xref: /freebsd/sys/netinet/in_pcb.c (revision d003e0d7fe0d3a9b4b2c5835bb3f0f6faf3ab538)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1991, 1993, 1995
5  *	The Regents of the University of California.
6  * Copyright (c) 2007-2009 Robert N. M. Watson
7  * Copyright (c) 2010-2011 Juniper Networks, Inc.
8  * All rights reserved.
9  *
10  * Portions of this software were developed by Robert N. M. Watson under
11  * contract to Juniper Networks, Inc.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  *	@(#)in_pcb.c	8.4 (Berkeley) 5/24/95
38  */
39 
40 #include <sys/cdefs.h>
41 __FBSDID("$FreeBSD$");
42 
43 #include "opt_ddb.h"
44 #include "opt_ipsec.h"
45 #include "opt_inet.h"
46 #include "opt_inet6.h"
47 #include "opt_ratelimit.h"
48 #include "opt_pcbgroup.h"
49 #include "opt_rss.h"
50 
51 #include <sys/param.h>
52 #include <sys/systm.h>
53 #include <sys/lock.h>
54 #include <sys/malloc.h>
55 #include <sys/mbuf.h>
56 #include <sys/callout.h>
57 #include <sys/eventhandler.h>
58 #include <sys/domain.h>
59 #include <sys/protosw.h>
60 #include <sys/rmlock.h>
61 #include <sys/smp.h>
62 #include <sys/socket.h>
63 #include <sys/socketvar.h>
64 #include <sys/sockio.h>
65 #include <sys/priv.h>
66 #include <sys/proc.h>
67 #include <sys/refcount.h>
68 #include <sys/jail.h>
69 #include <sys/kernel.h>
70 #include <sys/sysctl.h>
71 
72 #ifdef DDB
73 #include <ddb/ddb.h>
74 #endif
75 
76 #include <vm/uma.h>
77 
78 #include <net/if.h>
79 #include <net/if_var.h>
80 #include <net/if_types.h>
81 #include <net/if_llatbl.h>
82 #include <net/route.h>
83 #include <net/rss_config.h>
84 #include <net/vnet.h>
85 
86 #if defined(INET) || defined(INET6)
87 #include <netinet/in.h>
88 #include <netinet/in_pcb.h>
89 #ifdef INET
90 #include <netinet/in_var.h>
91 #endif
92 #include <netinet/ip_var.h>
93 #include <netinet/tcp_var.h>
94 #ifdef TCPHPTS
95 #include <netinet/tcp_hpts.h>
96 #endif
97 #include <netinet/udp.h>
98 #include <netinet/udp_var.h>
99 #ifdef INET6
100 #include <netinet/ip6.h>
101 #include <netinet6/in6_pcb.h>
102 #include <netinet6/in6_var.h>
103 #include <netinet6/ip6_var.h>
104 #endif /* INET6 */
105 #endif
106 
107 #include <netipsec/ipsec_support.h>
108 
109 #include <security/mac/mac_framework.h>
110 
111 #define	INPCBLBGROUP_SIZMIN	8
112 #define	INPCBLBGROUP_SIZMAX	256
113 
114 static struct callout	ipport_tick_callout;
115 
116 /*
117  * These configure the range of local port addresses assigned to
118  * "unspecified" outgoing connections/packets/whatever.
119  */
120 VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1;	/* 1023 */
121 VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART;	/* 600 */
122 VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST;	/* 10000 */
123 VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST;	/* 65535 */
124 VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO;	/* 49152 */
125 VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO;	/* 65535 */
126 
127 /*
128  * Reserved ports accessible only to root. There are significant
129  * security considerations that must be accounted for when changing these,
130  * but the security benefits can be great. Please be careful.
131  */
132 VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1;	/* 1023 */
133 VNET_DEFINE(int, ipport_reservedlow);
134 
135 /* Variables dealing with random ephemeral port allocation. */
136 VNET_DEFINE(int, ipport_randomized) = 1;	/* user controlled via sysctl */
137 VNET_DEFINE(int, ipport_randomcps) = 10;	/* user controlled via sysctl */
138 VNET_DEFINE(int, ipport_randomtime) = 45;	/* user controlled via sysctl */
139 VNET_DEFINE(int, ipport_stoprandom);		/* toggled by ipport_tick */
140 VNET_DEFINE(int, ipport_tcpallocs);
141 VNET_DEFINE_STATIC(int, ipport_tcplastcount);
142 
143 #define	V_ipport_tcplastcount		VNET(ipport_tcplastcount)
144 
145 static void	in_pcbremlists(struct inpcb *inp);
146 #ifdef INET
147 static struct inpcb	*in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo,
148 			    struct in_addr faddr, u_int fport_arg,
149 			    struct in_addr laddr, u_int lport_arg,
150 			    int lookupflags, struct ifnet *ifp);
151 
152 #define RANGECHK(var, min, max) \
153 	if ((var) < (min)) { (var) = (min); } \
154 	else if ((var) > (max)) { (var) = (max); }
155 
156 static int
157 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS)
158 {
159 	int error;
160 
161 	error = sysctl_handle_int(oidp, arg1, arg2, req);
162 	if (error == 0) {
163 		RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1);
164 		RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1);
165 		RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX);
166 		RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX);
167 		RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX);
168 		RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX);
169 	}
170 	return (error);
171 }
172 
173 #undef RANGECHK
174 
175 static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, CTLFLAG_RW, 0,
176     "IP Ports");
177 
178 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst,
179 	CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
180 	&VNET_NAME(ipport_lowfirstauto), 0, &sysctl_net_ipport_check, "I", "");
181 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast,
182 	CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
183 	&VNET_NAME(ipport_lowlastauto), 0, &sysctl_net_ipport_check, "I", "");
184 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first,
185 	CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
186 	&VNET_NAME(ipport_firstauto), 0, &sysctl_net_ipport_check, "I", "");
187 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last,
188 	CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
189 	&VNET_NAME(ipport_lastauto), 0, &sysctl_net_ipport_check, "I", "");
190 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst,
191 	CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
192 	&VNET_NAME(ipport_hifirstauto), 0, &sysctl_net_ipport_check, "I", "");
193 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast,
194 	CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
195 	&VNET_NAME(ipport_hilastauto), 0, &sysctl_net_ipport_check, "I", "");
196 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh,
197 	CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE,
198 	&VNET_NAME(ipport_reservedhigh), 0, "");
199 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow,
200 	CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, "");
201 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized,
202 	CTLFLAG_VNET | CTLFLAG_RW,
203 	&VNET_NAME(ipport_randomized), 0, "Enable random port allocation");
204 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomcps,
205 	CTLFLAG_VNET | CTLFLAG_RW,
206 	&VNET_NAME(ipport_randomcps), 0, "Maximum number of random port "
207 	"allocations before switching to a sequental one");
208 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomtime,
209 	CTLFLAG_VNET | CTLFLAG_RW,
210 	&VNET_NAME(ipport_randomtime), 0,
211 	"Minimum time to keep sequental port "
212 	"allocation before switching to a random one");
213 
214 #ifdef RATELIMIT
215 counter_u64_t rate_limit_active;
216 counter_u64_t rate_limit_alloc_fail;
217 counter_u64_t rate_limit_set_ok;
218 
219 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, rl, CTLFLAG_RD, 0,
220     "IP Rate Limiting");
221 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, active, CTLFLAG_RD,
222     &rate_limit_active, "Active rate limited connections");
223 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, alloc_fail, CTLFLAG_RD,
224    &rate_limit_alloc_fail, "Rate limited connection failures");
225 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, set_ok, CTLFLAG_RD,
226    &rate_limit_set_ok, "Rate limited setting succeeded");
227 #endif /* RATELIMIT */
228 
229 #endif /* INET */
230 
231 /*
232  * in_pcb.c: manage the Protocol Control Blocks.
