1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1991, 1993, 1995 5 * The Regents of the University of California. 6 * Copyright (c) 2007-2009 Robert N. M. Watson 7 * Copyright (c) 2010-2011 Juniper Networks, Inc. 8 * All rights reserved. 9 * 10 * Portions of this software were developed by Robert N. M. Watson under 11 * contract to Juniper Networks, Inc. 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 3. Neither the name of the University nor the names of its contributors 22 * may be used to endorse or promote products derived from this software 23 * without specific prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 35 * SUCH DAMAGE. 36 * 37 * @(#)in_pcb.c 8.4 (Berkeley) 5/24/95 38 */ 39 40 #include <sys/cdefs.h> 41 __FBSDID("$FreeBSD$"); 42 43 #include "opt_ddb.h" 44 #include "opt_ipsec.h" 45 #include "opt_inet.h" 46 #include "opt_inet6.h" 47 #include "opt_ratelimit.h" 48 #include "opt_pcbgroup.h" 49 #include "opt_rss.h" 50 51 #include <sys/param.h> 52 #include <sys/systm.h> 53 #include <sys/lock.h> 54 #include <sys/malloc.h> 55 #include <sys/mbuf.h> 56 #include <sys/callout.h> 57 #include <sys/eventhandler.h> 58 #include <sys/domain.h> 59 #include <sys/protosw.h> 60 #include <sys/rmlock.h> 61 #include <sys/smp.h> 62 #include <sys/socket.h> 63 #include <sys/socketvar.h> 64 #include <sys/sockio.h> 65 #include <sys/priv.h> 66 #include <sys/proc.h> 67 #include <sys/refcount.h> 68 #include <sys/jail.h> 69 #include <sys/kernel.h> 70 #include <sys/sysctl.h> 71 72 #ifdef DDB 73 #include <ddb/ddb.h> 74 #endif 75 76 #include <vm/uma.h> 77 78 #include <net/if.h> 79 #include <net/if_var.h> 80 #include <net/if_types.h> 81 #include <net/if_llatbl.h> 82 #include <net/route.h> 83 #include <net/rss_config.h> 84 #include <net/vnet.h> 85 86 #if defined(INET) || defined(INET6) 87 #include <netinet/in.h> 88 #include <netinet/in_pcb.h> 89 #ifdef INET 90 #include <netinet/in_var.h> 91 #endif 92 #include <netinet/ip_var.h> 93 #include <netinet/tcp_var.h> 94 #ifdef TCPHPTS 95 #include <netinet/tcp_hpts.h> 96 #endif 97 #include <netinet/udp.h> 98 #include <netinet/udp_var.h> 99 #ifdef INET6 100 #include <netinet/ip6.h> 101 #include <netinet6/in6_pcb.h> 102 #include <netinet6/in6_var.h> 103 #include <netinet6/ip6_var.h> 104 #endif /* INET6 */ 105 #endif 106 107 #include <netipsec/ipsec_support.h> 108 109 #include <security/mac/mac_framework.h> 110 111 #define INPCBLBGROUP_SIZMIN 8 112 #define INPCBLBGROUP_SIZMAX 256 113 114 static struct callout ipport_tick_callout; 115 116 /* 117 * These configure the range of local port addresses assigned to 118 * "unspecified" outgoing connections/packets/whatever. 119 */ 120 VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1; /* 1023 */ 121 VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART; /* 600 */ 122 VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST; /* 10000 */ 123 VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST; /* 65535 */ 124 VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO; /* 49152 */ 125 VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO; /* 65535 */ 126 127 /* 128 * Reserved ports accessible only to root. There are significant 129 * security considerations that must be accounted for when changing these, 130 * but the security benefits can be great. Please be careful. 131 */ 132 VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1; /* 1023 */ 133 VNET_DEFINE(int, ipport_reservedlow); 134 135 /* Variables dealing with random ephemeral port allocation. */ 136 VNET_DEFINE(int, ipport_randomized) = 1; /* user controlled via sysctl */ 137 VNET_DEFINE(int, ipport_randomcps) = 10; /* user controlled via sysctl */ 138 VNET_DEFINE(int, ipport_randomtime) = 45; /* user controlled via sysctl */ 139 VNET_DEFINE(int, ipport_stoprandom); /* toggled by ipport_tick */ 140 VNET_DEFINE(int, ipport_tcpallocs); 141 VNET_DEFINE_STATIC(int, ipport_tcplastcount); 142 143 #define V_ipport_tcplastcount VNET(ipport_tcplastcount) 144 145 static void in_pcbremlists(struct inpcb *inp); 146 #ifdef INET 147 static struct inpcb *in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, 148 struct in_addr faddr, u_int fport_arg, 149 struct in_addr laddr, u_int lport_arg, 150 int lookupflags, struct ifnet *ifp); 151 152 #define RANGECHK(var, min, max) \ 153 if ((var) < (min)) { (var) = (min); } \ 154 else if ((var) > (max)) { (var) = (max); } 155 156 static int 157 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS) 158 { 159 int error; 160 161 error = sysctl_handle_int(oidp, arg1, arg2, req); 162 if (error == 0) { 163 RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1); 164 RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1); 165 RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX); 166 RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX); 167 RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX); 168 RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX); 169 } 170 return (error); 171 } 172 173 #undef RANGECHK 174 175 static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, 176 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 177 "IP Ports"); 178 179 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst, 180 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 181 &VNET_NAME(ipport_lowfirstauto), 0, &sysctl_net_ipport_check, "I", 182 ""); 183 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast, 184 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 185 &VNET_NAME(ipport_lowlastauto), 0, &sysctl_net_ipport_check, "I", 186 ""); 187 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first, 188 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 189 &VNET_NAME(ipport_firstauto), 0, &sysctl_net_ipport_check, "I", 190 ""); 191 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last, 192 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 193 &VNET_NAME(ipport_lastauto), 0, &sysctl_net_ipport_check, "I", 194 ""); 195 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst, 196 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 197 &VNET_NAME(ipport_hifirstauto), 0, &sysctl_net_ipport_check, "I", 198 ""); 199 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast, 200 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 201 &VNET_NAME(ipport_hilastauto), 0, &sysctl_net_ipport_check, "I", 202 ""); 203 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh, 204 CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE, 205 &VNET_NAME(ipport_reservedhigh), 0, ""); 206 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow, 207 CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, ""); 208 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized, 209 CTLFLAG_VNET | CTLFLAG_RW, 210 &VNET_NAME(ipport_randomized), 0, "Enable random port allocation"); 211 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomcps, 212 CTLFLAG_VNET | CTLFLAG_RW, 213 &VNET_NAME(ipport_randomcps), 0, "Maximum number of random port " 214 "allocations before switching to a sequental one"); 215 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomtime, 216 CTLFLAG_VNET | CTLFLAG_RW, 217 &VNET_NAME(ipport_randomtime), 0, 218 "Minimum time to keep sequental port " 219 "allocation before switching to a random one"); 220 221 #ifdef RATELIMIT 222 counter_u64_t rate_limit_active; 223 counter_u64_t rate_limit_alloc_fail; 224 counter_u64_t rate_limit_set_ok; 225 226 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, rl, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 227 "IP Rate Limiting"); 228 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, active, CTLFLAG_RD, 229 &rate_limit_active, "Active rate limited connections"); 230 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, alloc_fail, CTLFLAG_RD, 231 &rate_limit_alloc_fail, "Rate limited connection failures"); 232 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, set_ok, CTLFLAG_RD, 233 &rate_limit_set_ok, "Rate limited setting succeeded"); 234 #endif /* RATELIMIT */ 235 236 #endif /* INET */ 237 238 /* 239 * in_pcb.c: manage the Protocol Control Blocks. 240 * 241 * NOTE: It is assumed that most of these functions will be called with 242 * the pcbinfo lock held, and often, the inpcb lock held, as these utility 243 * functions often modify hash chains or addresses in pcbs. 244 */ 245 246 static struct inpcblbgroup * 247 in_pcblbgroup_alloc(struct inpcblbgrouphead *hdr, u_char vflag, 248 uint16_t port, const union in_dependaddr *addr, int size) 249 { 250 struct inpcblbgroup *grp; 251 size_t bytes; 252 253 bytes = __offsetof(struct inpcblbgroup, il_inp[size]); 254 grp = malloc(bytes, M_PCB, M_ZERO | M_NOWAIT); 255 if (!grp) 256 return (NULL); 257 grp->il_vflag = vflag; 258 grp->il_lport = port; 259 grp->il_dependladdr = *addr; 260 grp->il_inpsiz = size; 261 CK_LIST_INSERT_HEAD(hdr, grp, il_list); 262 return (grp); 263 } 264 265 static void 266 in_pcblbgroup_free_deferred(epoch_context_t ctx) 267 { 268 struct inpcblbgroup *grp; 269 270 grp = __containerof(ctx, struct inpcblbgroup, il_epoch_ctx); 271 free(grp, M_PCB); 272 } 273 274 static void 275 in_pcblbgroup_free(struct inpcblbgroup *grp) 276 { 277 278 CK_LIST_REMOVE(grp, il_list); 279 NET_EPOCH_CALL(in_pcblbgroup_free_deferred, &grp->il_epoch_ctx); 280 } 281 282 static struct inpcblbgroup * 283 in_pcblbgroup_resize(struct inpcblbgrouphead *hdr, 284 struct inpcblbgroup *old_grp, int size) 285 { 286 struct inpcblbgroup *grp; 287 int i; 288 289 grp = in_pcblbgroup_alloc(hdr, old_grp->il_vflag, 290 old_grp->il_lport, &old_grp->il_dependladdr, size); 291 if (grp == NULL) 292 return (NULL); 293 294 KASSERT(old_grp->il_inpcnt < grp->il_inpsiz, 295 ("invalid new local group size %d and old local group count %d", 296 grp->il_inpsiz, old_grp->il_inpcnt)); 297 298 for (i = 0; i < old_grp->il_inpcnt; ++i) 299 grp->il_inp[i] = old_grp->il_inp[i]; 300 grp->il_inpcnt = old_grp->il_inpcnt; 301 in_pcblbgroup_free(old_grp); 302 return (grp); 303 } 304 305 /* 306 * PCB at index 'i' is removed from the group. Pull up the ones below il_inp[i] 307 * and shrink group if possible. 308 */ 309 static void 310 in_pcblbgroup_reorder(struct inpcblbgrouphead *hdr, struct inpcblbgroup **grpp, 311 int i) 312 { 313 struct inpcblbgroup *grp, *new_grp; 314 315 grp = *grpp; 316 for (; i + 1 < grp->il_inpcnt; ++i) 317 grp->il_inp[i] = grp->il_inp[i + 1]; 318 grp->il_inpcnt--; 319 320 if (grp->il_inpsiz > INPCBLBGROUP_SIZMIN && 321 grp->il_inpcnt <= grp->il_inpsiz / 4) { 322 /* Shrink this group. */ 323 new_grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz / 2); 324 if (new_grp != NULL) 325 *grpp = new_grp; 326 } 327 } 328 329 /* 330 * Add PCB to load balance group for SO_REUSEPORT_LB option. 331 */ 332 static int 333 in_pcbinslbgrouphash(struct inpcb *inp) 334 { 335 const static struct timeval interval = { 60, 0 }; 336 static struct timeval lastprint; 337 struct inpcbinfo *pcbinfo; 338 struct inpcblbgrouphead *hdr; 339 struct inpcblbgroup *grp; 340 uint32_t idx; 341 342 pcbinfo = inp->inp_pcbinfo; 343 344 INP_WLOCK_ASSERT(inp); 345 INP_HASH_WLOCK_ASSERT(pcbinfo); 346 347 /* 348 * Don't allow jailed socket to join local group. 349 */ 350 if (inp->inp_socket != NULL && jailed(inp->inp_socket->so_cred)) 351 return (0); 352 353 #ifdef INET6 354 /* 355 * Don't allow IPv4 mapped INET6 wild socket. 356 */ 357 if ((inp->inp_vflag & INP_IPV4) && 358 inp->inp_laddr.s_addr == INADDR_ANY && 359 INP_CHECK_SOCKAF(inp->inp_socket, AF_INET6)) { 360 return (0); 361 } 362 #endif 363 364 idx = INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask); 365 hdr = &pcbinfo->ipi_lbgrouphashbase[idx]; 366 CK_LIST_FOREACH(grp, hdr, il_list) { 367 if (grp->il_vflag == inp->inp_vflag && 368 grp->il_lport == inp->inp_lport && 369 memcmp(&grp->il_dependladdr, 370 &inp->inp_inc.inc_ie.ie_dependladdr, 371 sizeof(grp->il_dependladdr)) == 0) 372 break; 373 } 374 if (grp == NULL) { 375 /* Create new load balance group. */ 376 grp = in_pcblbgroup_alloc(hdr, inp->inp_vflag, 377 inp->inp_lport, &inp->inp_inc.inc_ie.ie_dependladdr, 378 INPCBLBGROUP_SIZMIN); 379 if (grp == NULL) 380 return (ENOBUFS); 381 } else if (grp->il_inpcnt == grp->il_inpsiz) { 382 if (grp->il_inpsiz >= INPCBLBGROUP_SIZMAX) { 383 if (ratecheck(&lastprint, &interval)) 384 printf("lb group port %d, limit reached\n", 385 ntohs(grp->il_lport)); 386 return (0); 387 } 388 389 /* Expand this local group. */ 390 grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz * 2); 391 if (grp == NULL) 392 return (ENOBUFS); 393 } 394 395 KASSERT(grp->il_inpcnt < grp->il_inpsiz, 396 ("invalid local group size %d and count %d", grp->il_inpsiz, 397 grp->il_inpcnt)); 398 399 grp->il_inp[grp->il_inpcnt] = inp; 400 grp->il_inpcnt++; 401 return (0); 402 } 403 404 /* 405 * Remove PCB from load balance group. 