1 /*- 2 * Copyright (c) 1982, 1986, 1991, 1993, 1995 3 * The Regents of the University of California. 4 * Copyright (c) 2007-2009 Robert N. M. Watson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 4. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)in_pcb.c 8.4 (Berkeley) 5/24/95 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_ddb.h" 38 #include "opt_ipsec.h" 39 #include "opt_inet6.h" 40 41 #include <sys/param.h> 42 #include <sys/systm.h> 43 #include <sys/malloc.h> 44 #include <sys/mbuf.h> 45 #include <sys/domain.h> 46 #include <sys/protosw.h> 47 #include <sys/socket.h> 48 #include <sys/socketvar.h> 49 #include <sys/priv.h> 50 #include <sys/proc.h> 51 #include <sys/jail.h> 52 #include <sys/kernel.h> 53 #include <sys/sysctl.h> 54 #include <sys/vimage.h> 55 56 #ifdef DDB 57 #include <ddb/ddb.h> 58 #endif 59 60 #include <vm/uma.h> 61 62 #include <net/if.h> 63 #include <net/if_types.h> 64 #include <net/route.h> 65 66 #include <netinet/in.h> 67 #include <netinet/in_pcb.h> 68 #include <netinet/in_var.h> 69 #include <netinet/ip_var.h> 70 #include <netinet/tcp_var.h> 71 #include <netinet/udp.h> 72 #include <netinet/udp_var.h> 73 #include <netinet/vinet.h> 74 #ifdef INET6 75 #include <netinet/ip6.h> 76 #include <netinet6/ip6_var.h> 77 #include <netinet6/vinet6.h> 78 #endif /* INET6 */ 79 80 81 #ifdef IPSEC 82 #include <netipsec/ipsec.h> 83 #include <netipsec/key.h> 84 #endif /* IPSEC */ 85 86 #include <security/mac/mac_framework.h> 87 88 #ifdef VIMAGE_GLOBALS 89 /* 90 * These configure the range of local port addresses assigned to 91 * "unspecified" outgoing connections/packets/whatever. 92 */ 93 int ipport_lowfirstauto; 94 int ipport_lowlastauto; 95 int ipport_firstauto; 96 int ipport_lastauto; 97 int ipport_hifirstauto; 98 int ipport_hilastauto; 99 100 /* 101 * Reserved ports accessible only to root. There are significant 102 * security considerations that must be accounted for when changing these, 103 * but the security benefits can be great. Please be careful. 104 */ 105 int ipport_reservedhigh; 106 int ipport_reservedlow; 107 108 /* Variables dealing with random ephemeral port allocation. */ 109 int ipport_randomized; 110 int ipport_randomcps; 111 int ipport_randomtime; 112 int ipport_stoprandom; 113 int ipport_tcpallocs; 114 int ipport_tcplastcount; 115 #endif 116 117 #define RANGECHK(var, min, max) \ 118 if ((var) < (min)) { (var) = (min); } \ 119 else if ((var) > (max)) { (var) = (max); } 120 121 static void in_pcbremlists(struct inpcb *inp); 122 123 static int 124 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS) 125 { 126 INIT_VNET_INET(curvnet); 127 int error; 128 129 SYSCTL_RESOLVE_V_ARG1(); 130 131 error = sysctl_handle_int(oidp, arg1, arg2, req); 132 if (error == 0) { 133 RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1); 134 RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1); 135 RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX); 136 RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX); 137 RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX); 138 RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX); 139 } 140 return (error); 141 } 142 143 #undef RANGECHK 144 145 SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, CTLFLAG_RW, 0, "IP Ports"); 146 147 SYSCTL_V_PROC(V_NET, vnet_inet, _net_inet_ip_portrange, OID_AUTO, 148 lowfirst, CTLTYPE_INT|CTLFLAG_RW, ipport_lowfirstauto, 0, 149 &sysctl_net_ipport_check, "I", ""); 150 SYSCTL_V_PROC(V_NET, vnet_inet, _net_inet_ip_portrange, OID_AUTO, 151 lowlast, CTLTYPE_INT|CTLFLAG_RW, ipport_lowlastauto, 0, 152 &sysctl_net_ipport_check, "I", ""); 153 SYSCTL_V_PROC(V_NET, vnet_inet, _net_inet_ip_portrange, OID_AUTO, 154 first, CTLTYPE_INT|CTLFLAG_RW, ipport_firstauto, 0, 155 &sysctl_net_ipport_check, "I", ""); 156 SYSCTL_V_PROC(V_NET, vnet_inet, _net_inet_ip_portrange, OID_AUTO, 157 last, CTLTYPE_INT|CTLFLAG_RW, ipport_lastauto, 0, 158 &sysctl_net_ipport_check, "I", ""); 159 SYSCTL_V_PROC(V_NET, vnet_inet, _net_inet_ip_portrange, OID_AUTO, 160 hifirst, CTLTYPE_INT|CTLFLAG_RW, ipport_hifirstauto, 0, 161 &sysctl_net_ipport_check, "I", ""); 162 SYSCTL_V_PROC(V_NET, vnet_inet, _net_inet_ip_portrange, OID_AUTO, 163 hilast, CTLTYPE_INT|CTLFLAG_RW, ipport_hilastauto, 0, 164 &sysctl_net_ipport_check, "I", ""); 165 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip_portrange, OID_AUTO, 166 reservedhigh, CTLFLAG_RW|CTLFLAG_SECURE, ipport_reservedhigh, 0, ""); 167 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip_portrange, OID_AUTO, reservedlow, 168 CTLFLAG_RW|CTLFLAG_SECURE, ipport_reservedlow, 0, ""); 169 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip_portrange, OID_AUTO, randomized, 170 CTLFLAG_RW, ipport_randomized, 0, "Enable random port allocation"); 171 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip_portrange, OID_AUTO, randomcps, 172 CTLFLAG_RW, ipport_randomcps, 0, "Maximum number of random port " 173 "allocations before switching to a sequental one"); 174 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip_portrange, OID_AUTO, randomtime, 175 CTLFLAG_RW, ipport_randomtime, 0, 176 "Minimum time to keep sequental port " 177 "allocation before switching to a random one"); 178 179 /* 180 * in_pcb.c: manage the Protocol Control Blocks. 181 * 182 * NOTE: It is assumed that most of these functions will be called with 183 * the pcbinfo lock held, and often, the inpcb lock held, as these utility 184 * functions often modify hash chains or addresses in pcbs. 185 */ 186 187 /* 188 * Allocate a PCB and associate it with the socket. 189 * On success return with the PCB locked. 190 */ 191 int 192 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo) 193 { 194 #ifdef INET6 195 INIT_VNET_INET6(curvnet); 196 #endif 197 struct inpcb *inp; 198 int error; 199 200 INP_INFO_WLOCK_ASSERT(pcbinfo); 201 error = 0; 202 inp = uma_zalloc(pcbinfo->ipi_zone, M_NOWAIT); 203 if (inp == NULL) 204 return (ENOBUFS); 205 bzero(inp, inp_zero_size); 206 inp->inp_pcbinfo = pcbinfo; 207 inp->inp_socket = so; 208 inp->inp_cred = crhold(so->so_cred); 209 inp->inp_inc.inc_fibnum = so->so_fibnum; 210 #ifdef MAC 211 error = mac_inpcb_init(inp, M_NOWAIT); 212 if (error != 0) 213 goto out; 214 mac_inpcb_create(so, inp); 215 #endif 216 #ifdef IPSEC 217 error = ipsec_init_policy(so, &inp->inp_sp); 218 if (error != 0) { 219 #ifdef MAC 220 mac_inpcb_destroy(inp); 221 #endif 222 goto out; 223 } 224 #endif /*IPSEC*/ 225 #ifdef INET6 226 if (INP_SOCKAF(so) == AF_INET6) { 227 inp->inp_vflag |= INP_IPV6PROTO; 228 if (V_ip6_v6only) 229 inp->inp_flags |= IN6P_IPV6_V6ONLY; 230 } 231 #endif 232 LIST_INSERT_HEAD(pcbinfo->ipi_listhead, inp, inp_list); 233 pcbinfo->ipi_count++; 234 so->so_pcb = (caddr_t)inp; 235 #ifdef INET6 236 if (V_ip6_auto_flowlabel) 