xref: /freebsd/sys/netinet/in_pcb.c (revision e08e9e999091f86081377b7cedc3fd2fe2ab70fc)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1991, 1993, 1995
5  *	The Regents of the University of California.
6  * Copyright (c) 2007-2009 Robert N. M. Watson
7  * Copyright (c) 2010-2011 Juniper Networks, Inc.
8  * All rights reserved.
9  *
10  * Portions of this software were developed by Robert N. M. Watson under
11  * contract to Juniper Networks, Inc.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  *	@(#)in_pcb.c	8.4 (Berkeley) 5/24/95
38  */
39 
40 #include <sys/cdefs.h>
41 __FBSDID("$FreeBSD$");
42 
43 #include "opt_ddb.h"
44 #include "opt_ipsec.h"
45 #include "opt_inet.h"
46 #include "opt_inet6.h"
47 #include "opt_ratelimit.h"
48 #include "opt_pcbgroup.h"
49 #include "opt_rss.h"
50 
51 #include <sys/param.h>
52 #include <sys/systm.h>
53 #include <sys/lock.h>
54 #include <sys/malloc.h>
55 #include <sys/mbuf.h>
56 #include <sys/callout.h>
57 #include <sys/eventhandler.h>
58 #include <sys/domain.h>
59 #include <sys/protosw.h>
60 #include <sys/rmlock.h>
61 #include <sys/smp.h>
62 #include <sys/socket.h>
63 #include <sys/socketvar.h>
64 #include <sys/sockio.h>
65 #include <sys/priv.h>
66 #include <sys/proc.h>
67 #include <sys/refcount.h>
68 #include <sys/jail.h>
69 #include <sys/kernel.h>
70 #include <sys/sysctl.h>
71 
72 #ifdef DDB
73 #include <ddb/ddb.h>
74 #endif
75 
76 #include <vm/uma.h>
77 
78 #include <net/if.h>
79 #include <net/if_var.h>
80 #include <net/if_types.h>
81 #include <net/if_llatbl.h>
82 #include <net/route.h>
83 #include <net/rss_config.h>
84 #include <net/vnet.h>
85 
86 #if defined(INET) || defined(INET6)
87 #include <netinet/in.h>
88 #include <netinet/in_pcb.h>
89 #include <netinet/ip_var.h>
90 #include <netinet/tcp_var.h>
91 #ifdef TCPHPTS
92 #include <netinet/tcp_hpts.h>
93 #endif
94 #include <netinet/udp.h>
95 #include <netinet/udp_var.h>
96 #endif
97 #ifdef INET
98 #include <netinet/in_var.h>
99 #endif
100 #ifdef INET6
101 #include <netinet/ip6.h>
102 #include <netinet6/in6_pcb.h>
103 #include <netinet6/in6_var.h>
104 #include <netinet6/ip6_var.h>
105 #endif /* INET6 */
106 
107 #include <netipsec/ipsec_support.h>
108 
109 #include <security/mac/mac_framework.h>
110 
111 static struct callout	ipport_tick_callout;
112 
113 /*
114  * These configure the range of local port addresses assigned to
115  * "unspecified" outgoing connections/packets/whatever.
116  */
117 VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1;	/* 1023 */
118 VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART;	/* 600 */
119 VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST;	/* 10000 */
120 VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST;	/* 65535 */
121 VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO;	/* 49152 */
122 VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO;	/* 65535 */
123 
124 /*
125  * Reserved ports accessible only to root. There are significant
126  * security considerations that must be accounted for when changing these,
127  * but the security benefits can be great. Please be careful.
128  */
129 VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1;	/* 1023 */
130 VNET_DEFINE(int, ipport_reservedlow);
131 
132 /* Variables dealing with random ephemeral port allocation. */
133 VNET_DEFINE(int, ipport_randomized) = 1;	/* user controlled via sysctl */
134 VNET_DEFINE(int, ipport_randomcps) = 10;	/* user controlled via sysctl */
135 VNET_DEFINE(int, ipport_randomtime) = 45;	/* user controlled via sysctl */
136 VNET_DEFINE(int, ipport_stoprandom);		/* toggled by ipport_tick */
137 VNET_DEFINE(int, ipport_tcpallocs);
138 static VNET_DEFINE(int, ipport_tcplastcount);
139 
140 #define	V_ipport_tcplastcount		VNET(ipport_tcplastcount)
141 
142 static void	in_pcbremlists(struct inpcb *inp);
143 #ifdef INET
144 static struct inpcb	*in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo,
145 			    struct in_addr faddr, u_int fport_arg,
146 			    struct in_addr laddr, u_int lport_arg,
147 			    int lookupflags, struct ifnet *ifp);
148 
149 #define RANGECHK(var, min, max) \
150 	if ((var) < (min)) { (var) = (min); } \
151 	else if ((var) > (max)) { (var) = (max); }
152 
153 static int
154 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS)
155 {
156 	int error;
157 
158 	error = sysctl_handle_int(oidp, arg1, arg2, req);
159 	if (error == 0) {
160 		RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1);
161 		RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1);
162 		RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX);
163 		RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX);
164 		RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX);
165 		RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX);
166 	}
167 	return (error);
168 }
169 
170 #undef RANGECHK
171 
172 static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, CTLFLAG_RW, 0,
173     "IP Ports");
174 
175 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst,
176 	CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
177 	&VNET_NAME(ipport_lowfirstauto), 0, &sysctl_net_ipport_check, "I", "");
178 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast,
179 	CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
180 	&VNET_NAME(ipport_lowlastauto), 0, &sysctl_net_ipport_check, "I", "");
181 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first,
182 	CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
183 	&VNET_NAME(ipport_firstauto), 0, &sysctl_net_ipport_check, "I", "");
184 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last,
185 	CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
186 	&VNET_NAME(ipport_lastauto), 0, &sysctl_net_ipport_check, "I", "");
187 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst,
188 	CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
189 	&VNET_NAME(ipport_hifirstauto), 0, &sysctl_net_ipport_check, "I", "");
190 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast,
191 	CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
192 	&VNET_NAME(ipport_hilastauto), 0, &sysctl_net_ipport_check, "I", "");
193 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh,
194 	CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE,
195 	&VNET_NAME(ipport_reservedhigh), 0, "");
196 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow,
197 	CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, "");
198 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized,
199 	CTLFLAG_VNET | CTLFLAG_RW,
200 	&VNET_NAME(ipport_randomized), 0, "Enable random port allocation");
201 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomcps,
202 	CTLFLAG_VNET | CTLFLAG_RW,
203 	&VNET_NAME(ipport_randomcps), 0, "Maximum number of random port "
204 	"allocations before switching to a sequental one");
205 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomtime,
206 	CTLFLAG_VNET | CTLFLAG_RW,
207 	&VNET_NAME(ipport_randomtime), 0,
208 	"Minimum time to keep sequental port "
209 	"allocation before switching to a random one");
210 #endif /* INET */
211 
212 /*
213  * in_pcb.c: manage the Protocol Control Blocks.
214  *
215  * NOTE: It is assumed that most of these functions will be called with
216  * the pcbinfo lock held, and often, the inpcb lock held, as these utility
217  * functions often modify hash chains or addresses in pcbs.
218  */
219 
220 /*
221  * Different protocols initialize their inpcbs differently - giving
222  * different name to the lock.  But they all are disposed the same.
223  */
224 static void
225 inpcb_fini(void *mem, int size)
226 {
227 	struct inpcb *inp = mem;
228 
229 	INP_LOCK_DESTROY(inp);
230 }
231 
232 /*
233  * Initialize an inpcbinfo -- we should be able to reduce the number of
234  * arguments in time.
235  */
236 void
237 in_pcbinfo_init(struct inpcbinfo *pcbinfo, const char *name,
238     struct inpcbhead *listhead, int hash_nelements, int porthash_nelements,
239     char *inpcbzone_name, uma_init inpcbzone_init, u_int hashfields)
240 {
241 
242 	INP_INFO_LOCK_INIT(pcbinfo, name);
243 	INP_HASH_LOCK_INIT(pcbinfo, "pcbinfohash");	/* XXXRW: argument? */
244 	INP_LIST_LOCK_INIT(pcbinfo, "pcbinfolist");
245 #ifdef VIMAGE
246 	pcbinfo->ipi_vnet = curvnet;
247 #endif
248 	pcbinfo->ipi_listhead = listhead;
249 	LIST_INIT(pcbinfo->ipi_listhead);
250 	pcbinfo->ipi_count = 0;
251 	pcbinfo->ipi_hashbase = hashinit(hash_nelements, M_PCB,
252 	    &pcbinfo->ipi_hashmask);
253 	pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB,
254 	    &pcbinfo->ipi_porthashmask);
255 #ifdef PCBGROUP
256 	in_pcbgroup_init(pcbinfo, hashfields, hash_nelements);
257 #endif
258 	pcbinfo->ipi_zone = uma_zcreate(inpcbzone_name, sizeof(struct inpcb),
259 	    NULL, NULL, inpcbzone_init, inpcb_fini, UMA_ALIGN_PTR, 0);
260 	uma_zone_set_max(pcbinfo->ipi_zone, maxsockets);
261 	uma_zone_set_warning(pcbinfo->ipi_zone,
262 	    "kern.ipc.maxsockets limit reached");
263 }
264 
265 /*
266  * Destroy an inpcbinfo.
267  */
268 void
269 in_pcbinfo_destroy(struct inpcbinfo *pcbinfo)
270 {
271 
272 	KASSERT(pcbinfo->ipi_count == 0,
273 	    ("%s: ipi_count = %u", __func__, pcbinfo->ipi_count));
274 
275 	hashdestroy(pcbinfo->ipi_hashbase, M_PCB, pcbinfo->ipi_hashmask);
276 	hashdestroy(pcbinfo->ipi_porthashbase, M_PCB,
277 	    pcbinfo->ipi_porthashmask);
278 #ifdef PCBGROUP
279 	in_pcbgroup_destroy(pcbinfo);
280 #endif
281 	uma_zdestroy(pcbinfo->ipi_zone);
282 	INP_LIST_LOCK_DESTROY(pcbinfo);
283 	INP_HASH_LOCK_DESTROY(pcbinfo);
284 	INP_INFO_LOCK_DESTROY(pcbinfo);
285 }
286 
287 /*
288  * Allocate a PCB and associate it with the socket.
289  * On success return with the PCB locked.
290  */
291 int
292 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo)
293 {
294 	struct inpcb *inp;
295 	int error;
296 
297 #ifdef INVARIANTS
298 	if (pcbinfo == &V_tcbinfo) {
299 		INP_INFO_RLOCK_ASSERT(pcbinfo);
300 	} else {
301 		INP_INFO_WLOCK_ASSERT(pcbinfo);
302 	}
303 #endif
304 
305 	error = 0;
306 	inp = uma_zalloc(pcbinfo->ipi_zone, M_NOWAIT);
307 	if (inp == NULL)
308 		return (ENOBUFS);
309 	bzero(&inp->inp_start_zero, inp_zero_size);
310 	inp->inp_pcbinfo = pcbinfo;
311 	inp->inp_socket = so;
312 	inp->inp_cred = crhold(so->so_cred);
313 	inp->inp_inc.inc_fibnum = so->so_fibnum;
314 #ifdef MAC
315 	error = mac_inpcb_init(inp, M_NOWAIT);
316 	if (error != 0)
317 		goto out;
318 	mac_inpcb_create(so, inp);
319 #endif
320 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
321 	error = ipsec_init_pcbpolicy(inp);
322 	if (error != 0) {
323 #ifdef MAC
324 		mac_inpcb_destroy(inp);
325 #endif
326 		goto out;
327 	}
328 #endif /*IPSEC*/
329 #ifdef INET6
330 	if (INP_SOCKAF(so) == AF_INET6) {
331 		inp->inp_vflag |= INP_IPV6PROTO;
332 		if (V_ip6_v6only)
333 			inp->inp_flags |= IN6P_IPV6_V6ONLY;
334 	}
335 #endif
336 	INP_WLOCK(inp);
337 	INP_LIST_WLOCK(pcbinfo);
338 	LIST_INSERT_HEAD(pcbinfo->ipi_listhead, inp, inp_list);
339 	pcbinfo->ipi_count++;
340 	so->so_pcb = (caddr_t)inp;
341 #ifdef INET6
342 	if (V_ip6_auto_flowlabel)
343 		inp->inp_flags |= IN6P_AUTOFLOWLABEL;
344 #endif
345 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
346 	refcount_init(&inp->inp_refcount, 1);	/* Reference from inpcbinfo */
347 
348 	/*
349 	 * Routes in inpcb's can cache L2 as well; they are guaranteed
350 	 * to be cleaned up.
351 	 */
352 	inp->inp_route.ro_flags = RT_LLE_CACHE;
353 	INP_LIST_WUNLOCK(pcbinfo);
354 #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC)
355 out:
356 	if (error != 0) {
357 		crfree(inp->inp_cred);
358 		uma_zfree(pcbinfo->ipi_zone, inp);
359 	}
360 #endif
361 	return (error);
362 }
363 
364 #ifdef INET
365 int
366 in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
367 {
368 	int anonport, error;
369 
370 	INP_WLOCK_ASSERT(inp);
371 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
372 
373 	if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY)
374 		return (EINVAL);
375 	anonport = nam == NULL || ((struct sockaddr_in *)nam)->sin_port == 0;
376 	error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr,
377 	    &inp->inp_lport, cred);
378 	if (error)
379 		return (error);
380 	if (in_pcbinshash(inp) != 0) {
381 		inp->inp_laddr.s_addr = INADDR_ANY;
382 		inp->inp_lport = 0;
383 		return (EAGAIN);
384 	}
385 	if (anonport)
386 		inp->inp_flags |= INP_ANONPORT;
387 	return (0);
388 }
389 #endif
390 
391 /*
392  * Select a local port (number) to use.
393  */
394 #if defined(INET) || defined(INET6)
395 int
396 in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp,
397     struct ucred *cred, int lookupflags)
398 {
399 	struct inpcbinfo *pcbinfo;
400 	struct inpcb *tmpinp;
401 	unsigned short *lastport;
402 	int count, dorandom, error;
403 	u_short aux, first, last, lport;
404 #ifdef INET
405 	struct in_addr laddr;
406 #endif
407 
408 	pcbinfo = inp->inp_pcbinfo;
409 
410 	/*
411 	 * Because no actual state changes occur here, a global write lock on
412 	 * the pcbinfo isn't required.
