xref: /freebsd/sys/netinet/in_pcb.c (revision ddd5b8e9b4d8957fce018c520657cdfa4ecffad3)
1 /*-
2  * Copyright (c) 1982, 1986, 1991, 1993, 1995
3  *	The Regents of the University of California.
4  * Copyright (c) 2007-2009 Robert N. M. Watson
5  * Copyright (c) 2010-2011 Juniper Networks, Inc.
6  * All rights reserved.
7  *
8  * Portions of this software were developed by Robert N. M. Watson under
9  * contract to Juniper Networks, Inc.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 4. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *	@(#)in_pcb.c	8.4 (Berkeley) 5/24/95
36  */
37 
38 #include <sys/cdefs.h>
39 __FBSDID("$FreeBSD$");
40 
41 #include "opt_ddb.h"
42 #include "opt_ipsec.h"
43 #include "opt_inet.h"
44 #include "opt_inet6.h"
45 #include "opt_pcbgroup.h"
46 
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/malloc.h>
50 #include <sys/mbuf.h>
51 #include <sys/callout.h>
52 #include <sys/domain.h>
53 #include <sys/protosw.h>
54 #include <sys/socket.h>
55 #include <sys/socketvar.h>
56 #include <sys/priv.h>
57 #include <sys/proc.h>
58 #include <sys/refcount.h>
59 #include <sys/jail.h>
60 #include <sys/kernel.h>
61 #include <sys/sysctl.h>
62 
63 #ifdef DDB
64 #include <ddb/ddb.h>
65 #endif
66 
67 #include <vm/uma.h>
68 
69 #include <net/if.h>
70 #include <net/if_types.h>
71 #include <net/route.h>
72 #include <net/vnet.h>
73 
74 #if defined(INET) || defined(INET6)
75 #include <netinet/in.h>
76 #include <netinet/in_pcb.h>
77 #include <netinet/ip_var.h>
78 #include <netinet/tcp_var.h>
79 #include <netinet/udp.h>
80 #include <netinet/udp_var.h>
81 #endif
82 #ifdef INET
83 #include <netinet/in_var.h>
84 #endif
85 #ifdef INET6
86 #include <netinet/ip6.h>
87 #include <netinet6/in6_pcb.h>
88 #include <netinet6/in6_var.h>
89 #include <netinet6/ip6_var.h>
90 #endif /* INET6 */
91 
92 
93 #ifdef IPSEC
94 #include <netipsec/ipsec.h>
95 #include <netipsec/key.h>
96 #endif /* IPSEC */
97 
98 #include <security/mac/mac_framework.h>
99 
100 static struct callout	ipport_tick_callout;
101 
102 /*
103  * These configure the range of local port addresses assigned to
104  * "unspecified" outgoing connections/packets/whatever.
105  */
106 VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1;	/* 1023 */
107 VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART;	/* 600 */
108 VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST;	/* 10000 */
109 VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST;	/* 65535 */
110 VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO;	/* 49152 */
111 VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO;	/* 65535 */
112 
113 /*
114  * Reserved ports accessible only to root. There are significant
115  * security considerations that must be accounted for when changing these,
116  * but the security benefits can be great. Please be careful.
117  */
118 VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1;	/* 1023 */
119 VNET_DEFINE(int, ipport_reservedlow);
120 
121 /* Variables dealing with random ephemeral port allocation. */
122 VNET_DEFINE(int, ipport_randomized) = 1;	/* user controlled via sysctl */
123 VNET_DEFINE(int, ipport_randomcps) = 10;	/* user controlled via sysctl */
124 VNET_DEFINE(int, ipport_randomtime) = 45;	/* user controlled via sysctl */
125 VNET_DEFINE(int, ipport_stoprandom);		/* toggled by ipport_tick */
126 VNET_DEFINE(int, ipport_tcpallocs);
127 static VNET_DEFINE(int, ipport_tcplastcount);
128 
129 #define	V_ipport_tcplastcount		VNET(ipport_tcplastcount)
130 
131 static void	in_pcbremlists(struct inpcb *inp);
132 #ifdef INET
133 static struct inpcb	*in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo,
134 			    struct in_addr faddr, u_int fport_arg,
135 			    struct in_addr laddr, u_int lport_arg,
136 			    int lookupflags, struct ifnet *ifp);
137 
138 #define RANGECHK(var, min, max) \
139 	if ((var) < (min)) { (var) = (min); } \
140 	else if ((var) > (max)) { (var) = (max); }
141 
142 static int
143 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS)
144 {
145 	int error;
146 
147 #ifdef VIMAGE
148 	error = vnet_sysctl_handle_int(oidp, arg1, arg2, req);
149 #else
150 	error = sysctl_handle_int(oidp, arg1, arg2, req);
151 #endif
152 	if (error == 0) {
153 		RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1);
154 		RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1);
155 		RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX);
156 		RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX);
157 		RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX);
158 		RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX);
159 	}
160 	return (error);
161 }
162 
163 #undef RANGECHK
164 
165 static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, CTLFLAG_RW, 0,
166     "IP Ports");
167 
168 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst,
169 	CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_lowfirstauto), 0,
170 	&sysctl_net_ipport_check, "I", "");
171 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast,
172 	CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_lowlastauto), 0,
173 	&sysctl_net_ipport_check, "I", "");
174 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, first,
175 	CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_firstauto), 0,
176 	&sysctl_net_ipport_check, "I", "");
177 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, last,
178 	CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_lastauto), 0,
179 	&sysctl_net_ipport_check, "I", "");
180 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst,
181 	CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_hifirstauto), 0,
182 	&sysctl_net_ipport_check, "I", "");
183 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, hilast,
184 	CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_hilastauto), 0,
185 	&sysctl_net_ipport_check, "I", "");
186 SYSCTL_VNET_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh,
187 	CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedhigh), 0, "");
188 SYSCTL_VNET_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow,
189 	CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, "");
190 SYSCTL_VNET_INT(_net_inet_ip_portrange, OID_AUTO, randomized, CTLFLAG_RW,
191 	&VNET_NAME(ipport_randomized), 0, "Enable random port allocation");
192 SYSCTL_VNET_INT(_net_inet_ip_portrange, OID_AUTO, randomcps, CTLFLAG_RW,
193 	&VNET_NAME(ipport_randomcps), 0, "Maximum number of random port "
194 	"allocations before switching to a sequental one");
195 SYSCTL_VNET_INT(_net_inet_ip_portrange, OID_AUTO, randomtime, CTLFLAG_RW,
196 	&VNET_NAME(ipport_randomtime), 0,
197 	"Minimum time to keep sequental port "
198 	"allocation before switching to a random one");
199 #endif /* INET */
200 
201 /*
202  * in_pcb.c: manage the Protocol Control Blocks.
203  *
204  * NOTE: It is assumed that most of these functions will be called with
205  * the pcbinfo lock held, and often, the inpcb lock held, as these utility
206  * functions often modify hash chains or addresses in pcbs.
207  */
208 
209 /*
210  * Initialize an inpcbinfo -- we should be able to reduce the number of
211  * arguments in time.
212  */
213 void
214 in_pcbinfo_init(struct inpcbinfo *pcbinfo, const char *name,
215     struct inpcbhead *listhead, int hash_nelements, int porthash_nelements,
216     char *inpcbzone_name, uma_init inpcbzone_init, uma_fini inpcbzone_fini,
217     uint32_t inpcbzone_flags, u_int hashfields)
218 {
219 
220 	INP_INFO_LOCK_INIT(pcbinfo, name);
221 	INP_HASH_LOCK_INIT(pcbinfo, "pcbinfohash");	/* XXXRW: argument? */
222 #ifdef VIMAGE
223 	pcbinfo->ipi_vnet = curvnet;
224 #endif
225 	pcbinfo->ipi_listhead = listhead;
226 	LIST_INIT(pcbinfo->ipi_listhead);
227 	pcbinfo->ipi_count = 0;
228 	pcbinfo->ipi_hashbase = hashinit(hash_nelements, M_PCB,
229 	    &pcbinfo->ipi_hashmask);
230 	pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB,
231 	    &pcbinfo->ipi_porthashmask);
232 #ifdef PCBGROUP
233 	in_pcbgroup_init(pcbinfo, hashfields, hash_nelements);
234 #endif
235 	pcbinfo->ipi_zone = uma_zcreate(inpcbzone_name, sizeof(struct inpcb),
236 	    NULL, NULL, inpcbzone_init, inpcbzone_fini, UMA_ALIGN_PTR,
237 	    inpcbzone_flags);
238 	uma_zone_set_max(pcbinfo->ipi_zone, maxsockets);
239 	uma_zone_set_warning(pcbinfo->ipi_zone,
240 	    "kern.ipc.maxsockets limit reached");
241 }
242 
243 /*
244  * Destroy an inpcbinfo.
245  */
246 void
247 in_pcbinfo_destroy(struct inpcbinfo *pcbinfo)
248 {
249 
250 	KASSERT(pcbinfo->ipi_count == 0,
251 	    ("%s: ipi_count = %u", __func__, pcbinfo->ipi_count));
252 
253 	hashdestroy(pcbinfo->ipi_hashbase, M_PCB, pcbinfo->ipi_hashmask);
254 	hashdestroy(pcbinfo->ipi_porthashbase, M_PCB,
255 	    pcbinfo->ipi_porthashmask);
256 #ifdef PCBGROUP
257 	in_pcbgroup_destroy(pcbinfo);
258 #endif
259 	uma_zdestroy(pcbinfo->ipi_zone);
260 	INP_HASH_LOCK_DESTROY(pcbinfo);
261 	INP_INFO_LOCK_DESTROY(pcbinfo);
262 }
263 
264 /*
265  * Allocate a PCB and associate it with the socket.
266  * On success return with the PCB locked.