233  *
234  * NOTE: It is assumed that most of these functions will be called with
235  * the pcbinfo lock held, and often, the inpcb lock held, as these utility
236  * functions often modify hash chains or addresses in pcbs.
237  */
238 
239 static struct inpcblbgroup *
240 in_pcblbgroup_alloc(struct inpcblbgrouphead *hdr, u_char vflag,
241     uint16_t port, const union in_dependaddr *addr, int size)
242 {
243 	struct inpcblbgroup *grp;
244 	size_t bytes;
245 
246 	bytes = __offsetof(struct inpcblbgroup, il_inp[size]);
247 	grp = malloc(bytes, M_PCB, M_ZERO | M_NOWAIT);
248 	if (!grp)
249 		return (NULL);
250 	grp->il_vflag = vflag;
251 	grp->il_lport = port;
252 	grp->il_dependladdr = *addr;
253 	grp->il_inpsiz = size;
254 	CK_LIST_INSERT_HEAD(hdr, grp, il_list);
255 	return (grp);
256 }
257 
258 static void
259 in_pcblbgroup_free_deferred(epoch_context_t ctx)
260 {
261 	struct inpcblbgroup *grp;
262 
263 	grp = __containerof(ctx, struct inpcblbgroup, il_epoch_ctx);
264 	free(grp, M_PCB);
265 }
266 
267 static void
268 in_pcblbgroup_free(struct inpcblbgroup *grp)
269 {
270 
271 	CK_LIST_REMOVE(grp, il_list);
272 	epoch_call(net_epoch_preempt, &grp->il_epoch_ctx,
273 	    in_pcblbgroup_free_deferred);
274 }
275 
276 static struct inpcblbgroup *
277 in_pcblbgroup_resize(struct inpcblbgrouphead *hdr,
278     struct inpcblbgroup *old_grp, int size)
279 {
280 	struct inpcblbgroup *grp;
281 	int i;
282 
283 	grp = in_pcblbgroup_alloc(hdr, old_grp->il_vflag,
284 	    old_grp->il_lport, &old_grp->il_dependladdr, size);
285 	if (grp == NULL)
286 		return (NULL);
287 
288 	KASSERT(old_grp->il_inpcnt < grp->il_inpsiz,
289 	    ("invalid new local group size %d and old local group count %d",
290 	     grp->il_inpsiz, old_grp->il_inpcnt));
291 
292 	for (i = 0; i < old_grp->il_inpcnt; ++i)
293 		grp->il_inp[i] = old_grp->il_inp[i];
294 	grp->il_inpcnt = old_grp->il_inpcnt;
295 	in_pcblbgroup_free(old_grp);
296 	return (grp);
297 }
298 
299 /*
300  * PCB at index 'i' is removed from the group. Pull up the ones below il_inp[i]
301  * and shrink group if possible.
302  */
303 static void
304 in_pcblbgroup_reorder(struct inpcblbgrouphead *hdr, struct inpcblbgroup **grpp,
305     int i)
306 {
307 	struct inpcblbgroup *grp, *new_grp;
308 
309 	grp = *grpp;
310 	for (; i + 1 < grp->il_inpcnt; ++i)
311 		grp->il_inp[i] = grp->il_inp[i + 1];
312 	grp->il_inpcnt--;
313 
314 	if (grp->il_inpsiz > INPCBLBGROUP_SIZMIN &&
315 	    grp->il_inpcnt <= grp->il_inpsiz / 4) {
316 		/* Shrink this group. */
317 		new_grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz / 2);
318 		if (new_grp != NULL)
319 			*grpp = new_grp;
320 	}
321 }
322 
323 /*
324  * Add PCB to load balance group for SO_REUSEPORT_LB option.
325  */
326 static int
327 in_pcbinslbgrouphash(struct inpcb *inp)
328 {
329 	const static struct timeval interval = { 60, 0 };
330 	static struct timeval lastprint;
331 	struct inpcbinfo *pcbinfo;
332 	struct inpcblbgrouphead *hdr;
333 	struct inpcblbgroup *grp;
334 	uint32_t idx;
335 
336 	pcbinfo = inp->inp_pcbinfo;
337 
338 	INP_WLOCK_ASSERT(inp);
339 	INP_HASH_WLOCK_ASSERT(pcbinfo);
340 
341 	/*
342 	 * Don't allow jailed socket to join local group.
343 	 */
344 	if (inp->inp_socket != NULL && jailed(inp->inp_socket->so_cred))
345 		return (0);
346 
347 #ifdef INET6
348 	/*
349 	 * Don't allow IPv4 mapped INET6 wild socket.