237 inp->inp_flags |= IN6P_AUTOFLOWLABEL; 238 #endif 239 INP_WLOCK(inp); 240 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 241 inp->inp_refcount = 1; /* Reference from the inpcbinfo */ 242 #if defined(IPSEC) || defined(MAC) 243 out: 244 if (error != 0) { 245 crfree(inp->inp_cred); 246 uma_zfree(pcbinfo->ipi_zone, inp); 247 } 248 #endif 249 return (error); 250 } 251 252 int 253 in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred) 254 { 255 int anonport, error; 256 257 INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo); 258 INP_WLOCK_ASSERT(inp); 259 260 if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY) 261 return (EINVAL); 262 anonport = inp->inp_lport == 0 && (nam == NULL || 263 ((struct sockaddr_in *)nam)->sin_port == 0); 264 error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr, 265 &inp->inp_lport, cred); 266 if (error) 267 return (error); 268 if (in_pcbinshash(inp) != 0) { 269 inp->inp_laddr.s_addr = INADDR_ANY; 270 inp->inp_lport = 0; 271 return (EAGAIN); 272 } 273 if (anonport) 274 inp->inp_flags |= INP_ANONPORT; 275 return (0); 276 } 277 278 /* 279 * Set up a bind operation on a PCB, performing port allocation 280 * as required, but do not actually modify the PCB. Callers can 281 * either complete the bind by setting inp_laddr/inp_lport and 282 * calling in_pcbinshash(), or they can just use the resulting 283 * port and address to authorise the sending of a once-off packet. 284 * 285 * On error, the values of *laddrp and *lportp are not changed. 286 */ 287 int 288 in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp, 289 u_short *lportp, struct ucred *cred) 290 { 291 INIT_VNET_INET(inp->inp_vnet); 292 struct socket *so = inp->inp_socket; 293 unsigned short *lastport; 294 struct sockaddr_in *sin; 295 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 296 struct in_addr laddr; 297 u_short lport = 0; 298 int wild = 0, reuseport = (so->so_options & SO_REUSEPORT); 299 int error; 300 int dorandom; 301 302 /* 303 * Because no actual state changes occur here, a global write lock on 304 * the pcbinfo isn't required. 305 */ 306 INP_INFO_LOCK_ASSERT(pcbinfo); 307 INP_LOCK_ASSERT(inp); 308 309 if (TAILQ_EMPTY(&V_in_ifaddrhead)) /* XXX broken! */ 310 return (EADDRNOTAVAIL); 311 laddr.s_addr = *laddrp; 312 if (nam != NULL && laddr.s_addr != INADDR_ANY) 313 return (EINVAL); 314 if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) == 0) 315 wild = INPLOOKUP_WILDCARD; 316 if (nam == NULL) { 317 if ((error = prison_local_ip4(cred, &laddr)) != 0) 318 return (error); 319 } else { 320 sin = (struct sockaddr_in *)nam; 321 if (nam->sa_len != sizeof (*sin)) 322 return (EINVAL); 323 #ifdef notdef 324 /* 325 * We should check the family, but old programs 326 * incorrectly fail to initialize it. 327 */ 328 if (sin->sin_family != AF_INET) 329 return (EAFNOSUPPORT); 330 #endif 331 error = prison_local_ip4(cred, &sin->sin_addr); 332 if (error) 333 return (error); 334 if (sin->sin_port != *lportp) { 335 /* Don't allow the port to change. */ 336 if (*lportp != 0) 337 return (EINVAL); 338 lport = sin->sin_port; 339 } 340 /* NB: lport is left as 0 if the port isn't being changed. */ 341 if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) { 342 /* 343 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast; 344 * allow complete duplication of binding if 345 * SO_REUSEPORT is set, or if SO_REUSEADDR is set 346 * and a multicast address is bound on both 347 * new and duplicated sockets. 348 */ 349 if (so->so_options & SO_REUSEADDR) 350 reuseport = SO_REUSEADDR|SO_REUSEPORT; 351 } else if (sin->sin_addr.s_addr != INADDR_ANY) { 352 sin->sin_port = 0; /* yech... */ 353 bzero(&sin->sin_zero, sizeof(sin->sin_zero)); 354 /* 355 * Is the address a local IP address? 356 * If INP_BINDANY is set, then the socket may be bound 357 * to any endpoint address, local or not. 358 */ 359 if ((inp->inp_flags & INP_BINDANY) == 0 && 360 ifa_ifwithaddr((struct sockaddr *)sin) == NULL) 361 return (EADDRNOTAVAIL); 362 } 363 laddr = sin->sin_addr; 364 if (lport) { 365 struct inpcb *t; 366 struct tcptw *tw; 367 368 /* GROSS */ 369 if (ntohs(lport) <= V_ipport_reservedhigh && 370 ntohs(lport) >= V_ipport_reservedlow && 371 priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT, 372 0)) 373 return (EACCES); 374 if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) && 375 priv_check_cred(inp->inp_cred, 376 PRIV_NETINET_REUSEPORT, 0) != 0) { 377 t = in_pcblookup_local(pcbinfo, sin->sin_addr, 378 lport, INPLOOKUP_WILDCARD, cred); 379 /* 380 * XXX 381 * This entire block sorely needs a rewrite. 382 */ 383 if (t && 384 ((t->inp_flags & INP_TIMEWAIT) == 0) && 385 (so->so_type != SOCK_STREAM || 386 ntohl(t->inp_faddr.s_addr) == INADDR_ANY) && 387 (ntohl(sin->sin_addr.s_addr) != INADDR_ANY || 388 ntohl(t->inp_laddr.s_addr) != INADDR_ANY || 389 (t->inp_socket->so_options & 390 SO_REUSEPORT) == 0) && 391 (inp->inp_cred->cr_uid != 392 t->inp_cred->cr_uid)) 393 return (EADDRINUSE); 394 } 395 t = in_pcblookup_local(pcbinfo, sin->sin_addr, 396 lport, wild, cred); 397 if (t && (t->inp_flags & INP_TIMEWAIT)) { 398 /* 399 * XXXRW: If an incpb has had its timewait 400 * state recycled, we treat the address as 401 * being in use (for now). This is better 402 * than a panic, but not desirable. 403 */ 404 tw = intotw(inp); 405 if (tw == NULL || 406 (reuseport & tw->tw_so_options) == 0) 407 return (EADDRINUSE); 408 } else if (t && 409 (reuseport & t->inp_socket->so_options) == 0) { 410 #ifdef INET6 411 if (ntohl(sin->sin_addr.s_addr) != 412 INADDR_ANY || 413 ntohl(t->inp_laddr.s_addr) != 414 INADDR_ANY || 415 INP_SOCKAF(so) == 416 INP_SOCKAF(t->inp_socket)) 417 #endif 418 return (EADDRINUSE); 419 } 420 } 421 } 422 if (*lportp != 0) 423 lport = *lportp; 424 if (lport == 0) { 425 u_short first, last, aux; 426 int count; 427 428 if (inp->inp_flags & INP_HIGHPORT) { 429 first = V_ipport_hifirstauto; /* sysctl */ 430 last = V_ipport_hilastauto; 431 lastport = &pcbinfo->ipi_lasthi; 432 } else if (inp->inp_flags & INP_LOWPORT) { 433 error = priv_check_cred(cred, 434 PRIV_NETINET_RESERVEDPORT, 0); 435 if (error) 436 return error; 437 first = V_ipport_lowfirstauto; /* 1023 */ 438 last = V_ipport_lowlastauto; /* 600 */ 439 lastport = &pcbinfo->ipi_lastlow; 440 } else { 441 first = V_ipport_firstauto; /* sysctl */ 442 last = V_ipport_lastauto; 443 lastport = &pcbinfo->ipi_lastport; 444 } 445 /* 446 * For UDP, use random port allocation as long as the user 447 * allows it. For TCP (and as of yet unknown) connections, 448 * use random port allocation only if the user allows it AND 449 * ipport_tick() allows it. 450 */ 451 if (V_ipport_randomized && 452 (!V_ipport_stoprandom || pcbinfo == &V_udbinfo)) 453 dorandom = 1; 454 else 455 dorandom = 0; 456 /* 457 * It makes no sense to do random port allocation if 458 * we have the only port available. 