xref: /freebsd/sys/netinet/in_pcb.c (revision d4ae33f0721c1b170fe37d97e395228ffcfb3f80)
1 /*-
2  * Copyright (c) 1982, 1986, 1991, 1993, 1995
3  *	The Regents of the University of California.
4  * Copyright (c) 2007-2009 Robert N. M. Watson
5  * Copyright (c) 2010-2011 Juniper Networks, Inc.
6  * All rights reserved.
7  *
8  * Portions of this software were developed by Robert N. M. Watson under
9  * contract to Juniper Networks, Inc.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 4. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *	@(#)in_pcb.c	8.4 (Berkeley) 5/24/95
36  */
37 
38 #include <sys/cdefs.h>
39 __FBSDID("$FreeBSD$");
40 
41 #include "opt_ddb.h"
42 #include "opt_ipsec.h"
43 #include "opt_inet.h"
44 #include "opt_inet6.h"
45 #include "opt_pcbgroup.h"
46 
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/malloc.h>
50 #include <sys/mbuf.h>
51 #include <sys/callout.h>
52 #include <sys/domain.h>
53 #include <sys/protosw.h>
54 #include <sys/socket.h>
55 #include <sys/socketvar.h>
56 #include <sys/priv.h>
57 #include <sys/proc.h>
58 #include <sys/refcount.h>
59 #include <sys/jail.h>
60 #include <sys/kernel.h>
61 #include <sys/sysctl.h>
62 
63 #ifdef DDB
64 #include <ddb/ddb.h>
65 #endif
66 
67 #include <vm/uma.h>
68 
69 #include <net/if.h>
70 #include <net/if_var.h>
71 #include <net/if_types.h>
72 #include <net/route.h>
73 #include <net/vnet.h>
74 
75 #if defined(INET) || defined(INET6)
76 #include <netinet/in.h>
77 #include <netinet/in_pcb.h>
78 #include <netinet/ip_var.h>
79 #include <netinet/tcp_var.h>
80 #include <netinet/udp.h>
81 #include <netinet/udp_var.h>
82 #endif
83 #ifdef INET
84 #include <netinet/in_var.h>
85 #endif
86 #ifdef INET6
87 #include <netinet/ip6.h>
88 #include <netinet6/in6_pcb.h>
89 #include <netinet6/in6_var.h>
90 #include <netinet6/ip6_var.h>
91 #endif /* INET6 */
92 
93 
94 #ifdef IPSEC
95 #include <netipsec/ipsec.h>
96 #include <netipsec/key.h>
97 #endif /* IPSEC */
98 
99 #include <security/mac/mac_framework.h>
100 
101 static struct callout	ipport_tick_callout;
102 
103 /*
104  * These configure the range of local port addresses assigned to
105  * "unspecified" outgoing connections/packets/whatever.
106  */
107 VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1;	/* 1023 */
108 VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART;	/* 600 */
109 VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST;	/* 10000 */
110 VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST;	/* 65535 */
111 VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO;	/* 49152 */
112 VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO;	/* 65535 */
113 
114 /*
115  * Reserved ports accessible only to root. There are significant
116  * security considerations that must be accounted for when changing these,
117  * but the security benefits can be great. Please be careful.
118  */
119 VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1;	/* 1023 */
120 VNET_DEFINE(int, ipport_reservedlow);
121 
122 /* Variables dealing with random ephemeral port allocation. */
123 VNET_DEFINE(int, ipport_randomized) = 1;	/* user controlled via sysctl */
124 VNET_DEFINE(int, ipport_randomcps) = 10;	/* user controlled via sysctl */
125 VNET_DEFINE(int, ipport_randomtime) = 45;	/* user controlled via sysctl */
126 VNET_DEFINE(int, ipport_stoprandom);		/* toggled by ipport_tick */
127 VNET_DEFINE(int, ipport_tcpallocs);
128 static VNET_DEFINE(int, ipport_tcplastcount);
129 
130 #define	V_ipport_tcplastcount		VNET(ipport_tcplastcount)
131 
132 static void	in_pcbremlists(struct inpcb *inp);
133 #ifdef INET
134 static struct inpcb	*in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo,
135 			    struct in_addr faddr, u_int fport_arg,
136 			    struct in_addr laddr, u_int lport_arg,
137 			    int lookupflags, struct ifnet *ifp);
138 
139 #define RANGECHK(var, min, max) \
140 	if ((var) < (min)) { (var) = (min); } \
141 	else if ((var) > (max)) { (var) = (max); }
142 
143 static int
144 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS)
145 {
146 	int error;
147 
148 #ifdef VIMAGE
149 	error = vnet_sysctl_handle_int(oidp, arg1, arg2, req);
150 #else
151 	error = sysctl_handle_int(oidp, arg1, arg2, req);
152 #endif
153 	if (error == 0) {
154 		RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1);
155 		RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1);
156 		RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX);
157 		RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX);
158 		RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX);
159 		RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX);
160 	}
161 	return (error);
162 }
163 
164 #undef RANGECHK
165 
166 static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, CTLFLAG_RW, 0,
167     "IP Ports");
168 
169 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst,
170 	CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_lowfirstauto), 0,
171 	&sysctl_net_ipport_check, "I", "");
172 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast,
173 	CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_lowlastauto), 0,
174 	&sysctl_net_ipport_check, "I", "");
175 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, first,
176 	CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_firstauto), 0,
177 	&sysctl_net_ipport_check, "I", "");
178 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, last,
179 	CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_lastauto), 0,
180 	&sysctl_net_ipport_check, "I", "");
181 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst,
182 	CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_hifirstauto), 0,
183 	&sysctl_net_ipport_check, "I", "");
184 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, hilast,
185 	CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_hilastauto), 0,
186 	&sysctl_net_ipport_check, "I", "");
187 SYSCTL_VNET_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh,
188 	CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedhigh), 0, "");
189 SYSCTL_VNET_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow,
190 	CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, "");
191 SYSCTL_VNET_INT(_net_inet_ip_portrange, OID_AUTO, randomized, CTLFLAG_RW,
192 	&VNET_NAME(ipport_randomized), 0, "Enable random port allocation");
193 SYSCTL_VNET_INT(_net_inet_ip_portrange, OID_AUTO, randomcps, CTLFLAG_RW,
194 	&VNET_NAME(ipport_randomcps), 0, "Maximum number of random port "
195 	"allocations before switching to a sequental one");
196 SYSCTL_VNET_INT(_net_inet_ip_portrange, OID_AUTO, randomtime, CTLFLAG_RW,
197 	&VNET_NAME(ipport_randomtime), 0,
198 	"Minimum time to keep sequental port "
199 	"allocation before switching to a random one");
200 #endif /* INET */
201 
202 /*
203  * in_pcb.c: manage the Protocol Control Blocks.
204  *
205  * NOTE: It is assumed that most of these functions will be called with
206  * the pcbinfo lock held, and often, the inpcb lock held, as these utility
207  * functions often modify hash chains or addresses in pcbs.
208  */
209 
210 /*
211  * Initialize an inpcbinfo -- we should be able to reduce the number of
212  * arguments in time.
213  */
214 void
215 in_pcbinfo_init(struct inpcbinfo *pcbinfo, const char *name,
216     struct inpcbhead *listhead, int hash_nelements, int porthash_nelements,
217     char *inpcbzone_name, uma_init inpcbzone_init, uma_fini inpcbzone_fini,
218     uint32_t inpcbzone_flags, u_int hashfields)
219 {
220 
221 	INP_INFO_LOCK_INIT(pcbinfo, name);
222 	INP_HASH_LOCK_INIT(pcbinfo, "pcbinfohash");	/* XXXRW: argument? */
223 #ifdef VIMAGE
224 	pcbinfo->ipi_vnet = curvnet;
225 #endif
226 	pcbinfo->ipi_listhead = listhead;
227 	LIST_INIT(pcbinfo->ipi_listhead);
228 	pcbinfo->ipi_count = 0;
229 	pcbinfo->ipi_hashbase = hashinit(hash_nelements, M_PCB,
230 	    &pcbinfo->ipi_hashmask);
231 	pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB,
232 	    &pcbinfo->ipi_porthashmask);
233 #ifdef PCBGROUP
234 	in_pcbgroup_init(pcbinfo, hashfields, hash_nelements);
235 #endif
236 	pcbinfo->ipi_zone = uma_zcreate(inpcbzone_name, sizeof(struct inpcb),
237 	    NULL, NULL, inpcbzone_init, inpcbzone_fini, UMA_ALIGN_PTR,
238 	    inpcbzone_flags);
239 	uma_zone_set_max(pcbinfo->ipi_zone, maxsockets);
240 	uma_zone_set_warning(pcbinfo->ipi_zone,
241 	    "kern.ipc.maxsockets limit reached");
242 }
243 
244 /*
245  * Destroy an inpcbinfo.
246  */
247 void
248 in_pcbinfo_destroy(struct inpcbinfo *pcbinfo)
249 {
250 
251 	KASSERT(pcbinfo->ipi_count == 0,
252 	    ("%s: ipi_count = %u", __func__, pcbinfo->ipi_count));
253 
254 	hashdestroy(pcbinfo->ipi_hashbase, M_PCB, pcbinfo->ipi_hashmask);
255 	hashdestroy(pcbinfo->ipi_porthashbase, M_PCB,
256 	    pcbinfo->ipi_porthashmask);
257 #ifdef PCBGROUP
258 	in_pcbgroup_destroy(pcbinfo);
259 #endif
260 	uma_zdestroy(pcbinfo->ipi_zone);
261 	INP_HASH_LOCK_DESTROY(pcbinfo);
262 	INP_INFO_LOCK_DESTROY(pcbinfo);
263 }
264 
265 /*
266  * Allocate a PCB and associate it with the socket.
267  * On success return with the PCB locked.
