200 KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__)); 1201 1202 INP_RLOCK_ASSERT(inp); 1203 1204 if (refcount_release(&inp->inp_refcount) == 0) { 1205 /* 1206 * If the inpcb has been freed, let the caller know, even if 1207 * this isn't the last reference. 1208 */ 1209 if (inp->inp_flags2 & INP_FREED) { 1210 INP_RUNLOCK(inp); 1211 return (1); 1212 } 1213 return (0); 1214 } 1215 1216 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); 1217 1218 INP_RUNLOCK(inp); 1219 pcbinfo = inp->inp_pcbinfo; 1220 uma_zfree(pcbinfo->ipi_zone, inp); 1221 return (1); 1222 } 1223 1224 int 1225 in_pcbrele_wlocked(struct inpcb *inp) 1226 { 1227 struct inpcbinfo *pcbinfo; 1228 1229 KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__)); 1230 1231 INP_WLOCK_ASSERT(inp); 1232 1233 if (refcount_release(&inp->inp_refcount) == 0) { 1234 /* 1235 * If the inpcb has been freed, let the caller know, even if 1236 * this isn't the last reference. 1237 */ 1238 if (inp->inp_flags2 & INP_FREED) { 1239 INP_WUNLOCK(inp); 1240 return (1); 1241 } 1242 return (0); 1243 } 1244 1245 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); 1246 1247 INP_WUNLOCK(inp); 1248 pcbinfo = inp->inp_pcbinfo; 1249 uma_zfree(pcbinfo->ipi_zone, inp); 1250 return (1); 1251 } 1252 1253 /* 1254 * Temporary wrapper. 1255 */ 1256 int 1257 in_pcbrele(struct inpcb *inp) 1258 { 1259 1260 return (in_pcbrele_wlocked(inp)); 1261 } 1262 1263 /* 1264 * Unconditionally schedule an inpcb to be freed by decrementing its 1265 * reference count, which should occur only after the inpcb has been detached 1266 * from its socket. If another thread holds a temporary reference (acquired 1267 * using in_pcbref()) then the free is deferred until that reference is 1268 * released using in_pcbrele(), but the inpcb is still unlocked. Almost all 1269 * work, including removal from global lists, is done in this context, where 1270 * the pcbinfo lock is held. 1271 */ 1272 void 1273 in_pcbfree(struct inpcb *inp) 1274 { 1275 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 1276 1277 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); 1278 1279 #ifdef INVARIANTS 1280 if (pcbinfo == &V_tcbinfo) { 1281 INP_INFO_LOCK_ASSERT(pcbinfo); 1282 } else { 1283 INP_INFO_WLOCK_ASSERT(pcbinfo); 1284 } 1285 #endif 1286 INP_WLOCK_ASSERT(inp); 1287 1288 /* XXXRW: Do as much as possible here. */ 1289 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1290 if (inp->inp_sp != NULL) 1291 ipsec_delete_pcbpolicy(inp); 1292 #endif 1293 INP_LIST_WLOCK(pcbinfo); 1294 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 1295 in_pcbremlists(inp); 1296 INP_LIST_WUNLOCK(pcbinfo); 1297 #ifdef INET6 1298 if (inp->inp_vflag & INP_IPV6PROTO) { 1299 ip6_freepcbopts(inp->in6p_outputopts); 1300 if (inp->in6p_moptions != NULL) 1301 ip6_freemoptions(inp->in6p_moptions); 1302 } 1303 #endif 1304 if (inp->inp_options) 1305 (void)m_free(inp->inp_options); 1306 #ifdef INET 1307 if (inp->inp_moptions != NULL) 1308 inp_freemoptions(inp->inp_moptions); 1309 #endif 1310 RO_RTFREE(&inp->inp_route); 1311 if (inp->inp_route.ro_lle) 1312 LLE_FREE(inp->inp_route.ro_lle); /* zeros ro_lle */ 1313 1314 inp->inp_vflag = 0; 1315 inp->inp_flags2 |= INP_FREED; 1316 crfree(inp->inp_cred); 1317 #ifdef MAC 1318 mac_inpcb_destroy(inp); 1319 #endif 1320 if (!in_pcbrele_wlocked(inp)) 1321 INP_WUNLOCK(inp); 1322 } 1323 1324 /* 1325 * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and 1326 * port reservation, and preventing it from being returned by inpcb lookups. 1327 * 1328 * It is used by TCP to mark an inpcb as unused and avoid future packet 1329 * delivery or event notification when a socket remains open but TCP has 1330 * closed. This might occur as a result of a shutdown()-initiated TCP close 1331 * or a RST on the wire, and allows the port binding to be reused while still 1332 * maintaining the invariant that so_pcb always points to a valid inpcb until 1333 * in_pcbdetach(). 1334 * 1335 * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by 1336 * in_pcbnotifyall() and in_pcbpurgeif0()? 1337 */ 1338 void 1339 in_pcbdrop(struct inpcb *inp) 1340 { 1341 1342 INP_WLOCK_ASSERT(inp); 1343 1344 /* 1345 * XXXRW: Possibly we should protect the setting of INP_DROPPED with 1346 * the hash lock...? 1347 */ 1348 inp->inp_flags |= INP_DROPPED; 1349 if (inp->inp_flags & INP_INHASHLIST) { 1350 struct inpcbport *phd = inp->inp_phd; 1351 1352 INP_HASH_WLOCK(inp->inp_pcbinfo); 1353 LIST_REMOVE(inp, inp_hash); 1354 LIST_REMOVE(inp, inp_portlist); 1355 if (LIST_FIRST(&phd->phd_pcblist) == NULL) { 1356 LIST_REMOVE(phd, phd_hash); 1357 free(phd, M_PCB); 1358 } 1359 INP_HASH_WUNLOCK(inp->inp_pcbinfo); 1360 inp->inp_flags &= ~INP_INHASHLIST; 1361 #ifdef PCBGROUP 1362 in_pcbgroup_remove(inp); 1363 #endif 1364 } 1365 } 1366 1367 #ifdef INET 1368 /* 1369 * Common routines to return the socket addresses associated with inpcbs. 1370 */ 1371 struct sockaddr * 1372 in_sockaddr(in_port_t port, struct in_addr *addr_p) 1373 { 1374 struct sockaddr_in *sin; 1375 1376 sin = malloc(sizeof *sin, M_SONAME, 1377 M_WAITOK | M_ZERO); 1378 sin->sin_family = AF_INET; 1379 sin->sin_len = sizeof(*sin); 1380 sin->sin_addr = *addr_p; 1381 sin->sin_port = port; 1382 1383 return (struct sockaddr *)sin; 1384 } 1385 1386 int 1387 in_getsockaddr(struct socket *so, struct sockaddr **nam) 1388 { 1389 struct inpcb *inp; 1390 struct in_addr addr; 1391 in_port_t port; 1392 1393 inp = sotoinpcb(so); 1394 KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL")); 1395 1396 INP_RLOCK(inp); 1397 port = inp->inp_lport; 1398 addr = inp->inp_laddr; 1399 INP_RUNLOCK(inp); 1400 1401 *nam = in_sockaddr(port, &addr); 1402 return 0; 1403 } 1404 1405 int 1406 in_getpeeraddr(struct socket *so, struct sockaddr **nam) 1407 { 1408 struct inpcb *inp; 1409 struct in_addr addr; 1410 in_port_t port; 1411 1412 inp = sotoinpcb(so); 1413 KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL")); 1414 1415 INP_RLOCK(inp); 1416 port = inp->inp_fport; 1417 addr = inp->inp_faddr; 1418 INP_RUNLOCK(inp); 1419 1420 *nam = in_sockaddr(port, &addr); 1421 return 0; 1422 } 1423 1424 void 1425 in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno, 1426 struct inpcb *(*notify)(struct inpcb *, int)) 1427 { 1428 struct inpcb *inp, *inp_temp; 1429 1430 INP_INFO_WLOCK(pcbinfo); 1431 LIST_FOREACH_SAFE(inp, pcbinfo->ipi_listhead, inp_list, inp_temp) { 1432 INP_WLOCK(inp); 1433 #ifdef INET6 1434 if ((inp->inp_vflag & INP_IPV4) == 0) { 1435 INP_WUNLOCK(inp); 1436 continue; 1437 } 1438 #endif 1439 if (inp->inp_faddr.s_addr != faddr.s_addr || 1440 inp->inp_socket == NULL) { 1441 INP_WUNLOCK(inp); 1442 continue; 1443 } 1444 if ((*notify)(inp, errno)) 1445 INP_WUNLOCK(inp); 1446 } 1447 INP_INFO_WUNLOCK(pcbinfo); 1448 } 1449 1450 void 1451 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp) 1452 { 1453 struct inpcb *inp; 1454 struct ip_moptions *imo; 1455 int i, gap; 1456 1457 INP_INFO_WLOCK(pcbinfo); 1458 LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) { 1459 INP_WLOCK(inp); 1460 imo = inp->inp_moptions; 1461 if ((inp->inp_vflag & INP_IPV4) && 1462 imo != NULL) { 1463 /* 1464 * Unselect the outgoing interface if it is being 1465 * detached. 1466 */ 1467 if (imo->imo_multicast_ifp == ifp) 1468 imo->imo_multicast_ifp = NULL; 1469 1470 /* 1471 * Drop multicast group membership if we joined 1472 * through the interface being detached. 1473 */ 1474 for (i = 0, gap = 0; i < imo->imo_num_memberships; 1475 i++) { 1476 if (imo->imo_membership[i]->inm_ifp == ifp) { 1477 in_delmulti(imo->imo_membership[i]); 1478 gap++; 1479 } else if (gap != 0) 1480 imo->imo_membership[i - gap] = 1481 imo->imo_membership[i]; 1482 } 1483 imo->imo_num_memberships -= gap; 1484 } 1485 INP_WUNLOCK(inp); 1486 } 1487 INP_INFO_WUNLOCK(pcbinfo); 1488 } 1489 1490 /* 1491 * Lookup a PCB based on the local address and port. Caller must hold the 1492 * hash lock. No inpcb locks or references are acquired. 1493 */ 1494 #define INP_LOOKUP_MAPPED_PCB_COST 3 1495 struct inpcb * 1496 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr, 1497 u_short lport, int lookupflags, struct ucred *cred) 1498 { 1499 struct inpcb *inp; 1500 #ifdef INET6 1501 int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST; 1502 #else 1503 int matchwild = 3; 1504 #endif 1505 int wildcard; 1506 1507 KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0, 1508 ("%s: invalid lookup flags %d", __func__, lookupflags)); 1509 1510 INP_HASH_LOCK_ASSERT(pcbinfo); 1511 1512 if ((lookupflags & INPLOOKUP_WILDCARD) == 0) { 1513 struct inpcbhead *head; 1514 /* 1515 * Look for an unconnected (wildcard foreign addr) PCB that 1516 * matches the local address and port we're looking for. 1517 */ 1518 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport, 1519 0, pcbinfo->ipi_hashmask)]; 1520 LIST_FOREACH(inp, head, inp_hash) { 1521 #ifdef INET6 1522 /* XXX inp locking */ 1523 if ((inp->inp_vflag & INP_IPV4) == 0) 1524 continue; 1525 #endif 1526 if (inp->inp_faddr.s_addr == INADDR_ANY && 1527 inp->inp_laddr.s_addr == laddr.s_addr && 1528 inp->inp_lport == lport) { 1529 /* 1530 * Found? 1531 */ 1532 if (cred == NULL || 1533 prison_equal_ip4(cred->cr_prison, 1534 inp->inp_cred->cr_prison)) 1535 return (inp); 1536 } 1537 } 1538 /* 1539 * Not found. 1540 */ 1541 return (NULL); 1542 } else { 1543 struct inpcbporthead *porthash; 1544 struct inpcbport *phd; 1545 struct inpcb *match = NULL; 1546 /* 1547 * Best fit PCB lookup. 1548 * 1549 * First see if this local port is in use by looking on the 1550 * port hash list. 1551 */ 1552 porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport, 1553 pcbinfo->ipi_porthashmask)]; 1554 LIST_FOREACH(phd, porthash, phd_hash) { 1555 if (phd->phd_port == lport) 1556 break; 1557 } 1558 if (phd != NULL) { 1559 /* 1560 * Port is in use by one or more PCBs. Look for best 1561 * fit. 1562 */ 1563 LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) { 1564 wildcard = 0; 1565 if (cred != NULL && 1566 !prison_equal_ip4(inp->inp_cred->cr_prison, 1567 cred->cr_prison)) 1568 continue; 1569 #ifdef INET6 1570 /* XXX inp locking */ 1571 if ((inp->inp_vflag & INP_IPV4) == 0) 1572 continue; 1573 /* 1574 * We never select the PCB that has 1575 * INP_IPV6 flag and is bound to :: if 1576 * we have another PCB which is bound 1577 * to 0.0.0.0. If a PCB has the 1578 * INP_IPV6 flag, then we set its cost 1579 * higher than IPv4 only PCBs. 1580 * 1581 * Note that the case only happens 1582 * when a socket is bound to ::, under 1583 * the condition that the use of the 1584 * mapped address is allowed. 1585 */ 1586 if ((inp->inp_vflag & INP_IPV6) != 0) 1587 wildcard += INP_LOOKUP_MAPPED_PCB_COST; 1588 #endif 1589 if (inp->inp_faddr.s_addr != INADDR_ANY) 1590 wildcard++; 1591 if (inp->inp_laddr.s_addr != INADDR_ANY) { 1592 if (laddr.s_addr == INADDR_ANY) 1593 wildcard++; 1594 else if (inp->inp_laddr.s_addr != laddr.s_addr) 1595 continue; 1596 } else { 1597 if (laddr.s_addr != INADDR_ANY) 1598 wildcard++; 1599 } 1600 if (wildcard < matchwild) { 1601 match = inp; 1602 matchwild = wildcard; 1603 if (matchwild == 0) 1604 break; 1605 } 1606 } 1607 } 1608 return (match); 1609 } 1610 } 1611 #undef INP_LOOKUP_MAPPED_PCB_COST 1612 1613 #ifdef PCBGROUP 1614 /* 1615 * Lookup PCB in hash list, using pcbgroup tables. 1616 */ 1617 static struct inpcb * 1618 in_pcblookup_group(struct inpcbinfo *pcbinfo, struct inpcbgroup *pcbgroup, 1619 struct in_addr faddr, u_int fport_arg, struct in_addr laddr, 1620 u_int lport_arg, int lookupflags, struct ifnet *ifp) 1621 { 1622 struct inpcbhead *head; 1623 struct inpcb *inp, *tmpinp; 1624 u_short fport = fport_arg, lport = lport_arg; 1625 1626 /* 1627 * First look for an exact match. 1628 */ 1629 tmpinp = NULL; 1630 INP_GROUP_LOCK(pcbgroup); 1631 head = &pcbgroup->ipg_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport, 1632 pcbgroup->ipg_hashmask)]; 1633 LIST_FOREACH(inp, head, inp_pcbgrouphash) { 1634 #ifdef INET6 1635 /* XXX inp locking */ 1636 if ((inp->inp_vflag & INP_IPV4) == 0) 1637 continue; 1638 #endif 1639 if (inp->inp_faddr.s_addr == faddr.s_addr && 1640 inp->inp_laddr.s_addr == laddr.s_addr && 1641 inp->inp_fport == fport && 1642 inp->inp_lport == lport) { 1643 /* 1644 * XXX We should be able to directly return 1645 * the inp here, without any checks. 