459 */ 460 if (first == last) 461 dorandom = 0; 462 /* Make sure to not include UDP packets in the count. */ 463 if (pcbinfo != &V_udbinfo) 464 V_ipport_tcpallocs++; 465 /* 466 * Instead of having two loops further down counting up or down 467 * make sure that first is always <= last and go with only one 468 * code path implementing all logic. 469 */ 470 if (first > last) { 471 aux = first; 472 first = last; 473 last = aux; 474 } 475 476 if (dorandom) 477 *lastport = first + 478 (arc4random() % (last - first)); 479 480 count = last - first; 481 482 do { 483 if (count-- < 0) /* completely used? */ 484 return (EADDRNOTAVAIL); 485 ++*lastport; 486 if (*lastport < first || *lastport > last) 487 *lastport = first; 488 lport = htons(*lastport); 489 } while (in_pcblookup_local(pcbinfo, laddr, 490 lport, wild, cred)); 491 } 492 *laddrp = laddr.s_addr; 493 *lportp = lport; 494 return (0); 495 } 496 497 /* 498 * Connect from a socket to a specified address. 499 * Both address and port must be specified in argument sin. 500 * If don't have a local address for this socket yet, 501 * then pick one. 502 */ 503 int 504 in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred) 505 { 506 u_short lport, fport; 507 in_addr_t laddr, faddr; 508 int anonport, error; 509 510 INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo); 511 INP_WLOCK_ASSERT(inp); 512 513 lport = inp->inp_lport; 514 laddr = inp->inp_laddr.s_addr; 515 anonport = (lport == 0); 516 error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport, 517 NULL, cred); 518 if (error) 519 return (error); 520 521 /* Do the initial binding of the local address if required. */ 522 if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) { 523 inp->inp_lport = lport; 524 inp->inp_laddr.s_addr = laddr; 525 if (in_pcbinshash(inp) != 0) { 526 inp->inp_laddr.s_addr = INADDR_ANY; 527 inp->inp_lport = 0; 528 return (EAGAIN); 529 } 530 } 531 532 /* Commit the remaining changes. */ 533 inp->inp_lport = lport; 534 inp->inp_laddr.s_addr = laddr; 535 inp->inp_faddr.s_addr = faddr; 536 inp->inp_fport = fport; 537 in_pcbrehash(inp); 538 539 if (anonport) 540 inp->inp_flags |= INP_ANONPORT; 541 return (0); 542 } 543 544 /* 545 * Do proper source address selection on an unbound socket in case 546 * of connect. Take jails into account as well. 547 */ 548 static int 549 in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr, 550 struct ucred *cred) 551 { 552 struct in_ifaddr *ia; 553 struct ifaddr *ifa; 554 struct sockaddr *sa; 555 struct sockaddr_in *sin; 556 struct route sro; 557 int error; 558 559 KASSERT(laddr != NULL, ("%s: laddr NULL", __func__)); 560 561 error = 0; 562 ia = NULL; 563 bzero(&sro, sizeof(sro)); 564 565 sin = (struct sockaddr_in *)&sro.ro_dst; 566 sin->sin_family = AF_INET; 567 sin->sin_len = sizeof(struct sockaddr_in); 568 sin->sin_addr.s_addr = faddr->s_addr; 569 570 /* 571 * If route is known our src addr is taken from the i/f, 572 * else punt. 573 * 574 * Find out route to destination. 575 */ 576 if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0) 577 in_rtalloc_ign(&sro, 0, inp->inp_inc.inc_fibnum); 578 579 /* 580 * If we found a route, use the address corresponding to 581 * the outgoing interface. 582 * 583 * Otherwise assume faddr is reachable on a directly connected 584 * network and try to find a corresponding interface to take 585 * the source address from. 586 */ 587 if (sro.ro_rt == NULL || sro.ro_rt->rt_ifp == NULL) { 588 struct ifnet *ifp; 589 590 ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin)); 591 if (ia == NULL) 592 ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin)); 593 if (ia == NULL) { 594 error = ENETUNREACH; 595 goto done; 596 } 597 598 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 599 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 600 goto done; 601 } 602 603 ifp = ia->ia_ifp; 604 ia = NULL; 605 IF_ADDR_LOCK(ifp); 606 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 607 608 sa = ifa->ifa_addr; 609 if (sa->sa_family != AF_INET) 610 continue; 611 sin = (struct sockaddr_in *)sa; 612 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 613 ia = (struct in_ifaddr *)ifa; 614 break; 615 } 616 } 617 if (ia != NULL) { 618 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 619 IF_ADDR_UNLOCK(ifp); 620 goto done; 621 } 622 IF_ADDR_UNLOCK(ifp); 623 624 /* 3. As a last resort return the 'default' jail address. */ 625 error = prison_get_ip4(cred, laddr); 626 goto done; 627 } 628 629 /* 630 * If the outgoing interface on the route found is not 631 * a loopback interface, use the address from that interface. 632 * In case of jails do those three steps: 633 * 1. check if the interface address belongs to the jail. If so use it. 634 * 2. check if we have any address on the outgoing interface 635 * belonging to this jail. If so use it. 636 * 3. as a last resort return the 'default' jail address. 637 */ 638 if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) { 639 struct ifnet *ifp; 640 641 /* If not jailed, use the default returned. */ 642 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 643 ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa; 644 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 645 goto done; 646 } 647 648 /* Jailed. */ 649 /* 1. Check if the iface address belongs to the jail. */ 650 sin = (struct sockaddr_in *)sro.ro_rt->rt_ifa->ifa_addr; 651 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 652 ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa; 653 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 654 goto done; 655 } 656 657 /* 658 * 2. Check if we have any address on the outgoing interface 659 * belonging to this jail. 660 */ 661 ifp = sro.ro_rt->rt_ifp; 662 IF_ADDR_LOCK(ifp); 663 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 664 665 sa = ifa->ifa_addr; 666 if (sa->sa_family != AF_INET) 667 continue; 668 sin = (struct sockaddr_in *)sa; 669 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 670 ia = (struct in_ifaddr *)ifa; 671 break; 672 } 673 } 674 if (ia != NULL) { 675 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 676 IF_ADDR_UNLOCK(ifp); 677 goto done; 678 } 679 IF_ADDR_UNLOCK(ifp); 680 681 /* 3. As a last resort return the 'default' jail address. */ 682 error = prison_get_ip4(cred, laddr); 683 goto done; 684 } 685 686 /* 687 * The outgoing interface is marked with 'loopback net', so a route 688 * to ourselves is here. 689 * Try to find the interface of the destination address and then 690 * take the address from there. That interface is not necessarily 691 * a loopback interface. 