350 	 */
351 	if ((inp->inp_vflag & INP_IPV4) &&
352 	    inp->inp_laddr.s_addr == INADDR_ANY &&
353 	    INP_CHECK_SOCKAF(inp->inp_socket, AF_INET6)) {
354 		return (0);
355 	}
356 #endif
357 
358 	idx = INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask);
359 	hdr = &pcbinfo->ipi_lbgrouphashbase[idx];
360 	CK_LIST_FOREACH(grp, hdr, il_list) {
361 		if (grp->il_vflag == inp->inp_vflag &&
362 		    grp->il_lport == inp->inp_lport &&
363 		    memcmp(&grp->il_dependladdr,
364 		    &inp->inp_inc.inc_ie.ie_dependladdr,
365 		    sizeof(grp->il_dependladdr)) == 0)
366 			break;
367 	}
368 	if (grp == NULL) {
369 		/* Create new load balance group. */
370 		grp = in_pcblbgroup_alloc(hdr, inp->inp_vflag,
371 		    inp->inp_lport, &inp->inp_inc.inc_ie.ie_dependladdr,
372 		    INPCBLBGROUP_SIZMIN);
373 		if (grp == NULL)
374 			return (ENOBUFS);
375 	} else if (grp->il_inpcnt == grp->il_inpsiz) {
376 		if (grp->il_inpsiz >= INPCBLBGROUP_SIZMAX) {
377 			if (ratecheck(&lastprint, &interval))
378 				printf("lb group port %d, limit reached\n",
379 				    ntohs(grp->il_lport));
380 			return (0);
381 		}
382 
383 		/* Expand this local group. */
384 		grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz * 2);
385 		if (grp == NULL)
386 			return (ENOBUFS);
387 	}
388 
389 	KASSERT(grp->il_inpcnt < grp->il_inpsiz,
390 	    ("invalid local group size %d and count %d", grp->il_inpsiz,
391 	    grp->il_inpcnt));
392 
393 	grp->il_inp[grp->il_inpcnt] = inp;
394 	grp->il_inpcnt++;
395 	return (0);
396 }
397 
398 /*
399  * Remove PCB from load balance group.
400  */
401 static void
402 in_pcbremlbgrouphash(struct inpcb *inp)
403 {
404 	struct inpcbinfo *pcbinfo;
405 	struct inpcblbgrouphead *hdr;
406 	struct inpcblbgroup *grp;
407 	int i;
408 
409 	pcbinfo = inp->inp_pcbinfo;
410 
411 	INP_WLOCK_ASSERT(inp);
412 	INP_HASH_WLOCK_ASSERT(pcbinfo);
413 
414 	hdr = &pcbinfo->ipi_lbgrouphashbase[
415 	    INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask)];
416 	CK_LIST_FOREACH(grp, hdr, il_list) {
417 		for (i = 0; i < grp->il_inpcnt; ++i) {
418 			if (grp->il_inp[i] != inp)
419 				continue;
420 
421 			if (grp->il_inpcnt == 1) {
422 				/* We are the last, free this local group. */
423 				in_pcblbgroup_free(grp);
424 			} else {
425 				/* Pull up inpcbs, shrink group if possible. */
426 				in_pcblbgroup_reorder(hdr, &grp, i);
427 			}
428 			return;
429 		}
430 	}
431 }
432 
433 /*
434  * Different protocols initialize their inpcbs differently - giving
435  * different name to the lock.  But they all are disposed the same.
436  */
437 static void
438 inpcb_fini(void *mem, int size)
439 {
440 	struct inpcb *inp = mem;
441 
442 	INP_LOCK_DESTROY(inp);
443 }
444 
445 /*
446  * Initialize an inpcbinfo -- we should be able to reduce the number of
447  * arguments in time.
448  */
449 void
450 in_pcbinfo_init(struct inpcbinfo *pcbinfo, const char *name,
451     struct inpcbhead *listhead, int hash_nelements, int porthash_nelements,
452     char *inpcbzone_name, uma_init inpcbzone_init, u_int hashfields)
453 {
454 
455 	porthash_nelements = imin(porthash_nelements, IPPORT_MAX + 1);
456 
457 	INP_INFO_LOCK_INIT(pcbinfo, name);
458 	INP_HASH_LOCK_INIT(pcbinfo, "pcbinfohash");	/* XXXRW: argument? */
459 	INP_LIST_LOCK_INIT(pcbinfo, "pcbinfolist");
460 #ifdef VIMAGE
461 	pcbinfo->ipi_vnet = curvnet;
462 #endif
463 	pcbinfo->ipi_listhead = listhead;
464 	CK_LIST_INIT(pcbinfo->ipi_listhead);
465 	pcbinfo->ipi_count = 0;
466 	pcbinfo->ipi_hashbase = hashinit(hash_nelements, M_PCB,
467 	    &pcbinfo->ipi_hashmask);
468 	pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB,
469 	    &pcbinfo->ipi_porthashmask);
470 	pcbinfo->ipi_lbgrouphashbase = hashinit(porthash_nelements, M_PCB,
471 	    &pcbinfo->ipi_lbgrouphashmask);
472 #ifdef PCBGROUP
473 	in_pcbgroup_init(pcbinfo, hashfields, hash_nelements);
474 #endif
475 	pcbinfo->ipi_zone = uma_zcreate(inpcbzone_name, sizeof(struct inpcb),
476 	    NULL, NULL, inpcbzone_init, inpcb_fini, UMA_ALIGN_PTR, 0);
477 	uma_zone_set_max(pcbinfo->ipi_zone, maxsockets);
478 	uma_zone_set_warning(pcbinfo->ipi_zone,
479 	    "kern.ipc.maxsockets limit reached");
480 }
481 
482 /*
483  * Destroy an inpcbinfo.
484  */
485 void
486 in_pcbinfo_destroy(struct inpcbinfo *pcbinfo)
487 {
488 
489 	KASSERT(pcbinfo->ipi_count == 0,
490 	    ("%s: ipi_count = %u", __func__, pcbinfo->ipi_count));
491 
492 	hashdestroy(pcbinfo->ipi_hashbase, M_PCB, pcbinfo->ipi_hashmask);
493 	hashdestroy(pcbinfo->ipi_porthashbase, M_PCB,
494 	    pcbinfo->ipi_porthashmask);
495 	hashdestroy(pcbinfo->ipi_lbgrouphashbase, M_PCB,
496 	    pcbinfo->ipi_lbgrouphashmask);
497 #ifdef PCBGROUP
498 	in_pcbgroup_destroy(pcbinfo);
499 #endif
500 	uma_zdestroy(pcbinfo->ipi_zone);
501 	INP_LIST_LOCK_DESTROY(pcbinfo);
502 	INP_HASH_LOCK_DESTROY(pcbinfo);
503 	INP_INFO_LOCK_DESTROY(pcbinfo);
504 }
505 
506 /*
507  * Allocate a PCB and associate it with the socket.
508  * On success return with the PCB locked.
