xref: /freebsd/sys/netinet/in_pcb.c (revision d0675399d09f02d347912e23d004329710338450)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1991, 1993, 1995
5  *	The Regents of the University of California.
6  * Copyright (c) 2007-2009 Robert N. M. Watson
7  * Copyright (c) 2010-2011 Juniper Networks, Inc.
8  * Copyright (c) 2021-2022 Gleb Smirnoff <glebius@FreeBSD.org>
9  * All rights reserved.
10  *
11  * Portions of this software were developed by Robert N. M. Watson under
12  * contract to Juniper Networks, Inc.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  */
38 
39 #include <sys/cdefs.h>
40 #include "opt_ddb.h"
41 #include "opt_ipsec.h"
42 #include "opt_inet.h"
43 #include "opt_inet6.h"
44 #include "opt_ratelimit.h"
45 #include "opt_route.h"
46 #include "opt_rss.h"
47 
48 #include <sys/param.h>
49 #include <sys/hash.h>
50 #include <sys/systm.h>
51 #include <sys/libkern.h>
52 #include <sys/lock.h>
53 #include <sys/malloc.h>
54 #include <sys/mbuf.h>
55 #include <sys/eventhandler.h>
56 #include <sys/domain.h>
57 #include <sys/proc.h>
58 #include <sys/protosw.h>
59 #include <sys/smp.h>
60 #include <sys/smr.h>
61 #include <sys/socket.h>
62 #include <sys/socketvar.h>
63 #include <sys/sockio.h>
64 #include <sys/priv.h>
65 #include <sys/proc.h>
66 #include <sys/refcount.h>
67 #include <sys/jail.h>
68 #include <sys/kernel.h>
69 #include <sys/sysctl.h>
70 
71 #ifdef DDB
72 #include <ddb/ddb.h>
73 #endif
74 
75 #include <vm/uma.h>
76 #include <vm/vm.h>
77 
78 #include <net/if.h>
79 #include <net/if_var.h>
80 #include <net/if_private.h>
81 #include <net/if_types.h>
82 #include <net/if_llatbl.h>
83 #include <net/route.h>
84 #include <net/rss_config.h>
85 #include <net/vnet.h>
86 
87 #if defined(INET) || defined(INET6)
88 #include <netinet/in.h>
89 #include <netinet/in_pcb.h>
90 #include <netinet/in_pcb_var.h>
91 #include <netinet/tcp.h>
92 #ifdef INET
93 #include <netinet/in_var.h>
94 #include <netinet/in_fib.h>
95 #endif
96 #include <netinet/ip_var.h>
97 #ifdef INET6
98 #include <netinet/ip6.h>
99 #include <netinet6/in6_pcb.h>
100 #include <netinet6/in6_var.h>
101 #include <netinet6/ip6_var.h>
102 #endif /* INET6 */
103 #include <net/route/nhop.h>
104 #endif
105 
106 #include <netipsec/ipsec_support.h>
107 
108 #include <security/mac/mac_framework.h>
109 
110 #define	INPCBLBGROUP_SIZMIN	8
111 #define	INPCBLBGROUP_SIZMAX	256
112 
113 #define	INP_FREED	0x00000200	/* Went through in_pcbfree(). */
114 #define	INP_INLBGROUP	0x01000000	/* Inserted into inpcblbgroup. */
115 
116 /*
117  * These configure the range of local port addresses assigned to
118  * "unspecified" outgoing connections/packets/whatever.
119  */
120 VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1;	/* 1023 */
121 VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART;	/* 600 */
122 VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST;	/* 10000 */
123 VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST;	/* 65535 */
124 VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO;	/* 49152 */
125 VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO;	/* 65535 */
126 
127 /*
128  * Reserved ports accessible only to root. There are significant
129  * security considerations that must be accounted for when changing these,
130  * but the security benefits can be great. Please be careful.
131  */
132 VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1;	/* 1023 */
133 VNET_DEFINE(int, ipport_reservedlow);
134 
135 /* Enable random ephemeral port allocation by default. */
136 VNET_DEFINE(int, ipport_randomized) = 1;
137 
138 #ifdef INET
139 static struct inpcb	*in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo,
140 			    struct in_addr faddr, u_int fport_arg,
141 			    struct in_addr laddr, u_int lport_arg,
142 			    int lookupflags, uint8_t numa_domain);
143 
144 #define RANGECHK(var, min, max) \
145 	if ((var) < (min)) { (var) = (min); } \
146 	else if ((var) > (max)) { (var) = (max); }
147 
148 static int
149 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS)
150 {
151 	int error;
152 
153 	error = sysctl_handle_int(oidp, arg1, arg2, req);
154 	if (error == 0) {
155 		RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1);
156 		RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1);
157 		RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX);
158 		RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX);
159 		RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX);
160 		RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX);
161 	}
162 	return (error);
163 }
164 
165 #undef RANGECHK
166 
167 static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange,
168     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
169     "IP Ports");
170 
171 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst,
172     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
173     &VNET_NAME(ipport_lowfirstauto), 0, &sysctl_net_ipport_check, "I",
174     "");
175 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast,
176     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
177     &VNET_NAME(ipport_lowlastauto), 0, &sysctl_net_ipport_check, "I",
178     "");
179 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first,
180     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
181     &VNET_NAME(ipport_firstauto), 0, &sysctl_net_ipport_check, "I",
182     "");
183 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last,
184     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
185     &VNET_NAME(ipport_lastauto), 0, &sysctl_net_ipport_check, "I",
186     "");
187 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst,
188     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
189     &VNET_NAME(ipport_hifirstauto), 0, &sysctl_net_ipport_check, "I",
190     "");
191 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast,
192     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
193     &VNET_NAME(ipport_hilastauto), 0, &sysctl_net_ipport_check, "I",
194     "");
195 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh,
196 	CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE,
197 	&VNET_NAME(ipport_reservedhigh), 0, "");
198 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow,
199 	CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, "");
200 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized,
201 	CTLFLAG_VNET | CTLFLAG_RW,
202 	&VNET_NAME(ipport_randomized), 0, "Enable random port allocation");
203 
204 #ifdef RATELIMIT
205 counter_u64_t rate_limit_new;
206 counter_u64_t rate_limit_chg;
207 counter_u64_t rate_limit_active;
208 counter_u64_t rate_limit_alloc_fail;
209 counter_u64_t rate_limit_set_ok;
210 
211 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, rl, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
212     "IP Rate Limiting");
213 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, active, CTLFLAG_RD,
214     &rate_limit_active, "Active rate limited connections");
215 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, alloc_fail, CTLFLAG_RD,
216    &rate_limit_alloc_fail, "Rate limited connection failures");
217 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, set_ok, CTLFLAG_RD,
218    &rate_limit_set_ok, "Rate limited setting succeeded");
219 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, newrl, CTLFLAG_RD,
220    &rate_limit_new, "Total Rate limit new attempts");
221 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, chgrl, CTLFLAG_RD,
222    &rate_limit_chg, "Total Rate limited change attempts");
223 #endif /* RATELIMIT */
224 
225 #endif /* INET */
226 
227 VNET_DEFINE(uint32_t, in_pcbhashseed);
228 static void
229 in_pcbhashseed_init(void)
230 {
231 
232 	V_in_pcbhashseed = arc4random();
233 }
234 VNET_SYSINIT(in_pcbhashseed_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_FIRST,
235     in_pcbhashseed_init, 0);
236 
237 #ifdef INET
238 VNET_DEFINE_STATIC(int, connect_inaddr_wild) = 1;
239 #define	V_connect_inaddr_wild	VNET(connect_inaddr_wild)
240 SYSCTL_INT(_net_inet_ip, OID_AUTO, connect_inaddr_wild,
241     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(connect_inaddr_wild), 0,
242     "Allow connecting to INADDR_ANY or INADDR_BROADCAST for connect(2)");
243 #endif
244 
245 static void in_pcbremhash(struct inpcb *);
246 
247 /*
248  * in_pcb.c: manage the Protocol Control Blocks.
249  *
250  * NOTE: It is assumed that most of these functions will be called with
251  * the pcbinfo lock held, and often, the inpcb lock held, as these utility
252  * functions often modify hash chains or addresses in pcbs.
253  */
254 
255 static struct inpcblbgroup *
256 in_pcblbgroup_alloc(struct inpcblbgrouphead *hdr, struct ucred *cred,
257     u_char vflag, uint16_t port, const union in_dependaddr *addr, int size,
258     uint8_t numa_domain)
259 {
260 	struct inpcblbgroup *grp;
261 	size_t bytes;
262 
263 	bytes = __offsetof(struct inpcblbgroup, il_inp[size]);
264 	grp = malloc(bytes, M_PCB, M_ZERO | M_NOWAIT);
265 	if (grp == NULL)
266 		return (NULL);
267 	grp->il_cred = crhold(cred);
268 	grp->il_vflag = vflag;
269 	grp->il_lport = port;
270 	grp->il_numa_domain = numa_domain;
271 	grp->il_dependladdr = *addr;
272 	grp->il_inpsiz = size;
273 	CK_LIST_INSERT_HEAD(hdr, grp, il_list);
274 	return (grp);
275 }
276 
277 static void
278 in_pcblbgroup_free_deferred(epoch_context_t ctx)
279 {
280 	struct inpcblbgroup *grp;
281 
282 	grp = __containerof(ctx, struct inpcblbgroup, il_epoch_ctx);
283 	crfree(grp->il_cred);
284 	free(grp, M_PCB);
285 }
286 
287 static void
288 in_pcblbgroup_free(struct inpcblbgroup *grp)
289 {
290 
291 	CK_LIST_REMOVE(grp, il_list);
292 	NET_EPOCH_CALL(in_pcblbgroup_free_deferred, &grp->il_epoch_ctx);
293 }
294 
295 static struct inpcblbgroup *
296 in_pcblbgroup_resize(struct inpcblbgrouphead *hdr,
297     struct inpcblbgroup *old_grp, int size)
298 {
299 	struct inpcblbgroup *grp;
300 	int i;
301 
302 	grp = in_pcblbgroup_alloc(hdr, old_grp->il_cred, old_grp->il_vflag,
303 	    old_grp->il_lport, &old_grp->il_dependladdr, size,
304 	    old_grp->il_numa_domain);
305 	if (grp == NULL)
306 		return (NULL);
307 
308 	KASSERT(old_grp->il_inpcnt < grp->il_inpsiz,
309 	    ("invalid new local group size %d and old local group count %d",
310 	     grp->il_inpsiz, old_grp->il_inpcnt));
311 
312 	for (i = 0; i < old_grp->il_inpcnt; ++i)
313 		grp->il_inp[i] = old_grp->il_inp[i];
314 	grp->il_inpcnt = old_grp->il_inpcnt;
315 	in_pcblbgroup_free(old_grp);
316 	return (grp);
317 }
318 
319 /*
320  * PCB at index 'i' is removed from the group. Pull up the ones below il_inp[i]
321  * and shrink group if possible.
322  */
323 static void
324 in_pcblbgroup_reorder(struct inpcblbgrouphead *hdr, struct inpcblbgroup **grpp,
325     int i)
326 {
327 	struct inpcblbgroup *grp, *new_grp;
328 
329 	grp = *grpp;
330 	for (; i + 1 < grp->il_inpcnt; ++i)
331 		grp->il_inp[i] = grp->il_inp[i + 1];
332 	grp->il_inpcnt--;
333 
334 	if (grp->il_inpsiz > INPCBLBGROUP_SIZMIN &&
335 	    grp->il_inpcnt <= grp->il_inpsiz / 4) {
336 		/* Shrink this group. */
337 		new_grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz / 2);
338 		if (new_grp != NULL)
339 			*grpp = new_grp;
340 	}
341 }
342 
343 /*
344  * Add PCB to load balance group for SO_REUSEPORT_LB option.
345  */
346 static int
347 in_pcbinslbgrouphash(struct inpcb *inp, uint8_t numa_domain)
348 {
349 	const static struct timeval interval = { 60, 0 };
350 	static struct timeval lastprint;
351 	struct inpcbinfo *pcbinfo;
352 	struct inpcblbgrouphead *hdr;
353 	struct inpcblbgroup *grp;
354 	uint32_t idx;
355 
356 	pcbinfo = inp->inp_pcbinfo;
357 
358 	INP_WLOCK_ASSERT(inp);
359 	INP_HASH_WLOCK_ASSERT(pcbinfo);
360 
361 #ifdef INET6
362 	/*
363 	 * Don't allow IPv4 mapped INET6 wild socket.
364 	 */
365 	if ((inp->inp_vflag & INP_IPV4) &&
366 	    inp->inp_laddr.s_addr == INADDR_ANY &&
367 	    INP_CHECK_SOCKAF(inp->inp_socket, AF_INET6)) {
368 		return (0);
369 	}
370 #endif
371 
372 	idx = INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask);
373 	hdr = &pcbinfo->ipi_lbgrouphashbase[idx];
374 	CK_LIST_FOREACH(grp, hdr, il_list) {
375 		if (grp->il_cred->cr_prison == inp->inp_cred->cr_prison &&
376 		    grp->il_vflag == inp->inp_vflag &&
377 		    grp->il_lport == inp->inp_lport &&
378 		    grp->il_numa_domain == numa_domain &&
379 		    memcmp(&grp->il_dependladdr,
380 		    &inp->inp_inc.inc_ie.ie_dependladdr,
381 		    sizeof(grp->il_dependladdr)) == 0) {
382 			break;
383 		}
384 	}
385 	if (grp == NULL) {
386 		/* Create new load balance group. */
387 		grp = in_pcblbgroup_alloc(hdr, inp->inp_cred, inp->inp_vflag,
388 		    inp->inp_lport, &inp->inp_inc.inc_ie.ie_dependladdr,
389 		    INPCBLBGROUP_SIZMIN, numa_domain);
390 		if (grp == NULL)
391 			return (ENOBUFS);
392 	} else if (grp->il_inpcnt == grp->il_inpsiz) {
393 		if (grp->il_inpsiz >= INPCBLBGROUP_SIZMAX) {
394 			if (ratecheck(&lastprint, &interval))
395 				printf("lb group port %d, limit reached\n",
396 				    ntohs(grp->il_lport));
397 			return (0);
398 		}
399 
400 		/* Expand this local group. */
401 		grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz * 2);
402 		if (grp == NULL)
403 			return (ENOBUFS);
404 	}
405 
406 	KASSERT(grp->il_inpcnt < grp->il_inpsiz,
407 	    ("invalid local group size %d and count %d", grp->il_inpsiz,
408 	    grp->il_inpcnt));
409 
410 	grp->il_inp[grp->il_inpcnt] = inp;
411 	grp->il_inpcnt++;
412 	inp->inp_flags |= INP_INLBGROUP;
413 	return (0);
414 }
415 
416 /*
417  * Remove PCB from load balance group.
418  */
419 static void
420 in_pcbremlbgrouphash(struct inpcb *inp)
421 {
422 	struct inpcbinfo *pcbinfo;
423 	struct inpcblbgrouphead *hdr;
424 	struct inpcblbgroup *grp;
425 	int i;
426 
427 	pcbinfo = inp->inp_pcbinfo;
428 
429 	INP_WLOCK_ASSERT(inp);
430 	MPASS(inp->inp_flags & INP_INLBGROUP);
431 	INP_HASH_WLOCK_ASSERT(pcbinfo);
432 
433 	hdr = &pcbinfo->ipi_lbgrouphashbase[
434 	    INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask)];
435 	CK_LIST_FOREACH(grp, hdr, il_list) {
436 		for (i = 0; i < grp->il_inpcnt; ++i) {
437 			if (grp->il_inp[i] != inp)
438 				continue;
439 
440 			if (grp->il_inpcnt == 1) {
441 				/* We are the last, free this local group. */
442 				in_pcblbgroup_free(grp);
443 			} else {
444 				/* Pull up inpcbs, shrink group if possible. */
445 				in_pcblbgroup_reorder(hdr, &grp, i);
446 			}
447 			inp->inp_flags &= ~INP_INLBGROUP;
448 			return;
449 		}
450 	}
451 	KASSERT(0, ("%s: did not find %p", __func__, inp));
452 }
453 
454 int
455 in_pcblbgroup_numa(struct inpcb *inp, int arg)
456 {
457 	struct inpcbinfo *pcbinfo;
458 	struct inpcblbgrouphead *hdr;
459 	struct inpcblbgroup *grp;
460 	int err, i;
461 	uint8_t numa_domain;
462 
463 	switch (arg) {
464 	case TCP_REUSPORT_LB_NUMA_NODOM:
465 		numa_domain = M_NODOM;
466 		break;
467 	case TCP_REUSPORT_LB_NUMA_CURDOM:
468 		numa_domain = PCPU_GET(domain);
469 		break;
470 	default:
471 		if (arg < 0 || arg >= vm_ndomains)
472 			return (EINVAL);
473 		numa_domain = arg;
474 	}
475 
476 	err = 0;
477 	pcbinfo = inp->inp_pcbinfo;
478 	INP_WLOCK_ASSERT(inp);
479 	INP_HASH_WLOCK(pcbinfo);
480 	hdr = &pcbinfo->ipi_lbgrouphashbase[
481 	    INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask)];
482 	CK_LIST_FOREACH(grp, hdr, il_list) {
483 		for (i = 0; i < grp->il_inpcnt; ++i) {
484 			if (grp->il_inp[i] != inp)
485 				continue;
486 
487 			if (grp->il_numa_domain == numa_domain) {
488 				goto abort_with_hash_wlock;
489 			}
490 
491 			/* Remove it from the old group. */
492 			in_pcbremlbgrouphash(inp);
493 
494 			/* Add it to the new group based on numa domain. */
495 			in_pcbinslbgrouphash(inp, numa_domain);
496 			goto abort_with_hash_wlock;
497 		}
498 	}
499 	err = ENOENT;
500 abort_with_hash_wlock:
501 	INP_HASH_WUNLOCK(pcbinfo);
502 	return (err);
503 }
504 
505 /* Make sure it is safe to use hashinit(9) on CK_LIST. */
506 CTASSERT(sizeof(struct inpcbhead) == sizeof(LIST_HEAD(, inpcb)));
507 
508 /*
509  * Initialize an inpcbinfo - a per-VNET instance of connections db.