406 */ 407 static void 408 in_pcbremlbgrouphash(struct inpcb *inp) 409 { 410 struct inpcbinfo *pcbinfo; 411 struct inpcblbgrouphead *hdr; 412 struct inpcblbgroup *grp; 413 int i; 414 415 pcbinfo = inp->inp_pcbinfo; 416 417 INP_WLOCK_ASSERT(inp); 418 INP_HASH_WLOCK_ASSERT(pcbinfo); 419 420 hdr = &pcbinfo->ipi_lbgrouphashbase[ 421 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask)]; 422 CK_LIST_FOREACH(grp, hdr, il_list) { 423 for (i = 0; i < grp->il_inpcnt; ++i) { 424 if (grp->il_inp[i] != inp) 425 continue; 426 427 if (grp->il_inpcnt == 1) { 428 /* We are the last, free this local group. */ 429 in_pcblbgroup_free(grp); 430 } else { 431 /* Pull up inpcbs, shrink group if possible. */ 432 in_pcblbgroup_reorder(hdr, &grp, i); 433 } 434 return; 435 } 436 } 437 } 438 439 /* 440 * Different protocols initialize their inpcbs differently - giving 441 * different name to the lock. But they all are disposed the same. 442 */ 443 static void 444 inpcb_fini(void *mem, int size) 445 { 446 struct inpcb *inp = mem; 447 448 INP_LOCK_DESTROY(inp); 449 } 450 451 /* 452 * Initialize an inpcbinfo -- we should be able to reduce the number of 453 * arguments in time. 454 */ 455 void 456 in_pcbinfo_init(struct inpcbinfo *pcbinfo, const char *name, 457 struct inpcbhead *listhead, int hash_nelements, int porthash_nelements, 458 char *inpcbzone_name, uma_init inpcbzone_init, u_int hashfields) 459 { 460 461 porthash_nelements = imin(porthash_nelements, IPPORT_MAX + 1); 462 463 INP_INFO_LOCK_INIT(pcbinfo, name); 464 INP_HASH_LOCK_INIT(pcbinfo, "pcbinfohash"); /* XXXRW: argument? */ 465 INP_LIST_LOCK_INIT(pcbinfo, "pcbinfolist"); 466 #ifdef VIMAGE 467 pcbinfo->ipi_vnet = curvnet; 468 #endif 469 pcbinfo->ipi_listhead = listhead; 470 CK_LIST_INIT(pcbinfo->ipi_listhead); 471 pcbinfo->ipi_count = 0; 472 pcbinfo->ipi_hashbase = hashinit(hash_nelements, M_PCB, 473 &pcbinfo->ipi_hashmask); 474 pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB, 475 &pcbinfo->ipi_porthashmask); 476 pcbinfo->ipi_lbgrouphashbase = hashinit(porthash_nelements, M_PCB, 477 &pcbinfo->ipi_lbgrouphashmask); 478 #ifdef PCBGROUP 479 in_pcbgroup_init(pcbinfo, hashfields, hash_nelements); 480 #endif 481 pcbinfo->ipi_zone = uma_zcreate(inpcbzone_name, sizeof(struct inpcb), 482 NULL, NULL, inpcbzone_init, inpcb_fini, UMA_ALIGN_PTR, 0); 483 uma_zone_set_max(pcbinfo->ipi_zone, maxsockets); 484 uma_zone_set_warning(pcbinfo->ipi_zone, 485 "kern.ipc.maxsockets limit reached"); 486 } 487 488 /* 489 * Destroy an inpcbinfo. 490 */ 491 void 492 in_pcbinfo_destroy(struct inpcbinfo *pcbinfo) 493 { 494 495 KASSERT(pcbinfo->ipi_count == 0, 496 ("%s: ipi_count = %u", __func__, pcbinfo->ipi_count)); 497 498 hashdestroy(pcbinfo->ipi_hashbase, M_PCB, pcbinfo->ipi_hashmask); 499 hashdestroy(pcbinfo->ipi_porthashbase, M_PCB, 500 pcbinfo->ipi_porthashmask); 501 hashdestroy(pcbinfo->ipi_lbgrouphashbase, M_PCB, 502 pcbinfo->ipi_lbgrouphashmask); 503 #ifdef PCBGROUP 504 in_pcbgroup_destroy(pcbinfo); 505 #endif 506 uma_zdestroy(pcbinfo->ipi_zone); 507 INP_LIST_LOCK_DESTROY(pcbinfo); 508 INP_HASH_LOCK_DESTROY(pcbinfo); 509 INP_INFO_LOCK_DESTROY(pcbinfo); 510 } 511 512 /* 513 * Allocate a PCB and associate it with the socket. 514 * On success return with the PCB locked. 515 */ 516 int 517 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo) 518 { 519 struct inpcb *inp; 520 int error; 521 522 error = 0; 523 inp = uma_zalloc(pcbinfo->ipi_zone, M_NOWAIT); 524 if (inp == NULL) 525 return (ENOBUFS); 526 bzero(&inp->inp_start_zero, inp_zero_size); 527 #ifdef NUMA 528 inp->inp_numa_domain = M_NODOM; 529 #endif 530 inp->inp_pcbinfo = pcbinfo; 531 inp->inp_socket = so; 532 inp->inp_cred = crhold(so->so_cred); 533 inp->inp_inc.inc_fibnum = so->so_fibnum; 534 #ifdef MAC 535 error = mac_inpcb_init(inp, M_NOWAIT); 536 if (error != 0) 537 goto out; 538 mac_inpcb_create(so, inp); 539 #endif 540 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 541 error = ipsec_init_pcbpolicy(inp); 542 if (error != 0) { 543 #ifdef MAC 544 mac_inpcb_destroy(inp); 545 #endif 546 goto out; 547 } 548 #endif /*IPSEC*/ 549 #ifdef INET6 550 if (INP_SOCKAF(so) == AF_INET6) { 551 inp->inp_vflag |= INP_IPV6PROTO; 552 if (V_ip6_v6only) 553 inp->inp_flags |= IN6P_IPV6_V6ONLY; 554 } 555 #endif 556 INP_WLOCK(inp); 557 INP_LIST_WLOCK(pcbinfo); 558 CK_LIST_INSERT_HEAD(pcbinfo->ipi_listhead, inp, inp_list); 559 pcbinfo->ipi_count++; 560 so->so_pcb = (caddr_t)inp; 561 #ifdef INET6 562 if (V_ip6_auto_flowlabel) 563 inp->inp_flags |= IN6P_AUTOFLOWLABEL; 564 #endif 565 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 566 refcount_init(&inp->inp_refcount, 1); /* Reference from inpcbinfo */ 567 568 /* 569 * Routes in inpcb's can cache L2 as well; they are guaranteed 570 * to be cleaned up. 571 */ 572 inp->inp_route.ro_flags = RT_LLE_CACHE; 573 INP_LIST_WUNLOCK(pcbinfo); 574 #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC) 575 out: 576 if (error != 0) { 577 crfree(inp->inp_cred); 578 uma_zfree(pcbinfo->ipi_zone, inp); 579 } 580 #endif 581 return (error); 582 } 583 584 #ifdef INET 585 int 586 in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred) 587 { 588 int anonport, error; 589 590 INP_WLOCK_ASSERT(inp); 591 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 592 593 if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY) 594 return (EINVAL); 595 anonport = nam == NULL || ((struct sockaddr_in *)nam)->sin_port == 0; 596 error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr, 597 &inp->inp_lport, cred); 598 if (error) 599 return (error); 600 if (in_pcbinshash(inp) != 0) { 601 inp->inp_laddr.s_addr = INADDR_ANY; 602 inp->inp_lport = 0; 603 return (EAGAIN); 604 } 605 if (anonport) 606 inp->inp_flags |= INP_ANONPORT; 607 return (0); 608 } 609 #endif 610 611 /* 612 * Select a local port (number) to use. 613 */ 614 #if defined(INET) || defined(INET6) 615 int 616 in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp, 617 struct ucred *cred, int lookupflags) 618 { 619 struct inpcbinfo *pcbinfo; 620 struct inpcb *tmpinp; 621 unsigned short *lastport; 622 int count, dorandom, error; 623 u_short aux, first, last, lport; 624 #ifdef INET 625 struct in_addr laddr; 626 #endif 627 628 pcbinfo = inp->inp_pcbinfo; 629 630 /* 631 * Because no actual state changes occur here, a global write lock on 632 * the pcbinfo isn't required. 633 */ 634 INP_LOCK_ASSERT(inp); 635 INP_HASH_LOCK_ASSERT(pcbinfo); 636 637 if (inp->inp_flags & INP_HIGHPORT) { 638 first = V_ipport_hifirstauto; /* sysctl */ 639 last = V_ipport_hilastauto; 640 lastport = &pcbinfo->ipi_lasthi; 641 } else if (inp->inp_flags & INP_LOWPORT) { 642 error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT); 643 if (error) 644 return (error); 645 first = V_ipport_lowfirstauto; /* 1023 */ 646 last = V_ipport_lowlastauto; /* 600 */ 647 lastport = &pcbinfo->ipi_lastlow; 648 } else { 649 first = V_ipport_firstauto; /* sysctl */ 650 last = V_ipport_lastauto; 651 lastport = &pcbinfo->ipi_lastport; 652 } 653 /* 654 * For UDP(-Lite), use random port allocation as long as the user 655 * allows it. For TCP (and as of yet unknown) connections, 656 * use random port allocation only if the user allows it AND 657 * ipport_tick() allows it. 658 */ 659 if (V_ipport_randomized && 660 (!V_ipport_stoprandom || pcbinfo == &V_udbinfo || 661 pcbinfo == &V_ulitecbinfo)) 662 dorandom = 1; 663 else 664 dorandom = 0; 665 /* 666 * It makes no sense to do random port allocation if 667 * we have the only port available. 668 */ 669 if (first == last) 670 dorandom = 0; 671 /* Make sure to not include UDP(-Lite) packets in the count. */ 672 if (pcbinfo != &V_udbinfo || pcbinfo != &V_ulitecbinfo) 673 V_ipport_tcpallocs++; 674 /* 675 * Instead of having two loops further down counting up or down 676 * make sure that first is always <= last and go with only one 677 * code path implementing all logic. 678 */ 679 if (first > last) { 680 aux = first; 681 first = last; 682 last = aux; 683 } 684 685 #ifdef INET 686 /* Make the compiler happy. */ 687 laddr.s_addr = 0; 688 if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) { 689 KASSERT(laddrp != NULL, ("%s: laddrp NULL for v4 inp %p", 690 __func__, inp)); 691 laddr = *laddrp; 692 } 693 #endif 694 tmpinp = NULL; /* Make compiler happy. */ 695 lport = *lportp; 696 697 if (dorandom) 698 *lastport = first + (arc4random() % (last - first)); 699 700 count = last - first; 701 702 do { 703 if (count-- < 0) /* completely used? */ 704 return (EADDRNOTAVAIL); 705 ++*lastport; 706 if (*lastport < first || *lastport > last) 707 *lastport = first; 708 lport = htons(*lastport); 709 710 #ifdef INET6 711 if ((inp->inp_vflag & INP_IPV6) != 0) 712 tmpinp = in6_pcblookup_local(pcbinfo, 713 &inp->in6p_laddr, lport, lookupflags, cred); 714 #endif 715 #if defined(INET) && defined(INET6) 716 else 717 #endif 718 #ifdef INET 719 tmpinp = in_pcblookup_local(pcbinfo, laddr, 720 lport, lookupflags, cred); 721 #endif 722 } while (tmpinp != NULL); 723 724 #ifdef INET 725 if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) 726 laddrp->s_addr = laddr.s_addr; 727 #endif 728 *lportp = lport; 729 730 return (0); 731 } 732 733 /* 734 * Return cached socket options. 735 */ 736 int 737 inp_so_options(const struct inpcb *inp) 738 { 739 int so_options; 740 741 so_options = 0; 742 743 if ((inp->inp_flags2 & INP_REUSEPORT_LB) != 0) 744 so_options |= SO_REUSEPORT_LB; 745 if ((inp->inp_flags2 & INP_REUSEPORT) != 0) 746 so_options |= SO_REUSEPORT; 747 if ((inp->inp_flags2 & INP_REUSEADDR) != 0) 748 so_options |= SO_REUSEADDR; 749 return (so_options); 750 } 751 #endif /* INET || INET6 */ 752 753 /* 754 * Check if a new BINDMULTI socket is allowed to be created. 755 * 756 * ni points to the new inp. 757 * oi points to the exisitng inp. 758 * 759 * This checks whether the existing inp also has BINDMULTI and 760 * whether the credentials match. 761 */ 762 int 763 in_pcbbind_check_bindmulti(const struct inpcb *ni, const struct inpcb *oi) 764 { 765 /* Check permissions match */ 766 if ((ni->inp_flags2 & INP_BINDMULTI) && 767 (ni->inp_cred->cr_uid != 768 oi->inp_cred->cr_uid)) 769 return (0); 770 771 /* Check the existing inp has BINDMULTI set */ 772 if ((ni->inp_flags2 & INP_BINDMULTI) && 773 ((oi->inp_flags2 & INP_BINDMULTI) == 0)) 774 return (0); 775 776 /* 777 * We're okay - either INP_BINDMULTI isn't set on ni, or 778 * it is and it matches the checks. 779 */ 780 return (1); 781 } 782 783 #ifdef INET 784 /* 785 * Set up a bind operation on a PCB, performing port allocation 786 * as required, but do not actually modify the PCB. Callers can 787 * either complete the bind by setting inp_laddr/inp_lport and 788 * calling in_pcbinshash(), or they can just use the resulting 789 * port and address to authorise the sending of a once-off packet. 790 * 791 * On error, the values of *laddrp and *lportp are not changed. 792 */ 793 int 794 in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp, 795 u_short *lportp, struct ucred *cred) 796 { 797 struct socket *so = inp->inp_socket; 798 struct sockaddr_in *sin; 799 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 800 struct in_addr laddr; 801 u_short lport = 0; 802 int lookupflags = 0, reuseport = (so->so_options & SO_REUSEPORT); 803 int error; 804 805 /* 806 * XXX: Maybe we could let SO_REUSEPORT_LB set SO_REUSEPORT bit here 807 * so that we don't have to add to the (already messy) code below. 