268  */
269 int
270 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo)
271 {
272 	struct inpcb *inp;
273 	int error;
274 
275 	INP_INFO_WLOCK_ASSERT(pcbinfo);
276 	error = 0;
277 	inp = uma_zalloc(pcbinfo->ipi_zone, M_NOWAIT);
278 	if (inp == NULL)
279 		return (ENOBUFS);
280 	bzero(inp, inp_zero_size);
281 	inp->inp_pcbinfo = pcbinfo;
282 	inp->inp_socket = so;
283 	inp->inp_cred = crhold(so->so_cred);
284 	inp->inp_inc.inc_fibnum = so->so_fibnum;
285 #ifdef MAC
286 	error = mac_inpcb_init(inp, M_NOWAIT);
287 	if (error != 0)
288 		goto out;
289 	mac_inpcb_create(so, inp);
290 #endif
291 #ifdef IPSEC
292 	error = ipsec_init_policy(so, &inp->inp_sp);
293 	if (error != 0) {
294 #ifdef MAC
295 		mac_inpcb_destroy(inp);
296 #endif
297 		goto out;
298 	}
299 #endif /*IPSEC*/
300 #ifdef INET6
301 	if (INP_SOCKAF(so) == AF_INET6) {
302 		inp->inp_vflag |= INP_IPV6PROTO;
303 		if (V_ip6_v6only)
304 			inp->inp_flags |= IN6P_IPV6_V6ONLY;
305 	}
306 #endif
307 	LIST_INSERT_HEAD(pcbinfo->ipi_listhead, inp, inp_list);
308 	pcbinfo->ipi_count++;
309 	so->so_pcb = (caddr_t)inp;
310 #ifdef INET6
311 	if (V_ip6_auto_flowlabel)
312 		inp->inp_flags |= IN6P_AUTOFLOWLABEL;
313 #endif
314 	INP_WLOCK(inp);
315 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
316 	refcount_init(&inp->inp_refcount, 1);	/* Reference from inpcbinfo */
317 #if defined(IPSEC) || defined(MAC)
318 out:
319 	if (error != 0) {
320 		crfree(inp->inp_cred);
321 		uma_zfree(pcbinfo->ipi_zone, inp);
322 	}
323 #endif
324 	return (error);
325 }
326 
327 #ifdef INET
328 int
329 in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
330 {
331 	int anonport, error;
332 
333 	INP_WLOCK_ASSERT(inp);
334 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
335 
336 	if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY)
337 		return (EINVAL);
338 	anonport = nam == NULL || ((struct sockaddr_in *)nam)->sin_port == 0;
339 	error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr,
340 	    &inp->inp_lport, cred);
341 	if (error)
342 		return (error);
343 	if (in_pcbinshash(inp) != 0) {
344 		inp->inp_laddr.s_addr = INADDR_ANY;
345 		inp->inp_lport = 0;
346 		return (EAGAIN);
347 	}
348 	if (anonport)
349 		inp->inp_flags |= INP_ANONPORT;
350 	return (0);
351 }
352 #endif
353 
354 #if defined(INET) || defined(INET6)
355 int
356 in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp,
357     struct ucred *cred, int lookupflags)
358 {
359 	struct inpcbinfo *pcbinfo;
360 	struct inpcb *tmpinp;
361 	unsigned short *lastport;
362 	int count, dorandom, error;
363 	u_short aux, first, last, lport;
364 #ifdef INET
365 	struct in_addr laddr;
366 #endif
367 
368 	pcbinfo = inp->inp_pcbinfo;
369 
370 	/*
371 	 * Because no actual state changes occur here, a global write lock on
372 	 * the pcbinfo isn't required.
373 	 */
374 	INP_LOCK_ASSERT(inp);
375 	INP_HASH_LOCK_ASSERT(pcbinfo);
376 
377 	if (inp->inp_flags & INP_HIGHPORT) {
378 		first = V_ipport_hifirstauto;	/* sysctl */
379 		last  = V_ipport_hilastauto;
380 		lastport = &pcbinfo->ipi_lasthi;
381 	} else if (inp->inp_flags & INP_LOWPORT) {
382 		error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT, 0);
383 		if (error)
384 			return (error);
385 		first = V_ipport_lowfirstauto;	/* 1023 */
386 		last  = V_ipport_lowlastauto;	/* 600 */
387 		lastport = &pcbinfo->ipi_lastlow;
388 	} else {
389 		first = V_ipport_firstauto;	/* sysctl */
390 		last  = V_ipport_lastauto;
391 		lastport = &pcbinfo->ipi_lastport;
392 	}
393 	/*
394 	 * For UDP, use random port allocation as long as the user
395 	 * allows it.  For TCP (and as of yet unknown) connections,
396 	 * use random port allocation only if the user allows it AND
397 	 * ipport_tick() allows it.
398 	 */
399 	if (V_ipport_randomized &&
400 		(!V_ipport_stoprandom || pcbinfo == &V_udbinfo))
401 		dorandom = 1;
402 	else
403 		dorandom = 0;
404 	/*
405 	 * It makes no sense to do random port allocation if
406 	 * we have the only port available.
407 	 */
408 	if (first == last)
409 		dorandom = 0;
410 	/* Make sure to not include UDP packets in the count. */
411 	if (pcbinfo != &V_udbinfo)
412 		V_ipport_tcpallocs++;
413 	/*
414 	 * Instead of having two loops further down counting up or down
415 	 * make sure that first is always <= last and go with only one
416 	 * code path implementing all logic.
417 	 */
418 	if (first > last) {
419 		aux = first;
420 		first = last;
421 		last = aux;
422 	}
423 
424 #ifdef INET
425 	/* Make the compiler happy. */
426 	laddr.s_addr = 0;
427 	if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) {
428 		KASSERT(laddrp != NULL, ("%s: laddrp NULL for v4 inp %p",
429 		    __func__, inp));
430 		laddr = *laddrp;
431 	}
432 #endif
433 	tmpinp = NULL;	/* Make compiler happy. */
434 	lport = *lportp;
435 
436 	if (dorandom)
437 		*lastport = first + (arc4random() % (last - first));
438 
439 	count = last - first;
440 
441 	do {
442 		if (count-- < 0)	/* completely used? */
443 			return (EADDRNOTAVAIL);
444 		++*lastport;
445 		if (*lastport < first || *lastport > last)
446 			*lastport = first;
447 		lport = htons(*lastport);
448 
449 #ifdef INET6
450 		if ((inp->inp_vflag & INP_IPV6) != 0)
451 			tmpinp = in6_pcblookup_local(pcbinfo,
452 			    &inp->in6p_laddr, lport, lookupflags, cred);
453 #endif
454 #if defined(INET) && defined(INET6)
455 		else
456 #endif
457 #ifdef INET
458 			tmpinp = in_pcblookup_local(pcbinfo, laddr,
459 			    lport, lookupflags, cred);
460 #endif
461 	} while (tmpinp != NULL);
462 
463 #ifdef INET
464 	if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4)
465 		laddrp->s_addr = laddr.s_addr;
466 #endif
467 	*lportp = lport;
468 
469 	return (0);
470 }
471 
472 /*
473  * Return cached socket options.
474  */
475 short
476 inp_so_options(const struct inpcb *inp)
477 {
478    short so_options;
479 
480    so_options = 0;
481 
482    if ((inp->inp_flags2 & INP_REUSEPORT) != 0)
483 	   so_options |= SO_REUSEPORT;
484    if ((inp->inp_flags2 & INP_REUSEADDR) != 0)
485 	   so_options |= SO_REUSEADDR;
486    return (so_options);
487 }
488 #endif /* INET || INET6 */
489 
490 #ifdef INET
491 /*
492  * Set up a bind operation on a PCB, performing port allocation
493  * as required, but do not actually modify the PCB. Callers can
494  * either complete the bind by setting inp_laddr/inp_lport and
495  * calling in_pcbinshash(), or they can just use the resulting
496  * port and address to authorise the sending of a once-off packet.
497  *
498  * On error, the values of *laddrp and *lportp are not changed.
499  */
500 int
501 in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp,
502     u_short *lportp, struct ucred *cred)
503 {
504 	struct socket *so = inp->inp_socket;
505 	struct sockaddr_in *sin;
506 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
507 	struct in_addr laddr;
508 	u_short lport = 0;
509 	int lookupflags = 0, reuseport = (so->so_options & SO_REUSEPORT);
510 	int error;
511 
512 	/*
513 	 * No state changes, so read locks are sufficient here.
514 	 */
515 	INP_LOCK_ASSERT(inp);
516 	INP_HASH_LOCK_ASSERT(pcbinfo);
517 
518 	if (TAILQ_EMPTY(&V_in_ifaddrhead)) /* XXX broken! */
519 		return (EADDRNOTAVAIL);
520 	laddr.s_addr = *laddrp;
521 	if (nam != NULL && laddr.s_addr != INADDR_ANY)
522 		return (EINVAL);
523 	if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) == 0)
524 		lookupflags = INPLOOKUP_WILDCARD;
525 	if (nam == NULL) {
526 		if ((error = prison_local_ip4(cred, &laddr)) != 0)
527 			return (error);
528 	} else {
529 		sin = (struct sockaddr_in *)nam;
530 		if (nam->sa_len != sizeof (*sin))
531 			return (EINVAL);
532 #ifdef notdef
533 		/*
534 		 * We should check the family, but old programs
535 		 * incorrectly fail to initialize it.
536 		 */
537 		if (sin->sin_family != AF_INET)
538 			return (EAFNOSUPPORT);
539 #endif
540 		error = prison_local_ip4(cred, &sin->sin_addr);
541 		if (error)
542 			return (error);
543 		if (sin->sin_port != *lportp) {
544 			/* Don't allow the port to change. */
545 			if (*lportp != 0)
546 				return (EINVAL);
547 			lport = sin->sin_port;
548 		}
549 		/* NB: lport is left as 0 if the port isn't being changed. */
550 		if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) {
551 			/*
552 			 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast;
553 			 * allow complete duplication of binding if
554 			 * SO_REUSEPORT is set, or if SO_REUSEADDR is set
555 			 * and a multicast address is bound on both
556 			 * new and duplicated sockets.
557 			 */
558 			if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) != 0)
559 				reuseport = SO_REUSEADDR|SO_REUSEPORT;
560 		} else if (sin->sin_addr.s_addr != INADDR_ANY) {
561 			sin->sin_port = 0;		/* yech... */
562 			bzero(&sin->sin_zero, sizeof(sin->sin_zero));
563 			/*
564 			 * Is the address a local IP address?
565 			 * If INP_BINDANY is set, then the socket may be bound
566 			 * to any endpoint address, local or not.
567 			 */
568 			if ((inp->inp_flags & INP_BINDANY) == 0 &&
569 			    ifa_ifwithaddr_check((struct sockaddr *)sin) == 0)
570 				return (EADDRNOTAVAIL);
571 		}
572 		laddr = sin->sin_addr;
573 		if (lport) {
574 			struct inpcb *t;
575 			struct tcptw *tw;
576 
577 			/* GROSS */
578 			if (ntohs(lport) <= V_ipport_reservedhigh &&
579 			    ntohs(lport) >= V_ipport_reservedlow &&
580 			    priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT,
581 			    0))
582 				return (EACCES);
583 			if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) &&
584 			    priv_check_cred(inp->inp_cred,
585 			    PRIV_NETINET_REUSEPORT, 0) != 0) {
586 				t = in_pcblookup_local(pcbinfo, sin->sin_addr,
587 				    lport, INPLOOKUP_WILDCARD, cred);
588 	/*
589 	 * XXX
590 	 * This entire block sorely needs a rewrite.
591 	 */
592 				if (t &&
593 				    ((t->inp_flags & INP_TIMEWAIT) == 0) &&
594 				    (so->so_type != SOCK_STREAM ||
595 				     ntohl(t->inp_faddr.s_addr) == INADDR_ANY) &&
596 				    (ntohl(sin->sin_addr.s_addr) != INADDR_ANY ||
597 				     ntohl(t->inp_laddr.s_addr) != INADDR_ANY ||
598 				     (t->inp_flags2 & INP_REUSEPORT) == 0) &&
599 				    (inp->inp_cred->cr_uid !=
600 				     t->inp_cred->cr_uid))
601 					return (EADDRINUSE);
602 			}
603 			t = in_pcblookup_local(pcbinfo, sin->sin_addr,
604 			    lport, lookupflags, cred);
605 			if (t && (t->inp_flags & INP_TIMEWAIT)) {
606 				/*
607 				 * XXXRW: If an incpb has had its timewait
608 				 * state recycled, we treat the address as
609 				 * being in use (for now).  This is better
610 				 * than a panic, but not desirable.