267  */
268 int
269 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo)
270 {
271 	struct inpcb *inp;
272 	int error;
273 
274 	INP_INFO_WLOCK_ASSERT(pcbinfo);
275 	error = 0;
276 	inp = uma_zalloc(pcbinfo->ipi_zone, M_NOWAIT);
277 	if (inp == NULL)
278 		return (ENOBUFS);
279 	bzero(inp, inp_zero_size);
280 	inp->inp_pcbinfo = pcbinfo;
281 	inp->inp_socket = so;
282 	inp->inp_cred = crhold(so->so_cred);
283 	inp->inp_inc.inc_fibnum = so->so_fibnum;
284 #ifdef MAC
285 	error = mac_inpcb_init(inp, M_NOWAIT);
286 	if (error != 0)
287 		goto out;
288 	mac_inpcb_create(so, inp);
289 #endif
290 #ifdef IPSEC
291 	error = ipsec_init_policy(so, &inp->inp_sp);
292 	if (error != 0) {
293 #ifdef MAC
294 		mac_inpcb_destroy(inp);
295 #endif
296 		goto out;
297 	}
298 #endif /*IPSEC*/
299 #ifdef INET6
300 	if (INP_SOCKAF(so) == AF_INET6) {
301 		inp->inp_vflag |= INP_IPV6PROTO;
302 		if (V_ip6_v6only)
303 			inp->inp_flags |= IN6P_IPV6_V6ONLY;
304 	}
305 #endif
306 	LIST_INSERT_HEAD(pcbinfo->ipi_listhead, inp, inp_list);
307 	pcbinfo->ipi_count++;
308 	so->so_pcb = (caddr_t)inp;
309 #ifdef INET6
310 	if (V_ip6_auto_flowlabel)
311 		inp->inp_flags |= IN6P_AUTOFLOWLABEL;
312 #endif
313 	INP_WLOCK(inp);
314 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
315 	refcount_init(&inp->inp_refcount, 1);	/* Reference from inpcbinfo */
316 #if defined(IPSEC) || defined(MAC)
317 out:
318 	if (error != 0) {
319 		crfree(inp->inp_cred);
320 		uma_zfree(pcbinfo->ipi_zone, inp);
321 	}
322 #endif
323 	return (error);
324 }
325 
326 #ifdef INET
327 int
328 in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
329 {
330 	int anonport, error;
331 
332 	INP_WLOCK_ASSERT(inp);
333 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
334 
335 	if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY)
336 		return (EINVAL);
337 	anonport = nam == NULL || ((struct sockaddr_in *)nam)->sin_port == 0;
338 	error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr,
339 	    &inp->inp_lport, cred);
340 	if (error)
341 		return (error);
342 	if (in_pcbinshash(inp) != 0) {
343 		inp->inp_laddr.s_addr = INADDR_ANY;
344 		inp->inp_lport = 0;
345 		return (EAGAIN);
346 	}
347 	if (anonport)
348 		inp->inp_flags |= INP_ANONPORT;
349 	return (0);
350 }
351 #endif
352 
353 #if defined(INET) || defined(INET6)
354 int
355 in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp,
356     struct ucred *cred, int lookupflags)
357 {
358 	struct inpcbinfo *pcbinfo;
359 	struct inpcb *tmpinp;
360 	unsigned short *lastport;
361 	int count, dorandom, error;
362 	u_short aux, first, last, lport;
363 #ifdef INET
364 	struct in_addr laddr;
365 #endif
366 
367 	pcbinfo = inp->inp_pcbinfo;
368 
369 	/*
370 	 * Because no actual state changes occur here, a global write lock on
371 	 * the pcbinfo isn't required.
372 	 */
373 	INP_LOCK_ASSERT(inp);
374 	INP_HASH_LOCK_ASSERT(pcbinfo);
375 
376 	if (inp->inp_flags & INP_HIGHPORT) {
377 		first = V_ipport_hifirstauto;	/* sysctl */
378 		last  = V_ipport_hilastauto;
379 		lastport = &pcbinfo->ipi_lasthi;
380 	} else if (inp->inp_flags & INP_LOWPORT) {
381 		error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT, 0);
382 		if (error)
383 			return (error);
384 		first = V_ipport_lowfirstauto;	/* 1023 */
385 		last  = V_ipport_lowlastauto;	/* 600 */
386 		lastport = &pcbinfo->ipi_lastlow;
387 	} else {
388 		first = V_ipport_firstauto;	/* sysctl */
389 		last  = V_ipport_lastauto;
390 		lastport = &pcbinfo->ipi_lastport;
391 	}
392 	/*
393 	 * For UDP, use random port allocation as long as the user
394 	 * allows it.  For TCP (and as of yet unknown) connections,
395 	 * use random port allocation only if the user allows it AND
396 	 * ipport_tick() allows it.
397 	 */
398 	if (V_ipport_randomized &&
399 		(!V_ipport_stoprandom || pcbinfo == &V_udbinfo))
400 		dorandom = 1;
401 	else
402 		dorandom = 0;
403 	/*
404 	 * It makes no sense to do random port allocation if
405 	 * we have the only port available.
406 	 */
407 	if (first == last)
408 		dorandom = 0;
409 	/* Make sure to not include UDP packets in the count. */
410 	if (pcbinfo != &V_udbinfo)
411 		V_ipport_tcpallocs++;
412 	/*
413 	 * Instead of having two loops further down counting up or down
414 	 * make sure that first is always <= last and go with only one
415 	 * code path implementing all logic.
416 	 */
417 	if (first > last) {
418 		aux = first;
419 		first = last;
420 		last = aux;
421 	}
422 
423 #ifdef INET
424 	/* Make the compiler happy. */
425 	laddr.s_addr = 0;
426 	if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) {
427 		KASSERT(laddrp != NULL, ("%s: laddrp NULL for v4 inp %p",
428 		    __func__, inp));
429 		laddr = *laddrp;
430 	}
431 #endif
432 	tmpinp = NULL;	/* Make compiler happy. */
433 	lport = *lportp;
434 
435 	if (dorandom)
436 		*lastport = first + (arc4random() % (last - first));
437 
438 	count = last - first;
439 
440 	do {
441 		if (count-- < 0)	/* completely used? */
442 			return (EADDRNOTAVAIL);
443 		++*lastport;
444 		if (*lastport < first || *lastport > last)
445 			*lastport = first;
446 		lport = htons(*lastport);
447 
448 #ifdef INET6
449 		if ((inp->inp_vflag & INP_IPV6) != 0)
450 			tmpinp = in6_pcblookup_local(pcbinfo,
451 			    &inp->in6p_laddr, lport, lookupflags, cred);
452 #endif
453 #if defined(INET) && defined(INET6)
454 		else
455 #endif
456 #ifdef INET
457 			tmpinp = in_pcblookup_local(pcbinfo, laddr,
458 			    lport, lookupflags, cred);
459 #endif
460 	} while (tmpinp != NULL);
461 
462 #ifdef INET
463 	if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4)
464 		laddrp->s_addr = laddr.s_addr;
465 #endif
466 	*lportp = lport;
467 
468 	return (0);
469 }
470 #endif /* INET || INET6 */
471 
472 #ifdef INET
473 /*
474  * Set up a bind operation on a PCB, performing port allocation
475  * as required, but do not actually modify the PCB. Callers can
476  * either complete the bind by setting inp_laddr/inp_lport and
477  * calling in_pcbinshash(), or they can just use the resulting
478  * port and address to authorise the sending of a once-off packet.
479  *
480  * On error, the values of *laddrp and *lportp are not changed.
481  */
482 int
483 in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp,
484     u_short *lportp, struct ucred *cred)
485 {
486 	struct socket *so = inp->inp_socket;
487 	struct sockaddr_in *sin;
488 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
489 	struct in_addr laddr;
490 	u_short lport = 0;
491 	int lookupflags = 0, reuseport = (so->so_options & SO_REUSEPORT);
492 	int error;
493 
494 	/*
495 	 * No state changes, so read locks are sufficient here.
496 	 */
497 	INP_LOCK_ASSERT(inp);
498 	INP_HASH_LOCK_ASSERT(pcbinfo);
499 
500 	if (TAILQ_EMPTY(&V_in_ifaddrhead)) /* XXX broken! */
501 		return (EADDRNOTAVAIL);
502 	laddr.s_addr = *laddrp;
503 	if (nam != NULL && laddr.s_addr != INADDR_ANY)
504 		return (EINVAL);
505 	if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) == 0)
506 		lookupflags = INPLOOKUP_WILDCARD;
507 	if (nam == NULL) {
508 		if ((error = prison_local_ip4(cred, &laddr)) != 0)
509 			return (error);
510 	} else {
511 		sin = (struct sockaddr_in *)nam;
512 		if (nam->sa_len != sizeof (*sin))
513 			return (EINVAL);
514 #ifdef notdef
515 		/*
516 		 * We should check the family, but old programs
517 		 * incorrectly fail to initialize it.
518 		 */
519 		if (sin->sin_family != AF_INET)
520 			return (EAFNOSUPPORT);
521 #endif
522 		error = prison_local_ip4(cred, &sin->sin_addr);
523 		if (error)
524 			return (error);
525 		if (sin->sin_port != *lportp) {
526 			/* Don't allow the port to change. */
527 			if (*lportp != 0)
528 				return (EINVAL);
529 			lport = sin->sin_port;
530 		}
531 		/* NB: lport is left as 0 if the port isn't being changed. */
532 		if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) {
533 			/*
534 			 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast;
535 			 * allow complete duplication of binding if
536 			 * SO_REUSEPORT is set, or if SO_REUSEADDR is set
537 			 * and a multicast address is bound on both
538 			 * new and duplicated sockets.
539 			 */
540 			if (so->so_options & SO_REUSEADDR)
541 				reuseport = SO_REUSEADDR|SO_REUSEPORT;
542 		} else if (sin->sin_addr.s_addr != INADDR_ANY) {
543 			sin->sin_port = 0;		/* yech... */
544 			bzero(&sin->sin_zero, sizeof(sin->sin_zero));
545 			/*
546 			 * Is the address a local IP address?
547 			 * If INP_BINDANY is set, then the socket may be bound
548 			 * to any endpoint address, local or not.
549 			 */
550 			if ((inp->inp_flags & INP_BINDANY) == 0 &&
551 			    ifa_ifwithaddr_check((struct sockaddr *)sin) == 0)
552 				return (EADDRNOTAVAIL);
553 		}
554 		laddr = sin->sin_addr;
555 		if (lport) {
556 			struct inpcb *t;
557 			struct tcptw *tw;
558 
559 			/* GROSS */
560 			if (ntohs(lport) <= V_ipport_reservedhigh &&
561 			    ntohs(lport) >= V_ipport_reservedlow &&
562 			    priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT,
563 			    0))
564 				return (EACCES);
565 			if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) &&
566 			    priv_check_cred(inp->inp_cred,
567 			    PRIV_NETINET_REUSEPORT, 0) != 0) {
568 				t = in_pcblookup_local(pcbinfo, sin->sin_addr,
569 				    lport, INPLOOKUP_WILDCARD, cred);
570 	/*
571 	 * XXX
572 	 * This entire block sorely needs a rewrite.
573 	 */
574 				if (t &&
575 				    ((t->inp_flags & INP_TIMEWAIT) == 0) &&
576 				    (so->so_type != SOCK_STREAM ||
577 				     ntohl(t->inp_faddr.s_addr) == INADDR_ANY) &&
578 				    (ntohl(sin->sin_addr.s_addr) != INADDR_ANY ||
579 				     ntohl(t->inp_laddr.s_addr) != INADDR_ANY ||
580 				     (t->inp_flags2 & INP_REUSEPORT) == 0) &&
581 				    (inp->inp_cred->cr_uid !=
582 				     t->inp_cred->cr_uid))
583 					return (EADDRINUSE);
584 			}
585 			t = in_pcblookup_local(pcbinfo, sin->sin_addr,
586 			    lport, lookupflags, cred);
587 			if (t && (t->inp_flags & INP_TIMEWAIT)) {
588 				/*
589 				 * XXXRW: If an incpb has had its timewait
590 				 * state recycled, we treat the address as
591 				 * being in use (for now).  This is better
592 				 * than a panic, but not desirable.