692 * In case of jails, check that it is an address of the jail 693 * and if we cannot find, fall back to the 'default' jail address. 694 */ 695 if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) { 696 struct sockaddr_in sain; 697 698 bzero(&sain, sizeof(struct sockaddr_in)); 699 sain.sin_family = AF_INET; 700 sain.sin_len = sizeof(struct sockaddr_in); 701 sain.sin_addr.s_addr = faddr->s_addr; 702 703 ia = ifatoia(ifa_ifwithdstaddr(sintosa(&sain))); 704 if (ia == NULL) 705 ia = ifatoia(ifa_ifwithnet(sintosa(&sain))); 706 707 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 708 #if __FreeBSD_version < 800000 709 if (ia == NULL) 710 ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa; 711 #endif 712 if (ia == NULL) { 713 error = ENETUNREACH; 714 goto done; 715 } 716 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 717 goto done; 718 } 719 720 /* Jailed. */ 721 if (ia != NULL) { 722 struct ifnet *ifp; 723 724 ifp = ia->ia_ifp; 725 ia = NULL; 726 IF_ADDR_LOCK(ifp); 727 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 728 729 sa = ifa->ifa_addr; 730 if (sa->sa_family != AF_INET) 731 continue; 732 sin = (struct sockaddr_in *)sa; 733 if (prison_check_ip4(cred, 734 &sin->sin_addr) == 0) { 735 ia = (struct in_ifaddr *)ifa; 736 break; 737 } 738 } 739 if (ia != NULL) { 740 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 741 IF_ADDR_UNLOCK(ifp); 742 goto done; 743 } 744 IF_ADDR_UNLOCK(ifp); 745 } 746 747 /* 3. As a last resort return the 'default' jail address. */ 748 error = prison_get_ip4(cred, laddr); 749 goto done; 750 } 751 752 done: 753 if (sro.ro_rt != NULL) 754 RTFREE(sro.ro_rt); 755 return (error); 756 } 757 758 /* 759 * Set up for a connect from a socket to the specified address. 760 * On entry, *laddrp and *lportp should contain the current local 761 * address and port for the PCB; these are updated to the values 762 * that should be placed in inp_laddr and inp_lport to complete 763 * the connect. 764 * 765 * On success, *faddrp and *fportp will be set to the remote address 766 * and port. These are not updated in the error case. 767 * 768 * If the operation fails because the connection already exists, 769 * *oinpp will be set to the PCB of that connection so that the 770 * caller can decide to override it. In all other cases, *oinpp 771 * is set to NULL. 772 */ 773 int 774 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam, 775 in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp, 776 struct inpcb **oinpp, struct ucred *cred) 777 { 778 INIT_VNET_INET(inp->inp_vnet); 779 struct sockaddr_in *sin = (struct sockaddr_in *)nam; 780 struct in_ifaddr *ia; 781 struct inpcb *oinp; 782 struct in_addr laddr, faddr; 783 u_short lport, fport; 784 int error; 785 786 /* 787 * Because a global state change doesn't actually occur here, a read 788 * lock is sufficient. 789 */ 790 INP_INFO_LOCK_ASSERT(inp->inp_pcbinfo); 791 INP_LOCK_ASSERT(inp); 792 793 if (oinpp != NULL) 794 *oinpp = NULL; 795 if (nam->sa_len != sizeof (*sin)) 796 return (EINVAL); 797 if (sin->sin_family != AF_INET) 798 return (EAFNOSUPPORT); 799 if (sin->sin_port == 0) 800 return (EADDRNOTAVAIL); 801 laddr.s_addr = *laddrp; 802 lport = *lportp; 803 faddr = sin->sin_addr; 804 fport = sin->sin_port; 805 806 if (!TAILQ_EMPTY(&V_in_ifaddrhead)) { 807 /* 808 * If the destination address is INADDR_ANY, 809 * use the primary local address. 810 * If the supplied address is INADDR_BROADCAST, 811 * and the primary interface supports broadcast, 812 * choose the broadcast address for that interface. 813 */ 814 if (faddr.s_addr == INADDR_ANY) { 815 faddr = 816 IA_SIN(TAILQ_FIRST(&V_in_ifaddrhead))->sin_addr; 817 if (cred != NULL && 818 (error = prison_get_ip4(cred, &faddr)) != 0) 819 return (error); 820 } else if (faddr.s_addr == (u_long)INADDR_BROADCAST && 821 (TAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags & 822 IFF_BROADCAST)) 823 faddr = satosin(&TAILQ_FIRST( 824 &V_in_ifaddrhead)->ia_broadaddr)->sin_addr; 825 } 826 if (laddr.s_addr == INADDR_ANY) { 827 error = in_pcbladdr(inp, &faddr, &laddr, cred); 828 if (error) 829 return (error); 830 831 /* 832 * If the destination address is multicast and an outgoing 833 * interface has been set as a multicast option, use the 834 * address of that interface as our source address. 835 */ 836 if (IN_MULTICAST(ntohl(faddr.s_addr)) && 837 inp->inp_moptions != NULL) { 838 struct ip_moptions *imo; 839 struct ifnet *ifp; 840 841 imo = inp->inp_moptions; 842 if (imo->imo_multicast_ifp != NULL) { 843 ifp = imo->imo_multicast_ifp; 844 TAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) 845 if (ia->ia_ifp == ifp) 846 break; 847 if (ia == NULL) 848 return (EADDRNOTAVAIL); 849 laddr = ia->ia_addr.sin_addr; 850 } 851 } 852 } 853 854 oinp = in_pcblookup_hash(inp->inp_pcbinfo, faddr, fport, laddr, lport, 855 0, NULL); 856 if (oinp != NULL) { 857 if (oinpp != NULL) 858 *oinpp = oinp; 859 return (EADDRINUSE); 860 } 861 if (lport == 0) { 862 error = in_pcbbind_setup(inp, NULL, &laddr.s_addr, &lport, 863 cred); 864 if (error) 865 return (error); 866 } 867 *laddrp = laddr.s_addr; 868 *lportp = lport; 869 *faddrp = faddr.s_addr; 870 *fportp = fport; 871 return (0); 872 } 873 874 void 875 in_pcbdisconnect(struct inpcb *inp) 876 { 877 878 INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo); 879 INP_WLOCK_ASSERT(inp); 880 881 inp->inp_faddr.s_addr = INADDR_ANY; 882 inp->inp_fport = 0; 883 in_pcbrehash(inp); 884 } 885 886 /* 887 * in_pcbdetach() is responsibe for disassociating a socket from an inpcb. 888 * For most protocols, this will be invoked immediately prior to calling 889 * in_pcbfree(). However, with TCP the inpcb may significantly outlive the 890 * socket, in which case in_pcbfree() is deferred. 891 */ 892 void 893 in_pcbdetach(struct inpcb *inp) 894 { 895 896 KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__)); 897 898 inp->inp_socket->so_pcb = NULL; 899 inp->inp_socket = NULL; 900 } 901 902 /* 903 * in_pcbfree_internal() frees an inpcb that has been detached from its 904 * socket, and whose reference count has reached 0. It will also remove the 905 * inpcb from any global lists it might remain on. 906 */ 907 static void 908 in_pcbfree_internal(struct inpcb *inp) 909 { 910 struct inpcbinfo *ipi = inp->inp_pcbinfo; 911 912 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); 913 KASSERT(inp->inp_refcount == 0, ("%s: refcount !0", __func__)); 914 915 INP_INFO_WLOCK_ASSERT(ipi); 916 INP_WLOCK_ASSERT(inp); 917 918 #ifdef IPSEC 919 if (inp->inp_sp != NULL) 920 ipsec_delete_pcbpolicy(inp); 921 #endif /* IPSEC */ 922 inp->inp_gencnt = ++ipi->ipi_gencnt; 923 in_pcbremlists(inp); 924 #ifdef INET6 925 if (inp->inp_vflag & INP_IPV6PROTO) { 926 ip6_freepcbopts(inp->in6p_outputopts); 927 if (inp->in6p_moptions != NULL) 928 ip6_freemoptions(inp->in6p_moptions); 929 } 930 #endif 931 if (inp->inp_options) 932 (void)m_free(inp->inp_options); 933 if (inp->inp_moptions != NULL) 934 inp_freemoptions(inp->inp_moptions); 935 inp->inp_vflag = 0; 936 crfree(inp->inp_cred); 937 938 #ifdef MAC 939 mac_inpcb_destroy(inp); 940 #endif 941 INP_WUNLOCK(inp); 942 uma_zfree(ipi->ipi_zone, inp); 943 } 944 945 /* 946 * in_pcbref() bumps the reference count on an inpcb in order to maintain 947 * stability of an inpcb pointer despite the inpcb lock being released. This 948 * is used in TCP when the inpcbinfo lock needs to be acquired or upgraded, 949 * but where the inpcb lock is already held. 950 * 951 * While the inpcb will not be freed, releasing the inpcb lock means that the 952 * connection's state may change, so the caller should be careful to 953 * revalidate any cached state on reacquiring the lock. Drop the reference 954 * using in_pcbrele(). 