413 	 */
414 	INP_LOCK_ASSERT(inp);
415 	INP_HASH_LOCK_ASSERT(pcbinfo);
416 
417 	if (inp->inp_flags & INP_HIGHPORT) {
418 		first = V_ipport_hifirstauto;	/* sysctl */
419 		last  = V_ipport_hilastauto;
420 		lastport = &pcbinfo->ipi_lasthi;
421 	} else if (inp->inp_flags & INP_LOWPORT) {
422 		error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT, 0);
423 		if (error)
424 			return (error);
425 		first = V_ipport_lowfirstauto;	/* 1023 */
426 		last  = V_ipport_lowlastauto;	/* 600 */
427 		lastport = &pcbinfo->ipi_lastlow;
428 	} else {
429 		first = V_ipport_firstauto;	/* sysctl */
430 		last  = V_ipport_lastauto;
431 		lastport = &pcbinfo->ipi_lastport;
432 	}
433 	/*
434 	 * For UDP(-Lite), use random port allocation as long as the user
435 	 * allows it.  For TCP (and as of yet unknown) connections,
436 	 * use random port allocation only if the user allows it AND
437 	 * ipport_tick() allows it.
438 	 */
439 	if (V_ipport_randomized &&
440 		(!V_ipport_stoprandom || pcbinfo == &V_udbinfo ||
441 		pcbinfo == &V_ulitecbinfo))
442 		dorandom = 1;
443 	else
444 		dorandom = 0;
445 	/*
446 	 * It makes no sense to do random port allocation if
447 	 * we have the only port available.
448 	 */
449 	if (first == last)
450 		dorandom = 0;
451 	/* Make sure to not include UDP(-Lite) packets in the count. */
452 	if (pcbinfo != &V_udbinfo || pcbinfo != &V_ulitecbinfo)
453 		V_ipport_tcpallocs++;
454 	/*
455 	 * Instead of having two loops further down counting up or down
456 	 * make sure that first is always <= last and go with only one
457 	 * code path implementing all logic.
458 	 */
459 	if (first > last) {
460 		aux = first;
461 		first = last;
462 		last = aux;
463 	}
464 
465 #ifdef INET
466 	/* Make the compiler happy. */
467 	laddr.s_addr = 0;
468 	if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) {
469 		KASSERT(laddrp != NULL, ("%s: laddrp NULL for v4 inp %p",
470 		    __func__, inp));
471 		laddr = *laddrp;
472 	}
473 #endif
474 	tmpinp = NULL;	/* Make compiler happy. */
475 	lport = *lportp;
476 
477 	if (dorandom)
478 		*lastport = first + (arc4random() % (last - first));
479 
480 	count = last - first;
481 
482 	do {
483 		if (count-- < 0)	/* completely used? */
484 			return (EADDRNOTAVAIL);
485 		++*lastport;
486 		if (*lastport < first || *lastport > last)
487 			*lastport = first;
488 		lport = htons(*lastport);
489 
490 #ifdef INET6
491 		if ((inp->inp_vflag & INP_IPV6) != 0)
492 			tmpinp = in6_pcblookup_local(pcbinfo,
493 			    &inp->in6p_laddr, lport, lookupflags, cred);
494 #endif
495 #if defined(INET) && defined(INET6)
496 		else
497 #endif
498 #ifdef INET
499 			tmpinp = in_pcblookup_local(pcbinfo, laddr,
500 			    lport, lookupflags, cred);
501 #endif
502 	} while (tmpinp != NULL);
503 
504 #ifdef INET
505 	if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4)
506 		laddrp->s_addr = laddr.s_addr;
507 #endif
508 	*lportp = lport;
509 
510 	return (0);
511 }
512 
513 /*
514  * Return cached socket options.
515  */
516 short
517 inp_so_options(const struct inpcb *inp)
518 {
519    short so_options;
520 
521    so_options = 0;
522 
523    if ((inp->inp_flags2 & INP_REUSEPORT) != 0)
524 	   so_options |= SO_REUSEPORT;
525    if ((inp->inp_flags2 & INP_REUSEADDR) != 0)
526 	   so_options |= SO_REUSEADDR;
527    return (so_options);
528 }
529 #endif /* INET || INET6 */
530 
531 /*
532  * Check if a new BINDMULTI socket is allowed to be created.
533  *
534  * ni points to the new inp.
535  * oi points to the exisitng inp.
536  *
537  * This checks whether the existing inp also has BINDMULTI and
538  * whether the credentials match.
539  */
540 int
541 in_pcbbind_check_bindmulti(const struct inpcb *ni, const struct inpcb *oi)
542 {
543 	/* Check permissions match */
544 	if ((ni->inp_flags2 & INP_BINDMULTI) &&
545 	    (ni->inp_cred->cr_uid !=
546 	    oi->inp_cred->cr_uid))
547 		return (0);
548 
549 	/* Check the existing inp has BINDMULTI set */
550 	if ((ni->inp_flags2 & INP_BINDMULTI) &&
551 	    ((oi->inp_flags2 & INP_BINDMULTI) == 0))
552 		return (0);
553 
554 	/*
555 	 * We're okay - either INP_BINDMULTI isn't set on ni, or
556 	 * it is and it matches the checks.
557 	 */
558 	return (1);
559 }
560 
561 #ifdef INET
562 /*
563  * Set up a bind operation on a PCB, performing port allocation
564  * as required, but do not actually modify the PCB. Callers can
565  * either complete the bind by setting inp_laddr/inp_lport and
566  * calling in_pcbinshash(), or they can just use the resulting
567  * port and address to authorise the sending of a once-off packet.
568  *
569  * On error, the values of *laddrp and *lportp are not changed.
570  */
571 int
572 in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp,
573     u_short *lportp, struct ucred *cred)
574 {
575 	struct socket *so = inp->inp_socket;
576 	struct sockaddr_in *sin;
577 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
578 	struct in_addr laddr;
579 	u_short lport = 0;
580 	int lookupflags = 0, reuseport = (so->so_options & SO_REUSEPORT);
581 	int error;
582 
583 	/*
584 	 * No state changes, so read locks are sufficient here.
585 	 */
586 	INP_LOCK_ASSERT(inp);
587 	INP_HASH_LOCK_ASSERT(pcbinfo);
588 
589 	if (CK_STAILQ_EMPTY(&V_in_ifaddrhead)) /* XXX broken! */
590 		return (EADDRNOTAVAIL);
591 	laddr.s_addr = *laddrp;
592 	if (nam != NULL && laddr.s_addr != INADDR_ANY)
593 		return (EINVAL);
594 	if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) == 0)
595 		lookupflags = INPLOOKUP_WILDCARD;
596 	if (nam == NULL) {
597 		if ((error = prison_local_ip4(cred, &laddr)) != 0)
598 			return (error);
599 	} else {
600 		sin = (struct sockaddr_in *)nam;
601 		if (nam->sa_len != sizeof (*sin))
602 			return (EINVAL);
603 #ifdef notdef
604 		/*
605 		 * We should check the family, but old programs
606 		 * incorrectly fail to initialize it.
607 		 */
608 		if (sin->sin_family != AF_INET)
609 			return (EAFNOSUPPORT);
610 #endif
611 		error = prison_local_ip4(cred, &sin->sin_addr);
612 		if (error)
613 			return (error);
614 		if (sin->sin_port != *lportp) {
615 			/* Don't allow the port to change. */
616 			if (*lportp != 0)
617 				return (EINVAL);
618 			lport = sin->sin_port;
619 		}
620 		/* NB: lport is left as 0 if the port isn't being changed. */
621 		if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) {
622 			/*
623 			 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast;
624 			 * allow complete duplication of binding if
625 			 * SO_REUSEPORT is set, or if SO_REUSEADDR is set
626 			 * and a multicast address is bound on both
627 			 * new and duplicated sockets.
628 			 */
629 			if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) != 0)
630 				reuseport = SO_REUSEADDR|SO_REUSEPORT;
631 		} else if (sin->sin_addr.s_addr != INADDR_ANY) {
632 			sin->sin_port = 0;		/* yech... */
633 			bzero(&sin->sin_zero, sizeof(sin->sin_zero));
634 			/*
635 			 * Is the address a local IP address?
636 			 * If INP_BINDANY is set, then the socket may be bound
637 			 * to any endpoint address, local or not.
638 			 */
639 			if ((inp->inp_flags & INP_BINDANY) == 0 &&
640 			    ifa_ifwithaddr_check((struct sockaddr *)sin) == 0)
641 				return (EADDRNOTAVAIL);
642 		}
643 		laddr = sin->sin_addr;
644 		if (lport) {
645 			struct inpcb *t;
646 			struct tcptw *tw;
647 
648 			/* GROSS */
649 			if (ntohs(lport) <= V_ipport_reservedhigh &&
650 			    ntohs(lport) >= V_ipport_reservedlow &&
651 			    priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT,
652 			    0))
653 				return (EACCES);
654 			if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) &&
655 			    priv_check_cred(inp->inp_cred,
656 			    PRIV_NETINET_REUSEPORT, 0) != 0) {
657 				t = in_pcblookup_local(pcbinfo, sin->sin_addr,
658 				    lport, INPLOOKUP_WILDCARD, cred);
659 	/*
660 	 * XXX
661 	 * This entire block sorely needs a rewrite.
662 	 */
663 				if (t &&
664 				    ((inp->inp_flags2 & INP_BINDMULTI) == 0) &&
665 				    ((t->inp_flags & INP_TIMEWAIT) == 0) &&
666 				    (so->so_type != SOCK_STREAM ||
667 				     ntohl(t->inp_faddr.s_addr) == INADDR_ANY) &&
668 				    (ntohl(sin->sin_addr.s_addr) != INADDR_ANY ||
669 				     ntohl(t->inp_laddr.s_addr) != INADDR_ANY ||
670 				     (t->inp_flags2 & INP_REUSEPORT) == 0) &&
671 				    (inp->inp_cred->cr_uid !=
672 				     t->inp_cred->cr_uid))
673 					return (EADDRINUSE);
674 
675 				/*
676 				 * If the socket is a BINDMULTI socket, then
677 				 * the credentials need to match and the
678 				 * original socket also has to have been bound
679 				 * with BINDMULTI.
680 				 */
681 				if (t && (! in_pcbbind_check_bindmulti(inp, t)))
682 					return (EADDRINUSE);
683 			}
684 			t = in_pcblookup_local(pcbinfo, sin->sin_addr,
685 			    lport, lookupflags, cred);
686 			if (t && (t->inp_flags & INP_TIMEWAIT)) {
687 				/*
688 				 * XXXRW: If an incpb has had its timewait
689 				 * state recycled, we treat the address as
690 				 * being in use (for now).  This is better
691 				 * than a panic, but not desirable.
692 				 */
693 				tw = intotw(t);
694 				if (tw == NULL ||
695 				    (reuseport & tw->tw_so_options) == 0)
696 					return (EADDRINUSE);
697 			} else if (t &&
698 			    ((inp->inp_flags2 & INP_BINDMULTI) == 0) &&
699 			    (reuseport & inp_so_options(t)) == 0) {
700 #ifdef INET6
701 				if (ntohl(sin->sin_addr.s_addr) !=
702 				    INADDR_ANY ||
703 				    ntohl(t->inp_laddr.s_addr) !=
704 				    INADDR_ANY ||
705 				    (inp->inp_vflag & INP_IPV6PROTO) == 0 ||
706 				    (t->inp_vflag & INP_IPV6PROTO) == 0)
707 #endif
708 				return (EADDRINUSE);
709 				if (t && (! in_pcbbind_check_bindmulti(inp, t)))
710 					return (EADDRINUSE);
711 			}
712 		}
713 	}
714 	if (*lportp != 0)
715 		lport = *lportp;
716 	if (lport == 0) {
717 		error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags);
718 		if (error != 0)
719 			return (error);
720 
721 	}
722 	*laddrp = laddr.s_addr;
723 	*lportp = lport;
724 	return (0);
725 }
726 
727 /*
728  * Connect from a socket to a specified address.
729  * Both address and port must be specified in argument sin.
730  * If don't have a local address for this socket yet,
731  * then pick one.
732  */
733 int
734 in_pcbconnect_mbuf(struct inpcb *inp, struct sockaddr *nam,
735     struct ucred *cred, struct mbuf *m)
736 {
737 	u_short lport, fport;
738 	in_addr_t laddr, faddr;
739 	int anonport, error;
740 
741 	INP_WLOCK_ASSERT(inp);
742 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
743 
744 	lport = inp->inp_lport;
745 	laddr = inp->inp_laddr.s_addr;
746 	anonport = (lport == 0);
747 	error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport,
748 	    NULL, cred);
749 	if (error)
750 		return (error);
751 
752 	/* Do the initial binding of the local address if required. */
753 	if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) {
754 		inp->inp_lport = lport;
755 		inp->inp_laddr.s_addr = laddr;
756 		if (in_pcbinshash(inp) != 0) {
757 			inp->inp_laddr.s_addr = INADDR_ANY;
758 			inp->inp_lport = 0;
759 			return (EAGAIN);
760 		}
761 	}
762 
763 	/* Commit the remaining changes. */
764 	inp->inp_lport = lport;
765 	inp->inp_laddr.s_addr = laddr;
766 	inp->inp_faddr.s_addr = faddr;
767 	inp->inp_fport = fport;
768 	in_pcbrehash_mbuf(inp, m);
769 
770 	if (anonport)
771 		inp->inp_flags |= INP_ANONPORT;
772 	return (0);
773 }
774 
775 int
776 in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
777 {
778 
779 	return (in_pcbconnect_mbuf(inp, nam, cred, NULL));
780 }
781 
782 /*
783  * Do proper source address selection on an unbound socket in case
784  * of connect. Take jails into account as well.
785  */
786 int
787 in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr,
788     struct ucred *cred)
789 {
790 	struct ifaddr *ifa;
791 	struct sockaddr *sa;
792 	struct sockaddr_in *sin;
793 	struct route sro;
794 	int error;
795 
796 	KASSERT(laddr != NULL, ("%s: laddr NULL", __func__));
797 	/*
798 	 * Bypass source address selection and use the primary jail IP
799 	 * if requested.