593 				 */
594 				tw = intotw(t);
595 				if (tw == NULL ||
596 				    (reuseport & tw->tw_so_options) == 0)
597 					return (EADDRINUSE);
598 			} else if (t && (reuseport == 0 ||
599 			    (t->inp_flags2 & INP_REUSEPORT) == 0)) {
600 #ifdef INET6
601 				if (ntohl(sin->sin_addr.s_addr) !=
602 				    INADDR_ANY ||
603 				    ntohl(t->inp_laddr.s_addr) !=
604 				    INADDR_ANY ||
605 				    (inp->inp_vflag & INP_IPV6PROTO) == 0 ||
606 				    (t->inp_vflag & INP_IPV6PROTO) == 0)
607 #endif
608 				return (EADDRINUSE);
609 			}
610 		}
611 	}
612 	if (*lportp != 0)
613 		lport = *lportp;
614 	if (lport == 0) {
615 		error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags);
616 		if (error != 0)
617 			return (error);
618 
619 	}
620 	*laddrp = laddr.s_addr;
621 	*lportp = lport;
622 	return (0);
623 }
624 
625 /*
626  * Connect from a socket to a specified address.
627  * Both address and port must be specified in argument sin.
628  * If don't have a local address for this socket yet,
629  * then pick one.
630  */
631 int
632 in_pcbconnect_mbuf(struct inpcb *inp, struct sockaddr *nam,
633     struct ucred *cred, struct mbuf *m)
634 {
635 	u_short lport, fport;
636 	in_addr_t laddr, faddr;
637 	int anonport, error;
638 
639 	INP_WLOCK_ASSERT(inp);
640 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
641 
642 	lport = inp->inp_lport;
643 	laddr = inp->inp_laddr.s_addr;
644 	anonport = (lport == 0);
645 	error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport,
646 	    NULL, cred);
647 	if (error)
648 		return (error);
649 
650 	/* Do the initial binding of the local address if required. */
651 	if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) {
652 		inp->inp_lport = lport;
653 		inp->inp_laddr.s_addr = laddr;
654 		if (in_pcbinshash(inp) != 0) {
655 			inp->inp_laddr.s_addr = INADDR_ANY;
656 			inp->inp_lport = 0;
657 			return (EAGAIN);
658 		}
659 	}
660 
661 	/* Commit the remaining changes. */
662 	inp->inp_lport = lport;
663 	inp->inp_laddr.s_addr = laddr;
664 	inp->inp_faddr.s_addr = faddr;
665 	inp->inp_fport = fport;
666 	in_pcbrehash_mbuf(inp, m);
667 
668 	if (anonport)
669 		inp->inp_flags |= INP_ANONPORT;
670 	return (0);
671 }
672 
673 int
674 in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
675 {
676 
677 	return (in_pcbconnect_mbuf(inp, nam, cred, NULL));
678 }
679 
680 /*
681  * Do proper source address selection on an unbound socket in case
682  * of connect. Take jails into account as well.
683  */
684 static int
685 in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr,
686     struct ucred *cred)
687 {
688 	struct ifaddr *ifa;
689 	struct sockaddr *sa;
690 	struct sockaddr_in *sin;
691 	struct route sro;
692 	int error;
693 
694 	KASSERT(laddr != NULL, ("%s: laddr NULL", __func__));
695 
696 	/*
697 	 * Bypass source address selection and use the primary jail IP
698 	 * if requested.
699 	 */
700 	if (cred != NULL && !prison_saddrsel_ip4(cred, laddr))
701 		return (0);
702 
703 	error = 0;
704 	bzero(&sro, sizeof(sro));
705 
706 	sin = (struct sockaddr_in *)&sro.ro_dst;
707 	sin->sin_family = AF_INET;
708 	sin->sin_len = sizeof(struct sockaddr_in);
709 	sin->sin_addr.s_addr = faddr->s_addr;
710 
711 	/*
712 	 * If route is known our src addr is taken from the i/f,
713 	 * else punt.
714 	 *
715 	 * Find out route to destination.
716 	 */
717 	if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0)
718 		in_rtalloc_ign(&sro, 0, inp->inp_inc.inc_fibnum);
719 
720 	/*
721 	 * If we found a route, use the address corresponding to
722 	 * the outgoing interface.
723 	 *
724 	 * Otherwise assume faddr is reachable on a directly connected
725 	 * network and try to find a corresponding interface to take
726 	 * the source address from.
727 	 */
728 	if (sro.ro_rt == NULL || sro.ro_rt->rt_ifp == NULL) {
729 		struct in_ifaddr *ia;
730 		struct ifnet *ifp;
731 
732 		ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin));
733 		if (ia == NULL)
734 			ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0));
735 		if (ia == NULL) {
736 			error = ENETUNREACH;
737 			goto done;
738 		}
739 
740 		if (cred == NULL || !prison_flag(cred, PR_IP4)) {
741 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
742 			ifa_free(&ia->ia_ifa);
743 			goto done;
744 		}
745 
746 		ifp = ia->ia_ifp;
747 		ifa_free(&ia->ia_ifa);
748 		ia = NULL;
749 		IF_ADDR_RLOCK(ifp);
750 		TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
751 
752 			sa = ifa->ifa_addr;
753 			if (sa->sa_family != AF_INET)
754 				continue;
755 			sin = (struct sockaddr_in *)sa;
756 			if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
757 				ia = (struct in_ifaddr *)ifa;
758 				break;
759 			}
760 		}
761 		if (ia != NULL) {
762 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
763 			IF_ADDR_RUNLOCK(ifp);
764 			goto done;
765 		}
766 		IF_ADDR_RUNLOCK(ifp);
767 
768 		/* 3. As a last resort return the 'default' jail address. */
769 		error = prison_get_ip4(cred, laddr);
770 		goto done;
771 	}
772 
773 	/*
774 	 * If the outgoing interface on the route found is not
775 	 * a loopback interface, use the address from that interface.
776 	 * In case of jails do those three steps:
777 	 * 1. check if the interface address belongs to the jail. If so use it.
778 	 * 2. check if we have any address on the outgoing interface
779 	 *    belonging to this jail. If so use it.
780 	 * 3. as a last resort return the 'default' jail address.
781 	 */
782 	if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) {
783 		struct in_ifaddr *ia;
784 		struct ifnet *ifp;
785 
786 		/* If not jailed, use the default returned. */
787 		if (cred == NULL || !prison_flag(cred, PR_IP4)) {
788 			ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa;
789 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
790 			goto done;
791 		}
792 
793 		/* Jailed. */
794 		/* 1. Check if the iface address belongs to the jail. */
795 		sin = (struct sockaddr_in *)sro.ro_rt->rt_ifa->ifa_addr;
796 		if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
797 			ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa;
798 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
799 			goto done;
800 		}
801 
802 		/*
803 		 * 2. Check if we have any address on the outgoing interface
804 		 *    belonging to this jail.
805 		 */
806 		ia = NULL;
807 		ifp = sro.ro_rt->rt_ifp;
808 		IF_ADDR_RLOCK(ifp);
809 		TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
810 			sa = ifa->ifa_addr;
811 			if (sa->sa_family != AF_INET)
812 				continue;
813 			sin = (struct sockaddr_in *)sa;
814 			if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
815 				ia = (struct in_ifaddr *)ifa;
816 				break;
817 			}
818 		}
819 		if (ia != NULL) {
820 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
821 			IF_ADDR_RUNLOCK(ifp);
822 			goto done;
823 		}
824 		IF_ADDR_RUNLOCK(ifp);
825 
826 		/* 3. As a last resort return the 'default' jail address. */
827 		error = prison_get_ip4(cred, laddr);
828 		goto done;
829 	}
830 
831 	/*
832 	 * The outgoing interface is marked with 'loopback net', so a route
833 	 * to ourselves is here.
834 	 * Try to find the interface of the destination address and then
835 	 * take the address from there. That interface is not necessarily
836 	 * a loopback interface.
837 	 * In case of jails, check that it is an address of the jail
838 	 * and if we cannot find, fall back to the 'default' jail address.
839 	 */
840 	if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) {
841 		struct sockaddr_in sain;
842 		struct in_ifaddr *ia;
843 
844 		bzero(&sain, sizeof(struct sockaddr_in));
845 		sain.sin_family = AF_INET;
846 		sain.sin_len = sizeof(struct sockaddr_in);
847 		sain.sin_addr.s_addr = faddr->s_addr;
848 
849 		ia = ifatoia(ifa_ifwithdstaddr(sintosa(&sain)));
850 		if (ia == NULL)
851 			ia = ifatoia(ifa_ifwithnet(sintosa(&sain), 0));
852 		if (ia == NULL)
853 			ia = ifatoia(ifa_ifwithaddr(sintosa(&sain)));
854 
855 		if (cred == NULL || !prison_flag(cred, PR_IP4)) {
856 			if (ia == NULL) {
857 				error = ENETUNREACH;
858 				goto done;
859 			}
860 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
861 			ifa_free(&ia->ia_ifa);
862 			goto done;
863 		}
864 
865 		/* Jailed. */
866 		if (ia != NULL) {
867 			struct ifnet *ifp;
868 
869 			ifp = ia->ia_ifp;
870 			ifa_free(&ia->ia_ifa);
871 			ia = NULL;
872 			IF_ADDR_RLOCK(ifp);
873 			TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
874 
875 				sa = ifa->ifa_addr;
876 				if (sa->sa_family != AF_INET)
877 					continue;
878 				sin = (struct sockaddr_in *)sa;
879 				if (prison_check_ip4(cred,
880 				    &sin->sin_addr) == 0) {
881 					ia = (struct in_ifaddr *)ifa;
882 					break;
883 				}
884 			}
885 			if (ia != NULL) {
886 				laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
887 				IF_ADDR_RUNLOCK(ifp);
888 				goto done;
889 			}
890 			IF_ADDR_RUNLOCK(ifp);
891 		}
892 
893 		/* 3. As a last resort return the 'default' jail address. */
894 		error = prison_get_ip4(cred, laddr);
895 		goto done;
896 	}
897 
898 done:
899 	if (sro.ro_rt != NULL)
900 		RTFREE(sro.ro_rt);
901 	return (error);
902 }
903 
904 /*
905  * Set up for a connect from a socket to the specified address.
906  * On entry, *laddrp and *lportp should contain the current local
907  * address and port for the PCB; these are updated to the values
908  * that should be placed in inp_laddr and inp_lport to complete
909  * the connect.
910  *
911  * On success, *faddrp and *fportp will be set to the remote address
912  * and port. These are not updated in the error case.
913  *
914  * If the operation fails because the connection already exists,
915  * *oinpp will be set to the PCB of that connection so that the
916  * caller can decide to override it. In all other cases, *oinpp
917  * is set to NULL.
918  */
919 int
920 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam,
921     in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp,
922     struct inpcb **oinpp, struct ucred *cred)
923 {
924 	struct sockaddr_in *sin = (struct sockaddr_in *)nam;
925 	struct in_ifaddr *ia;
926 	struct inpcb *oinp;
927 	struct in_addr laddr, faddr;
928 	u_short lport, fport;
929 	int error;
930 
931 	/*
932 	 * Because a global state change doesn't actually occur here, a read
933 	 * lock is sufficient.
934 	 */
935 	INP_LOCK_ASSERT(inp);
936 	INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo);
937 
938 	if (oinpp != NULL)
939 		*oinpp = NULL;
940 	if (nam->sa_len != sizeof (*sin))
941 		return (EINVAL);
942 	if (sin->sin_family != AF_INET)
943 		return (EAFNOSUPPORT);
944 	if (sin->sin_port == 0)
945 		return (EADDRNOTAVAIL);
946 	laddr.s_addr = *laddrp;
947 	lport = *lportp;
948 	faddr = sin->sin_addr;
949 	fport = sin->sin_port;
950 
951 	if (!TAILQ_EMPTY(&V_in_ifaddrhead)) {
952 		/*
953 		 * If the destination address is INADDR_ANY,
954 		 * use the primary local address.