1646 * Well unless both bound with SO_REUSEPORT? 1647 */ 1648 if (prison_flag(inp->inp_cred, PR_IP4)) 1649 goto found; 1650 if (tmpinp == NULL) 1651 tmpinp = inp; 1652 } 1653 } 1654 if (tmpinp != NULL) { 1655 inp = tmpinp; 1656 goto found; 1657 } 1658 1659 #ifdef RSS 1660 /* 1661 * For incoming connections, we may wish to do a wildcard 1662 * match for an RSS-local socket. 1663 */ 1664 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 1665 struct inpcb *local_wild = NULL, *local_exact = NULL; 1666 #ifdef INET6 1667 struct inpcb *local_wild_mapped = NULL; 1668 #endif 1669 struct inpcb *jail_wild = NULL; 1670 struct inpcbhead *head; 1671 int injail; 1672 1673 /* 1674 * Order of socket selection - we always prefer jails. 1675 * 1. jailed, non-wild. 1676 * 2. jailed, wild. 1677 * 3. non-jailed, non-wild. 1678 * 4. non-jailed, wild. 1679 */ 1680 1681 head = &pcbgroup->ipg_hashbase[INP_PCBHASH(INADDR_ANY, 1682 lport, 0, pcbgroup->ipg_hashmask)]; 1683 LIST_FOREACH(inp, head, inp_pcbgrouphash) { 1684 #ifdef INET6 1685 /* XXX inp locking */ 1686 if ((inp->inp_vflag & INP_IPV4) == 0) 1687 continue; 1688 #endif 1689 if (inp->inp_faddr.s_addr != INADDR_ANY || 1690 inp->inp_lport != lport) 1691 continue; 1692 1693 injail = prison_flag(inp->inp_cred, PR_IP4); 1694 if (injail) { 1695 if (prison_check_ip4(inp->inp_cred, 1696 &laddr) != 0) 1697 continue; 1698 } else { 1699 if (local_exact != NULL) 1700 continue; 1701 } 1702 1703 if (inp->inp_laddr.s_addr == laddr.s_addr) { 1704 if (injail) 1705 goto found; 1706 else 1707 local_exact = inp; 1708 } else if (inp->inp_laddr.s_addr == INADDR_ANY) { 1709 #ifdef INET6 1710 /* XXX inp locking, NULL check */ 1711 if (inp->inp_vflag & INP_IPV6PROTO) 1712 local_wild_mapped = inp; 1713 else 1714 #endif 1715 if (injail) 1716 jail_wild = inp; 1717 else 1718 local_wild = inp; 1719 } 1720 } /* LIST_FOREACH */ 1721 1722 inp = jail_wild; 1723 if (inp == NULL) 1724 inp = local_exact; 1725 if (inp == NULL) 1726 inp = local_wild; 1727 #ifdef INET6 1728 if (inp == NULL) 1729 inp = local_wild_mapped; 1730 #endif 1731 if (inp != NULL) 1732 goto found; 1733 } 1734 #endif 1735 1736 /* 1737 * Then look for a wildcard match, if requested. 1738 */ 1739 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 1740 struct inpcb *local_wild = NULL, *local_exact = NULL; 1741 #ifdef INET6 1742 struct inpcb *local_wild_mapped = NULL; 1743 #endif 1744 struct inpcb *jail_wild = NULL; 1745 struct inpcbhead *head; 1746 int injail; 1747 1748 /* 1749 * Order of socket selection - we always prefer jails. 1750 * 1. jailed, non-wild. 1751 * 2. jailed, wild. 1752 * 3. non-jailed, non-wild. 1753 * 4. non-jailed, wild. 1754 */ 1755 head = &pcbinfo->ipi_wildbase[INP_PCBHASH(INADDR_ANY, lport, 1756 0, pcbinfo->ipi_wildmask)]; 1757 LIST_FOREACH(inp, head, inp_pcbgroup_wild) { 1758 #ifdef INET6 1759 /* XXX inp locking */ 1760 if ((inp->inp_vflag & INP_IPV4) == 0) 1761 continue; 1762 #endif 1763 if (inp->inp_faddr.s_addr != INADDR_ANY || 1764 inp->inp_lport != lport) 1765 continue; 1766 1767 injail = prison_flag(inp->inp_cred, PR_IP4); 1768 if (injail) { 1769 if (prison_check_ip4(inp->inp_cred, 1770 &laddr) != 0) 1771 continue; 1772 } else { 1773 if (local_exact != NULL) 1774 continue; 1775 } 1776 1777 if (inp->inp_laddr.s_addr == laddr.s_addr) { 1778 if (injail) 1779 goto found; 1780 else 1781 local_exact = inp; 1782 } else if (inp->inp_laddr.s_addr == INADDR_ANY) { 1783 #ifdef INET6 1784 /* XXX inp locking, NULL check */ 1785 if (inp->inp_vflag & INP_IPV6PROTO) 1786 local_wild_mapped = inp; 1787 else 1788 #endif 1789 if (injail) 1790 jail_wild = inp; 1791 else 1792 local_wild = inp; 1793 } 1794 } /* LIST_FOREACH */ 1795 inp = jail_wild; 1796 if (inp == NULL) 1797 inp = local_exact; 1798 if (inp == NULL) 1799 inp = local_wild; 1800 #ifdef INET6 1801 if (inp == NULL) 1802 inp = local_wild_mapped; 1803 #endif 1804 if (inp != NULL) 1805 goto found; 1806 } /* if (lookupflags & INPLOOKUP_WILDCARD) */ 1807 INP_GROUP_UNLOCK(pcbgroup); 1808 return (NULL); 1809 1810 found: 1811 in_pcbref(inp); 1812 INP_GROUP_UNLOCK(pcbgroup); 1813 if (lookupflags & INPLOOKUP_WLOCKPCB) { 1814 INP_WLOCK(inp); 1815 if (in_pcbrele_wlocked(inp)) 1816 return (NULL); 1817 } else if (lookupflags & INPLOOKUP_RLOCKPCB) { 1818 INP_RLOCK(inp); 1819 if (in_pcbrele_rlocked(inp)) 1820 return (NULL); 1821 } else 1822 panic("%s: locking bug", __func__); 1823 return (inp); 1824 } 1825 #endif /* PCBGROUP */ 1826 1827 /* 1828 * Lookup PCB in hash list, using pcbinfo tables. This variation assumes 1829 * that the caller has locked the hash list, and will not perform any further 1830 * locking or reference operations on either the hash list or the connection. 1831 */ 1832 static struct inpcb * 1833 in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr, 1834 u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags, 1835 struct ifnet *ifp) 1836 { 1837 struct inpcbhead *head; 1838 struct inpcb *inp, *tmpinp; 1839 u_short fport = fport_arg, lport = lport_arg; 1840 1841 KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0, 1842 ("%s: invalid lookup flags %d", __func__, lookupflags)); 1843 1844 INP_HASH_LOCK_ASSERT(pcbinfo); 1845 1846 /* 1847 * First look for an exact match. 1848 */ 1849 tmpinp = NULL; 1850 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport, 1851 pcbinfo->ipi_hashmask)]; 1852 LIST_FOREACH(inp, head, inp_hash) { 1853 #ifdef INET6 1854 /* XXX inp locking */ 1855 if ((inp->inp_vflag & INP_IPV4) == 0) 1856 continue; 1857 #endif 1858 if (inp->inp_faddr.s_addr == faddr.s_addr && 1859 inp->inp_laddr.s_addr == laddr.s_addr && 1860 inp->inp_fport == fport && 1861 inp->inp_lport == lport) { 1862 /* 1863 * XXX We should be able to directly return 1864 * the inp here, without any checks. 1865 * Well unless both bound with SO_REUSEPORT? 