800 	 */
801 	if (cred != NULL && !prison_saddrsel_ip4(cred, laddr))
802 		return (0);
803 
804 	error = 0;
805 	bzero(&sro, sizeof(sro));
806 
807 	sin = (struct sockaddr_in *)&sro.ro_dst;
808 	sin->sin_family = AF_INET;
809 	sin->sin_len = sizeof(struct sockaddr_in);
810 	sin->sin_addr.s_addr = faddr->s_addr;
811 
812 	/*
813 	 * If route is known our src addr is taken from the i/f,
814 	 * else punt.
815 	 *
816 	 * Find out route to destination.
817 	 */
818 	if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0)
819 		in_rtalloc_ign(&sro, 0, inp->inp_inc.inc_fibnum);
820 
821 	/*
822 	 * If we found a route, use the address corresponding to
823 	 * the outgoing interface.
824 	 *
825 	 * Otherwise assume faddr is reachable on a directly connected
826 	 * network and try to find a corresponding interface to take
827 	 * the source address from.
828 	 */
829 	NET_EPOCH_ENTER();
830 	if (sro.ro_rt == NULL || sro.ro_rt->rt_ifp == NULL) {
831 		struct in_ifaddr *ia;
832 		struct ifnet *ifp;
833 
834 		ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin,
835 					inp->inp_socket->so_fibnum));
836 		if (ia == NULL) {
837 			ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0,
838 						inp->inp_socket->so_fibnum));
839 
840 		}
841 		if (ia == NULL) {
842 			error = ENETUNREACH;
843 			goto done;
844 		}
845 
846 		if (cred == NULL || !prison_flag(cred, PR_IP4)) {
847 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
848 			goto done;
849 		}
850 
851 		ifp = ia->ia_ifp;
852 		ia = NULL;
853 		IF_ADDR_RLOCK(ifp);
854 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
855 
856 			sa = ifa->ifa_addr;
857 			if (sa->sa_family != AF_INET)
858 				continue;
859 			sin = (struct sockaddr_in *)sa;
860 			if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
861 				ia = (struct in_ifaddr *)ifa;
862 				break;
863 			}
864 		}
865 		if (ia != NULL) {
866 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
867 			IF_ADDR_RUNLOCK(ifp);
868 			goto done;
869 		}
870 		IF_ADDR_RUNLOCK(ifp);
871 
872 		/* 3. As a last resort return the 'default' jail address. */
873 		error = prison_get_ip4(cred, laddr);
874 		goto done;
875 	}
876 
877 	/*
878 	 * If the outgoing interface on the route found is not
879 	 * a loopback interface, use the address from that interface.
880 	 * In case of jails do those three steps:
881 	 * 1. check if the interface address belongs to the jail. If so use it.
882 	 * 2. check if we have any address on the outgoing interface
883 	 *    belonging to this jail. If so use it.
884 	 * 3. as a last resort return the 'default' jail address.
885 	 */
886 	if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) {
887 		struct in_ifaddr *ia;
888 		struct ifnet *ifp;
889 
890 		/* If not jailed, use the default returned. */
891 		if (cred == NULL || !prison_flag(cred, PR_IP4)) {
892 			ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa;
893 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
894 			goto done;
895 		}
896 
897 		/* Jailed. */
898 		/* 1. Check if the iface address belongs to the jail. */
899 		sin = (struct sockaddr_in *)sro.ro_rt->rt_ifa->ifa_addr;
900 		if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
901 			ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa;
902 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
903 			goto done;
904 		}
905 
906 		/*
907 		 * 2. Check if we have any address on the outgoing interface
908 		 *    belonging to this jail.
909 		 */
910 		ia = NULL;
911 		ifp = sro.ro_rt->rt_ifp;
912 		IF_ADDR_RLOCK(ifp);
913 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
914 			sa = ifa->ifa_addr;
915 			if (sa->sa_family != AF_INET)
916 				continue;
917 			sin = (struct sockaddr_in *)sa;
918 			if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
919 				ia = (struct in_ifaddr *)ifa;
920 				break;
921 			}
922 		}
923 		if (ia != NULL) {
924 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
925 			IF_ADDR_RUNLOCK(ifp);
926 			goto done;
927 		}
928 		IF_ADDR_RUNLOCK(ifp);
929 
930 		/* 3. As a last resort return the 'default' jail address. */
931 		error = prison_get_ip4(cred, laddr);
932 		goto done;
933 	}
934 
935 	/*
936 	 * The outgoing interface is marked with 'loopback net', so a route
937 	 * to ourselves is here.
938 	 * Try to find the interface of the destination address and then
939 	 * take the address from there. That interface is not necessarily
940 	 * a loopback interface.
941 	 * In case of jails, check that it is an address of the jail
942 	 * and if we cannot find, fall back to the 'default' jail address.
943 	 */
944 	if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) {
945 		struct sockaddr_in sain;
946 		struct in_ifaddr *ia;
947 
948 		bzero(&sain, sizeof(struct sockaddr_in));
949 		sain.sin_family = AF_INET;
950 		sain.sin_len = sizeof(struct sockaddr_in);
951 		sain.sin_addr.s_addr = faddr->s_addr;
952 
953 		ia = ifatoia(ifa_ifwithdstaddr(sintosa(&sain),
954 					inp->inp_socket->so_fibnum));
955 		if (ia == NULL)
956 			ia = ifatoia(ifa_ifwithnet(sintosa(&sain), 0,
957 						inp->inp_socket->so_fibnum));
958 		if (ia == NULL)
959 			ia = ifatoia(ifa_ifwithaddr(sintosa(&sain)));
960 
961 		if (cred == NULL || !prison_flag(cred, PR_IP4)) {
962 			if (ia == NULL) {
963 				error = ENETUNREACH;
964 				goto done;
965 			}
966 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
967 			goto done;
968 		}
969 
970 		/* Jailed. */
971 		if (ia != NULL) {
972 			struct ifnet *ifp;
973 
974 			ifp = ia->ia_ifp;
975 			ia = NULL;
976 			IF_ADDR_RLOCK(ifp);
977 			CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
978 
979 				sa = ifa->ifa_addr;
980 				if (sa->sa_family != AF_INET)
981 					continue;
982 				sin = (struct sockaddr_in *)sa;
983 				if (prison_check_ip4(cred,
984 				    &sin->sin_addr) == 0) {
985 					ia = (struct in_ifaddr *)ifa;
986 					break;
987 				}
988 			}
989 			if (ia != NULL) {
990 				laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
991 				IF_ADDR_RUNLOCK(ifp);
992 				goto done;
993 			}
994 			IF_ADDR_RUNLOCK(ifp);
995 		}
996 
997 		/* 3. As a last resort return the 'default' jail address. */
998 		error = prison_get_ip4(cred, laddr);
999 		goto done;
1000 	}
1001 
1002 done:
1003 	NET_EPOCH_EXIT();
1004 	if (sro.ro_rt != NULL)
1005 		RTFREE(sro.ro_rt);
1006 	return (error);
1007 }
1008 
1009 /*
1010  * Set up for a connect from a socket to the specified address.
1011  * On entry, *laddrp and *lportp should contain the current local
1012  * address and port for the PCB; these are updated to the values
1013  * that should be placed in inp_laddr and inp_lport to complete
1014  * the connect.
1015  *
1016  * On success, *faddrp and *fportp will be set to the remote address
1017  * and port. These are not updated in the error case.
1018  *
1019  * If the operation fails because the connection already exists,
1020  * *oinpp will be set to the PCB of that connection so that the
1021  * caller can decide to override it. In all other cases, *oinpp
1022  * is set to NULL.
1023  */
1024 int
1025 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam,
1026     in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp,
1027     struct inpcb **oinpp, struct ucred *cred)
1028 {
1029 	struct rm_priotracker in_ifa_tracker;
1030 	struct sockaddr_in *sin = (struct sockaddr_in *)nam;
1031 	struct in_ifaddr *ia;
1032 	struct inpcb *oinp;
1033 	struct in_addr laddr, faddr;
1034 	u_short lport, fport;
1035 	int error;
1036 
1037 	/*
1038 	 * Because a global state change doesn't actually occur here, a read
1039 	 * lock is sufficient.
1040 	 */
1041 	INP_LOCK_ASSERT(inp);
1042 	INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo);
1043 
1044 	if (oinpp != NULL)
1045 		*oinpp = NULL;
1046 	if (nam->sa_len != sizeof (*sin))
1047 		return (EINVAL);
1048 	if (sin->sin_family != AF_INET)
1049 		return (EAFNOSUPPORT);
1050 	if (sin->sin_port == 0)
1051 		return (EADDRNOTAVAIL);
1052 	laddr.s_addr = *laddrp;
1053 	lport = *lportp;
1054 	faddr = sin->sin_addr;
1055 	fport = sin->sin_port;
1056 
1057 	if (!CK_STAILQ_EMPTY(&V_in_ifaddrhead)) {
1058 		/*
1059 		 * If the destination address is INADDR_ANY,
1060 		 * use the primary local address.
1061 		 * If the supplied address is INADDR_BROADCAST,
1062 		 * and the primary interface supports broadcast,
1063 		 * choose the broadcast address for that interface.
1064 		 */
1065 		if (faddr.s_addr == INADDR_ANY) {
1066 			IN_IFADDR_RLOCK(&in_ifa_tracker);
1067 			faddr =
1068 			    IA_SIN(CK_STAILQ_FIRST(&V_in_ifaddrhead))->sin_addr;
1069 			IN_IFADDR_RUNLOCK(&in_ifa_tracker);
1070 			if (cred != NULL &&
1071 			    (error = prison_get_ip4(cred, &faddr)) != 0)
1072 				return (error);
1073 		} else if (faddr.s_addr == (u_long)INADDR_BROADCAST) {
1074 			IN_IFADDR_RLOCK(&in_ifa_tracker);
1075 			if (CK_STAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags &
1076 			    IFF_BROADCAST)
1077 				faddr = satosin(&CK_STAILQ_FIRST(
1078 				    &V_in_ifaddrhead)->ia_broadaddr)->sin_addr;
1079 			IN_IFADDR_RUNLOCK(&in_ifa_tracker);
1080 		}
1081 	}
1082 	if (laddr.s_addr == INADDR_ANY) {
1083 		error = in_pcbladdr(inp, &faddr, &laddr, cred);
1084 		/*
1085 		 * If the destination address is multicast and an outgoing
1086 		 * interface has been set as a multicast option, prefer the
1087 		 * address of that interface as our source address.
1088 		 */
1089 		if (IN_MULTICAST(ntohl(faddr.s_addr)) &&
1090 		    inp->inp_moptions != NULL) {
1091 			struct ip_moptions *imo;
1092 			struct ifnet *ifp;
1093 
1094 			imo = inp->inp_moptions;
1095 			if (imo->imo_multicast_ifp != NULL) {
1096 				ifp = imo->imo_multicast_ifp;
1097 				IN_IFADDR_RLOCK(&in_ifa_tracker);
1098 				CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) {
1099 					if ((ia->ia_ifp == ifp) &&
1100 					    (cred == NULL ||
1101 					    prison_check_ip4(cred,
1102 					    &ia->ia_addr.sin_addr) == 0))
1103 						break;
1104 				}
1105 				if (ia == NULL)
1106 					error = EADDRNOTAVAIL;
1107 				else {
1108 					laddr = ia->ia_addr.sin_addr;
1109 					error = 0;
1110 				}
1111 				IN_IFADDR_RUNLOCK(&in_ifa_tracker);
1112 			}
1113 		}
1114 		if (error)
1115 			return (error);
1116 	}
1117 	oinp = in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr, fport,
1118 	    laddr, lport, 0, NULL);
1119 	if (oinp != NULL) {
1120 		if (oinpp != NULL)
1121 			*oinpp = oinp;
1122 		return (EADDRINUSE);
1123 	}
1124 	if (lport == 0) {
1125 		error = in_pcbbind_setup(inp, NULL, &laddr.s_addr, &lport,
1126 		    cred);
1127 		if (error)
1128 			return (error);
1129 	}
1130 	*laddrp = laddr.s_addr;
1131 	*lportp = lport;
1132 	*faddrp = faddr.s_addr;
1133 	*fportp = fport;
1134 	return (0);
1135 }
1136 
1137 void
1138 in_pcbdisconnect(struct inpcb *inp)
1139 {
1140 
1141 	INP_WLOCK_ASSERT(inp);
1142 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
1143 
1144 	inp->inp_faddr.s_addr = INADDR_ANY;
1145 	inp->inp_fport = 0;
1146 	in_pcbrehash(inp);
1147 }
1148 #endif /* INET */
1149 
1150 /*
1151  * in_pcbdetach() is responsibe for disassociating a socket from an inpcb.
1152  * For most protocols, this will be invoked immediately prior to calling
1153  * in_pcbfree().  However, with TCP the inpcb may significantly outlive the
1154  * socket, in which case in_pcbfree() is deferred.
1155  */
1156 void
1157 in_pcbdetach(struct inpcb *inp)
1158 {
1159 
1160 	KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__));
1161 
1162 #ifdef RATELIMIT
1163 	if (inp->inp_snd_tag != NULL)
1164 		in_pcbdetach_txrtlmt(inp);
1165 #endif
1166 	inp->inp_socket->so_pcb = NULL;
1167 	inp->inp_socket = NULL;
1168 }
1169 
1170 /*
1171  * in_pcbref() bumps the reference count on an inpcb in order to maintain
1172  * stability of an inpcb pointer despite the inpcb lock being released.  This
1173  * is used in TCP when the inpcbinfo lock needs to be acquired or upgraded,
1174  * but where the inpcb lock may already held, or when acquiring a reference
1175  * via a pcbgroup.
1176  *
1177  * in_pcbref() should be used only to provide brief memory stability, and
1178  * must always be followed by a call to INP_WLOCK() and in_pcbrele() to
1179  * garbage collect the inpcb if it has been in_pcbfree()'d from another
1180  * context.  Until in_pcbrele() has returned that the inpcb is still valid,
1181  * lock and rele are the *only* safe operations that may be performed on the
1182  * inpcb.
1183  *
1184  * While the inpcb will not be freed, releasing the inpcb lock means that the
1185  * connection's state may change, so the caller should be careful to
1186  * revalidate any cached state on reacquiring the lock.  Drop the reference
1187  * using in_pcbrele().