955 		 * If the supplied address is INADDR_BROADCAST,
956 		 * and the primary interface supports broadcast,
957 		 * choose the broadcast address for that interface.
958 		 */
959 		if (faddr.s_addr == INADDR_ANY) {
960 			IN_IFADDR_RLOCK();
961 			faddr =
962 			    IA_SIN(TAILQ_FIRST(&V_in_ifaddrhead))->sin_addr;
963 			IN_IFADDR_RUNLOCK();
964 			if (cred != NULL &&
965 			    (error = prison_get_ip4(cred, &faddr)) != 0)
966 				return (error);
967 		} else if (faddr.s_addr == (u_long)INADDR_BROADCAST) {
968 			IN_IFADDR_RLOCK();
969 			if (TAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags &
970 			    IFF_BROADCAST)
971 				faddr = satosin(&TAILQ_FIRST(
972 				    &V_in_ifaddrhead)->ia_broadaddr)->sin_addr;
973 			IN_IFADDR_RUNLOCK();
974 		}
975 	}
976 	if (laddr.s_addr == INADDR_ANY) {
977 		error = in_pcbladdr(inp, &faddr, &laddr, cred);
978 		/*
979 		 * If the destination address is multicast and an outgoing
980 		 * interface has been set as a multicast option, prefer the
981 		 * address of that interface as our source address.
982 		 */
983 		if (IN_MULTICAST(ntohl(faddr.s_addr)) &&
984 		    inp->inp_moptions != NULL) {
985 			struct ip_moptions *imo;
986 			struct ifnet *ifp;
987 
988 			imo = inp->inp_moptions;
989 			if (imo->imo_multicast_ifp != NULL) {
990 				ifp = imo->imo_multicast_ifp;
991 				IN_IFADDR_RLOCK();
992 				TAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) {
993 					if ((ia->ia_ifp == ifp) &&
994 					    (cred == NULL ||
995 					    prison_check_ip4(cred,
996 					    &ia->ia_addr.sin_addr) == 0))
997 						break;
998 				}
999 				if (ia == NULL)
1000 					error = EADDRNOTAVAIL;
1001 				else {
1002 					laddr = ia->ia_addr.sin_addr;
1003 					error = 0;
1004 				}
1005 				IN_IFADDR_RUNLOCK();
1006 			}
1007 		}
1008 		if (error)
1009 			return (error);
1010 	}
1011 	oinp = in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr, fport,
1012 	    laddr, lport, 0, NULL);
1013 	if (oinp != NULL) {
1014 		if (oinpp != NULL)
1015 			*oinpp = oinp;
1016 		return (EADDRINUSE);
1017 	}
1018 	if (lport == 0) {
1019 		error = in_pcbbind_setup(inp, NULL, &laddr.s_addr, &lport,
1020 		    cred);
1021 		if (error)
1022 			return (error);
1023 	}
1024 	*laddrp = laddr.s_addr;
1025 	*lportp = lport;
1026 	*faddrp = faddr.s_addr;
1027 	*fportp = fport;
1028 	return (0);
1029 }
1030 
1031 void
1032 in_pcbdisconnect(struct inpcb *inp)
1033 {
1034 
1035 	INP_WLOCK_ASSERT(inp);
1036 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
1037 
1038 	inp->inp_faddr.s_addr = INADDR_ANY;
1039 	inp->inp_fport = 0;
1040 	in_pcbrehash(inp);
1041 }
1042 #endif /* INET */
1043 
1044 /*
1045  * in_pcbdetach() is responsibe for disassociating a socket from an inpcb.
1046  * For most protocols, this will be invoked immediately prior to calling
1047  * in_pcbfree().  However, with TCP the inpcb may significantly outlive the
1048  * socket, in which case in_pcbfree() is deferred.
1049  */
1050 void
1051 in_pcbdetach(struct inpcb *inp)
1052 {
1053 
1054 	KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__));
1055 
1056 	inp->inp_socket->so_pcb = NULL;
1057 	inp->inp_socket = NULL;
1058 }
1059 
1060 /*
1061  * in_pcbref() bumps the reference count on an inpcb in order to maintain
1062  * stability of an inpcb pointer despite the inpcb lock being released.  This
1063  * is used in TCP when the inpcbinfo lock needs to be acquired or upgraded,
1064  * but where the inpcb lock may already held, or when acquiring a reference
1065  * via a pcbgroup.
1066  *
1067  * in_pcbref() should be used only to provide brief memory stability, and
1068  * must always be followed by a call to INP_WLOCK() and in_pcbrele() to
1069  * garbage collect the inpcb if it has been in_pcbfree()'d from another
1070  * context.  Until in_pcbrele() has returned that the inpcb is still valid,
1071  * lock and rele are the *only* safe operations that may be performed on the
1072  * inpcb.
1073  *
1074  * While the inpcb will not be freed, releasing the inpcb lock means that the
1075  * connection's state may change, so the caller should be careful to
1076  * revalidate any cached state on reacquiring the lock.  Drop the reference
1077  * using in_pcbrele().
1078  */
1079 void
1080 in_pcbref(struct inpcb *inp)
1081 {
1082 
1083 	KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1084 
1085 	refcount_acquire(&inp->inp_refcount);
1086 }
1087 
1088 /*
1089  * Drop a refcount on an inpcb elevated using in_pcbref(); because a call to
1090  * in_pcbfree() may have been made between in_pcbref() and in_pcbrele(), we
1091  * return a flag indicating whether or not the inpcb remains valid.  If it is
1092  * valid, we return with the inpcb lock held.
1093  *
1094  * Notice that, unlike in_pcbref(), the inpcb lock must be held to drop a
1095  * reference on an inpcb.  Historically more work was done here (actually, in
1096  * in_pcbfree_internal()) but has been moved to in_pcbfree() to avoid the
1097  * need for the pcbinfo lock in in_pcbrele().  Deferring the free is entirely
1098  * about memory stability (and continued use of the write lock).
1099  */
1100 int
1101 in_pcbrele_rlocked(struct inpcb *inp)
1102 {
1103 	struct inpcbinfo *pcbinfo;
1104 
1105 	KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1106 
1107 	INP_RLOCK_ASSERT(inp);
1108 
1109 	if (refcount_release(&inp->inp_refcount) == 0) {
1110 		/*
1111 		 * If the inpcb has been freed, let the caller know, even if
1112 		 * this isn't the last reference.
1113 		 */
1114 		if (inp->inp_flags2 & INP_FREED) {
1115 			INP_RUNLOCK(inp);
1116 			return (1);
1117 		}
1118 		return (0);
1119 	}
1120 
1121 	KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1122 
1123 	INP_RUNLOCK(inp);
1124 	pcbinfo = inp->inp_pcbinfo;
1125 	uma_zfree(pcbinfo->ipi_zone, inp);
1126 	return (1);
1127 }
1128 
1129 int
1130 in_pcbrele_wlocked(struct inpcb *inp)
1131 {
1132 	struct inpcbinfo *pcbinfo;
1133 
1134 	KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1135 
1136 	INP_WLOCK_ASSERT(inp);
1137 
1138 	if (refcount_release(&inp->inp_refcount) == 0)
1139 		return (0);
1140 
1141 	KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1142 
1143 	INP_WUNLOCK(inp);
1144 	pcbinfo = inp->inp_pcbinfo;
1145 	uma_zfree(pcbinfo->ipi_zone, inp);
1146 	return (1);
1147 }
1148 
1149 /*
1150  * Temporary wrapper.
1151  */
1152 int
1153 in_pcbrele(struct inpcb *inp)
1154 {
1155 
1156 	return (in_pcbrele_wlocked(inp));
1157 }
1158 
1159 /*
1160  * Unconditionally schedule an inpcb to be freed by decrementing its
1161  * reference count, which should occur only after the inpcb has been detached
1162  * from its socket.  If another thread holds a temporary reference (acquired
1163  * using in_pcbref()) then the free is deferred until that reference is
1164  * released using in_pcbrele(), but the inpcb is still unlocked.  Almost all
1165  * work, including removal from global lists, is done in this context, where
1166  * the pcbinfo lock is held.
1167  */
1168 void
1169 in_pcbfree(struct inpcb *inp)
1170 {
1171 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1172 
1173 	KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1174 
1175 	INP_INFO_WLOCK_ASSERT(pcbinfo);
1176 	INP_WLOCK_ASSERT(inp);
1177 
1178 	/* XXXRW: Do as much as possible here. */
1179 #ifdef IPSEC
1180 	if (inp->inp_sp != NULL)
1181 		ipsec_delete_pcbpolicy(inp);
1182 #endif
1183 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
1184 	in_pcbremlists(inp);
1185 #ifdef INET6
1186 	if (inp->inp_vflag & INP_IPV6PROTO) {
1187 		ip6_freepcbopts(inp->in6p_outputopts);
1188 		if (inp->in6p_moptions != NULL)
1189 			ip6_freemoptions(inp->in6p_moptions);
1190 	}
1191 #endif
1192 	if (inp->inp_options)
1193 		(void)m_free(inp->inp_options);
1194 #ifdef INET
1195 	if (inp->inp_moptions != NULL)
1196 		inp_freemoptions(inp->inp_moptions);
1197 #endif
1198 	inp->inp_vflag = 0;
1199 	inp->inp_flags2 |= INP_FREED;
1200 	crfree(inp->inp_cred);
1201 #ifdef MAC
1202 	mac_inpcb_destroy(inp);
1203 #endif
1204 	if (!in_pcbrele_wlocked(inp))
1205 		INP_WUNLOCK(inp);
1206 }
1207 
1208 /*
1209  * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and
1210  * port reservation, and preventing it from being returned by inpcb lookups.
1211  *
1212  * It is used by TCP to mark an inpcb as unused and avoid future packet
1213  * delivery or event notification when a socket remains open but TCP has
1214  * closed.  This might occur as a result of a shutdown()-initiated TCP close
1215  * or a RST on the wire, and allows the port binding to be reused while still
1216  * maintaining the invariant that so_pcb always points to a valid inpcb until
1217  * in_pcbdetach().
1218  *
1219  * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by
1220  * in_pcbnotifyall() and in_pcbpurgeif0()?
1221  */
1222 void
1223 in_pcbdrop(struct inpcb *inp)
1224 {
1225 
1226 	INP_WLOCK_ASSERT(inp);
1227 
1228 	/*
1229 	 * XXXRW: Possibly we should protect the setting of INP_DROPPED with
1230 	 * the hash lock...?