808 */ 809 int reuseport_lb = (so->so_options & SO_REUSEPORT_LB); 810 811 /* 812 * No state changes, so read locks are sufficient here. 813 */ 814 INP_LOCK_ASSERT(inp); 815 INP_HASH_LOCK_ASSERT(pcbinfo); 816 817 if (CK_STAILQ_EMPTY(&V_in_ifaddrhead)) /* XXX broken! */ 818 return (EADDRNOTAVAIL); 819 laddr.s_addr = *laddrp; 820 if (nam != NULL && laddr.s_addr != INADDR_ANY) 821 return (EINVAL); 822 if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT|SO_REUSEPORT_LB)) == 0) 823 lookupflags = INPLOOKUP_WILDCARD; 824 if (nam == NULL) { 825 if ((error = prison_local_ip4(cred, &laddr)) != 0) 826 return (error); 827 } else { 828 sin = (struct sockaddr_in *)nam; 829 if (nam->sa_len != sizeof (*sin)) 830 return (EINVAL); 831 #ifdef notdef 832 /* 833 * We should check the family, but old programs 834 * incorrectly fail to initialize it. 835 */ 836 if (sin->sin_family != AF_INET) 837 return (EAFNOSUPPORT); 838 #endif 839 error = prison_local_ip4(cred, &sin->sin_addr); 840 if (error) 841 return (error); 842 if (sin->sin_port != *lportp) { 843 /* Don't allow the port to change. */ 844 if (*lportp != 0) 845 return (EINVAL); 846 lport = sin->sin_port; 847 } 848 /* NB: lport is left as 0 if the port isn't being changed. */ 849 if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) { 850 /* 851 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast; 852 * allow complete duplication of binding if 853 * SO_REUSEPORT is set, or if SO_REUSEADDR is set 854 * and a multicast address is bound on both 855 * new and duplicated sockets. 856 */ 857 if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) != 0) 858 reuseport = SO_REUSEADDR|SO_REUSEPORT; 859 /* 860 * XXX: How to deal with SO_REUSEPORT_LB here? 861 * Treat same as SO_REUSEPORT for now. 862 */ 863 if ((so->so_options & 864 (SO_REUSEADDR|SO_REUSEPORT_LB)) != 0) 865 reuseport_lb = SO_REUSEADDR|SO_REUSEPORT_LB; 866 } else if (sin->sin_addr.s_addr != INADDR_ANY) { 867 sin->sin_port = 0; /* yech... */ 868 bzero(&sin->sin_zero, sizeof(sin->sin_zero)); 869 /* 870 * Is the address a local IP address? 871 * If INP_BINDANY is set, then the socket may be bound 872 * to any endpoint address, local or not. 873 */ 874 if ((inp->inp_flags & INP_BINDANY) == 0 && 875 ifa_ifwithaddr_check((struct sockaddr *)sin) == 0) 876 return (EADDRNOTAVAIL); 877 } 878 laddr = sin->sin_addr; 879 if (lport) { 880 struct inpcb *t; 881 struct tcptw *tw; 882 883 /* GROSS */ 884 if (ntohs(lport) <= V_ipport_reservedhigh && 885 ntohs(lport) >= V_ipport_reservedlow && 886 priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT)) 887 return (EACCES); 888 if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) && 889 priv_check_cred(inp->inp_cred, PRIV_NETINET_REUSEPORT) != 0) { 890 t = in_pcblookup_local(pcbinfo, sin->sin_addr, 891 lport, INPLOOKUP_WILDCARD, cred); 892 /* 893 * XXX 894 * This entire block sorely needs a rewrite. 895 */ 896 if (t && 897 ((inp->inp_flags2 & INP_BINDMULTI) == 0) && 898 ((t->inp_flags & INP_TIMEWAIT) == 0) && 899 (so->so_type != SOCK_STREAM || 900 ntohl(t->inp_faddr.s_addr) == INADDR_ANY) && 901 (ntohl(sin->sin_addr.s_addr) != INADDR_ANY || 902 ntohl(t->inp_laddr.s_addr) != INADDR_ANY || 903 (t->inp_flags2 & INP_REUSEPORT) || 904 (t->inp_flags2 & INP_REUSEPORT_LB) == 0) && 905 (inp->inp_cred->cr_uid != 906 t->inp_cred->cr_uid)) 907 return (EADDRINUSE); 908 909 /* 910 * If the socket is a BINDMULTI socket, then 911 * the credentials need to match and the 912 * original socket also has to have been bound 913 * with BINDMULTI. 914 */ 915 if (t && (! in_pcbbind_check_bindmulti(inp, t))) 916 return (EADDRINUSE); 917 } 918 t = in_pcblookup_local(pcbinfo, sin->sin_addr, 919 lport, lookupflags, cred); 920 if (t && (t->inp_flags & INP_TIMEWAIT)) { 921 /* 922 * XXXRW: If an incpb has had its timewait 923 * state recycled, we treat the address as 924 * being in use (for now). This is better 925 * than a panic, but not desirable. 926 */ 927 tw = intotw(t); 928 if (tw == NULL || 929 ((reuseport & tw->tw_so_options) == 0 && 930 (reuseport_lb & 931 tw->tw_so_options) == 0)) { 932 return (EADDRINUSE); 933 } 934 } else if (t && 935 ((inp->inp_flags2 & INP_BINDMULTI) == 0) && 936 (reuseport & inp_so_options(t)) == 0 && 937 (reuseport_lb & inp_so_options(t)) == 0) { 938 #ifdef INET6 939 if (ntohl(sin->sin_addr.s_addr) != 940 INADDR_ANY || 941 ntohl(t->inp_laddr.s_addr) != 942 INADDR_ANY || 943 (inp->inp_vflag & INP_IPV6PROTO) == 0 || 944 (t->inp_vflag & INP_IPV6PROTO) == 0) 945 #endif 946 return (EADDRINUSE); 947 if (t && (! in_pcbbind_check_bindmulti(inp, t))) 948 return (EADDRINUSE); 949 } 950 } 951 } 952 if (*lportp != 0) 953 lport = *lportp; 954 if (lport == 0) { 955 error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags); 956 if (error != 0) 957 return (error); 958 959 } 960 *laddrp = laddr.s_addr; 961 *lportp = lport; 962 return (0); 963 } 964 965 /* 966 * Connect from a socket to a specified address. 967 * Both address and port must be specified in argument sin. 968 * If don't have a local address for this socket yet, 969 * then pick one. 970 */ 971 int 972 in_pcbconnect_mbuf(struct inpcb *inp, struct sockaddr *nam, 973 struct ucred *cred, struct mbuf *m, bool rehash) 974 { 975 u_short lport, fport; 976 in_addr_t laddr, faddr; 977 int anonport, error; 978 979 INP_WLOCK_ASSERT(inp); 980 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 981 982 lport = inp->inp_lport; 983 laddr = inp->inp_laddr.s_addr; 984 anonport = (lport == 0); 985 error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport, 986 NULL, cred); 987 if (error) 988 return (error); 989 990 /* Do the initial binding of the local address if required. */ 991 if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) { 992 KASSERT(rehash == true, 993 ("Rehashing required for unbound inps")); 994 inp->inp_lport = lport; 995 inp->inp_laddr.s_addr = laddr; 996 if (in_pcbinshash(inp) != 0) { 997 inp->inp_laddr.s_addr = INADDR_ANY; 998 inp->inp_lport = 0; 999 return (EAGAIN); 1000 } 1001 } 1002 1003 /* Commit the remaining changes. */ 1004 inp->inp_lport = lport; 1005 inp->inp_laddr.s_addr = laddr; 1006 inp->inp_faddr.s_addr = faddr; 1007 inp->inp_fport = fport; 1008 if (rehash) { 1009 in_pcbrehash_mbuf(inp, m); 1010 } else { 1011 in_pcbinshash_mbuf(inp, m); 1012 } 1013 1014 if (anonport) 1015 inp->inp_flags |= INP_ANONPORT; 1016 return (0); 1017 } 1018 1019 int 1020 in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred) 1021 { 1022 1023 return (in_pcbconnect_mbuf(inp, nam, cred, NULL, true)); 1024 } 1025 1026 /* 1027 * Do proper source address selection on an unbound socket in case 1028 * of connect. Take jails into account as well. 1029 */ 1030 int 1031 in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr, 1032 struct ucred *cred) 1033 { 1034 struct ifaddr *ifa; 1035 struct sockaddr *sa; 1036 struct sockaddr_in *sin; 1037 struct route sro; 1038 int error; 1039 1040 NET_EPOCH_ASSERT(); 1041 KASSERT(laddr != NULL, ("%s: laddr NULL", __func__)); 1042 /* 1043 * Bypass source address selection and use the primary jail IP 1044 * if requested. 1045 */ 1046 if (cred != NULL && !prison_saddrsel_ip4(cred, laddr)) 1047 return (0); 1048 1049 error = 0; 1050 bzero(&sro, sizeof(sro)); 1051 1052 sin = (struct sockaddr_in *)&sro.ro_dst; 1053 sin->sin_family = AF_INET; 1054 sin->sin_len = sizeof(struct sockaddr_in); 1055 sin->sin_addr.s_addr = faddr->s_addr; 1056 1057 /* 1058 * If route is known our src addr is taken from the i/f, 1059 * else punt. 1060 * 1061 * Find out route to destination. 1062 */ 1063 if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0) 1064 in_rtalloc_ign(&sro, 0, inp->inp_inc.inc_fibnum); 1065 1066 /* 1067 * If we found a route, use the address corresponding to 1068 * the outgoing interface. 1069 * 1070 * Otherwise assume faddr is reachable on a directly connected 1071 * network and try to find a corresponding interface to take 1072 * the source address from. 1073 */ 1074 if (sro.ro_rt == NULL || sro.ro_rt->rt_ifp == NULL) { 1075 struct in_ifaddr *ia; 1076 struct ifnet *ifp; 1077 1078 ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin, 1079 inp->inp_socket->so_fibnum)); 1080 if (ia == NULL) { 1081 ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0, 1082 inp->inp_socket->so_fibnum)); 1083 1084 } 1085 if (ia == NULL) { 1086 error = ENETUNREACH; 1087 goto done; 1088 } 1089 1090 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 1091 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1092 goto done; 1093 } 1094 1095 ifp = ia->ia_ifp; 1096 ia = NULL; 1097 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1098 1099 sa = ifa->ifa_addr; 1100 if (sa->sa_family != AF_INET) 1101 continue; 1102 sin = (struct sockaddr_in *)sa; 1103 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 1104 ia = (struct in_ifaddr *)ifa; 1105 break; 1106 } 1107 } 1108 if (ia != NULL) { 1109 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1110 goto done; 1111 } 1112 1113 /* 3. As a last resort return the 'default' jail address. */ 1114 error = prison_get_ip4(cred, laddr); 1115 goto done; 1116 } 1117 1118 /* 1119 * If the outgoing interface on the route found is not 1120 * a loopback interface, use the address from that interface. 1121 * In case of jails do those three steps: 1122 * 1. check if the interface address belongs to the jail. If so use it. 1123 * 2. check if we have any address on the outgoing interface 1124 * belonging to this jail. If so use it. 1125 * 3. as a last resort return the 'default' jail address. 1126 */ 1127 if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) { 1128 struct in_ifaddr *ia; 1129 struct ifnet *ifp; 1130 1131 /* If not jailed, use the default returned. */ 1132 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 1133 ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa; 1134 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1135 goto done; 1136 } 1137 1138 /* Jailed. */ 1139 /* 1. Check if the iface address belongs to the jail. */ 1140 sin = (struct sockaddr_in *)sro.ro_rt->rt_ifa->ifa_addr; 1141 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 1142 ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa; 1143 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1144 goto done; 1145 } 1146 1147 /* 1148 * 2. Check if we have any address on the outgoing interface 1149 * belonging to this jail. 1150 */ 1151 ia = NULL; 1152 ifp = sro.ro_rt->rt_ifp; 1153 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1154 sa = ifa->ifa_addr; 1155 if (sa->sa_family != AF_INET) 1156 continue; 1157 sin = (struct sockaddr_in *)sa; 1158 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 1159 ia = (struct in_ifaddr *)ifa; 1160 break; 1161 } 1162 } 1163 if (ia != NULL) { 1164 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1165 goto done; 1166 } 1167 1168 /* 3. As a last resort return the 'default' jail address. */ 1169 error = prison_get_ip4(cred, laddr); 1170 goto done; 1171 } 1172 1173 /* 1174 * The outgoing interface is marked with 'loopback net', so a route 1175 * to ourselves is here. 1176 * Try to find the interface of the destination address and then 1177 * take the address from there. That interface is not necessarily 1178 * a loopback interface. 1179 * In case of jails, check that it is an address of the jail 1180 * and if we cannot find, fall back to the 'default' jail address. 1181 */ 1182 if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) { 1183 struct sockaddr_in sain; 1184 struct in_ifaddr *ia; 1185 1186 bzero(&sain, sizeof(struct sockaddr_in)); 1187 sain.sin_family = AF_INET; 1188 sain.sin_len = sizeof(struct sockaddr_in); 1189 sain.sin_addr.s_addr = faddr->s_addr; 1190 1191 ia = ifatoia(ifa_ifwithdstaddr(sintosa(&sain), 1192 inp->inp_socket->so_fibnum)); 1193 if (ia == NULL) 1194 ia = ifatoia(ifa_ifwithnet(sintosa(&sain), 0, 1195 inp->inp_socket->so_fibnum)); 1196 if (ia == NULL) 1197 ia = ifatoia(ifa_ifwithaddr(sintosa(&sain))); 1198 1199 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 1200 if (ia == NULL) { 1201 error = ENETUNREACH; 1202 goto done; 1203 } 1204 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1205 goto done; 1206 } 1207 1208 /* Jailed. */ 1209 if (ia != NULL) { 1210 struct ifnet *ifp; 1211 1212 ifp = ia->ia_ifp; 1213 ia = NULL; 1214 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1215 sa = ifa->ifa_addr; 1216 if (sa->sa_family != AF_INET) 1217 continue; 1218 sin = (struct sockaddr_in *)sa; 1219 if (prison_check_ip4(cred, 1220 &sin->sin_addr) == 0) { 1221 ia = (struct in_ifaddr *)ifa; 1222 break; 1223 } 1224 } 1225 if (ia != NULL) { 1226 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1227 goto done; 1228 } 1229 } 1230 1231 /* 3. As a last resort return the 'default' jail address. */ 1232 error = prison_get_ip4(cred, laddr); 1233 goto done; 1234 } 1235 1236 done: 1237 if (sro.ro_rt != NULL) 1238 RTFREE(sro.ro_rt); 1239 return (error); 1240 } 1241 1242 /* 1243 * Set up for a connect from a socket to the specified address. 