955 */ 956 void 957 in_pcbref(struct inpcb *inp) 958 { 959 960 INP_WLOCK_ASSERT(inp); 961 962 KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__)); 963 964 inp->inp_refcount++; 965 } 966 967 /* 968 * Drop a refcount on an inpcb elevated using in_pcbref(); because a call to 969 * in_pcbfree() may have been made between in_pcbref() and in_pcbrele(), we 970 * return a flag indicating whether or not the inpcb remains valid. If it is 971 * valid, we return with the inpcb lock held. 972 */ 973 int 974 in_pcbrele(struct inpcb *inp) 975 { 976 #ifdef INVARIANTS 977 struct inpcbinfo *ipi = inp->inp_pcbinfo; 978 #endif 979 980 KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__)); 981 982 INP_INFO_WLOCK_ASSERT(ipi); 983 INP_WLOCK_ASSERT(inp); 984 985 inp->inp_refcount--; 986 if (inp->inp_refcount > 0) 987 return (0); 988 in_pcbfree_internal(inp); 989 return (1); 990 } 991 992 /* 993 * Unconditionally schedule an inpcb to be freed by decrementing its 994 * reference count, which should occur only after the inpcb has been detached 995 * from its socket. If another thread holds a temporary reference (acquired 996 * using in_pcbref()) then the free is deferred until that reference is 997 * released using in_pcbrele(), but the inpcb is still unlocked. 998 */ 999 void 1000 in_pcbfree(struct inpcb *inp) 1001 { 1002 #ifdef INVARIANTS 1003 struct inpcbinfo *ipi = inp->inp_pcbinfo; 1004 #endif 1005 1006 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", 1007 __func__)); 1008 1009 INP_INFO_WLOCK_ASSERT(ipi); 1010 INP_WLOCK_ASSERT(inp); 1011 1012 if (!in_pcbrele(inp)) 1013 INP_WUNLOCK(inp); 1014 } 1015 1016 /* 1017 * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and 1018 * port reservation, and preventing it from being returned by inpcb lookups. 1019 * 1020 * It is used by TCP to mark an inpcb as unused and avoid future packet 1021 * delivery or event notification when a socket remains open but TCP has 1022 * closed. This might occur as a result of a shutdown()-initiated TCP close 1023 * or a RST on the wire, and allows the port binding to be reused while still 1024 * maintaining the invariant that so_pcb always points to a valid inpcb until 1025 * in_pcbdetach(). 1026 * 1027 * XXXRW: An inp_lport of 0 is used to indicate that the inpcb is not on hash 1028 * lists, but can lead to confusing netstat output, as open sockets with 1029 * closed TCP connections will no longer appear to have their bound port 1030 * number. An explicit flag would be better, as it would allow us to leave 1031 * the port number intact after the connection is dropped. 1032 * 1033 * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by 1034 * in_pcbnotifyall() and in_pcbpurgeif0()? 1035 */ 1036 void 1037 in_pcbdrop(struct inpcb *inp) 1038 { 1039 1040 INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo); 1041 INP_WLOCK_ASSERT(inp); 1042 1043 inp->inp_flags |= INP_DROPPED; 1044 if (inp->inp_flags & INP_INHASHLIST) { 1045 struct inpcbport *phd = inp->inp_phd; 1046 1047 LIST_REMOVE(inp, inp_hash); 1048 LIST_REMOVE(inp, inp_portlist); 1049 if (LIST_FIRST(&phd->phd_pcblist) == NULL) { 1050 LIST_REMOVE(phd, phd_hash); 1051 free(phd, M_PCB); 1052 } 1053 inp->inp_flags &= ~INP_INHASHLIST; 1054 } 1055 } 1056 1057 /* 1058 * Common routines to return the socket addresses associated with inpcbs. 1059 */ 1060 struct sockaddr * 1061 in_sockaddr(in_port_t port, struct in_addr *addr_p) 1062 { 1063 struct sockaddr_in *sin; 1064 1065 sin = malloc(sizeof *sin, M_SONAME, 1066 M_WAITOK | M_ZERO); 1067 sin->sin_family = AF_INET; 1068 sin->sin_len = sizeof(*sin); 1069 sin->sin_addr = *addr_p; 1070 sin->sin_port = port; 1071 1072 return (struct sockaddr *)sin; 1073 } 1074 1075 int 1076 in_getsockaddr(struct socket *so, struct sockaddr **nam) 1077 { 1078 struct inpcb *inp; 1079 struct in_addr addr; 1080 in_port_t port; 1081 1082 inp = sotoinpcb(so); 1083 KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL")); 1084 1085 INP_RLOCK(inp); 1086 port = inp->inp_lport; 1087 addr = inp->inp_laddr; 1088 INP_RUNLOCK(inp); 1089 1090 *nam = in_sockaddr(port, &addr); 1091 return 0; 1092 } 1093 1094 int 1095 in_getpeeraddr(struct socket *so, struct sockaddr **nam) 1096 { 1097 struct inpcb *inp; 1098 struct in_addr addr; 1099 in_port_t port; 1100 1101 inp = sotoinpcb(so); 1102 KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL")); 1103 1104 INP_RLOCK(inp); 1105 port = inp->inp_fport; 1106 addr = inp->inp_faddr; 1107 INP_RUNLOCK(inp); 1108 1109 *nam = in_sockaddr(port, &addr); 1110 return 0; 1111 } 1112 1113 void 1114 in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno, 1115 struct inpcb *(*notify)(struct inpcb *, int)) 1116 { 1117 struct inpcb *inp, *inp_temp; 1118 1119 INP_INFO_WLOCK(pcbinfo); 1120 LIST_FOREACH_SAFE(inp, pcbinfo->ipi_listhead, inp_list, inp_temp) { 1121 INP_WLOCK(inp); 1122 #ifdef INET6 1123 if ((inp->inp_vflag & INP_IPV4) == 0) { 1124 INP_WUNLOCK(inp); 1125 continue; 1126 } 1127 #endif 1128 if (inp->inp_faddr.s_addr != faddr.s_addr || 1129 inp->inp_socket == NULL) { 1130 INP_WUNLOCK(inp); 1131 continue; 1132 } 1133 if ((*notify)(inp, errno)) 1134 INP_WUNLOCK(inp); 1135 } 1136 INP_INFO_WUNLOCK(pcbinfo); 1137 } 1138 1139 void 1140 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp) 1141 { 1142 struct inpcb *inp; 1143 struct ip_moptions *imo; 1144 int i, gap; 1145 1146 INP_INFO_RLOCK(pcbinfo); 1147 LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) { 1148 INP_WLOCK(inp); 1149 imo = inp->inp_moptions; 1150 if ((inp->inp_vflag & INP_IPV4) && 1151 imo != NULL) { 1152 /* 1153 * Unselect the outgoing interface if it is being 1154 * detached. 1155 */ 1156 if (imo->imo_multicast_ifp == ifp) 1157 imo->imo_multicast_ifp = NULL; 1158 1159 /* 1160 * Drop multicast group membership if we joined 1161 * through the interface being detached. 