1231 	 */
1232 	inp->inp_flags |= INP_DROPPED;
1233 	if (inp->inp_flags & INP_INHASHLIST) {
1234 		struct inpcbport *phd = inp->inp_phd;
1235 
1236 		INP_HASH_WLOCK(inp->inp_pcbinfo);
1237 		LIST_REMOVE(inp, inp_hash);
1238 		LIST_REMOVE(inp, inp_portlist);
1239 		if (LIST_FIRST(&phd->phd_pcblist) == NULL) {
1240 			LIST_REMOVE(phd, phd_hash);
1241 			free(phd, M_PCB);
1242 		}
1243 		INP_HASH_WUNLOCK(inp->inp_pcbinfo);
1244 		inp->inp_flags &= ~INP_INHASHLIST;
1245 #ifdef PCBGROUP
1246 		in_pcbgroup_remove(inp);
1247 #endif
1248 	}
1249 }
1250 
1251 #ifdef INET
1252 /*
1253  * Common routines to return the socket addresses associated with inpcbs.
1254  */
1255 struct sockaddr *
1256 in_sockaddr(in_port_t port, struct in_addr *addr_p)
1257 {
1258 	struct sockaddr_in *sin;
1259 
1260 	sin = malloc(sizeof *sin, M_SONAME,
1261 		M_WAITOK | M_ZERO);
1262 	sin->sin_family = AF_INET;
1263 	sin->sin_len = sizeof(*sin);
1264 	sin->sin_addr = *addr_p;
1265 	sin->sin_port = port;
1266 
1267 	return (struct sockaddr *)sin;
1268 }
1269 
1270 int
1271 in_getsockaddr(struct socket *so, struct sockaddr **nam)
1272 {
1273 	struct inpcb *inp;
1274 	struct in_addr addr;
1275 	in_port_t port;
1276 
1277 	inp = sotoinpcb(so);
1278 	KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL"));
1279 
1280 	INP_RLOCK(inp);
1281 	port = inp->inp_lport;
1282 	addr = inp->inp_laddr;
1283 	INP_RUNLOCK(inp);
1284 
1285 	*nam = in_sockaddr(port, &addr);
1286 	return 0;
1287 }
1288 
1289 int
1290 in_getpeeraddr(struct socket *so, struct sockaddr **nam)
1291 {
1292 	struct inpcb *inp;
1293 	struct in_addr addr;
1294 	in_port_t port;
1295 
1296 	inp = sotoinpcb(so);
1297 	KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL"));
1298 
1299 	INP_RLOCK(inp);
1300 	port = inp->inp_fport;
1301 	addr = inp->inp_faddr;
1302 	INP_RUNLOCK(inp);
1303 
1304 	*nam = in_sockaddr(port, &addr);
1305 	return 0;
1306 }
1307 
1308 void
1309 in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno,
1310     struct inpcb *(*notify)(struct inpcb *, int))
1311 {
1312 	struct inpcb *inp, *inp_temp;
1313 
1314 	INP_INFO_WLOCK(pcbinfo);
1315 	LIST_FOREACH_SAFE(inp, pcbinfo->ipi_listhead, inp_list, inp_temp) {
1316 		INP_WLOCK(inp);
1317 #ifdef INET6
1318 		if ((inp->inp_vflag & INP_IPV4) == 0) {
1319 			INP_WUNLOCK(inp);
1320 			continue;
1321 		}
1322 #endif
1323 		if (inp->inp_faddr.s_addr != faddr.s_addr ||
1324 		    inp->inp_socket == NULL) {
1325 			INP_WUNLOCK(inp);
1326 			continue;
1327 		}
1328 		if ((*notify)(inp, errno))
1329 			INP_WUNLOCK(inp);
1330 	}
1331 	INP_INFO_WUNLOCK(pcbinfo);
1332 }
1333 
1334 void
1335 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp)
1336 {
1337 	struct inpcb *inp;
1338 	struct ip_moptions *imo;
1339 	int i, gap;
1340 
1341 	INP_INFO_RLOCK(pcbinfo);
1342 	LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) {
1343 		INP_WLOCK(inp);
1344 		imo = inp->inp_moptions;
1345 		if ((inp->inp_vflag & INP_IPV4) &&
1346 		    imo != NULL) {
1347 			/*
1348 			 * Unselect the outgoing interface if it is being
1349 			 * detached.
1350 			 */
1351 			if (imo->imo_multicast_ifp == ifp)
1352 				imo->imo_multicast_ifp = NULL;
1353 
1354 			/*
1355 			 * Drop multicast group membership if we joined
1356 			 * through the interface being detached.
1357 			 */
1358 			for (i = 0, gap = 0; i < imo->imo_num_memberships;
1359 			    i++) {
1360 				if (imo->imo_membership[i]->inm_ifp == ifp) {
1361 					in_delmulti(imo->imo_membership[i]);
1362 					gap++;
1363 				} else if (gap != 0)
1364 					imo->imo_membership[i - gap] =
1365 					    imo->imo_membership[i];
1366 			}
1367 			imo->imo_num_memberships -= gap;
1368 		}
1369 		INP_WUNLOCK(inp);
1370 	}
1371 	INP_INFO_RUNLOCK(pcbinfo);
1372 }
1373 
1374 /*
1375  * Lookup a PCB based on the local address and port.  Caller must hold the
1376  * hash lock.  No inpcb locks or references are acquired.
1377  */
1378 #define INP_LOOKUP_MAPPED_PCB_COST	3
1379 struct inpcb *
1380 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr,
1381     u_short lport, int lookupflags, struct ucred *cred)
1382 {
1383 	struct inpcb *inp;
1384 #ifdef INET6
1385 	int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST;
1386 #else
1387 	int matchwild = 3;
1388 #endif
1389 	int wildcard;
1390 
1391 	KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0,
1392 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
1393 
1394 	INP_HASH_LOCK_ASSERT(pcbinfo);
1395 
1396 	if ((lookupflags & INPLOOKUP_WILDCARD) == 0) {
1397 		struct inpcbhead *head;
1398 		/*
1399 		 * Look for an unconnected (wildcard foreign addr) PCB that
1400 		 * matches the local address and port we're looking for.
1401 		 */
1402 		head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
1403 		    0, pcbinfo->ipi_hashmask)];
1404 		LIST_FOREACH(inp, head, inp_hash) {
1405 #ifdef INET6
1406 			/* XXX inp locking */
1407 			if ((inp->inp_vflag & INP_IPV4) == 0)
1408 				continue;
1409 #endif
1410 			if (inp->inp_faddr.s_addr == INADDR_ANY &&
1411 			    inp->inp_laddr.s_addr == laddr.s_addr &&
1412 			    inp->inp_lport == lport) {
1413 				/*
1414 				 * Found?
1415 				 */
1416 				if (cred == NULL ||
1417 				    prison_equal_ip4(cred->cr_prison,
1418 					inp->inp_cred->cr_prison))
1419 					return (inp);
1420 			}
1421 		}
1422 		/*
1423 		 * Not found.
1424 		 */
1425 		return (NULL);
1426 	} else {
1427 		struct inpcbporthead *porthash;
1428 		struct inpcbport *phd;
1429 		struct inpcb *match = NULL;
1430 		/*
1431 		 * Best fit PCB lookup.
1432 		 *
1433 		 * First see if this local port is in use by looking on the
1434 		 * port hash list.
1435 		 */
1436 		porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport,
1437 		    pcbinfo->ipi_porthashmask)];
1438 		LIST_FOREACH(phd, porthash, phd_hash) {
1439 			if (phd->phd_port == lport)
1440 				break;
1441 		}
1442 		if (phd != NULL) {
1443 			/*
1444 			 * Port is in use by one or more PCBs. Look for best
1445 			 * fit.
1446 			 */
1447 			LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) {
1448 				wildcard = 0;
1449 				if (cred != NULL &&
1450 				    !prison_equal_ip4(inp->inp_cred->cr_prison,
1451 					cred->cr_prison))
1452 					continue;
1453 #ifdef INET6
1454 				/* XXX inp locking */
1455 				if ((inp->inp_vflag & INP_IPV4) == 0)
1456 					continue;
1457 				/*
1458 				 * We never select the PCB that has
1459 				 * INP_IPV6 flag and is bound to :: if
1460 				 * we have another PCB which is bound
1461 				 * to 0.0.0.0.  If a PCB has the
1462 				 * INP_IPV6 flag, then we set its cost
1463 				 * higher than IPv4 only PCBs.
1464 				 *
1465 				 * Note that the case only happens
1466 				 * when a socket is bound to ::, under
1467 				 * the condition that the use of the
1468 				 * mapped address is allowed.
1469 				 */
1470 				if ((inp->inp_vflag & INP_IPV6) != 0)
1471 					wildcard += INP_LOOKUP_MAPPED_PCB_COST;
1472 #endif
1473 				if (inp->inp_faddr.s_addr != INADDR_ANY)
1474 					wildcard++;
1475 				if (inp->inp_laddr.s_addr != INADDR_ANY) {
1476 					if (laddr.s_addr == INADDR_ANY)
1477 						wildcard++;
1478 					else if (inp->inp_laddr.s_addr != laddr.s_addr)
1479 						continue;
1480 				} else {
1481 					if (laddr.s_addr != INADDR_ANY)
1482 						wildcard++;
1483 				}
1484 				if (wildcard < matchwild) {
1485 					match = inp;
1486 					matchwild = wildcard;
1487 					if (matchwild == 0)
1488 						break;
1489 				}
1490 			}
1491 		}
1492 		return (match);
1493 	}
1494 }
1495 #undef INP_LOOKUP_MAPPED_PCB_COST
1496 
1497 #ifdef PCBGROUP
1498 /*
1499  * Lookup PCB in hash list, using pcbgroup tables.
1500  */
1501 static struct inpcb *
1502 in_pcblookup_group(struct inpcbinfo *pcbinfo, struct inpcbgroup *pcbgroup,
1503     struct in_addr faddr, u_int fport_arg, struct in_addr laddr,
1504     u_int lport_arg, int lookupflags, struct ifnet *ifp)
1505 {
1506 	struct inpcbhead *head;
1507 	struct inpcb *inp, *tmpinp;
1508 	u_short fport = fport_arg, lport = lport_arg;
1509 
1510 	/*
1511 	 * First look for an exact match.
1512 	 */
1513 	tmpinp = NULL;
1514 	INP_GROUP_LOCK(pcbgroup);
1515 	head = &pcbgroup->ipg_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport,
1516 	    pcbgroup->ipg_hashmask)];
1517 	LIST_FOREACH(inp, head, inp_pcbgrouphash) {
1518 #ifdef INET6
1519 		/* XXX inp locking */
1520 		if ((inp->inp_vflag & INP_IPV4) == 0)
1521 			continue;
1522 #endif
1523 		if (inp->inp_faddr.s_addr == faddr.s_addr &&
1524 		    inp->inp_laddr.s_addr == laddr.s_addr &&
1525 		    inp->inp_fport == fport &&
1526 		    inp->inp_lport == lport) {
1527 			/*
1528 			 * XXX We should be able to directly return
1529 			 * the inp here, without any checks.
1530 			 * Well unless both bound with SO_REUSEPORT?
1531 			 */
1532 			if (prison_flag(inp->inp_cred, PR_IP4))
1533 				goto found;
1534 			if (tmpinp == NULL)
1535 				tmpinp = inp;
1536 		}
1537 	}
1538 	if (tmpinp != NULL) {
1539 		inp = tmpinp;
1540 		goto found;
1541 	}
1542 
1543 	/*
1544 	 * Then look for a wildcard match, if requested.