611 				 */
612 				tw = intotw(t);
613 				if (tw == NULL ||
614 				    (reuseport & tw->tw_so_options) == 0)
615 					return (EADDRINUSE);
616 			} else if (t && (reuseport & inp_so_options(t)) == 0) {
617 #ifdef INET6
618 				if (ntohl(sin->sin_addr.s_addr) !=
619 				    INADDR_ANY ||
620 				    ntohl(t->inp_laddr.s_addr) !=
621 				    INADDR_ANY ||
622 				    (inp->inp_vflag & INP_IPV6PROTO) == 0 ||
623 				    (t->inp_vflag & INP_IPV6PROTO) == 0)
624 #endif
625 				return (EADDRINUSE);
626 			}
627 		}
628 	}
629 	if (*lportp != 0)
630 		lport = *lportp;
631 	if (lport == 0) {
632 		error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags);
633 		if (error != 0)
634 			return (error);
635 
636 	}
637 	*laddrp = laddr.s_addr;
638 	*lportp = lport;
639 	return (0);
640 }
641 
642 /*
643  * Connect from a socket to a specified address.
644  * Both address and port must be specified in argument sin.
645  * If don't have a local address for this socket yet,
646  * then pick one.
647  */
648 int
649 in_pcbconnect_mbuf(struct inpcb *inp, struct sockaddr *nam,
650     struct ucred *cred, struct mbuf *m)
651 {
652 	u_short lport, fport;
653 	in_addr_t laddr, faddr;
654 	int anonport, error;
655 
656 	INP_WLOCK_ASSERT(inp);
657 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
658 
659 	lport = inp->inp_lport;
660 	laddr = inp->inp_laddr.s_addr;
661 	anonport = (lport == 0);
662 	error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport,
663 	    NULL, cred);
664 	if (error)
665 		return (error);
666 
667 	/* Do the initial binding of the local address if required. */
668 	if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) {
669 		inp->inp_lport = lport;
670 		inp->inp_laddr.s_addr = laddr;
671 		if (in_pcbinshash(inp) != 0) {
672 			inp->inp_laddr.s_addr = INADDR_ANY;
673 			inp->inp_lport = 0;
674 			return (EAGAIN);
675 		}
676 	}
677 
678 	/* Commit the remaining changes. */
679 	inp->inp_lport = lport;
680 	inp->inp_laddr.s_addr = laddr;
681 	inp->inp_faddr.s_addr = faddr;
682 	inp->inp_fport = fport;
683 	in_pcbrehash_mbuf(inp, m);
684 
685 	if (anonport)
686 		inp->inp_flags |= INP_ANONPORT;
687 	return (0);
688 }
689 
690 int
691 in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
692 {
693 
694 	return (in_pcbconnect_mbuf(inp, nam, cred, NULL));
695 }
696 
697 /*
698  * Do proper source address selection on an unbound socket in case
699  * of connect. Take jails into account as well.
700  */
701 static int
702 in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr,
703     struct ucred *cred)
704 {
705 	struct ifaddr *ifa;
706 	struct sockaddr *sa;
707 	struct sockaddr_in *sin;
708 	struct route sro;
709 	int error;
710 
711 	KASSERT(laddr != NULL, ("%s: laddr NULL", __func__));
712 
713 	/*
714 	 * Bypass source address selection and use the primary jail IP
715 	 * if requested.
716 	 */
717 	if (cred != NULL && !prison_saddrsel_ip4(cred, laddr))
718 		return (0);
719 
720 	error = 0;
721 	bzero(&sro, sizeof(sro));
722 
723 	sin = (struct sockaddr_in *)&sro.ro_dst;
724 	sin->sin_family = AF_INET;
725 	sin->sin_len = sizeof(struct sockaddr_in);
726 	sin->sin_addr.s_addr = faddr->s_addr;
727 
728 	/*
729 	 * If route is known our src addr is taken from the i/f,
730 	 * else punt.
731 	 *
732 	 * Find out route to destination.
733 	 */
734 	if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0)
735 		in_rtalloc_ign(&sro, 0, inp->inp_inc.inc_fibnum);
736 
737 	/*
738 	 * If we found a route, use the address corresponding to
739 	 * the outgoing interface.
740 	 *
741 	 * Otherwise assume faddr is reachable on a directly connected
742 	 * network and try to find a corresponding interface to take
743 	 * the source address from.
744 	 */
745 	if (sro.ro_rt == NULL || sro.ro_rt->rt_ifp == NULL) {
746 		struct in_ifaddr *ia;
747 		struct ifnet *ifp;
748 
749 		ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin));
750 		if (ia == NULL)
751 			ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0));
752 		if (ia == NULL) {
753 			error = ENETUNREACH;
754 			goto done;
755 		}
756 
757 		if (cred == NULL || !prison_flag(cred, PR_IP4)) {
758 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
759 			ifa_free(&ia->ia_ifa);
760 			goto done;
761 		}
762 
763 		ifp = ia->ia_ifp;
764 		ifa_free(&ia->ia_ifa);
765 		ia = NULL;
766 		IF_ADDR_RLOCK(ifp);
767 		TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
768 
769 			sa = ifa->ifa_addr;
770 			if (sa->sa_family != AF_INET)
771 				continue;
772 			sin = (struct sockaddr_in *)sa;
773 			if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
774 				ia = (struct in_ifaddr *)ifa;
775 				break;
776 			}
777 		}
778 		if (ia != NULL) {
779 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
780 			IF_ADDR_RUNLOCK(ifp);
781 			goto done;
782 		}
783 		IF_ADDR_RUNLOCK(ifp);
784 
785 		/* 3. As a last resort return the 'default' jail address. */
786 		error = prison_get_ip4(cred, laddr);
787 		goto done;
788 	}
789 
790 	/*
791 	 * If the outgoing interface on the route found is not
792 	 * a loopback interface, use the address from that interface.
793 	 * In case of jails do those three steps:
794 	 * 1. check if the interface address belongs to the jail. If so use it.
795 	 * 2. check if we have any address on the outgoing interface
796 	 *    belonging to this jail. If so use it.
797 	 * 3. as a last resort return the 'default' jail address.
798 	 */
799 	if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) {
800 		struct in_ifaddr *ia;
801 		struct ifnet *ifp;
802 
803 		/* If not jailed, use the default returned. */
804 		if (cred == NULL || !prison_flag(cred, PR_IP4)) {
805 			ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa;
806 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
807 			goto done;
808 		}
809 
810 		/* Jailed. */
811 		/* 1. Check if the iface address belongs to the jail. */
812 		sin = (struct sockaddr_in *)sro.ro_rt->rt_ifa->ifa_addr;
813 		if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
814 			ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa;
815 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
816 			goto done;
817 		}
818 
819 		/*
820 		 * 2. Check if we have any address on the outgoing interface
821 		 *    belonging to this jail.
822 		 */
823 		ia = NULL;
824 		ifp = sro.ro_rt->rt_ifp;
825 		IF_ADDR_RLOCK(ifp);
826 		TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
827 			sa = ifa->ifa_addr;
828 			if (sa->sa_family != AF_INET)
829 				continue;
830 			sin = (struct sockaddr_in *)sa;
831 			if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
832 				ia = (struct in_ifaddr *)ifa;
833 				break;
834 			}
835 		}
836 		if (ia != NULL) {
837 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
838 			IF_ADDR_RUNLOCK(ifp);
839 			goto done;
840 		}
841 		IF_ADDR_RUNLOCK(ifp);
842 
843 		/* 3. As a last resort return the 'default' jail address. */
844 		error = prison_get_ip4(cred, laddr);
845 		goto done;
846 	}
847 
848 	/*
849 	 * The outgoing interface is marked with 'loopback net', so a route
850 	 * to ourselves is here.
851 	 * Try to find the interface of the destination address and then
852 	 * take the address from there. That interface is not necessarily
853 	 * a loopback interface.
854 	 * In case of jails, check that it is an address of the jail
855 	 * and if we cannot find, fall back to the 'default' jail address.
856 	 */
857 	if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) {
858 		struct sockaddr_in sain;
859 		struct in_ifaddr *ia;
860 
861 		bzero(&sain, sizeof(struct sockaddr_in));
862 		sain.sin_family = AF_INET;
863 		sain.sin_len = sizeof(struct sockaddr_in);
864 		sain.sin_addr.s_addr = faddr->s_addr;
865 
866 		ia = ifatoia(ifa_ifwithdstaddr(sintosa(&sain)));
867 		if (ia == NULL)
868 			ia = ifatoia(ifa_ifwithnet(sintosa(&sain), 0));
869 		if (ia == NULL)
870 			ia = ifatoia(ifa_ifwithaddr(sintosa(&sain)));
871 
872 		if (cred == NULL || !prison_flag(cred, PR_IP4)) {
873 			if (ia == NULL) {
874 				error = ENETUNREACH;
875 				goto done;
876 			}
877 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
878 			ifa_free(&ia->ia_ifa);
879 			goto done;
880 		}
881 
882 		/* Jailed. */
883 		if (ia != NULL) {
884 			struct ifnet *ifp;
885 
886 			ifp = ia->ia_ifp;
887 			ifa_free(&ia->ia_ifa);
888 			ia = NULL;
889 			IF_ADDR_RLOCK(ifp);
890 			TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
891 
892 				sa = ifa->ifa_addr;
893 				if (sa->sa_family != AF_INET)
894 					continue;
895 				sin = (struct sockaddr_in *)sa;
896 				if (prison_check_ip4(cred,
897 				    &sin->sin_addr) == 0) {
898 					ia = (struct in_ifaddr *)ifa;
899 					break;
900 				}
901 			}
902 			if (ia != NULL) {
903 				laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
904 				IF_ADDR_RUNLOCK(ifp);
905 				goto done;
906 			}
907 			IF_ADDR_RUNLOCK(ifp);
908 		}
909 
910 		/* 3. As a last resort return the 'default' jail address. */
911 		error = prison_get_ip4(cred, laddr);
912 		goto done;
913 	}
914 
915 done:
916 	if (sro.ro_rt != NULL)
917 		RTFREE(sro.ro_rt);
918 	return (error);
919 }
920 
921 /*
922  * Set up for a connect from a socket to the specified address.
923  * On entry, *laddrp and *lportp should contain the current local
924  * address and port for the PCB; these are updated to the values
925  * that should be placed in inp_laddr and inp_lport to complete
926  * the connect.
927  *
928  * On success, *faddrp and *fportp will be set to the remote address
929  * and port. These are not updated in the error case.
930  *
931  * If the operation fails because the connection already exists,
932  * *oinpp will be set to the PCB of that connection so that the
933  * caller can decide to override it. In all other cases, *oinpp
934  * is set to NULL.
935  */
936 int
937 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam,
938     in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp,
939     struct inpcb **oinpp, struct ucred *cred)
940 {
941 	struct sockaddr_in *sin = (struct sockaddr_in *)nam;
942 	struct in_ifaddr *ia;
943 	struct inpcb *oinp;
944 	struct in_addr laddr, faddr;
945 	u_short lport, fport;
946 	int error;
947 
948 	/*
949 	 * Because a global state change doesn't actually occur here, a read
950 	 * lock is sufficient.