1244 * On entry, *laddrp and *lportp should contain the current local 1245 * address and port for the PCB; these are updated to the values 1246 * that should be placed in inp_laddr and inp_lport to complete 1247 * the connect. 1248 * 1249 * On success, *faddrp and *fportp will be set to the remote address 1250 * and port. These are not updated in the error case. 1251 * 1252 * If the operation fails because the connection already exists, 1253 * *oinpp will be set to the PCB of that connection so that the 1254 * caller can decide to override it. In all other cases, *oinpp 1255 * is set to NULL. 1256 */ 1257 int 1258 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam, 1259 in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp, 1260 struct inpcb **oinpp, struct ucred *cred) 1261 { 1262 struct rm_priotracker in_ifa_tracker; 1263 struct sockaddr_in *sin = (struct sockaddr_in *)nam; 1264 struct in_ifaddr *ia; 1265 struct inpcb *oinp; 1266 struct in_addr laddr, faddr; 1267 u_short lport, fport; 1268 int error; 1269 1270 /* 1271 * Because a global state change doesn't actually occur here, a read 1272 * lock is sufficient. 1273 */ 1274 NET_EPOCH_ASSERT(); 1275 INP_LOCK_ASSERT(inp); 1276 INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo); 1277 1278 if (oinpp != NULL) 1279 *oinpp = NULL; 1280 if (nam->sa_len != sizeof (*sin)) 1281 return (EINVAL); 1282 if (sin->sin_family != AF_INET) 1283 return (EAFNOSUPPORT); 1284 if (sin->sin_port == 0) 1285 return (EADDRNOTAVAIL); 1286 laddr.s_addr = *laddrp; 1287 lport = *lportp; 1288 faddr = sin->sin_addr; 1289 fport = sin->sin_port; 1290 1291 if (!CK_STAILQ_EMPTY(&V_in_ifaddrhead)) { 1292 /* 1293 * If the destination address is INADDR_ANY, 1294 * use the primary local address. 1295 * If the supplied address is INADDR_BROADCAST, 1296 * and the primary interface supports broadcast, 1297 * choose the broadcast address for that interface. 1298 */ 1299 if (faddr.s_addr == INADDR_ANY) { 1300 IN_IFADDR_RLOCK(&in_ifa_tracker); 1301 faddr = 1302 IA_SIN(CK_STAILQ_FIRST(&V_in_ifaddrhead))->sin_addr; 1303 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 1304 if (cred != NULL && 1305 (error = prison_get_ip4(cred, &faddr)) != 0) 1306 return (error); 1307 } else if (faddr.s_addr == (u_long)INADDR_BROADCAST) { 1308 IN_IFADDR_RLOCK(&in_ifa_tracker); 1309 if (CK_STAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags & 1310 IFF_BROADCAST) 1311 faddr = satosin(&CK_STAILQ_FIRST( 1312 &V_in_ifaddrhead)->ia_broadaddr)->sin_addr; 1313 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 1314 } 1315 } 1316 if (laddr.s_addr == INADDR_ANY) { 1317 error = in_pcbladdr(inp, &faddr, &laddr, cred); 1318 /* 1319 * If the destination address is multicast and an outgoing 1320 * interface has been set as a multicast option, prefer the 1321 * address of that interface as our source address. 1322 */ 1323 if (IN_MULTICAST(ntohl(faddr.s_addr)) && 1324 inp->inp_moptions != NULL) { 1325 struct ip_moptions *imo; 1326 struct ifnet *ifp; 1327 1328 imo = inp->inp_moptions; 1329 if (imo->imo_multicast_ifp != NULL) { 1330 ifp = imo->imo_multicast_ifp; 1331 IN_IFADDR_RLOCK(&in_ifa_tracker); 1332 CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) { 1333 if ((ia->ia_ifp == ifp) && 1334 (cred == NULL || 1335 prison_check_ip4(cred, 1336 &ia->ia_addr.sin_addr) == 0)) 1337 break; 1338 } 1339 if (ia == NULL) 1340 error = EADDRNOTAVAIL; 1341 else { 1342 laddr = ia->ia_addr.sin_addr; 1343 error = 0; 1344 } 1345 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 1346 } 1347 } 1348 if (error) 1349 return (error); 1350 } 1351 oinp = in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr, fport, 1352 laddr, lport, 0, NULL); 1353 if (oinp != NULL) { 1354 if (oinpp != NULL) 1355 *oinpp = oinp; 1356 return (EADDRINUSE); 1357 } 1358 if (lport == 0) { 1359 error = in_pcbbind_setup(inp, NULL, &laddr.s_addr, &lport, 1360 cred); 1361 if (error) 1362 return (error); 1363 } 1364 *laddrp = laddr.s_addr; 1365 *lportp = lport; 1366 *faddrp = faddr.s_addr; 1367 *fportp = fport; 1368 return (0); 1369 } 1370 1371 void 1372 in_pcbdisconnect(struct inpcb *inp) 1373 { 1374 1375 INP_WLOCK_ASSERT(inp); 1376 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 1377 1378 inp->inp_faddr.s_addr = INADDR_ANY; 1379 inp->inp_fport = 0; 1380 in_pcbrehash(inp); 1381 } 1382 #endif /* INET */ 1383 1384 /* 1385 * in_pcbdetach() is responsibe for disassociating a socket from an inpcb. 1386 * For most protocols, this will be invoked immediately prior to calling 1387 * in_pcbfree(). However, with TCP the inpcb may significantly outlive the 1388 * socket, in which case in_pcbfree() is deferred. 1389 */ 1390 void 1391 in_pcbdetach(struct inpcb *inp) 1392 { 1393 1394 KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__)); 1395 1396 #ifdef RATELIMIT 1397 if (inp->inp_snd_tag != NULL) 1398 in_pcbdetach_txrtlmt(inp); 1399 #endif 1400 inp->inp_socket->so_pcb = NULL; 1401 inp->inp_socket = NULL; 1402 } 1403 1404 /* 1405 * in_pcbref() bumps the reference count on an inpcb in order to maintain 1406 * stability of an inpcb pointer despite the inpcb lock being released. This 1407 * is used in TCP when the inpcbinfo lock needs to be acquired or upgraded, 1408 * but where the inpcb lock may already held, or when acquiring a reference 1409 * via a pcbgroup. 1410 * 1411 * in_pcbref() should be used only to provide brief memory stability, and 1412 * must always be followed by a call to INP_WLOCK() and in_pcbrele() to 1413 * garbage collect the inpcb if it has been in_pcbfree()'d from another 1414 * context. Until in_pcbrele() has returned that the inpcb is still valid, 1415 * lock and rele are the *only* safe operations that may be performed on the 1416 * inpcb. 1417 * 1418 * While the inpcb will not be freed, releasing the inpcb lock means that the 1419 * connection's state may change, so the caller should be careful to 1420 * revalidate any cached state on reacquiring the lock. Drop the reference 1421 * using in_pcbrele(). 1422 */ 1423 void 1424 in_pcbref(struct inpcb *inp) 1425 { 1426 1427 KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__)); 1428 1429 refcount_acquire(&inp->inp_refcount); 1430 } 1431 1432 /* 1433 * Drop a refcount on an inpcb elevated using in_pcbref(); because a call to 1434 * in_pcbfree() may have been made between in_pcbref() and in_pcbrele(), we 1435 * return a flag indicating whether or not the inpcb remains valid. If it is 1436 * valid, we return with the inpcb lock held. 1437 * 1438 * Notice that, unlike in_pcbref(), the inpcb lock must be held to drop a 1439 * reference on an inpcb. Historically more work was done here (actually, in 1440 * in_pcbfree_internal()) but has been moved to in_pcbfree() to avoid the 1441 * need for the pcbinfo lock in in_pcbrele(). Deferring the free is entirely 1442 * about memory stability (and continued use of the write lock). 1443 */ 1444 int 1445 in_pcbrele_rlocked(struct inpcb *inp) 1446 { 1447 struct inpcbinfo *pcbinfo; 1448 1449 KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__)); 1450 1451 INP_RLOCK_ASSERT(inp); 1452 1453 if (refcount_release(&inp->inp_refcount) == 0) { 1454 /* 1455 * If the inpcb has been freed, let the caller know, even if 1456 * this isn't the last reference. 1457 */ 1458 if (inp->inp_flags2 & INP_FREED) { 1459 INP_RUNLOCK(inp); 1460 return (1); 1461 } 1462 return (0); 1463 } 1464 1465 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); 1466 #ifdef TCPHPTS 1467 if (inp->inp_in_hpts || inp->inp_in_input) { 1468 struct tcp_hpts_entry *hpts; 1469 /* 1470 * We should not be on the hpts at 1471 * this point in any form. we must 1472 * get the lock to be sure. 1473 */ 1474 hpts = tcp_hpts_lock(inp); 1475 if (inp->inp_in_hpts) 1476 panic("Hpts:%p inp:%p at free still on hpts", 1477 hpts, inp); 1478 mtx_unlock(&hpts->p_mtx); 1479 hpts = tcp_input_lock(inp); 1480 if (inp->inp_in_input) 1481 panic("Hpts:%p inp:%p at free still on input hpts", 1482 hpts, inp); 1483 mtx_unlock(&hpts->p_mtx); 1484 } 1485 #endif 1486 INP_RUNLOCK(inp); 1487 pcbinfo = inp->inp_pcbinfo; 1488 uma_zfree(pcbinfo->ipi_zone, inp); 1489 return (1); 1490 } 1491 1492 int 1493 in_pcbrele_wlocked(struct inpcb *inp) 1494 { 1495 struct inpcbinfo *pcbinfo; 1496 1497 KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__)); 1498 1499 INP_WLOCK_ASSERT(inp); 1500 1501 if (refcount_release(&inp->inp_refcount) == 0) { 1502 /* 1503 * If the inpcb has been freed, let the caller know, even if 1504 * this isn't the last reference. 1505 */ 1506 if (inp->inp_flags2 & INP_FREED) { 1507 INP_WUNLOCK(inp); 1508 return (1); 1509 } 1510 return (0); 1511 } 1512 1513 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); 1514 #ifdef TCPHPTS 1515 if (inp->inp_in_hpts || inp->inp_in_input) { 1516 struct tcp_hpts_entry *hpts; 1517 /* 1518 * We should not be on the hpts at 1519 * this point in any form. we must 1520 * get the lock to be sure. 1521 */ 1522 hpts = tcp_hpts_lock(inp); 1523 if (inp->inp_in_hpts) 1524 panic("Hpts:%p inp:%p at free still on hpts", 1525 hpts, inp); 1526 mtx_unlock(&hpts->p_mtx); 1527 hpts = tcp_input_lock(inp); 1528 if (inp->inp_in_input) 1529 panic("Hpts:%p inp:%p at free still on input hpts", 1530 hpts, inp); 1531 mtx_unlock(&hpts->p_mtx); 1532 } 1533 #endif 1534 INP_WUNLOCK(inp); 1535 pcbinfo = inp->inp_pcbinfo; 1536 uma_zfree(pcbinfo->ipi_zone, inp); 1537 return (1); 1538 } 1539 1540 /* 1541 * Temporary wrapper. 1542 */ 1543 int 1544 in_pcbrele(struct inpcb *inp) 1545 { 1546 1547 return (in_pcbrele_wlocked(inp)); 1548 } 1549 1550 void 1551 in_pcblist_rele_rlocked(epoch_context_t ctx) 1552 { 1553 struct in_pcblist *il; 1554 struct inpcb *inp; 1555 struct inpcbinfo *pcbinfo; 1556 int i, n; 1557 1558 il = __containerof(ctx, struct in_pcblist, il_epoch_ctx); 1559 pcbinfo = il->il_pcbinfo; 1560 n = il->il_count; 1561 INP_INFO_WLOCK(pcbinfo); 1562 for (i = 0; i < n; i++) { 1563 inp = il->il_inp_list[i]; 1564 INP_RLOCK(inp); 1565 if (!in_pcbrele_rlocked(inp)) 1566 INP_RUNLOCK(inp); 1567 } 1568 INP_INFO_WUNLOCK(pcbinfo); 1569 free(il, M_TEMP); 1570 } 1571 1572 static void 1573 inpcbport_free(epoch_context_t ctx) 1574 { 1575 struct inpcbport *phd; 1576 1577 phd = __containerof(ctx, struct inpcbport, phd_epoch_ctx); 1578 free(phd, M_PCB); 1579 } 1580 1581 static void 1582 in_pcbfree_deferred(epoch_context_t ctx) 1583 { 1584 struct inpcb *inp; 1585 int released __unused; 1586 1587 inp = __containerof(ctx, struct inpcb, inp_epoch_ctx); 1588 1589 INP_WLOCK(inp); 1590 CURVNET_SET(inp->inp_vnet); 1591 #ifdef INET 1592 struct ip_moptions *imo = inp->inp_moptions; 1593 inp->inp_moptions = NULL; 1594 #endif 1595 /* XXXRW: Do as much as possible here. */ 1596 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1597 if (inp->inp_sp != NULL) 1598 ipsec_delete_pcbpolicy(inp); 1599 #endif 1600 #ifdef INET6 1601 struct ip6_moptions *im6o = NULL; 1602 if (inp->inp_vflag & INP_IPV6PROTO) { 1603 ip6_freepcbopts(inp->in6p_outputopts); 1604 im6o = inp->in6p_moptions; 1605 inp->in6p_moptions = NULL; 1606 } 1607 #endif 1608 if (inp->inp_options) 1609 (void)m_free(inp->inp_options); 1610 inp->inp_vflag = 0; 1611 crfree(inp->inp_cred); 1612 #ifdef MAC 1613 mac_inpcb_destroy(inp); 1614 #endif 1615 released = in_pcbrele_wlocked(inp); 1616 MPASS(released); 1617 #ifdef INET6 1618 ip6_freemoptions(im6o); 1619 #endif 1620 #ifdef INET 1621 inp_freemoptions(imo); 1622 #endif 1623 CURVNET_RESTORE(); 1624 } 1625 1626 /* 1627 * Unconditionally schedule an inpcb to be freed by decrementing its 1628 * reference count, which should occur only after the inpcb has been detached 1629 * from its socket. If another thread holds a temporary reference (acquired 1630 * using in_pcbref()) then the free is deferred until that reference is 1631 * released using in_pcbrele(), but the inpcb is still unlocked. Almost all 1632 * work, including removal from global lists, is done in this context, where 1633 * the pcbinfo lock is held. 1634 */ 1635 void 1636 in_pcbfree(struct inpcb *inp) 1637 { 1638 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 1639 1640 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); 1641 KASSERT((inp->inp_flags2 & INP_FREED) == 0, 1642 ("%s: called twice for pcb %p", __func__, inp)); 1643 if (inp->inp_flags2 & INP_FREED) { 1644 INP_WUNLOCK(inp); 1645 return; 1646 } 1647 1648 INP_WLOCK_ASSERT(inp); 1649 INP_LIST_WLOCK(pcbinfo); 1650 in_pcbremlists(inp); 1651 INP_LIST_WUNLOCK(pcbinfo); 1652 RO_INVALIDATE_CACHE(&inp->inp_route); 1653 /* mark as destruction in progress */ 1654 inp->inp_flags2 |= INP_FREED; 1655 INP_WUNLOCK(inp); 1656 NET_EPOCH_CALL(in_pcbfree_deferred, &inp->inp_epoch_ctx); 1657 } 1658 1659 /* 1660 * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and 1661 * port reservation, and preventing it from being returned by inpcb lookups. 