510  */
511 void
512 in_pcbinfo_init(struct inpcbinfo *pcbinfo, struct inpcbstorage *pcbstor,
513     u_int hash_nelements, u_int porthash_nelements)
514 {
515 
516 	mtx_init(&pcbinfo->ipi_lock, pcbstor->ips_infolock_name, NULL, MTX_DEF);
517 	mtx_init(&pcbinfo->ipi_hash_lock, pcbstor->ips_hashlock_name,
518 	    NULL, MTX_DEF);
519 #ifdef VIMAGE
520 	pcbinfo->ipi_vnet = curvnet;
521 #endif
522 	CK_LIST_INIT(&pcbinfo->ipi_listhead);
523 	pcbinfo->ipi_count = 0;
524 	pcbinfo->ipi_hash_exact = hashinit(hash_nelements, M_PCB,
525 	    &pcbinfo->ipi_hashmask);
526 	pcbinfo->ipi_hash_wild = hashinit(hash_nelements, M_PCB,
527 	    &pcbinfo->ipi_hashmask);
528 	porthash_nelements = imin(porthash_nelements, IPPORT_MAX + 1);
529 	pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB,
530 	    &pcbinfo->ipi_porthashmask);
531 	pcbinfo->ipi_lbgrouphashbase = hashinit(porthash_nelements, M_PCB,
532 	    &pcbinfo->ipi_lbgrouphashmask);
533 	pcbinfo->ipi_zone = pcbstor->ips_zone;
534 	pcbinfo->ipi_portzone = pcbstor->ips_portzone;
535 	pcbinfo->ipi_smr = uma_zone_get_smr(pcbinfo->ipi_zone);
536 }
537 
538 /*
539  * Destroy an inpcbinfo.
540  */
541 void
542 in_pcbinfo_destroy(struct inpcbinfo *pcbinfo)
543 {
544 
545 	KASSERT(pcbinfo->ipi_count == 0,
546 	    ("%s: ipi_count = %u", __func__, pcbinfo->ipi_count));
547 
548 	hashdestroy(pcbinfo->ipi_hash_exact, M_PCB, pcbinfo->ipi_hashmask);
549 	hashdestroy(pcbinfo->ipi_hash_wild, M_PCB, pcbinfo->ipi_hashmask);
550 	hashdestroy(pcbinfo->ipi_porthashbase, M_PCB,
551 	    pcbinfo->ipi_porthashmask);
552 	hashdestroy(pcbinfo->ipi_lbgrouphashbase, M_PCB,
553 	    pcbinfo->ipi_lbgrouphashmask);
554 	mtx_destroy(&pcbinfo->ipi_hash_lock);
555 	mtx_destroy(&pcbinfo->ipi_lock);
556 }
557 
558 /*
559  * Initialize a pcbstorage - per protocol zones to allocate inpcbs.
560  */
561 static void inpcb_fini(void *, int);
562 void
563 in_pcbstorage_init(void *arg)
564 {
565 	struct inpcbstorage *pcbstor = arg;
566 
567 	pcbstor->ips_zone = uma_zcreate(pcbstor->ips_zone_name,
568 	    pcbstor->ips_size, NULL, NULL, pcbstor->ips_pcbinit,
569 	    inpcb_fini, UMA_ALIGN_CACHE, UMA_ZONE_SMR);
570 	pcbstor->ips_portzone = uma_zcreate(pcbstor->ips_portzone_name,
571 	    sizeof(struct inpcbport), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
572 	uma_zone_set_smr(pcbstor->ips_portzone,
573 	    uma_zone_get_smr(pcbstor->ips_zone));
574 }
575 
576 /*
577  * Destroy a pcbstorage - used by unloadable protocols.
578  */
579 void
580 in_pcbstorage_destroy(void *arg)
581 {
582 	struct inpcbstorage *pcbstor = arg;
583 
584 	uma_zdestroy(pcbstor->ips_zone);
585 	uma_zdestroy(pcbstor->ips_portzone);
586 }
587 
588 /*
589  * Allocate a PCB and associate it with the socket.
590  * On success return with the PCB locked.
591  */
592 int
593 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo)
594 {
595 	struct inpcb *inp;
596 #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC)
597 	int error;
598 #endif
599 
600 	inp = uma_zalloc_smr(pcbinfo->ipi_zone, M_NOWAIT);
601 	if (inp == NULL)
602 		return (ENOBUFS);
603 	bzero(&inp->inp_start_zero, inp_zero_size);
604 #ifdef NUMA
605 	inp->inp_numa_domain = M_NODOM;
606 #endif
607 	inp->inp_pcbinfo = pcbinfo;
608 	inp->inp_socket = so;
609 	inp->inp_cred = crhold(so->so_cred);
610 	inp->inp_inc.inc_fibnum = so->so_fibnum;
611 #ifdef MAC
612 	error = mac_inpcb_init(inp, M_NOWAIT);
613 	if (error != 0)
614 		goto out;
615 	mac_inpcb_create(so, inp);
616 #endif
617 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
618 	error = ipsec_init_pcbpolicy(inp);
619 	if (error != 0) {
620 #ifdef MAC
621 		mac_inpcb_destroy(inp);
622 #endif
623 		goto out;
624 	}
625 #endif /*IPSEC*/
626 #ifdef INET6
627 	if (INP_SOCKAF(so) == AF_INET6) {
628 		inp->inp_vflag |= INP_IPV6PROTO | INP_IPV6;
629 		if (V_ip6_v6only)
630 			inp->inp_flags |= IN6P_IPV6_V6ONLY;
631 #ifdef INET
632 		else
633 			inp->inp_vflag |= INP_IPV4;
634 #endif
635 		if (V_ip6_auto_flowlabel)
636 			inp->inp_flags |= IN6P_AUTOFLOWLABEL;
637 		inp->in6p_hops = -1;	/* use kernel default */
638 	}
639 #endif
640 #if defined(INET) && defined(INET6)
641 	else
642 #endif
643 #ifdef INET
644 		inp->inp_vflag |= INP_IPV4;
645 #endif
646 	inp->inp_smr = SMR_SEQ_INVALID;
647 
648 	/*
649 	 * Routes in inpcb's can cache L2 as well; they are guaranteed
650 	 * to be cleaned up.
651 	 */
652 	inp->inp_route.ro_flags = RT_LLE_CACHE;
653 	refcount_init(&inp->inp_refcount, 1);   /* Reference from socket. */
654 	INP_WLOCK(inp);
655 	INP_INFO_WLOCK(pcbinfo);
656 	pcbinfo->ipi_count++;
657 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
658 	CK_LIST_INSERT_HEAD(&pcbinfo->ipi_listhead, inp, inp_list);
659 	INP_INFO_WUNLOCK(pcbinfo);
660 	so->so_pcb = inp;
661 
662 	return (0);
663 
664 #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC)
665 out:
666 	crfree(inp->inp_cred);
667 #ifdef INVARIANTS
668 	inp->inp_cred = NULL;
669 #endif
670 	uma_zfree_smr(pcbinfo->ipi_zone, inp);
671 	return (error);
672 #endif
673 }
674 
675 #ifdef INET
676 int
677 in_pcbbind(struct inpcb *inp, struct sockaddr_in *sin, struct ucred *cred)
678 {
679 	int anonport, error;
680 
681 	KASSERT(sin == NULL || sin->sin_family == AF_INET,
682 	    ("%s: invalid address family for %p", __func__, sin));
683 	KASSERT(sin == NULL || sin->sin_len == sizeof(struct sockaddr_in),
684 	    ("%s: invalid address length for %p", __func__, sin));
685 	INP_WLOCK_ASSERT(inp);
686 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
687 
688 	if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY)
689 		return (EINVAL);
690 	anonport = sin == NULL || sin->sin_port == 0;
691 	error = in_pcbbind_setup(inp, sin, &inp->inp_laddr.s_addr,
692 	    &inp->inp_lport, cred);
693 	if (error)
694 		return (error);
695 	if (in_pcbinshash(inp) != 0) {
696 		inp->inp_laddr.s_addr = INADDR_ANY;
697 		inp->inp_lport = 0;
698 		return (EAGAIN);
699 	}
700 	if (anonport)
701 		inp->inp_flags |= INP_ANONPORT;
702 	return (0);
703 }
704 #endif
705 
706 #if defined(INET) || defined(INET6)
707 /*
708  * Assign a local port like in_pcb_lport(), but also used with connect()
709  * and a foreign address and port.  If fsa is non-NULL, choose a local port
710  * that is unused with those, otherwise one that is completely unused.
711  * lsa can be NULL for IPv6.
712  */
713 int
714 in_pcb_lport_dest(struct inpcb *inp, struct sockaddr *lsa, u_short *lportp,
715     struct sockaddr *fsa, u_short fport, struct ucred *cred, int lookupflags)
716 {
717 	struct inpcbinfo *pcbinfo;
718 	struct inpcb *tmpinp;
719 	unsigned short *lastport;
720 	int count, error;
721 	u_short aux, first, last, lport;
722 #ifdef INET
723 	struct in_addr laddr, faddr;
724 #endif
725 #ifdef INET6
726 	struct in6_addr *laddr6, *faddr6;
727 #endif
728 
729 	pcbinfo = inp->inp_pcbinfo;
730 
731 	/*
732 	 * Because no actual state changes occur here, a global write lock on
733 	 * the pcbinfo isn't required.
734 	 */
735 	INP_LOCK_ASSERT(inp);
736 	INP_HASH_LOCK_ASSERT(pcbinfo);
737 
738 	if (inp->inp_flags & INP_HIGHPORT) {
739 		first = V_ipport_hifirstauto;	/* sysctl */
740 		last  = V_ipport_hilastauto;
741 		lastport = &pcbinfo->ipi_lasthi;
742 	} else if (inp->inp_flags & INP_LOWPORT) {
743 		error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT);
744 		if (error)
745 			return (error);
746 		first = V_ipport_lowfirstauto;	/* 1023 */
747 		last  = V_ipport_lowlastauto;	/* 600 */
748 		lastport = &pcbinfo->ipi_lastlow;
749 	} else {
750 		first = V_ipport_firstauto;	/* sysctl */
751 		last  = V_ipport_lastauto;
752 		lastport = &pcbinfo->ipi_lastport;
753 	}
754 
755 	/*
756 	 * Instead of having two loops further down counting up or down
757 	 * make sure that first is always <= last and go with only one
758 	 * code path implementing all logic.
759 	 */
760 	if (first > last) {
761 		aux = first;
762 		first = last;
763 		last = aux;
764 	}
765 
766 #ifdef INET
767 	laddr.s_addr = INADDR_ANY;	/* used by INET6+INET below too */
768 	if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) {
769 		if (lsa != NULL)
770 			laddr = ((struct sockaddr_in *)lsa)->sin_addr;
771 		if (fsa != NULL)
772 			faddr = ((struct sockaddr_in *)fsa)->sin_addr;
773 	}
774 #endif
775 #ifdef INET6
776 	laddr6 = NULL;
777 	if ((inp->inp_vflag & INP_IPV6) != 0) {
778 		if (lsa != NULL)
779 			laddr6 = &((struct sockaddr_in6 *)lsa)->sin6_addr;
780 		if (fsa != NULL)
781 			faddr6 = &((struct sockaddr_in6 *)fsa)->sin6_addr;
782 	}
783 #endif
784 
785 	tmpinp = NULL;
786 	lport = *lportp;
787 
788 	if (V_ipport_randomized)
789 		*lastport = first + (arc4random() % (last - first));
790 
791 	count = last - first;
792 
793 	do {
794 		if (count-- < 0)	/* completely used? */
795 			return (EADDRNOTAVAIL);
796 		++*lastport;
797 		if (*lastport < first || *lastport > last)
798 			*lastport = first;
799 		lport = htons(*lastport);
800 
801 		if (fsa != NULL) {
802 #ifdef INET
803 			if (lsa->sa_family == AF_INET) {
804 				tmpinp = in_pcblookup_hash_locked(pcbinfo,
805 				    faddr, fport, laddr, lport, lookupflags,
806 				    M_NODOM);
807 			}
808 #endif
809 #ifdef INET6
810 			if (lsa->sa_family == AF_INET6) {
811 				tmpinp = in6_pcblookup_hash_locked(pcbinfo,
812 				    faddr6, fport, laddr6, lport, lookupflags,
813 				    M_NODOM);
814 			}
815 #endif
816 		} else {
817 #ifdef INET6
818 			if ((inp->inp_vflag & INP_IPV6) != 0) {
819 				tmpinp = in6_pcblookup_local(pcbinfo,
820 				    &inp->in6p_laddr, lport, lookupflags, cred);
821 #ifdef INET
822 				if (tmpinp == NULL &&
823 				    (inp->inp_vflag & INP_IPV4))
824 					tmpinp = in_pcblookup_local(pcbinfo,
825 					    laddr, lport, lookupflags, cred);
826 #endif
827 			}
828 #endif
829 #if defined(INET) && defined(INET6)
830 			else
831 #endif
832 #ifdef INET
833 				tmpinp = in_pcblookup_local(pcbinfo, laddr,
834 				    lport, lookupflags, cred);
835 #endif
836 		}
837 	} while (tmpinp != NULL);
838 
839 	*lportp = lport;
840 
841 	return (0);
842 }
843 
844 /*
845  * Select a local port (number) to use.
846  */
847 int
848 in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp,
849     struct ucred *cred, int lookupflags)
850 {
851 	struct sockaddr_in laddr;
852 
853 	if (laddrp) {
854 		bzero(&laddr, sizeof(laddr));
855 		laddr.sin_family = AF_INET;
856 		laddr.sin_addr = *laddrp;
857 	}
858 	return (in_pcb_lport_dest(inp, laddrp ? (struct sockaddr *) &laddr :
859 	    NULL, lportp, NULL, 0, cred, lookupflags));
860 }
861 #endif /* INET || INET6 */
862 
863 #ifdef INET
864 /*
865  * Set up a bind operation on a PCB, performing port allocation
866  * as required, but do not actually modify the PCB. Callers can
867  * either complete the bind by setting inp_laddr/inp_lport and
868  * calling in_pcbinshash(), or they can just use the resulting
869  * port and address to authorise the sending of a once-off packet.
870  *
871  * On error, the values of *laddrp and *lportp are not changed.
872  */
873 int
874 in_pcbbind_setup(struct inpcb *inp, struct sockaddr_in *sin, in_addr_t *laddrp,
875     u_short *lportp, struct ucred *cred)
876 {
877 	struct socket *so = inp->inp_socket;
878 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
879 	struct in_addr laddr;
880 	u_short lport = 0;
881 	int lookupflags = 0, reuseport = (so->so_options & SO_REUSEPORT);
882 	int error;
883 
884 	/*
885 	 * XXX: Maybe we could let SO_REUSEPORT_LB set SO_REUSEPORT bit here
886 	 * so that we don't have to add to the (already messy) code below.
887 	 */
888 	int reuseport_lb = (so->so_options & SO_REUSEPORT_LB);
889 
890 	/*
891 	 * No state changes, so read locks are sufficient here.