509  */
510 int
511 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo)
512 {
513 	struct inpcb *inp;
514 	int error;
515 
516 #ifdef INVARIANTS
517 	if (pcbinfo == &V_tcbinfo) {
518 		NET_EPOCH_ASSERT();
519 	} else {
520 		INP_INFO_WLOCK_ASSERT(pcbinfo);
521 	}
522 #endif
523 
524 	error = 0;
525 	inp = uma_zalloc(pcbinfo->ipi_zone, M_NOWAIT);
526 	if (inp == NULL)
527 		return (ENOBUFS);
528 	bzero(&inp->inp_start_zero, inp_zero_size);
529 #ifdef NUMA
530 	inp->inp_numa_domain = M_NODOM;
531 #endif
532 	inp->inp_pcbinfo = pcbinfo;
533 	inp->inp_socket = so;
534 	inp->inp_cred = crhold(so->so_cred);
535 	inp->inp_inc.inc_fibnum = so->so_fibnum;
536 #ifdef MAC
537 	error = mac_inpcb_init(inp, M_NOWAIT);
538 	if (error != 0)
539 		goto out;
540 	mac_inpcb_create(so, inp);
541 #endif
542 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
543 	error = ipsec_init_pcbpolicy(inp);
544 	if (error != 0) {
545 #ifdef MAC
546 		mac_inpcb_destroy(inp);
547 #endif
548 		goto out;
549 	}
550 #endif /*IPSEC*/
551 #ifdef INET6
552 	if (INP_SOCKAF(so) == AF_INET6) {
553 		inp->inp_vflag |= INP_IPV6PROTO;
554 		if (V_ip6_v6only)
555 			inp->inp_flags |= IN6P_IPV6_V6ONLY;
556 	}
557 #endif
558 	INP_WLOCK(inp);
559 	INP_LIST_WLOCK(pcbinfo);
560 	CK_LIST_INSERT_HEAD(pcbinfo->ipi_listhead, inp, inp_list);
561 	pcbinfo->ipi_count++;
562 	so->so_pcb = (caddr_t)inp;
563 #ifdef INET6
564 	if (V_ip6_auto_flowlabel)
565 		inp->inp_flags |= IN6P_AUTOFLOWLABEL;
566 #endif
567 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
568 	refcount_init(&inp->inp_refcount, 1);	/* Reference from inpcbinfo */
569 
570 	/*
571 	 * Routes in inpcb's can cache L2 as well; they are guaranteed
572 	 * to be cleaned up.
573 	 */
574 	inp->inp_route.ro_flags = RT_LLE_CACHE;
575 	INP_LIST_WUNLOCK(pcbinfo);
576 #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC)
577 out:
578 	if (error != 0) {
579 		crfree(inp->inp_cred);
580 		uma_zfree(pcbinfo->ipi_zone, inp);
581 	}
582 #endif
583 	return (error);
584 }
585 
586 #ifdef INET
587 int
588 in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
589 {
590 	int anonport, error;
591 
592 	INP_WLOCK_ASSERT(inp);
593 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
594 
595 	if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY)
596 		return (EINVAL);
597 	anonport = nam == NULL || ((struct sockaddr_in *)nam)->sin_port == 0;
598 	error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr,
599 	    &inp->inp_lport, cred);
600 	if (error)
601 		return (error);
602 	if (in_pcbinshash(inp) != 0) {
603 		inp->inp_laddr.s_addr = INADDR_ANY;
604 		inp->inp_lport = 0;
605 		return (EAGAIN);
606 	}
607 	if (anonport)
608 		inp->inp_flags |= INP_ANONPORT;
609 	return (0);
610 }
611 #endif
612 
613 /*
614  * Select a local port (number) to use.
615  */
616 #if defined(INET) || defined(INET6)
617 int
618 in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp,
619     struct ucred *cred, int lookupflags)
620 {
621 	struct inpcbinfo *pcbinfo;
622 	struct inpcb *tmpinp;
623 	unsigned short *lastport;
624 	int count, dorandom, error;
625 	u_short aux, first, last, lport;
626 #ifdef INET
627 	struct in_addr laddr;
628 #endif
629 
630 	pcbinfo = inp->inp_pcbinfo;
631 
632 	/*
633 	 * Because no actual state changes occur here, a global write lock on
634 	 * the pcbinfo isn't required.
635 	 */
636 	INP_LOCK_ASSERT(inp);
637 	INP_HASH_LOCK_ASSERT(pcbinfo);
638 
639 	if (inp->inp_flags & INP_HIGHPORT) {
640 		first = V_ipport_hifirstauto;	/* sysctl */
641 		last  = V_ipport_hilastauto;
642 		lastport = &pcbinfo->ipi_lasthi;
643 	} else if (inp->inp_flags & INP_LOWPORT) {
644 		error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT);
645 		if (error)
646 			return (error);
647 		first = V_ipport_lowfirstauto;	/* 1023 */
648 		last  = V_ipport_lowlastauto;	/* 600 */
649 		lastport = &pcbinfo->ipi_lastlow;
650 	} else {
651 		first = V_ipport_firstauto;	/* sysctl */
652 		last  = V_ipport_lastauto;
653 		lastport = &pcbinfo->ipi_lastport;
654 	}
655 	/*
656 	 * For UDP(-Lite), use random port allocation as long as the user
657 	 * allows it.  For TCP (and as of yet unknown) connections,
658 	 * use random port allocation only if the user allows it AND
659 	 * ipport_tick() allows it.
660 	 */
661 	if (V_ipport_randomized &&
662 		(!V_ipport_stoprandom || pcbinfo == &V_udbinfo ||
663 		pcbinfo == &V_ulitecbinfo))
664 		dorandom = 1;
665 	else
666 		dorandom = 0;
667 	/*
668 	 * It makes no sense to do random port allocation if
669 	 * we have the only port available.
670 	 */
671 	if (first == last)
672 		dorandom = 0;
673 	/* Make sure to not include UDP(-Lite) packets in the count. */
674 	if (pcbinfo != &V_udbinfo || pcbinfo != &V_ulitecbinfo)
675 		V_ipport_tcpallocs++;
676 	/*
677 	 * Instead of having two loops further down counting up or down
678 	 * make sure that first is always <= last and go with only one
679 	 * code path implementing all logic.