951 	 */
952 	INP_LOCK_ASSERT(inp);
953 	INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo);
954 
955 	if (oinpp != NULL)
956 		*oinpp = NULL;
957 	if (nam->sa_len != sizeof (*sin))
958 		return (EINVAL);
959 	if (sin->sin_family != AF_INET)
960 		return (EAFNOSUPPORT);
961 	if (sin->sin_port == 0)
962 		return (EADDRNOTAVAIL);
963 	laddr.s_addr = *laddrp;
964 	lport = *lportp;
965 	faddr = sin->sin_addr;
966 	fport = sin->sin_port;
967 
968 	if (!TAILQ_EMPTY(&V_in_ifaddrhead)) {
969 		/*
970 		 * If the destination address is INADDR_ANY,
971 		 * use the primary local address.
972 		 * If the supplied address is INADDR_BROADCAST,
973 		 * and the primary interface supports broadcast,
974 		 * choose the broadcast address for that interface.
975 		 */
976 		if (faddr.s_addr == INADDR_ANY) {
977 			IN_IFADDR_RLOCK();
978 			faddr =
979 			    IA_SIN(TAILQ_FIRST(&V_in_ifaddrhead))->sin_addr;
980 			IN_IFADDR_RUNLOCK();
981 			if (cred != NULL &&
982 			    (error = prison_get_ip4(cred, &faddr)) != 0)
983 				return (error);
984 		} else if (faddr.s_addr == (u_long)INADDR_BROADCAST) {
985 			IN_IFADDR_RLOCK();
986 			if (TAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags &
987 			    IFF_BROADCAST)
988 				faddr = satosin(&TAILQ_FIRST(
989 				    &V_in_ifaddrhead)->ia_broadaddr)->sin_addr;
990 			IN_IFADDR_RUNLOCK();
991 		}
992 	}
993 	if (laddr.s_addr == INADDR_ANY) {
994 		error = in_pcbladdr(inp, &faddr, &laddr, cred);
995 		/*
996 		 * If the destination address is multicast and an outgoing
997 		 * interface has been set as a multicast option, prefer the
998 		 * address of that interface as our source address.
999 		 */
1000 		if (IN_MULTICAST(ntohl(faddr.s_addr)) &&
1001 		    inp->inp_moptions != NULL) {
1002 			struct ip_moptions *imo;
1003 			struct ifnet *ifp;
1004 
1005 			imo = inp->inp_moptions;
1006 			if (imo->imo_multicast_ifp != NULL) {
1007 				ifp = imo->imo_multicast_ifp;
1008 				IN_IFADDR_RLOCK();
1009 				TAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) {
1010 					if ((ia->ia_ifp == ifp) &&
1011 					    (cred == NULL ||
1012 					    prison_check_ip4(cred,
1013 					    &ia->ia_addr.sin_addr) == 0))
1014 						break;
1015 				}
1016 				if (ia == NULL)
1017 					error = EADDRNOTAVAIL;
1018 				else {
1019 					laddr = ia->ia_addr.sin_addr;
1020 					error = 0;
1021 				}
1022 				IN_IFADDR_RUNLOCK();
1023 			}
1024 		}
1025 		if (error)
1026 			return (error);
1027 	}
1028 	oinp = in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr, fport,
1029 	    laddr, lport, 0, NULL);
1030 	if (oinp != NULL) {
1031 		if (oinpp != NULL)
1032 			*oinpp = oinp;
1033 		return (EADDRINUSE);
1034 	}
1035 	if (lport == 0) {
1036 		error = in_pcbbind_setup(inp, NULL, &laddr.s_addr, &lport,
1037 		    cred);
1038 		if (error)
1039 			return (error);
1040 	}
1041 	*laddrp = laddr.s_addr;
1042 	*lportp = lport;
1043 	*faddrp = faddr.s_addr;
1044 	*fportp = fport;
1045 	return (0);
1046 }
1047 
1048 void
1049 in_pcbdisconnect(struct inpcb *inp)
1050 {
1051 
1052 	INP_WLOCK_ASSERT(inp);
1053 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
1054 
1055 	inp->inp_faddr.s_addr = INADDR_ANY;
1056 	inp->inp_fport = 0;
1057 	in_pcbrehash(inp);
1058 }
1059 #endif /* INET */
1060 
1061 /*
1062  * in_pcbdetach() is responsibe for disassociating a socket from an inpcb.
1063  * For most protocols, this will be invoked immediately prior to calling
1064  * in_pcbfree().  However, with TCP the inpcb may significantly outlive the
1065  * socket, in which case in_pcbfree() is deferred.
1066  */
1067 void
1068 in_pcbdetach(struct inpcb *inp)
1069 {
1070 
1071 	KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__));
1072 
1073 	inp->inp_socket->so_pcb = NULL;
1074 	inp->inp_socket = NULL;
1075 }
1076 
1077 /*
1078  * in_pcbref() bumps the reference count on an inpcb in order to maintain
1079  * stability of an inpcb pointer despite the inpcb lock being released.  This
1080  * is used in TCP when the inpcbinfo lock needs to be acquired or upgraded,
1081  * but where the inpcb lock may already held, or when acquiring a reference
1082  * via a pcbgroup.
1083  *
1084  * in_pcbref() should be used only to provide brief memory stability, and
1085  * must always be followed by a call to INP_WLOCK() and in_pcbrele() to
1086  * garbage collect the inpcb if it has been in_pcbfree()'d from another
1087  * context.  Until in_pcbrele() has returned that the inpcb is still valid,
1088  * lock and rele are the *only* safe operations that may be performed on the
1089  * inpcb.
1090  *
1091  * While the inpcb will not be freed, releasing the inpcb lock means that the
1092  * connection's state may change, so the caller should be careful to
1093  * revalidate any cached state on reacquiring the lock.  Drop the reference
1094  * using in_pcbrele().
1095  */
1096 void
1097 in_pcbref(struct inpcb *inp)
1098 {
1099 
1100 	KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1101 
1102 	refcount_acquire(&inp->inp_refcount);
1103 }
1104 
1105 /*
1106  * Drop a refcount on an inpcb elevated using in_pcbref(); because a call to
1107  * in_pcbfree() may have been made between in_pcbref() and in_pcbrele(), we
1108  * return a flag indicating whether or not the inpcb remains valid.  If it is
1109  * valid, we return with the inpcb lock held.
1110  *
1111  * Notice that, unlike in_pcbref(), the inpcb lock must be held to drop a
1112  * reference on an inpcb.  Historically more work was done here (actually, in
1113  * in_pcbfree_internal()) but has been moved to in_pcbfree() to avoid the
1114  * need for the pcbinfo lock in in_pcbrele().  Deferring the free is entirely
1115  * about memory stability (and continued use of the write lock).
1116  */
1117 int
1118 in_pcbrele_rlocked(struct inpcb *inp)
1119 {
1120 	struct inpcbinfo *pcbinfo;
1121 
1122 	KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1123 
1124 	INP_RLOCK_ASSERT(inp);
1125 
1126 	if (refcount_release(&inp->inp_refcount) == 0) {
1127 		/*
1128 		 * If the inpcb has been freed, let the caller know, even if
1129 		 * this isn't the last reference.
1130 		 */
1131 		if (inp->inp_flags2 & INP_FREED) {
1132 			INP_RUNLOCK(inp);
1133 			return (1);
1134 		}
1135 		return (0);
1136 	}
1137 
1138 	KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1139 
1140 	INP_RUNLOCK(inp);
1141 	pcbinfo = inp->inp_pcbinfo;
1142 	uma_zfree(pcbinfo->ipi_zone, inp);
1143 	return (1);
1144 }
1145 
1146 int
1147 in_pcbrele_wlocked(struct inpcb *inp)
1148 {
1149 	struct inpcbinfo *pcbinfo;
1150 
1151 	KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1152 
1153 	INP_WLOCK_ASSERT(inp);
1154 
1155 	if (refcount_release(&inp->inp_refcount) == 0)
1156 		return (0);
1157 
1158 	KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1159 
1160 	INP_WUNLOCK(inp);
1161 	pcbinfo = inp->inp_pcbinfo;
1162 	uma_zfree(pcbinfo->ipi_zone, inp);
1163 	return (1);
1164 }
1165 
1166 /*
1167  * Temporary wrapper.
1168  */
1169 int
1170 in_pcbrele(struct inpcb *inp)
1171 {
1172 
1173 	return (in_pcbrele_wlocked(inp));
1174 }
1175 
1176 /*
1177  * Unconditionally schedule an inpcb to be freed by decrementing its
1178  * reference count, which should occur only after the inpcb has been detached
1179  * from its socket.  If another thread holds a temporary reference (acquired
1180  * using in_pcbref()) then the free is deferred until that reference is
1181  * released using in_pcbrele(), but the inpcb is still unlocked.  Almost all
1182  * work, including removal from global lists, is done in this context, where
1183  * the pcbinfo lock is held.
1184  */
1185 void
1186 in_pcbfree(struct inpcb *inp)
1187 {
1188 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1189 
1190 	KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1191 
1192 	INP_INFO_WLOCK_ASSERT(pcbinfo);
1193 	INP_WLOCK_ASSERT(inp);
1194 
1195 	/* XXXRW: Do as much as possible here. */
1196 #ifdef IPSEC
1197 	if (inp->inp_sp != NULL)
1198 		ipsec_delete_pcbpolicy(inp);
1199 #endif
1200 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
1201 	in_pcbremlists(inp);
1202 #ifdef INET6
1203 	if (inp->inp_vflag & INP_IPV6PROTO) {
1204 		ip6_freepcbopts(inp->in6p_outputopts);
1205 		if (inp->in6p_moptions != NULL)
1206 			ip6_freemoptions(inp->in6p_moptions);
1207 	}
1208 #endif
1209 	if (inp->inp_options)
1210 		(void)m_free(inp->inp_options);
1211 #ifdef INET
1212 	if (inp->inp_moptions != NULL)
1213 		inp_freemoptions(inp->inp_moptions);
1214 #endif
1215 	inp->inp_vflag = 0;
1216 	inp->inp_flags2 |= INP_FREED;
1217 	crfree(inp->inp_cred);
1218 #ifdef MAC
1219 	mac_inpcb_destroy(inp);
1220 #endif
1221 	if (!in_pcbrele_wlocked(inp))
1222 		INP_WUNLOCK(inp);
1223 }
1224 
1225 /*
1226  * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and
1227  * port reservation, and preventing it from being returned by inpcb lookups.
1228  *
1229  * It is used by TCP to mark an inpcb as unused and avoid future packet
1230  * delivery or event notification when a socket remains open but TCP has
1231  * closed.  This might occur as a result of a shutdown()-initiated TCP close
1232  * or a RST on the wire, and allows the port binding to be reused while still
1233  * maintaining the invariant that so_pcb always points to a valid inpcb until
1234  * in_pcbdetach().
1235  *
1236  * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by
1237  * in_pcbnotifyall() and in_pcbpurgeif0()?
1238  */
1239 void
1240 in_pcbdrop(struct inpcb *inp)
1241 {
1242 
1243 	INP_WLOCK_ASSERT(inp);
1244 
1245 	/*
1246 	 * XXXRW: Possibly we should protect the setting of INP_DROPPED with
1247 	 * the hash lock...?