1866 */ 1867 if (prison_flag(inp->inp_cred, PR_IP4)) 1868 return (inp); 1869 if (tmpinp == NULL) 1870 tmpinp = inp; 1871 } 1872 } 1873 if (tmpinp != NULL) 1874 return (tmpinp); 1875 1876 /* 1877 * Then look for a wildcard match, if requested. 1878 */ 1879 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 1880 struct inpcb *local_wild = NULL, *local_exact = NULL; 1881 #ifdef INET6 1882 struct inpcb *local_wild_mapped = NULL; 1883 #endif 1884 struct inpcb *jail_wild = NULL; 1885 int injail; 1886 1887 /* 1888 * Order of socket selection - we always prefer jails. 1889 * 1. jailed, non-wild. 1890 * 2. jailed, wild. 1891 * 3. non-jailed, non-wild. 1892 * 4. non-jailed, wild. 1893 */ 1894 1895 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport, 1896 0, pcbinfo->ipi_hashmask)]; 1897 LIST_FOREACH(inp, head, inp_hash) { 1898 #ifdef INET6 1899 /* XXX inp locking */ 1900 if ((inp->inp_vflag & INP_IPV4) == 0) 1901 continue; 1902 #endif 1903 if (inp->inp_faddr.s_addr != INADDR_ANY || 1904 inp->inp_lport != lport) 1905 continue; 1906 1907 injail = prison_flag(inp->inp_cred, PR_IP4); 1908 if (injail) { 1909 if (prison_check_ip4(inp->inp_cred, 1910 &laddr) != 0) 1911 continue; 1912 } else { 1913 if (local_exact != NULL) 1914 continue; 1915 } 1916 1917 if (inp->inp_laddr.s_addr == laddr.s_addr) { 1918 if (injail) 1919 return (inp); 1920 else 1921 local_exact = inp; 1922 } else if (inp->inp_laddr.s_addr == INADDR_ANY) { 1923 #ifdef INET6 1924 /* XXX inp locking, NULL check */ 1925 if (inp->inp_vflag & INP_IPV6PROTO) 1926 local_wild_mapped = inp; 1927 else 1928 #endif 1929 if (injail) 1930 jail_wild = inp; 1931 else 1932 local_wild = inp; 1933 } 1934 } /* LIST_FOREACH */ 1935 if (jail_wild != NULL) 1936 return (jail_wild); 1937 if (local_exact != NULL) 1938 return (local_exact); 1939 if (local_wild != NULL) 1940 return (local_wild); 1941 #ifdef INET6 1942 if (local_wild_mapped != NULL) 1943 return (local_wild_mapped); 1944 #endif 1945 } /* if ((lookupflags & INPLOOKUP_WILDCARD) != 0) */ 1946 1947 return (NULL); 1948 } 1949 1950 /* 1951 * Lookup PCB in hash list, using pcbinfo tables. This variation locks the 1952 * hash list lock, and will return the inpcb locked (i.e., requires 1953 * INPLOOKUP_LOCKPCB). 1954 */ 1955 static struct inpcb * 1956 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr, 1957 u_int fport, struct in_addr laddr, u_int lport, int lookupflags, 1958 struct ifnet *ifp) 1959 { 1960 struct inpcb *inp; 1961 1962 INP_HASH_RLOCK(pcbinfo); 1963 inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport, 1964 (lookupflags & ~(INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)), ifp); 1965 if (inp != NULL) { 1966 in_pcbref(inp); 1967 INP_HASH_RUNLOCK(pcbinfo); 1968 if (lookupflags & INPLOOKUP_WLOCKPCB) { 1969 INP_WLOCK(inp); 1970 if (in_pcbrele_wlocked(inp)) 1971 return (NULL); 1972 } else if (lookupflags & INPLOOKUP_RLOCKPCB) { 1973 INP_RLOCK(inp); 1974 if (in_pcbrele_rlocked(inp)) 1975 return (NULL); 1976 } else 1977 panic("%s: locking bug", __func__); 1978 } else 1979 INP_HASH_RUNLOCK(pcbinfo); 1980 return (inp); 1981 } 1982 1983 /* 1984 * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf 1985 * from which a pre-calculated hash value may be extracted. 1986 * 1987 * Possibly more of this logic should be in in_pcbgroup.c. 1988 */ 1989 struct inpcb * 1990 in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport, 1991 struct in_addr laddr, u_int lport, int lookupflags, struct ifnet *ifp) 1992 { 1993 #if defined(PCBGROUP) && !defined(RSS) 1994 struct inpcbgroup *pcbgroup; 1995 #endif 1996 1997 KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0, 1998 ("%s: invalid lookup flags %d", __func__, lookupflags)); 1999 KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0, 2000 ("%s: LOCKPCB not set", __func__)); 2001 2002 /* 2003 * When not using RSS, use connection groups in preference to the 2004 * reservation table when looking up 4-tuples. When using RSS, just 2005 * use the reservation table, due to the cost of the Toeplitz hash 2006 * in software. 2007 * 2008 * XXXRW: This policy belongs in the pcbgroup code, as in principle 2009 * we could be doing RSS with a non-Toeplitz hash that is affordable 2010 * in software. 2011 */ 2012 #if defined(PCBGROUP) && !defined(RSS) 2013 if (in_pcbgroup_enabled(pcbinfo)) { 2014 pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr, 2015 fport); 2016 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport, 2017 laddr, lport, lookupflags, ifp)); 2018 } 2019 #endif 2020 return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport, 2021 lookupflags, ifp)); 2022 } 2023 2024 struct inpcb * 2025 in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2026 u_int fport, struct in_addr laddr, u_int lport, int lookupflags, 2027 struct ifnet *ifp, struct mbuf *m) 2028 { 2029 #ifdef PCBGROUP 2030 struct inpcbgroup *pcbgroup; 2031 #endif 2032 2033 KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0, 2034 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2035 KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0, 2036 ("%s: LOCKPCB not set", __func__)); 2037 2038 #ifdef PCBGROUP 2039 /* 2040 * If we can use a hardware-generated hash to look up the connection 2041 * group, use that connection group to find the inpcb. Otherwise 2042 * fall back on a software hash -- or the reservation table if we're 2043 * using RSS. 2044 * 2045 * XXXRW: As above, that policy belongs in the pcbgroup code. 2046 */ 2047 if (in_pcbgroup_enabled(pcbinfo) && 2048 !(M_HASHTYPE_TEST(m, M_HASHTYPE_NONE))) { 2049 pcbgroup = in_pcbgroup_byhash(pcbinfo, M_HASHTYPE_GET(m), 2050 m->m_pkthdr.flowid); 2051 if (pcbgroup != NULL) 2052 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, 2053 fport, laddr, lport, lookupflags, ifp)); 2054 #ifndef RSS 2055 pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr, 2056 fport); 2057 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport, 2058 laddr, lport, lookupflags, ifp)); 2059 #endif 2060 } 2061 #endif 2062 return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport, 2063 lookupflags, ifp)); 2064 } 2065 #endif /* INET */ 2066 2067 /* 2068 * Insert PCB onto various hash lists. 