1188  */
1189 void
1190 in_pcbref(struct inpcb *inp)
1191 {
1192 
1193 	KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1194 
1195 	refcount_acquire(&inp->inp_refcount);
1196 }
1197 
1198 /*
1199  * Drop a refcount on an inpcb elevated using in_pcbref(); because a call to
1200  * in_pcbfree() may have been made between in_pcbref() and in_pcbrele(), we
1201  * return a flag indicating whether or not the inpcb remains valid.  If it is
1202  * valid, we return with the inpcb lock held.
1203  *
1204  * Notice that, unlike in_pcbref(), the inpcb lock must be held to drop a
1205  * reference on an inpcb.  Historically more work was done here (actually, in
1206  * in_pcbfree_internal()) but has been moved to in_pcbfree() to avoid the
1207  * need for the pcbinfo lock in in_pcbrele().  Deferring the free is entirely
1208  * about memory stability (and continued use of the write lock).
1209  */
1210 int
1211 in_pcbrele_rlocked(struct inpcb *inp)
1212 {
1213 	struct inpcbinfo *pcbinfo;
1214 
1215 	KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1216 
1217 	INP_RLOCK_ASSERT(inp);
1218 
1219 	if (refcount_release(&inp->inp_refcount) == 0) {
1220 		/*
1221 		 * If the inpcb has been freed, let the caller know, even if
1222 		 * this isn't the last reference.
1223 		 */
1224 		if (inp->inp_flags2 & INP_FREED) {
1225 			INP_RUNLOCK(inp);
1226 			return (1);
1227 		}
1228 		return (0);
1229 	}
1230 
1231 	KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1232 #ifdef TCPHPTS
1233 	if (inp->inp_in_hpts || inp->inp_in_input) {
1234 		struct tcp_hpts_entry *hpts;
1235 		/*
1236 		 * We should not be on the hpts at
1237 		 * this point in any form. we must
1238 		 * get the lock to be sure.
1239 		 */
1240 		hpts = tcp_hpts_lock(inp);
1241 		if (inp->inp_in_hpts)
1242 			panic("Hpts:%p inp:%p at free still on hpts",
1243 			      hpts, inp);
1244 		mtx_unlock(&hpts->p_mtx);
1245 		hpts = tcp_input_lock(inp);
1246 		if (inp->inp_in_input)
1247 			panic("Hpts:%p inp:%p at free still on input hpts",
1248 			      hpts, inp);
1249 		mtx_unlock(&hpts->p_mtx);
1250 	}
1251 #endif
1252 	INP_RUNLOCK(inp);
1253 	pcbinfo = inp->inp_pcbinfo;
1254 	uma_zfree(pcbinfo->ipi_zone, inp);
1255 	return (1);
1256 }
1257 
1258 int
1259 in_pcbrele_wlocked(struct inpcb *inp)
1260 {
1261 	struct inpcbinfo *pcbinfo;
1262 
1263 	KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1264 
1265 	INP_WLOCK_ASSERT(inp);
1266 
1267 	if (refcount_release(&inp->inp_refcount) == 0) {
1268 		/*
1269 		 * If the inpcb has been freed, let the caller know, even if
1270 		 * this isn't the last reference.
1271 		 */
1272 		if (inp->inp_flags2 & INP_FREED) {
1273 			INP_WUNLOCK(inp);
1274 			return (1);
1275 		}
1276 		return (0);
1277 	}
1278 
1279 	KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1280 #ifdef TCPHPTS
1281 	if (inp->inp_in_hpts || inp->inp_in_input) {
1282 		struct tcp_hpts_entry *hpts;
1283 		/*
1284 		 * We should not be on the hpts at
1285 		 * this point in any form. we must
1286 		 * get the lock to be sure.
1287 		 */
1288 		hpts = tcp_hpts_lock(inp);
1289 		if (inp->inp_in_hpts)
1290 			panic("Hpts:%p inp:%p at free still on hpts",
1291 			      hpts, inp);
1292 		mtx_unlock(&hpts->p_mtx);
1293 		hpts = tcp_input_lock(inp);
1294 		if (inp->inp_in_input)
1295 			panic("Hpts:%p inp:%p at free still on input hpts",
1296 			      hpts, inp);
1297 		mtx_unlock(&hpts->p_mtx);
1298 	}
1299 #endif
1300 	INP_WUNLOCK(inp);
1301 	pcbinfo = inp->inp_pcbinfo;
1302 	uma_zfree(pcbinfo->ipi_zone, inp);
1303 	return (1);
1304 }
1305 
1306 /*
1307  * Temporary wrapper.
1308  */
1309 int
1310 in_pcbrele(struct inpcb *inp)
1311 {
1312 
1313 	return (in_pcbrele_wlocked(inp));
1314 }
1315 
1316 void
1317 in_pcblist_rele_rlocked(epoch_context_t ctx)
1318 {
1319 	struct in_pcblist *il;
1320 	struct inpcb *inp;
1321 	struct inpcbinfo *pcbinfo;
1322 	int i, n;
1323 
1324 	il = __containerof(ctx, struct in_pcblist, il_epoch_ctx);
1325 	pcbinfo = il->il_pcbinfo;
1326 	n = il->il_count;
1327 	INP_INFO_WLOCK(pcbinfo);
1328 	for (i = 0; i < n; i++) {
1329 		inp = il->il_inp_list[i];
1330 		INP_RLOCK(inp);
1331 		if (!in_pcbrele_rlocked(inp))
1332 			INP_RUNLOCK(inp);
1333 	}
1334 	INP_INFO_WUNLOCK(pcbinfo);
1335 	free(il, M_TEMP);
1336 }
1337 
1338 /*
1339  * Unconditionally schedule an inpcb to be freed by decrementing its
1340  * reference count, which should occur only after the inpcb has been detached
1341  * from its socket.  If another thread holds a temporary reference (acquired
1342  * using in_pcbref()) then the free is deferred until that reference is
1343  * released using in_pcbrele(), but the inpcb is still unlocked.  Almost all
1344  * work, including removal from global lists, is done in this context, where
1345  * the pcbinfo lock is held.
1346  */
1347 void
1348 in_pcbfree(struct inpcb *inp)
1349 {
1350 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1351 
1352 #ifdef INET6
1353 	struct ip6_moptions *im6o = NULL;
1354 #endif
1355 #ifdef INET
1356 	struct ip_moptions *imo = NULL;
1357 #endif
1358 	KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1359 
1360 	KASSERT((inp->inp_flags2 & INP_FREED) == 0,
1361 	    ("%s: called twice for pcb %p", __func__, inp));
1362 	if (inp->inp_flags2 & INP_FREED) {
1363 		INP_WUNLOCK(inp);
1364 		return;
1365 	}
1366 
1367 #ifdef INVARIANTS
1368 	if (pcbinfo == &V_tcbinfo) {
1369 		INP_INFO_LOCK_ASSERT(pcbinfo);
1370 	} else {
1371 		INP_INFO_WLOCK_ASSERT(pcbinfo);
1372 	}
1373 #endif
1374 	INP_WLOCK_ASSERT(inp);
1375 
1376 #ifdef INET
1377 	imo = inp->inp_moptions;
1378 	inp->inp_moptions = NULL;
1379 #endif
1380 	/* XXXRW: Do as much as possible here. */
1381 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
1382 	if (inp->inp_sp != NULL)
1383 		ipsec_delete_pcbpolicy(inp);
1384 #endif
1385 	INP_LIST_WLOCK(pcbinfo);
1386 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
1387 	in_pcbremlists(inp);
1388 	INP_LIST_WUNLOCK(pcbinfo);
1389 #ifdef INET6
1390 	if (inp->inp_vflag & INP_IPV6PROTO) {
1391 		ip6_freepcbopts(inp->in6p_outputopts);
1392 		im6o = inp->in6p_moptions;
1393 		inp->in6p_moptions = NULL;
1394 	}
1395 #endif
1396 	if (inp->inp_options)
1397 		(void)m_free(inp->inp_options);
1398 	RO_INVALIDATE_CACHE(&inp->inp_route);
1399 
1400 	inp->inp_vflag = 0;
1401 	inp->inp_flags2 |= INP_FREED;
1402 	crfree(inp->inp_cred);
1403 #ifdef MAC
1404 	mac_inpcb_destroy(inp);
1405 #endif
1406 #ifdef INET6
1407 	ip6_freemoptions(im6o);
1408 #endif
1409 #ifdef INET
1410 	inp_freemoptions(imo);
1411 #endif
1412 	if (!in_pcbrele_wlocked(inp))
1413 		INP_WUNLOCK(inp);
1414 }
1415 
1416 /*
1417  * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and
1418  * port reservation, and preventing it from being returned by inpcb lookups.
1419  *
1420  * It is used by TCP to mark an inpcb as unused and avoid future packet
1421  * delivery or event notification when a socket remains open but TCP has
1422  * closed.  This might occur as a result of a shutdown()-initiated TCP close
1423  * or a RST on the wire, and allows the port binding to be reused while still
1424  * maintaining the invariant that so_pcb always points to a valid inpcb until
1425  * in_pcbdetach().
1426  *
1427  * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by
1428  * in_pcbnotifyall() and in_pcbpurgeif0()?
1429  */
1430 void
1431 in_pcbdrop(struct inpcb *inp)
1432 {
1433 
1434 	INP_WLOCK_ASSERT(inp);
1435 
1436 	/*
1437 	 * XXXRW: Possibly we should protect the setting of INP_DROPPED with
1438 	 * the hash lock...?
1439 	 */
1440 	inp->inp_flags |= INP_DROPPED;
1441 	if (inp->inp_flags & INP_INHASHLIST) {
1442 		struct inpcbport *phd = inp->inp_phd;
1443 
1444 		INP_HASH_WLOCK(inp->inp_pcbinfo);
1445 		LIST_REMOVE(inp, inp_hash);
1446 		LIST_REMOVE(inp, inp_portlist);
1447 		if (LIST_FIRST(&phd->phd_pcblist) == NULL) {
1448 			LIST_REMOVE(phd, phd_hash);
1449 			free(phd, M_PCB);
1450 		}
1451 		INP_HASH_WUNLOCK(inp->inp_pcbinfo);
1452 		inp->inp_flags &= ~INP_INHASHLIST;
1453 #ifdef PCBGROUP
1454 		in_pcbgroup_remove(inp);
1455 #endif
1456 	}
1457 }
1458 
1459 #ifdef INET
1460 /*
1461  * Common routines to return the socket addresses associated with inpcbs.
1462  */
1463 struct sockaddr *
1464 in_sockaddr(in_port_t port, struct in_addr *addr_p)
1465 {
1466 	struct sockaddr_in *sin;
1467 
1468 	sin = malloc(sizeof *sin, M_SONAME,
1469 		M_WAITOK | M_ZERO);
1470 	sin->sin_family = AF_INET;
1471 	sin->sin_len = sizeof(*sin);
1472 	sin->sin_addr = *addr_p;
1473 	sin->sin_port = port;
1474 
1475 	return (struct sockaddr *)sin;
1476 }
1477 
1478 int
1479 in_getsockaddr(struct socket *so, struct sockaddr **nam)
1480 {
1481 	struct inpcb *inp;
1482 	struct in_addr addr;
1483 	in_port_t port;
1484 
1485 	inp = sotoinpcb(so);
1486 	KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL"));
1487 
1488 	INP_RLOCK(inp);
1489 	port = inp->inp_lport;
1490 	addr = inp->inp_laddr;
1491 	INP_RUNLOCK(inp);
1492 
1493 	*nam = in_sockaddr(port, &addr);
1494 	return 0;
1495 }
1496 
1497 int
1498 in_getpeeraddr(struct socket *so, struct sockaddr **nam)
1499 {
1500 	struct inpcb *inp;
1501 	struct in_addr addr;
1502 	in_port_t port;
1503 
1504 	inp = sotoinpcb(so);
1505 	KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL"));
1506 
1507 	INP_RLOCK(inp);
1508 	port = inp->inp_fport;
1509 	addr = inp->inp_faddr;
1510 	INP_RUNLOCK(inp);
1511 
1512 	*nam = in_sockaddr(port, &addr);
1513 	return 0;
1514 }
1515 
1516 void
1517 in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno,
1518     struct inpcb *(*notify)(struct inpcb *, int))
1519 {
1520 	struct inpcb *inp, *inp_temp;
1521 
1522 	INP_INFO_WLOCK(pcbinfo);
1523 	LIST_FOREACH_SAFE(inp, pcbinfo->ipi_listhead, inp_list, inp_temp) {
1524 		INP_WLOCK(inp);
1525 #ifdef INET6
1526 		if ((inp->inp_vflag & INP_IPV4) == 0) {
1527 			INP_WUNLOCK(inp);
1528 			continue;
1529 		}
1530 #endif
1531 		if (inp->inp_faddr.s_addr != faddr.s_addr ||
1532 		    inp->inp_socket == NULL) {
1533 			INP_WUNLOCK(inp);
1534 			continue;
1535 		}
1536 		if ((*notify)(inp, errno))
1537 			INP_WUNLOCK(inp);
1538 	}
1539 	INP_INFO_WUNLOCK(pcbinfo);
1540 }
1541 
1542 void
1543 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp)
1544 {
1545 	struct inpcb *inp;
1546 	struct ip_moptions *imo;
1547 	int i, gap;
1548 
1549 	INP_INFO_WLOCK(pcbinfo);
1550 	LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) {
1551 		INP_WLOCK(inp);
1552 		imo = inp->inp_moptions;
1553 		if ((inp->inp_vflag & INP_IPV4) &&
1554 		    imo != NULL) {
1555 			/*
1556 			 * Unselect the outgoing interface if it is being
1557 			 * detached.
1558 			 */
1559 			if (imo->imo_multicast_ifp == ifp)
1560 				imo->imo_multicast_ifp = NULL;
1561 
1562 			/*
1563 			 * Drop multicast group membership if we joined
1564 			 * through the interface being detached.
1565 			 *
1566 			 * XXX This can all be deferred to an epoch_call
1567 			 */
1568 			for (i = 0, gap = 0; i < imo->imo_num_memberships;
1569 			    i++) {
1570 				if (imo->imo_membership[i]->inm_ifp == ifp) {
1571 					IN_MULTI_LOCK_ASSERT();
1572 					in_leavegroup_locked(imo->imo_membership[i], NULL);
1573 					gap++;
1574 				} else if (gap != 0)
1575 					imo->imo_membership[i - gap] =
1576 					    imo->imo_membership[i];
1577 			}
1578 			imo->imo_num_memberships -= gap;
1579 		}
1580 		INP_WUNLOCK(inp);
1581 	}
1582 	INP_INFO_WUNLOCK(pcbinfo);
1583 }
1584 
1585 /*
1586  * Lookup a PCB based on the local address and port.  Caller must hold the
1587  * hash lock.  No inpcb locks or references are acquired.