1248 	 */
1249 	inp->inp_flags |= INP_DROPPED;
1250 	if (inp->inp_flags & INP_INHASHLIST) {
1251 		struct inpcbport *phd = inp->inp_phd;
1252 
1253 		INP_HASH_WLOCK(inp->inp_pcbinfo);
1254 		LIST_REMOVE(inp, inp_hash);
1255 		LIST_REMOVE(inp, inp_portlist);
1256 		if (LIST_FIRST(&phd->phd_pcblist) == NULL) {
1257 			LIST_REMOVE(phd, phd_hash);
1258 			free(phd, M_PCB);
1259 		}
1260 		INP_HASH_WUNLOCK(inp->inp_pcbinfo);
1261 		inp->inp_flags &= ~INP_INHASHLIST;
1262 #ifdef PCBGROUP
1263 		in_pcbgroup_remove(inp);
1264 #endif
1265 	}
1266 }
1267 
1268 #ifdef INET
1269 /*
1270  * Common routines to return the socket addresses associated with inpcbs.
1271  */
1272 struct sockaddr *
1273 in_sockaddr(in_port_t port, struct in_addr *addr_p)
1274 {
1275 	struct sockaddr_in *sin;
1276 
1277 	sin = malloc(sizeof *sin, M_SONAME,
1278 		M_WAITOK | M_ZERO);
1279 	sin->sin_family = AF_INET;
1280 	sin->sin_len = sizeof(*sin);
1281 	sin->sin_addr = *addr_p;
1282 	sin->sin_port = port;
1283 
1284 	return (struct sockaddr *)sin;
1285 }
1286 
1287 int
1288 in_getsockaddr(struct socket *so, struct sockaddr **nam)
1289 {
1290 	struct inpcb *inp;
1291 	struct in_addr addr;
1292 	in_port_t port;
1293 
1294 	inp = sotoinpcb(so);
1295 	KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL"));
1296 
1297 	INP_RLOCK(inp);
1298 	port = inp->inp_lport;
1299 	addr = inp->inp_laddr;
1300 	INP_RUNLOCK(inp);
1301 
1302 	*nam = in_sockaddr(port, &addr);
1303 	return 0;
1304 }
1305 
1306 int
1307 in_getpeeraddr(struct socket *so, struct sockaddr **nam)
1308 {
1309 	struct inpcb *inp;
1310 	struct in_addr addr;
1311 	in_port_t port;
1312 
1313 	inp = sotoinpcb(so);
1314 	KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL"));
1315 
1316 	INP_RLOCK(inp);
1317 	port = inp->inp_fport;
1318 	addr = inp->inp_faddr;
1319 	INP_RUNLOCK(inp);
1320 
1321 	*nam = in_sockaddr(port, &addr);
1322 	return 0;
1323 }
1324 
1325 void
1326 in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno,
1327     struct inpcb *(*notify)(struct inpcb *, int))
1328 {
1329 	struct inpcb *inp, *inp_temp;
1330 
1331 	INP_INFO_WLOCK(pcbinfo);
1332 	LIST_FOREACH_SAFE(inp, pcbinfo->ipi_listhead, inp_list, inp_temp) {
1333 		INP_WLOCK(inp);
1334 #ifdef INET6
1335 		if ((inp->inp_vflag & INP_IPV4) == 0) {
1336 			INP_WUNLOCK(inp);
1337 			continue;
1338 		}
1339 #endif
1340 		if (inp->inp_faddr.s_addr != faddr.s_addr ||
1341 		    inp->inp_socket == NULL) {
1342 			INP_WUNLOCK(inp);
1343 			continue;
1344 		}
1345 		if ((*notify)(inp, errno))
1346 			INP_WUNLOCK(inp);
1347 	}
1348 	INP_INFO_WUNLOCK(pcbinfo);
1349 }
1350 
1351 void
1352 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp)
1353 {
1354 	struct inpcb *inp;
1355 	struct ip_moptions *imo;
1356 	int i, gap;
1357 
1358 	INP_INFO_RLOCK(pcbinfo);
1359 	LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) {
1360 		INP_WLOCK(inp);
1361 		imo = inp->inp_moptions;
1362 		if ((inp->inp_vflag & INP_IPV4) &&
1363 		    imo != NULL) {
1364 			/*
1365 			 * Unselect the outgoing interface if it is being
1366 			 * detached.
1367 			 */
1368 			if (imo->imo_multicast_ifp == ifp)
1369 				imo->imo_multicast_ifp = NULL;
1370 
1371 			/*
1372 			 * Drop multicast group membership if we joined
1373 			 * through the interface being detached.
1374 			 */
1375 			for (i = 0, gap = 0; i < imo->imo_num_memberships;
1376 			    i++) {
1377 				if (imo->imo_membership[i]->inm_ifp == ifp) {
1378 					in_delmulti(imo->imo_membership[i]);
1379 					gap++;
1380 				} else if (gap != 0)
1381 					imo->imo_membership[i - gap] =
1382 					    imo->imo_membership[i];
1383 			}
1384 			imo->imo_num_memberships -= gap;
1385 		}
1386 		INP_WUNLOCK(inp);
1387 	}
1388 	INP_INFO_RUNLOCK(pcbinfo);
1389 }
1390 
1391 /*
1392  * Lookup a PCB based on the local address and port.  Caller must hold the
1393  * hash lock.  No inpcb locks or references are acquired.
1394  */
1395 #define INP_LOOKUP_MAPPED_PCB_COST	3
1396 struct inpcb *
1397 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr,
1398     u_short lport, int lookupflags, struct ucred *cred)
1399 {
1400 	struct inpcb *inp;
1401 #ifdef INET6
1402 	int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST;
1403 #else
1404 	int matchwild = 3;
1405 #endif
1406 	int wildcard;
1407 
1408 	KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0,
1409 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
1410 
1411 	INP_HASH_LOCK_ASSERT(pcbinfo);
1412 
1413 	if ((lookupflags & INPLOOKUP_WILDCARD) == 0) {
1414 		struct inpcbhead *head;
1415 		/*
1416 		 * Look for an unconnected (wildcard foreign addr) PCB that
1417 		 * matches the local address and port we're looking for.
1418 		 */
1419 		head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
1420 		    0, pcbinfo->ipi_hashmask)];
1421 		LIST_FOREACH(inp, head, inp_hash) {
1422 #ifdef INET6
1423 			/* XXX inp locking */
1424 			if ((inp->inp_vflag & INP_IPV4) == 0)
1425 				continue;
1426 #endif
1427 			if (inp->inp_faddr.s_addr == INADDR_ANY &&
1428 			    inp->inp_laddr.s_addr == laddr.s_addr &&
1429 			    inp->inp_lport == lport) {
1430 				/*
1431 				 * Found?
1432 				 */
1433 				if (cred == NULL ||
1434 				    prison_equal_ip4(cred->cr_prison,
1435 					inp->inp_cred->cr_prison))
1436 					return (inp);
1437 			}
1438 		}
1439 		/*
1440 		 * Not found.
1441 		 */
1442 		return (NULL);
1443 	} else {
1444 		struct inpcbporthead *porthash;
1445 		struct inpcbport *phd;
1446 		struct inpcb *match = NULL;
1447 		/*
1448 		 * Best fit PCB lookup.
1449 		 *
1450 		 * First see if this local port is in use by looking on the
1451 		 * port hash list.
1452 		 */
1453 		porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport,
1454 		    pcbinfo->ipi_porthashmask)];
1455 		LIST_FOREACH(phd, porthash, phd_hash) {
1456 			if (phd->phd_port == lport)
1457 				break;
1458 		}
1459 		if (phd != NULL) {
1460 			/*
1461 			 * Port is in use by one or more PCBs. Look for best
1462 			 * fit.
1463 			 */
1464 			LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) {
1465 				wildcard = 0;
1466 				if (cred != NULL &&
1467 				    !prison_equal_ip4(inp->inp_cred->cr_prison,
1468 					cred->cr_prison))
1469 					continue;
1470 #ifdef INET6
1471 				/* XXX inp locking */
1472 				if ((inp->inp_vflag & INP_IPV4) == 0)
1473 					continue;
1474 				/*
1475 				 * We never select the PCB that has
1476 				 * INP_IPV6 flag and is bound to :: if
1477 				 * we have another PCB which is bound
1478 				 * to 0.0.0.0.  If a PCB has the
1479 				 * INP_IPV6 flag, then we set its cost
1480 				 * higher than IPv4 only PCBs.
1481 				 *
1482 				 * Note that the case only happens
1483 				 * when a socket is bound to ::, under
1484 				 * the condition that the use of the
1485 				 * mapped address is allowed.
1486 				 */
1487 				if ((inp->inp_vflag & INP_IPV6) != 0)
1488 					wildcard += INP_LOOKUP_MAPPED_PCB_COST;
1489 #endif
1490 				if (inp->inp_faddr.s_addr != INADDR_ANY)
1491 					wildcard++;
1492 				if (inp->inp_laddr.s_addr != INADDR_ANY) {
1493 					if (laddr.s_addr == INADDR_ANY)
1494 						wildcard++;
1495 					else if (inp->inp_laddr.s_addr != laddr.s_addr)
1496 						continue;
1497 				} else {
1498 					if (laddr.s_addr != INADDR_ANY)
1499 						wildcard++;
1500 				}
1501 				if (wildcard < matchwild) {
1502 					match = inp;
1503 					matchwild = wildcard;
1504 					if (matchwild == 0)
1505 						break;
1506 				}
1507 			}
1508 		}
1509 		return (match);
1510 	}
1511 }
1512 #undef INP_LOOKUP_MAPPED_PCB_COST
1513 
1514 #ifdef PCBGROUP
1515 /*
1516  * Lookup PCB in hash list, using pcbgroup tables.
1517  */
1518 static struct inpcb *
1519 in_pcblookup_group(struct inpcbinfo *pcbinfo, struct inpcbgroup *pcbgroup,
1520     struct in_addr faddr, u_int fport_arg, struct in_addr laddr,
1521     u_int lport_arg, int lookupflags, struct ifnet *ifp)
1522 {
1523 	struct inpcbhead *head;
1524 	struct inpcb *inp, *tmpinp;
1525 	u_short fport = fport_arg, lport = lport_arg;
1526 
1527 	/*
1528 	 * First look for an exact match.
1529 	 */
1530 	tmpinp = NULL;
1531 	INP_GROUP_LOCK(pcbgroup);
1532 	head = &pcbgroup->ipg_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport,
1533 	    pcbgroup->ipg_hashmask)];
1534 	LIST_FOREACH(inp, head, inp_pcbgrouphash) {
1535 #ifdef INET6
1536 		/* XXX inp locking */
1537 		if ((inp->inp_vflag & INP_IPV4) == 0)
1538 			continue;
1539 #endif
1540 		if (inp->inp_faddr.s_addr == faddr.s_addr &&
1541 		    inp->inp_laddr.s_addr == laddr.s_addr &&
1542 		    inp->inp_fport == fport &&
1543 		    inp->inp_lport == lport) {
1544 			/*
1545 			 * XXX We should be able to directly return
1546 			 * the inp here, without any checks.
1547 			 * Well unless both bound with SO_REUSEPORT?
1548 			 */
1549 			if (prison_flag(inp->inp_cred, PR_IP4))
1550 				goto found;
1551 			if (tmpinp == NULL)
1552 				tmpinp = inp;
1553 		}
1554 	}
1555 	if (tmpinp != NULL) {
1556 		inp = tmpinp;
1557 		goto found;
1558 	}
1559 
1560 	/*
1561 	 * Then look for a wildcard match, if requested.