2069 */ 2070 static int 2071 in_pcbinshash_internal(struct inpcb *inp, int do_pcbgroup_update) 2072 { 2073 struct inpcbhead *pcbhash; 2074 struct inpcbporthead *pcbporthash; 2075 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2076 struct inpcbport *phd; 2077 u_int32_t hashkey_faddr; 2078 2079 INP_WLOCK_ASSERT(inp); 2080 INP_HASH_WLOCK_ASSERT(pcbinfo); 2081 2082 KASSERT((inp->inp_flags & INP_INHASHLIST) == 0, 2083 ("in_pcbinshash: INP_INHASHLIST")); 2084 2085 #ifdef INET6 2086 if (inp->inp_vflag & INP_IPV6) 2087 hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr); 2088 else 2089 #endif 2090 hashkey_faddr = inp->inp_faddr.s_addr; 2091 2092 pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr, 2093 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 2094 2095 pcbporthash = &pcbinfo->ipi_porthashbase[ 2096 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)]; 2097 2098 /* 2099 * Go through port list and look for a head for this lport. 2100 */ 2101 LIST_FOREACH(phd, pcbporthash, phd_hash) { 2102 if (phd->phd_port == inp->inp_lport) 2103 break; 2104 } 2105 /* 2106 * If none exists, malloc one and tack it on. 2107 */ 2108 if (phd == NULL) { 2109 phd = malloc(sizeof(struct inpcbport), M_PCB, M_NOWAIT); 2110 if (phd == NULL) { 2111 return (ENOBUFS); /* XXX */ 2112 } 2113 phd->phd_port = inp->inp_lport; 2114 LIST_INIT(&phd->phd_pcblist); 2115 LIST_INSERT_HEAD(pcbporthash, phd, phd_hash); 2116 } 2117 inp->inp_phd = phd; 2118 LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist); 2119 LIST_INSERT_HEAD(pcbhash, inp, inp_hash); 2120 inp->inp_flags |= INP_INHASHLIST; 2121 #ifdef PCBGROUP 2122 if (do_pcbgroup_update) 2123 in_pcbgroup_update(inp); 2124 #endif 2125 return (0); 2126 } 2127 2128 /* 2129 * For now, there are two public interfaces to insert an inpcb into the hash 2130 * lists -- one that does update pcbgroups, and one that doesn't. The latter 2131 * is used only in the TCP syncache, where in_pcbinshash is called before the 2132 * full 4-tuple is set for the inpcb, and we don't want to install in the 2133 * pcbgroup until later. 2134 * 2135 * XXXRW: This seems like a misfeature. in_pcbinshash should always update 2136 * connection groups, and partially initialised inpcbs should not be exposed 2137 * to either reservation hash tables or pcbgroups. 2138 */ 2139 int 2140 in_pcbinshash(struct inpcb *inp) 2141 { 2142 2143 return (in_pcbinshash_internal(inp, 1)); 2144 } 2145 2146 int 2147 in_pcbinshash_nopcbgroup(struct inpcb *inp) 2148 { 2149 2150 return (in_pcbinshash_internal(inp, 0)); 2151 } 2152 2153 /* 2154 * Move PCB to the proper hash bucket when { faddr, fport } have been 2155 * changed. NOTE: This does not handle the case of the lport changing (the 2156 * hashed port list would have to be updated as well), so the lport must 2157 * not change after in_pcbinshash() has been called. 2158 */ 2159 void 2160 in_pcbrehash_mbuf(struct inpcb *inp, struct mbuf *m) 2161 { 2162 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2163 struct inpcbhead *head; 2164 u_int32_t hashkey_faddr; 2165 2166 INP_WLOCK_ASSERT(inp); 2167 INP_HASH_WLOCK_ASSERT(pcbinfo); 2168 2169 KASSERT(inp->inp_flags & INP_INHASHLIST, 2170 ("in_pcbrehash: !INP_INHASHLIST")); 2171 2172 #ifdef INET6 2173 if (inp->inp_vflag & INP_IPV6) 2174 hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr); 2175 else 2176 #endif 2177 hashkey_faddr = inp->inp_faddr.s_addr; 2178 2179 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr, 2180 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 2181 2182 LIST_REMOVE(inp, inp_hash); 2183 LIST_INSERT_HEAD(head, inp, inp_hash); 2184 2185 #ifdef PCBGROUP 2186 if (m != NULL) 2187 in_pcbgroup_update_mbuf(inp, m); 2188 else 2189 in_pcbgroup_update(inp); 2190 #endif 2191 } 2192 2193 void 2194 in_pcbrehash(struct inpcb *inp) 2195 { 2196 2197 in_pcbrehash_mbuf(inp, NULL); 2198 } 2199 2200 /* 2201 * Remove PCB from various lists. 2202 */ 2203 static void 2204 in_pcbremlists(struct inpcb *inp) 2205 { 2206 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2207 2208 #ifdef INVARIANTS 2209 if (pcbinfo == &V_tcbinfo) { 2210 INP_INFO_RLOCK_ASSERT(pcbinfo); 2211 } else { 2212 INP_INFO_WLOCK_ASSERT(pcbinfo); 2213 } 2214 #endif 2215 2216 INP_WLOCK_ASSERT(inp); 2217 INP_LIST_WLOCK_ASSERT(pcbinfo); 2218 2219 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 2220 if (inp->inp_flags & INP_INHASHLIST) { 2221 struct inpcbport *phd = inp->inp_phd; 2222 2223 INP_HASH_WLOCK(pcbinfo); 2224 LIST_REMOVE(inp, inp_hash); 2225 LIST_REMOVE(inp, inp_portlist); 2226 if (LIST_FIRST(&phd->phd_pcblist) == NULL) { 2227 LIST_REMOVE(phd, phd_hash); 2228 free(phd, M_PCB); 2229 } 2230 INP_HASH_WUNLOCK(pcbinfo); 2231 inp->inp_flags &= ~INP_INHASHLIST; 2232 } 2233 LIST_REMOVE(inp, inp_list); 2234 pcbinfo->ipi_count--; 2235 #ifdef PCBGROUP 2236 in_pcbgroup_remove(inp); 2237 #endif 2238 } 2239 2240 /* 2241 * Check for alternatives when higher level complains 2242 * about service problems. For now, invalidate cached 2243 * routing information. If the route was created dynamically 2244 * (by a redirect), time to try a default gateway again. 2245 */ 2246 void 2247 in_losing(struct inpcb *inp) 2248 { 2249 2250 RO_RTFREE(&inp->inp_route); 2251 if (inp->inp_route.ro_lle) 2252 LLE_FREE(inp->inp_route.ro_lle); /* zeros ro_lle */ 2253 return; 2254 } 2255 2256 /* 2257 * A set label operation has occurred at the socket layer, propagate the 2258 * label change into the in_pcb for the socket. 2259 */ 2260 void 2261 in_pcbsosetlabel(struct socket *so) 2262 { 2263 #ifdef MAC 2264 struct inpcb *inp; 2265 2266 inp = sotoinpcb(so); 2267 KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL")); 2268 2269 INP_WLOCK(inp); 2270 SOCK_LOCK(so); 2271 mac_inpcb_sosetlabel(so, inp); 2272 SOCK_UNLOCK(so); 2273 INP_WUNLOCK(inp); 2274 #endif 2275 } 2276 2277 /* 2278 * ipport_tick runs once per second, determining if random port allocation 2279 * should be continued. If more than ipport_randomcps ports have been 2280 * allocated in the last second, then we return to sequential port 2281 * allocation. We return to random allocation only once we drop below 2282 * ipport_randomcps for at least ipport_randomtime seconds. 