1588  */
1589 #define INP_LOOKUP_MAPPED_PCB_COST	3
1590 struct inpcb *
1591 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr,
1592     u_short lport, int lookupflags, struct ucred *cred)
1593 {
1594 	struct inpcb *inp;
1595 #ifdef INET6
1596 	int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST;
1597 #else
1598 	int matchwild = 3;
1599 #endif
1600 	int wildcard;
1601 
1602 	KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0,
1603 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
1604 
1605 	INP_HASH_LOCK_ASSERT(pcbinfo);
1606 
1607 	if ((lookupflags & INPLOOKUP_WILDCARD) == 0) {
1608 		struct inpcbhead *head;
1609 		/*
1610 		 * Look for an unconnected (wildcard foreign addr) PCB that
1611 		 * matches the local address and port we're looking for.
1612 		 */
1613 		head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
1614 		    0, pcbinfo->ipi_hashmask)];
1615 		LIST_FOREACH(inp, head, inp_hash) {
1616 #ifdef INET6
1617 			/* XXX inp locking */
1618 			if ((inp->inp_vflag & INP_IPV4) == 0)
1619 				continue;
1620 #endif
1621 			if (inp->inp_faddr.s_addr == INADDR_ANY &&
1622 			    inp->inp_laddr.s_addr == laddr.s_addr &&
1623 			    inp->inp_lport == lport) {
1624 				/*
1625 				 * Found?
1626 				 */
1627 				if (cred == NULL ||
1628 				    prison_equal_ip4(cred->cr_prison,
1629 					inp->inp_cred->cr_prison))
1630 					return (inp);
1631 			}
1632 		}
1633 		/*
1634 		 * Not found.
1635 		 */
1636 		return (NULL);
1637 	} else {
1638 		struct inpcbporthead *porthash;
1639 		struct inpcbport *phd;
1640 		struct inpcb *match = NULL;
1641 		/*
1642 		 * Best fit PCB lookup.
1643 		 *
1644 		 * First see if this local port is in use by looking on the
1645 		 * port hash list.
1646 		 */
1647 		porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport,
1648 		    pcbinfo->ipi_porthashmask)];
1649 		LIST_FOREACH(phd, porthash, phd_hash) {
1650 			if (phd->phd_port == lport)
1651 				break;
1652 		}
1653 		if (phd != NULL) {
1654 			/*
1655 			 * Port is in use by one or more PCBs. Look for best
1656 			 * fit.
1657 			 */
1658 			LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) {
1659 				wildcard = 0;
1660 				if (cred != NULL &&
1661 				    !prison_equal_ip4(inp->inp_cred->cr_prison,
1662 					cred->cr_prison))
1663 					continue;
1664 #ifdef INET6
1665 				/* XXX inp locking */
1666 				if ((inp->inp_vflag & INP_IPV4) == 0)
1667 					continue;
1668 				/*
1669 				 * We never select the PCB that has
1670 				 * INP_IPV6 flag and is bound to :: if
1671 				 * we have another PCB which is bound
1672 				 * to 0.0.0.0.  If a PCB has the
1673 				 * INP_IPV6 flag, then we set its cost
1674 				 * higher than IPv4 only PCBs.
1675 				 *
1676 				 * Note that the case only happens
1677 				 * when a socket is bound to ::, under
1678 				 * the condition that the use of the
1679 				 * mapped address is allowed.
1680 				 */
1681 				if ((inp->inp_vflag & INP_IPV6) != 0)
1682 					wildcard += INP_LOOKUP_MAPPED_PCB_COST;
1683 #endif
1684 				if (inp->inp_faddr.s_addr != INADDR_ANY)
1685 					wildcard++;
1686 				if (inp->inp_laddr.s_addr != INADDR_ANY) {
1687 					if (laddr.s_addr == INADDR_ANY)
1688 						wildcard++;
1689 					else if (inp->inp_laddr.s_addr != laddr.s_addr)
1690 						continue;
1691 				} else {
1692 					if (laddr.s_addr != INADDR_ANY)
1693 						wildcard++;
1694 				}
1695 				if (wildcard < matchwild) {
1696 					match = inp;
1697 					matchwild = wildcard;
1698 					if (matchwild == 0)
1699 						break;
1700 				}
1701 			}
1702 		}
1703 		return (match);
1704 	}
1705 }
1706 #undef INP_LOOKUP_MAPPED_PCB_COST
1707 
1708 #ifdef PCBGROUP
1709 /*
1710  * Lookup PCB in hash list, using pcbgroup tables.
1711  */
1712 static struct inpcb *
1713 in_pcblookup_group(struct inpcbinfo *pcbinfo, struct inpcbgroup *pcbgroup,
1714     struct in_addr faddr, u_int fport_arg, struct in_addr laddr,
1715     u_int lport_arg, int lookupflags, struct ifnet *ifp)
1716 {
1717 	struct inpcbhead *head;
1718 	struct inpcb *inp, *tmpinp;
1719 	u_short fport = fport_arg, lport = lport_arg;
1720 	bool locked;
1721 
1722 	/*
1723 	 * First look for an exact match.
1724 	 */
1725 	tmpinp = NULL;
1726 	INP_GROUP_LOCK(pcbgroup);
1727 	head = &pcbgroup->ipg_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport,
1728 	    pcbgroup->ipg_hashmask)];
1729 	LIST_FOREACH(inp, head, inp_pcbgrouphash) {
1730 #ifdef INET6
1731 		/* XXX inp locking */
1732 		if ((inp->inp_vflag & INP_IPV4) == 0)
1733 			continue;
1734 #endif
1735 		if (inp->inp_faddr.s_addr == faddr.s_addr &&
1736 		    inp->inp_laddr.s_addr == laddr.s_addr &&
1737 		    inp->inp_fport == fport &&
1738 		    inp->inp_lport == lport) {
1739 			/*
1740 			 * XXX We should be able to directly return
1741 			 * the inp here, without any checks.
1742 			 * Well unless both bound with SO_REUSEPORT?
1743 			 */
1744 			if (prison_flag(inp->inp_cred, PR_IP4))
1745 				goto found;
1746 			if (tmpinp == NULL)
1747 				tmpinp = inp;
1748 		}
1749 	}
1750 	if (tmpinp != NULL) {
1751 		inp = tmpinp;
1752 		goto found;
1753 	}
1754 
1755 #ifdef	RSS
1756 	/*
1757 	 * For incoming connections, we may wish to do a wildcard
1758 	 * match for an RSS-local socket.
1759 	 */
1760 	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
1761 		struct inpcb *local_wild = NULL, *local_exact = NULL;
1762 #ifdef INET6
1763 		struct inpcb *local_wild_mapped = NULL;
1764 #endif
1765 		struct inpcb *jail_wild = NULL;
1766 		struct inpcbhead *head;
1767 		int injail;
1768 
1769 		/*
1770 		 * Order of socket selection - we always prefer jails.
1771 		 *      1. jailed, non-wild.
1772 		 *      2. jailed, wild.
1773 		 *      3. non-jailed, non-wild.
1774 		 *      4. non-jailed, wild.
1775 		 */
1776 
1777 		head = &pcbgroup->ipg_hashbase[INP_PCBHASH(INADDR_ANY,
1778 		    lport, 0, pcbgroup->ipg_hashmask)];
1779 		LIST_FOREACH(inp, head, inp_pcbgrouphash) {
1780 #ifdef INET6
1781 			/* XXX inp locking */
1782 			if ((inp->inp_vflag & INP_IPV4) == 0)
1783 				continue;
1784 #endif
1785 			if (inp->inp_faddr.s_addr != INADDR_ANY ||
1786 			    inp->inp_lport != lport)
1787 				continue;
1788 
1789 			injail = prison_flag(inp->inp_cred, PR_IP4);
1790 			if (injail) {
1791 				if (prison_check_ip4(inp->inp_cred,
1792 				    &laddr) != 0)
1793 					continue;
1794 			} else {
1795 				if (local_exact != NULL)
1796 					continue;
1797 			}
1798 
1799 			if (inp->inp_laddr.s_addr == laddr.s_addr) {
1800 				if (injail)
1801 					goto found;
1802 				else
1803 					local_exact = inp;
1804 			} else if (inp->inp_laddr.s_addr == INADDR_ANY) {
1805 #ifdef INET6
1806 				/* XXX inp locking, NULL check */
1807 				if (inp->inp_vflag & INP_IPV6PROTO)
1808 					local_wild_mapped = inp;
1809 				else
1810 #endif
1811 					if (injail)
1812 						jail_wild = inp;
1813 					else
1814 						local_wild = inp;
1815 			}
1816 		} /* LIST_FOREACH */
1817 
1818 		inp = jail_wild;
1819 		if (inp == NULL)
1820 			inp = local_exact;
1821 		if (inp == NULL)
1822 			inp = local_wild;
1823 #ifdef INET6
1824 		if (inp == NULL)
1825 			inp = local_wild_mapped;
1826 #endif
1827 		if (inp != NULL)
1828 			goto found;
1829 	}
1830 #endif
1831 
1832 	/*
1833 	 * Then look for a wildcard match, if requested.
1834 	 */
1835 	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
1836 		struct inpcb *local_wild = NULL, *local_exact = NULL;
1837 #ifdef INET6
1838 		struct inpcb *local_wild_mapped = NULL;
1839 #endif
1840 		struct inpcb *jail_wild = NULL;
1841 		struct inpcbhead *head;
1842 		int injail;
1843 
1844 		/*
1845 		 * Order of socket selection - we always prefer jails.
1846 		 *      1. jailed, non-wild.
1847 		 *      2. jailed, wild.
1848 		 *      3. non-jailed, non-wild.
1849 		 *      4. non-jailed, wild.
1850 		 */
1851 		head = &pcbinfo->ipi_wildbase[INP_PCBHASH(INADDR_ANY, lport,
1852 		    0, pcbinfo->ipi_wildmask)];
1853 		LIST_FOREACH(inp, head, inp_pcbgroup_wild) {
1854 #ifdef INET6
1855 			/* XXX inp locking */
1856 			if ((inp->inp_vflag & INP_IPV4) == 0)
1857 				continue;
1858 #endif
1859 			if (inp->inp_faddr.s_addr != INADDR_ANY ||
1860 			    inp->inp_lport != lport)
1861 				continue;
1862 
1863 			injail = prison_flag(inp->inp_cred, PR_IP4);
1864 			if (injail) {
1865 				if (prison_check_ip4(inp->inp_cred,
1866 				    &laddr) != 0)
1867 					continue;
1868 			} else {
1869 				if (local_exact != NULL)
1870 					continue;
1871 			}
1872 
1873 			if (inp->inp_laddr.s_addr == laddr.s_addr) {
1874 				if (injail)
1875 					goto found;
1876 				else
1877 					local_exact = inp;
1878 			} else if (inp->inp_laddr.s_addr == INADDR_ANY) {
1879 #ifdef INET6
1880 				/* XXX inp locking, NULL check */
1881 				if (inp->inp_vflag & INP_IPV6PROTO)
1882 					local_wild_mapped = inp;
1883 				else
1884 #endif
1885 					if (injail)
1886 						jail_wild = inp;
1887 					else
1888 						local_wild = inp;
1889 			}
1890 		} /* LIST_FOREACH */
1891 		inp = jail_wild;
1892 		if (inp == NULL)
1893 			inp = local_exact;
1894 		if (inp == NULL)
1895 			inp = local_wild;
1896 #ifdef INET6
1897 		if (inp == NULL)
1898 			inp = local_wild_mapped;
1899 #endif
1900 		if (inp != NULL)
1901 			goto found;
1902 	} /* if (lookupflags & INPLOOKUP_WILDCARD) */
1903 	INP_GROUP_UNLOCK(pcbgroup);
1904 	return (NULL);
1905 
1906 found:
1907 	if (lookupflags & INPLOOKUP_WLOCKPCB)
1908 		locked = INP_TRY_WLOCK(inp);
1909 	else if (lookupflags & INPLOOKUP_RLOCKPCB)
1910 		locked = INP_TRY_RLOCK(inp);
1911 	else
1912 		panic("%s: locking bug", __func__);
1913 	if (!locked)
1914 		in_pcbref(inp);
1915 	INP_GROUP_UNLOCK(pcbgroup);
1916 	if (!locked) {
1917 		if (lookupflags & INPLOOKUP_WLOCKPCB) {
1918 			INP_WLOCK(inp);
1919 			if (in_pcbrele_wlocked(inp))
1920 				return (NULL);
1921 		} else {
1922 			INP_RLOCK(inp);
1923 			if (in_pcbrele_rlocked(inp))
1924 				return (NULL);
1925 		}
1926 	}
1927 #ifdef INVARIANTS
1928 	if (lookupflags & INPLOOKUP_WLOCKPCB)
1929 		INP_WLOCK_ASSERT(inp);
1930 	else
1931 		INP_RLOCK_ASSERT(inp);
1932 #endif
1933 	return (inp);
1934 }
1935 #endif /* PCBGROUP */
1936 
1937 /*
1938  * Lookup PCB in hash list, using pcbinfo tables.  This variation assumes
1939  * that the caller has locked the hash list, and will not perform any further
1940  * locking or reference operations on either the hash list or the connection.
1941  */
1942 static struct inpcb *
1943 in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr,
1944     u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags,
1945     struct ifnet *ifp)
1946 {
1947 	struct inpcbhead *head;
1948 	struct inpcb *inp, *tmpinp;
1949 	u_short fport = fport_arg, lport = lport_arg;
1950 
1951 	KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0,
1952 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
1953 
1954 	INP_HASH_LOCK_ASSERT(pcbinfo);
1955 
1956 	/*
1957 	 * First look for an exact match.