892 	 */
893 	INP_LOCK_ASSERT(inp);
894 	INP_HASH_LOCK_ASSERT(pcbinfo);
895 
896 	laddr.s_addr = *laddrp;
897 	if (sin != NULL && laddr.s_addr != INADDR_ANY)
898 		return (EINVAL);
899 	if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT|SO_REUSEPORT_LB)) == 0)
900 		lookupflags = INPLOOKUP_WILDCARD;
901 	if (sin == NULL) {
902 		if ((error = prison_local_ip4(cred, &laddr)) != 0)
903 			return (error);
904 	} else {
905 		KASSERT(sin->sin_family == AF_INET,
906 		    ("%s: invalid family for address %p", __func__, sin));
907 		KASSERT(sin->sin_len == sizeof(*sin),
908 		    ("%s: invalid length for address %p", __func__, sin));
909 
910 		error = prison_local_ip4(cred, &sin->sin_addr);
911 		if (error)
912 			return (error);
913 		if (sin->sin_port != *lportp) {
914 			/* Don't allow the port to change. */
915 			if (*lportp != 0)
916 				return (EINVAL);
917 			lport = sin->sin_port;
918 		}
919 		/* NB: lport is left as 0 if the port isn't being changed. */
920 		if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) {
921 			/*
922 			 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast;
923 			 * allow complete duplication of binding if
924 			 * SO_REUSEPORT is set, or if SO_REUSEADDR is set
925 			 * and a multicast address is bound on both
926 			 * new and duplicated sockets.
927 			 */
928 			if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) != 0)
929 				reuseport = SO_REUSEADDR|SO_REUSEPORT;
930 			/*
931 			 * XXX: How to deal with SO_REUSEPORT_LB here?
932 			 * Treat same as SO_REUSEPORT for now.
933 			 */
934 			if ((so->so_options &
935 			    (SO_REUSEADDR|SO_REUSEPORT_LB)) != 0)
936 				reuseport_lb = SO_REUSEADDR|SO_REUSEPORT_LB;
937 		} else if (sin->sin_addr.s_addr != INADDR_ANY) {
938 			sin->sin_port = 0;		/* yech... */
939 			bzero(&sin->sin_zero, sizeof(sin->sin_zero));
940 			/*
941 			 * Is the address a local IP address?
942 			 * If INP_BINDANY is set, then the socket may be bound
943 			 * to any endpoint address, local or not.
944 			 */
945 			if ((inp->inp_flags & INP_BINDANY) == 0 &&
946 			    ifa_ifwithaddr_check((struct sockaddr *)sin) == 0)
947 				return (EADDRNOTAVAIL);
948 		}
949 		laddr = sin->sin_addr;
950 		if (lport) {
951 			struct inpcb *t;
952 
953 			/* GROSS */
954 			if (ntohs(lport) <= V_ipport_reservedhigh &&
955 			    ntohs(lport) >= V_ipport_reservedlow &&
956 			    priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT))
957 				return (EACCES);
958 			if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) &&
959 			    priv_check_cred(inp->inp_cred, PRIV_NETINET_REUSEPORT) != 0) {
960 				t = in_pcblookup_local(pcbinfo, sin->sin_addr,
961 				    lport, INPLOOKUP_WILDCARD, cred);
962 	/*
963 	 * XXX
964 	 * This entire block sorely needs a rewrite.
965 	 */
966 				if (t != NULL &&
967 				    (so->so_type != SOCK_STREAM ||
968 				     ntohl(t->inp_faddr.s_addr) == INADDR_ANY) &&
969 				    (ntohl(sin->sin_addr.s_addr) != INADDR_ANY ||
970 				     ntohl(t->inp_laddr.s_addr) != INADDR_ANY ||
971 				     (t->inp_socket->so_options & SO_REUSEPORT) ||
972 				     (t->inp_socket->so_options & SO_REUSEPORT_LB) == 0) &&
973 				    (inp->inp_cred->cr_uid !=
974 				     t->inp_cred->cr_uid))
975 					return (EADDRINUSE);
976 			}
977 			t = in_pcblookup_local(pcbinfo, sin->sin_addr,
978 			    lport, lookupflags, cred);
979 			if (t != NULL && (reuseport & t->inp_socket->so_options) == 0 &&
980 			    (reuseport_lb & t->inp_socket->so_options) == 0) {
981 #ifdef INET6
982 				if (ntohl(sin->sin_addr.s_addr) !=
983 				    INADDR_ANY ||
984 				    ntohl(t->inp_laddr.s_addr) !=
985 				    INADDR_ANY ||
986 				    (inp->inp_vflag & INP_IPV6PROTO) == 0 ||
987 				    (t->inp_vflag & INP_IPV6PROTO) == 0)
988 #endif
989 						return (EADDRINUSE);
990 			}
991 		}
992 	}
993 	if (*lportp != 0)
994 		lport = *lportp;
995 	if (lport == 0) {
996 		error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags);
997 		if (error != 0)
998 			return (error);
999 	}
1000 	*laddrp = laddr.s_addr;
1001 	*lportp = lport;
1002 	return (0);
1003 }
1004 
1005 /*
1006  * Connect from a socket to a specified address.
1007  * Both address and port must be specified in argument sin.
1008  * If don't have a local address for this socket yet,
1009  * then pick one.
1010  */
1011 int
1012 in_pcbconnect(struct inpcb *inp, struct sockaddr_in *sin, struct ucred *cred,
1013     bool rehash __unused)
1014 {
1015 	u_short lport, fport;
1016 	in_addr_t laddr, faddr;
1017 	int anonport, error;
1018 
1019 	INP_WLOCK_ASSERT(inp);
1020 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
1021 	KASSERT(in_nullhost(inp->inp_faddr),
1022 	    ("%s: inp is already connected", __func__));
1023 
1024 	lport = inp->inp_lport;
1025 	laddr = inp->inp_laddr.s_addr;
1026 	anonport = (lport == 0);
1027 	error = in_pcbconnect_setup(inp, sin, &laddr, &lport, &faddr, &fport,
1028 	    cred);
1029 	if (error)
1030 		return (error);
1031 
1032 	inp->inp_faddr.s_addr = faddr;
1033 	inp->inp_fport = fport;
1034 
1035 	/* Do the initial binding of the local address if required. */
1036 	if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) {
1037 		inp->inp_lport = lport;
1038 		inp->inp_laddr.s_addr = laddr;
1039 		if (in_pcbinshash(inp) != 0) {
1040 			inp->inp_laddr.s_addr = inp->inp_faddr.s_addr =
1041 			    INADDR_ANY;
1042 			inp->inp_lport = inp->inp_fport = 0;
1043 			return (EAGAIN);
1044 		}
1045 	} else {
1046 		inp->inp_lport = lport;
1047 		inp->inp_laddr.s_addr = laddr;
1048 		if ((inp->inp_flags & INP_INHASHLIST) != 0)
1049 			in_pcbrehash(inp);
1050 		else
1051 			in_pcbinshash(inp);
1052 	}
1053 
1054 	if (anonport)
1055 		inp->inp_flags |= INP_ANONPORT;
1056 	return (0);
1057 }
1058 
1059 /*
1060  * Do proper source address selection on an unbound socket in case
1061  * of connect. Take jails into account as well.
1062  */
1063 int
1064 in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr,
1065     struct ucred *cred)
1066 {
1067 	struct ifaddr *ifa;
1068 	struct sockaddr *sa;
1069 	struct sockaddr_in *sin, dst;
1070 	struct nhop_object *nh;
1071 	int error;
1072 
1073 	NET_EPOCH_ASSERT();
1074 	KASSERT(laddr != NULL, ("%s: laddr NULL", __func__));
1075 
1076 	/*
1077 	 * Bypass source address selection and use the primary jail IP
1078 	 * if requested.
1079 	 */
1080 	if (!prison_saddrsel_ip4(cred, laddr))
1081 		return (0);
1082 
1083 	error = 0;
1084 
1085 	nh = NULL;
1086 	bzero(&dst, sizeof(dst));
1087 	sin = &dst;
1088 	sin->sin_family = AF_INET;
1089 	sin->sin_len = sizeof(struct sockaddr_in);
1090 	sin->sin_addr.s_addr = faddr->s_addr;
1091 
1092 	/*
1093 	 * If route is known our src addr is taken from the i/f,
1094 	 * else punt.
1095 	 *
1096 	 * Find out route to destination.
1097 	 */
1098 	if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0)
1099 		nh = fib4_lookup(inp->inp_inc.inc_fibnum, *faddr,
1100 		    0, NHR_NONE, 0);
1101 
1102 	/*
1103 	 * If we found a route, use the address corresponding to
1104 	 * the outgoing interface.
1105 	 *
1106 	 * Otherwise assume faddr is reachable on a directly connected
1107 	 * network and try to find a corresponding interface to take
1108 	 * the source address from.
1109 	 */
1110 	if (nh == NULL || nh->nh_ifp == NULL) {
1111 		struct in_ifaddr *ia;
1112 		struct ifnet *ifp;
1113 
1114 		ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin,
1115 					inp->inp_socket->so_fibnum));
1116 		if (ia == NULL) {
1117 			ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0,
1118 						inp->inp_socket->so_fibnum));
1119 		}
1120 		if (ia == NULL) {
1121 			error = ENETUNREACH;
1122 			goto done;
1123 		}
1124 
1125 		if (!prison_flag(cred, PR_IP4)) {
1126 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1127 			goto done;
1128 		}
1129 
1130 		ifp = ia->ia_ifp;
1131 		ia = NULL;
1132 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1133 			sa = ifa->ifa_addr;
1134 			if (sa->sa_family != AF_INET)
1135 				continue;
1136 			sin = (struct sockaddr_in *)sa;
1137 			if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
1138 				ia = (struct in_ifaddr *)ifa;
1139 				break;
1140 			}
1141 		}
1142 		if (ia != NULL) {
1143 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1144 			goto done;
1145 		}
1146 
1147 		/* 3. As a last resort return the 'default' jail address. */
1148 		error = prison_get_ip4(cred, laddr);
1149 		goto done;
1150 	}
1151 
1152 	/*
1153 	 * If the outgoing interface on the route found is not
1154 	 * a loopback interface, use the address from that interface.
1155 	 * In case of jails do those three steps:
1156 	 * 1. check if the interface address belongs to the jail. If so use it.
1157 	 * 2. check if we have any address on the outgoing interface
1158 	 *    belonging to this jail. If so use it.
1159 	 * 3. as a last resort return the 'default' jail address.
1160 	 */
1161 	if ((nh->nh_ifp->if_flags & IFF_LOOPBACK) == 0) {
1162 		struct in_ifaddr *ia;
1163 		struct ifnet *ifp;
1164 
1165 		/* If not jailed, use the default returned. */
1166 		if (!prison_flag(cred, PR_IP4)) {
1167 			ia = (struct in_ifaddr *)nh->nh_ifa;
1168 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1169 			goto done;
1170 		}
1171 
1172 		/* Jailed. */
1173 		/* 1. Check if the iface address belongs to the jail. */
1174 		sin = (struct sockaddr_in *)nh->nh_ifa->ifa_addr;
1175 		if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
1176 			ia = (struct in_ifaddr *)nh->nh_ifa;
1177 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1178 			goto done;
1179 		}
1180 
1181 		/*
1182 		 * 2. Check if we have any address on the outgoing interface
1183 		 *    belonging to this jail.
1184 		 */
1185 		ia = NULL;
1186 		ifp = nh->nh_ifp;
1187 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1188 			sa = ifa->ifa_addr;
1189 			if (sa->sa_family != AF_INET)
1190 				continue;
1191 			sin = (struct sockaddr_in *)sa;
1192 			if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
1193 				ia = (struct in_ifaddr *)ifa;
1194 				break;
1195 			}
1196 		}
1197 		if (ia != NULL) {
1198 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1199 			goto done;
1200 		}
1201 
1202 		/* 3. As a last resort return the 'default' jail address. */
1203 		error = prison_get_ip4(cred, laddr);
1204 		goto done;
1205 	}
1206 
1207 	/*
1208 	 * The outgoing interface is marked with 'loopback net', so a route
1209 	 * to ourselves is here.
1210 	 * Try to find the interface of the destination address and then
1211 	 * take the address from there. That interface is not necessarily
1212 	 * a loopback interface.
1213 	 * In case of jails, check that it is an address of the jail
1214 	 * and if we cannot find, fall back to the 'default' jail address.
1215 	 */
1216 	if ((nh->nh_ifp->if_flags & IFF_LOOPBACK) != 0) {
1217 		struct in_ifaddr *ia;
1218 
1219 		ia = ifatoia(ifa_ifwithdstaddr(sintosa(&dst),
1220 					inp->inp_socket->so_fibnum));
1221 		if (ia == NULL)
1222 			ia = ifatoia(ifa_ifwithnet(sintosa(&dst), 0,
1223 						inp->inp_socket->so_fibnum));
1224 		if (ia == NULL)
1225 			ia = ifatoia(ifa_ifwithaddr(sintosa(&dst)));
1226 
1227 		if (!prison_flag(cred, PR_IP4)) {
1228 			if (ia == NULL) {
1229 				error = ENETUNREACH;
1230 				goto done;
1231 			}
1232 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1233 			goto done;
1234 		}
1235 
1236 		/* Jailed. */
1237 		if (ia != NULL) {
1238 			struct ifnet *ifp;
1239 
1240 			ifp = ia->ia_ifp;
1241 			ia = NULL;
1242 			CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1243 				sa = ifa->ifa_addr;
1244 				if (sa->sa_family != AF_INET)
1245 					continue;
1246 				sin = (struct sockaddr_in *)sa;
1247 				if (prison_check_ip4(cred,
1248 				    &sin->sin_addr) == 0) {
1249 					ia = (struct in_ifaddr *)ifa;
1250 					break;
1251 				}
1252 			}
1253 			if (ia != NULL) {
1254 				laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1255 				goto done;
1256 			}
1257 		}
1258 
1259 		/* 3. As a last resort return the 'default' jail address. */
1260 		error = prison_get_ip4(cred, laddr);
1261 		goto done;
1262 	}
1263 
1264 done:
1265 	if (error == 0 && laddr->s_addr == INADDR_ANY)
1266 		return (EHOSTUNREACH);
1267 	return (error);
1268 }
1269 
1270 /*
1271  * Set up for a connect from a socket to the specified address.
1272  * On entry, *laddrp and *lportp should contain the current local
1273  * address and port for the PCB; these are updated to the values
1274  * that should be placed in inp_laddr and inp_lport to complete
1275  * the connect.
1276  *
1277  * On success, *faddrp and *fportp will be set to the remote address
1278  * and port. These are not updated in the error case.
1279  */
1280 int
1281 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr_in *sin,
1282     in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp,
1283     struct ucred *cred)
1284 {
1285 	struct in_ifaddr *ia;
1286 	struct in_addr laddr, faddr;
1287 	u_short lport, fport;
1288 	int error;
1289 
1290 	KASSERT(sin->sin_family == AF_INET,
1291 	    ("%s: invalid address family for %p", __func__, sin));
1292 	KASSERT(sin->sin_len == sizeof(*sin),
1293 	    ("%s: invalid address length for %p", __func__, sin));
1294 
1295 	/*
1296 	 * Because a global state change doesn't actually occur here, a read
1297 	 * lock is sufficient.
1298 	 */
1299 	NET_EPOCH_ASSERT();
1300 	INP_LOCK_ASSERT(inp);
1301 	INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo);
1302 
1303 	if (sin->sin_port == 0)
1304 		return (EADDRNOTAVAIL);
1305 	laddr.s_addr = *laddrp;
1306 	lport = *lportp;
1307 	faddr = sin->sin_addr;
1308 	fport = sin->sin_port;
1309 #ifdef ROUTE_MPATH
1310 	if (CALC_FLOWID_OUTBOUND) {
1311 		uint32_t hash_val, hash_type;
1312 
1313 		hash_val = fib4_calc_software_hash(laddr, faddr, 0, fport,
1314 		    inp->inp_socket->so_proto->pr_protocol, &hash_type);
1315 
1316 		inp->inp_flowid = hash_val;
1317 		inp->inp_flowtype = hash_type;
1318 	}
1319 #endif
1320 	if (V_connect_inaddr_wild && !CK_STAILQ_EMPTY(&V_in_ifaddrhead)) {
1321 		/*
1322 		 * If the destination address is INADDR_ANY,
1323 		 * use the primary local address.
1324 		 * If the supplied address is INADDR_BROADCAST,
1325 		 * and the primary interface supports broadcast,
1326 		 * choose the broadcast address for that interface.
1327 		 */
1328 		if (faddr.s_addr == INADDR_ANY) {
1329 			faddr =
1330 			    IA_SIN(CK_STAILQ_FIRST(&V_in_ifaddrhead))->sin_addr;
1331 			if ((error = prison_get_ip4(cred, &faddr)) != 0)
1332 				return (error);
1333 		} else if (faddr.s_addr == (u_long)INADDR_BROADCAST) {
1334 			if (CK_STAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags &
1335 			    IFF_BROADCAST)
1336 				faddr = satosin(&CK_STAILQ_FIRST(
1337 				    &V_in_ifaddrhead)->ia_broadaddr)->sin_addr;
1338 		}
1339 	}
1340 	if (laddr.s_addr == INADDR_ANY) {
1341 		error = in_pcbladdr(inp, &faddr, &laddr, cred);
1342 		/*
1343 		 * If the destination address is multicast and an outgoing
1344 		 * interface has been set as a multicast option, prefer the
1345 		 * address of that interface as our source address.