2283 */ 2284 static void 2285 ipport_tick(void *xtp) 2286 { 2287 VNET_ITERATOR_DECL(vnet_iter); 2288 2289 VNET_LIST_RLOCK_NOSLEEP(); 2290 VNET_FOREACH(vnet_iter) { 2291 CURVNET_SET(vnet_iter); /* XXX appease INVARIANTS here */ 2292 if (V_ipport_tcpallocs <= 2293 V_ipport_tcplastcount + V_ipport_randomcps) { 2294 if (V_ipport_stoprandom > 0) 2295 V_ipport_stoprandom--; 2296 } else 2297 V_ipport_stoprandom = V_ipport_randomtime; 2298 V_ipport_tcplastcount = V_ipport_tcpallocs; 2299 CURVNET_RESTORE(); 2300 } 2301 VNET_LIST_RUNLOCK_NOSLEEP(); 2302 callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL); 2303 } 2304 2305 static void 2306 ip_fini(void *xtp) 2307 { 2308 2309 callout_stop(&ipport_tick_callout); 2310 } 2311 2312 /* 2313 * The ipport_callout should start running at about the time we attach the 2314 * inet or inet6 domains. 2315 */ 2316 static void 2317 ipport_tick_init(const void *unused __unused) 2318 { 2319 2320 /* Start ipport_tick. */ 2321 callout_init(&ipport_tick_callout, 1); 2322 callout_reset(&ipport_tick_callout, 1, ipport_tick, NULL); 2323 EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL, 2324 SHUTDOWN_PRI_DEFAULT); 2325 } 2326 SYSINIT(ipport_tick_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_MIDDLE, 2327 ipport_tick_init, NULL); 2328 2329 void 2330 inp_wlock(struct inpcb *inp) 2331 { 2332 2333 INP_WLOCK(inp); 2334 } 2335 2336 void 2337 inp_wunlock(struct inpcb *inp) 2338 { 2339 2340 INP_WUNLOCK(inp); 2341 } 2342 2343 void 2344 inp_rlock(struct inpcb *inp) 2345 { 2346 2347 INP_RLOCK(inp); 2348 } 2349 2350 void 2351 inp_runlock(struct inpcb *inp) 2352 { 2353 2354 INP_RUNLOCK(inp); 2355 } 2356 2357 #ifdef INVARIANT_SUPPORT 2358 void 2359 inp_lock_assert(struct inpcb *inp) 2360 { 2361 2362 INP_WLOCK_ASSERT(inp); 2363 } 2364 2365 void 2366 inp_unlock_assert(struct inpcb *inp) 2367 { 2368 2369 INP_UNLOCK_ASSERT(inp); 2370 } 2371 #endif 2372 2373 void 2374 inp_apply_all(void (*func)(struct inpcb *, void *), void *arg) 2375 { 2376 struct inpcb *inp; 2377 2378 INP_INFO_WLOCK(&V_tcbinfo); 2379 LIST_FOREACH(inp, V_tcbinfo.ipi_listhead, inp_list) { 2380 INP_WLOCK(inp); 2381 func(inp, arg); 2382 INP_WUNLOCK(inp); 2383 } 2384 INP_INFO_WUNLOCK(&V_tcbinfo); 2385 } 2386 2387 struct socket * 2388 inp_inpcbtosocket(struct inpcb *inp) 2389 { 2390 2391 INP_WLOCK_ASSERT(inp); 2392 return (inp->inp_socket); 2393 } 2394 2395 struct tcpcb * 2396 inp_inpcbtotcpcb(struct inpcb *inp) 2397 { 2398 2399 INP_WLOCK_ASSERT(inp); 2400 return ((struct tcpcb *)inp->inp_ppcb); 2401 } 2402 2403 int 2404 inp_ip_tos_get(const struct inpcb *inp) 2405 { 2406 2407 return (inp->inp_ip_tos); 2408 } 2409 2410 void 2411 inp_ip_tos_set(struct inpcb *inp, int val) 2412 { 2413 2414 inp->inp_ip_tos = val; 2415 } 2416 2417 void 2418 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp, 2419 uint32_t *faddr, uint16_t *fp) 2420 { 2421 2422 INP_LOCK_ASSERT(inp); 2423 *laddr = inp->inp_laddr.s_addr; 2424 *faddr = inp->inp_faddr.s_addr; 2425 *lp = inp->inp_lport; 2426 *fp = inp->inp_fport; 2427 } 2428 2429 struct inpcb * 2430 so_sotoinpcb(struct socket *so) 2431 { 2432 2433 return (sotoinpcb(so)); 2434 } 2435 2436 struct tcpcb * 2437 so_sototcpcb(struct socket *so) 2438 { 2439 2440 return (sototcpcb(so)); 2441 } 2442 2443 /* 2444 * Create an external-format (``xinpcb'') structure using the information in 2445 * the kernel-format in_pcb structure pointed to by inp. This is done to 2446 * reduce the spew of irrelevant information over this interface, to isolate 2447 * user code from changes in the kernel structure, and potentially to provide 2448 * information-hiding if we decide that some of this information should be 2449 * hidden from users. 2450 */ 2451 void 2452 in_pcbtoxinpcb(const struct inpcb *inp, struct xinpcb *xi) 2453 { 2454 2455 xi->xi_len = sizeof(struct xinpcb); 2456 if (inp->inp_socket) 2457 sotoxsocket(inp->inp_socket, &xi->xi_socket); 2458 else 2459 bzero(&xi->xi_socket, sizeof(struct xsocket)); 2460 bcopy(&inp->inp_inc, &xi->inp_inc, sizeof(struct in_conninfo)); 2461 xi->inp_gencnt = inp->inp_gencnt; 2462 xi->inp_ppcb = inp->inp_ppcb; 2463 xi->inp_flow = inp->inp_flow; 2464 xi->inp_flowid = inp->inp_flowid; 2465 xi->inp_flowtype = inp->inp_flowtype; 2466 xi->inp_flags = inp->inp_flags; 2467 xi->inp_flags2 = inp->inp_flags2; 2468 xi->inp_rss_listen_bucket = inp->inp_rss_listen_bucket; 2469 xi->in6p_cksum = inp->in6p_cksum; 2470 xi->in6p_hops = inp->in6p_hops; 2471 xi->inp_ip_tos = inp->inp_ip_tos; 2472 xi->inp_vflag = inp->inp_vflag; 2473 xi->inp_ip_ttl = inp->inp_ip_ttl; 2474 xi->inp_ip_p = inp->inp_ip_p; 2475 xi->inp_ip_minttl = inp->inp_ip_minttl; 2476 } 2477 2478 #ifdef DDB 2479 static void 2480 db_print_indent(int indent) 2481 { 2482 int i; 2483 2484 for (i = 0; i < indent; i++) 2485 db_printf(" "); 2486 } 2487 2488 static void 2489 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent) 2490 { 2491 char faddr_str[48], laddr_str[48]; 2492 2493 db_print_indent(indent); 2494 db_printf("%s at %p\n", name, inc); 2495 2496 indent += 2; 2497 2498 #ifdef INET6 2499 if (inc->inc_flags & INC_ISIPV6) { 2500 /* IPv6. */ 2501 ip6_sprintf(laddr_str, &inc->inc6_laddr); 2502 ip6_sprintf(faddr_str, &inc->inc6_faddr); 2503 } else 2504 #endif 2505 { 2506 /* IPv4. */ 2507 inet_ntoa_r(inc->inc_laddr, laddr_str); 2508 inet_ntoa_r(inc->inc_faddr, faddr_str); 2509 } 2510 db_print_indent(indent); 2511 db_printf("inc_laddr %s inc_lport %u\n", laddr_str, 2512 ntohs(inc->inc_lport)); 2513 db_print_indent(indent); 2514 db_printf("inc_faddr %s inc_fport %u\n", faddr_str, 2515 ntohs(inc->inc_fport)); 2516 } 2517 2518 static void 2519 db_print_inpflags(int inp_flags) 2520 { 2521 int comma; 2522 2523 comma = 0; 2524 if (inp_flags & INP_RECVOPTS) { 2525 db_printf("%sINP_RECVOPTS", comma ? ", " : ""); 2526 comma = 1; 