680 	 */
681 	if (first > last) {
682 		aux = first;
683 		first = last;
684 		last = aux;
685 	}
686 
687 #ifdef INET
688 	/* Make the compiler happy. */
689 	laddr.s_addr = 0;
690 	if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) {
691 		KASSERT(laddrp != NULL, ("%s: laddrp NULL for v4 inp %p",
692 		    __func__, inp));
693 		laddr = *laddrp;
694 	}
695 #endif
696 	tmpinp = NULL;	/* Make compiler happy. */
697 	lport = *lportp;
698 
699 	if (dorandom)
700 		*lastport = first + (arc4random() % (last - first));
701 
702 	count = last - first;
703 
704 	do {
705 		if (count-- < 0)	/* completely used? */
706 			return (EADDRNOTAVAIL);
707 		++*lastport;
708 		if (*lastport < first || *lastport > last)
709 			*lastport = first;
710 		lport = htons(*lastport);
711 
712 #ifdef INET6
713 		if ((inp->inp_vflag & INP_IPV6) != 0)
714 			tmpinp = in6_pcblookup_local(pcbinfo,
715 			    &inp->in6p_laddr, lport, lookupflags, cred);
716 #endif
717 #if defined(INET) && defined(INET6)
718 		else
719 #endif
720 #ifdef INET
721 			tmpinp = in_pcblookup_local(pcbinfo, laddr,
722 			    lport, lookupflags, cred);
723 #endif
724 	} while (tmpinp != NULL);
725 
726 #ifdef INET
727 	if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4)
728 		laddrp->s_addr = laddr.s_addr;
729 #endif
730 	*lportp = lport;
731 
732 	return (0);
733 }
734 
735 /*
736  * Return cached socket options.
737  */
738 int
739 inp_so_options(const struct inpcb *inp)
740 {
741 	int so_options;
742 
743 	so_options = 0;
744 
745 	if ((inp->inp_flags2 & INP_REUSEPORT_LB) != 0)
746 		so_options |= SO_REUSEPORT_LB;
747 	if ((inp->inp_flags2 & INP_REUSEPORT) != 0)
748 		so_options |= SO_REUSEPORT;
749 	if ((inp->inp_flags2 & INP_REUSEADDR) != 0)
750 		so_options |= SO_REUSEADDR;
751 	return (so_options);
752 }
753 #endif /* INET || INET6 */
754 
755 /*
756  * Check if a new BINDMULTI socket is allowed to be created.
757  *
758  * ni points to the new inp.
759  * oi points to the exisitng inp.
760  *
761  * This checks whether the existing inp also has BINDMULTI and
762  * whether the credentials match.
763  */
764 int
765 in_pcbbind_check_bindmulti(const struct inpcb *ni, const struct inpcb *oi)
766 {
767 	/* Check permissions match */
768 	if ((ni->inp_flags2 & INP_BINDMULTI) &&
769 	    (ni->inp_cred->cr_uid !=
770 	    oi->inp_cred->cr_uid))
771 		return (0);
772 
773 	/* Check the existing inp has BINDMULTI set */
774 	if ((ni->inp_flags2 & INP_BINDMULTI) &&
775 	    ((oi->inp_flags2 & INP_BINDMULTI) == 0))
776 		return (0);
777 
778 	/*
779 	 * We're okay - either INP_BINDMULTI isn't set on ni, or
780 	 * it is and it matches the checks.
781 	 */
782 	return (1);
783 }
784 
785 #ifdef INET
786 /*
787  * Set up a bind operation on a PCB, performing port allocation
788  * as required, but do not actually modify the PCB. Callers can
789  * either complete the bind by setting inp_laddr/inp_lport and
790  * calling in_pcbinshash(), or they can just use the resulting
791  * port and address to authorise the sending of a once-off packet.
792  *
793  * On error, the values of *laddrp and *lportp are not changed.
794  */
795 int
796 in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp,
797     u_short *lportp, struct ucred *cred)
798 {
799 	struct socket *so = inp->inp_socket;
800 	struct sockaddr_in *sin;
801 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
802 	struct in_addr laddr;
803 	u_short lport = 0;
804 	int lookupflags = 0, reuseport = (so->so_options & SO_REUSEPORT);
805 	int error;
806 
807 	/*
808 	 * XXX: Maybe we could let SO_REUSEPORT_LB set SO_REUSEPORT bit here
809 	 * so that we don't have to add to the (already messy) code below.
810 	 */
811 	int reuseport_lb = (so->so_options & SO_REUSEPORT_LB);
812 
813 	/*
814 	 * No state changes, so read locks are sufficient here.
815 	 */
816 	INP_LOCK_ASSERT(inp);
817 	INP_HASH_LOCK_ASSERT(pcbinfo);
818 
819 	if (CK_STAILQ_EMPTY(&V_in_ifaddrhead)) /* XXX broken! */
820 		return (EADDRNOTAVAIL);
821 	laddr.s_addr = *laddrp;
822 	if (nam != NULL && laddr.s_addr != INADDR_ANY)
823 		return (EINVAL);
824 	if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT|SO_REUSEPORT_LB)) == 0)
825 		lookupflags = INPLOOKUP_WILDCARD;
826 	if (nam == NULL) {
827 		if ((error = prison_local_ip4(cred, &laddr)) != 0)
828 			return (error);
829 	} else {
830 		sin = (struct sockaddr_in *)nam;
831 		if (nam->sa_len != sizeof (*sin))
832 			return (EINVAL);
833 #ifdef notdef
834 		/*
835 		 * We should check the family, but old programs
836 		 * incorrectly fail to initialize it.
837 		 */
838 		if (sin->sin_family != AF_INET)
839 			return (EAFNOSUPPORT);
840 #endif
841 		error = prison_local_ip4(cred, &sin->sin_addr);
842 		if (error)
843 			return (error);
844 		if (sin->sin_port != *lportp) {
845 			/* Don't allow the port to change. */
846 			if (*lportp != 0)
847 				return (EINVAL);
848 			lport = sin->sin_port;
849 		}
850 		/* NB: lport is left as 0 if the port isn't being changed. */
851 		if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) {
852 			/*
853 			 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast;
854 			 * allow complete duplication of binding if
855 			 * SO_REUSEPORT is set, or if SO_REUSEADDR is set
856 			 * and a multicast address is bound on both
857 			 * new and duplicated sockets.
858 			 */
859 			if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) != 0)
860 				reuseport = SO_REUSEADDR|SO_REUSEPORT;
861 			/*
862 			 * XXX: How to deal with SO_REUSEPORT_LB here?
863 			 * Treat same as SO_REUSEPORT for now.
864 			 */
865 			if ((so->so_options &
866 			    (SO_REUSEADDR|SO_REUSEPORT_LB)) != 0)
867 				reuseport_lb = SO_REUSEADDR|SO_REUSEPORT_LB;
868 		} else if (sin->sin_addr.s_addr != INADDR_ANY) {
869 			sin->sin_port = 0;		/* yech... */
870 			bzero(&sin->sin_zero, sizeof(sin->sin_zero));
871 			/*
872 			 * Is the address a local IP address?