1346 		 */
1347 		if (IN_MULTICAST(ntohl(faddr.s_addr)) &&
1348 		    inp->inp_moptions != NULL) {
1349 			struct ip_moptions *imo;
1350 			struct ifnet *ifp;
1351 
1352 			imo = inp->inp_moptions;
1353 			if (imo->imo_multicast_ifp != NULL) {
1354 				ifp = imo->imo_multicast_ifp;
1355 				CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) {
1356 					if (ia->ia_ifp == ifp &&
1357 					    prison_check_ip4(cred,
1358 					    &ia->ia_addr.sin_addr) == 0)
1359 						break;
1360 				}
1361 				if (ia == NULL)
1362 					error = EADDRNOTAVAIL;
1363 				else {
1364 					laddr = ia->ia_addr.sin_addr;
1365 					error = 0;
1366 				}
1367 			}
1368 		}
1369 		if (error)
1370 			return (error);
1371 	}
1372 
1373 	if (lport != 0) {
1374 		if (in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr,
1375 		    fport, laddr, lport, 0, M_NODOM) != NULL)
1376 			return (EADDRINUSE);
1377 	} else {
1378 		struct sockaddr_in lsin, fsin;
1379 
1380 		bzero(&lsin, sizeof(lsin));
1381 		bzero(&fsin, sizeof(fsin));
1382 		lsin.sin_family = AF_INET;
1383 		lsin.sin_addr = laddr;
1384 		fsin.sin_family = AF_INET;
1385 		fsin.sin_addr = faddr;
1386 		error = in_pcb_lport_dest(inp, (struct sockaddr *) &lsin,
1387 		    &lport, (struct sockaddr *)& fsin, fport, cred,
1388 		    INPLOOKUP_WILDCARD);
1389 		if (error)
1390 			return (error);
1391 	}
1392 	*laddrp = laddr.s_addr;
1393 	*lportp = lport;
1394 	*faddrp = faddr.s_addr;
1395 	*fportp = fport;
1396 	return (0);
1397 }
1398 
1399 void
1400 in_pcbdisconnect(struct inpcb *inp)
1401 {
1402 
1403 	INP_WLOCK_ASSERT(inp);
1404 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
1405 	KASSERT(inp->inp_smr == SMR_SEQ_INVALID,
1406 	    ("%s: inp %p was already disconnected", __func__, inp));
1407 
1408 	in_pcbremhash_locked(inp);
1409 
1410 	/* See the comment in in_pcbinshash(). */
1411 	inp->inp_smr = smr_advance(inp->inp_pcbinfo->ipi_smr);
1412 	inp->inp_laddr.s_addr = INADDR_ANY;
1413 	inp->inp_faddr.s_addr = INADDR_ANY;
1414 	inp->inp_fport = 0;
1415 }
1416 #endif /* INET */
1417 
1418 /*
1419  * inpcb hash lookups are protected by SMR section.
1420  *
1421  * Once desired pcb has been found, switching from SMR section to a pcb
1422  * lock is performed with inp_smr_lock(). We can not use INP_(W|R)LOCK
1423  * here because SMR is a critical section.
1424  * In 99%+ cases inp_smr_lock() would obtain the lock immediately.
1425  */
1426 void
1427 inp_lock(struct inpcb *inp, const inp_lookup_t lock)
1428 {
1429 
1430 	lock == INPLOOKUP_RLOCKPCB ?
1431 	    rw_rlock(&inp->inp_lock) : rw_wlock(&inp->inp_lock);
1432 }
1433 
1434 void
1435 inp_unlock(struct inpcb *inp, const inp_lookup_t lock)
1436 {
1437 
1438 	lock == INPLOOKUP_RLOCKPCB ?
1439 	    rw_runlock(&inp->inp_lock) : rw_wunlock(&inp->inp_lock);
1440 }
1441 
1442 int
1443 inp_trylock(struct inpcb *inp, const inp_lookup_t lock)
1444 {
1445 
1446 	return (lock == INPLOOKUP_RLOCKPCB ?
1447 	    rw_try_rlock(&inp->inp_lock) : rw_try_wlock(&inp->inp_lock));
1448 }
1449 
1450 static inline bool
1451 _inp_smr_lock(struct inpcb *inp, const inp_lookup_t lock, const int ignflags)
1452 {
1453 
1454 	MPASS(lock == INPLOOKUP_RLOCKPCB || lock == INPLOOKUP_WLOCKPCB);
1455 	SMR_ASSERT_ENTERED(inp->inp_pcbinfo->ipi_smr);
1456 
1457 	if (__predict_true(inp_trylock(inp, lock))) {
1458 		if (__predict_false(inp->inp_flags & ignflags)) {
1459 			smr_exit(inp->inp_pcbinfo->ipi_smr);
1460 			inp_unlock(inp, lock);
1461 			return (false);
1462 		}
1463 		smr_exit(inp->inp_pcbinfo->ipi_smr);
1464 		return (true);
1465 	}
1466 
1467 	if (__predict_true(refcount_acquire_if_not_zero(&inp->inp_refcount))) {
1468 		smr_exit(inp->inp_pcbinfo->ipi_smr);
1469 		inp_lock(inp, lock);
1470 		if (__predict_false(in_pcbrele(inp, lock)))
1471 			return (false);
1472 		/*
1473 		 * inp acquired through refcount & lock for sure didn't went
1474 		 * through uma_zfree().  However, it may have already went
1475 		 * through in_pcbfree() and has another reference, that
1476 		 * prevented its release by our in_pcbrele().
1477 		 */
1478 		if (__predict_false(inp->inp_flags & ignflags)) {
1479 			inp_unlock(inp, lock);
1480 			return (false);
1481 		}
1482 		return (true);
1483 	} else {
1484 		smr_exit(inp->inp_pcbinfo->ipi_smr);
1485 		return (false);
1486 	}
1487 }
1488 
1489 bool
1490 inp_smr_lock(struct inpcb *inp, const inp_lookup_t lock)
1491 {
1492 
1493 	/*
1494 	 * in_pcblookup() family of functions ignore not only freed entries,
1495 	 * that may be found due to lockless access to the hash, but dropped
1496 	 * entries, too.
1497 	 */
1498 	return (_inp_smr_lock(inp, lock, INP_FREED | INP_DROPPED));
1499 }
1500 
1501 /*
1502  * inp_next() - inpcb hash/list traversal iterator
1503  *
1504  * Requires initialized struct inpcb_iterator for context.
1505  * The structure can be initialized with INP_ITERATOR() or INP_ALL_ITERATOR().
1506  *
1507  * - Iterator can have either write-lock or read-lock semantics, that can not
1508  *   be changed later.
1509  * - Iterator can iterate either over all pcbs list (INP_ALL_LIST), or through
1510  *   a single hash slot.  Note: only rip_input() does the latter.
1511  * - Iterator may have optional bool matching function.  The matching function
1512  *   will be executed for each inpcb in the SMR context, so it can not acquire
1513  *   locks and can safely access only immutable fields of inpcb.
1514  *
1515  * A fresh initialized iterator has NULL inpcb in its context and that
1516  * means that inp_next() call would return the very first inpcb on the list
1517  * locked with desired semantic.  In all following calls the context pointer
1518  * shall hold the current inpcb pointer.  The KPI user is not supposed to
1519  * unlock the current inpcb!  Upon end of traversal inp_next() will return NULL
1520  * and write NULL to its context.  After end of traversal an iterator can be
1521  * reused.
1522  *
1523  * List traversals have the following features/constraints:
1524  * - New entries won't be seen, as they are always added to the head of a list.
1525  * - Removed entries won't stop traversal as long as they are not added to
1526  *   a different list. This is violated by in_pcbrehash().
1527  */
1528 #define	II_LIST_FIRST(ipi, hash)					\
1529 		(((hash) == INP_ALL_LIST) ?				\
1530 		    CK_LIST_FIRST(&(ipi)->ipi_listhead) :		\
1531 		    CK_LIST_FIRST(&(ipi)->ipi_hash_exact[(hash)]))
1532 #define	II_LIST_NEXT(inp, hash)						\
1533 		(((hash) == INP_ALL_LIST) ?				\
1534 		    CK_LIST_NEXT((inp), inp_list) :			\
1535 		    CK_LIST_NEXT((inp), inp_hash_exact))
1536 #define	II_LOCK_ASSERT(inp, lock)					\
1537 		rw_assert(&(inp)->inp_lock,				\
1538 		    (lock) == INPLOOKUP_RLOCKPCB ?  RA_RLOCKED : RA_WLOCKED )
1539 struct inpcb *
1540 inp_next(struct inpcb_iterator *ii)
1541 {
1542 	const struct inpcbinfo *ipi = ii->ipi;
1543 	inp_match_t *match = ii->match;
1544 	void *ctx = ii->ctx;
1545 	inp_lookup_t lock = ii->lock;
1546 	int hash = ii->hash;
1547 	struct inpcb *inp;
1548 
1549 	if (ii->inp == NULL) {		/* First call. */
1550 		smr_enter(ipi->ipi_smr);
1551 		/* This is unrolled CK_LIST_FOREACH(). */
1552 		for (inp = II_LIST_FIRST(ipi, hash);
1553 		    inp != NULL;
1554 		    inp = II_LIST_NEXT(inp, hash)) {
1555 			if (match != NULL && (match)(inp, ctx) == false)
1556 				continue;
1557 			if (__predict_true(_inp_smr_lock(inp, lock, INP_FREED)))
1558 				break;
1559 			else {
1560 				smr_enter(ipi->ipi_smr);
1561 				MPASS(inp != II_LIST_FIRST(ipi, hash));
1562 				inp = II_LIST_FIRST(ipi, hash);
1563 				if (inp == NULL)
1564 					break;
1565 			}
1566 		}
1567 
1568 		if (inp == NULL)
1569 			smr_exit(ipi->ipi_smr);
1570 		else
1571 			ii->inp = inp;
1572 
1573 		return (inp);
1574 	}
1575 
1576 	/* Not a first call. */
1577 	smr_enter(ipi->ipi_smr);
1578 restart:
1579 	inp = ii->inp;
1580 	II_LOCK_ASSERT(inp, lock);
1581 next:
1582 	inp = II_LIST_NEXT(inp, hash);
1583 	if (inp == NULL) {
1584 		smr_exit(ipi->ipi_smr);
1585 		goto found;
1586 	}
1587 
1588 	if (match != NULL && (match)(inp, ctx) == false)
1589 		goto next;
1590 
1591 	if (__predict_true(inp_trylock(inp, lock))) {
1592 		if (__predict_false(inp->inp_flags & INP_FREED)) {
1593 			/*
1594 			 * Entries are never inserted in middle of a list, thus
1595 			 * as long as we are in SMR, we can continue traversal.
1596 			 * Jump to 'restart' should yield in the same result,
1597 			 * but could produce unnecessary looping.  Could this
1598 			 * looping be unbound?
1599 			 */
1600 			inp_unlock(inp, lock);
1601 			goto next;
1602 		} else {
1603 			smr_exit(ipi->ipi_smr);
1604 			goto found;
1605 		}
1606 	}
1607 
1608 	/*
1609 	 * Can't obtain lock immediately, thus going hard.  Once we exit the
1610 	 * SMR section we can no longer jump to 'next', and our only stable
1611 	 * anchoring point is ii->inp, which we keep locked for this case, so
1612 	 * we jump to 'restart'.
1613 	 */
1614 	if (__predict_true(refcount_acquire_if_not_zero(&inp->inp_refcount))) {
1615 		smr_exit(ipi->ipi_smr);
1616 		inp_lock(inp, lock);
1617 		if (__predict_false(in_pcbrele(inp, lock))) {
1618 			smr_enter(ipi->ipi_smr);
1619 			goto restart;
1620 		}
1621 		/*
1622 		 * See comment in inp_smr_lock().
1623 		 */
1624 		if (__predict_false(inp->inp_flags & INP_FREED)) {
1625 			inp_unlock(inp, lock);
1626 			smr_enter(ipi->ipi_smr);
1627 			goto restart;
1628 		}
1629 	} else
1630 		goto next;
1631 
1632 found:
1633 	inp_unlock(ii->inp, lock);
1634 	ii->inp = inp;
1635 
1636 	return (ii->inp);
1637 }
1638 
1639 /*
1640  * in_pcbref() bumps the reference count on an inpcb in order to maintain
1641  * stability of an inpcb pointer despite the inpcb lock being released or
1642  * SMR section exited.
1643  *
1644  * To free a reference later in_pcbrele_(r|w)locked() must be performed.
1645  */
1646 void
1647 in_pcbref(struct inpcb *inp)
1648 {
1649 	u_int old __diagused;
1650 
1651 	old = refcount_acquire(&inp->inp_refcount);
1652 	KASSERT(old > 0, ("%s: refcount 0", __func__));
1653 }
1654 
1655 /*
1656  * Drop a refcount on an inpcb elevated using in_pcbref(), potentially
1657  * freeing the pcb, if the reference was very last.
1658  */
1659 bool
1660 in_pcbrele_rlocked(struct inpcb *inp)
1661 {
1662 
1663 	INP_RLOCK_ASSERT(inp);
1664 
1665 	if (!refcount_release(&inp->inp_refcount))
1666 		return (false);
1667 
1668 	MPASS(inp->inp_flags & INP_FREED);
1669 	MPASS(inp->inp_socket == NULL);
1670 	crfree(inp->inp_cred);
1671 #ifdef INVARIANTS
1672 	inp->inp_cred = NULL;
1673 #endif
1674 	INP_RUNLOCK(inp);
1675 	uma_zfree_smr(inp->inp_pcbinfo->ipi_zone, inp);
1676 	return (true);
1677 }
1678 
1679 bool
1680 in_pcbrele_wlocked(struct inpcb *inp)
1681 {
1682 
1683 	INP_WLOCK_ASSERT(inp);
1684 
1685 	if (!refcount_release(&inp->inp_refcount))
1686 		return (false);
1687 
1688 	MPASS(inp->inp_flags & INP_FREED);
1689 	MPASS(inp->inp_socket == NULL);
1690 	crfree(inp->inp_cred);
1691 #ifdef INVARIANTS
1692 	inp->inp_cred = NULL;
1693 #endif
1694 	INP_WUNLOCK(inp);
1695 	uma_zfree_smr(inp->inp_pcbinfo->ipi_zone, inp);
1696 	return (true);
1697 }
1698 
1699 bool
1700 in_pcbrele(struct inpcb *inp, const inp_lookup_t lock)
1701 {
1702 
1703 	return (lock == INPLOOKUP_RLOCKPCB ?
1704 	    in_pcbrele_rlocked(inp) : in_pcbrele_wlocked(inp));
1705 }
1706 
1707 /*
1708  * Unconditionally schedule an inpcb to be freed by decrementing its
1709  * reference count, which should occur only after the inpcb has been detached
1710  * from its socket.  If another thread holds a temporary reference (acquired
1711  * using in_pcbref()) then the free is deferred until that reference is
1712  * released using in_pcbrele_(r|w)locked(), but the inpcb is still unlocked.
1713  *  Almost all work, including removal from global lists, is done in this
1714  * context, where the pcbinfo lock is held.
1715  */
1716 void
1717 in_pcbfree(struct inpcb *inp)
1718 {
1719 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1720 #ifdef INET
1721 	struct ip_moptions *imo;
1722 #endif
1723 #ifdef INET6
1724 	struct ip6_moptions *im6o;
1725 #endif
1726 
1727 	INP_WLOCK_ASSERT(inp);
1728 	KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__));
1729 	KASSERT((inp->inp_flags & INP_FREED) == 0,
1730 	    ("%s: called twice for pcb %p", __func__, inp));
1731 
1732 	/*
1733 	 * in_pcblookup_local() and in6_pcblookup_local() may return an inpcb
1734 	 * from the hash without acquiring inpcb lock, they rely on the hash
1735 	 * lock, thus in_pcbremhash() should be the first action.
1736 	 */
1737 	if (inp->inp_flags & INP_INHASHLIST)
1738 		in_pcbremhash(inp);
1739 	INP_INFO_WLOCK(pcbinfo);
1740 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
1741 	pcbinfo->ipi_count--;
1742 	CK_LIST_REMOVE(inp, inp_list);
1743 	INP_INFO_WUNLOCK(pcbinfo);
1744 
1745 #ifdef RATELIMIT
1746 	if (inp->inp_snd_tag != NULL)
1747 		in_pcbdetach_txrtlmt(inp);
1748 #endif
1749 	inp->inp_flags |= INP_FREED;
1750 	inp->inp_socket->so_pcb = NULL;
1751 	inp->inp_socket = NULL;
1752 
1753 	RO_INVALIDATE_CACHE(&inp->inp_route);
1754 #ifdef MAC
1755 	mac_inpcb_destroy(inp);
1756 #endif
1757 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
1758 	if (inp->inp_sp != NULL)
1759 		ipsec_delete_pcbpolicy(inp);
1760 #endif
1761 #ifdef INET
1762 	if (inp->inp_options)
1763 		(void)m_free(inp->inp_options);
1764 	DEBUG_POISON_POINTER(inp->inp_options);
1765 	imo = inp->inp_moptions;
1766 	DEBUG_POISON_POINTER(inp->inp_moptions);
1767 #endif
1768 #ifdef INET6
1769 	if (inp->inp_vflag & INP_IPV6PROTO) {
1770 		ip6_freepcbopts(inp->in6p_outputopts);
1771 		DEBUG_POISON_POINTER(inp->in6p_outputopts);
1772 		im6o = inp->in6p_moptions;
1773 		DEBUG_POISON_POINTER(inp->in6p_moptions);
1774 	} else
1775 		im6o = NULL;
1776 #endif
1777 
1778 	if (__predict_false(in_pcbrele_wlocked(inp) == false)) {
1779 		INP_WUNLOCK(inp);
1780 	}
1781 #ifdef INET6
1782 	ip6_freemoptions(im6o);
1783 #endif
1784 #ifdef INET
1785 	inp_freemoptions(imo);
1786 #endif
1787 }
1788 
1789 /*
1790  * Different protocols initialize their inpcbs differently - giving
1791  * different name to the lock.  But they all are disposed the same.