1545 	 */
1546 	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
1547 		struct inpcb *local_wild = NULL, *local_exact = NULL;
1548 #ifdef INET6
1549 		struct inpcb *local_wild_mapped = NULL;
1550 #endif
1551 		struct inpcb *jail_wild = NULL;
1552 		struct inpcbhead *head;
1553 		int injail;
1554 
1555 		/*
1556 		 * Order of socket selection - we always prefer jails.
1557 		 *      1. jailed, non-wild.
1558 		 *      2. jailed, wild.
1559 		 *      3. non-jailed, non-wild.
1560 		 *      4. non-jailed, wild.
1561 		 */
1562 		head = &pcbinfo->ipi_wildbase[INP_PCBHASH(INADDR_ANY, lport,
1563 		    0, pcbinfo->ipi_wildmask)];
1564 		LIST_FOREACH(inp, head, inp_pcbgroup_wild) {
1565 #ifdef INET6
1566 			/* XXX inp locking */
1567 			if ((inp->inp_vflag & INP_IPV4) == 0)
1568 				continue;
1569 #endif
1570 			if (inp->inp_faddr.s_addr != INADDR_ANY ||
1571 			    inp->inp_lport != lport)
1572 				continue;
1573 
1574 			/* XXX inp locking */
1575 			if (ifp && ifp->if_type == IFT_FAITH &&
1576 			    (inp->inp_flags & INP_FAITH) == 0)
1577 				continue;
1578 
1579 			injail = prison_flag(inp->inp_cred, PR_IP4);
1580 			if (injail) {
1581 				if (prison_check_ip4(inp->inp_cred,
1582 				    &laddr) != 0)
1583 					continue;
1584 			} else {
1585 				if (local_exact != NULL)
1586 					continue;
1587 			}
1588 
1589 			if (inp->inp_laddr.s_addr == laddr.s_addr) {
1590 				if (injail)
1591 					goto found;
1592 				else
1593 					local_exact = inp;
1594 			} else if (inp->inp_laddr.s_addr == INADDR_ANY) {
1595 #ifdef INET6
1596 				/* XXX inp locking, NULL check */
1597 				if (inp->inp_vflag & INP_IPV6PROTO)
1598 					local_wild_mapped = inp;
1599 				else
1600 #endif
1601 					if (injail)
1602 						jail_wild = inp;
1603 					else
1604 						local_wild = inp;
1605 			}
1606 		} /* LIST_FOREACH */
1607 		inp = jail_wild;
1608 		if (inp == NULL)
1609 			inp = local_exact;
1610 		if (inp == NULL)
1611 			inp = local_wild;
1612 #ifdef INET6
1613 		if (inp == NULL)
1614 			inp = local_wild_mapped;
1615 #endif
1616 		if (inp != NULL)
1617 			goto found;
1618 	} /* if (lookupflags & INPLOOKUP_WILDCARD) */
1619 	INP_GROUP_UNLOCK(pcbgroup);
1620 	return (NULL);
1621 
1622 found:
1623 	in_pcbref(inp);
1624 	INP_GROUP_UNLOCK(pcbgroup);
1625 	if (lookupflags & INPLOOKUP_WLOCKPCB) {
1626 		INP_WLOCK(inp);
1627 		if (in_pcbrele_wlocked(inp))
1628 			return (NULL);
1629 	} else if (lookupflags & INPLOOKUP_RLOCKPCB) {
1630 		INP_RLOCK(inp);
1631 		if (in_pcbrele_rlocked(inp))
1632 			return (NULL);
1633 	} else
1634 		panic("%s: locking bug", __func__);
1635 	return (inp);
1636 }
1637 #endif /* PCBGROUP */
1638 
1639 /*
1640  * Lookup PCB in hash list, using pcbinfo tables.  This variation assumes
1641  * that the caller has locked the hash list, and will not perform any further
1642  * locking or reference operations on either the hash list or the connection.
1643  */
1644 static struct inpcb *
1645 in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr,
1646     u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags,
1647     struct ifnet *ifp)
1648 {
1649 	struct inpcbhead *head;
1650 	struct inpcb *inp, *tmpinp;
1651 	u_short fport = fport_arg, lport = lport_arg;
1652 
1653 	KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0,
1654 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
1655 
1656 	INP_HASH_LOCK_ASSERT(pcbinfo);
1657 
1658 	/*
1659 	 * First look for an exact match.
1660 	 */
1661 	tmpinp = NULL;
1662 	head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport,
1663 	    pcbinfo->ipi_hashmask)];
1664 	LIST_FOREACH(inp, head, inp_hash) {
1665 #ifdef INET6
1666 		/* XXX inp locking */
1667 		if ((inp->inp_vflag & INP_IPV4) == 0)
1668 			continue;
1669 #endif
1670 		if (inp->inp_faddr.s_addr == faddr.s_addr &&
1671 		    inp->inp_laddr.s_addr == laddr.s_addr &&
1672 		    inp->inp_fport == fport &&
1673 		    inp->inp_lport == lport) {
1674 			/*
1675 			 * XXX We should be able to directly return
1676 			 * the inp here, without any checks.
1677 			 * Well unless both bound with SO_REUSEPORT?
1678 			 */
1679 			if (prison_flag(inp->inp_cred, PR_IP4))
1680 				return (inp);
1681 			if (tmpinp == NULL)
1682 				tmpinp = inp;
1683 		}
1684 	}
1685 	if (tmpinp != NULL)
1686 		return (tmpinp);
1687 
1688 	/*
1689 	 * Then look for a wildcard match, if requested.
1690 	 */
1691 	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
1692 		struct inpcb *local_wild = NULL, *local_exact = NULL;
1693 #ifdef INET6
1694 		struct inpcb *local_wild_mapped = NULL;
1695 #endif
1696 		struct inpcb *jail_wild = NULL;
1697 		int injail;
1698 
1699 		/*
1700 		 * Order of socket selection - we always prefer jails.
1701 		 *      1. jailed, non-wild.
1702 		 *      2. jailed, wild.
1703 		 *      3. non-jailed, non-wild.
1704 		 *      4. non-jailed, wild.
1705 		 */
1706 
1707 		head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
1708 		    0, pcbinfo->ipi_hashmask)];
1709 		LIST_FOREACH(inp, head, inp_hash) {
1710 #ifdef INET6
1711 			/* XXX inp locking */
1712 			if ((inp->inp_vflag & INP_IPV4) == 0)
1713 				continue;
1714 #endif
1715 			if (inp->inp_faddr.s_addr != INADDR_ANY ||
1716 			    inp->inp_lport != lport)
1717 				continue;
1718 
1719 			/* XXX inp locking */
1720 			if (ifp && ifp->if_type == IFT_FAITH &&
1721 			    (inp->inp_flags & INP_FAITH) == 0)
1722 				continue;
1723 
1724 			injail = prison_flag(inp->inp_cred, PR_IP4);
1725 			if (injail) {
1726 				if (prison_check_ip4(inp->inp_cred,
1727 				    &laddr) != 0)
1728 					continue;
1729 			} else {
1730 				if (local_exact != NULL)
1731 					continue;
1732 			}
1733 
1734 			if (inp->inp_laddr.s_addr == laddr.s_addr) {
1735 				if (injail)
1736 					return (inp);
1737 				else
1738 					local_exact = inp;
1739 			} else if (inp->inp_laddr.s_addr == INADDR_ANY) {
1740 #ifdef INET6
1741 				/* XXX inp locking, NULL check */
1742 				if (inp->inp_vflag & INP_IPV6PROTO)
1743 					local_wild_mapped = inp;
1744 				else
1745 #endif
1746 					if (injail)
1747 						jail_wild = inp;
1748 					else
1749 						local_wild = inp;
1750 			}
1751 		} /* LIST_FOREACH */
1752 		if (jail_wild != NULL)
1753 			return (jail_wild);
1754 		if (local_exact != NULL)
1755 			return (local_exact);
1756 		if (local_wild != NULL)
1757 			return (local_wild);
1758 #ifdef INET6
1759 		if (local_wild_mapped != NULL)
1760 			return (local_wild_mapped);
1761 #endif
1762 	} /* if ((lookupflags & INPLOOKUP_WILDCARD) != 0) */
1763 
1764 	return (NULL);
1765 }
1766 
1767 /*
1768  * Lookup PCB in hash list, using pcbinfo tables.  This variation locks the
1769  * hash list lock, and will return the inpcb locked (i.e., requires
1770  * INPLOOKUP_LOCKPCB).
1771  */
1772 static struct inpcb *
1773 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr,
1774     u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
1775     struct ifnet *ifp)
1776 {
1777 	struct inpcb *inp;
1778 
1779 	INP_HASH_RLOCK(pcbinfo);
1780 	inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport,
1781 	    (lookupflags & ~(INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)), ifp);
1782 	if (inp != NULL) {
1783 		in_pcbref(inp);
1784 		INP_HASH_RUNLOCK(pcbinfo);
1785 		if (lookupflags & INPLOOKUP_WLOCKPCB) {
1786 			INP_WLOCK(inp);
1787 			if (in_pcbrele_wlocked(inp))
1788 				return (NULL);
1789 		} else if (lookupflags & INPLOOKUP_RLOCKPCB) {
1790 			INP_RLOCK(inp);
1791 			if (in_pcbrele_rlocked(inp))
1792 				return (NULL);
1793 		} else
1794 			panic("%s: locking bug", __func__);
1795 	} else
1796 		INP_HASH_RUNLOCK(pcbinfo);
1797 	return (inp);
1798 }
1799 
1800 /*
1801  * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf
1802  * from which a pre-calculated hash value may be extracted.
1803  *
1804  * Possibly more of this logic should be in in_pcbgroup.c.
1805  */
1806 struct inpcb *
1807 in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport,
1808     struct in_addr laddr, u_int lport, int lookupflags, struct ifnet *ifp)
1809 {
1810 #if defined(PCBGROUP)
1811 	struct inpcbgroup *pcbgroup;
1812 #endif
1813 
1814 	KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0,
1815 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
1816 	KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
1817 	    ("%s: LOCKPCB not set", __func__));
1818 
1819 #if defined(PCBGROUP)
1820 	if (in_pcbgroup_enabled(pcbinfo)) {
1821 		pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr,
1822 		    fport);
1823 		return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport,
1824 		    laddr, lport, lookupflags, ifp));
1825 	}
1826 #endif
1827 	return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport,
1828 	    lookupflags, ifp));
1829 }
1830 
1831 struct inpcb *
1832 in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr,
1833     u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
1834     struct ifnet *ifp, struct mbuf *m)
1835 {
1836 #ifdef PCBGROUP
1837 	struct inpcbgroup *pcbgroup;
1838 #endif
1839 
1840 	KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0,
1841 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
1842 	KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
1843 	    ("%s: LOCKPCB not set", __func__));
1844 
1845 #ifdef PCBGROUP
1846 	if (in_pcbgroup_enabled(pcbinfo)) {
1847 		pcbgroup = in_pcbgroup_byhash(pcbinfo, M_HASHTYPE_GET(m),
1848 		    m->m_pkthdr.flowid);
1849 		if (pcbgroup != NULL)
1850 			return (in_pcblookup_group(pcbinfo, pcbgroup, faddr,
1851 			    fport, laddr, lport, lookupflags, ifp));
1852 		pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr,
1853 		    fport);
1854 		return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport,
1855 		    laddr, lport, lookupflags, ifp));
1856 	}
1857 #endif
1858 	return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport,
1859 	    lookupflags, ifp));
1860 }
1861 #endif /* INET */
1862 
1863 /*
1864  * Insert PCB onto various hash lists.