873 			 * If INP_BINDANY is set, then the socket may be bound
874 			 * to any endpoint address, local or not.
875 			 */
876 			if ((inp->inp_flags & INP_BINDANY) == 0 &&
877 			    ifa_ifwithaddr_check((struct sockaddr *)sin) == 0)
878 				return (EADDRNOTAVAIL);
879 		}
880 		laddr = sin->sin_addr;
881 		if (lport) {
882 			struct inpcb *t;
883 			struct tcptw *tw;
884 
885 			/* GROSS */
886 			if (ntohs(lport) <= V_ipport_reservedhigh &&
887 			    ntohs(lport) >= V_ipport_reservedlow &&
888 			    priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT))
889 				return (EACCES);
890 			if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) &&
891 			    priv_check_cred(inp->inp_cred, PRIV_NETINET_REUSEPORT) != 0) {
892 				t = in_pcblookup_local(pcbinfo, sin->sin_addr,
893 				    lport, INPLOOKUP_WILDCARD, cred);
894 	/*
895 	 * XXX
896 	 * This entire block sorely needs a rewrite.
897 	 */
898 				if (t &&
899 				    ((inp->inp_flags2 & INP_BINDMULTI) == 0) &&
900 				    ((t->inp_flags & INP_TIMEWAIT) == 0) &&
901 				    (so->so_type != SOCK_STREAM ||
902 				     ntohl(t->inp_faddr.s_addr) == INADDR_ANY) &&
903 				    (ntohl(sin->sin_addr.s_addr) != INADDR_ANY ||
904 				     ntohl(t->inp_laddr.s_addr) != INADDR_ANY ||
905 				     (t->inp_flags2 & INP_REUSEPORT) ||
906 				     (t->inp_flags2 & INP_REUSEPORT_LB) == 0) &&
907 				    (inp->inp_cred->cr_uid !=
908 				     t->inp_cred->cr_uid))
909 					return (EADDRINUSE);
910 
911 				/*
912 				 * If the socket is a BINDMULTI socket, then
913 				 * the credentials need to match and the
914 				 * original socket also has to have been bound
915 				 * with BINDMULTI.
916 				 */
917 				if (t && (! in_pcbbind_check_bindmulti(inp, t)))
918 					return (EADDRINUSE);
919 			}
920 			t = in_pcblookup_local(pcbinfo, sin->sin_addr,
921 			    lport, lookupflags, cred);
922 			if (t && (t->inp_flags & INP_TIMEWAIT)) {
923 				/*
924 				 * XXXRW: If an incpb has had its timewait
925 				 * state recycled, we treat the address as
926 				 * being in use (for now).  This is better
927 				 * than a panic, but not desirable.
928 				 */
929 				tw = intotw(t);
930 				if (tw == NULL ||
931 				    ((reuseport & tw->tw_so_options) == 0 &&
932 					(reuseport_lb &
933 				            tw->tw_so_options) == 0)) {
934 					return (EADDRINUSE);
935 				}
936 			} else if (t &&
937 				   ((inp->inp_flags2 & INP_BINDMULTI) == 0) &&
938 				   (reuseport & inp_so_options(t)) == 0 &&
939 				   (reuseport_lb & inp_so_options(t)) == 0) {
940 #ifdef INET6
941 				if (ntohl(sin->sin_addr.s_addr) !=
942 				    INADDR_ANY ||
943 				    ntohl(t->inp_laddr.s_addr) !=
944 				    INADDR_ANY ||
945 				    (inp->inp_vflag & INP_IPV6PROTO) == 0 ||
946 				    (t->inp_vflag & INP_IPV6PROTO) == 0)
947 #endif
948 						return (EADDRINUSE);
949 				if (t && (! in_pcbbind_check_bindmulti(inp, t)))
950 					return (EADDRINUSE);
951 			}
952 		}
953 	}
954 	if (*lportp != 0)
955 		lport = *lportp;
956 	if (lport == 0) {
957 		error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags);
958 		if (error != 0)
959 			return (error);
960 
961 	}
962 	*laddrp = laddr.s_addr;
963 	*lportp = lport;
964 	return (0);
965 }
966 
967 /*
968  * Connect from a socket to a specified address.
969  * Both address and port must be specified in argument sin.
970  * If don't have a local address for this socket yet,
971  * then pick one.
972  */
973 int
974 in_pcbconnect_mbuf(struct inpcb *inp, struct sockaddr *nam,
975     struct ucred *cred, struct mbuf *m)
976 {
977 	u_short lport, fport;
978 	in_addr_t laddr, faddr;
979 	int anonport, error;
980 
981 	INP_WLOCK_ASSERT(inp);
982 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
983 
984 	lport = inp->inp_lport;
985 	laddr = inp->inp_laddr.s_addr;
986 	anonport = (lport == 0);
987 	error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport,
988 	    NULL, cred);
989 	if (error)
990 		return (error);
991 
992 	/* Do the initial binding of the local address if required. */
993 	if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) {
994 		inp->inp_lport = lport;
995 		inp->inp_laddr.s_addr = laddr;
996 		if (in_pcbinshash(inp) != 0) {
997 			inp->inp_laddr.s_addr = INADDR_ANY;
998 			inp->inp_lport = 0;
999 			return (EAGAIN);
1000 		}
1001 	}
1002 
1003 	/* Commit the remaining changes. */
1004 	inp->inp_lport = lport;
1005 	inp->inp_laddr.s_addr = laddr;
1006 	inp->inp_faddr.s_addr = faddr;
1007 	inp->inp_fport = fport;
1008 	in_pcbrehash_mbuf(inp, m);
1009 
1010 	if (anonport)
1011 		inp->inp_flags |= INP_ANONPORT;
1012 	return (0);
1013 }
1014 
1015 int
1016 in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
1017 {
1018 
1019 	return (in_pcbconnect_mbuf(inp, nam, cred, NULL));
1020 }
1021 
1022 /*
1023  * Do proper source address selection on an unbound socket in case
1024  * of connect. Take jails into account as well.
1025  */
1026 int
1027 in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr,
1028     struct ucred *cred)
1029 {
1030 	struct ifaddr *ifa;
1031 	struct sockaddr *sa;
1032 	struct sockaddr_in *sin;
1033 	struct route sro;
1034 	struct epoch_tracker et;
1035 	int error;
1036 
1037 	KASSERT(laddr != NULL, ("%s: laddr NULL", __func__));
1038 	/*
1039 	 * Bypass source address selection and use the primary jail IP
1040 	 * if requested.