1792  */
1793 static void
1794 inpcb_fini(void *mem, int size)
1795 {
1796 	struct inpcb *inp = mem;
1797 
1798 	INP_LOCK_DESTROY(inp);
1799 }
1800 
1801 /*
1802  * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and
1803  * port reservation, and preventing it from being returned by inpcb lookups.
1804  *
1805  * It is used by TCP to mark an inpcb as unused and avoid future packet
1806  * delivery or event notification when a socket remains open but TCP has
1807  * closed.  This might occur as a result of a shutdown()-initiated TCP close
1808  * or a RST on the wire, and allows the port binding to be reused while still
1809  * maintaining the invariant that so_pcb always points to a valid inpcb until
1810  * in_pcbdetach().
1811  *
1812  * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by
1813  * in_pcbpurgeif0()?
1814  */
1815 void
1816 in_pcbdrop(struct inpcb *inp)
1817 {
1818 
1819 	INP_WLOCK_ASSERT(inp);
1820 
1821 	inp->inp_flags |= INP_DROPPED;
1822 	if (inp->inp_flags & INP_INHASHLIST)
1823 		in_pcbremhash(inp);
1824 }
1825 
1826 #ifdef INET
1827 /*
1828  * Common routines to return the socket addresses associated with inpcbs.
1829  */
1830 int
1831 in_getsockaddr(struct socket *so, struct sockaddr *sa)
1832 {
1833 	struct inpcb *inp;
1834 
1835 	inp = sotoinpcb(so);
1836 	KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL"));
1837 
1838 	*(struct sockaddr_in *)sa = (struct sockaddr_in ){
1839 		.sin_len = sizeof(struct sockaddr_in),
1840 		.sin_family = AF_INET,
1841 		.sin_port = inp->inp_lport,
1842 		.sin_addr = inp->inp_laddr,
1843 	};
1844 
1845 	return (0);
1846 }
1847 
1848 int
1849 in_getpeeraddr(struct socket *so, struct sockaddr *sa)
1850 {
1851 	struct inpcb *inp;
1852 
1853 	inp = sotoinpcb(so);
1854 	KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL"));
1855 
1856 	*(struct sockaddr_in *)sa = (struct sockaddr_in ){
1857 		.sin_len = sizeof(struct sockaddr_in),
1858 		.sin_family = AF_INET,
1859 		.sin_port = inp->inp_fport,
1860 		.sin_addr = inp->inp_faddr,
1861 	};
1862 
1863 	return (0);
1864 }
1865 
1866 static bool
1867 inp_v4_multi_match(const struct inpcb *inp, void *v __unused)
1868 {
1869 
1870 	if ((inp->inp_vflag & INP_IPV4) && inp->inp_moptions != NULL)
1871 		return (true);
1872 	else
1873 		return (false);
1874 }
1875 
1876 void
1877 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp)
1878 {
1879 	struct inpcb_iterator inpi = INP_ITERATOR(pcbinfo, INPLOOKUP_WLOCKPCB,
1880 	    inp_v4_multi_match, NULL);
1881 	struct inpcb *inp;
1882 	struct in_multi *inm;
1883 	struct in_mfilter *imf;
1884 	struct ip_moptions *imo;
1885 
1886 	IN_MULTI_LOCK_ASSERT();
1887 
1888 	while ((inp = inp_next(&inpi)) != NULL) {
1889 		INP_WLOCK_ASSERT(inp);
1890 
1891 		imo = inp->inp_moptions;
1892 		/*
1893 		 * Unselect the outgoing interface if it is being
1894 		 * detached.
1895 		 */
1896 		if (imo->imo_multicast_ifp == ifp)
1897 			imo->imo_multicast_ifp = NULL;
1898 
1899 		/*
1900 		 * Drop multicast group membership if we joined
1901 		 * through the interface being detached.
1902 		 *
1903 		 * XXX This can all be deferred to an epoch_call
1904 		 */
1905 restart:
1906 		IP_MFILTER_FOREACH(imf, &imo->imo_head) {
1907 			if ((inm = imf->imf_inm) == NULL)
1908 				continue;
1909 			if (inm->inm_ifp != ifp)
1910 				continue;
1911 			ip_mfilter_remove(&imo->imo_head, imf);
1912 			in_leavegroup_locked(inm, NULL);
1913 			ip_mfilter_free(imf);
1914 			goto restart;
1915 		}
1916 	}
1917 }
1918 
1919 /*
1920  * Lookup a PCB based on the local address and port.  Caller must hold the
1921  * hash lock.  No inpcb locks or references are acquired.
1922  */
1923 #define INP_LOOKUP_MAPPED_PCB_COST	3
1924 struct inpcb *
1925 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr,
1926     u_short lport, int lookupflags, struct ucred *cred)
1927 {
1928 	struct inpcb *inp;
1929 #ifdef INET6
1930 	int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST;
1931 #else
1932 	int matchwild = 3;
1933 #endif
1934 	int wildcard;
1935 
1936 	KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0,
1937 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
1938 	INP_HASH_LOCK_ASSERT(pcbinfo);
1939 
1940 	if ((lookupflags & INPLOOKUP_WILDCARD) == 0) {
1941 		struct inpcbhead *head;
1942 		/*
1943 		 * Look for an unconnected (wildcard foreign addr) PCB that
1944 		 * matches the local address and port we're looking for.
1945 		 */
1946 		head = &pcbinfo->ipi_hash_wild[INP_PCBHASH_WILD(lport,
1947 		    pcbinfo->ipi_hashmask)];
1948 		CK_LIST_FOREACH(inp, head, inp_hash_wild) {
1949 #ifdef INET6
1950 			/* XXX inp locking */
1951 			if ((inp->inp_vflag & INP_IPV4) == 0)
1952 				continue;
1953 #endif
1954 			if (inp->inp_faddr.s_addr == INADDR_ANY &&
1955 			    inp->inp_laddr.s_addr == laddr.s_addr &&
1956 			    inp->inp_lport == lport) {
1957 				/*
1958 				 * Found?
1959 				 */
1960 				if (prison_equal_ip4(cred->cr_prison,
1961 				    inp->inp_cred->cr_prison))
1962 					return (inp);
1963 			}
1964 		}
1965 		/*
1966 		 * Not found.
1967 		 */
1968 		return (NULL);
1969 	} else {
1970 		struct inpcbporthead *porthash;
1971 		struct inpcbport *phd;
1972 		struct inpcb *match = NULL;
1973 		/*
1974 		 * Best fit PCB lookup.
1975 		 *
1976 		 * First see if this local port is in use by looking on the
1977 		 * port hash list.
1978 		 */
1979 		porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport,
1980 		    pcbinfo->ipi_porthashmask)];
1981 		CK_LIST_FOREACH(phd, porthash, phd_hash) {
1982 			if (phd->phd_port == lport)
1983 				break;
1984 		}
1985 		if (phd != NULL) {
1986 			/*
1987 			 * Port is in use by one or more PCBs. Look for best
1988 			 * fit.
1989 			 */
1990 			CK_LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) {
1991 				wildcard = 0;
1992 				if (!prison_equal_ip4(inp->inp_cred->cr_prison,
1993 				    cred->cr_prison))
1994 					continue;
1995 #ifdef INET6
1996 				/* XXX inp locking */
1997 				if ((inp->inp_vflag & INP_IPV4) == 0)
1998 					continue;
1999 				/*
2000 				 * We never select the PCB that has
2001 				 * INP_IPV6 flag and is bound to :: if
2002 				 * we have another PCB which is bound
2003 				 * to 0.0.0.0.  If a PCB has the
2004 				 * INP_IPV6 flag, then we set its cost
2005 				 * higher than IPv4 only PCBs.
2006 				 *
2007 				 * Note that the case only happens
2008 				 * when a socket is bound to ::, under
2009 				 * the condition that the use of the
2010 				 * mapped address is allowed.
2011 				 */
2012 				if ((inp->inp_vflag & INP_IPV6) != 0)
2013 					wildcard += INP_LOOKUP_MAPPED_PCB_COST;
2014 #endif
2015 				if (inp->inp_faddr.s_addr != INADDR_ANY)
2016 					wildcard++;
2017 				if (inp->inp_laddr.s_addr != INADDR_ANY) {
2018 					if (laddr.s_addr == INADDR_ANY)
2019 						wildcard++;
2020 					else if (inp->inp_laddr.s_addr != laddr.s_addr)
2021 						continue;
2022 				} else {
2023 					if (laddr.s_addr != INADDR_ANY)
2024 						wildcard++;
2025 				}
2026 				if (wildcard < matchwild) {
2027 					match = inp;
2028 					matchwild = wildcard;
2029 					if (matchwild == 0)
2030 						break;
2031 				}
2032 			}
2033 		}
2034 		return (match);
2035 	}
2036 }
2037 #undef INP_LOOKUP_MAPPED_PCB_COST
2038 
2039 static bool
2040 in_pcblookup_lb_numa_match(const struct inpcblbgroup *grp, int domain)
2041 {
2042 	return (domain == M_NODOM || domain == grp->il_numa_domain);
2043 }
2044 
2045 static struct inpcb *
2046 in_pcblookup_lbgroup(const struct inpcbinfo *pcbinfo,
2047     const struct in_addr *faddr, uint16_t fport, const struct in_addr *laddr,
2048     uint16_t lport, int domain)
2049 {
2050 	const struct inpcblbgrouphead *hdr;
2051 	struct inpcblbgroup *grp;
2052 	struct inpcblbgroup *jail_exact, *jail_wild, *local_exact, *local_wild;
2053 
2054 	INP_HASH_LOCK_ASSERT(pcbinfo);
2055 
2056 	hdr = &pcbinfo->ipi_lbgrouphashbase[
2057 	    INP_PCBPORTHASH(lport, pcbinfo->ipi_lbgrouphashmask)];
2058 
2059 	/*
2060 	 * Search for an LB group match based on the following criteria:
2061 	 * - prefer jailed groups to non-jailed groups
2062 	 * - prefer exact source address matches to wildcard matches
2063 	 * - prefer groups bound to the specified NUMA domain
2064 	 */
2065 	jail_exact = jail_wild = local_exact = local_wild = NULL;
2066 	CK_LIST_FOREACH(grp, hdr, il_list) {
2067 		bool injail;
2068 
2069 #ifdef INET6
2070 		if (!(grp->il_vflag & INP_IPV4))
2071 			continue;
2072 #endif
2073 		if (grp->il_lport != lport)
2074 			continue;
2075 
2076 		injail = prison_flag(grp->il_cred, PR_IP4) != 0;
2077 		if (injail && prison_check_ip4_locked(grp->il_cred->cr_prison,
2078 		    laddr) != 0)
2079 			continue;
2080 
2081 		if (grp->il_laddr.s_addr == laddr->s_addr) {
2082 			if (injail) {
2083 				jail_exact = grp;
2084 				if (in_pcblookup_lb_numa_match(grp, domain))
2085 					/* This is a perfect match. */
2086 					goto out;
2087 			} else if (local_exact == NULL ||
2088 			    in_pcblookup_lb_numa_match(grp, domain)) {
2089 				local_exact = grp;
2090 			}
2091 		} else if (grp->il_laddr.s_addr == INADDR_ANY) {
2092 			if (injail) {
2093 				if (jail_wild == NULL ||
2094 				    in_pcblookup_lb_numa_match(grp, domain))
2095 					jail_wild = grp;
2096 			} else if (local_wild == NULL ||
2097 			    in_pcblookup_lb_numa_match(grp, domain)) {
2098 				local_wild = grp;
2099 			}
2100 		}
2101 	}
2102 
2103 	if (jail_exact != NULL)
2104 		grp = jail_exact;
2105 	else if (jail_wild != NULL)
2106 		grp = jail_wild;
2107 	else if (local_exact != NULL)
2108 		grp = local_exact;
2109 	else
2110 		grp = local_wild;
2111 	if (grp == NULL)
2112 		return (NULL);
2113 out:
2114 	return (grp->il_inp[INP_PCBLBGROUP_PKTHASH(faddr, lport, fport) %
2115 	    grp->il_inpcnt]);
2116 }
2117 
2118 static bool
2119 in_pcblookup_exact_match(const struct inpcb *inp, struct in_addr faddr,
2120     u_short fport, struct in_addr laddr, u_short lport)
2121 {
2122 #ifdef INET6
2123 	/* XXX inp locking */
2124 	if ((inp->inp_vflag & INP_IPV4) == 0)
2125 		return (false);
2126 #endif
2127 	if (inp->inp_faddr.s_addr == faddr.s_addr &&
2128 	    inp->inp_laddr.s_addr == laddr.s_addr &&
2129 	    inp->inp_fport == fport &&
2130 	    inp->inp_lport == lport)
2131 		return (true);
2132 	return (false);
2133 }
2134 
2135 static struct inpcb *
2136 in_pcblookup_hash_exact(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2137     u_short fport, struct in_addr laddr, u_short lport)
2138 {
2139 	struct inpcbhead *head;
2140 	struct inpcb *inp;
2141 
2142 	INP_HASH_LOCK_ASSERT(pcbinfo);
2143 
2144 	head = &pcbinfo->ipi_hash_exact[INP_PCBHASH(&faddr, lport, fport,
2145 	    pcbinfo->ipi_hashmask)];
2146 	CK_LIST_FOREACH(inp, head, inp_hash_exact) {
2147 		if (in_pcblookup_exact_match(inp, faddr, fport, laddr, lport))
2148 			return (inp);
2149 	}
2150 	return (NULL);
2151 }
2152 
2153 typedef enum {
2154 	INPLOOKUP_MATCH_NONE = 0,
2155 	INPLOOKUP_MATCH_WILD = 1,
2156 	INPLOOKUP_MATCH_LADDR = 2,
2157 } inp_lookup_match_t;
2158 
2159 static inp_lookup_match_t
2160 in_pcblookup_wild_match(const struct inpcb *inp, struct in_addr laddr,
2161     u_short lport)
2162 {
2163 #ifdef INET6
2164 	/* XXX inp locking */
2165 	if ((inp->inp_vflag & INP_IPV4) == 0)
2166 		return (INPLOOKUP_MATCH_NONE);
2167 #endif
2168 	if (inp->inp_faddr.s_addr != INADDR_ANY || inp->inp_lport != lport)
2169 		return (INPLOOKUP_MATCH_NONE);
2170 	if (inp->inp_laddr.s_addr == INADDR_ANY)
2171 		return (INPLOOKUP_MATCH_WILD);
2172 	if (inp->inp_laddr.s_addr == laddr.s_addr)
2173 		return (INPLOOKUP_MATCH_LADDR);
2174 	return (INPLOOKUP_MATCH_NONE);
2175 }
2176 
2177 #define	INP_LOOKUP_AGAIN	((struct inpcb *)(uintptr_t)-1)
2178 
2179 static struct inpcb *
2180 in_pcblookup_hash_wild_smr(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2181     u_short fport, struct in_addr laddr, u_short lport,
2182     const inp_lookup_t lockflags)
2183 {
2184 	struct inpcbhead *head;
2185 	struct inpcb *inp;
2186 
2187 	KASSERT(SMR_ENTERED(pcbinfo->ipi_smr),
2188 	    ("%s: not in SMR read section", __func__));
2189 
2190 	head = &pcbinfo->ipi_hash_wild[INP_PCBHASH_WILD(lport,
2191 	    pcbinfo->ipi_hashmask)];
2192 	CK_LIST_FOREACH(inp, head, inp_hash_wild) {
2193 		inp_lookup_match_t match;
2194 
2195 		match = in_pcblookup_wild_match(inp, laddr, lport);
2196 		if (match == INPLOOKUP_MATCH_NONE)
2197 			continue;
2198 
2199 		if (__predict_true(inp_smr_lock(inp, lockflags))) {
2200 			match = in_pcblookup_wild_match(inp, laddr, lport);
2201 			if (match != INPLOOKUP_MATCH_NONE &&
2202 			    prison_check_ip4_locked(inp->inp_cred->cr_prison,
2203 			    &laddr) == 0)
2204 				return (inp);
2205 			inp_unlock(inp, lockflags);
2206 		}
2207 
2208 		/*
2209 		 * The matching socket disappeared out from under us.  Fall back
2210 		 * to a serialized lookup.