1865  */
1866 static int
1867 in_pcbinshash_internal(struct inpcb *inp, int do_pcbgroup_update)
1868 {
1869 	struct inpcbhead *pcbhash;
1870 	struct inpcbporthead *pcbporthash;
1871 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1872 	struct inpcbport *phd;
1873 	u_int32_t hashkey_faddr;
1874 
1875 	INP_WLOCK_ASSERT(inp);
1876 	INP_HASH_WLOCK_ASSERT(pcbinfo);
1877 
1878 	KASSERT((inp->inp_flags & INP_INHASHLIST) == 0,
1879 	    ("in_pcbinshash: INP_INHASHLIST"));
1880 
1881 #ifdef INET6
1882 	if (inp->inp_vflag & INP_IPV6)
1883 		hashkey_faddr = inp->in6p_faddr.s6_addr32[3] /* XXX */;
1884 	else
1885 #endif
1886 	hashkey_faddr = inp->inp_faddr.s_addr;
1887 
1888 	pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
1889 		 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
1890 
1891 	pcbporthash = &pcbinfo->ipi_porthashbase[
1892 	    INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)];
1893 
1894 	/*
1895 	 * Go through port list and look for a head for this lport.
1896 	 */
1897 	LIST_FOREACH(phd, pcbporthash, phd_hash) {
1898 		if (phd->phd_port == inp->inp_lport)
1899 			break;
1900 	}
1901 	/*
1902 	 * If none exists, malloc one and tack it on.
1903 	 */
1904 	if (phd == NULL) {
1905 		phd = malloc(sizeof(struct inpcbport), M_PCB, M_NOWAIT);
1906 		if (phd == NULL) {
1907 			return (ENOBUFS); /* XXX */
1908 		}
1909 		phd->phd_port = inp->inp_lport;
1910 		LIST_INIT(&phd->phd_pcblist);
1911 		LIST_INSERT_HEAD(pcbporthash, phd, phd_hash);
1912 	}
1913 	inp->inp_phd = phd;
1914 	LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist);
1915 	LIST_INSERT_HEAD(pcbhash, inp, inp_hash);
1916 	inp->inp_flags |= INP_INHASHLIST;
1917 #ifdef PCBGROUP
1918 	if (do_pcbgroup_update)
1919 		in_pcbgroup_update(inp);
1920 #endif
1921 	return (0);
1922 }
1923 
1924 /*
1925  * For now, there are two public interfaces to insert an inpcb into the hash
1926  * lists -- one that does update pcbgroups, and one that doesn't.  The latter
1927  * is used only in the TCP syncache, where in_pcbinshash is called before the
1928  * full 4-tuple is set for the inpcb, and we don't want to install in the
1929  * pcbgroup until later.
1930  *
1931  * XXXRW: This seems like a misfeature.  in_pcbinshash should always update
1932  * connection groups, and partially initialised inpcbs should not be exposed
1933  * to either reservation hash tables or pcbgroups.
1934  */
1935 int
1936 in_pcbinshash(struct inpcb *inp)
1937 {
1938 
1939 	return (in_pcbinshash_internal(inp, 1));
1940 }
1941 
1942 int
1943 in_pcbinshash_nopcbgroup(struct inpcb *inp)
1944 {
1945 
1946 	return (in_pcbinshash_internal(inp, 0));
1947 }
1948 
1949 /*
1950  * Move PCB to the proper hash bucket when { faddr, fport } have  been
1951  * changed. NOTE: This does not handle the case of the lport changing (the
1952  * hashed port list would have to be updated as well), so the lport must
1953  * not change after in_pcbinshash() has been called.
1954  */
1955 void
1956 in_pcbrehash_mbuf(struct inpcb *inp, struct mbuf *m)
1957 {
1958 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1959 	struct inpcbhead *head;
1960 	u_int32_t hashkey_faddr;
1961 
1962 	INP_WLOCK_ASSERT(inp);
1963 	INP_HASH_WLOCK_ASSERT(pcbinfo);
1964 
1965 	KASSERT(inp->inp_flags & INP_INHASHLIST,
1966 	    ("in_pcbrehash: !INP_INHASHLIST"));
1967 
1968 #ifdef INET6
1969 	if (inp->inp_vflag & INP_IPV6)
1970 		hashkey_faddr = inp->in6p_faddr.s6_addr32[3] /* XXX */;
1971 	else
1972 #endif
1973 	hashkey_faddr = inp->inp_faddr.s_addr;
1974 
1975 	head = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
1976 		inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
1977 
1978 	LIST_REMOVE(inp, inp_hash);
1979 	LIST_INSERT_HEAD(head, inp, inp_hash);
1980 
1981 #ifdef PCBGROUP
1982 	if (m != NULL)
1983 		in_pcbgroup_update_mbuf(inp, m);
1984 	else
1985 		in_pcbgroup_update(inp);
1986 #endif
1987 }
1988 
1989 void
1990 in_pcbrehash(struct inpcb *inp)
1991 {
1992 
1993 	in_pcbrehash_mbuf(inp, NULL);
1994 }
1995 
1996 /*
1997  * Remove PCB from various lists.
1998  */
1999 static void
2000 in_pcbremlists(struct inpcb *inp)
2001 {
2002 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2003 
2004 	INP_INFO_WLOCK_ASSERT(pcbinfo);
2005 	INP_WLOCK_ASSERT(inp);
2006 
2007 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
2008 	if (inp->inp_flags & INP_INHASHLIST) {
2009 		struct inpcbport *phd = inp->inp_phd;
2010 
2011 		INP_HASH_WLOCK(pcbinfo);
2012 		LIST_REMOVE(inp, inp_hash);
2013 		LIST_REMOVE(inp, inp_portlist);
2014 		if (LIST_FIRST(&phd->phd_pcblist) == NULL) {
2015 			LIST_REMOVE(phd, phd_hash);
2016 			free(phd, M_PCB);
2017 		}
2018 		INP_HASH_WUNLOCK(pcbinfo);
2019 		inp->inp_flags &= ~INP_INHASHLIST;
2020 	}
2021 	LIST_REMOVE(inp, inp_list);
2022 	pcbinfo->ipi_count--;
2023 #ifdef PCBGROUP
2024 	in_pcbgroup_remove(inp);
2025 #endif
2026 }
2027 
2028 /*
2029  * A set label operation has occurred at the socket layer, propagate the
2030  * label change into the in_pcb for the socket.
2031  */
2032 void
2033 in_pcbsosetlabel(struct socket *so)
2034 {
2035 #ifdef MAC
2036 	struct inpcb *inp;
2037 
2038 	inp = sotoinpcb(so);
2039 	KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL"));
2040 
2041 	INP_WLOCK(inp);
2042 	SOCK_LOCK(so);
2043 	mac_inpcb_sosetlabel(so, inp);
2044 	SOCK_UNLOCK(so);
2045 	INP_WUNLOCK(inp);
2046 #endif
2047 }
2048 
2049 /*
2050  * ipport_tick runs once per second, determining if random port allocation
2051  * should be continued.  If more than ipport_randomcps ports have been
2052  * allocated in the last second, then we return to sequential port
2053  * allocation. We return to random allocation only once we drop below
2054  * ipport_randomcps for at least ipport_randomtime seconds.
2055  */
2056 static void
2057 ipport_tick(void *xtp)
2058 {
2059 	VNET_ITERATOR_DECL(vnet_iter);
2060 
2061 	VNET_LIST_RLOCK_NOSLEEP();
2062 	VNET_FOREACH(vnet_iter) {
2063 		CURVNET_SET(vnet_iter);	/* XXX appease INVARIANTS here */
2064 		if (V_ipport_tcpallocs <=
2065 		    V_ipport_tcplastcount + V_ipport_randomcps) {
2066 			if (V_ipport_stoprandom > 0)
2067 				V_ipport_stoprandom--;
2068 		} else
2069 			V_ipport_stoprandom = V_ipport_randomtime;
2070 		V_ipport_tcplastcount = V_ipport_tcpallocs;
2071 		CURVNET_RESTORE();
2072 	}
2073 	VNET_LIST_RUNLOCK_NOSLEEP();
2074 	callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL);
2075 }
2076 
2077 static void
2078 ip_fini(void *xtp)
2079 {
2080 
2081 	callout_stop(&ipport_tick_callout);
2082 }
2083 
2084 /*
2085  * The ipport_callout should start running at about the time we attach the
2086  * inet or inet6 domains.