1958 	 */
1959 	tmpinp = NULL;
1960 	head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport,
1961 	    pcbinfo->ipi_hashmask)];
1962 	LIST_FOREACH(inp, head, inp_hash) {
1963 #ifdef INET6
1964 		/* XXX inp locking */
1965 		if ((inp->inp_vflag & INP_IPV4) == 0)
1966 			continue;
1967 #endif
1968 		if (inp->inp_faddr.s_addr == faddr.s_addr &&
1969 		    inp->inp_laddr.s_addr == laddr.s_addr &&
1970 		    inp->inp_fport == fport &&
1971 		    inp->inp_lport == lport) {
1972 			/*
1973 			 * XXX We should be able to directly return
1974 			 * the inp here, without any checks.
1975 			 * Well unless both bound with SO_REUSEPORT?
1976 			 */
1977 			if (prison_flag(inp->inp_cred, PR_IP4))
1978 				return (inp);
1979 			if (tmpinp == NULL)
1980 				tmpinp = inp;
1981 		}
1982 	}
1983 	if (tmpinp != NULL)
1984 		return (tmpinp);
1985 
1986 	/*
1987 	 * Then look for a wildcard match, if requested.
1988 	 */
1989 	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
1990 		struct inpcb *local_wild = NULL, *local_exact = NULL;
1991 #ifdef INET6
1992 		struct inpcb *local_wild_mapped = NULL;
1993 #endif
1994 		struct inpcb *jail_wild = NULL;
1995 		int injail;
1996 
1997 		/*
1998 		 * Order of socket selection - we always prefer jails.
1999 		 *      1. jailed, non-wild.
2000 		 *      2. jailed, wild.
2001 		 *      3. non-jailed, non-wild.
2002 		 *      4. non-jailed, wild.
2003 		 */
2004 
2005 		head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
2006 		    0, pcbinfo->ipi_hashmask)];
2007 		LIST_FOREACH(inp, head, inp_hash) {
2008 #ifdef INET6
2009 			/* XXX inp locking */
2010 			if ((inp->inp_vflag & INP_IPV4) == 0)
2011 				continue;
2012 #endif
2013 			if (inp->inp_faddr.s_addr != INADDR_ANY ||
2014 			    inp->inp_lport != lport)
2015 				continue;
2016 
2017 			injail = prison_flag(inp->inp_cred, PR_IP4);
2018 			if (injail) {
2019 				if (prison_check_ip4(inp->inp_cred,
2020 				    &laddr) != 0)
2021 					continue;
2022 			} else {
2023 				if (local_exact != NULL)
2024 					continue;
2025 			}
2026 
2027 			if (inp->inp_laddr.s_addr == laddr.s_addr) {
2028 				if (injail)
2029 					return (inp);
2030 				else
2031 					local_exact = inp;
2032 			} else if (inp->inp_laddr.s_addr == INADDR_ANY) {
2033 #ifdef INET6
2034 				/* XXX inp locking, NULL check */
2035 				if (inp->inp_vflag & INP_IPV6PROTO)
2036 					local_wild_mapped = inp;
2037 				else
2038 #endif
2039 					if (injail)
2040 						jail_wild = inp;
2041 					else
2042 						local_wild = inp;
2043 			}
2044 		} /* LIST_FOREACH */
2045 		if (jail_wild != NULL)
2046 			return (jail_wild);
2047 		if (local_exact != NULL)
2048 			return (local_exact);
2049 		if (local_wild != NULL)
2050 			return (local_wild);
2051 #ifdef INET6
2052 		if (local_wild_mapped != NULL)
2053 			return (local_wild_mapped);
2054 #endif
2055 	} /* if ((lookupflags & INPLOOKUP_WILDCARD) != 0) */
2056 
2057 	return (NULL);
2058 }
2059 
2060 /*
2061  * Lookup PCB in hash list, using pcbinfo tables.  This variation locks the
2062  * hash list lock, and will return the inpcb locked (i.e., requires
2063  * INPLOOKUP_LOCKPCB).
2064  */
2065 static struct inpcb *
2066 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2067     u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
2068     struct ifnet *ifp)
2069 {
2070 	struct inpcb *inp;
2071 	bool locked;
2072 
2073 	INP_HASH_RLOCK(pcbinfo);
2074 	inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport,
2075 	    (lookupflags & ~(INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)), ifp);
2076 	if (inp != NULL) {
2077 		if (lookupflags & INPLOOKUP_WLOCKPCB)
2078 			locked = INP_TRY_WLOCK(inp);
2079 		else if (lookupflags & INPLOOKUP_RLOCKPCB)
2080 			locked = INP_TRY_RLOCK(inp);
2081 		else
2082 			panic("%s: locking bug", __func__);
2083 		if (!locked)
2084 			in_pcbref(inp);
2085 		INP_HASH_RUNLOCK(pcbinfo);
2086 		if (!locked) {
2087 			if (lookupflags & INPLOOKUP_WLOCKPCB) {
2088 				INP_WLOCK(inp);
2089 				if (in_pcbrele_wlocked(inp))
2090 					return (NULL);
2091 			} else {
2092 				INP_RLOCK(inp);
2093 				if (in_pcbrele_rlocked(inp))
2094 					return (NULL);
2095 			}
2096 		}
2097 #ifdef INVARIANTS
2098 		if (lookupflags & INPLOOKUP_WLOCKPCB)
2099 			INP_WLOCK_ASSERT(inp);
2100 		else
2101 			INP_RLOCK_ASSERT(inp);
2102 #endif
2103 	} else
2104 		INP_HASH_RUNLOCK(pcbinfo);
2105 	return (inp);
2106 }
2107 
2108 /*
2109  * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf
2110  * from which a pre-calculated hash value may be extracted.
2111  *
2112  * Possibly more of this logic should be in in_pcbgroup.c.
2113  */
2114 struct inpcb *
2115 in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport,
2116     struct in_addr laddr, u_int lport, int lookupflags, struct ifnet *ifp)
2117 {
2118 #if defined(PCBGROUP) && !defined(RSS)
2119 	struct inpcbgroup *pcbgroup;
2120 #endif
2121 
2122 	KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0,
2123 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
2124 	KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
2125 	    ("%s: LOCKPCB not set", __func__));
2126 
2127 	/*
2128 	 * When not using RSS, use connection groups in preference to the
2129 	 * reservation table when looking up 4-tuples.  When using RSS, just
2130 	 * use the reservation table, due to the cost of the Toeplitz hash
2131 	 * in software.
2132 	 *
2133 	 * XXXRW: This policy belongs in the pcbgroup code, as in principle
2134 	 * we could be doing RSS with a non-Toeplitz hash that is affordable
2135 	 * in software.
2136 	 */
2137 #if defined(PCBGROUP) && !defined(RSS)
2138 	if (in_pcbgroup_enabled(pcbinfo)) {
2139 		pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr,
2140 		    fport);
2141 		return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport,
2142 		    laddr, lport, lookupflags, ifp));
2143 	}
2144 #endif
2145 	return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport,
2146 	    lookupflags, ifp));
2147 }
2148 
2149 struct inpcb *
2150 in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2151     u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
2152     struct ifnet *ifp, struct mbuf *m)
2153 {
2154 #ifdef PCBGROUP
2155 	struct inpcbgroup *pcbgroup;
2156 #endif
2157 
2158 	KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0,
2159 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
2160 	KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
2161 	    ("%s: LOCKPCB not set", __func__));
2162 
2163 #ifdef PCBGROUP
2164 	/*
2165 	 * If we can use a hardware-generated hash to look up the connection
2166 	 * group, use that connection group to find the inpcb.  Otherwise
2167 	 * fall back on a software hash -- or the reservation table if we're
2168 	 * using RSS.
2169 	 *
2170 	 * XXXRW: As above, that policy belongs in the pcbgroup code.
2171 	 */
2172 	if (in_pcbgroup_enabled(pcbinfo) &&
2173 	    !(M_HASHTYPE_TEST(m, M_HASHTYPE_NONE))) {
2174 		pcbgroup = in_pcbgroup_byhash(pcbinfo, M_HASHTYPE_GET(m),
2175 		    m->m_pkthdr.flowid);
2176 		if (pcbgroup != NULL)
2177 			return (in_pcblookup_group(pcbinfo, pcbgroup, faddr,
2178 			    fport, laddr, lport, lookupflags, ifp));
2179 #ifndef RSS
2180 		pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr,
2181 		    fport);
2182 		return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport,
2183 		    laddr, lport, lookupflags, ifp));
2184 #endif
2185 	}
2186 #endif
2187 	return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport,
2188 	    lookupflags, ifp));
2189 }
2190 #endif /* INET */
2191 
2192 /*
2193  * Insert PCB onto various hash lists.
2194  */
2195 static int
2196 in_pcbinshash_internal(struct inpcb *inp, int do_pcbgroup_update)
2197 {
2198 	struct inpcbhead *pcbhash;
2199 	struct inpcbporthead *pcbporthash;
2200 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2201 	struct inpcbport *phd;
2202 	u_int32_t hashkey_faddr;
2203 
2204 	INP_WLOCK_ASSERT(inp);
2205 	INP_HASH_WLOCK_ASSERT(pcbinfo);
2206 
2207 	KASSERT((inp->inp_flags & INP_INHASHLIST) == 0,
2208 	    ("in_pcbinshash: INP_INHASHLIST"));
2209 
2210 #ifdef INET6
2211 	if (inp->inp_vflag & INP_IPV6)
2212 		hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr);
2213 	else
2214 #endif
2215 	hashkey_faddr = inp->inp_faddr.s_addr;
2216 
2217 	pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
2218 		 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
2219 
2220 	pcbporthash = &pcbinfo->ipi_porthashbase[
2221 	    INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)];
2222 
2223 	/*
2224 	 * Go through port list and look for a head for this lport.
2225 	 */
2226 	LIST_FOREACH(phd, pcbporthash, phd_hash) {
2227 		if (phd->phd_port == inp->inp_lport)
2228 			break;
2229 	}
2230 	/*
2231 	 * If none exists, malloc one and tack it on.
2232 	 */
2233 	if (phd == NULL) {
2234 		phd = malloc(sizeof(struct inpcbport), M_PCB, M_NOWAIT);
2235 		if (phd == NULL) {
2236 			return (ENOBUFS); /* XXX */
2237 		}
2238 		phd->phd_port = inp->inp_lport;
2239 		LIST_INIT(&phd->phd_pcblist);
2240 		LIST_INSERT_HEAD(pcbporthash, phd, phd_hash);
2241 	}
2242 	inp->inp_phd = phd;
2243 	LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist);
2244 	LIST_INSERT_HEAD(pcbhash, inp, inp_hash);
2245 	inp->inp_flags |= INP_INHASHLIST;
2246 #ifdef PCBGROUP
2247 	if (do_pcbgroup_update)
2248 		in_pcbgroup_update(inp);
2249 #endif
2250 	return (0);
2251 }
2252 
2253 /*
2254  * For now, there are two public interfaces to insert an inpcb into the hash
2255  * lists -- one that does update pcbgroups, and one that doesn't.  The latter
2256  * is used only in the TCP syncache, where in_pcbinshash is called before the
2257  * full 4-tuple is set for the inpcb, and we don't want to install in the
2258  * pcbgroup until later.
2259  *
2260  * XXXRW: This seems like a misfeature.  in_pcbinshash should always update
2261  * connection groups, and partially initialised inpcbs should not be exposed
2262  * to either reservation hash tables or pcbgroups.
2263  */
2264 int
2265 in_pcbinshash(struct inpcb *inp)
2266 {
2267 
2268 	return (in_pcbinshash_internal(inp, 1));
2269 }
2270 
2271 int
2272 in_pcbinshash_nopcbgroup(struct inpcb *inp)
2273 {
2274 
2275 	return (in_pcbinshash_internal(inp, 0));
2276 }
2277 
2278 /*
2279  * Move PCB to the proper hash bucket when { faddr, fport } have  been
2280  * changed. NOTE: This does not handle the case of the lport changing (the
2281  * hashed port list would have to be updated as well), so the lport must
2282  * not change after in_pcbinshash() has been called.
2283  */
2284 void
2285 in_pcbrehash_mbuf(struct inpcb *inp, struct mbuf *m)
2286 {
2287 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2288 	struct inpcbhead *head;
2289 	u_int32_t hashkey_faddr;
2290 
2291 	INP_WLOCK_ASSERT(inp);
2292 	INP_HASH_WLOCK_ASSERT(pcbinfo);
2293 
2294 	KASSERT(inp->inp_flags & INP_INHASHLIST,
2295 	    ("in_pcbrehash: !INP_INHASHLIST"));
2296 
2297 #ifdef INET6
2298 	if (inp->inp_vflag & INP_IPV6)
2299 		hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr);
2300 	else
2301 #endif
2302 	hashkey_faddr = inp->inp_faddr.s_addr;
2303 
2304 	head = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
2305 		inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
2306 
2307 	LIST_REMOVE(inp, inp_hash);
2308 	LIST_INSERT_HEAD(head, inp, inp_hash);
2309 
2310 #ifdef PCBGROUP
2311 	if (m != NULL)
2312 		in_pcbgroup_update_mbuf(inp, m);
2313 	else
2314 		in_pcbgroup_update(inp);
2315 #endif
2316 }
2317 
2318 void
2319 in_pcbrehash(struct inpcb *inp)
2320 {
2321 
2322 	in_pcbrehash_mbuf(inp, NULL);
2323 }
2324 
2325 /*
2326  * Remove PCB from various lists.
2327  */
2328 static void
2329 in_pcbremlists(struct inpcb *inp)
2330 {
2331 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2332 
2333 #ifdef INVARIANTS
2334 	if (pcbinfo == &V_tcbinfo) {
2335 		INP_INFO_RLOCK_ASSERT(pcbinfo);
2336 	} else {
2337 		INP_INFO_WLOCK_ASSERT(pcbinfo);
2338 	}
2339 #endif
2340 
2341 	INP_WLOCK_ASSERT(inp);
2342 	INP_LIST_WLOCK_ASSERT(pcbinfo);
2343 
2344 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
2345 	if (inp->inp_flags & INP_INHASHLIST) {
2346 		struct inpcbport *phd = inp->inp_phd;
2347 
2348 		INP_HASH_WLOCK(pcbinfo);
2349 		LIST_REMOVE(inp, inp_hash);
2350 		LIST_REMOVE(inp, inp_portlist);
2351 		if (LIST_FIRST(&phd->phd_pcblist) == NULL) {
2352 			LIST_REMOVE(phd, phd_hash);
2353 			free(phd, M_PCB);
2354 		}
2355 		INP_HASH_WUNLOCK(pcbinfo);
2356 		inp->inp_flags &= ~INP_INHASHLIST;
2357 	}
2358 	LIST_REMOVE(inp, inp_list);
2359 	pcbinfo->ipi_count--;
2360 #ifdef PCBGROUP
2361 	in_pcbgroup_remove(inp);
2362 #endif
2363 }
2364 
2365 /*
2366  * Check for alternatives when higher level complains
2367  * about service problems.  For now, invalidate cached
2368  * routing information.  If the route was created dynamically
2369  * (by a redirect), time to try a default gateway again.