1162 */ 1163 for (i = 0, gap = 0; i < imo->imo_num_memberships; 1164 i++) { 1165 if (imo->imo_membership[i]->inm_ifp == ifp) { 1166 in_delmulti(imo->imo_membership[i]); 1167 gap++; 1168 } else if (gap != 0) 1169 imo->imo_membership[i - gap] = 1170 imo->imo_membership[i]; 1171 } 1172 imo->imo_num_memberships -= gap; 1173 } 1174 INP_WUNLOCK(inp); 1175 } 1176 INP_INFO_RUNLOCK(pcbinfo); 1177 } 1178 1179 /* 1180 * Lookup a PCB based on the local address and port. 1181 */ 1182 #define INP_LOOKUP_MAPPED_PCB_COST 3 1183 struct inpcb * 1184 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr, 1185 u_short lport, int wild_okay, struct ucred *cred) 1186 { 1187 struct inpcb *inp; 1188 #ifdef INET6 1189 int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST; 1190 #else 1191 int matchwild = 3; 1192 #endif 1193 int wildcard; 1194 1195 INP_INFO_LOCK_ASSERT(pcbinfo); 1196 1197 if (!wild_okay) { 1198 struct inpcbhead *head; 1199 /* 1200 * Look for an unconnected (wildcard foreign addr) PCB that 1201 * matches the local address and port we're looking for. 1202 */ 1203 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport, 1204 0, pcbinfo->ipi_hashmask)]; 1205 LIST_FOREACH(inp, head, inp_hash) { 1206 #ifdef INET6 1207 /* XXX inp locking */ 1208 if ((inp->inp_vflag & INP_IPV4) == 0) 1209 continue; 1210 #endif 1211 if (inp->inp_faddr.s_addr == INADDR_ANY && 1212 inp->inp_laddr.s_addr == laddr.s_addr && 1213 inp->inp_lport == lport) { 1214 /* 1215 * Found? 1216 */ 1217 if (cred == NULL || 1218 prison_equal_ip4(cred->cr_prison, 1219 inp->inp_cred->cr_prison)) 1220 return (inp); 1221 } 1222 } 1223 /* 1224 * Not found. 1225 */ 1226 return (NULL); 1227 } else { 1228 struct inpcbporthead *porthash; 1229 struct inpcbport *phd; 1230 struct inpcb *match = NULL; 1231 /* 1232 * Best fit PCB lookup. 1233 * 1234 * First see if this local port is in use by looking on the 1235 * port hash list. 1236 */ 1237 porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport, 1238 pcbinfo->ipi_porthashmask)]; 1239 LIST_FOREACH(phd, porthash, phd_hash) { 1240 if (phd->phd_port == lport) 1241 break; 1242 } 1243 if (phd != NULL) { 1244 /* 1245 * Port is in use by one or more PCBs. Look for best 1246 * fit. 1247 */ 1248 LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) { 1249 wildcard = 0; 1250 if (cred != NULL && 1251 !prison_equal_ip4(inp->inp_cred->cr_prison, 1252 cred->cr_prison)) 1253 continue; 1254 #ifdef INET6 1255 /* XXX inp locking */ 1256 if ((inp->inp_vflag & INP_IPV4) == 0) 1257 continue; 1258 /* 1259 * We never select the PCB that has 1260 * INP_IPV6 flag and is bound to :: if 1261 * we have another PCB which is bound 1262 * to 0.0.0.0. If a PCB has the 1263 * INP_IPV6 flag, then we set its cost 1264 * higher than IPv4 only PCBs. 1265 * 1266 * Note that the case only happens 1267 * when a socket is bound to ::, under 1268 * the condition that the use of the 1269 * mapped address is allowed. 1270 */ 1271 if ((inp->inp_vflag & INP_IPV6) != 0) 1272 wildcard += INP_LOOKUP_MAPPED_PCB_COST; 1273 #endif 1274 if (inp->inp_faddr.s_addr != INADDR_ANY) 1275 wildcard++; 1276 if (inp->inp_laddr.s_addr != INADDR_ANY) { 1277 if (laddr.s_addr == INADDR_ANY) 1278 wildcard++; 1279 else if (inp->inp_laddr.s_addr != laddr.s_addr) 1280 continue; 1281 } else { 1282 if (laddr.s_addr != INADDR_ANY) 1283 wildcard++; 1284 } 1285 if (wildcard < matchwild) { 1286 match = inp; 1287 matchwild = wildcard; 1288 if (matchwild == 0) 1289 break; 1290 } 1291 } 1292 } 1293 return (match); 1294 } 1295 } 1296 #undef INP_LOOKUP_MAPPED_PCB_COST 1297 1298 /* 1299 * Lookup PCB in hash list. 1300 */ 1301 struct inpcb * 1302 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr, 1303 u_int fport_arg, struct in_addr laddr, u_int lport_arg, int wildcard, 1304 struct ifnet *ifp) 1305 { 1306 struct inpcbhead *head; 1307 struct inpcb *inp, *tmpinp; 1308 u_short fport = fport_arg, lport = lport_arg; 1309 1310 INP_INFO_LOCK_ASSERT(pcbinfo); 1311 1312 /* 1313 * First look for an exact match. 1314 */ 1315 tmpinp = NULL; 1316 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport, 1317 pcbinfo->ipi_hashmask)]; 1318 LIST_FOREACH(inp, head, inp_hash) { 1319 #ifdef INET6 1320 /* XXX inp locking */ 1321 if ((inp->inp_vflag & INP_IPV4) == 0) 1322 continue; 1323 #endif 1324 if (inp->inp_faddr.s_addr == faddr.s_addr && 1325 inp->inp_laddr.s_addr == laddr.s_addr && 1326 inp->inp_fport == fport && 1327 inp->inp_lport == lport) { 1328 /* 1329 * XXX We should be able to directly return 1330 * the inp here, without any checks. 1331 * Well unless both bound with SO_REUSEPORT? 1332 */ 1333 if (prison_flag(inp->inp_cred, PR_IP4)) 1334 return (inp); 1335 if (tmpinp == NULL) 1336 tmpinp = inp; 1337 } 1338 } 1339 if (tmpinp != NULL) 1340 return (tmpinp); 1341 1342 /* 1343 * Then look for a wildcard match, if requested. 1344 */ 1345 if (wildcard == INPLOOKUP_WILDCARD) { 1346 struct inpcb *local_wild = NULL, *local_exact = NULL; 1347 #ifdef INET6 1348 struct inpcb *local_wild_mapped = NULL; 1349 #endif 1350 struct inpcb *jail_wild = NULL; 1351 int injail; 1352 1353 /* 1354 * Order of socket selection - we always prefer jails. 1355 * 1. jailed, non-wild. 1356 * 2. jailed, wild. 1357 * 3. non-jailed, non-wild. 1358 * 4. non-jailed, wild. 1359 */ 1360 1361 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport, 1362 0, pcbinfo->ipi_hashmask)]; 1363 LIST_FOREACH(inp, head, inp_hash) { 1364 #ifdef INET6 1365 /* XXX inp locking */ 1366 if ((inp->inp_vflag & INP_IPV4) == 0) 1367 continue; 1368 #endif 1369 if (inp->inp_faddr.s_addr != INADDR_ANY || 1370 inp->inp_lport != lport) 1371 continue; 1372 1373 /* XXX inp locking */ 1374 if (ifp && ifp->if_type == IFT_FAITH && 1375 (inp->inp_flags & INP_FAITH) == 0) 1376 continue; 1377 1378 injail = prison_flag(inp->inp_cred, PR_IP4); 1379 if (injail) { 1380 if (prison_check_ip4(inp->inp_cred, 1381 &laddr) != 0) 1382 continue; 1383 } else { 1384 if (local_exact != NULL) 1385 continue; 1386 } 1387 1388 if (inp->inp_laddr.s_addr == laddr.s_addr) { 1389 if (injail) 1390 return (inp); 1391 else 1392 local_exact = inp; 1393 } else if (inp->inp_laddr.s_addr == INADDR_ANY) { 1394 #ifdef INET6 1395 /* XXX inp locking, NULL check */ 1396 if (inp->inp_vflag & INP_IPV6PROTO) 1397 local_wild_mapped = inp; 1398 else 1399 #endif /* INET6 */ 1400 if (injail) 1401 jail_wild = inp; 1402 else 1403 local_wild = inp; 1404 } 1405 } /* LIST_FOREACH */ 1406 if (jail_wild != NULL) 1407 return (jail_wild); 1408 if (local_exact != NULL) 1409 return (local_exact); 1410 if (local_wild != NULL) 1411 return (local_wild); 1412 #ifdef INET6 1413 if (local_wild_mapped != NULL) 1414 return (local_wild_mapped); 1415 #endif /* defined(INET6) */ 1416 } /* if (wildcard == INPLOOKUP_WILDCARD) */ 1417 1418 return (NULL); 1419 } 1420 1421 /* 1422 * Insert PCB onto various hash lists. 