2087  */
2088 static void
2089 ipport_tick_init(const void *unused __unused)
2090 {
2091 
2092 	/* Start ipport_tick. */
2093 	callout_init(&ipport_tick_callout, CALLOUT_MPSAFE);
2094 	callout_reset(&ipport_tick_callout, 1, ipport_tick, NULL);
2095 	EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL,
2096 		SHUTDOWN_PRI_DEFAULT);
2097 }
2098 SYSINIT(ipport_tick_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_MIDDLE,
2099     ipport_tick_init, NULL);
2100 
2101 void
2102 inp_wlock(struct inpcb *inp)
2103 {
2104 
2105 	INP_WLOCK(inp);
2106 }
2107 
2108 void
2109 inp_wunlock(struct inpcb *inp)
2110 {
2111 
2112 	INP_WUNLOCK(inp);
2113 }
2114 
2115 void
2116 inp_rlock(struct inpcb *inp)
2117 {
2118 
2119 	INP_RLOCK(inp);
2120 }
2121 
2122 void
2123 inp_runlock(struct inpcb *inp)
2124 {
2125 
2126 	INP_RUNLOCK(inp);
2127 }
2128 
2129 #ifdef INVARIANTS
2130 void
2131 inp_lock_assert(struct inpcb *inp)
2132 {
2133 
2134 	INP_WLOCK_ASSERT(inp);
2135 }
2136 
2137 void
2138 inp_unlock_assert(struct inpcb *inp)
2139 {
2140 
2141 	INP_UNLOCK_ASSERT(inp);
2142 }
2143 #endif
2144 
2145 void
2146 inp_apply_all(void (*func)(struct inpcb *, void *), void *arg)
2147 {
2148 	struct inpcb *inp;
2149 
2150 	INP_INFO_RLOCK(&V_tcbinfo);
2151 	LIST_FOREACH(inp, V_tcbinfo.ipi_listhead, inp_list) {
2152 		INP_WLOCK(inp);
2153 		func(inp, arg);
2154 		INP_WUNLOCK(inp);
2155 	}
2156 	INP_INFO_RUNLOCK(&V_tcbinfo);
2157 }
2158 
2159 struct socket *
2160 inp_inpcbtosocket(struct inpcb *inp)
2161 {
2162 
2163 	INP_WLOCK_ASSERT(inp);
2164 	return (inp->inp_socket);
2165 }
2166 
2167 struct tcpcb *
2168 inp_inpcbtotcpcb(struct inpcb *inp)
2169 {
2170 
2171 	INP_WLOCK_ASSERT(inp);
2172 	return ((struct tcpcb *)inp->inp_ppcb);
2173 }
2174 
2175 int
2176 inp_ip_tos_get(const struct inpcb *inp)
2177 {
2178 
2179 	return (inp->inp_ip_tos);
2180 }
2181 
2182 void
2183 inp_ip_tos_set(struct inpcb *inp, int val)
2184 {
2185 
2186 	inp->inp_ip_tos = val;
2187 }
2188 
2189 void
2190 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp,
2191     uint32_t *faddr, uint16_t *fp)
2192 {
2193 
2194 	INP_LOCK_ASSERT(inp);
2195 	*laddr = inp->inp_laddr.s_addr;
2196 	*faddr = inp->inp_faddr.s_addr;
2197 	*lp = inp->inp_lport;
2198 	*fp = inp->inp_fport;
2199 }
2200 
2201 struct inpcb *
2202 so_sotoinpcb(struct socket *so)
2203 {
2204 
2205 	return (sotoinpcb(so));
2206 }
2207 
2208 struct tcpcb *
2209 so_sototcpcb(struct socket *so)
2210 {
2211 
2212 	return (sototcpcb(so));
2213 }
2214 
2215 #ifdef DDB
2216 static void
2217 db_print_indent(int indent)
2218 {
2219 	int i;
2220 
2221 	for (i = 0; i < indent; i++)
2222 		db_printf(" ");
2223 }
2224 
2225 static void
2226 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent)
2227 {
2228 	char faddr_str[48], laddr_str[48];
2229 
2230 	db_print_indent(indent);
2231 	db_printf("%s at %p\n", name, inc);
2232 
2233 	indent += 2;
2234 
2235 #ifdef INET6
2236 	if (inc->inc_flags & INC_ISIPV6) {
2237 		/* IPv6. */
2238 		ip6_sprintf(laddr_str, &inc->inc6_laddr);
2239 		ip6_sprintf(faddr_str, &inc->inc6_faddr);
2240 	} else
2241 #endif
2242 	{
2243 		/* IPv4. */
2244 		inet_ntoa_r(inc->inc_laddr, laddr_str);
2245 		inet_ntoa_r(inc->inc_faddr, faddr_str);
2246 	}
2247 	db_print_indent(indent);
2248 	db_printf("inc_laddr %s   inc_lport %u\n", laddr_str,
2249 	    ntohs(inc->inc_lport));
2250 	db_print_indent(indent);
2251 	db_printf("inc_faddr %s   inc_fport %u\n", faddr_str,
2252 	    ntohs(inc->inc_fport));
2253 }
2254 
2255 static void
2256 db_print_inpflags(int inp_flags)
2257 {
2258 	int comma;
2259 
2260 	comma = 0;
2261 	if (inp_flags & INP_RECVOPTS) {
2262 		db_printf("%sINP_RECVOPTS", comma ? ", " : "");
2263 		comma = 1;
2264 	}
2265 	if (inp_flags & INP_RECVRETOPTS) {
2266 		db_printf("%sINP_RECVRETOPTS", comma ? ", " : "");
2267 		comma = 1;
2268 	}
2269 	if (inp_flags & INP_RECVDSTADDR) {
2270 		db_printf("%sINP_RECVDSTADDR", comma ? ", " : "");
2271 		comma = 1;
2272 	}
2273 	if (inp_flags & INP_HDRINCL) {
2274 		db_printf("%sINP_HDRINCL", comma ? ", " : "");
2275 		comma = 1;
2276 	}
2277 	if (inp_flags & INP_HIGHPORT) {
2278 		db_printf("%sINP_HIGHPORT", comma ? ", " : "");
2279 		comma = 1;
2280 	}
2281 	if (inp_flags & INP_LOWPORT) {
2282 		db_printf("%sINP_LOWPORT", comma ? ", " : "");
2283 		comma = 1;
2284 	}
2285 	if (inp_flags & INP_ANONPORT) {
2286 		db_printf("%sINP_ANONPORT", comma ? ", " : "");
2287 		comma = 1;
2288 	}
2289 	if (inp_flags & INP_RECVIF) {
2290 		db_printf("%sINP_RECVIF", comma ? ", " : "");
2291 		comma = 1;
2292 	}
2293 	if (inp_flags & INP_MTUDISC) {
2294 		db_printf("%sINP_MTUDISC", comma ? ", " : "");
2295 		comma = 1;
2296 	}
2297 	if (inp_flags & INP_FAITH) {
2298 		db_printf("%sINP_FAITH", comma ? ", " : "");
2299 		comma = 1;
2300 	}
2301 	if (inp_flags & INP_RECVTTL) {
2302 		db_printf("%sINP_RECVTTL", comma ? ", " : "");
2303 		comma = 1;
2304 	}
2305 	if (inp_flags & INP_DONTFRAG) {
2306 		db_printf("%sINP_DONTFRAG", comma ? ", " : "");
2307 		comma = 1;
2308 	}
2309 	if (inp_flags & INP_RECVTOS) {
2310 		db_printf("%sINP_RECVTOS", comma ? ", " : "");
2311 		comma = 1;
2312 	}
2313 	if (inp_flags & IN6P_IPV6_V6ONLY) {
2314 		db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : "");
2315 		comma = 1;
2316 	}
2317 	if (inp_flags & IN6P_PKTINFO) {
2318 		db_printf("%sIN6P_PKTINFO", comma ? ", " : "");
2319 		comma = 1;
2320 	}
2321 	if (inp_flags & IN6P_HOPLIMIT) {
2322 		db_printf("%sIN6P_HOPLIMIT", comma ? ", " : "");
2323 		comma = 1;
2324 	}
2325 	if (inp_flags & IN6P_HOPOPTS) {
2326 		db_printf("%sIN6P_HOPOPTS", comma ? ", " : "");
2327 		comma = 1;
2328 	}
2329 	if (inp_flags & IN6P_DSTOPTS) {
2330 		db_printf("%sIN6P_DSTOPTS", comma ? ", " : "");
2331 		comma = 1;
2332 	}
2333 	if (inp_flags & IN6P_RTHDR) {
2334 		db_printf("%sIN6P_RTHDR", comma ? ", " : "");
2335 		comma = 1;
2336 	}
2337 	if (inp_flags & IN6P_RTHDRDSTOPTS) {
2338 		db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : "");
2339 		comma = 1;
2340 	}
2341 	if (inp_flags & IN6P_TCLASS) {
2342 		db_printf("%sIN6P_TCLASS", comma ? ", " : "");
2343 		comma = 1;
2344 	}
2345 	if (inp_flags & IN6P_AUTOFLOWLABEL) {
2346 		db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : "");
2347 		comma = 1;
2348 	}
2349 	if (inp_flags & INP_TIMEWAIT) {
2350 		db_printf("%sINP_TIMEWAIT", comma ? ", " : "");
2351 		comma  = 1;
2352 	}
2353 	if (inp_flags & INP_ONESBCAST) {
2354 		db_printf("%sINP_ONESBCAST", comma ? ", " : "");
2355 		comma  = 1;
2356 	}
2357 	if (inp_flags & INP_DROPPED) {
2358 		db_printf("%sINP_DROPPED", comma ? ", " : "");
2359 		comma  = 1;
2360 	}
2361 	if (inp_flags & INP_SOCKREF) {
2362 		db_printf("%sINP_SOCKREF", comma ? ", " : "");
2363 		comma  = 1;
2364 	}
2365 	if (inp_flags & IN6P_RFC2292) {
2366 		db_printf("%sIN6P_RFC2292", comma ? ", " : "");
2367 		comma = 1;
2368 	}
2369 	if (inp_flags & IN6P_MTU) {
2370 		db_printf("IN6P_MTU%s", comma ? ", " : "");
2371 		comma = 1;
2372 	}
2373 }
2374 
2375 static void
2376 db_print_inpvflag(u_char inp_vflag)
2377 {
2378 	int comma;
2379 
2380 	comma = 0;
2381 	if (inp_vflag & INP_IPV4) {
2382 		db_printf("%sINP_IPV4", comma ? ", " : "");
2383 		comma  = 1;
2384 	}
2385 	if (inp_vflag & INP_IPV6) {
2386 		db_printf("%sINP_IPV6", comma ? ", " : "");
2387 		comma  = 1;
2388 	}
2389 	if (inp_vflag & INP_IPV6PROTO) {
2390 		db_printf("%sINP_IPV6PROTO", comma ? ", " : "");
2391 		comma  = 1;
2392 	}
2393 }
2394 
2395 static void
2396 db_print_inpcb(struct inpcb *inp, const char *name, int indent)
2397 {
2398 
2399 	db_print_indent(indent);
2400 	db_printf("%s at %p\n", name, inp);
2401 
2402 	indent += 2;
2403 
2404 	db_print_indent(indent);
2405 	db_printf("inp_flow: 0x%x\n", inp->inp_flow);
2406 
2407 	db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent);
2408 
2409 	db_print_indent(indent);
2410 	db_printf("inp_ppcb: %p   inp_pcbinfo: %p   inp_socket: %p\n",
2411 	    inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket);
2412 
2413 	db_print_indent(indent);
2414 	db_printf("inp_label: %p   inp_flags: 0x%x (",
2415 	   inp->inp_label, inp->inp_flags);
2416 	db_print_inpflags(inp->inp_flags);
2417 	db_printf(")\n");
2418 
2419 	db_print_indent(indent);
2420 	db_printf("inp_sp: %p   inp_vflag: 0x%x (", inp->inp_sp,
2421 	    inp->inp_vflag);
2422 	db_print_inpvflag(inp->inp_vflag);
2423 	db_printf(")\n");
2424 
2425 	db_print_indent(indent);
2426 	db_printf("inp_ip_ttl: %d   inp_ip_p: %d   inp_ip_minttl: %d\n",
2427 	    inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl);
2428 
2429 	db_print_indent(indent);
2430 #ifdef INET6
2431 	if (inp->inp_vflag & INP_IPV6) {
2432 		db_printf("in6p_options: %p   in6p_outputopts: %p   "
2433 		    "in6p_moptions: %p\n", inp->in6p_options,
2434 		    inp->in6p_outputopts, inp->in6p_moptions);
2435 		db_printf("in6p_icmp6filt: %p   in6p_cksum %d   "
2436 		    "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum,
2437 		    inp->in6p_hops);
2438 	} else
2439 #endif
2440 	{
2441 		db_printf("inp_ip_tos: %d   inp_ip_options: %p   "
2442 		    "inp_ip_moptions: %p\n", inp->inp_ip_tos,
2443 		    inp->inp_options, inp->inp_moptions);
2444 	}
2445 
2446 	db_print_indent(indent);
2447 	db_printf("inp_phd: %p   inp_gencnt: %ju\n", inp->inp_phd,
2448 	    (uintmax_t)inp->inp_gencnt);
2449 }
2450 
2451 DB_SHOW_COMMAND(inpcb, db_show_inpcb)
2452 {
2453 	struct inpcb *inp;
2454 
2455 	if (!have_addr) {
2456 		db_printf("usage: show inpcb <addr>\n");
2457 		return;
2458 	}
2459 	inp = (struct inpcb *)addr;
2460 
2461 	db_print_inpcb(inp, "inpcb", 0);
2462 }
2463 #endif /* DDB */
2464