1662 * 1663 * It is used by TCP to mark an inpcb as unused and avoid future packet 1664 * delivery or event notification when a socket remains open but TCP has 1665 * closed. This might occur as a result of a shutdown()-initiated TCP close 1666 * or a RST on the wire, and allows the port binding to be reused while still 1667 * maintaining the invariant that so_pcb always points to a valid inpcb until 1668 * in_pcbdetach(). 1669 * 1670 * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by 1671 * in_pcbnotifyall() and in_pcbpurgeif0()? 1672 */ 1673 void 1674 in_pcbdrop(struct inpcb *inp) 1675 { 1676 1677 INP_WLOCK_ASSERT(inp); 1678 #ifdef INVARIANTS 1679 if (inp->inp_socket != NULL && inp->inp_ppcb != NULL) 1680 MPASS(inp->inp_refcount > 1); 1681 #endif 1682 1683 /* 1684 * XXXRW: Possibly we should protect the setting of INP_DROPPED with 1685 * the hash lock...? 1686 */ 1687 inp->inp_flags |= INP_DROPPED; 1688 if (inp->inp_flags & INP_INHASHLIST) { 1689 struct inpcbport *phd = inp->inp_phd; 1690 1691 INP_HASH_WLOCK(inp->inp_pcbinfo); 1692 in_pcbremlbgrouphash(inp); 1693 CK_LIST_REMOVE(inp, inp_hash); 1694 CK_LIST_REMOVE(inp, inp_portlist); 1695 if (CK_LIST_FIRST(&phd->phd_pcblist) == NULL) { 1696 CK_LIST_REMOVE(phd, phd_hash); 1697 NET_EPOCH_CALL(inpcbport_free, &phd->phd_epoch_ctx); 1698 } 1699 INP_HASH_WUNLOCK(inp->inp_pcbinfo); 1700 inp->inp_flags &= ~INP_INHASHLIST; 1701 #ifdef PCBGROUP 1702 in_pcbgroup_remove(inp); 1703 #endif 1704 } 1705 } 1706 1707 #ifdef INET 1708 /* 1709 * Common routines to return the socket addresses associated with inpcbs. 1710 */ 1711 struct sockaddr * 1712 in_sockaddr(in_port_t port, struct in_addr *addr_p) 1713 { 1714 struct sockaddr_in *sin; 1715 1716 sin = malloc(sizeof *sin, M_SONAME, 1717 M_WAITOK | M_ZERO); 1718 sin->sin_family = AF_INET; 1719 sin->sin_len = sizeof(*sin); 1720 sin->sin_addr = *addr_p; 1721 sin->sin_port = port; 1722 1723 return (struct sockaddr *)sin; 1724 } 1725 1726 int 1727 in_getsockaddr(struct socket *so, struct sockaddr **nam) 1728 { 1729 struct inpcb *inp; 1730 struct in_addr addr; 1731 in_port_t port; 1732 1733 inp = sotoinpcb(so); 1734 KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL")); 1735 1736 INP_RLOCK(inp); 1737 port = inp->inp_lport; 1738 addr = inp->inp_laddr; 1739 INP_RUNLOCK(inp); 1740 1741 *nam = in_sockaddr(port, &addr); 1742 return 0; 1743 } 1744 1745 int 1746 in_getpeeraddr(struct socket *so, struct sockaddr **nam) 1747 { 1748 struct inpcb *inp; 1749 struct in_addr addr; 1750 in_port_t port; 1751 1752 inp = sotoinpcb(so); 1753 KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL")); 1754 1755 INP_RLOCK(inp); 1756 port = inp->inp_fport; 1757 addr = inp->inp_faddr; 1758 INP_RUNLOCK(inp); 1759 1760 *nam = in_sockaddr(port, &addr); 1761 return 0; 1762 } 1763 1764 void 1765 in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno, 1766 struct inpcb *(*notify)(struct inpcb *, int)) 1767 { 1768 struct inpcb *inp, *inp_temp; 1769 1770 INP_INFO_WLOCK(pcbinfo); 1771 CK_LIST_FOREACH_SAFE(inp, pcbinfo->ipi_listhead, inp_list, inp_temp) { 1772 INP_WLOCK(inp); 1773 #ifdef INET6 1774 if ((inp->inp_vflag & INP_IPV4) == 0) { 1775 INP_WUNLOCK(inp); 1776 continue; 1777 } 1778 #endif 1779 if (inp->inp_faddr.s_addr != faddr.s_addr || 1780 inp->inp_socket == NULL) { 1781 INP_WUNLOCK(inp); 1782 continue; 1783 } 1784 if ((*notify)(inp, errno)) 1785 INP_WUNLOCK(inp); 1786 } 1787 INP_INFO_WUNLOCK(pcbinfo); 1788 } 1789 1790 void 1791 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp) 1792 { 1793 struct inpcb *inp; 1794 struct in_multi *inm; 1795 struct in_mfilter *imf; 1796 struct ip_moptions *imo; 1797 1798 INP_INFO_WLOCK(pcbinfo); 1799 CK_LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) { 1800 INP_WLOCK(inp); 1801 imo = inp->inp_moptions; 1802 if ((inp->inp_vflag & INP_IPV4) && 1803 imo != NULL) { 1804 /* 1805 * Unselect the outgoing interface if it is being 1806 * detached. 1807 */ 1808 if (imo->imo_multicast_ifp == ifp) 1809 imo->imo_multicast_ifp = NULL; 1810 1811 /* 1812 * Drop multicast group membership if we joined 1813 * through the interface being detached. 1814 * 1815 * XXX This can all be deferred to an epoch_call 1816 */ 1817 restart: 1818 IP_MFILTER_FOREACH(imf, &imo->imo_head) { 1819 if ((inm = imf->imf_inm) == NULL) 1820 continue; 1821 if (inm->inm_ifp != ifp) 1822 continue; 1823 ip_mfilter_remove(&imo->imo_head, imf); 1824 IN_MULTI_LOCK_ASSERT(); 1825 in_leavegroup_locked(inm, NULL); 1826 ip_mfilter_free(imf); 1827 goto restart; 1828 } 1829 } 1830 INP_WUNLOCK(inp); 1831 } 1832 INP_INFO_WUNLOCK(pcbinfo); 1833 } 1834 1835 /* 1836 * Lookup a PCB based on the local address and port. Caller must hold the 1837 * hash lock. No inpcb locks or references are acquired. 1838 */ 1839 #define INP_LOOKUP_MAPPED_PCB_COST 3 1840 struct inpcb * 1841 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr, 1842 u_short lport, int lookupflags, struct ucred *cred) 1843 { 1844 struct inpcb *inp; 1845 #ifdef INET6 1846 int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST; 1847 #else 1848 int matchwild = 3; 1849 #endif 1850 int wildcard; 1851 1852 KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0, 1853 ("%s: invalid lookup flags %d", __func__, lookupflags)); 1854 1855 INP_HASH_LOCK_ASSERT(pcbinfo); 1856 1857 if ((lookupflags & INPLOOKUP_WILDCARD) == 0) { 1858 struct inpcbhead *head; 1859 /* 1860 * Look for an unconnected (wildcard foreign addr) PCB that 1861 * matches the local address and port we're looking for. 1862 */ 1863 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport, 1864 0, pcbinfo->ipi_hashmask)]; 1865 CK_LIST_FOREACH(inp, head, inp_hash) { 1866 #ifdef INET6 1867 /* XXX inp locking */ 1868 if ((inp->inp_vflag & INP_IPV4) == 0) 1869 continue; 1870 #endif 1871 if (inp->inp_faddr.s_addr == INADDR_ANY && 1872 inp->inp_laddr.s_addr == laddr.s_addr && 1873 inp->inp_lport == lport) { 1874 /* 1875 * Found? 1876 */ 1877 if (cred == NULL || 1878 prison_equal_ip4(cred->cr_prison, 1879 inp->inp_cred->cr_prison)) 1880 return (inp); 1881 } 1882 } 1883 /* 1884 * Not found. 1885 */ 1886 return (NULL); 1887 } else { 1888 struct inpcbporthead *porthash; 1889 struct inpcbport *phd; 1890 struct inpcb *match = NULL; 1891 /* 1892 * Best fit PCB lookup. 1893 * 1894 * First see if this local port is in use by looking on the 1895 * port hash list. 1896 */ 1897 porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport, 1898 pcbinfo->ipi_porthashmask)]; 1899 CK_LIST_FOREACH(phd, porthash, phd_hash) { 1900 if (phd->phd_port == lport) 1901 break; 1902 } 1903 if (phd != NULL) { 1904 /* 1905 * Port is in use by one or more PCBs. Look for best 1906 * fit. 1907 */ 1908 CK_LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) { 1909 wildcard = 0; 1910 if (cred != NULL && 1911 !prison_equal_ip4(inp->inp_cred->cr_prison, 1912 cred->cr_prison)) 1913 continue; 1914 #ifdef INET6 1915 /* XXX inp locking */ 1916 if ((inp->inp_vflag & INP_IPV4) == 0) 1917 continue; 1918 /* 1919 * We never select the PCB that has 1920 * INP_IPV6 flag and is bound to :: if 1921 * we have another PCB which is bound 1922 * to 0.0.0.0. If a PCB has the 1923 * INP_IPV6 flag, then we set its cost 1924 * higher than IPv4 only PCBs. 1925 * 1926 * Note that the case only happens 1927 * when a socket is bound to ::, under 1928 * the condition that the use of the 1929 * mapped address is allowed. 1930 */ 1931 if ((inp->inp_vflag & INP_IPV6) != 0) 1932 wildcard += INP_LOOKUP_MAPPED_PCB_COST; 1933 #endif 1934 if (inp->inp_faddr.s_addr != INADDR_ANY) 1935 wildcard++; 1936 if (inp->inp_laddr.s_addr != INADDR_ANY) { 1937 if (laddr.s_addr == INADDR_ANY) 1938 wildcard++; 1939 else if (inp->inp_laddr.s_addr != laddr.s_addr) 1940 continue; 1941 } else { 1942 if (laddr.s_addr != INADDR_ANY) 1943 wildcard++; 1944 } 1945 if (wildcard < matchwild) { 1946 match = inp; 1947 matchwild = wildcard; 1948 if (matchwild == 0) 1949 break; 1950 } 1951 } 1952 } 1953 return (match); 1954 } 1955 } 1956 #undef INP_LOOKUP_MAPPED_PCB_COST 1957 1958 static struct inpcb * 1959 in_pcblookup_lbgroup(const struct inpcbinfo *pcbinfo, 1960 const struct in_addr *laddr, uint16_t lport, const struct in_addr *faddr, 1961 uint16_t fport, int lookupflags) 1962 { 1963 struct inpcb *local_wild; 1964 const struct inpcblbgrouphead *hdr; 1965 struct inpcblbgroup *grp; 1966 uint32_t idx; 1967 1968 INP_HASH_LOCK_ASSERT(pcbinfo); 1969 1970 hdr = &pcbinfo->ipi_lbgrouphashbase[ 1971 INP_PCBPORTHASH(lport, pcbinfo->ipi_lbgrouphashmask)]; 1972 1973 /* 1974 * Order of socket selection: 1975 * 1. non-wild. 1976 * 2. wild (if lookupflags contains INPLOOKUP_WILDCARD). 1977 * 1978 * NOTE: 1979 * - Load balanced group does not contain jailed sockets 1980 * - Load balanced group does not contain IPv4 mapped INET6 wild sockets 1981 */ 1982 local_wild = NULL; 1983 CK_LIST_FOREACH(grp, hdr, il_list) { 1984 #ifdef INET6 1985 if (!(grp->il_vflag & INP_IPV4)) 1986 continue; 1987 #endif 1988 if (grp->il_lport != lport) 1989 continue; 1990 1991 idx = INP_PCBLBGROUP_PKTHASH(faddr->s_addr, lport, fport) % 1992 grp->il_inpcnt; 1993 if (grp->il_laddr.s_addr == laddr->s_addr) 1994 return (grp->il_inp[idx]); 1995 if (grp->il_laddr.s_addr == INADDR_ANY && 1996 (lookupflags & INPLOOKUP_WILDCARD) != 0) 1997 local_wild = grp->il_inp[idx]; 1998 } 1999 return (local_wild); 2000 } 2001 2002 #ifdef PCBGROUP 2003 /* 2004 * Lookup PCB in hash list, using pcbgroup tables. 2005 */ 2006 static struct inpcb * 2007 in_pcblookup_group(struct inpcbinfo *pcbinfo, struct inpcbgroup *pcbgroup, 2008 struct in_addr faddr, u_int fport_arg, struct in_addr laddr, 2009 u_int lport_arg, int lookupflags, struct ifnet *ifp) 2010 { 2011 struct inpcbhead *head; 2012 struct inpcb *inp, *tmpinp; 2013 u_short fport = fport_arg, lport = lport_arg; 2014 bool locked; 2015 2016 /* 2017 * First look for an exact match. 2018 */ 2019 tmpinp = NULL; 2020 INP_GROUP_LOCK(pcbgroup); 2021 head = &pcbgroup->ipg_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport, 2022 pcbgroup->ipg_hashmask)]; 2023 CK_LIST_FOREACH(inp, head, inp_pcbgrouphash) { 2024 #ifdef INET6 2025 /* XXX inp locking */ 2026 if ((inp->inp_vflag & INP_IPV4) == 0) 2027 continue; 2028 #endif 2029 if (inp->inp_faddr.s_addr == faddr.s_addr && 2030 inp->inp_laddr.s_addr == laddr.s_addr && 2031 inp->inp_fport == fport && 2032 inp->inp_lport == lport) { 2033 /* 2034 * XXX We should be able to directly return 2035 * the inp here, without any checks. 2036 * Well unless both bound with SO_REUSEPORT? 2037 */ 2038 if (prison_flag(inp->inp_cred, PR_IP4)) 2039 goto found; 2040 if (tmpinp == NULL) 2041 tmpinp = inp; 2042 } 2043 } 2044 if (tmpinp != NULL) { 2045 inp = tmpinp; 2046 goto found; 2047 } 2048 2049 #ifdef RSS 2050 /* 2051 * For incoming connections, we may wish to do a wildcard 2052 * match for an RSS-local socket. 2053 */ 2054 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 2055 struct inpcb *local_wild = NULL, *local_exact = NULL; 2056 #ifdef INET6 2057 struct inpcb *local_wild_mapped = NULL; 2058 #endif 2059 struct inpcb *jail_wild = NULL; 2060 struct inpcbhead *head; 2061 int injail; 2062 2063 /* 2064 * Order of socket selection - we always prefer jails. 2065 * 1. jailed, non-wild. 2066 * 2. jailed, wild. 2067 * 3. non-jailed, non-wild. 2068 * 4. non-jailed, wild. 2069 */ 2070 2071 head = &pcbgroup->ipg_hashbase[INP_PCBHASH(INADDR_ANY, 2072 lport, 0, pcbgroup->ipg_hashmask)]; 2073 CK_LIST_FOREACH(inp, head, inp_pcbgrouphash) { 2074 #ifdef INET6 2075 /* XXX inp locking */ 2076 if ((inp->inp_vflag & INP_IPV4) == 0) 2077 continue; 2078 #endif 2079 if (inp->inp_faddr.s_addr != INADDR_ANY || 2080 inp->inp_lport != lport) 2081 continue; 2082 2083 injail = prison_flag(inp->inp_cred, PR_IP4); 2084 if (injail) { 2085 if (prison_check_ip4(inp->inp_cred, 2086 &laddr) != 0) 2087 continue; 2088 } else { 2089 if (local_exact != NULL) 2090 continue; 2091 } 2092 2093 if (inp->inp_laddr.s_addr == laddr.s_addr) { 2094 if (injail) 2095 goto found; 2096 else 2097 local_exact = inp; 2098 } else if (inp->inp_laddr.s_addr == INADDR_ANY) { 2099 #ifdef INET6 2100 /* XXX inp locking, NULL check */ 2101 if (inp->inp_vflag & INP_IPV6PROTO) 2102 local_wild_mapped = inp; 2103 else 2104 #endif 2105 if (injail) 2106 jail_wild = inp; 2107 else 2108 local_wild = inp; 2109 } 2110 } /* LIST_FOREACH */ 2111 2112 inp = jail_wild; 2113 if (inp == NULL) 2114 inp = local_exact; 2115 if (inp == NULL) 2116 inp = local_wild; 2117 #ifdef INET6 2118 if (inp == NULL) 2119 inp = local_wild_mapped; 2120 #endif 2121 if (inp != NULL) 2122 goto found; 2123 } 2124 #endif 2125 2126 /* 2127 * Then look for a wildcard match, if requested. 