2211 		 */
2212 		return (INP_LOOKUP_AGAIN);
2213 	}
2214 	return (NULL);
2215 }
2216 
2217 static struct inpcb *
2218 in_pcblookup_hash_wild_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2219     u_short fport, struct in_addr laddr, u_short lport)
2220 {
2221 	struct inpcbhead *head;
2222 	struct inpcb *inp, *local_wild, *local_exact, *jail_wild;
2223 #ifdef INET6
2224 	struct inpcb *local_wild_mapped;
2225 #endif
2226 
2227 	INP_HASH_LOCK_ASSERT(pcbinfo);
2228 
2229 	/*
2230 	 * Order of socket selection - we always prefer jails.
2231 	 *      1. jailed, non-wild.
2232 	 *      2. jailed, wild.
2233 	 *      3. non-jailed, non-wild.
2234 	 *      4. non-jailed, wild.
2235 	 */
2236 	head = &pcbinfo->ipi_hash_wild[INP_PCBHASH_WILD(lport,
2237 	    pcbinfo->ipi_hashmask)];
2238 	local_wild = local_exact = jail_wild = NULL;
2239 #ifdef INET6
2240 	local_wild_mapped = NULL;
2241 #endif
2242 	CK_LIST_FOREACH(inp, head, inp_hash_wild) {
2243 		inp_lookup_match_t match;
2244 		bool injail;
2245 
2246 		match = in_pcblookup_wild_match(inp, laddr, lport);
2247 		if (match == INPLOOKUP_MATCH_NONE)
2248 			continue;
2249 
2250 		injail = prison_flag(inp->inp_cred, PR_IP4) != 0;
2251 		if (injail) {
2252 			if (prison_check_ip4_locked(inp->inp_cred->cr_prison,
2253 			    &laddr) != 0)
2254 				continue;
2255 		} else {
2256 			if (local_exact != NULL)
2257 				continue;
2258 		}
2259 
2260 		if (match == INPLOOKUP_MATCH_LADDR) {
2261 			if (injail)
2262 				return (inp);
2263 			local_exact = inp;
2264 		} else {
2265 #ifdef INET6
2266 			/* XXX inp locking, NULL check */
2267 			if (inp->inp_vflag & INP_IPV6PROTO)
2268 				local_wild_mapped = inp;
2269 			else
2270 #endif
2271 				if (injail)
2272 					jail_wild = inp;
2273 				else
2274 					local_wild = inp;
2275 		}
2276 	}
2277 	if (jail_wild != NULL)
2278 		return (jail_wild);
2279 	if (local_exact != NULL)
2280 		return (local_exact);
2281 	if (local_wild != NULL)
2282 		return (local_wild);
2283 #ifdef INET6
2284 	if (local_wild_mapped != NULL)
2285 		return (local_wild_mapped);
2286 #endif
2287 	return (NULL);
2288 }
2289 
2290 /*
2291  * Lookup PCB in hash list, using pcbinfo tables.  This variation assumes
2292  * that the caller has either locked the hash list, which usually happens
2293  * for bind(2) operations, or is in SMR section, which happens when sorting
2294  * out incoming packets.
2295  */
2296 static struct inpcb *
2297 in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2298     u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags,
2299     uint8_t numa_domain)
2300 {
2301 	struct inpcb *inp;
2302 	const u_short fport = fport_arg, lport = lport_arg;
2303 
2304 	KASSERT((lookupflags & ~INPLOOKUP_WILDCARD) == 0,
2305 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
2306 	KASSERT(faddr.s_addr != INADDR_ANY,
2307 	    ("%s: invalid foreign address", __func__));
2308 	KASSERT(laddr.s_addr != INADDR_ANY,
2309 	    ("%s: invalid local address", __func__));
2310 	INP_HASH_WLOCK_ASSERT(pcbinfo);
2311 
2312 	inp = in_pcblookup_hash_exact(pcbinfo, faddr, fport, laddr, lport);
2313 	if (inp != NULL)
2314 		return (inp);
2315 
2316 	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
2317 		inp = in_pcblookup_lbgroup(pcbinfo, &faddr, fport,
2318 		    &laddr, lport, numa_domain);
2319 		if (inp == NULL) {
2320 			inp = in_pcblookup_hash_wild_locked(pcbinfo, faddr,
2321 			    fport, laddr, lport);
2322 		}
2323 	}
2324 
2325 	return (inp);
2326 }
2327 
2328 static struct inpcb *
2329 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2330     u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
2331     uint8_t numa_domain)
2332 {
2333 	struct inpcb *inp;
2334 	const inp_lookup_t lockflags = lookupflags & INPLOOKUP_LOCKMASK;
2335 
2336 	KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
2337 	    ("%s: LOCKPCB not set", __func__));
2338 
2339 	INP_HASH_WLOCK(pcbinfo);
2340 	inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport,
2341 	    lookupflags & ~INPLOOKUP_LOCKMASK, numa_domain);
2342 	if (inp != NULL && !inp_trylock(inp, lockflags)) {
2343 		in_pcbref(inp);
2344 		INP_HASH_WUNLOCK(pcbinfo);
2345 		inp_lock(inp, lockflags);
2346 		if (in_pcbrele(inp, lockflags))
2347 			/* XXX-MJ or retry until we get a negative match? */
2348 			inp = NULL;
2349 	} else {
2350 		INP_HASH_WUNLOCK(pcbinfo);
2351 	}
2352 	return (inp);
2353 }
2354 
2355 static struct inpcb *
2356 in_pcblookup_hash_smr(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2357     u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags,
2358     uint8_t numa_domain)
2359 {
2360 	struct inpcb *inp;
2361 	const inp_lookup_t lockflags = lookupflags & INPLOOKUP_LOCKMASK;
2362 	const u_short fport = fport_arg, lport = lport_arg;
2363 
2364 	KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0,
2365 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
2366 	KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
2367 	    ("%s: LOCKPCB not set", __func__));
2368 
2369 	smr_enter(pcbinfo->ipi_smr);
2370 	inp = in_pcblookup_hash_exact(pcbinfo, faddr, fport, laddr, lport);
2371 	if (inp != NULL) {
2372 		if (__predict_true(inp_smr_lock(inp, lockflags))) {
2373 			/*
2374 			 * Revalidate the 4-tuple, the socket could have been
2375 			 * disconnected.
2376 			 */
2377 			if (__predict_true(in_pcblookup_exact_match(inp,
2378 			    faddr, fport, laddr, lport)))
2379 				return (inp);
2380 			inp_unlock(inp, lockflags);
2381 		}
2382 
2383 		/*
2384 		 * We failed to lock the inpcb, or its connection state changed
2385 		 * out from under us.  Fall back to a precise search.
2386 		 */
2387 		return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport,
2388 		    lookupflags, numa_domain));
2389 	}
2390 
2391 	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
2392 		inp = in_pcblookup_lbgroup(pcbinfo, &faddr, fport,
2393 		    &laddr, lport, numa_domain);
2394 		if (inp != NULL) {
2395 			if (__predict_true(inp_smr_lock(inp, lockflags))) {
2396 				if (__predict_true(in_pcblookup_wild_match(inp,
2397 				    laddr, lport) != INPLOOKUP_MATCH_NONE))
2398 					return (inp);
2399 				inp_unlock(inp, lockflags);
2400 			}
2401 			inp = INP_LOOKUP_AGAIN;
2402 		} else {
2403 			inp = in_pcblookup_hash_wild_smr(pcbinfo, faddr, fport,
2404 			    laddr, lport, lockflags);
2405 		}
2406 		if (inp == INP_LOOKUP_AGAIN) {
2407 			return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr,
2408 			    lport, lookupflags, numa_domain));
2409 		}
2410 	}
2411 
2412 	if (inp == NULL)
2413 		smr_exit(pcbinfo->ipi_smr);
2414 
2415 	return (inp);
2416 }
2417 
2418 /*
2419  * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf
2420  * from which a pre-calculated hash value may be extracted.
2421  */
2422 struct inpcb *
2423 in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport,
2424     struct in_addr laddr, u_int lport, int lookupflags,
2425     struct ifnet *ifp __unused)
2426 {
2427 	return (in_pcblookup_hash_smr(pcbinfo, faddr, fport, laddr, lport,
2428 	    lookupflags, M_NODOM));
2429 }
2430 
2431 struct inpcb *
2432 in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2433     u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
2434     struct ifnet *ifp __unused, struct mbuf *m)
2435 {
2436 	return (in_pcblookup_hash_smr(pcbinfo, faddr, fport, laddr, lport,
2437 	    lookupflags, m->m_pkthdr.numa_domain));
2438 }
2439 #endif /* INET */
2440 
2441 static bool
2442 in_pcbjailed(const struct inpcb *inp, unsigned int flag)
2443 {
2444 	return (prison_flag(inp->inp_cred, flag) != 0);
2445 }
2446 
2447 /*
2448  * Insert the PCB into a hash chain using ordering rules which ensure that
2449  * in_pcblookup_hash_wild_*() always encounter the highest-ranking PCB first.
2450  *
2451  * Specifically, keep jailed PCBs in front of non-jailed PCBs, and keep PCBs
2452  * with exact local addresses ahead of wildcard PCBs.  Unbound v4-mapped v6 PCBs
2453  * always appear last no matter whether they are jailed.
2454  */
2455 static void
2456 _in_pcbinshash_wild(struct inpcbhead *pcbhash, struct inpcb *inp)
2457 {
2458 	struct inpcb *last;
2459 	bool bound, injail;
2460 
2461 	INP_LOCK_ASSERT(inp);
2462 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
2463 
2464 	last = NULL;
2465 	bound = inp->inp_laddr.s_addr != INADDR_ANY;
2466 	if (!bound && (inp->inp_vflag & INP_IPV6PROTO) != 0) {
2467 		CK_LIST_FOREACH(last, pcbhash, inp_hash_wild) {
2468 			if (CK_LIST_NEXT(last, inp_hash_wild) == NULL) {
2469 				CK_LIST_INSERT_AFTER(last, inp, inp_hash_wild);
2470 				return;
2471 			}
2472 		}
2473 		CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash_wild);
2474 		return;
2475 	}
2476 
2477 	injail = in_pcbjailed(inp, PR_IP4);
2478 	if (!injail) {
2479 		CK_LIST_FOREACH(last, pcbhash, inp_hash_wild) {
2480 			if (!in_pcbjailed(last, PR_IP4))
2481 				break;
2482 			if (CK_LIST_NEXT(last, inp_hash_wild) == NULL) {
2483 				CK_LIST_INSERT_AFTER(last, inp, inp_hash_wild);
2484 				return;
2485 			}
2486 		}
2487 	} else if (!CK_LIST_EMPTY(pcbhash) &&
2488 	    !in_pcbjailed(CK_LIST_FIRST(pcbhash), PR_IP4)) {
2489 		CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash_wild);
2490 		return;
2491 	}
2492 	if (!bound) {
2493 		CK_LIST_FOREACH_FROM(last, pcbhash, inp_hash_wild) {
2494 			if (last->inp_laddr.s_addr == INADDR_ANY)
2495 				break;
2496 			if (CK_LIST_NEXT(last, inp_hash_wild) == NULL) {
2497 				CK_LIST_INSERT_AFTER(last, inp, inp_hash_wild);
2498 				return;
2499 			}
2500 		}
2501 	}
2502 	if (last == NULL)
2503 		CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash_wild);
2504 	else
2505 		CK_LIST_INSERT_BEFORE(last, inp, inp_hash_wild);
2506 }
2507 
2508 #ifdef INET6
2509 /*
2510  * See the comment above _in_pcbinshash_wild().
2511  */
2512 static void
2513 _in6_pcbinshash_wild(struct inpcbhead *pcbhash, struct inpcb *inp)
2514 {
2515 	struct inpcb *last;
2516 	bool bound, injail;
2517 
2518 	INP_LOCK_ASSERT(inp);
2519 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
2520 
2521 	last = NULL;
2522 	bound = !IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr);
2523 	injail = in_pcbjailed(inp, PR_IP6);
2524 	if (!injail) {
2525 		CK_LIST_FOREACH(last, pcbhash, inp_hash_wild) {
2526 			if (!in_pcbjailed(last, PR_IP6))
2527 				break;
2528 			if (CK_LIST_NEXT(last, inp_hash_wild) == NULL) {
2529 				CK_LIST_INSERT_AFTER(last, inp, inp_hash_wild);
2530 				return;
2531 			}
2532 		}
2533 	} else if (!CK_LIST_EMPTY(pcbhash) &&
2534 	    !in_pcbjailed(CK_LIST_FIRST(pcbhash), PR_IP6)) {
2535 		CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash_wild);
2536 		return;
2537 	}
2538 	if (!bound) {
2539 		CK_LIST_FOREACH_FROM(last, pcbhash, inp_hash_wild) {
2540 			if (IN6_IS_ADDR_UNSPECIFIED(&last->in6p_laddr))
2541 				break;
2542 			if (CK_LIST_NEXT(last, inp_hash_wild) == NULL) {
2543 				CK_LIST_INSERT_AFTER(last, inp, inp_hash_wild);
2544 				return;
2545 			}
2546 		}
2547 	}
2548 	if (last == NULL)
2549 		CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash_wild);
2550 	else
2551 		CK_LIST_INSERT_BEFORE(last, inp, inp_hash_wild);
2552 }
2553 #endif
2554 
2555 /*
2556  * Insert PCB onto various hash lists.
2557  */
2558 int
2559 in_pcbinshash(struct inpcb *inp)
2560 {
2561 	struct inpcbhead *pcbhash;
2562 	struct inpcbporthead *pcbporthash;
2563 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2564 	struct inpcbport *phd;
2565 	uint32_t hash;
2566 	bool connected;
2567 
2568 	INP_WLOCK_ASSERT(inp);
2569 	INP_HASH_WLOCK_ASSERT(pcbinfo);
2570 	KASSERT((inp->inp_flags & INP_INHASHLIST) == 0,
2571 	    ("in_pcbinshash: INP_INHASHLIST"));
2572 
2573 #ifdef INET6
2574 	if (inp->inp_vflag & INP_IPV6) {
2575 		hash = INP6_PCBHASH(&inp->in6p_faddr, inp->inp_lport,
2576 		    inp->inp_fport, pcbinfo->ipi_hashmask);
2577 		connected = !IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr);
2578 	} else
2579 #endif
2580 	{
2581 		hash = INP_PCBHASH(&inp->inp_faddr, inp->inp_lport,
2582 		    inp->inp_fport, pcbinfo->ipi_hashmask);
2583 		connected = !in_nullhost(inp->inp_faddr);
2584 	}
2585 
2586 	if (connected)
2587 		pcbhash = &pcbinfo->ipi_hash_exact[hash];
2588 	else
2589 		pcbhash = &pcbinfo->ipi_hash_wild[hash];
2590 
2591 	pcbporthash = &pcbinfo->ipi_porthashbase[
2592 	    INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)];
2593 
2594 	/*
2595 	 * Add entry to load balance group.
2596 	 * Only do this if SO_REUSEPORT_LB is set.
2597 	 */
2598 	if ((inp->inp_socket->so_options & SO_REUSEPORT_LB) != 0) {
2599 		int error = in_pcbinslbgrouphash(inp, M_NODOM);
2600 		if (error != 0)
2601 			return (error);
2602 	}
2603 
2604 	/*
2605 	 * Go through port list and look for a head for this lport.
2606 	 */
2607 	CK_LIST_FOREACH(phd, pcbporthash, phd_hash) {
2608 		if (phd->phd_port == inp->inp_lport)
2609 			break;
2610 	}
2611 
2612 	/*
2613 	 * If none exists, malloc one and tack it on.
2614 	 */
2615 	if (phd == NULL) {
2616 		phd = uma_zalloc_smr(pcbinfo->ipi_portzone, M_NOWAIT);
2617 		if (phd == NULL) {
2618 			if ((inp->inp_flags & INP_INLBGROUP) != 0)
2619 				in_pcbremlbgrouphash(inp);
2620 			return (ENOMEM);
2621 		}
2622 		phd->phd_port = inp->inp_lport;
2623 		CK_LIST_INIT(&phd->phd_pcblist);
2624 		CK_LIST_INSERT_HEAD(pcbporthash, phd, phd_hash);
2625 	}
2626 	inp->inp_phd = phd;
2627 	CK_LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist);
2628 
2629 	/*
2630 	 * The PCB may have been disconnected in the past.  Before we can safely
2631 	 * make it visible in the hash table, we must wait for all readers which
2632 	 * may be traversing this PCB to finish.