1423 */ 1424 int 1425 in_pcbinshash(struct inpcb *inp) 1426 { 1427 struct inpcbhead *pcbhash; 1428 struct inpcbporthead *pcbporthash; 1429 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 1430 struct inpcbport *phd; 1431 u_int32_t hashkey_faddr; 1432 1433 INP_INFO_WLOCK_ASSERT(pcbinfo); 1434 INP_WLOCK_ASSERT(inp); 1435 KASSERT((inp->inp_flags & INP_INHASHLIST) == 0, 1436 ("in_pcbinshash: INP_INHASHLIST")); 1437 1438 #ifdef INET6 1439 if (inp->inp_vflag & INP_IPV6) 1440 hashkey_faddr = inp->in6p_faddr.s6_addr32[3] /* XXX */; 1441 else 1442 #endif /* INET6 */ 1443 hashkey_faddr = inp->inp_faddr.s_addr; 1444 1445 pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr, 1446 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 1447 1448 pcbporthash = &pcbinfo->ipi_porthashbase[ 1449 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)]; 1450 1451 /* 1452 * Go through port list and look for a head for this lport. 1453 */ 1454 LIST_FOREACH(phd, pcbporthash, phd_hash) { 1455 if (phd->phd_port == inp->inp_lport) 1456 break; 1457 } 1458 /* 1459 * If none exists, malloc one and tack it on. 1460 */ 1461 if (phd == NULL) { 1462 phd = malloc(sizeof(struct inpcbport), M_PCB, M_NOWAIT); 1463 if (phd == NULL) { 1464 return (ENOBUFS); /* XXX */ 1465 } 1466 phd->phd_port = inp->inp_lport; 1467 LIST_INIT(&phd->phd_pcblist); 1468 LIST_INSERT_HEAD(pcbporthash, phd, phd_hash); 1469 } 1470 inp->inp_phd = phd; 1471 LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist); 1472 LIST_INSERT_HEAD(pcbhash, inp, inp_hash); 1473 inp->inp_flags |= INP_INHASHLIST; 1474 return (0); 1475 } 1476 1477 /* 1478 * Move PCB to the proper hash bucket when { faddr, fport } have been 1479 * changed. NOTE: This does not handle the case of the lport changing (the 1480 * hashed port list would have to be updated as well), so the lport must 1481 * not change after in_pcbinshash() has been called. 1482 */ 1483 void 1484 in_pcbrehash(struct inpcb *inp) 1485 { 1486 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 1487 struct inpcbhead *head; 1488 u_int32_t hashkey_faddr; 1489 1490 INP_INFO_WLOCK_ASSERT(pcbinfo); 1491 INP_WLOCK_ASSERT(inp); 1492 KASSERT(inp->inp_flags & INP_INHASHLIST, 1493 ("in_pcbrehash: !INP_INHASHLIST")); 1494 1495 #ifdef INET6 1496 if (inp->inp_vflag & INP_IPV6) 1497 hashkey_faddr = inp->in6p_faddr.s6_addr32[3] /* XXX */; 1498 else 1499 #endif /* INET6 */ 1500 hashkey_faddr = inp->inp_faddr.s_addr; 1501 1502 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr, 1503 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 1504 1505 LIST_REMOVE(inp, inp_hash); 1506 LIST_INSERT_HEAD(head, inp, inp_hash); 1507 } 1508 1509 /* 1510 * Remove PCB from various lists. 1511 */ 1512 static void 1513 in_pcbremlists(struct inpcb *inp) 1514 { 1515 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 1516 1517 INP_INFO_WLOCK_ASSERT(pcbinfo); 1518 INP_WLOCK_ASSERT(inp); 1519 1520 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 1521 if (inp->inp_flags & INP_INHASHLIST) { 1522 struct inpcbport *phd = inp->inp_phd; 1523 1524 LIST_REMOVE(inp, inp_hash); 1525 LIST_REMOVE(inp, inp_portlist); 1526 if (LIST_FIRST(&phd->phd_pcblist) == NULL) { 1527 LIST_REMOVE(phd, phd_hash); 1528 free(phd, M_PCB); 1529 } 1530 inp->inp_flags &= ~INP_INHASHLIST; 1531 } 1532 LIST_REMOVE(inp, inp_list); 1533 pcbinfo->ipi_count--; 1534 } 1535 1536 /* 1537 * A set label operation has occurred at the socket layer, propagate the 1538 * label change into the in_pcb for the socket. 1539 */ 1540 void 1541 in_pcbsosetlabel(struct socket *so) 1542 { 1543 #ifdef MAC 1544 struct inpcb *inp; 1545 1546 inp = sotoinpcb(so); 1547 KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL")); 1548 1549 INP_WLOCK(inp); 1550 SOCK_LOCK(so); 1551 mac_inpcb_sosetlabel(so, inp); 1552 SOCK_UNLOCK(so); 1553 INP_WUNLOCK(inp); 1554 #endif 1555 } 1556 1557 /* 1558 * ipport_tick runs once per second, determining if random port allocation 1559 * should be continued. If more than ipport_randomcps ports have been 1560 * allocated in the last second, then we return to sequential port 1561 * allocation. We return to random allocation only once we drop below 1562 * ipport_randomcps for at least ipport_randomtime seconds. 1563 */ 1564 void 1565 ipport_tick(void *xtp) 1566 { 1567 VNET_ITERATOR_DECL(vnet_iter); 1568 1569 VNET_LIST_RLOCK(); 1570 VNET_FOREACH(vnet_iter) { 1571 CURVNET_SET(vnet_iter); /* XXX appease INVARIANTS here */ 1572 INIT_VNET_INET(vnet_iter); 1573 if (V_ipport_tcpallocs <= 1574 V_ipport_tcplastcount + V_ipport_randomcps) { 1575 if (V_ipport_stoprandom > 0) 1576 V_ipport_stoprandom--; 1577 } else 1578 V_ipport_stoprandom = V_ipport_randomtime; 1579 V_ipport_tcplastcount = V_ipport_tcpallocs; 1580 CURVNET_RESTORE(); 1581 } 1582 VNET_LIST_RUNLOCK(); 1583 callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL); 1584 } 1585 1586 void 1587 inp_wlock(struct inpcb *inp) 1588 { 1589 1590 INP_WLOCK(inp); 1591 } 1592 1593 void 1594 inp_wunlock(struct inpcb *inp) 1595 { 1596 1597 INP_WUNLOCK(inp); 1598 } 1599 1600 void 1601 inp_rlock(struct inpcb *inp) 1602 { 1603 1604 INP_RLOCK(inp); 1605 } 1606 1607 void 1608 inp_runlock(struct inpcb *inp) 1609 { 1610 1611 INP_RUNLOCK(inp); 1612 } 1613 1614 #ifdef INVARIANTS 1615 void 1616 inp_lock_assert(struct inpcb *inp) 1617 { 1618 1619 INP_WLOCK_ASSERT(inp); 1620 } 1621 1622 void 1623 inp_unlock_assert(struct inpcb *inp) 1624 { 1625 1626 INP_UNLOCK_ASSERT(inp); 1627 } 1628 #endif 1629 1630 void 1631 inp_apply_all(void (*func)(struct inpcb *, void *), void *arg) 1632 { 1633 INIT_VNET_INET(curvnet); 1634 struct inpcb *inp; 1635 1636 INP_INFO_RLOCK(&V_tcbinfo); 1637 LIST_FOREACH(inp, V_tcbinfo.ipi_listhead, inp_list) { 1638 INP_WLOCK(inp); 1639 func(inp, arg); 1640 INP_WUNLOCK(inp); 1641 } 1642 INP_INFO_RUNLOCK(&V_tcbinfo); 1643 } 1644 1645 struct socket * 1646 inp_inpcbtosocket(struct inpcb *inp) 1647 { 1648 1649 INP_WLOCK_ASSERT(inp); 1650 return (inp->inp_socket); 1651 } 1652 1653 struct tcpcb * 1654 inp_inpcbtotcpcb(struct inpcb *inp) 1655 { 1656 1657 INP_WLOCK_ASSERT(inp); 1658 return ((struct tcpcb *)inp->inp_ppcb); 1659 } 1660 1661 int 1662 inp_ip_tos_get(const struct inpcb *inp) 1663 { 1664 1665 return (inp->inp_ip_tos); 1666 } 1667 1668 void 1669 inp_ip_tos_set(struct inpcb *inp, int val) 1670 { 1671 1672 inp->inp_ip_tos = val; 1673 } 1674 1675 void 1676 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp, 1677 uint32_t *faddr, uint16_t *fp) 1678 { 1679 1680 INP_LOCK_ASSERT(inp); 1681 *laddr = inp->inp_laddr.s_addr; 1682 *faddr = inp->inp_faddr.s_addr; 1683 *lp = inp->inp_lport; 1684 *fp = inp->inp_fport; 1685 } 1686 1687 struct inpcb * 1688 so_sotoinpcb(struct socket *so) 1689 { 1690 1691 return (sotoinpcb(so)); 