1562 	 */
1563 	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
1564 		struct inpcb *local_wild = NULL, *local_exact = NULL;
1565 #ifdef INET6
1566 		struct inpcb *local_wild_mapped = NULL;
1567 #endif
1568 		struct inpcb *jail_wild = NULL;
1569 		struct inpcbhead *head;
1570 		int injail;
1571 
1572 		/*
1573 		 * Order of socket selection - we always prefer jails.
1574 		 *      1. jailed, non-wild.
1575 		 *      2. jailed, wild.
1576 		 *      3. non-jailed, non-wild.
1577 		 *      4. non-jailed, wild.
1578 		 */
1579 		head = &pcbinfo->ipi_wildbase[INP_PCBHASH(INADDR_ANY, lport,
1580 		    0, pcbinfo->ipi_wildmask)];
1581 		LIST_FOREACH(inp, head, inp_pcbgroup_wild) {
1582 #ifdef INET6
1583 			/* XXX inp locking */
1584 			if ((inp->inp_vflag & INP_IPV4) == 0)
1585 				continue;
1586 #endif
1587 			if (inp->inp_faddr.s_addr != INADDR_ANY ||
1588 			    inp->inp_lport != lport)
1589 				continue;
1590 
1591 			/* XXX inp locking */
1592 			if (ifp && ifp->if_type == IFT_FAITH &&
1593 			    (inp->inp_flags & INP_FAITH) == 0)
1594 				continue;
1595 
1596 			injail = prison_flag(inp->inp_cred, PR_IP4);
1597 			if (injail) {
1598 				if (prison_check_ip4(inp->inp_cred,
1599 				    &laddr) != 0)
1600 					continue;
1601 			} else {
1602 				if (local_exact != NULL)
1603 					continue;
1604 			}
1605 
1606 			if (inp->inp_laddr.s_addr == laddr.s_addr) {
1607 				if (injail)
1608 					goto found;
1609 				else
1610 					local_exact = inp;
1611 			} else if (inp->inp_laddr.s_addr == INADDR_ANY) {
1612 #ifdef INET6
1613 				/* XXX inp locking, NULL check */
1614 				if (inp->inp_vflag & INP_IPV6PROTO)
1615 					local_wild_mapped = inp;
1616 				else
1617 #endif
1618 					if (injail)
1619 						jail_wild = inp;
1620 					else
1621 						local_wild = inp;
1622 			}
1623 		} /* LIST_FOREACH */
1624 		inp = jail_wild;
1625 		if (inp == NULL)
1626 			inp = local_exact;
1627 		if (inp == NULL)
1628 			inp = local_wild;
1629 #ifdef INET6
1630 		if (inp == NULL)
1631 			inp = local_wild_mapped;
1632 #endif
1633 		if (inp != NULL)
1634 			goto found;
1635 	} /* if (lookupflags & INPLOOKUP_WILDCARD) */
1636 	INP_GROUP_UNLOCK(pcbgroup);
1637 	return (NULL);
1638 
1639 found:
1640 	in_pcbref(inp);
1641 	INP_GROUP_UNLOCK(pcbgroup);
1642 	if (lookupflags & INPLOOKUP_WLOCKPCB) {
1643 		INP_WLOCK(inp);
1644 		if (in_pcbrele_wlocked(inp))
1645 			return (NULL);
1646 	} else if (lookupflags & INPLOOKUP_RLOCKPCB) {
1647 		INP_RLOCK(inp);
1648 		if (in_pcbrele_rlocked(inp))
1649 			return (NULL);
1650 	} else
1651 		panic("%s: locking bug", __func__);
1652 	return (inp);
1653 }
1654 #endif /* PCBGROUP */
1655 
1656 /*
1657  * Lookup PCB in hash list, using pcbinfo tables.  This variation assumes
1658  * that the caller has locked the hash list, and will not perform any further
1659  * locking or reference operations on either the hash list or the connection.
1660  */
1661 static struct inpcb *
1662 in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr,
1663     u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags,
1664     struct ifnet *ifp)
1665 {
1666 	struct inpcbhead *head;
1667 	struct inpcb *inp, *tmpinp;
1668 	u_short fport = fport_arg, lport = lport_arg;
1669 
1670 	KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0,
1671 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
1672 
1673 	INP_HASH_LOCK_ASSERT(pcbinfo);
1674 
1675 	/*
1676 	 * First look for an exact match.
1677 	 */
1678 	tmpinp = NULL;
1679 	head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport,
1680 	    pcbinfo->ipi_hashmask)];
1681 	LIST_FOREACH(inp, head, inp_hash) {
1682 #ifdef INET6
1683 		/* XXX inp locking */
1684 		if ((inp->inp_vflag & INP_IPV4) == 0)
1685 			continue;
1686 #endif
1687 		if (inp->inp_faddr.s_addr == faddr.s_addr &&
1688 		    inp->inp_laddr.s_addr == laddr.s_addr &&
1689 		    inp->inp_fport == fport &&
1690 		    inp->inp_lport == lport) {
1691 			/*
1692 			 * XXX We should be able to directly return
1693 			 * the inp here, without any checks.
1694 			 * Well unless both bound with SO_REUSEPORT?
1695 			 */
1696 			if (prison_flag(inp->inp_cred, PR_IP4))
1697 				return (inp);
1698 			if (tmpinp == NULL)
1699 				tmpinp = inp;
1700 		}
1701 	}
1702 	if (tmpinp != NULL)
1703 		return (tmpinp);
1704 
1705 	/*
1706 	 * Then look for a wildcard match, if requested.
1707 	 */
1708 	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
1709 		struct inpcb *local_wild = NULL, *local_exact = NULL;
1710 #ifdef INET6
1711 		struct inpcb *local_wild_mapped = NULL;
1712 #endif
1713 		struct inpcb *jail_wild = NULL;
1714 		int injail;
1715 
1716 		/*
1717 		 * Order of socket selection - we always prefer jails.
1718 		 *      1. jailed, non-wild.
1719 		 *      2. jailed, wild.
1720 		 *      3. non-jailed, non-wild.
1721 		 *      4. non-jailed, wild.
1722 		 */
1723 
1724 		head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
1725 		    0, pcbinfo->ipi_hashmask)];
1726 		LIST_FOREACH(inp, head, inp_hash) {
1727 #ifdef INET6
1728 			/* XXX inp locking */
1729 			if ((inp->inp_vflag & INP_IPV4) == 0)
1730 				continue;
1731 #endif
1732 			if (inp->inp_faddr.s_addr != INADDR_ANY ||
1733 			    inp->inp_lport != lport)
1734 				continue;
1735 
1736 			/* XXX inp locking */
1737 			if (ifp && ifp->if_type == IFT_FAITH &&
1738 			    (inp->inp_flags & INP_FAITH) == 0)
1739 				continue;
1740 
1741 			injail = prison_flag(inp->inp_cred, PR_IP4);
1742 			if (injail) {
1743 				if (prison_check_ip4(inp->inp_cred,
1744 				    &laddr) != 0)
1745 					continue;
1746 			} else {
1747 				if (local_exact != NULL)
1748 					continue;
1749 			}
1750 
1751 			if (inp->inp_laddr.s_addr == laddr.s_addr) {
1752 				if (injail)
1753 					return (inp);
1754 				else
1755 					local_exact = inp;
1756 			} else if (inp->inp_laddr.s_addr == INADDR_ANY) {
1757 #ifdef INET6
1758 				/* XXX inp locking, NULL check */
1759 				if (inp->inp_vflag & INP_IPV6PROTO)
1760 					local_wild_mapped = inp;
1761 				else
1762 #endif
1763 					if (injail)
1764 						jail_wild = inp;
1765 					else
1766 						local_wild = inp;
1767 			}
1768 		} /* LIST_FOREACH */
1769 		if (jail_wild != NULL)
1770 			return (jail_wild);
1771 		if (local_exact != NULL)
1772 			return (local_exact);
1773 		if (local_wild != NULL)
1774 			return (local_wild);
1775 #ifdef INET6
1776 		if (local_wild_mapped != NULL)
1777 			return (local_wild_mapped);
1778 #endif
1779 	} /* if ((lookupflags & INPLOOKUP_WILDCARD) != 0) */
1780 
1781 	return (NULL);
1782 }
1783 
1784 /*
1785  * Lookup PCB in hash list, using pcbinfo tables.  This variation locks the
1786  * hash list lock, and will return the inpcb locked (i.e., requires
1787  * INPLOOKUP_LOCKPCB).
1788  */
1789 static struct inpcb *
1790 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr,
1791     u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
1792     struct ifnet *ifp)
1793 {
1794 	struct inpcb *inp;
1795 
1796 	INP_HASH_RLOCK(pcbinfo);
1797 	inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport,
1798 	    (lookupflags & ~(INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)), ifp);
1799 	if (inp != NULL) {
1800 		in_pcbref(inp);
1801 		INP_HASH_RUNLOCK(pcbinfo);
1802 		if (lookupflags & INPLOOKUP_WLOCKPCB) {
1803 			INP_WLOCK(inp);
1804 			if (in_pcbrele_wlocked(inp))
1805 				return (NULL);
1806 		} else if (lookupflags & INPLOOKUP_RLOCKPCB) {
1807 			INP_RLOCK(inp);
1808 			if (in_pcbrele_rlocked(inp))
1809 				return (NULL);
1810 		} else
1811 			panic("%s: locking bug", __func__);
1812 	} else
1813 		INP_HASH_RUNLOCK(pcbinfo);
1814 	return (inp);
1815 }
1816 
1817 /*
1818  * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf
1819  * from which a pre-calculated hash value may be extracted.
1820  *
1821  * Possibly more of this logic should be in in_pcbgroup.c.
1822  */
1823 struct inpcb *
1824 in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport,
1825     struct in_addr laddr, u_int lport, int lookupflags, struct ifnet *ifp)
1826 {
1827 #if defined(PCBGROUP)
1828 	struct inpcbgroup *pcbgroup;
1829 #endif
1830 
1831 	KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0,
1832 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
1833 	KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
1834 	    ("%s: LOCKPCB not set", __func__));
1835 
1836 #if defined(PCBGROUP)
1837 	if (in_pcbgroup_enabled(pcbinfo)) {
1838 		pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr,
1839 		    fport);
1840 		return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport,
1841 		    laddr, lport, lookupflags, ifp));
1842 	}
1843 #endif
1844 	return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport,
1845 	    lookupflags, ifp));
1846 }
1847 
1848 struct inpcb *
1849 in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr,
1850     u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
1851     struct ifnet *ifp, struct mbuf *m)
1852 {
1853 #ifdef PCBGROUP
1854 	struct inpcbgroup *pcbgroup;
1855 #endif
1856 
1857 	KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0,
1858 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
1859 	KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
1860 	    ("%s: LOCKPCB not set", __func__));
1861 
1862 #ifdef PCBGROUP
1863 	if (in_pcbgroup_enabled(pcbinfo)) {
1864 		pcbgroup = in_pcbgroup_byhash(pcbinfo, M_HASHTYPE_GET(m),
1865 		    m->m_pkthdr.flowid);
1866 		if (pcbgroup != NULL)
1867 			return (in_pcblookup_group(pcbinfo, pcbgroup, faddr,
1868 			    fport, laddr, lport, lookupflags, ifp));
1869 		pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr,
1870 		    fport);
1871 		return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport,
1872 		    laddr, lport, lookupflags, ifp));
1873 	}
1874 #endif
1875 	return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport,
1876 	    lookupflags, ifp));
1877 }
1878 #endif /* INET */
1879 
1880 /*
1881  * Insert PCB onto various hash lists.