1041 	 */
1042 	if (cred != NULL && !prison_saddrsel_ip4(cred, laddr))
1043 		return (0);
1044 
1045 	error = 0;
1046 	bzero(&sro, sizeof(sro));
1047 
1048 	sin = (struct sockaddr_in *)&sro.ro_dst;
1049 	sin->sin_family = AF_INET;
1050 	sin->sin_len = sizeof(struct sockaddr_in);
1051 	sin->sin_addr.s_addr = faddr->s_addr;
1052 
1053 	/*
1054 	 * If route is known our src addr is taken from the i/f,
1055 	 * else punt.
1056 	 *
1057 	 * Find out route to destination.
1058 	 */
1059 	if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0)
1060 		in_rtalloc_ign(&sro, 0, inp->inp_inc.inc_fibnum);
1061 
1062 	/*
1063 	 * If we found a route, use the address corresponding to
1064 	 * the outgoing interface.
1065 	 *
1066 	 * Otherwise assume faddr is reachable on a directly connected
1067 	 * network and try to find a corresponding interface to take
1068 	 * the source address from.
1069 	 */
1070 	NET_EPOCH_ENTER(et);
1071 	if (sro.ro_rt == NULL || sro.ro_rt->rt_ifp == NULL) {
1072 		struct in_ifaddr *ia;
1073 		struct ifnet *ifp;
1074 
1075 		ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin,
1076 					inp->inp_socket->so_fibnum));
1077 		if (ia == NULL) {
1078 			ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0,
1079 						inp->inp_socket->so_fibnum));
1080 
1081 		}
1082 		if (ia == NULL) {
1083 			error = ENETUNREACH;
1084 			goto done;
1085 		}
1086 
1087 		if (cred == NULL || !prison_flag(cred, PR_IP4)) {
1088 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1089 			goto done;
1090 		}
1091 
1092 		ifp = ia->ia_ifp;
1093 		ia = NULL;
1094 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1095 
1096 			sa = ifa->ifa_addr;
1097 			if (sa->sa_family != AF_INET)
1098 				continue;
1099 			sin = (struct sockaddr_in *)sa;
1100 			if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
1101 				ia = (struct in_ifaddr *)ifa;
1102 				break;
1103 			}
1104 		}
1105 		if (ia != NULL) {
1106 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1107 			goto done;
1108 		}
1109 
1110 		/* 3. As a last resort return the 'default' jail address. */
1111 		error = prison_get_ip4(cred, laddr);
1112 		goto done;
1113 	}
1114 
1115 	/*
1116 	 * If the outgoing interface on the route found is not
1117 	 * a loopback interface, use the address from that interface.
1118 	 * In case of jails do those three steps:
1119 	 * 1. check if the interface address belongs to the jail. If so use it.
1120 	 * 2. check if we have any address on the outgoing interface
1121 	 *    belonging to this jail. If so use it.
1122 	 * 3. as a last resort return the 'default' jail address.
1123 	 */
1124 	if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) {
1125 		struct in_ifaddr *ia;
1126 		struct ifnet *ifp;
1127 
1128 		/* If not jailed, use the default returned. */
1129 		if (cred == NULL || !prison_flag(cred, PR_IP4)) {
1130 			ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa;
1131 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1132 			goto done;
1133 		}
1134 
1135 		/* Jailed. */
1136 		/* 1. Check if the iface address belongs to the jail. */
1137 		sin = (struct sockaddr_in *)sro.ro_rt->rt_ifa->ifa_addr;
1138 		if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
1139 			ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa;
1140 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1141 			goto done;
1142 		}
1143 
1144 		/*
1145 		 * 2. Check if we have any address on the outgoing interface
1146 		 *    belonging to this jail.
1147 		 */
1148 		ia = NULL;
1149 		ifp = sro.ro_rt->rt_ifp;
1150 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1151 			sa = ifa->ifa_addr;
1152 			if (sa->sa_family != AF_INET)
1153 				continue;
1154 			sin = (struct sockaddr_in *)sa;
1155 			if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
1156 				ia = (struct in_ifaddr *)ifa;
1157 				break;
1158 			}
1159 		}
1160 		if (ia != NULL) {
1161 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1162 			goto done;
1163 		}
1164 
1165 		/* 3. As a last resort return the 'default' jail address. */
1166 		error = prison_get_ip4(cred, laddr);
1167 		goto done;
1168 	}
1169 
1170 	/*
1171 	 * The outgoing interface is marked with 'loopback net', so a route
1172 	 * to ourselves is here.
1173 	 * Try to find the interface of the destination address and then
1174 	 * take the address from there. That interface is not necessarily
1175 	 * a loopback interface.
1176 	 * In case of jails, check that it is an address of the jail
1177 	 * and if we cannot find, fall back to the 'default' jail address.
1178 	 */
1179 	if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) {
1180 		struct sockaddr_in sain;
1181 		struct in_ifaddr *ia;
1182 
1183 		bzero(&sain, sizeof(struct sockaddr_in));
1184 		sain.sin_family = AF_INET;
1185 		sain.sin_len = sizeof(struct sockaddr_in);
1186 		sain.sin_addr.s_addr = faddr->s_addr;
1187 
1188 		ia = ifatoia(ifa_ifwithdstaddr(sintosa(&sain),
1189 					inp->inp_socket->so_fibnum));
1190 		if (ia == NULL)
1191 			ia = ifatoia(ifa_ifwithnet(sintosa(&sain), 0,
1192 						inp->inp_socket->so_fibnum));
1193 		if (ia == NULL)
1194 			ia = ifatoia(ifa_ifwithaddr(sintosa(&sain)));
1195 
1196 		if (cred == NULL || !prison_flag(cred, PR_IP4)) {
1197 			if (ia == NULL) {
1198 				error = ENETUNREACH;
1199 				goto done;
1200 			}
1201 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1202 			goto done;
1203 		}
1204 
1205 		/* Jailed. */
1206 		if (ia != NULL) {
1207 			struct ifnet *ifp;
1208 
1209 			ifp = ia->ia_ifp;
1210 			ia = NULL;
1211 			CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1212 				sa = ifa->ifa_addr;
1213 				if (sa->sa_family != AF_INET)
1214 					continue;
1215 				sin = (struct sockaddr_in *)sa;
1216 				if (prison_check_ip4(cred,
1217 				    &sin->sin_addr) == 0) {
1218 					ia = (struct in_ifaddr *)ifa;
1219 					break;
1220 				}
1221 			}
1222 			if (ia != NULL) {
1223 				laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1224 				goto done;
1225 			}
1226 		}
1227 
1228 		/* 3. As a last resort return the 'default' jail address. */
1229 		error = prison_get_ip4(cred, laddr);
1230 		goto done;
1231 	}
1232 
1233 done:
1234 	NET_EPOCH_EXIT(et);
1235 	if (sro.ro_rt != NULL)
1236 		RTFREE(sro.ro_rt);
1237 	return (error);
1238 }
1239 
1240 /*
1241  * Set up for a connect from a socket to the specified address.