2527 } 2528 if (inp_flags & INP_RECVRETOPTS) { 2529 db_printf("%sINP_RECVRETOPTS", comma ? ", " : ""); 2530 comma = 1; 2531 } 2532 if (inp_flags & INP_RECVDSTADDR) { 2533 db_printf("%sINP_RECVDSTADDR", comma ? ", " : ""); 2534 comma = 1; 2535 } 2536 if (inp_flags & INP_ORIGDSTADDR) { 2537 db_printf("%sINP_ORIGDSTADDR", comma ? ", " : ""); 2538 comma = 1; 2539 } 2540 if (inp_flags & INP_HDRINCL) { 2541 db_printf("%sINP_HDRINCL", comma ? ", " : ""); 2542 comma = 1; 2543 } 2544 if (inp_flags & INP_HIGHPORT) { 2545 db_printf("%sINP_HIGHPORT", comma ? ", " : ""); 2546 comma = 1; 2547 } 2548 if (inp_flags & INP_LOWPORT) { 2549 db_printf("%sINP_LOWPORT", comma ? ", " : ""); 2550 comma = 1; 2551 } 2552 if (inp_flags & INP_ANONPORT) { 2553 db_printf("%sINP_ANONPORT", comma ? ", " : ""); 2554 comma = 1; 2555 } 2556 if (inp_flags & INP_RECVIF) { 2557 db_printf("%sINP_RECVIF", comma ? ", " : ""); 2558 comma = 1; 2559 } 2560 if (inp_flags & INP_MTUDISC) { 2561 db_printf("%sINP_MTUDISC", comma ? ", " : ""); 2562 comma = 1; 2563 } 2564 if (inp_flags & INP_RECVTTL) { 2565 db_printf("%sINP_RECVTTL", comma ? ", " : ""); 2566 comma = 1; 2567 } 2568 if (inp_flags & INP_DONTFRAG) { 2569 db_printf("%sINP_DONTFRAG", comma ? ", " : ""); 2570 comma = 1; 2571 } 2572 if (inp_flags & INP_RECVTOS) { 2573 db_printf("%sINP_RECVTOS", comma ? ", " : ""); 2574 comma = 1; 2575 } 2576 if (inp_flags & IN6P_IPV6_V6ONLY) { 2577 db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : ""); 2578 comma = 1; 2579 } 2580 if (inp_flags & IN6P_PKTINFO) { 2581 db_printf("%sIN6P_PKTINFO", comma ? ", " : ""); 2582 comma = 1; 2583 } 2584 if (inp_flags & IN6P_HOPLIMIT) { 2585 db_printf("%sIN6P_HOPLIMIT", comma ? ", " : ""); 2586 comma = 1; 2587 } 2588 if (inp_flags & IN6P_HOPOPTS) { 2589 db_printf("%sIN6P_HOPOPTS", comma ? ", " : ""); 2590 comma = 1; 2591 } 2592 if (inp_flags & IN6P_DSTOPTS) { 2593 db_printf("%sIN6P_DSTOPTS", comma ? ", " : ""); 2594 comma = 1; 2595 } 2596 if (inp_flags & IN6P_RTHDR) { 2597 db_printf("%sIN6P_RTHDR", comma ? ", " : ""); 2598 comma = 1; 2599 } 2600 if (inp_flags & IN6P_RTHDRDSTOPTS) { 2601 db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : ""); 2602 comma = 1; 2603 } 2604 if (inp_flags & IN6P_TCLASS) { 2605 db_printf("%sIN6P_TCLASS", comma ? ", " : ""); 2606 comma = 1; 2607 } 2608 if (inp_flags & IN6P_AUTOFLOWLABEL) { 2609 db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : ""); 2610 comma = 1; 2611 } 2612 if (inp_flags & INP_TIMEWAIT) { 2613 db_printf("%sINP_TIMEWAIT", comma ? ", " : ""); 2614 comma = 1; 2615 } 2616 if (inp_flags & INP_ONESBCAST) { 2617 db_printf("%sINP_ONESBCAST", comma ? ", " : ""); 2618 comma = 1; 2619 } 2620 if (inp_flags & INP_DROPPED) { 2621 db_printf("%sINP_DROPPED", comma ? ", " : ""); 2622 comma = 1; 2623 } 2624 if (inp_flags & INP_SOCKREF) { 2625 db_printf("%sINP_SOCKREF", comma ? ", " : ""); 2626 comma = 1; 2627 } 2628 if (inp_flags & IN6P_RFC2292) { 2629 db_printf("%sIN6P_RFC2292", comma ? ", " : ""); 2630 comma = 1; 2631 } 2632 if (inp_flags & IN6P_MTU) { 2633 db_printf("IN6P_MTU%s", comma ? ", " : ""); 2634 comma = 1; 2635 } 2636 } 2637 2638 static void 2639 db_print_inpvflag(u_char inp_vflag) 2640 { 2641 int comma; 2642 2643 comma = 0; 2644 if (inp_vflag & INP_IPV4) { 2645 db_printf("%sINP_IPV4", comma ? ", " : ""); 2646 comma = 1; 2647 } 2648 if (inp_vflag & INP_IPV6) { 2649 db_printf("%sINP_IPV6", comma ? ", " : ""); 2650 comma = 1; 2651 } 2652 if (inp_vflag & INP_IPV6PROTO) { 2653 db_printf("%sINP_IPV6PROTO", comma ? ", " : ""); 2654 comma = 1; 2655 } 2656 } 2657 2658 static void 2659 db_print_inpcb(struct inpcb *inp, const char *name, int indent) 2660 { 2661 2662 db_print_indent(indent); 2663 db_printf("%s at %p\n", name, inp); 2664 2665 indent += 2; 2666 2667 db_print_indent(indent); 2668 db_printf("inp_flow: 0x%x\n", inp->inp_flow); 2669 2670 db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent); 2671 2672 db_print_indent(indent); 2673 db_printf("inp_ppcb: %p inp_pcbinfo: %p inp_socket: %p\n", 2674 inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket); 2675 2676 db_print_indent(indent); 2677 db_printf("inp_label: %p inp_flags: 0x%x (", 2678 inp->inp_label, inp->inp_flags); 2679 db_print_inpflags(inp->inp_flags); 2680 db_printf(")\n"); 2681 2682 db_print_indent(indent); 2683 db_printf("inp_sp: %p inp_vflag: 0x%x (", inp->inp_sp, 2684 inp->inp_vflag); 2685 db_print_inpvflag(inp->inp_vflag); 2686 db_printf(")\n"); 2687 2688 db_print_indent(indent); 2689 db_printf("inp_ip_ttl: %d inp_ip_p: %d inp_ip_minttl: %d\n", 2690 inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl); 2691 2692 db_print_indent(indent); 2693 #ifdef INET6 2694 if (inp->inp_vflag & INP_IPV6) { 2695 db_printf("in6p_options: %p in6p_outputopts: %p " 2696 "in6p_moptions: %p\n", inp->in6p_options, 2697 inp->in6p_outputopts, inp->in6p_moptions); 2698 db_printf("in6p_icmp6filt: %p in6p_cksum %d " 2699 "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum, 2700 inp->in6p_hops); 2701 } else 2702 #endif 2703 { 2704 db_printf("inp_ip_tos: %d inp_ip_options: %p " 2705 "inp_ip_moptions: %p\n", inp->inp_ip_tos, 2706 inp->inp_options, inp->inp_moptions); 2707 } 2708 2709 db_print_indent(indent); 2710 db_printf("inp_phd: %p inp_gencnt: %ju\n", inp->inp_phd, 2711 (uintmax_t)inp->inp_gencnt); 2712 } 2713 2714 DB_SHOW_COMMAND(inpcb, db_show_inpcb) 2715 { 2716 struct inpcb *inp; 2717 2718 if (!have_addr) { 2719 db_printf("usage: show inpcb <addr>\n"); 2720 return; 2721 } 2722 inp = (struct inpcb *)addr; 2723 2724 db_print_inpcb(inp, "inpcb", 0); 2725 } 2726 #endif /* DDB */ 2727 2728 #ifdef RATELIMIT 2729 /* 2730 * Modify TX rate limit based on the existing "inp->inp_snd_tag", 2731 * if any. 2732 */ 2733 int 2734 in_pcbmodify_txrtlmt(struct inpcb *inp, uint32_t max_pacing_rate) 2735 { 2736 union if_snd_tag_modify_params params = { 2737 .rate_limit.max_rate = max_pacing_rate, 2738 }; 2739 struct m_snd_tag *mst; 2740 struct ifnet *ifp; 2741 int error; 2742 2743 mst = inp->inp_snd_tag; 2744 if (mst == NULL) 2745 return (EINVAL); 