2128 */ 2129 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 2130 struct inpcb *local_wild = NULL, *local_exact = NULL; 2131 #ifdef INET6 2132 struct inpcb *local_wild_mapped = NULL; 2133 #endif 2134 struct inpcb *jail_wild = NULL; 2135 struct inpcbhead *head; 2136 int injail; 2137 2138 /* 2139 * Order of socket selection - we always prefer jails. 2140 * 1. jailed, non-wild. 2141 * 2. jailed, wild. 2142 * 3. non-jailed, non-wild. 2143 * 4. non-jailed, wild. 2144 */ 2145 head = &pcbinfo->ipi_wildbase[INP_PCBHASH(INADDR_ANY, lport, 2146 0, pcbinfo->ipi_wildmask)]; 2147 CK_LIST_FOREACH(inp, head, inp_pcbgroup_wild) { 2148 #ifdef INET6 2149 /* XXX inp locking */ 2150 if ((inp->inp_vflag & INP_IPV4) == 0) 2151 continue; 2152 #endif 2153 if (inp->inp_faddr.s_addr != INADDR_ANY || 2154 inp->inp_lport != lport) 2155 continue; 2156 2157 injail = prison_flag(inp->inp_cred, PR_IP4); 2158 if (injail) { 2159 if (prison_check_ip4(inp->inp_cred, 2160 &laddr) != 0) 2161 continue; 2162 } else { 2163 if (local_exact != NULL) 2164 continue; 2165 } 2166 2167 if (inp->inp_laddr.s_addr == laddr.s_addr) { 2168 if (injail) 2169 goto found; 2170 else 2171 local_exact = inp; 2172 } else if (inp->inp_laddr.s_addr == INADDR_ANY) { 2173 #ifdef INET6 2174 /* XXX inp locking, NULL check */ 2175 if (inp->inp_vflag & INP_IPV6PROTO) 2176 local_wild_mapped = inp; 2177 else 2178 #endif 2179 if (injail) 2180 jail_wild = inp; 2181 else 2182 local_wild = inp; 2183 } 2184 } /* LIST_FOREACH */ 2185 inp = jail_wild; 2186 if (inp == NULL) 2187 inp = local_exact; 2188 if (inp == NULL) 2189 inp = local_wild; 2190 #ifdef INET6 2191 if (inp == NULL) 2192 inp = local_wild_mapped; 2193 #endif 2194 if (inp != NULL) 2195 goto found; 2196 } /* if (lookupflags & INPLOOKUP_WILDCARD) */ 2197 INP_GROUP_UNLOCK(pcbgroup); 2198 return (NULL); 2199 2200 found: 2201 if (lookupflags & INPLOOKUP_WLOCKPCB) 2202 locked = INP_TRY_WLOCK(inp); 2203 else if (lookupflags & INPLOOKUP_RLOCKPCB) 2204 locked = INP_TRY_RLOCK(inp); 2205 else 2206 panic("%s: locking bug", __func__); 2207 if (__predict_false(locked && (inp->inp_flags2 & INP_FREED))) { 2208 if (lookupflags & INPLOOKUP_WLOCKPCB) 2209 INP_WUNLOCK(inp); 2210 else 2211 INP_RUNLOCK(inp); 2212 return (NULL); 2213 } else if (!locked) 2214 in_pcbref(inp); 2215 INP_GROUP_UNLOCK(pcbgroup); 2216 if (!locked) { 2217 if (lookupflags & INPLOOKUP_WLOCKPCB) { 2218 INP_WLOCK(inp); 2219 if (in_pcbrele_wlocked(inp)) 2220 return (NULL); 2221 } else { 2222 INP_RLOCK(inp); 2223 if (in_pcbrele_rlocked(inp)) 2224 return (NULL); 2225 } 2226 } 2227 #ifdef INVARIANTS 2228 if (lookupflags & INPLOOKUP_WLOCKPCB) 2229 INP_WLOCK_ASSERT(inp); 2230 else 2231 INP_RLOCK_ASSERT(inp); 2232 #endif 2233 return (inp); 2234 } 2235 #endif /* PCBGROUP */ 2236 2237 /* 2238 * Lookup PCB in hash list, using pcbinfo tables. This variation assumes 2239 * that the caller has locked the hash list, and will not perform any further 2240 * locking or reference operations on either the hash list or the connection. 2241 */ 2242 static struct inpcb * 2243 in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2244 u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags, 2245 struct ifnet *ifp) 2246 { 2247 struct inpcbhead *head; 2248 struct inpcb *inp, *tmpinp; 2249 u_short fport = fport_arg, lport = lport_arg; 2250 2251 KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0, 2252 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2253 INP_HASH_LOCK_ASSERT(pcbinfo); 2254 2255 /* 2256 * First look for an exact match. 2257 */ 2258 tmpinp = NULL; 2259 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport, 2260 pcbinfo->ipi_hashmask)]; 2261 CK_LIST_FOREACH(inp, head, inp_hash) { 2262 #ifdef INET6 2263 /* XXX inp locking */ 2264 if ((inp->inp_vflag & INP_IPV4) == 0) 2265 continue; 2266 #endif 2267 if (inp->inp_faddr.s_addr == faddr.s_addr && 2268 inp->inp_laddr.s_addr == laddr.s_addr && 2269 inp->inp_fport == fport && 2270 inp->inp_lport == lport) { 2271 /* 2272 * XXX We should be able to directly return 2273 * the inp here, without any checks. 2274 * Well unless both bound with SO_REUSEPORT? 2275 */ 2276 if (prison_flag(inp->inp_cred, PR_IP4)) 2277 return (inp); 2278 if (tmpinp == NULL) 2279 tmpinp = inp; 2280 } 2281 } 2282 if (tmpinp != NULL) 2283 return (tmpinp); 2284 2285 /* 2286 * Then look in lb group (for wildcard match). 2287 */ 2288 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 2289 inp = in_pcblookup_lbgroup(pcbinfo, &laddr, lport, &faddr, 2290 fport, lookupflags); 2291 if (inp != NULL) 2292 return (inp); 2293 } 2294 2295 /* 2296 * Then look for a wildcard match, if requested. 2297 */ 2298 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 2299 struct inpcb *local_wild = NULL, *local_exact = NULL; 2300 #ifdef INET6 2301 struct inpcb *local_wild_mapped = NULL; 2302 #endif 2303 struct inpcb *jail_wild = NULL; 2304 int injail; 2305 2306 /* 2307 * Order of socket selection - we always prefer jails. 2308 * 1. jailed, non-wild. 2309 * 2. jailed, wild. 2310 * 3. non-jailed, non-wild. 2311 * 4. non-jailed, wild. 2312 */ 2313 2314 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport, 2315 0, pcbinfo->ipi_hashmask)]; 2316 CK_LIST_FOREACH(inp, head, inp_hash) { 2317 #ifdef INET6 2318 /* XXX inp locking */ 2319 if ((inp->inp_vflag & INP_IPV4) == 0) 2320 continue; 2321 #endif 2322 if (inp->inp_faddr.s_addr != INADDR_ANY || 2323 inp->inp_lport != lport) 2324 continue; 2325 2326 injail = prison_flag(inp->inp_cred, PR_IP4); 2327 if (injail) { 2328 if (prison_check_ip4(inp->inp_cred, 2329 &laddr) != 0) 2330 continue; 2331 } else { 2332 if (local_exact != NULL) 2333 continue; 2334 } 2335 2336 if (inp->inp_laddr.s_addr == laddr.s_addr) { 2337 if (injail) 2338 return (inp); 2339 else 2340 local_exact = inp; 2341 } else if (inp->inp_laddr.s_addr == INADDR_ANY) { 2342 #ifdef INET6 2343 /* XXX inp locking, NULL check */ 2344 if (inp->inp_vflag & INP_IPV6PROTO) 2345 local_wild_mapped = inp; 2346 else 2347 #endif 2348 if (injail) 2349 jail_wild = inp; 2350 else 2351 local_wild = inp; 2352 } 2353 } /* LIST_FOREACH */ 2354 if (jail_wild != NULL) 2355 return (jail_wild); 2356 if (local_exact != NULL) 2357 return (local_exact); 2358 if (local_wild != NULL) 2359 return (local_wild); 2360 #ifdef INET6 2361 if (local_wild_mapped != NULL) 2362 return (local_wild_mapped); 2363 #endif 2364 } /* if ((lookupflags & INPLOOKUP_WILDCARD) != 0) */ 2365 2366 return (NULL); 2367 } 2368 2369 /* 2370 * Lookup PCB in hash list, using pcbinfo tables. This variation locks the 2371 * hash list lock, and will return the inpcb locked (i.e., requires 2372 * INPLOOKUP_LOCKPCB). 2373 */ 2374 static struct inpcb * 2375 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2376 u_int fport, struct in_addr laddr, u_int lport, int lookupflags, 2377 struct ifnet *ifp) 2378 { 2379 struct inpcb *inp; 2380 2381 inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport, 2382 (lookupflags & ~(INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)), ifp); 2383 if (inp != NULL) { 2384 if (lookupflags & INPLOOKUP_WLOCKPCB) { 2385 INP_WLOCK(inp); 2386 if (__predict_false(inp->inp_flags2 & INP_FREED)) { 2387 INP_WUNLOCK(inp); 2388 inp = NULL; 2389 } 2390 } else if (lookupflags & INPLOOKUP_RLOCKPCB) { 2391 INP_RLOCK(inp); 2392 if (__predict_false(inp->inp_flags2 & INP_FREED)) { 2393 INP_RUNLOCK(inp); 2394 inp = NULL; 2395 } 2396 } else 2397 panic("%s: locking bug", __func__); 2398 #ifdef INVARIANTS 2399 if (inp != NULL) { 2400 if (lookupflags & INPLOOKUP_WLOCKPCB) 2401 INP_WLOCK_ASSERT(inp); 2402 else 2403 INP_RLOCK_ASSERT(inp); 2404 } 2405 #endif 2406 } 2407 2408 return (inp); 2409 } 2410 2411 /* 2412 * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf 2413 * from which a pre-calculated hash value may be extracted. 2414 * 2415 * Possibly more of this logic should be in in_pcbgroup.c. 2416 */ 2417 struct inpcb * 2418 in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport, 2419 struct in_addr laddr, u_int lport, int lookupflags, struct ifnet *ifp) 2420 { 2421 #if defined(PCBGROUP) && !defined(RSS) 2422 struct inpcbgroup *pcbgroup; 2423 #endif 2424 2425 KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0, 2426 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2427 KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0, 2428 ("%s: LOCKPCB not set", __func__)); 2429 2430 /* 2431 * When not using RSS, use connection groups in preference to the 2432 * reservation table when looking up 4-tuples. When using RSS, just 2433 * use the reservation table, due to the cost of the Toeplitz hash 2434 * in software. 2435 * 2436 * XXXRW: This policy belongs in the pcbgroup code, as in principle 2437 * we could be doing RSS with a non-Toeplitz hash that is affordable 2438 * in software. 2439 */ 2440 #if defined(PCBGROUP) && !defined(RSS) 2441 if (in_pcbgroup_enabled(pcbinfo)) { 2442 pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr, 2443 fport); 2444 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport, 2445 laddr, lport, lookupflags, ifp)); 2446 } 2447 #endif 2448 return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport, 2449 lookupflags, ifp)); 2450 } 2451 2452 struct inpcb * 2453 in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2454 u_int fport, struct in_addr laddr, u_int lport, int lookupflags, 2455 struct ifnet *ifp, struct mbuf *m) 2456 { 2457 #ifdef PCBGROUP 2458 struct inpcbgroup *pcbgroup; 2459 #endif 2460 2461 KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0, 2462 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2463 KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0, 2464 ("%s: LOCKPCB not set", __func__)); 2465 2466 #ifdef PCBGROUP 2467 /* 2468 * If we can use a hardware-generated hash to look up the connection 2469 * group, use that connection group to find the inpcb. Otherwise 2470 * fall back on a software hash -- or the reservation table if we're 2471 * using RSS. 2472 * 2473 * XXXRW: As above, that policy belongs in the pcbgroup code. 2474 */ 2475 if (in_pcbgroup_enabled(pcbinfo) && 2476 !(M_HASHTYPE_TEST(m, M_HASHTYPE_NONE))) { 2477 pcbgroup = in_pcbgroup_byhash(pcbinfo, M_HASHTYPE_GET(m), 2478 m->m_pkthdr.flowid); 2479 if (pcbgroup != NULL) 2480 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, 2481 fport, laddr, lport, lookupflags, ifp)); 2482 #ifndef RSS 2483 pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr, 2484 fport); 2485 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport, 2486 laddr, lport, lookupflags, ifp)); 2487 #endif 2488 } 2489 #endif 2490 return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport, 2491 lookupflags, ifp)); 2492 } 2493 #endif /* INET */ 2494 2495 /* 2496 * Insert PCB onto various hash lists. 2497 */ 2498 static int 2499 in_pcbinshash_internal(struct inpcb *inp, struct mbuf *m) 2500 { 2501 struct inpcbhead *pcbhash; 2502 struct inpcbporthead *pcbporthash; 2503 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2504 struct inpcbport *phd; 2505 u_int32_t hashkey_faddr; 2506 int so_options; 2507 2508 INP_WLOCK_ASSERT(inp); 2509 INP_HASH_WLOCK_ASSERT(pcbinfo); 2510 2511 KASSERT((inp->inp_flags & INP_INHASHLIST) == 0, 2512 ("in_pcbinshash: INP_INHASHLIST")); 2513 2514 #ifdef INET6 2515 if (inp->inp_vflag & INP_IPV6) 2516 hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr); 2517 else 2518 #endif 2519 hashkey_faddr = inp->inp_faddr.s_addr; 2520 2521 pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr, 2522 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 2523 2524 pcbporthash = &pcbinfo->ipi_porthashbase[ 2525 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)]; 2526 2527 /* 2528 * Add entry to load balance group. 