2370  */
2371 void
2372 in_losing(struct inpcb *inp)
2373 {
2374 
2375 	RO_INVALIDATE_CACHE(&inp->inp_route);
2376 	return;
2377 }
2378 
2379 /*
2380  * A set label operation has occurred at the socket layer, propagate the
2381  * label change into the in_pcb for the socket.
2382  */
2383 void
2384 in_pcbsosetlabel(struct socket *so)
2385 {
2386 #ifdef MAC
2387 	struct inpcb *inp;
2388 
2389 	inp = sotoinpcb(so);
2390 	KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL"));
2391 
2392 	INP_WLOCK(inp);
2393 	SOCK_LOCK(so);
2394 	mac_inpcb_sosetlabel(so, inp);
2395 	SOCK_UNLOCK(so);
2396 	INP_WUNLOCK(inp);
2397 #endif
2398 }
2399 
2400 /*
2401  * ipport_tick runs once per second, determining if random port allocation
2402  * should be continued.  If more than ipport_randomcps ports have been
2403  * allocated in the last second, then we return to sequential port
2404  * allocation. We return to random allocation only once we drop below
2405  * ipport_randomcps for at least ipport_randomtime seconds.
2406  */
2407 static void
2408 ipport_tick(void *xtp)
2409 {
2410 	VNET_ITERATOR_DECL(vnet_iter);
2411 
2412 	VNET_LIST_RLOCK_NOSLEEP();
2413 	VNET_FOREACH(vnet_iter) {
2414 		CURVNET_SET(vnet_iter);	/* XXX appease INVARIANTS here */
2415 		if (V_ipport_tcpallocs <=
2416 		    V_ipport_tcplastcount + V_ipport_randomcps) {
2417 			if (V_ipport_stoprandom > 0)
2418 				V_ipport_stoprandom--;
2419 		} else
2420 			V_ipport_stoprandom = V_ipport_randomtime;
2421 		V_ipport_tcplastcount = V_ipport_tcpallocs;
2422 		CURVNET_RESTORE();
2423 	}
2424 	VNET_LIST_RUNLOCK_NOSLEEP();
2425 	callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL);
2426 }
2427 
2428 static void
2429 ip_fini(void *xtp)
2430 {
2431 
2432 	callout_stop(&ipport_tick_callout);
2433 }
2434 
2435 /*
2436  * The ipport_callout should start running at about the time we attach the
2437  * inet or inet6 domains.
2438  */
2439 static void
2440 ipport_tick_init(const void *unused __unused)
2441 {
2442 
2443 	/* Start ipport_tick. */
2444 	callout_init(&ipport_tick_callout, 1);
2445 	callout_reset(&ipport_tick_callout, 1, ipport_tick, NULL);
2446 	EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL,
2447 		SHUTDOWN_PRI_DEFAULT);
2448 }
2449 SYSINIT(ipport_tick_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_MIDDLE,
2450     ipport_tick_init, NULL);
2451 
2452 void
2453 inp_wlock(struct inpcb *inp)
2454 {
2455 
2456 	INP_WLOCK(inp);
2457 }
2458 
2459 void
2460 inp_wunlock(struct inpcb *inp)
2461 {
2462 
2463 	INP_WUNLOCK(inp);
2464 }
2465 
2466 void
2467 inp_rlock(struct inpcb *inp)
2468 {
2469 
2470 	INP_RLOCK(inp);
2471 }
2472 
2473 void
2474 inp_runlock(struct inpcb *inp)
2475 {
2476 
2477 	INP_RUNLOCK(inp);
2478 }
2479 
2480 #ifdef INVARIANT_SUPPORT
2481 void
2482 inp_lock_assert(struct inpcb *inp)
2483 {
2484 
2485 	INP_WLOCK_ASSERT(inp);
2486 }
2487 
2488 void
2489 inp_unlock_assert(struct inpcb *inp)
2490 {
2491 
2492 	INP_UNLOCK_ASSERT(inp);
2493 }
2494 #endif
2495 
2496 void
2497 inp_apply_all(void (*func)(struct inpcb *, void *), void *arg)
2498 {
2499 	struct inpcb *inp;
2500 
2501 	INP_INFO_WLOCK(&V_tcbinfo);
2502 	LIST_FOREACH(inp, V_tcbinfo.ipi_listhead, inp_list) {
2503 		INP_WLOCK(inp);
2504 		func(inp, arg);
2505 		INP_WUNLOCK(inp);
2506 	}
2507 	INP_INFO_WUNLOCK(&V_tcbinfo);
2508 }
2509 
2510 struct socket *
2511 inp_inpcbtosocket(struct inpcb *inp)
2512 {
2513 
2514 	INP_WLOCK_ASSERT(inp);
2515 	return (inp->inp_socket);
2516 }
2517 
2518 struct tcpcb *
2519 inp_inpcbtotcpcb(struct inpcb *inp)
2520 {
2521 
2522 	INP_WLOCK_ASSERT(inp);
2523 	return ((struct tcpcb *)inp->inp_ppcb);
2524 }
2525 
2526 int
2527 inp_ip_tos_get(const struct inpcb *inp)
2528 {
2529 
2530 	return (inp->inp_ip_tos);
2531 }
2532 
2533 void
2534 inp_ip_tos_set(struct inpcb *inp, int val)
2535 {
2536 
2537 	inp->inp_ip_tos = val;
2538 }
2539 
2540 void
2541 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp,
2542     uint32_t *faddr, uint16_t *fp)
2543 {
2544 
2545 	INP_LOCK_ASSERT(inp);
2546 	*laddr = inp->inp_laddr.s_addr;
2547 	*faddr = inp->inp_faddr.s_addr;
2548 	*lp = inp->inp_lport;
2549 	*fp = inp->inp_fport;
2550 }
2551 
2552 struct inpcb *
2553 so_sotoinpcb(struct socket *so)
2554 {
2555 
2556 	return (sotoinpcb(so));
2557 }
2558 
2559 struct tcpcb *
2560 so_sototcpcb(struct socket *so)
2561 {
2562 
2563 	return (sototcpcb(so));
2564 }
2565 
2566 /*
2567  * Create an external-format (``xinpcb'') structure using the information in
2568  * the kernel-format in_pcb structure pointed to by inp.  This is done to
2569  * reduce the spew of irrelevant information over this interface, to isolate
2570  * user code from changes in the kernel structure, and potentially to provide
2571  * information-hiding if we decide that some of this information should be
2572  * hidden from users.
2573  */
2574 void
2575 in_pcbtoxinpcb(const struct inpcb *inp, struct xinpcb *xi)
2576 {
2577 
2578 	xi->xi_len = sizeof(struct xinpcb);
2579 	if (inp->inp_socket)
2580 		sotoxsocket(inp->inp_socket, &xi->xi_socket);
2581 	else
2582 		bzero(&xi->xi_socket, sizeof(struct xsocket));
2583 	bcopy(&inp->inp_inc, &xi->inp_inc, sizeof(struct in_conninfo));
2584 	xi->inp_gencnt = inp->inp_gencnt;
2585 	xi->inp_ppcb = inp->inp_ppcb;
2586 	xi->inp_flow = inp->inp_flow;
2587 	xi->inp_flowid = inp->inp_flowid;
2588 	xi->inp_flowtype = inp->inp_flowtype;
2589 	xi->inp_flags = inp->inp_flags;
2590 	xi->inp_flags2 = inp->inp_flags2;
2591 	xi->inp_rss_listen_bucket = inp->inp_rss_listen_bucket;
2592 	xi->in6p_cksum = inp->in6p_cksum;
2593 	xi->in6p_hops = inp->in6p_hops;
2594 	xi->inp_ip_tos = inp->inp_ip_tos;
2595 	xi->inp_vflag = inp->inp_vflag;
2596 	xi->inp_ip_ttl = inp->inp_ip_ttl;
2597 	xi->inp_ip_p = inp->inp_ip_p;
2598 	xi->inp_ip_minttl = inp->inp_ip_minttl;
2599 }
2600 
2601 #ifdef DDB
2602 static void
2603 db_print_indent(int indent)
2604 {
2605 	int i;
2606 
2607 	for (i = 0; i < indent; i++)
2608 		db_printf(" ");
2609 }
2610 
2611 static void
2612 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent)
2613 {
2614 	char faddr_str[48], laddr_str[48];
2615 
2616 	db_print_indent(indent);
2617 	db_printf("%s at %p\n", name, inc);
2618 
2619 	indent += 2;
2620 
2621 #ifdef INET6
2622 	if (inc->inc_flags & INC_ISIPV6) {
2623 		/* IPv6. */
2624 		ip6_sprintf(laddr_str, &inc->inc6_laddr);
2625 		ip6_sprintf(faddr_str, &inc->inc6_faddr);
2626 	} else
2627 #endif
2628 	{
2629 		/* IPv4. */
2630 		inet_ntoa_r(inc->inc_laddr, laddr_str);
2631 		inet_ntoa_r(inc->inc_faddr, faddr_str);
2632 	}
2633 	db_print_indent(indent);
2634 	db_printf("inc_laddr %s   inc_lport %u\n", laddr_str,
2635 	    ntohs(inc->inc_lport));
2636 	db_print_indent(indent);
2637 	db_printf("inc_faddr %s   inc_fport %u\n", faddr_str,
2638 	    ntohs(inc->inc_fport));
2639 }
2640 
2641 static void
2642 db_print_inpflags(int inp_flags)
2643 {
2644 	int comma;
2645 
2646 	comma = 0;
2647 	if (inp_flags & INP_RECVOPTS) {
2648 		db_printf("%sINP_RECVOPTS", comma ? ", " : "");
2649 		comma = 1;
2650 	}
2651 	if (inp_flags & INP_RECVRETOPTS) {
2652 		db_printf("%sINP_RECVRETOPTS", comma ? ", " : "");
2653 		comma = 1;
2654 	}
2655 	if (inp_flags & INP_RECVDSTADDR) {
2656 		db_printf("%sINP_RECVDSTADDR", comma ? ", " : "");
2657 		comma = 1;
2658 	}
2659 	if (inp_flags & INP_ORIGDSTADDR) {
2660 		db_printf("%sINP_ORIGDSTADDR", comma ? ", " : "");
2661 		comma = 1;
2662 	}
2663 	if (inp_flags & INP_HDRINCL) {
2664 		db_printf("%sINP_HDRINCL", comma ? ", " : "");
2665 		comma = 1;
2666 	}
2667 	if (inp_flags & INP_HIGHPORT) {
2668 		db_printf("%sINP_HIGHPORT", comma ? ", " : "");
2669 		comma = 1;
2670 	}
2671 	if (inp_flags & INP_LOWPORT) {
2672 		db_printf("%sINP_LOWPORT", comma ? ", " : "");
2673 		comma = 1;
2674 	}
2675 	if (inp_flags & INP_ANONPORT) {
2676 		db_printf("%sINP_ANONPORT", comma ? ", " : "");
2677 		comma = 1;
2678 	}
2679 	if (inp_flags & INP_RECVIF) {
2680 		db_printf("%sINP_RECVIF", comma ? ", " : "");
2681 		comma = 1;
2682 	}
2683 	if (inp_flags & INP_MTUDISC) {
2684 		db_printf("%sINP_MTUDISC", comma ? ", " : "");
2685 		comma = 1;
2686 	}
2687 	if (inp_flags & INP_RECVTTL) {
2688 		db_printf("%sINP_RECVTTL", comma ? ", " : "");
2689 		comma = 1;
2690 	}
2691 	if (inp_flags & INP_DONTFRAG) {
2692 		db_printf("%sINP_DONTFRAG", comma ? ", " : "");
2693 		comma = 1;
2694 	}
2695 	if (inp_flags & INP_RECVTOS) {
2696 		db_printf("%sINP_RECVTOS", comma ? ", " : "");
2697 		comma = 1;
2698 	}
2699 	if (inp_flags & IN6P_IPV6_V6ONLY) {
2700 		db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : "");
2701 		comma = 1;
2702 	}
2703 	if (inp_flags & IN6P_PKTINFO) {
2704 		db_printf("%sIN6P_PKTINFO", comma ? ", " : "");
2705 		comma = 1;
2706 	}
2707 	if (inp_flags & IN6P_HOPLIMIT) {
2708 		db_printf("%sIN6P_HOPLIMIT", comma ? ", " : "");
2709 		comma = 1;
2710 	}
2711 	if (inp_flags & IN6P_HOPOPTS) {
2712 		db_printf("%sIN6P_HOPOPTS", comma ? ", " : "");
2713 		comma = 1;
2714 	}
2715 	if (inp_flags & IN6P_DSTOPTS) {
2716 		db_printf("%sIN6P_DSTOPTS", comma ? ", " : "");
2717 		comma = 1;
2718 	}
2719 	if (inp_flags & IN6P_RTHDR) {
2720 		db_printf("%sIN6P_RTHDR", comma ? ", " : "");
2721 		comma = 1;
2722 	}
2723 	if (inp_flags & IN6P_RTHDRDSTOPTS) {
2724 		db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : "");
2725 		comma = 1;
2726 	}
2727 	if (inp_flags & IN6P_TCLASS) {
2728 		db_printf("%sIN6P_TCLASS", comma ? ", " : "");
2729 		comma = 1;
2730 	}
2731 	if (inp_flags & IN6P_AUTOFLOWLABEL) {
2732 		db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : "");
2733 		comma = 1;
2734 	}
2735 	if (inp_flags & INP_TIMEWAIT) {
2736 		db_printf("%sINP_TIMEWAIT", comma ? ", " : "");
2737 		comma  = 1;
2738 	}
2739 	if (inp_flags & INP_ONESBCAST) {
2740 		db_printf("%sINP_ONESBCAST", comma ? ", " : "");
2741 		comma  = 1;
2742 	}
2743 	if (inp_flags & INP_DROPPED) {
2744 		db_printf("%sINP_DROPPED", comma ? ", " : "");
2745 		comma  = 1;
2746 	}
2747 	if (inp_flags & INP_SOCKREF) {
2748 		db_printf("%sINP_SOCKREF", comma ? ", " : "");
2749 		comma  = 1;
2750 	}
2751 	if (inp_flags & IN6P_RFC2292) {
2752 		db_printf("%sIN6P_RFC2292", comma ? ", " : "");
2753 		comma = 1;
2754 	}
2755 	if (inp_flags & IN6P_MTU) {
2756 		db_printf("IN6P_MTU%s", comma ? ", " : "");
2757 		comma = 1;
2758 	}
2759 }