2633 	 */
2634 	if (inp->inp_smr != SMR_SEQ_INVALID) {
2635 		smr_wait(pcbinfo->ipi_smr, inp->inp_smr);
2636 		inp->inp_smr = SMR_SEQ_INVALID;
2637 	}
2638 
2639 	if (connected)
2640 		CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash_exact);
2641 	else {
2642 #ifdef INET6
2643 		if ((inp->inp_vflag & INP_IPV6) != 0)
2644 			_in6_pcbinshash_wild(pcbhash, inp);
2645 		else
2646 #endif
2647 			_in_pcbinshash_wild(pcbhash, inp);
2648 	}
2649 	inp->inp_flags |= INP_INHASHLIST;
2650 
2651 	return (0);
2652 }
2653 
2654 void
2655 in_pcbremhash_locked(struct inpcb *inp)
2656 {
2657 	struct inpcbport *phd = inp->inp_phd;
2658 
2659 	INP_WLOCK_ASSERT(inp);
2660 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
2661 	MPASS(inp->inp_flags & INP_INHASHLIST);
2662 
2663 	if ((inp->inp_flags & INP_INLBGROUP) != 0)
2664 		in_pcbremlbgrouphash(inp);
2665 #ifdef INET6
2666 	if (inp->inp_vflag & INP_IPV6) {
2667 		if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr))
2668 			CK_LIST_REMOVE(inp, inp_hash_wild);
2669 		else
2670 			CK_LIST_REMOVE(inp, inp_hash_exact);
2671 	} else
2672 #endif
2673 	{
2674 		if (in_nullhost(inp->inp_faddr))
2675 			CK_LIST_REMOVE(inp, inp_hash_wild);
2676 		else
2677 			CK_LIST_REMOVE(inp, inp_hash_exact);
2678 	}
2679 	CK_LIST_REMOVE(inp, inp_portlist);
2680 	if (CK_LIST_FIRST(&phd->phd_pcblist) == NULL) {
2681 		CK_LIST_REMOVE(phd, phd_hash);
2682 		uma_zfree_smr(inp->inp_pcbinfo->ipi_portzone, phd);
2683 	}
2684 	inp->inp_flags &= ~INP_INHASHLIST;
2685 }
2686 
2687 static void
2688 in_pcbremhash(struct inpcb *inp)
2689 {
2690 	INP_HASH_WLOCK(inp->inp_pcbinfo);
2691 	in_pcbremhash_locked(inp);
2692 	INP_HASH_WUNLOCK(inp->inp_pcbinfo);
2693 }
2694 
2695 /*
2696  * Move PCB to the proper hash bucket when { faddr, fport } have  been
2697  * changed. NOTE: This does not handle the case of the lport changing (the
2698  * hashed port list would have to be updated as well), so the lport must
2699  * not change after in_pcbinshash() has been called.
2700  */
2701 void
2702 in_pcbrehash(struct inpcb *inp)
2703 {
2704 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2705 	struct inpcbhead *head;
2706 	uint32_t hash;
2707 	bool connected;
2708 
2709 	INP_WLOCK_ASSERT(inp);
2710 	INP_HASH_WLOCK_ASSERT(pcbinfo);
2711 	KASSERT(inp->inp_flags & INP_INHASHLIST,
2712 	    ("%s: !INP_INHASHLIST", __func__));
2713 	KASSERT(inp->inp_smr == SMR_SEQ_INVALID,
2714 	    ("%s: inp was disconnected", __func__));
2715 
2716 #ifdef INET6
2717 	if (inp->inp_vflag & INP_IPV6) {
2718 		hash = INP6_PCBHASH(&inp->in6p_faddr, inp->inp_lport,
2719 		    inp->inp_fport, pcbinfo->ipi_hashmask);
2720 		connected = !IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr);
2721 	} else
2722 #endif
2723 	{
2724 		hash = INP_PCBHASH(&inp->inp_faddr, inp->inp_lport,
2725 		    inp->inp_fport, pcbinfo->ipi_hashmask);
2726 		connected = !in_nullhost(inp->inp_faddr);
2727 	}
2728 
2729 	/*
2730 	 * When rehashing, the caller must ensure that either the new or the old
2731 	 * foreign address was unspecified.
2732 	 */
2733 	if (connected)
2734 		CK_LIST_REMOVE(inp, inp_hash_wild);
2735 	else
2736 		CK_LIST_REMOVE(inp, inp_hash_exact);
2737 
2738 	if (connected) {
2739 		head = &pcbinfo->ipi_hash_exact[hash];
2740 		CK_LIST_INSERT_HEAD(head, inp, inp_hash_exact);
2741 	} else {
2742 		head = &pcbinfo->ipi_hash_wild[hash];
2743 		CK_LIST_INSERT_HEAD(head, inp, inp_hash_wild);
2744 	}
2745 }
2746 
2747 /*
2748  * Check for alternatives when higher level complains
2749  * about service problems.  For now, invalidate cached
2750  * routing information.  If the route was created dynamically
2751  * (by a redirect), time to try a default gateway again.
2752  */
2753 void
2754 in_losing(struct inpcb *inp)
2755 {
2756 
2757 	RO_INVALIDATE_CACHE(&inp->inp_route);
2758 	return;
2759 }
2760 
2761 /*
2762  * A set label operation has occurred at the socket layer, propagate the
2763  * label change into the in_pcb for the socket.
2764  */
2765 void
2766 in_pcbsosetlabel(struct socket *so)
2767 {
2768 #ifdef MAC
2769 	struct inpcb *inp;
2770 
2771 	inp = sotoinpcb(so);
2772 	KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL"));
2773 
2774 	INP_WLOCK(inp);
2775 	SOCK_LOCK(so);
2776 	mac_inpcb_sosetlabel(so, inp);
2777 	SOCK_UNLOCK(so);
2778 	INP_WUNLOCK(inp);
2779 #endif
2780 }
2781 
2782 void
2783 inp_wlock(struct inpcb *inp)
2784 {
2785 
2786 	INP_WLOCK(inp);
2787 }
2788 
2789 void
2790 inp_wunlock(struct inpcb *inp)
2791 {
2792 
2793 	INP_WUNLOCK(inp);
2794 }
2795 
2796 void
2797 inp_rlock(struct inpcb *inp)
2798 {
2799 
2800 	INP_RLOCK(inp);
2801 }
2802 
2803 void
2804 inp_runlock(struct inpcb *inp)
2805 {
2806 
2807 	INP_RUNLOCK(inp);
2808 }
2809 
2810 #ifdef INVARIANT_SUPPORT
2811 void
2812 inp_lock_assert(struct inpcb *inp)
2813 {
2814 
2815 	INP_WLOCK_ASSERT(inp);
2816 }
2817 
2818 void
2819 inp_unlock_assert(struct inpcb *inp)
2820 {
2821 
2822 	INP_UNLOCK_ASSERT(inp);
2823 }
2824 #endif
2825 
2826 void
2827 inp_apply_all(struct inpcbinfo *pcbinfo,
2828     void (*func)(struct inpcb *, void *), void *arg)
2829 {
2830 	struct inpcb_iterator inpi = INP_ALL_ITERATOR(pcbinfo,
2831 	    INPLOOKUP_WLOCKPCB);
2832 	struct inpcb *inp;
2833 
2834 	while ((inp = inp_next(&inpi)) != NULL)
2835 		func(inp, arg);
2836 }
2837 
2838 struct socket *
2839 inp_inpcbtosocket(struct inpcb *inp)
2840 {
2841 
2842 	INP_WLOCK_ASSERT(inp);
2843 	return (inp->inp_socket);
2844 }
2845 
2846 void
2847 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp,
2848     uint32_t *faddr, uint16_t *fp)
2849 {
2850 
2851 	INP_LOCK_ASSERT(inp);
2852 	*laddr = inp->inp_laddr.s_addr;
2853 	*faddr = inp->inp_faddr.s_addr;
2854 	*lp = inp->inp_lport;
2855 	*fp = inp->inp_fport;
2856 }
2857 
2858 /*
2859  * Create an external-format (``xinpcb'') structure using the information in
2860  * the kernel-format in_pcb structure pointed to by inp.  This is done to
2861  * reduce the spew of irrelevant information over this interface, to isolate
2862  * user code from changes in the kernel structure, and potentially to provide
2863  * information-hiding if we decide that some of this information should be
2864  * hidden from users.
2865  */
2866 void
2867 in_pcbtoxinpcb(const struct inpcb *inp, struct xinpcb *xi)
2868 {
2869 
2870 	bzero(xi, sizeof(*xi));
2871 	xi->xi_len = sizeof(struct xinpcb);
2872 	if (inp->inp_socket)
2873 		sotoxsocket(inp->inp_socket, &xi->xi_socket);
2874 	bcopy(&inp->inp_inc, &xi->inp_inc, sizeof(struct in_conninfo));
2875 	xi->inp_gencnt = inp->inp_gencnt;
2876 	xi->inp_flow = inp->inp_flow;
2877 	xi->inp_flowid = inp->inp_flowid;
2878 	xi->inp_flowtype = inp->inp_flowtype;
2879 	xi->inp_flags = inp->inp_flags;
2880 	xi->inp_flags2 = inp->inp_flags2;
2881 	xi->in6p_cksum = inp->in6p_cksum;
2882 	xi->in6p_hops = inp->in6p_hops;
2883 	xi->inp_ip_tos = inp->inp_ip_tos;
2884 	xi->inp_vflag = inp->inp_vflag;
2885 	xi->inp_ip_ttl = inp->inp_ip_ttl;
2886 	xi->inp_ip_p = inp->inp_ip_p;
2887 	xi->inp_ip_minttl = inp->inp_ip_minttl;
2888 }
2889 
2890 int
2891 sysctl_setsockopt(SYSCTL_HANDLER_ARGS, struct inpcbinfo *pcbinfo,
2892     int (*ctloutput_set)(struct inpcb *, struct sockopt *))
2893 {
2894 	struct sockopt sopt;
2895 	struct inpcb_iterator inpi = INP_ALL_ITERATOR(pcbinfo,
2896 	    INPLOOKUP_WLOCKPCB);
2897 	struct inpcb *inp;
2898 	struct sockopt_parameters *params;
2899 	struct socket *so;
2900 	int error;
2901 	char buf[1024];
2902 
2903 	if (req->oldptr != NULL || req->oldlen != 0)
2904 		return (EINVAL);
2905 	if (req->newptr == NULL)
2906 		return (EPERM);
2907 	if (req->newlen > sizeof(buf))
2908 		return (ENOMEM);
2909 	error = SYSCTL_IN(req, buf, req->newlen);
2910 	if (error != 0)
2911 		return (error);
2912 	if (req->newlen < sizeof(struct sockopt_parameters))
2913 		return (EINVAL);
2914 	params = (struct sockopt_parameters *)buf;
2915 	sopt.sopt_level = params->sop_level;
2916 	sopt.sopt_name = params->sop_optname;
2917 	sopt.sopt_dir = SOPT_SET;
2918 	sopt.sopt_val = params->sop_optval;
2919 	sopt.sopt_valsize = req->newlen - sizeof(struct sockopt_parameters);
2920 	sopt.sopt_td = NULL;
2921 #ifdef INET6
2922 	if (params->sop_inc.inc_flags & INC_ISIPV6) {
2923 		if (IN6_IS_SCOPE_LINKLOCAL(&params->sop_inc.inc6_laddr))
2924 			params->sop_inc.inc6_laddr.s6_addr16[1] =
2925 			    htons(params->sop_inc.inc6_zoneid & 0xffff);
2926 		if (IN6_IS_SCOPE_LINKLOCAL(&params->sop_inc.inc6_faddr))
2927 			params->sop_inc.inc6_faddr.s6_addr16[1] =
2928 			    htons(params->sop_inc.inc6_zoneid & 0xffff);
2929 	}
2930 #endif
2931 	if (params->sop_inc.inc_lport != htons(0) &&
2932 	    params->sop_inc.inc_fport != htons(0)) {
2933 #ifdef INET6
2934 		if (params->sop_inc.inc_flags & INC_ISIPV6)
2935 			inpi.hash = INP6_PCBHASH(
2936 			    &params->sop_inc.inc6_faddr,
2937 			    params->sop_inc.inc_lport,
2938 			    params->sop_inc.inc_fport,
2939 			    pcbinfo->ipi_hashmask);
2940 		else
2941 #endif
2942 			inpi.hash = INP_PCBHASH(
2943 			    &params->sop_inc.inc_faddr,
2944 			    params->sop_inc.inc_lport,
2945 			    params->sop_inc.inc_fport,
2946 			    pcbinfo->ipi_hashmask);
2947 	}
2948 	while ((inp = inp_next(&inpi)) != NULL)
2949 		if (inp->inp_gencnt == params->sop_id) {
2950 			if (inp->inp_flags & INP_DROPPED) {
2951 				INP_WUNLOCK(inp);
2952 				return (ECONNRESET);
2953 			}
2954 			so = inp->inp_socket;
2955 			KASSERT(so != NULL, ("inp_socket == NULL"));
2956 			soref(so);
2957 			if (params->sop_level == SOL_SOCKET) {
2958 				INP_WUNLOCK(inp);
2959 				error = sosetopt(so, &sopt);
2960 			} else
2961 				error = (*ctloutput_set)(inp, &sopt);
2962 			sorele(so);
2963 			break;
2964 		}
2965 	if (inp == NULL)
2966 		error = ESRCH;
2967 	return (error);
2968 }
2969 
2970 #ifdef DDB
2971 static void
2972 db_print_indent(int indent)
2973 {
2974 	int i;
2975 
2976 	for (i = 0; i < indent; i++)
2977 		db_printf(" ");
2978 }
2979 
2980 static void
2981 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent)
2982 {
2983 	char faddr_str[48], laddr_str[48];
2984 
2985 	db_print_indent(indent);
2986 	db_printf("%s at %p\n", name, inc);
2987 
2988 	indent += 2;
2989 
2990 #ifdef INET6
2991 	if (inc->inc_flags & INC_ISIPV6) {
2992 		/* IPv6. */
2993 		ip6_sprintf(laddr_str, &inc->inc6_laddr);
2994 		ip6_sprintf(faddr_str, &inc->inc6_faddr);
2995 	} else
2996 #endif
2997 	{
2998 		/* IPv4. */
2999 		inet_ntoa_r(inc->inc_laddr, laddr_str);
3000 		inet_ntoa_r(inc->inc_faddr, faddr_str);
3001 	}
3002 	db_print_indent(indent);
3003 	db_printf("inc_laddr %s   inc_lport %u\n", laddr_str,
3004 	    ntohs(inc->inc_lport));
3005 	db_print_indent(indent);
3006 	db_printf("inc_faddr %s   inc_fport %u\n", faddr_str,
3007 	    ntohs(inc->inc_fport));
3008 }
3009 
3010 static void
3011 db_print_inpflags(int inp_flags)
3012 {
3013 	int comma;
3014 
3015 	comma = 0;
3016 	if (inp_flags & INP_RECVOPTS) {
3017 		db_printf("%sINP_RECVOPTS", comma ? ", " : "");
3018 		comma = 1;
3019 	}
3020 	if (inp_flags & INP_RECVRETOPTS) {
3021 		db_printf("%sINP_RECVRETOPTS", comma ? ", " : "");
3022 		comma = 1;
3023 	}
3024 	if (inp_flags & INP_RECVDSTADDR) {
3025 		db_printf("%sINP_RECVDSTADDR", comma ? ", " : "");
3026 		comma = 1;
3027 	}
3028 	if (inp_flags & INP_ORIGDSTADDR) {
3029 		db_printf("%sINP_ORIGDSTADDR", comma ? ", " : "");
3030 		comma = 1;
3031 	}
3032 	if (inp_flags & INP_HDRINCL) {
3033 		db_printf("%sINP_HDRINCL", comma ? ", " : "");
3034 		comma = 1;
3035 	}
3036 	if (inp_flags & INP_HIGHPORT) {
3037 		db_printf("%sINP_HIGHPORT", comma ? ", " : "");
3038 		comma = 1;
3039 	}
3040 	if (inp_flags & INP_LOWPORT) {
3041 		db_printf("%sINP_LOWPORT", comma ? ", " : "");
3042 		comma = 1;
3043 	}
3044 	if (inp_flags & INP_ANONPORT) {
3045 		db_printf("%sINP_ANONPORT", comma ? ", " : "");
3046 		comma = 1;
3047 	}
3048 	if (inp_flags & INP_RECVIF) {
3049 		db_printf("%sINP_RECVIF", comma ? ", " : "");
3050 		comma = 1;
3051 	}
3052 	if (inp_flags & INP_MTUDISC) {
3053 		db_printf("%sINP_MTUDISC", comma ? ", " : "");
3054 		comma = 1;
3055 	}
3056 	if (inp_flags & INP_RECVTTL) {
3057 		db_printf("%sINP_RECVTTL", comma ? ", " : "");
3058 		comma = 1;
3059 	}
3060 	if (inp_flags & INP_DONTFRAG) {
3061 		db_printf("%sINP_DONTFRAG", comma ? ", " : "");
3062 		comma = 1;
3063 	}
3064 	if (inp_flags & INP_RECVTOS) {
3065 		db_printf("%sINP_RECVTOS", comma ? ", " : "");
3066 		comma = 1;
3067 	}
3068 	if (inp_flags & IN6P_IPV6_V6ONLY) {
3069 		db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : "");
3070 		comma = 1;
3071 	}
3072 	if (inp_flags & IN6P_PKTINFO) {
3073 		db_printf("%sIN6P_PKTINFO", comma ? ", " : "");