1882  */
1883 static int
1884 in_pcbinshash_internal(struct inpcb *inp, int do_pcbgroup_update)
1885 {
1886 	struct inpcbhead *pcbhash;
1887 	struct inpcbporthead *pcbporthash;
1888 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1889 	struct inpcbport *phd;
1890 	u_int32_t hashkey_faddr;
1891 
1892 	INP_WLOCK_ASSERT(inp);
1893 	INP_HASH_WLOCK_ASSERT(pcbinfo);
1894 
1895 	KASSERT((inp->inp_flags & INP_INHASHLIST) == 0,
1896 	    ("in_pcbinshash: INP_INHASHLIST"));
1897 
1898 #ifdef INET6
1899 	if (inp->inp_vflag & INP_IPV6)
1900 		hashkey_faddr = inp->in6p_faddr.s6_addr32[3] /* XXX */;
1901 	else
1902 #endif
1903 	hashkey_faddr = inp->inp_faddr.s_addr;
1904 
1905 	pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
1906 		 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
1907 
1908 	pcbporthash = &pcbinfo->ipi_porthashbase[
1909 	    INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)];
1910 
1911 	/*
1912 	 * Go through port list and look for a head for this lport.
1913 	 */
1914 	LIST_FOREACH(phd, pcbporthash, phd_hash) {
1915 		if (phd->phd_port == inp->inp_lport)
1916 			break;
1917 	}
1918 	/*
1919 	 * If none exists, malloc one and tack it on.
1920 	 */
1921 	if (phd == NULL) {
1922 		phd = malloc(sizeof(struct inpcbport), M_PCB, M_NOWAIT);
1923 		if (phd == NULL) {
1924 			return (ENOBUFS); /* XXX */
1925 		}
1926 		phd->phd_port = inp->inp_lport;
1927 		LIST_INIT(&phd->phd_pcblist);
1928 		LIST_INSERT_HEAD(pcbporthash, phd, phd_hash);
1929 	}
1930 	inp->inp_phd = phd;
1931 	LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist);
1932 	LIST_INSERT_HEAD(pcbhash, inp, inp_hash);
1933 	inp->inp_flags |= INP_INHASHLIST;
1934 #ifdef PCBGROUP
1935 	if (do_pcbgroup_update)
1936 		in_pcbgroup_update(inp);
1937 #endif
1938 	return (0);
1939 }
1940 
1941 /*
1942  * For now, there are two public interfaces to insert an inpcb into the hash
1943  * lists -- one that does update pcbgroups, and one that doesn't.  The latter
1944  * is used only in the TCP syncache, where in_pcbinshash is called before the
1945  * full 4-tuple is set for the inpcb, and we don't want to install in the
1946  * pcbgroup until later.
1947  *
1948  * XXXRW: This seems like a misfeature.  in_pcbinshash should always update
1949  * connection groups, and partially initialised inpcbs should not be exposed
1950  * to either reservation hash tables or pcbgroups.
1951  */
1952 int
1953 in_pcbinshash(struct inpcb *inp)
1954 {
1955 
1956 	return (in_pcbinshash_internal(inp, 1));
1957 }
1958 
1959 int
1960 in_pcbinshash_nopcbgroup(struct inpcb *inp)
1961 {
1962 
1963 	return (in_pcbinshash_internal(inp, 0));
1964 }
1965 
1966 /*
1967  * Move PCB to the proper hash bucket when { faddr, fport } have  been
1968  * changed. NOTE: This does not handle the case of the lport changing (the
1969  * hashed port list would have to be updated as well), so the lport must
1970  * not change after in_pcbinshash() has been called.
1971  */
1972 void
1973 in_pcbrehash_mbuf(struct inpcb *inp, struct mbuf *m)
1974 {
1975 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1976 	struct inpcbhead *head;
1977 	u_int32_t hashkey_faddr;
1978 
1979 	INP_WLOCK_ASSERT(inp);
1980 	INP_HASH_WLOCK_ASSERT(pcbinfo);
1981 
1982 	KASSERT(inp->inp_flags & INP_INHASHLIST,
1983 	    ("in_pcbrehash: !INP_INHASHLIST"));
1984 
1985 #ifdef INET6
1986 	if (inp->inp_vflag & INP_IPV6)
1987 		hashkey_faddr = inp->in6p_faddr.s6_addr32[3] /* XXX */;
1988 	else
1989 #endif
1990 	hashkey_faddr = inp->inp_faddr.s_addr;
1991 
1992 	head = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
1993 		inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
1994 
1995 	LIST_REMOVE(inp, inp_hash);
1996 	LIST_INSERT_HEAD(head, inp, inp_hash);
1997 
1998 #ifdef PCBGROUP
1999 	if (m != NULL)
2000 		in_pcbgroup_update_mbuf(inp, m);
2001 	else
2002 		in_pcbgroup_update(inp);
2003 #endif
2004 }
2005 
2006 void
2007 in_pcbrehash(struct inpcb *inp)
2008 {
2009 
2010 	in_pcbrehash_mbuf(inp, NULL);
2011 }
2012 
2013 /*
2014  * Remove PCB from various lists.
2015  */
2016 static void
2017 in_pcbremlists(struct inpcb *inp)
2018 {
2019 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2020 
2021 	INP_INFO_WLOCK_ASSERT(pcbinfo);
2022 	INP_WLOCK_ASSERT(inp);
2023 
2024 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
2025 	if (inp->inp_flags & INP_INHASHLIST) {
2026 		struct inpcbport *phd = inp->inp_phd;
2027 
2028 		INP_HASH_WLOCK(pcbinfo);
2029 		LIST_REMOVE(inp, inp_hash);
2030 		LIST_REMOVE(inp, inp_portlist);
2031 		if (LIST_FIRST(&phd->phd_pcblist) == NULL) {
2032 			LIST_REMOVE(phd, phd_hash);
2033 			free(phd, M_PCB);
2034 		}
2035 		INP_HASH_WUNLOCK(pcbinfo);
2036 		inp->inp_flags &= ~INP_INHASHLIST;
2037 	}
2038 	LIST_REMOVE(inp, inp_list);
2039 	pcbinfo->ipi_count--;
2040 #ifdef PCBGROUP
2041 	in_pcbgroup_remove(inp);
2042 #endif
2043 }
2044 
2045 /*
2046  * A set label operation has occurred at the socket layer, propagate the
2047  * label change into the in_pcb for the socket.
2048  */
2049 void
2050 in_pcbsosetlabel(struct socket *so)
2051 {
2052 #ifdef MAC
2053 	struct inpcb *inp;
2054 
2055 	inp = sotoinpcb(so);
2056 	KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL"));
2057 
2058 	INP_WLOCK(inp);
2059 	SOCK_LOCK(so);
2060 	mac_inpcb_sosetlabel(so, inp);
2061 	SOCK_UNLOCK(so);
2062 	INP_WUNLOCK(inp);
2063 #endif
2064 }
2065 
2066 /*
2067  * ipport_tick runs once per second, determining if random port allocation
2068  * should be continued.  If more than ipport_randomcps ports have been
2069  * allocated in the last second, then we return to sequential port
2070  * allocation. We return to random allocation only once we drop below
2071  * ipport_randomcps for at least ipport_randomtime seconds.
2072  */
2073 static void
2074 ipport_tick(void *xtp)
2075 {
2076 	VNET_ITERATOR_DECL(vnet_iter);
2077 
2078 	VNET_LIST_RLOCK_NOSLEEP();
2079 	VNET_FOREACH(vnet_iter) {
2080 		CURVNET_SET(vnet_iter);	/* XXX appease INVARIANTS here */
2081 		if (V_ipport_tcpallocs <=
2082 		    V_ipport_tcplastcount + V_ipport_randomcps) {
2083 			if (V_ipport_stoprandom > 0)
2084 				V_ipport_stoprandom--;
2085 		} else
2086 			V_ipport_stoprandom = V_ipport_randomtime;
2087 		V_ipport_tcplastcount = V_ipport_tcpallocs;
2088 		CURVNET_RESTORE();
2089 	}
2090 	VNET_LIST_RUNLOCK_NOSLEEP();
2091 	callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL);
2092 }
2093 
2094 static void
2095 ip_fini(void *xtp)
2096 {
2097 
2098 	callout_stop(&ipport_tick_callout);
2099 }
2100 
2101 /*
2102  * The ipport_callout should start running at about the time we attach the
2103  * inet or inet6 domains.