2746 2747 ifp = mst->ifp; 2748 if (ifp == NULL) 2749 return (EINVAL); 2750 2751 if (ifp->if_snd_tag_modify == NULL) { 2752 error = EOPNOTSUPP; 2753 } else { 2754 error = ifp->if_snd_tag_modify(mst, ¶ms); 2755 } 2756 return (error); 2757 } 2758 2759 /* 2760 * Query existing TX rate limit based on the existing 2761 * "inp->inp_snd_tag", if any. 2762 */ 2763 int 2764 in_pcbquery_txrtlmt(struct inpcb *inp, uint32_t *p_max_pacing_rate) 2765 { 2766 union if_snd_tag_query_params params = { }; 2767 struct m_snd_tag *mst; 2768 struct ifnet *ifp; 2769 int error; 2770 2771 mst = inp->inp_snd_tag; 2772 if (mst == NULL) 2773 return (EINVAL); 2774 2775 ifp = mst->ifp; 2776 if (ifp == NULL) 2777 return (EINVAL); 2778 2779 if (ifp->if_snd_tag_query == NULL) { 2780 error = EOPNOTSUPP; 2781 } else { 2782 error = ifp->if_snd_tag_query(mst, ¶ms); 2783 if (error == 0 && p_max_pacing_rate != NULL) 2784 *p_max_pacing_rate = params.rate_limit.max_rate; 2785 } 2786 return (error); 2787 } 2788 2789 /* 2790 * Allocate a new TX rate limit send tag from the network interface 2791 * given by the "ifp" argument and save it in "inp->inp_snd_tag": 2792 */ 2793 int 2794 in_pcbattach_txrtlmt(struct inpcb *inp, struct ifnet *ifp, 2795 uint32_t flowtype, uint32_t flowid, uint32_t max_pacing_rate) 2796 { 2797 union if_snd_tag_alloc_params params = { 2798 .rate_limit.hdr.type = IF_SND_TAG_TYPE_RATE_LIMIT, 2799 .rate_limit.hdr.flowid = flowid, 2800 .rate_limit.hdr.flowtype = flowtype, 2801 .rate_limit.max_rate = max_pacing_rate, 2802 }; 2803 int error; 2804 2805 INP_WLOCK_ASSERT(inp); 2806 2807 if (inp->inp_snd_tag != NULL) 2808 return (EINVAL); 2809 2810 if (ifp->if_snd_tag_alloc == NULL) { 2811 error = EOPNOTSUPP; 2812 } else { 2813 error = ifp->if_snd_tag_alloc(ifp, ¶ms, &inp->inp_snd_tag); 2814 2815 /* 2816 * At success increment the refcount on 2817 * the send tag's network interface: 2818 */ 2819 if (error == 0) 2820 if_ref(inp->inp_snd_tag->ifp); 2821 } 2822 return (error); 2823 } 2824 2825 /* 2826 * Free an existing TX rate limit tag based on the "inp->inp_snd_tag", 2827 * if any: 2828 */ 2829 void 2830 in_pcbdetach_txrtlmt(struct inpcb *inp) 2831 { 2832 struct m_snd_tag *mst; 2833 struct ifnet *ifp; 2834 2835 INP_WLOCK_ASSERT(inp); 2836 2837 mst = inp->inp_snd_tag; 2838 inp->inp_snd_tag = NULL; 2839 2840 if (mst == NULL) 2841 return; 2842 2843 ifp = mst->ifp; 2844 if (ifp == NULL) 2845 return; 2846 2847 /* 2848 * If the device was detached while we still had reference(s) 2849 * on the ifp, we assume if_snd_tag_free() was replaced with 2850 * stubs. 2851 */ 2852 ifp->if_snd_tag_free(mst); 2853 2854 /* release reference count on network interface */ 2855 if_rele(ifp); 2856 } 2857 2858 /* 2859 * This function should be called when the INP_RATE_LIMIT_CHANGED flag 2860 * is set in the fast path and will attach/detach/modify the TX rate 2861 * limit send tag based on the socket's so_max_pacing_rate value. 2862 */ 2863 void 2864 in_pcboutput_txrtlmt(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb) 2865 { 2866 struct socket *socket; 2867 uint32_t max_pacing_rate; 2868 bool did_upgrade; 2869 int error; 2870 2871 if (inp == NULL) 2872 return; 2873 2874 socket = inp->inp_socket; 2875 if (socket == NULL) 2876 return; 2877 2878 if (!INP_WLOCKED(inp)) { 2879 /* 2880 * NOTE: If the write locking fails, we need to bail 2881 * out and use the non-ratelimited ring for the 2882 * transmit until there is a new chance to get the 2883 * write lock. 2884 */ 2885 if (!INP_TRY_UPGRADE(inp)) 2886 return; 2887 did_upgrade = 1; 2888 } else { 2889 did_upgrade = 0; 2890 } 2891 2892 /* 2893 * NOTE: The so_max_pacing_rate value is read unlocked, 2894 * because atomic updates are not required since the variable 2895 * is checked at every mbuf we send. It is assumed that the 2896 * variable read itself will be atomic. 2897 */ 2898 max_pacing_rate = socket->so_max_pacing_rate; 2899 2900 /* 2901 * NOTE: When attaching to a network interface a reference is 2902 * made to ensure the network interface doesn't go away until 2903 * all ratelimit connections are gone. The network interface 2904 * pointers compared below represent valid network interfaces, 2905 * except when comparing towards NULL. 2906 */ 2907 if (max_pacing_rate == 0 && inp->inp_snd_tag == NULL) { 2908 error = 0; 2909 } else if (!(ifp->if_capenable & IFCAP_TXRTLMT)) { 2910 if (inp->inp_snd_tag != NULL) 2911 in_pcbdetach_txrtlmt(inp); 2912 error = 0; 2913 } else if (inp->inp_snd_tag == NULL) { 2914 /* 2915 * In order to utilize packet pacing with RSS, we need 2916 * to wait until there is a valid RSS hash before we 2917 * can proceed: 2918 */ 2919 if (M_HASHTYPE_GET(mb) == M_HASHTYPE_NONE) { 2920 error = EAGAIN; 2921 } else { 2922 error = in_pcbattach_txrtlmt(inp, ifp, M_HASHTYPE_GET(mb), 2923 mb->m_pkthdr.flowid, max_pacing_rate); 2924 } 2925 } else { 2926 error = in_pcbmodify_txrtlmt(inp, max_pacing_rate); 2927 } 2928 if (error == 0 || error == EOPNOTSUPP) 2929 inp->inp_flags2 &= ~INP_RATE_LIMIT_CHANGED; 2930 if (did_upgrade) 2931 INP_DOWNGRADE(inp); 2932 } 2933 2934 /* 2935 * Track route changes for TX rate limiting. 2936 */ 2937 void 2938 in_pcboutput_eagain(struct inpcb *inp) 2939 { 2940 struct socket *socket; 2941 bool did_upgrade; 2942 2943 if (inp == NULL) 2944 return; 2945 2946 socket = inp->inp_socket; 2947 if (socket == NULL) 2948 return; 2949 2950 if (inp->inp_snd_tag == NULL) 2951 return; 2952 2953 if (!INP_WLOCKED(inp)) { 2954 /* 2955 * NOTE: If the write locking fails, we need to bail 2956 * out and use the non-ratelimited ring for the 2957 * transmit until there is a new chance to get the 2958 * write lock. 2959 */ 2960 if (!INP_TRY_UPGRADE(inp)) 2961 return; 2962 did_upgrade = 1; 2963 } else { 2964 did_upgrade = 0; 2965 } 2966 2967 /* detach rate limiting */ 2968 in_pcbdetach_txrtlmt(inp); 2969 2970 /* make sure new mbuf send tag allocation is made */ 2971 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 2972 2973 if (did_upgrade) 2974 INP_DOWNGRADE(inp); 2975 } 2976 #endif /* RATELIMIT */ 2977