3074 		comma = 1;
3075 	}
3076 	if (inp_flags & IN6P_HOPLIMIT) {
3077 		db_printf("%sIN6P_HOPLIMIT", comma ? ", " : "");
3078 		comma = 1;
3079 	}
3080 	if (inp_flags & IN6P_HOPOPTS) {
3081 		db_printf("%sIN6P_HOPOPTS", comma ? ", " : "");
3082 		comma = 1;
3083 	}
3084 	if (inp_flags & IN6P_DSTOPTS) {
3085 		db_printf("%sIN6P_DSTOPTS", comma ? ", " : "");
3086 		comma = 1;
3087 	}
3088 	if (inp_flags & IN6P_RTHDR) {
3089 		db_printf("%sIN6P_RTHDR", comma ? ", " : "");
3090 		comma = 1;
3091 	}
3092 	if (inp_flags & IN6P_RTHDRDSTOPTS) {
3093 		db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : "");
3094 		comma = 1;
3095 	}
3096 	if (inp_flags & IN6P_TCLASS) {
3097 		db_printf("%sIN6P_TCLASS", comma ? ", " : "");
3098 		comma = 1;
3099 	}
3100 	if (inp_flags & IN6P_AUTOFLOWLABEL) {
3101 		db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : "");
3102 		comma = 1;
3103 	}
3104 	if (inp_flags & INP_ONESBCAST) {
3105 		db_printf("%sINP_ONESBCAST", comma ? ", " : "");
3106 		comma  = 1;
3107 	}
3108 	if (inp_flags & INP_DROPPED) {
3109 		db_printf("%sINP_DROPPED", comma ? ", " : "");
3110 		comma  = 1;
3111 	}
3112 	if (inp_flags & INP_SOCKREF) {
3113 		db_printf("%sINP_SOCKREF", comma ? ", " : "");
3114 		comma  = 1;
3115 	}
3116 	if (inp_flags & IN6P_RFC2292) {
3117 		db_printf("%sIN6P_RFC2292", comma ? ", " : "");
3118 		comma = 1;
3119 	}
3120 	if (inp_flags & IN6P_MTU) {
3121 		db_printf("IN6P_MTU%s", comma ? ", " : "");
3122 		comma = 1;
3123 	}
3124 }
3125 
3126 static void
3127 db_print_inpvflag(u_char inp_vflag)
3128 {
3129 	int comma;
3130 
3131 	comma = 0;
3132 	if (inp_vflag & INP_IPV4) {
3133 		db_printf("%sINP_IPV4", comma ? ", " : "");
3134 		comma  = 1;
3135 	}
3136 	if (inp_vflag & INP_IPV6) {
3137 		db_printf("%sINP_IPV6", comma ? ", " : "");
3138 		comma  = 1;
3139 	}
3140 	if (inp_vflag & INP_IPV6PROTO) {
3141 		db_printf("%sINP_IPV6PROTO", comma ? ", " : "");
3142 		comma  = 1;
3143 	}
3144 }
3145 
3146 static void
3147 db_print_inpcb(struct inpcb *inp, const char *name, int indent)
3148 {
3149 
3150 	db_print_indent(indent);
3151 	db_printf("%s at %p\n", name, inp);
3152 
3153 	indent += 2;
3154 
3155 	db_print_indent(indent);
3156 	db_printf("inp_flow: 0x%x\n", inp->inp_flow);
3157 
3158 	db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent);
3159 
3160 	db_print_indent(indent);
3161 	db_printf("inp_label: %p   inp_flags: 0x%x (",
3162 	   inp->inp_label, inp->inp_flags);
3163 	db_print_inpflags(inp->inp_flags);
3164 	db_printf(")\n");
3165 
3166 	db_print_indent(indent);
3167 	db_printf("inp_sp: %p   inp_vflag: 0x%x (", inp->inp_sp,
3168 	    inp->inp_vflag);
3169 	db_print_inpvflag(inp->inp_vflag);
3170 	db_printf(")\n");
3171 
3172 	db_print_indent(indent);
3173 	db_printf("inp_ip_ttl: %d   inp_ip_p: %d   inp_ip_minttl: %d\n",
3174 	    inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl);
3175 
3176 	db_print_indent(indent);
3177 #ifdef INET6
3178 	if (inp->inp_vflag & INP_IPV6) {
3179 		db_printf("in6p_options: %p   in6p_outputopts: %p   "
3180 		    "in6p_moptions: %p\n", inp->in6p_options,
3181 		    inp->in6p_outputopts, inp->in6p_moptions);
3182 		db_printf("in6p_icmp6filt: %p   in6p_cksum %d   "
3183 		    "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum,
3184 		    inp->in6p_hops);
3185 	} else
3186 #endif
3187 	{
3188 		db_printf("inp_ip_tos: %d   inp_ip_options: %p   "
3189 		    "inp_ip_moptions: %p\n", inp->inp_ip_tos,
3190 		    inp->inp_options, inp->inp_moptions);
3191 	}
3192 
3193 	db_print_indent(indent);
3194 	db_printf("inp_phd: %p   inp_gencnt: %ju\n", inp->inp_phd,
3195 	    (uintmax_t)inp->inp_gencnt);
3196 }
3197 
3198 DB_SHOW_COMMAND(inpcb, db_show_inpcb)
3199 {
3200 	struct inpcb *inp;
3201 
3202 	if (!have_addr) {
3203 		db_printf("usage: show inpcb <addr>\n");
3204 		return;
3205 	}
3206 	inp = (struct inpcb *)addr;
3207 
3208 	db_print_inpcb(inp, "inpcb", 0);
3209 }
3210 #endif /* DDB */
3211 
3212 #ifdef RATELIMIT
3213 /*
3214  * Modify TX rate limit based on the existing "inp->inp_snd_tag",
3215  * if any.
3216  */
3217 int
3218 in_pcbmodify_txrtlmt(struct inpcb *inp, uint32_t max_pacing_rate)
3219 {
3220 	union if_snd_tag_modify_params params = {
3221 		.rate_limit.max_rate = max_pacing_rate,
3222 		.rate_limit.flags = M_NOWAIT,
3223 	};
3224 	struct m_snd_tag *mst;
3225 	int error;
3226 
3227 	mst = inp->inp_snd_tag;
3228 	if (mst == NULL)
3229 		return (EINVAL);
3230 
3231 	if (mst->sw->snd_tag_modify == NULL) {
3232 		error = EOPNOTSUPP;
3233 	} else {
3234 		error = mst->sw->snd_tag_modify(mst, &params);
3235 	}
3236 	return (error);
3237 }
3238 
3239 /*
3240  * Query existing TX rate limit based on the existing
3241  * "inp->inp_snd_tag", if any.
3242  */
3243 int
3244 in_pcbquery_txrtlmt(struct inpcb *inp, uint32_t *p_max_pacing_rate)
3245 {
3246 	union if_snd_tag_query_params params = { };
3247 	struct m_snd_tag *mst;
3248 	int error;
3249 
3250 	mst = inp->inp_snd_tag;
3251 	if (mst == NULL)
3252 		return (EINVAL);
3253 
3254 	if (mst->sw->snd_tag_query == NULL) {
3255 		error = EOPNOTSUPP;
3256 	} else {
3257 		error = mst->sw->snd_tag_query(mst, &params);
3258 		if (error == 0 && p_max_pacing_rate != NULL)
3259 			*p_max_pacing_rate = params.rate_limit.max_rate;
3260 	}
3261 	return (error);
3262 }
3263 
3264 /*
3265  * Query existing TX queue level based on the existing
3266  * "inp->inp_snd_tag", if any.
3267  */
3268 int
3269 in_pcbquery_txrlevel(struct inpcb *inp, uint32_t *p_txqueue_level)
3270 {
3271 	union if_snd_tag_query_params params = { };
3272 	struct m_snd_tag *mst;
3273 	int error;
3274 
3275 	mst = inp->inp_snd_tag;
3276 	if (mst == NULL)
3277 		return (EINVAL);
3278 
3279 	if (mst->sw->snd_tag_query == NULL)
3280 		return (EOPNOTSUPP);
3281 
3282 	error = mst->sw->snd_tag_query(mst, &params);
3283 	if (error == 0 && p_txqueue_level != NULL)
3284 		*p_txqueue_level = params.rate_limit.queue_level;
3285 	return (error);
3286 }
3287 
3288 /*
3289  * Allocate a new TX rate limit send tag from the network interface
3290  * given by the "ifp" argument and save it in "inp->inp_snd_tag":
3291  */
3292 int
3293 in_pcbattach_txrtlmt(struct inpcb *inp, struct ifnet *ifp,
3294     uint32_t flowtype, uint32_t flowid, uint32_t max_pacing_rate, struct m_snd_tag **st)
3295 
3296 {
3297 	union if_snd_tag_alloc_params params = {
3298 		.rate_limit.hdr.type = (max_pacing_rate == -1U) ?
3299 		    IF_SND_TAG_TYPE_UNLIMITED : IF_SND_TAG_TYPE_RATE_LIMIT,
3300 		.rate_limit.hdr.flowid = flowid,
3301 		.rate_limit.hdr.flowtype = flowtype,
3302 		.rate_limit.hdr.numa_domain = inp->inp_numa_domain,
3303 		.rate_limit.max_rate = max_pacing_rate,
3304 		.rate_limit.flags = M_NOWAIT,
3305 	};
3306 	int error;
3307 
3308 	INP_WLOCK_ASSERT(inp);
3309 
3310 	/*
3311 	 * If there is already a send tag, or the INP is being torn
3312 	 * down, allocating a new send tag is not allowed. Else send
3313 	 * tags may leak.
3314 	 */
3315 	if (*st != NULL || (inp->inp_flags & INP_DROPPED) != 0)
3316 		return (EINVAL);
3317 
3318 	error = m_snd_tag_alloc(ifp, &params, st);
3319 #ifdef INET
3320 	if (error == 0) {
3321 		counter_u64_add(rate_limit_set_ok, 1);
3322 		counter_u64_add(rate_limit_active, 1);
3323 	} else if (error != EOPNOTSUPP)
3324 		  counter_u64_add(rate_limit_alloc_fail, 1);
3325 #endif
3326 	return (error);
3327 }
3328 
3329 void
3330 in_pcbdetach_tag(struct m_snd_tag *mst)
3331 {
3332 
3333 	m_snd_tag_rele(mst);
3334 #ifdef INET
3335 	counter_u64_add(rate_limit_active, -1);
3336 #endif
3337 }
3338 
3339 /*
3340  * Free an existing TX rate limit tag based on the "inp->inp_snd_tag",
3341  * if any:
3342  */
3343 void
3344 in_pcbdetach_txrtlmt(struct inpcb *inp)
3345 {
3346 	struct m_snd_tag *mst;
3347 
3348 	INP_WLOCK_ASSERT(inp);
3349 
3350 	mst = inp->inp_snd_tag;
3351 	inp->inp_snd_tag = NULL;
3352 
3353 	if (mst == NULL)
3354 		return;
3355 
3356 	m_snd_tag_rele(mst);
3357 #ifdef INET
3358 	counter_u64_add(rate_limit_active, -1);
3359 #endif
3360 }
3361 
3362 int
3363 in_pcboutput_txrtlmt_locked(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb, uint32_t max_pacing_rate)
3364 {
3365 	int error;
3366 
3367 	/*
3368 	 * If the existing send tag is for the wrong interface due to
3369 	 * a route change, first drop the existing tag.  Set the
3370 	 * CHANGED flag so that we will keep trying to allocate a new
3371 	 * tag if we fail to allocate one this time.
3372 	 */
3373 	if (inp->inp_snd_tag != NULL && inp->inp_snd_tag->ifp != ifp) {
3374 		in_pcbdetach_txrtlmt(inp);
3375 		inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED;
3376 	}
3377 
3378 	/*
3379 	 * NOTE: When attaching to a network interface a reference is
3380 	 * made to ensure the network interface doesn't go away until
3381 	 * all ratelimit connections are gone. The network interface
3382 	 * pointers compared below represent valid network interfaces,
3383 	 * except when comparing towards NULL.
3384 	 */
3385 	if (max_pacing_rate == 0 && inp->inp_snd_tag == NULL) {
3386 		error = 0;
3387 	} else if (!(ifp->if_capenable & IFCAP_TXRTLMT)) {
3388 		if (inp->inp_snd_tag != NULL)
3389 			in_pcbdetach_txrtlmt(inp);
3390 		error = 0;
3391 	} else if (inp->inp_snd_tag == NULL) {
3392 		/*
3393 		 * In order to utilize packet pacing with RSS, we need
3394 		 * to wait until there is a valid RSS hash before we
3395 		 * can proceed:
3396 		 */
3397 		if (M_HASHTYPE_GET(mb) == M_HASHTYPE_NONE) {
3398 			error = EAGAIN;
3399 		} else {
3400 			error = in_pcbattach_txrtlmt(inp, ifp, M_HASHTYPE_GET(mb),
3401 			    mb->m_pkthdr.flowid, max_pacing_rate, &inp->inp_snd_tag);
3402 		}
3403 	} else {
3404 		error = in_pcbmodify_txrtlmt(inp, max_pacing_rate);
3405 	}
3406 	if (error == 0 || error == EOPNOTSUPP)
3407 		inp->inp_flags2 &= ~INP_RATE_LIMIT_CHANGED;
3408 
3409 	return (error);
3410 }
3411 
3412 /*
3413  * This function should be called when the INP_RATE_LIMIT_CHANGED flag
3414  * is set in the fast path and will attach/detach/modify the TX rate
3415  * limit send tag based on the socket's so_max_pacing_rate value.
3416  */
3417 void
3418 in_pcboutput_txrtlmt(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb)
3419 {
3420 	struct socket *socket;
3421 	uint32_t max_pacing_rate;
3422 	bool did_upgrade;
3423 
3424 	if (inp == NULL)
3425 		return;
3426 
3427 	socket = inp->inp_socket;
3428 	if (socket == NULL)
3429 		return;
3430 
3431 	if (!INP_WLOCKED(inp)) {
3432 		/*
3433 		 * NOTE: If the write locking fails, we need to bail
3434 		 * out and use the non-ratelimited ring for the
3435 		 * transmit until there is a new chance to get the
3436 		 * write lock.
3437 		 */
3438 		if (!INP_TRY_UPGRADE(inp))
3439 			return;
3440 		did_upgrade = 1;
3441 	} else {
3442 		did_upgrade = 0;
3443 	}
3444 
3445 	/*
3446 	 * NOTE: The so_max_pacing_rate value is read unlocked,
3447 	 * because atomic updates are not required since the variable
3448 	 * is checked at every mbuf we send. It is assumed that the
3449 	 * variable read itself will be atomic.
3450 	 */
3451 	max_pacing_rate = socket->so_max_pacing_rate;
3452 
3453 	in_pcboutput_txrtlmt_locked(inp, ifp, mb, max_pacing_rate);
3454 
3455 	if (did_upgrade)
3456 		INP_DOWNGRADE(inp);
3457 }
3458 
3459 /*
3460  * Track route changes for TX rate limiting.
3461  */
3462 void
3463 in_pcboutput_eagain(struct inpcb *inp)
3464 {
3465 	bool did_upgrade;
3466 
3467 	if (inp == NULL)
3468 		return;
3469 
3470 	if (inp->inp_snd_tag == NULL)
3471 		return;
3472 
3473 	if (!INP_WLOCKED(inp)) {
3474 		/*
3475 		 * NOTE: If the write locking fails, we need to bail
3476 		 * out and use the non-ratelimited ring for the
3477 		 * transmit until there is a new chance to get the
3478 		 * write lock.
3479 		 */
3480 		if (!INP_TRY_UPGRADE(inp))
3481 			return;
3482 		did_upgrade = 1;
3483 	} else {
3484 		did_upgrade = 0;
3485 	}
3486 
3487 	/* detach rate limiting */
3488 	in_pcbdetach_txrtlmt(inp);
3489 
3490 	/* make sure new mbuf send tag allocation is made */
3491 	inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED;
3492 
3493 	if (did_upgrade)
3494 		INP_DOWNGRADE(inp);
3495 }
3496 
3497 #ifdef INET
3498 static void
3499 rl_init(void *st)
3500 {
3501 	rate_limit_new = counter_u64_alloc(M_WAITOK);
3502 	rate_limit_chg = counter_u64_alloc(M_WAITOK);
3503 	rate_limit_active = counter_u64_alloc(M_WAITOK);
3504 	rate_limit_alloc_fail = counter_u64_alloc(M_WAITOK);
3505 	rate_limit_set_ok = counter_u64_alloc(M_WAITOK);
3506 }
3507 
3508 SYSINIT(rl, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, rl_init, NULL);
3509 #endif
3510 #endif /* RATELIMIT */
3511