1692 } 1693 1694 struct tcpcb * 1695 so_sototcpcb(struct socket *so) 1696 { 1697 1698 return (sototcpcb(so)); 1699 } 1700 1701 #ifdef DDB 1702 static void 1703 db_print_indent(int indent) 1704 { 1705 int i; 1706 1707 for (i = 0; i < indent; i++) 1708 db_printf(" "); 1709 } 1710 1711 static void 1712 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent) 1713 { 1714 char faddr_str[48], laddr_str[48]; 1715 1716 db_print_indent(indent); 1717 db_printf("%s at %p\n", name, inc); 1718 1719 indent += 2; 1720 1721 #ifdef INET6 1722 if (inc->inc_flags & INC_ISIPV6) { 1723 /* IPv6. */ 1724 ip6_sprintf(laddr_str, &inc->inc6_laddr); 1725 ip6_sprintf(faddr_str, &inc->inc6_faddr); 1726 } else { 1727 #endif 1728 /* IPv4. */ 1729 inet_ntoa_r(inc->inc_laddr, laddr_str); 1730 inet_ntoa_r(inc->inc_faddr, faddr_str); 1731 #ifdef INET6 1732 } 1733 #endif 1734 db_print_indent(indent); 1735 db_printf("inc_laddr %s inc_lport %u\n", laddr_str, 1736 ntohs(inc->inc_lport)); 1737 db_print_indent(indent); 1738 db_printf("inc_faddr %s inc_fport %u\n", faddr_str, 1739 ntohs(inc->inc_fport)); 1740 } 1741 1742 static void 1743 db_print_inpflags(int inp_flags) 1744 { 1745 int comma; 1746 1747 comma = 0; 1748 if (inp_flags & INP_RECVOPTS) { 1749 db_printf("%sINP_RECVOPTS", comma ? ", " : ""); 1750 comma = 1; 1751 } 1752 if (inp_flags & INP_RECVRETOPTS) { 1753 db_printf("%sINP_RECVRETOPTS", comma ? ", " : ""); 1754 comma = 1; 1755 } 1756 if (inp_flags & INP_RECVDSTADDR) { 1757 db_printf("%sINP_RECVDSTADDR", comma ? ", " : ""); 1758 comma = 1; 1759 } 1760 if (inp_flags & INP_HDRINCL) { 1761 db_printf("%sINP_HDRINCL", comma ? ", " : ""); 1762 comma = 1; 1763 } 1764 if (inp_flags & INP_HIGHPORT) { 1765 db_printf("%sINP_HIGHPORT", comma ? ", " : ""); 1766 comma = 1; 1767 } 1768 if (inp_flags & INP_LOWPORT) { 1769 db_printf("%sINP_LOWPORT", comma ? ", " : ""); 1770 comma = 1; 1771 } 1772 if (inp_flags & INP_ANONPORT) { 1773 db_printf("%sINP_ANONPORT", comma ? ", " : ""); 1774 comma = 1; 1775 } 1776 if (inp_flags & INP_RECVIF) { 1777 db_printf("%sINP_RECVIF", comma ? ", " : ""); 1778 comma = 1; 1779 } 1780 if (inp_flags & INP_MTUDISC) { 1781 db_printf("%sINP_MTUDISC", comma ? ", " : ""); 1782 comma = 1; 1783 } 1784 if (inp_flags & INP_FAITH) { 1785 db_printf("%sINP_FAITH", comma ? ", " : ""); 1786 comma = 1; 1787 } 1788 if (inp_flags & INP_RECVTTL) { 1789 db_printf("%sINP_RECVTTL", comma ? ", " : ""); 1790 comma = 1; 1791 } 1792 if (inp_flags & INP_DONTFRAG) { 1793 db_printf("%sINP_DONTFRAG", comma ? ", " : ""); 1794 comma = 1; 1795 } 1796 if (inp_flags & IN6P_IPV6_V6ONLY) { 1797 db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : ""); 1798 comma = 1; 1799 } 1800 if (inp_flags & IN6P_PKTINFO) { 1801 db_printf("%sIN6P_PKTINFO", comma ? ", " : ""); 1802 comma = 1; 1803 } 1804 if (inp_flags & IN6P_HOPLIMIT) { 1805 db_printf("%sIN6P_HOPLIMIT", comma ? ", " : ""); 1806 comma = 1; 1807 } 1808 if (inp_flags & IN6P_HOPOPTS) { 1809 db_printf("%sIN6P_HOPOPTS", comma ? ", " : ""); 1810 comma = 1; 1811 } 1812 if (inp_flags & IN6P_DSTOPTS) { 1813 db_printf("%sIN6P_DSTOPTS", comma ? ", " : ""); 1814 comma = 1; 1815 } 1816 if (inp_flags & IN6P_RTHDR) { 1817 db_printf("%sIN6P_RTHDR", comma ? ", " : ""); 1818 comma = 1; 1819 } 1820 if (inp_flags & IN6P_RTHDRDSTOPTS) { 1821 db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : ""); 1822 comma = 1; 1823 } 1824 if (inp_flags & IN6P_TCLASS) { 1825 db_printf("%sIN6P_TCLASS", comma ? ", " : ""); 1826 comma = 1; 1827 } 1828 if (inp_flags & IN6P_AUTOFLOWLABEL) { 1829 db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : ""); 1830 comma = 1; 1831 } 1832 if (inp_flags & INP_TIMEWAIT) { 1833 db_printf("%sINP_TIMEWAIT", comma ? ", " : ""); 1834 comma = 1; 1835 } 1836 if (inp_flags & INP_ONESBCAST) { 1837 db_printf("%sINP_ONESBCAST", comma ? ", " : ""); 1838 comma = 1; 1839 } 1840 if (inp_flags & INP_DROPPED) { 1841 db_printf("%sINP_DROPPED", comma ? ", " : ""); 1842 comma = 1; 1843 } 1844 if (inp_flags & INP_SOCKREF) { 1845 db_printf("%sINP_SOCKREF", comma ? ", " : ""); 1846 comma = 1; 1847 } 1848 if (inp_flags & IN6P_RFC2292) { 1849 db_printf("%sIN6P_RFC2292", comma ? ", " : ""); 1850 comma = 1; 1851 } 1852 if (inp_flags & IN6P_MTU) { 1853 db_printf("IN6P_MTU%s", comma ? ", " : ""); 1854 comma = 1; 1855 } 1856 } 1857 1858 static void 1859 db_print_inpvflag(u_char inp_vflag) 1860 { 1861 int comma; 1862 1863 comma = 0; 1864 if (inp_vflag & INP_IPV4) { 1865 db_printf("%sINP_IPV4", comma ? ", " : ""); 1866 comma = 1; 1867 } 1868 if (inp_vflag & INP_IPV6) { 1869 db_printf("%sINP_IPV6", comma ? ", " : ""); 1870 comma = 1; 1871 } 1872 if (inp_vflag & INP_IPV6PROTO) { 1873 db_printf("%sINP_IPV6PROTO", comma ? ", " : ""); 1874 comma = 1; 1875 } 1876 } 1877 1878 static void 1879 db_print_inpcb(struct inpcb *inp, const char *name, int indent) 1880 { 1881 1882 db_print_indent(indent); 1883 db_printf("%s at %p\n", name, inp); 1884 1885 indent += 2; 1886 1887 db_print_indent(indent); 1888 db_printf("inp_flow: 0x%x\n", inp->inp_flow); 1889 1890 db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent); 1891 1892 db_print_indent(indent); 1893 db_printf("inp_ppcb: %p inp_pcbinfo: %p inp_socket: %p\n", 1894 inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket); 1895 1896 db_print_indent(indent); 1897 db_printf("inp_label: %p inp_flags: 0x%x (", 1898 inp->inp_label, inp->inp_flags); 1899 db_print_inpflags(inp->inp_flags); 1900 db_printf(")\n"); 1901 1902 db_print_indent(indent); 1903 db_printf("inp_sp: %p inp_vflag: 0x%x (", inp->inp_sp, 1904 inp->inp_vflag); 1905 db_print_inpvflag(inp->inp_vflag); 1906 db_printf(")\n"); 1907 1908 db_print_indent(indent); 1909 db_printf("inp_ip_ttl: %d inp_ip_p: %d inp_ip_minttl: %d\n", 1910 inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl); 1911 1912 db_print_indent(indent); 1913 #ifdef INET6 1914 if (inp->inp_vflag & INP_IPV6) { 1915 db_printf("in6p_options: %p in6p_outputopts: %p " 1916 "in6p_moptions: %p\n", inp->in6p_options, 1917 inp->in6p_outputopts, inp->in6p_moptions); 1918 db_printf("in6p_icmp6filt: %p in6p_cksum %d " 1919 "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum, 1920 inp->in6p_hops); 1921 } else 1922 #endif 1923 { 1924 db_printf("inp_ip_tos: %d inp_ip_options: %p " 1925 "inp_ip_moptions: %p\n", inp->inp_ip_tos, 1926 inp->inp_options, inp->inp_moptions); 1927 } 1928 1929 db_print_indent(indent); 1930 db_printf("inp_phd: %p inp_gencnt: %ju\n", inp->inp_phd, 1931 (uintmax_t)inp->inp_gencnt); 1932 } 1933 1934 DB_SHOW_COMMAND(inpcb, db_show_inpcb) 1935 { 1936 struct inpcb *inp; 1937 1938 if (!have_addr) { 1939 db_printf("usage: show inpcb <addr>\n"); 1940 return; 1941 } 1942 inp = (struct inpcb *)addr; 1943 1944 db_print_inpcb(inp, "inpcb", 0); 1945 } 1946 #endif 1947