2529 * Only do this if SO_REUSEPORT_LB is set. 2530 */ 2531 so_options = inp_so_options(inp); 2532 if (so_options & SO_REUSEPORT_LB) { 2533 int ret = in_pcbinslbgrouphash(inp); 2534 if (ret) { 2535 /* pcb lb group malloc fail (ret=ENOBUFS). */ 2536 return (ret); 2537 } 2538 } 2539 2540 /* 2541 * Go through port list and look for a head for this lport. 2542 */ 2543 CK_LIST_FOREACH(phd, pcbporthash, phd_hash) { 2544 if (phd->phd_port == inp->inp_lport) 2545 break; 2546 } 2547 /* 2548 * If none exists, malloc one and tack it on. 2549 */ 2550 if (phd == NULL) { 2551 phd = malloc(sizeof(struct inpcbport), M_PCB, M_NOWAIT); 2552 if (phd == NULL) { 2553 return (ENOBUFS); /* XXX */ 2554 } 2555 bzero(&phd->phd_epoch_ctx, sizeof(struct epoch_context)); 2556 phd->phd_port = inp->inp_lport; 2557 CK_LIST_INIT(&phd->phd_pcblist); 2558 CK_LIST_INSERT_HEAD(pcbporthash, phd, phd_hash); 2559 } 2560 inp->inp_phd = phd; 2561 CK_LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist); 2562 CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash); 2563 inp->inp_flags |= INP_INHASHLIST; 2564 #ifdef PCBGROUP 2565 if (m != NULL) { 2566 in_pcbgroup_update_mbuf(inp, m); 2567 } else { 2568 in_pcbgroup_update(inp); 2569 } 2570 #endif 2571 return (0); 2572 } 2573 2574 int 2575 in_pcbinshash(struct inpcb *inp) 2576 { 2577 2578 return (in_pcbinshash_internal(inp, NULL)); 2579 } 2580 2581 int 2582 in_pcbinshash_mbuf(struct inpcb *inp, struct mbuf *m) 2583 { 2584 2585 return (in_pcbinshash_internal(inp, m)); 2586 } 2587 2588 /* 2589 * Move PCB to the proper hash bucket when { faddr, fport } have been 2590 * changed. NOTE: This does not handle the case of the lport changing (the 2591 * hashed port list would have to be updated as well), so the lport must 2592 * not change after in_pcbinshash() has been called. 2593 */ 2594 void 2595 in_pcbrehash_mbuf(struct inpcb *inp, struct mbuf *m) 2596 { 2597 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2598 struct inpcbhead *head; 2599 u_int32_t hashkey_faddr; 2600 2601 INP_WLOCK_ASSERT(inp); 2602 INP_HASH_WLOCK_ASSERT(pcbinfo); 2603 2604 KASSERT(inp->inp_flags & INP_INHASHLIST, 2605 ("in_pcbrehash: !INP_INHASHLIST")); 2606 2607 #ifdef INET6 2608 if (inp->inp_vflag & INP_IPV6) 2609 hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr); 2610 else 2611 #endif 2612 hashkey_faddr = inp->inp_faddr.s_addr; 2613 2614 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr, 2615 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 2616 2617 CK_LIST_REMOVE(inp, inp_hash); 2618 CK_LIST_INSERT_HEAD(head, inp, inp_hash); 2619 2620 #ifdef PCBGROUP 2621 if (m != NULL) 2622 in_pcbgroup_update_mbuf(inp, m); 2623 else 2624 in_pcbgroup_update(inp); 2625 #endif 2626 } 2627 2628 void 2629 in_pcbrehash(struct inpcb *inp) 2630 { 2631 2632 in_pcbrehash_mbuf(inp, NULL); 2633 } 2634 2635 /* 2636 * Remove PCB from various lists. 2637 */ 2638 static void 2639 in_pcbremlists(struct inpcb *inp) 2640 { 2641 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2642 2643 INP_WLOCK_ASSERT(inp); 2644 INP_LIST_WLOCK_ASSERT(pcbinfo); 2645 2646 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 2647 if (inp->inp_flags & INP_INHASHLIST) { 2648 struct inpcbport *phd = inp->inp_phd; 2649 2650 INP_HASH_WLOCK(pcbinfo); 2651 2652 /* XXX: Only do if SO_REUSEPORT_LB set? */ 2653 in_pcbremlbgrouphash(inp); 2654 2655 CK_LIST_REMOVE(inp, inp_hash); 2656 CK_LIST_REMOVE(inp, inp_portlist); 2657 if (CK_LIST_FIRST(&phd->phd_pcblist) == NULL) { 2658 CK_LIST_REMOVE(phd, phd_hash); 2659 NET_EPOCH_CALL(inpcbport_free, &phd->phd_epoch_ctx); 2660 } 2661 INP_HASH_WUNLOCK(pcbinfo); 2662 inp->inp_flags &= ~INP_INHASHLIST; 2663 } 2664 CK_LIST_REMOVE(inp, inp_list); 2665 pcbinfo->ipi_count--; 2666 #ifdef PCBGROUP 2667 in_pcbgroup_remove(inp); 2668 #endif 2669 } 2670 2671 /* 2672 * Check for alternatives when higher level complains 2673 * about service problems. For now, invalidate cached 2674 * routing information. If the route was created dynamically 2675 * (by a redirect), time to try a default gateway again. 2676 */ 2677 void 2678 in_losing(struct inpcb *inp) 2679 { 2680 2681 RO_INVALIDATE_CACHE(&inp->inp_route); 2682 return; 2683 } 2684 2685 /* 2686 * A set label operation has occurred at the socket layer, propagate the 2687 * label change into the in_pcb for the socket. 2688 */ 2689 void 2690 in_pcbsosetlabel(struct socket *so) 2691 { 2692 #ifdef MAC 2693 struct inpcb *inp; 2694 2695 inp = sotoinpcb(so); 2696 KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL")); 2697 2698 INP_WLOCK(inp); 2699 SOCK_LOCK(so); 2700 mac_inpcb_sosetlabel(so, inp); 2701 SOCK_UNLOCK(so); 2702 INP_WUNLOCK(inp); 2703 #endif 2704 } 2705 2706 /* 2707 * ipport_tick runs once per second, determining if random port allocation 2708 * should be continued. If more than ipport_randomcps ports have been 2709 * allocated in the last second, then we return to sequential port 2710 * allocation. We return to random allocation only once we drop below 2711 * ipport_randomcps for at least ipport_randomtime seconds. 2712 */ 2713 static void 2714 ipport_tick(void *xtp) 2715 { 2716 VNET_ITERATOR_DECL(vnet_iter); 2717 2718 VNET_LIST_RLOCK_NOSLEEP(); 2719 VNET_FOREACH(vnet_iter) { 2720 CURVNET_SET(vnet_iter); /* XXX appease INVARIANTS here */ 2721 if (V_ipport_tcpallocs <= 2722 V_ipport_tcplastcount + V_ipport_randomcps) { 2723 if (V_ipport_stoprandom > 0) 2724 V_ipport_stoprandom--; 2725 } else 2726 V_ipport_stoprandom = V_ipport_randomtime; 2727 V_ipport_tcplastcount = V_ipport_tcpallocs; 2728 CURVNET_RESTORE(); 2729 } 2730 VNET_LIST_RUNLOCK_NOSLEEP(); 2731 callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL); 2732 } 2733 2734 static void 2735 ip_fini(void *xtp) 2736 { 2737 2738 callout_stop(&ipport_tick_callout); 2739 } 2740 2741 /* 2742 * The ipport_callout should start running at about the time we attach the 2743 * inet or inet6 domains. 2744 */ 2745 static void 2746 ipport_tick_init(const void *unused __unused) 2747 { 2748 2749 /* Start ipport_tick. */ 2750 callout_init(&ipport_tick_callout, 1); 2751 callout_reset(&ipport_tick_callout, 1, ipport_tick, NULL); 2752 EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL, 2753 SHUTDOWN_PRI_DEFAULT); 2754 } 2755 SYSINIT(ipport_tick_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_MIDDLE, 2756 ipport_tick_init, NULL); 2757 2758 void 2759 inp_wlock(struct inpcb *inp) 2760 { 2761 2762 INP_WLOCK(inp); 2763 } 2764 2765 void 2766 inp_wunlock(struct inpcb *inp) 2767 { 2768 2769 INP_WUNLOCK(inp); 2770 } 2771 2772 void 2773 inp_rlock(struct inpcb *inp) 2774 { 2775 2776 INP_RLOCK(inp); 2777 } 2778 2779 void 2780 inp_runlock(struct inpcb *inp) 2781 { 2782 2783 INP_RUNLOCK(inp); 2784 } 2785 2786 #ifdef INVARIANT_SUPPORT 2787 void 2788 inp_lock_assert(struct inpcb *inp) 2789 { 2790 2791 INP_WLOCK_ASSERT(inp); 2792 } 2793 2794 void 2795 inp_unlock_assert(struct inpcb *inp) 2796 { 2797 2798 INP_UNLOCK_ASSERT(inp); 2799 } 2800 #endif 2801 2802 void 2803 inp_apply_all(void (*func)(struct inpcb *, void *), void *arg) 2804 { 2805 struct inpcb *inp; 2806 2807 INP_INFO_WLOCK(&V_tcbinfo); 2808 CK_LIST_FOREACH(inp, V_tcbinfo.ipi_listhead, inp_list) { 2809 INP_WLOCK(inp); 2810 func(inp, arg); 2811 INP_WUNLOCK(inp); 2812 } 2813 INP_INFO_WUNLOCK(&V_tcbinfo); 2814 } 2815 2816 struct socket * 2817 inp_inpcbtosocket(struct inpcb *inp) 2818 { 2819 2820 INP_WLOCK_ASSERT(inp); 2821 return (inp->inp_socket); 2822 } 2823 2824 struct tcpcb * 2825 inp_inpcbtotcpcb(struct inpcb *inp) 2826 { 2827 2828 INP_WLOCK_ASSERT(inp); 2829 return ((struct tcpcb *)inp->inp_ppcb); 2830 } 2831 2832 int 2833 inp_ip_tos_get(const struct inpcb *inp) 2834 { 2835 2836 return (inp->inp_ip_tos); 2837 } 2838 2839 void 2840 inp_ip_tos_set(struct inpcb *inp, int val) 2841 { 2842 2843 inp->inp_ip_tos = val; 2844 } 2845 2846 void 2847 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp, 2848 uint32_t *faddr, uint16_t *fp) 2849 { 2850 2851 INP_LOCK_ASSERT(inp); 2852 *laddr = inp->inp_laddr.s_addr; 2853 *faddr = inp->inp_faddr.s_addr; 2854 *lp = inp->inp_lport; 2855 *fp = inp->inp_fport; 2856 } 2857 2858 struct inpcb * 2859 so_sotoinpcb(struct socket *so) 2860 { 2861 2862 return (sotoinpcb(so)); 2863 } 2864 2865 struct tcpcb * 2866 so_sototcpcb(struct socket *so) 2867 { 2868 2869 return (sototcpcb(so)); 2870 } 2871 2872 /* 2873 * Create an external-format (``xinpcb'') structure using the information in 2874 * the kernel-format in_pcb structure pointed to by inp. This is done to 2875 * reduce the spew of irrelevant information over this interface, to isolate 2876 * user code from changes in the kernel structure, and potentially to provide 2877 * information-hiding if we decide that some of this information should be 2878 * hidden from users. 2879 */ 2880 void 2881 in_pcbtoxinpcb(const struct inpcb *inp, struct xinpcb *xi) 2882 { 2883 2884 bzero(xi, sizeof(*xi)); 2885 xi->xi_len = sizeof(struct xinpcb); 2886 if (inp->inp_socket) 2887 sotoxsocket(inp->inp_socket, &xi->xi_socket); 2888 bcopy(&inp->inp_inc, &xi->inp_inc, sizeof(struct in_conninfo)); 2889 xi->inp_gencnt = inp->inp_gencnt; 2890 xi->inp_ppcb = (uintptr_t)inp->inp_ppcb; 2891 xi->inp_flow = inp->inp_flow; 2892 xi->inp_flowid = inp->inp_flowid; 2893 xi->inp_flowtype = inp->inp_flowtype; 2894 xi->inp_flags = inp->inp_flags; 2895 xi->inp_flags2 = inp->inp_flags2; 2896 xi->inp_rss_listen_bucket = inp->inp_rss_listen_bucket; 2897 xi->in6p_cksum = inp->in6p_cksum; 2898 xi->in6p_hops = inp->in6p_hops; 2899 xi->inp_ip_tos = inp->inp_ip_tos; 2900 xi->inp_vflag = inp->inp_vflag; 2901 xi->inp_ip_ttl = inp->inp_ip_ttl; 2902 xi->inp_ip_p = inp->inp_ip_p; 2903 xi->inp_ip_minttl = inp->inp_ip_minttl; 2904 } 2905 2906 #ifdef DDB 2907 static void 2908 db_print_indent(int indent) 2909 { 2910 int i; 2911 2912 for (i = 0; i < indent; i++) 2913 db_printf(" "); 2914 } 2915 2916 static void 2917 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent) 2918 { 2919 char faddr_str[48], laddr_str[48]; 2920 2921 db_print_indent(indent); 2922 db_printf("%s at %p\n", name, inc); 2923 2924 indent += 2; 2925 2926 #ifdef INET6 2927 if (inc->inc_flags & INC_ISIPV6) { 2928 /* IPv6. */ 2929 ip6_sprintf(laddr_str, &inc->inc6_laddr); 2930 ip6_sprintf(faddr_str, &inc->inc6_faddr); 2931 } else 2932 #endif 2933 { 2934 /* IPv4. */ 2935 inet_ntoa_r(inc->inc_laddr, laddr_str); 2936 inet_ntoa_r(inc->inc_faddr, faddr_str); 2937 } 2938 db_print_indent(indent); 2939 db_printf("inc_laddr %s inc_lport %u\n", laddr_str, 2940 ntohs(inc->inc_lport)); 2941 db_print_indent(indent); 2942 db_printf("inc_faddr %s inc_fport %u\n", faddr_str, 2943 ntohs(inc->inc_fport)); 2944 } 2945 2946 static void 2947 db_print_inpflags(int inp_flags) 2948 { 2949 int comma; 2950 2951 comma = 0; 2952 if (inp_flags & INP_RECVOPTS) { 2953 db_printf("%sINP_RECVOPTS", comma ? ", " : ""); 2954 comma = 1; 2955 } 2956 if (inp_flags & INP_RECVRETOPTS) { 2957 db_printf("%sINP_RECVRETOPTS", comma ? ", " : ""); 2958 comma = 1; 2959 } 2960 if (inp_flags & INP_RECVDSTADDR) { 2961 db_printf("%sINP_RECVDSTADDR", comma ? ", " : ""); 2962 comma = 1; 2963 } 2964 if (inp_flags & INP_ORIGDSTADDR) { 2965 db_printf("%sINP_ORIGDSTADDR", comma ? ", " : ""); 2966 comma = 1; 2967 } 2968 if (inp_flags & INP_HDRINCL) { 2969 db_printf("%sINP_HDRINCL", comma ? ", " : ""); 2970 comma = 1; 2971 } 2972 if (inp_flags & INP_HIGHPORT) { 2973 db_printf("%sINP_HIGHPORT", comma ? ", " : ""); 2974 comma = 1; 2975 } 2976 if (inp_flags & INP_LOWPORT) { 2977 db_printf("%sINP_LOWPORT", comma ? ", " : ""); 2978 comma = 1; 2979 } 2980 if (inp_flags & INP_ANONPORT) { 2981 db_printf("%sINP_ANONPORT", comma ? ", " : ""); 2982 comma = 1; 2983 } 2984 if (inp_flags & INP_RECVIF) { 2985 db_printf("%sINP_RECVIF", comma ? ", " : ""); 2986 comma = 1; 2987 } 2988 if (inp_flags & INP_MTUDISC) { 2989 db_printf("%sINP_MTUDISC", comma ? ", " : ""); 2990 comma = 1; 2991 } 2992 if (inp_flags & INP_RECVTTL) { 2993 db_printf("%sINP_RECVTTL", comma ? ", " : ""); 2994 comma = 1; 2995 } 2996 if (inp_flags & INP_DONTFRAG) { 2997 db_printf("%sINP_DONTFRAG", comma ? ", " : ""); 2998 comma = 1; 2999 } 3000 if (inp_flags & INP_RECVTOS) { 3001 db_printf("%sINP_RECVTOS", comma ? ", " : ""); 3002 comma = 1; 3003 } 3004 if (inp_flags & IN6P_IPV6_V6ONLY) { 3005 db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : ""); 3006 comma = 1; 3007 } 3008 if (inp_flags & IN6P_PKTINFO) { 3009 db_printf("%sIN6P_PKTINFO", comma ? ", " : ""); 3010 comma = 1; 3011 } 3012 if (inp_flags & IN6P_HOPLIMIT) { 3013 db_printf("%sIN6P_HOPLIMIT", comma ? ", " : ""); 