2760 
2761 static void
2762 db_print_inpvflag(u_char inp_vflag)
2763 {
2764 	int comma;
2765 
2766 	comma = 0;
2767 	if (inp_vflag & INP_IPV4) {
2768 		db_printf("%sINP_IPV4", comma ? ", " : "");
2769 		comma  = 1;
2770 	}
2771 	if (inp_vflag & INP_IPV6) {
2772 		db_printf("%sINP_IPV6", comma ? ", " : "");
2773 		comma  = 1;
2774 	}
2775 	if (inp_vflag & INP_IPV6PROTO) {
2776 		db_printf("%sINP_IPV6PROTO", comma ? ", " : "");
2777 		comma  = 1;
2778 	}
2779 }
2780 
2781 static void
2782 db_print_inpcb(struct inpcb *inp, const char *name, int indent)
2783 {
2784 
2785 	db_print_indent(indent);
2786 	db_printf("%s at %p\n", name, inp);
2787 
2788 	indent += 2;
2789 
2790 	db_print_indent(indent);
2791 	db_printf("inp_flow: 0x%x\n", inp->inp_flow);
2792 
2793 	db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent);
2794 
2795 	db_print_indent(indent);
2796 	db_printf("inp_ppcb: %p   inp_pcbinfo: %p   inp_socket: %p\n",
2797 	    inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket);
2798 
2799 	db_print_indent(indent);
2800 	db_printf("inp_label: %p   inp_flags: 0x%x (",
2801 	   inp->inp_label, inp->inp_flags);
2802 	db_print_inpflags(inp->inp_flags);
2803 	db_printf(")\n");
2804 
2805 	db_print_indent(indent);
2806 	db_printf("inp_sp: %p   inp_vflag: 0x%x (", inp->inp_sp,
2807 	    inp->inp_vflag);
2808 	db_print_inpvflag(inp->inp_vflag);
2809 	db_printf(")\n");
2810 
2811 	db_print_indent(indent);
2812 	db_printf("inp_ip_ttl: %d   inp_ip_p: %d   inp_ip_minttl: %d\n",
2813 	    inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl);
2814 
2815 	db_print_indent(indent);
2816 #ifdef INET6
2817 	if (inp->inp_vflag & INP_IPV6) {
2818 		db_printf("in6p_options: %p   in6p_outputopts: %p   "
2819 		    "in6p_moptions: %p\n", inp->in6p_options,
2820 		    inp->in6p_outputopts, inp->in6p_moptions);
2821 		db_printf("in6p_icmp6filt: %p   in6p_cksum %d   "
2822 		    "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum,
2823 		    inp->in6p_hops);
2824 	} else
2825 #endif
2826 	{
2827 		db_printf("inp_ip_tos: %d   inp_ip_options: %p   "
2828 		    "inp_ip_moptions: %p\n", inp->inp_ip_tos,
2829 		    inp->inp_options, inp->inp_moptions);
2830 	}
2831 
2832 	db_print_indent(indent);
2833 	db_printf("inp_phd: %p   inp_gencnt: %ju\n", inp->inp_phd,
2834 	    (uintmax_t)inp->inp_gencnt);
2835 }
2836 
2837 DB_SHOW_COMMAND(inpcb, db_show_inpcb)
2838 {
2839 	struct inpcb *inp;
2840 
2841 	if (!have_addr) {
2842 		db_printf("usage: show inpcb <addr>\n");
2843 		return;
2844 	}
2845 	inp = (struct inpcb *)addr;
2846 
2847 	db_print_inpcb(inp, "inpcb", 0);
2848 }
2849 #endif /* DDB */
2850 
2851 #ifdef RATELIMIT
2852 /*
2853  * Modify TX rate limit based on the existing "inp->inp_snd_tag",
2854  * if any.
2855  */
2856 int
2857 in_pcbmodify_txrtlmt(struct inpcb *inp, uint32_t max_pacing_rate)
2858 {
2859 	union if_snd_tag_modify_params params = {
2860 		.rate_limit.max_rate = max_pacing_rate,
2861 	};
2862 	struct m_snd_tag *mst;
2863 	struct ifnet *ifp;
2864 	int error;
2865 
2866 	mst = inp->inp_snd_tag;
2867 	if (mst == NULL)
2868 		return (EINVAL);
2869 
2870 	ifp = mst->ifp;
2871 	if (ifp == NULL)
2872 		return (EINVAL);
2873 
2874 	if (ifp->if_snd_tag_modify == NULL) {
2875 		error = EOPNOTSUPP;
2876 	} else {
2877 		error = ifp->if_snd_tag_modify(mst, &params);
2878 	}
2879 	return (error);
2880 }
2881 
2882 /*
2883  * Query existing TX rate limit based on the existing
2884  * "inp->inp_snd_tag", if any.
2885  */
2886 int
2887 in_pcbquery_txrtlmt(struct inpcb *inp, uint32_t *p_max_pacing_rate)
2888 {
2889 	union if_snd_tag_query_params params = { };
2890 	struct m_snd_tag *mst;
2891 	struct ifnet *ifp;
2892 	int error;
2893 
2894 	mst = inp->inp_snd_tag;
2895 	if (mst == NULL)
2896 		return (EINVAL);
2897 
2898 	ifp = mst->ifp;
2899 	if (ifp == NULL)
2900 		return (EINVAL);
2901 
2902 	if (ifp->if_snd_tag_query == NULL) {
2903 		error = EOPNOTSUPP;
2904 	} else {
2905 		error = ifp->if_snd_tag_query(mst, &params);
2906 		if (error == 0 &&  p_max_pacing_rate != NULL)
2907 			*p_max_pacing_rate = params.rate_limit.max_rate;
2908 	}
2909 	return (error);
2910 }
2911 
2912 /*
2913  * Query existing TX queue level based on the existing
2914  * "inp->inp_snd_tag", if any.
2915  */
2916 int
2917 in_pcbquery_txrlevel(struct inpcb *inp, uint32_t *p_txqueue_level)
2918 {
2919 	union if_snd_tag_query_params params = { };
2920 	struct m_snd_tag *mst;
2921 	struct ifnet *ifp;
2922 	int error;
2923 
2924 	mst = inp->inp_snd_tag;
2925 	if (mst == NULL)
2926 		return (EINVAL);
2927 
2928 	ifp = mst->ifp;
2929 	if (ifp == NULL)
2930 		return (EINVAL);
2931 
2932 	if (ifp->if_snd_tag_query == NULL)
2933 		return (EOPNOTSUPP);
2934 
2935 	error = ifp->if_snd_tag_query(mst, &params);
2936 	if (error == 0 &&  p_txqueue_level != NULL)
2937 		*p_txqueue_level = params.rate_limit.queue_level;
2938 	return (error);
2939 }
2940 
2941 /*
2942  * Allocate a new TX rate limit send tag from the network interface
2943  * given by the "ifp" argument and save it in "inp->inp_snd_tag":
2944  */
2945 int
2946 in_pcbattach_txrtlmt(struct inpcb *inp, struct ifnet *ifp,
2947     uint32_t flowtype, uint32_t flowid, uint32_t max_pacing_rate)
2948 {
2949 	union if_snd_tag_alloc_params params = {
2950 		.rate_limit.hdr.type = (max_pacing_rate == -1U) ?
2951 		    IF_SND_TAG_TYPE_UNLIMITED : IF_SND_TAG_TYPE_RATE_LIMIT,
2952 		.rate_limit.hdr.flowid = flowid,
2953 		.rate_limit.hdr.flowtype = flowtype,
2954 		.rate_limit.max_rate = max_pacing_rate,
2955 	};
2956 	int error;
2957 
2958 	INP_WLOCK_ASSERT(inp);
2959 
2960 	if (inp->inp_snd_tag != NULL)
2961 		return (EINVAL);
2962 
2963 	if (ifp->if_snd_tag_alloc == NULL) {
2964 		error = EOPNOTSUPP;
2965 	} else {
2966 		error = ifp->if_snd_tag_alloc(ifp, &params, &inp->inp_snd_tag);
2967 
2968 		/*
2969 		 * At success increment the refcount on
2970 		 * the send tag's network interface:
2971 		 */
2972 		if (error == 0)
2973 			if_ref(inp->inp_snd_tag->ifp);
2974 	}
2975 	return (error);
2976 }
2977 
2978 /*
2979  * Free an existing TX rate limit tag based on the "inp->inp_snd_tag",
2980  * if any:
2981  */
2982 void
2983 in_pcbdetach_txrtlmt(struct inpcb *inp)
2984 {
2985 	struct m_snd_tag *mst;
2986 	struct ifnet *ifp;
2987 
2988 	INP_WLOCK_ASSERT(inp);
2989 
2990 	mst = inp->inp_snd_tag;
2991 	inp->inp_snd_tag = NULL;
2992 
2993 	if (mst == NULL)
2994 		return;
2995 
2996 	ifp = mst->ifp;
2997 	if (ifp == NULL)
2998 		return;
2999 
3000 	/*
3001 	 * If the device was detached while we still had reference(s)
3002 	 * on the ifp, we assume if_snd_tag_free() was replaced with
3003 	 * stubs.
3004 	 */
3005 	ifp->if_snd_tag_free(mst);
3006 
3007 	/* release reference count on network interface */
3008 	if_rele(ifp);
3009 }
3010 
3011 /*
3012  * This function should be called when the INP_RATE_LIMIT_CHANGED flag
3013  * is set in the fast path and will attach/detach/modify the TX rate
3014  * limit send tag based on the socket's so_max_pacing_rate value.
3015  */
3016 void
3017 in_pcboutput_txrtlmt(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb)
3018 {
3019 	struct socket *socket;
3020 	uint32_t max_pacing_rate;
3021 	bool did_upgrade;
3022 	int error;
3023 
3024 	if (inp == NULL)
3025 		return;
3026 
3027 	socket = inp->inp_socket;
3028 	if (socket == NULL)
3029 		return;
3030 
3031 	if (!INP_WLOCKED(inp)) {
3032 		/*
3033 		 * NOTE: If the write locking fails, we need to bail
3034 		 * out and use the non-ratelimited ring for the
3035 		 * transmit until there is a new chance to get the
3036 		 * write lock.
3037 		 */
3038 		if (!INP_TRY_UPGRADE(inp))
3039 			return;
3040 		did_upgrade = 1;
3041 	} else {
3042 		did_upgrade = 0;
3043 	}
3044 
3045 	/*
3046 	 * NOTE: The so_max_pacing_rate value is read unlocked,
3047 	 * because atomic updates are not required since the variable
3048 	 * is checked at every mbuf we send. It is assumed that the
3049 	 * variable read itself will be atomic.
3050 	 */
3051 	max_pacing_rate = socket->so_max_pacing_rate;
3052 
3053 	/*
3054 	 * NOTE: When attaching to a network interface a reference is
3055 	 * made to ensure the network interface doesn't go away until
3056 	 * all ratelimit connections are gone. The network interface
3057 	 * pointers compared below represent valid network interfaces,
3058 	 * except when comparing towards NULL.
3059 	 */
3060 	if (max_pacing_rate == 0 && inp->inp_snd_tag == NULL) {
3061 		error = 0;
3062 	} else if (!(ifp->if_capenable & IFCAP_TXRTLMT)) {
3063 		if (inp->inp_snd_tag != NULL)
3064 			in_pcbdetach_txrtlmt(inp);
3065 		error = 0;
3066 	} else if (inp->inp_snd_tag == NULL) {
3067 		/*
3068 		 * In order to utilize packet pacing with RSS, we need
3069 		 * to wait until there is a valid RSS hash before we
3070 		 * can proceed:
3071 		 */
3072 		if (M_HASHTYPE_GET(mb) == M_HASHTYPE_NONE) {
3073 			error = EAGAIN;
3074 		} else {
3075 			error = in_pcbattach_txrtlmt(inp, ifp, M_HASHTYPE_GET(mb),
3076 			    mb->m_pkthdr.flowid, max_pacing_rate);
3077 		}
3078 	} else {
3079 		error = in_pcbmodify_txrtlmt(inp, max_pacing_rate);
3080 	}
3081 	if (error == 0 || error == EOPNOTSUPP)
3082 		inp->inp_flags2 &= ~INP_RATE_LIMIT_CHANGED;
3083 	if (did_upgrade)
3084 		INP_DOWNGRADE(inp);
3085 }
3086 
3087 /*
3088  * Track route changes for TX rate limiting.
3089  */
3090 void
3091 in_pcboutput_eagain(struct inpcb *inp)
3092 {
3093 	struct socket *socket;
3094 	bool did_upgrade;
3095 
3096 	if (inp == NULL)
3097 		return;
3098 
3099 	socket = inp->inp_socket;
3100 	if (socket == NULL)
3101 		return;
3102 
3103 	if (inp->inp_snd_tag == NULL)
3104 		return;
3105 
3106 	if (!INP_WLOCKED(inp)) {
3107 		/*
3108 		 * NOTE: If the write locking fails, we need to bail
3109 		 * out and use the non-ratelimited ring for the
3110 		 * transmit until there is a new chance to get the
3111 		 * write lock.
3112 		 */
3113 		if (!INP_TRY_UPGRADE(inp))
3114 			return;
3115 		did_upgrade = 1;
3116 	} else {
3117 		did_upgrade = 0;
3118 	}
3119 
3120 	/* detach rate limiting */
3121 	in_pcbdetach_txrtlmt(inp);
3122 
3123 	/* make sure new mbuf send tag allocation is made */
3124 	inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED;
3125 
3126 	if (did_upgrade)
3127 		INP_DOWNGRADE(inp);
3128 }
3129 #endif /* RATELIMIT */
3130