2104  */
2105 static void
2106 ipport_tick_init(const void *unused __unused)
2107 {
2108 
2109 	/* Start ipport_tick. */
2110 	callout_init(&ipport_tick_callout, CALLOUT_MPSAFE);
2111 	callout_reset(&ipport_tick_callout, 1, ipport_tick, NULL);
2112 	EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL,
2113 		SHUTDOWN_PRI_DEFAULT);
2114 }
2115 SYSINIT(ipport_tick_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_MIDDLE,
2116     ipport_tick_init, NULL);
2117 
2118 void
2119 inp_wlock(struct inpcb *inp)
2120 {
2121 
2122 	INP_WLOCK(inp);
2123 }
2124 
2125 void
2126 inp_wunlock(struct inpcb *inp)
2127 {
2128 
2129 	INP_WUNLOCK(inp);
2130 }
2131 
2132 void
2133 inp_rlock(struct inpcb *inp)
2134 {
2135 
2136 	INP_RLOCK(inp);
2137 }
2138 
2139 void
2140 inp_runlock(struct inpcb *inp)
2141 {
2142 
2143 	INP_RUNLOCK(inp);
2144 }
2145 
2146 #ifdef INVARIANTS
2147 void
2148 inp_lock_assert(struct inpcb *inp)
2149 {
2150 
2151 	INP_WLOCK_ASSERT(inp);
2152 }
2153 
2154 void
2155 inp_unlock_assert(struct inpcb *inp)
2156 {
2157 
2158 	INP_UNLOCK_ASSERT(inp);
2159 }
2160 #endif
2161 
2162 void
2163 inp_apply_all(void (*func)(struct inpcb *, void *), void *arg)
2164 {
2165 	struct inpcb *inp;
2166 
2167 	INP_INFO_RLOCK(&V_tcbinfo);
2168 	LIST_FOREACH(inp, V_tcbinfo.ipi_listhead, inp_list) {
2169 		INP_WLOCK(inp);
2170 		func(inp, arg);
2171 		INP_WUNLOCK(inp);
2172 	}
2173 	INP_INFO_RUNLOCK(&V_tcbinfo);
2174 }
2175 
2176 struct socket *
2177 inp_inpcbtosocket(struct inpcb *inp)
2178 {
2179 
2180 	INP_WLOCK_ASSERT(inp);
2181 	return (inp->inp_socket);
2182 }
2183 
2184 struct tcpcb *
2185 inp_inpcbtotcpcb(struct inpcb *inp)
2186 {
2187 
2188 	INP_WLOCK_ASSERT(inp);
2189 	return ((struct tcpcb *)inp->inp_ppcb);
2190 }
2191 
2192 int
2193 inp_ip_tos_get(const struct inpcb *inp)
2194 {
2195 
2196 	return (inp->inp_ip_tos);
2197 }
2198 
2199 void
2200 inp_ip_tos_set(struct inpcb *inp, int val)
2201 {
2202 
2203 	inp->inp_ip_tos = val;
2204 }
2205 
2206 void
2207 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp,
2208     uint32_t *faddr, uint16_t *fp)
2209 {
2210 
2211 	INP_LOCK_ASSERT(inp);
2212 	*laddr = inp->inp_laddr.s_addr;
2213 	*faddr = inp->inp_faddr.s_addr;
2214 	*lp = inp->inp_lport;
2215 	*fp = inp->inp_fport;
2216 }
2217 
2218 struct inpcb *
2219 so_sotoinpcb(struct socket *so)
2220 {
2221 
2222 	return (sotoinpcb(so));
2223 }
2224 
2225 struct tcpcb *
2226 so_sototcpcb(struct socket *so)
2227 {
2228 
2229 	return (sototcpcb(so));
2230 }
2231 
2232 #ifdef DDB
2233 static void
2234 db_print_indent(int indent)
2235 {
2236 	int i;
2237 
2238 	for (i = 0; i < indent; i++)
2239 		db_printf(" ");
2240 }
2241 
2242 static void
2243 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent)
2244 {
2245 	char faddr_str[48], laddr_str[48];
2246 
2247 	db_print_indent(indent);
2248 	db_printf("%s at %p\n", name, inc);
2249 
2250 	indent += 2;
2251 
2252 #ifdef INET6
2253 	if (inc->inc_flags & INC_ISIPV6) {
2254 		/* IPv6. */
2255 		ip6_sprintf(laddr_str, &inc->inc6_laddr);
2256 		ip6_sprintf(faddr_str, &inc->inc6_faddr);
2257 	} else
2258 #endif
2259 	{
2260 		/* IPv4. */
2261 		inet_ntoa_r(inc->inc_laddr, laddr_str);
2262 		inet_ntoa_r(inc->inc_faddr, faddr_str);
2263 	}
2264 	db_print_indent(indent);
2265 	db_printf("inc_laddr %s   inc_lport %u\n", laddr_str,
2266 	    ntohs(inc->inc_lport));
2267 	db_print_indent(indent);
2268 	db_printf("inc_faddr %s   inc_fport %u\n", faddr_str,
2269 	    ntohs(inc->inc_fport));
2270 }
2271 
2272 static void
2273 db_print_inpflags(int inp_flags)
2274 {
2275 	int comma;
2276 
2277 	comma = 0;
2278 	if (inp_flags & INP_RECVOPTS) {
2279 		db_printf("%sINP_RECVOPTS", comma ? ", " : "");
2280 		comma = 1;
2281 	}
2282 	if (inp_flags & INP_RECVRETOPTS) {
2283 		db_printf("%sINP_RECVRETOPTS", comma ? ", " : "");
2284 		comma = 1;
2285 	}
2286 	if (inp_flags & INP_RECVDSTADDR) {
2287 		db_printf("%sINP_RECVDSTADDR", comma ? ", " : "");
2288 		comma = 1;
2289 	}
2290 	if (inp_flags & INP_HDRINCL) {
2291 		db_printf("%sINP_HDRINCL", comma ? ", " : "");
2292 		comma = 1;
2293 	}
2294 	if (inp_flags & INP_HIGHPORT) {
2295 		db_printf("%sINP_HIGHPORT", comma ? ", " : "");
2296 		comma = 1;
2297 	}
2298 	if (inp_flags & INP_LOWPORT) {
2299 		db_printf("%sINP_LOWPORT", comma ? ", " : "");
2300 		comma = 1;
2301 	}
2302 	if (inp_flags & INP_ANONPORT) {
2303 		db_printf("%sINP_ANONPORT", comma ? ", " : "");
2304 		comma = 1;
2305 	}
2306 	if (inp_flags & INP_RECVIF) {
2307 		db_printf("%sINP_RECVIF", comma ? ", " : "");
2308 		comma = 1;
2309 	}
2310 	if (inp_flags & INP_MTUDISC) {
2311 		db_printf("%sINP_MTUDISC", comma ? ", " : "");
2312 		comma = 1;
2313 	}
2314 	if (inp_flags & INP_FAITH) {
2315 		db_printf("%sINP_FAITH", comma ? ", " : "");
2316 		comma = 1;
2317 	}
2318 	if (inp_flags & INP_RECVTTL) {
2319 		db_printf("%sINP_RECVTTL", comma ? ", " : "");
2320 		comma = 1;
2321 	}
2322 	if (inp_flags & INP_DONTFRAG) {
2323 		db_printf("%sINP_DONTFRAG", comma ? ", " : "");
2324 		comma = 1;
2325 	}
2326 	if (inp_flags & INP_RECVTOS) {
2327 		db_printf("%sINP_RECVTOS", comma ? ", " : "");
2328 		comma = 1;
2329 	}
2330 	if (inp_flags & IN6P_IPV6_V6ONLY) {
2331 		db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : "");
2332 		comma = 1;
2333 	}
2334 	if (inp_flags & IN6P_PKTINFO) {
2335 		db_printf("%sIN6P_PKTINFO", comma ? ", " : "");
2336 		comma = 1;
2337 	}
2338 	if (inp_flags & IN6P_HOPLIMIT) {
2339 		db_printf("%sIN6P_HOPLIMIT", comma ? ", " : "");
2340 		comma = 1;
2341 	}
2342 	if (inp_flags & IN6P_HOPOPTS) {
2343 		db_printf("%sIN6P_HOPOPTS", comma ? ", " : "");
2344 		comma = 1;
2345 	}
2346 	if (inp_flags & IN6P_DSTOPTS) {
2347 		db_printf("%sIN6P_DSTOPTS", comma ? ", " : "");
2348 		comma = 1;
2349 	}
2350 	if (inp_flags & IN6P_RTHDR) {
2351 		db_printf("%sIN6P_RTHDR", comma ? ", " : "");
2352 		comma = 1;
2353 	}
2354 	if (inp_flags & IN6P_RTHDRDSTOPTS) {
2355 		db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : "");
2356 		comma = 1;
2357 	}
2358 	if (inp_flags & IN6P_TCLASS) {
2359 		db_printf("%sIN6P_TCLASS", comma ? ", " : "");
2360 		comma = 1;
2361 	}
2362 	if (inp_flags & IN6P_AUTOFLOWLABEL) {
2363 		db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : "");
2364 		comma = 1;
2365 	}
2366 	if (inp_flags & INP_TIMEWAIT) {
2367 		db_printf("%sINP_TIMEWAIT", comma ? ", " : "");
2368 		comma  = 1;
2369 	}
2370 	if (inp_flags & INP_ONESBCAST) {
2371 		db_printf("%sINP_ONESBCAST", comma ? ", " : "");
2372 		comma  = 1;
2373 	}
2374 	if (inp_flags & INP_DROPPED) {
2375 		db_printf("%sINP_DROPPED", comma ? ", " : "");
2376 		comma  = 1;
2377 	}
2378 	if (inp_flags & INP_SOCKREF) {
2379 		db_printf("%sINP_SOCKREF", comma ? ", " : "");
2380 		comma  = 1;
2381 	}
2382 	if (inp_flags & IN6P_RFC2292) {
2383 		db_printf("%sIN6P_RFC2292", comma ? ", " : "");
2384 		comma = 1;
2385 	}
2386 	if (inp_flags & IN6P_MTU) {
2387 		db_printf("IN6P_MTU%s", comma ? ", " : "");
2388 		comma = 1;
2389 	}
2390 }
2391 
2392 static void
2393 db_print_inpvflag(u_char inp_vflag)
2394 {
2395 	int comma;
2396 
2397 	comma = 0;
2398 	if (inp_vflag & INP_IPV4) {
2399 		db_printf("%sINP_IPV4", comma ? ", " : "");
2400 		comma  = 1;
2401 	}
2402 	if (inp_vflag & INP_IPV6) {
2403 		db_printf("%sINP_IPV6", comma ? ", " : "");
2404 		comma  = 1;
2405 	}
2406 	if (inp_vflag & INP_IPV6PROTO) {
2407 		db_printf("%sINP_IPV6PROTO", comma ? ", " : "");
2408 		comma  = 1;
2409 	}
2410 }
2411 
2412 static void
2413 db_print_inpcb(struct inpcb *inp, const char *name, int indent)
2414 {
2415 
2416 	db_print_indent(indent);
2417 	db_printf("%s at %p\n", name, inp);
2418 
2419 	indent += 2;
2420 
2421 	db_print_indent(indent);
2422 	db_printf("inp_flow: 0x%x\n", inp->inp_flow);
2423 
2424 	db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent);
2425 
2426 	db_print_indent(indent);
2427 	db_printf("inp_ppcb: %p   inp_pcbinfo: %p   inp_socket: %p\n",
2428 	    inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket);
2429 
2430 	db_print_indent(indent);
2431 	db_printf("inp_label: %p   inp_flags: 0x%x (",
2432 	   inp->inp_label, inp->inp_flags);
2433 	db_print_inpflags(inp->inp_flags);
2434 	db_printf(")\n");
2435 
2436 	db_print_indent(indent);
2437 	db_printf("inp_sp: %p   inp_vflag: 0x%x (", inp->inp_sp,
2438 	    inp->inp_vflag);
2439 	db_print_inpvflag(inp->inp_vflag);
2440 	db_printf(")\n");
2441 
2442 	db_print_indent(indent);
2443 	db_printf("inp_ip_ttl: %d   inp_ip_p: %d   inp_ip_minttl: %d\n",
2444 	    inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl);
2445 
2446 	db_print_indent(indent);
2447 #ifdef INET6
2448 	if (inp->inp_vflag & INP_IPV6) {
2449 		db_printf("in6p_options: %p   in6p_outputopts: %p   "
2450 		    "in6p_moptions: %p\n", inp->in6p_options,
2451 		    inp->in6p_outputopts, inp->in6p_moptions);
2452 		db_printf("in6p_icmp6filt: %p   in6p_cksum %d   "
2453 		    "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum,
2454 		    inp->in6p_hops);
2455 	} else
2456 #endif
2457 	{
2458 		db_printf("inp_ip_tos: %d   inp_ip_options: %p   "
2459 		    "inp_ip_moptions: %p\n", inp->inp_ip_tos,
2460 		    inp->inp_options, inp->inp_moptions);
2461 	}
2462 
2463 	db_print_indent(indent);
2464 	db_printf("inp_phd: %p   inp_gencnt: %ju\n", inp->inp_phd,
2465 	    (uintmax_t)inp->inp_gencnt);
2466 }
2467 
2468 DB_SHOW_COMMAND(inpcb, db_show_inpcb)
2469 {
2470 	struct inpcb *inp;
2471 
2472 	if (!have_addr) {
2473 		db_printf("usage: show inpcb <addr>\n");
2474 		return;
2475 	}
2476 	inp = (struct inpcb *)addr;
2477 
2478 	db_print_inpcb(inp, "inpcb", 0);
2479 }
2480 #endif /* DDB */
2481