3014 comma = 1; 3015 } 3016 if (inp_flags & IN6P_HOPOPTS) { 3017 db_printf("%sIN6P_HOPOPTS", comma ? ", " : ""); 3018 comma = 1; 3019 } 3020 if (inp_flags & IN6P_DSTOPTS) { 3021 db_printf("%sIN6P_DSTOPTS", comma ? ", " : ""); 3022 comma = 1; 3023 } 3024 if (inp_flags & IN6P_RTHDR) { 3025 db_printf("%sIN6P_RTHDR", comma ? ", " : ""); 3026 comma = 1; 3027 } 3028 if (inp_flags & IN6P_RTHDRDSTOPTS) { 3029 db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : ""); 3030 comma = 1; 3031 } 3032 if (inp_flags & IN6P_TCLASS) { 3033 db_printf("%sIN6P_TCLASS", comma ? ", " : ""); 3034 comma = 1; 3035 } 3036 if (inp_flags & IN6P_AUTOFLOWLABEL) { 3037 db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : ""); 3038 comma = 1; 3039 } 3040 if (inp_flags & INP_TIMEWAIT) { 3041 db_printf("%sINP_TIMEWAIT", comma ? ", " : ""); 3042 comma = 1; 3043 } 3044 if (inp_flags & INP_ONESBCAST) { 3045 db_printf("%sINP_ONESBCAST", comma ? ", " : ""); 3046 comma = 1; 3047 } 3048 if (inp_flags & INP_DROPPED) { 3049 db_printf("%sINP_DROPPED", comma ? ", " : ""); 3050 comma = 1; 3051 } 3052 if (inp_flags & INP_SOCKREF) { 3053 db_printf("%sINP_SOCKREF", comma ? ", " : ""); 3054 comma = 1; 3055 } 3056 if (inp_flags & IN6P_RFC2292) { 3057 db_printf("%sIN6P_RFC2292", comma ? ", " : ""); 3058 comma = 1; 3059 } 3060 if (inp_flags & IN6P_MTU) { 3061 db_printf("IN6P_MTU%s", comma ? ", " : ""); 3062 comma = 1; 3063 } 3064 } 3065 3066 static void 3067 db_print_inpvflag(u_char inp_vflag) 3068 { 3069 int comma; 3070 3071 comma = 0; 3072 if (inp_vflag & INP_IPV4) { 3073 db_printf("%sINP_IPV4", comma ? ", " : ""); 3074 comma = 1; 3075 } 3076 if (inp_vflag & INP_IPV6) { 3077 db_printf("%sINP_IPV6", comma ? ", " : ""); 3078 comma = 1; 3079 } 3080 if (inp_vflag & INP_IPV6PROTO) { 3081 db_printf("%sINP_IPV6PROTO", comma ? ", " : ""); 3082 comma = 1; 3083 } 3084 } 3085 3086 static void 3087 db_print_inpcb(struct inpcb *inp, const char *name, int indent) 3088 { 3089 3090 db_print_indent(indent); 3091 db_printf("%s at %p\n", name, inp); 3092 3093 indent += 2; 3094 3095 db_print_indent(indent); 3096 db_printf("inp_flow: 0x%x\n", inp->inp_flow); 3097 3098 db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent); 3099 3100 db_print_indent(indent); 3101 db_printf("inp_ppcb: %p inp_pcbinfo: %p inp_socket: %p\n", 3102 inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket); 3103 3104 db_print_indent(indent); 3105 db_printf("inp_label: %p inp_flags: 0x%x (", 3106 inp->inp_label, inp->inp_flags); 3107 db_print_inpflags(inp->inp_flags); 3108 db_printf(")\n"); 3109 3110 db_print_indent(indent); 3111 db_printf("inp_sp: %p inp_vflag: 0x%x (", inp->inp_sp, 3112 inp->inp_vflag); 3113 db_print_inpvflag(inp->inp_vflag); 3114 db_printf(")\n"); 3115 3116 db_print_indent(indent); 3117 db_printf("inp_ip_ttl: %d inp_ip_p: %d inp_ip_minttl: %d\n", 3118 inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl); 3119 3120 db_print_indent(indent); 3121 #ifdef INET6 3122 if (inp->inp_vflag & INP_IPV6) { 3123 db_printf("in6p_options: %p in6p_outputopts: %p " 3124 "in6p_moptions: %p\n", inp->in6p_options, 3125 inp->in6p_outputopts, inp->in6p_moptions); 3126 db_printf("in6p_icmp6filt: %p in6p_cksum %d " 3127 "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum, 3128 inp->in6p_hops); 3129 } else 3130 #endif 3131 { 3132 db_printf("inp_ip_tos: %d inp_ip_options: %p " 3133 "inp_ip_moptions: %p\n", inp->inp_ip_tos, 3134 inp->inp_options, inp->inp_moptions); 3135 } 3136 3137 db_print_indent(indent); 3138 db_printf("inp_phd: %p inp_gencnt: %ju\n", inp->inp_phd, 3139 (uintmax_t)inp->inp_gencnt); 3140 } 3141 3142 DB_SHOW_COMMAND(inpcb, db_show_inpcb) 3143 { 3144 struct inpcb *inp; 3145 3146 if (!have_addr) { 3147 db_printf("usage: show inpcb <addr>\n"); 3148 return; 3149 } 3150 inp = (struct inpcb *)addr; 3151 3152 db_print_inpcb(inp, "inpcb", 0); 3153 } 3154 #endif /* DDB */ 3155 3156 #ifdef RATELIMIT 3157 /* 3158 * Modify TX rate limit based on the existing "inp->inp_snd_tag", 3159 * if any. 3160 */ 3161 int 3162 in_pcbmodify_txrtlmt(struct inpcb *inp, uint32_t max_pacing_rate) 3163 { 3164 union if_snd_tag_modify_params params = { 3165 .rate_limit.max_rate = max_pacing_rate, 3166 .rate_limit.flags = M_NOWAIT, 3167 }; 3168 struct m_snd_tag *mst; 3169 struct ifnet *ifp; 3170 int error; 3171 3172 mst = inp->inp_snd_tag; 3173 if (mst == NULL) 3174 return (EINVAL); 3175 3176 ifp = mst->ifp; 3177 if (ifp == NULL) 3178 return (EINVAL); 3179 3180 if (ifp->if_snd_tag_modify == NULL) { 3181 error = EOPNOTSUPP; 3182 } else { 3183 error = ifp->if_snd_tag_modify(mst, ¶ms); 3184 } 3185 return (error); 3186 } 3187 3188 /* 3189 * Query existing TX rate limit based on the existing 3190 * "inp->inp_snd_tag", if any. 3191 */ 3192 int 3193 in_pcbquery_txrtlmt(struct inpcb *inp, uint32_t *p_max_pacing_rate) 3194 { 3195 union if_snd_tag_query_params params = { }; 3196 struct m_snd_tag *mst; 3197 struct ifnet *ifp; 3198 int error; 3199 3200 mst = inp->inp_snd_tag; 3201 if (mst == NULL) 3202 return (EINVAL); 3203 3204 ifp = mst->ifp; 3205 if (ifp == NULL) 3206 return (EINVAL); 3207 3208 if (ifp->if_snd_tag_query == NULL) { 3209 error = EOPNOTSUPP; 3210 } else { 3211 error = ifp->if_snd_tag_query(mst, ¶ms); 3212 if (error == 0 && p_max_pacing_rate != NULL) 3213 *p_max_pacing_rate = params.rate_limit.max_rate; 3214 } 3215 return (error); 3216 } 3217 3218 /* 3219 * Query existing TX queue level based on the existing 3220 * "inp->inp_snd_tag", if any. 3221 */ 3222 int 3223 in_pcbquery_txrlevel(struct inpcb *inp, uint32_t *p_txqueue_level) 3224 { 3225 union if_snd_tag_query_params params = { }; 3226 struct m_snd_tag *mst; 3227 struct ifnet *ifp; 3228 int error; 3229 3230 mst = inp->inp_snd_tag; 3231 if (mst == NULL) 3232 return (EINVAL); 3233 3234 ifp = mst->ifp; 3235 if (ifp == NULL) 3236 return (EINVAL); 3237 3238 if (ifp->if_snd_tag_query == NULL) 3239 return (EOPNOTSUPP); 3240 3241 error = ifp->if_snd_tag_query(mst, ¶ms); 3242 if (error == 0 && p_txqueue_level != NULL) 3243 *p_txqueue_level = params.rate_limit.queue_level; 3244 return (error); 3245 } 3246 3247 /* 3248 * Allocate a new TX rate limit send tag from the network interface 3249 * given by the "ifp" argument and save it in "inp->inp_snd_tag": 3250 */ 3251 int 3252 in_pcbattach_txrtlmt(struct inpcb *inp, struct ifnet *ifp, 3253 uint32_t flowtype, uint32_t flowid, uint32_t max_pacing_rate, struct m_snd_tag **st) 3254 3255 { 3256 union if_snd_tag_alloc_params params = { 3257 .rate_limit.hdr.type = (max_pacing_rate == -1U) ? 3258 IF_SND_TAG_TYPE_UNLIMITED : IF_SND_TAG_TYPE_RATE_LIMIT, 3259 .rate_limit.hdr.flowid = flowid, 3260 .rate_limit.hdr.flowtype = flowtype, 3261 .rate_limit.max_rate = max_pacing_rate, 3262 .rate_limit.flags = M_NOWAIT, 3263 }; 3264 int error; 3265 3266 INP_WLOCK_ASSERT(inp); 3267 3268 if (*st != NULL) 3269 return (EINVAL); 3270 3271 if (ifp->if_snd_tag_alloc == NULL) { 3272 error = EOPNOTSUPP; 3273 } else { 3274 error = ifp->if_snd_tag_alloc(ifp, ¶ms, &inp->inp_snd_tag); 3275 3276 #ifdef INET 3277 if (error == 0) { 3278 counter_u64_add(rate_limit_set_ok, 1); 3279 counter_u64_add(rate_limit_active, 1); 3280 } else 3281 counter_u64_add(rate_limit_alloc_fail, 1); 3282 #endif 3283 } 3284 return (error); 3285 } 3286 3287 void 3288 in_pcbdetach_tag(struct ifnet *ifp, struct m_snd_tag *mst) 3289 { 3290 if (ifp == NULL) 3291 return; 3292 3293 /* 3294 * If the device was detached while we still had reference(s) 3295 * on the ifp, we assume if_snd_tag_free() was replaced with 3296 * stubs. 3297 */ 3298 ifp->if_snd_tag_free(mst); 3299 3300 /* release reference count on network interface */ 3301 if_rele(ifp); 3302 #ifdef INET 3303 counter_u64_add(rate_limit_active, -1); 3304 #endif 3305 } 3306 3307 /* 3308 * Free an existing TX rate limit tag based on the "inp->inp_snd_tag", 3309 * if any: 3310 */ 3311 void 3312 in_pcbdetach_txrtlmt(struct inpcb *inp) 3313 { 3314 struct m_snd_tag *mst; 3315 3316 INP_WLOCK_ASSERT(inp); 3317 3318 mst = inp->inp_snd_tag; 3319 inp->inp_snd_tag = NULL; 3320 3321 if (mst == NULL) 3322 return; 3323 3324 m_snd_tag_rele(mst); 3325 } 3326 3327 int 3328 in_pcboutput_txrtlmt_locked(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb, uint32_t max_pacing_rate) 3329 { 3330 int error; 3331 3332 /* 3333 * If the existing send tag is for the wrong interface due to 3334 * a route change, first drop the existing tag. Set the 3335 * CHANGED flag so that we will keep trying to allocate a new 3336 * tag if we fail to allocate one this time. 3337 */ 3338 if (inp->inp_snd_tag != NULL && inp->inp_snd_tag->ifp != ifp) { 3339 in_pcbdetach_txrtlmt(inp); 3340 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 3341 } 3342 3343 /* 3344 * NOTE: When attaching to a network interface a reference is 3345 * made to ensure the network interface doesn't go away until 3346 * all ratelimit connections are gone. The network interface 3347 * pointers compared below represent valid network interfaces, 3348 * except when comparing towards NULL. 3349 */ 3350 if (max_pacing_rate == 0 && inp->inp_snd_tag == NULL) { 3351 error = 0; 3352 } else if (!(ifp->if_capenable & IFCAP_TXRTLMT)) { 3353 if (inp->inp_snd_tag != NULL) 3354 in_pcbdetach_txrtlmt(inp); 3355 error = 0; 3356 } else if (inp->inp_snd_tag == NULL) { 3357 /* 3358 * In order to utilize packet pacing with RSS, we need 3359 * to wait until there is a valid RSS hash before we 3360 * can proceed: 3361 */ 3362 if (M_HASHTYPE_GET(mb) == M_HASHTYPE_NONE) { 3363 error = EAGAIN; 3364 } else { 3365 error = in_pcbattach_txrtlmt(inp, ifp, M_HASHTYPE_GET(mb), 3366 mb->m_pkthdr.flowid, max_pacing_rate, &inp->inp_snd_tag); 3367 } 3368 } else { 3369 error = in_pcbmodify_txrtlmt(inp, max_pacing_rate); 3370 } 3371 if (error == 0 || error == EOPNOTSUPP) 3372 inp->inp_flags2 &= ~INP_RATE_LIMIT_CHANGED; 3373 3374 return (error); 3375 } 3376 3377 /* 3378 * This function should be called when the INP_RATE_LIMIT_CHANGED flag 3379 * is set in the fast path and will attach/detach/modify the TX rate 3380 * limit send tag based on the socket's so_max_pacing_rate value. 3381 */ 3382 void 3383 in_pcboutput_txrtlmt(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb) 3384 { 3385 struct socket *socket; 3386 uint32_t max_pacing_rate; 3387 bool did_upgrade; 3388 int error; 3389 3390 if (inp == NULL) 3391 return; 3392 3393 socket = inp->inp_socket; 3394 if (socket == NULL) 3395 return; 3396 3397 if (!INP_WLOCKED(inp)) { 3398 /* 3399 * NOTE: If the write locking fails, we need to bail 3400 * out and use the non-ratelimited ring for the 3401 * transmit until there is a new chance to get the 3402 * write lock. 3403 */ 3404 if (!INP_TRY_UPGRADE(inp)) 3405 return; 3406 did_upgrade = 1; 3407 } else { 3408 did_upgrade = 0; 3409 } 3410 3411 /* 3412 * NOTE: The so_max_pacing_rate value is read unlocked, 3413 * because atomic updates are not required since the variable 3414 * is checked at every mbuf we send. It is assumed that the 3415 * variable read itself will be atomic. 3416 */ 3417 max_pacing_rate = socket->so_max_pacing_rate; 3418 3419 error = in_pcboutput_txrtlmt_locked(inp, ifp, mb, max_pacing_rate); 3420 3421 if (did_upgrade) 3422 INP_DOWNGRADE(inp); 3423 } 3424 3425 /* 3426 * Track route changes for TX rate limiting. 3427 */ 3428 void 3429 in_pcboutput_eagain(struct inpcb *inp) 3430 { 3431 bool did_upgrade; 3432 3433 if (inp == NULL) 3434 return; 3435 3436 if (inp->inp_snd_tag == NULL) 3437 return; 3438 3439 if (!INP_WLOCKED(inp)) { 3440 /* 3441 * NOTE: If the write locking fails, we need to bail 3442 * out and use the non-ratelimited ring for the 3443 * transmit until there is a new chance to get the 3444 * write lock. 3445 */ 3446 if (!INP_TRY_UPGRADE(inp)) 3447 return; 3448 did_upgrade = 1; 3449 } else { 3450 did_upgrade = 0; 3451 } 3452 3453 /* detach rate limiting */ 3454 in_pcbdetach_txrtlmt(inp); 3455 3456 /* make sure new mbuf send tag allocation is made */ 3457 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 3458 3459 if (did_upgrade) 3460 INP_DOWNGRADE(inp); 3461 } 3462 3463 #ifdef INET 3464 static void 3465 rl_init(void *st) 3466 { 3467 rate_limit_active = counter_u64_alloc(M_WAITOK); 3468 rate_limit_alloc_fail = counter_u64_alloc(M_WAITOK); 3469 rate_limit_set_ok = counter_u64_alloc(M_WAITOK); 3470 } 3471 3472 SYSINIT(rl, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, rl_init, NULL); 3473 #endif 3474 #endif /* RATELIMIT */ 3475