1242  * On entry, *laddrp and *lportp should contain the current local
1243  * address and port for the PCB; these are updated to the values
1244  * that should be placed in inp_laddr and inp_lport to complete
1245  * the connect.
1246  *
1247  * On success, *faddrp and *fportp will be set to the remote address
1248  * and port. These are not updated in the error case.
1249  *
1250  * If the operation fails because the connection already exists,
1251  * *oinpp will be set to the PCB of that connection so that the
1252  * caller can decide to override it. In all other cases, *oinpp
1253  * is set to NULL.
1254  */
1255 int
1256 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam,
1257     in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp,
1258     struct inpcb **oinpp, struct ucred *cred)
1259 {
1260 	struct rm_priotracker in_ifa_tracker;
1261 	struct sockaddr_in *sin = (struct sockaddr_in *)nam;
1262 	struct in_ifaddr *ia;
1263 	struct inpcb *oinp;
1264 	struct in_addr laddr, faddr;
1265 	u_short lport, fport;
1266 	int error;
1267 
1268 	/*
1269 	 * Because a global state change doesn't actually occur here, a read
1270 	 * lock is sufficient.
1271 	 */
1272 	INP_LOCK_ASSERT(inp);
1273 	INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo);
1274 
1275 	if (oinpp != NULL)
1276 		*oinpp = NULL;
1277 	if (nam->sa_len != sizeof (*sin))
1278 		return (EINVAL);
1279 	if (sin->sin_family != AF_INET)
1280 		return (EAFNOSUPPORT);
1281 	if (sin->sin_port == 0)
1282 		return (EADDRNOTAVAIL);
1283 	laddr.s_addr = *laddrp;
1284 	lport = *lportp;
1285 	faddr = sin->sin_addr;
1286 	fport = sin->sin_port;
1287 
1288 	if (!CK_STAILQ_EMPTY(&V_in_ifaddrhead)) {
1289 		/*
1290 		 * If the destination address is INADDR_ANY,
1291 		 * use the primary local address.
1292 		 * If the supplied address is INADDR_BROADCAST,
1293 		 * and the primary interface supports broadcast,
1294 		 * choose the broadcast address for that interface.
1295 		 */
1296 		if (faddr.s_addr == INADDR_ANY) {
1297 			IN_IFADDR_RLOCK(&in_ifa_tracker);
1298 			faddr =
1299 			    IA_SIN(CK_STAILQ_FIRST(&V_in_ifaddrhead))->sin_addr;
1300 			IN_IFADDR_RUNLOCK(&in_ifa_tracker);
1301 			if (cred != NULL &&
1302 			    (error = prison_get_ip4(cred, &faddr)) != 0)
1303 				return (error);
1304 		} else if (faddr.s_addr == (u_long)INADDR_BROADCAST) {
1305 			IN_IFADDR_RLOCK(&in_ifa_tracker);
1306 			if (CK_STAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags &
1307 			    IFF_BROADCAST)
1308 				faddr = satosin(&CK_STAILQ_FIRST(
1309 				    &V_in_ifaddrhead)->ia_broadaddr)->sin_addr;
1310 			IN_IFADDR_RUNLOCK(&in_ifa_tracker);
1311 		}
1312 	}
1313 	if (laddr.s_addr == INADDR_ANY) {
1314 		error = in_pcbladdr(inp, &faddr, &laddr, cred);
1315 		/*
1316 		 * If the destination address is multicast and an outgoing
1317 		 * interface has been set as a multicast option, prefer the
1318 		 * address of that interface as our source address.
1319 		 */
1320 		if (IN_MULTICAST(ntohl(faddr.s_addr)) &&
1321 		    inp->inp_moptions != NULL) {
1322 			struct ip_moptions *imo;
1323 			struct ifnet *ifp;
1324 
1325 			imo = inp->inp_moptions;
1326 			if (imo->imo_multicast_ifp != NULL) {
1327 				ifp = imo->imo_multicast_ifp;
1328 				IN_IFADDR_RLOCK(&in_ifa_tracker);
1329 				CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) {
1330 					if ((ia->ia_ifp == ifp) &&
1331 					    (cred == NULL ||
1332 					    prison_check_ip4(cred,
1333 					    &ia->ia_addr.sin_addr) == 0))
1334 						break;
1335 				}
1336 				if (ia == NULL)
1337 					error = EADDRNOTAVAIL;
1338 				else {
1339 					laddr = ia->ia_addr.sin_addr;
1340 					error = 0;
1341 				}
1342 				IN_IFADDR_RUNLOCK(&in_ifa_tracker);
1343 			}
1344 		}
1345 		if (error)
1346 			return (error);
1347 	}
1348 	oinp = in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr, fport,
1349 	    laddr, lport, 0, NULL);
1350 	if (oinp != NULL) {
1351 		if (oinpp != NULL)
1352 			*oinpp = oinp;
1353 		return (EADDRINUSE);
1354 	}
1355 	if (lport == 0) {
1356 		error = in_pcbbind_setup(inp, NULL, &laddr.s_addr, &lport,
1357 		    cred);
1358 		if (error)
1359 			return (error);
1360 	}
1361 	*laddrp = laddr.s_addr;
1362 	*lportp = lport;
1363 	*faddrp = faddr.s_addr;
1364 	*fportp = fport;
1365 	return (0);
1366 }
1367 
1368 void
1369 in_pcbdisconnect(struct inpcb *inp)
1370 {
1371 
1372 	INP_WLOCK_ASSERT(inp);
1373 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
1374 
1375 	inp->inp_faddr.s_addr = INADDR_ANY;
1376 	inp->inp_fport = 0;
1377 	in_pcbrehash(inp);
1378 }
1379 #endif /* INET */
1380 
1381 /*
1382  * in_pcbdetach() is responsibe for disassociating a socket from an inpcb.
1383  * For most protocols, this will be invoked immediately prior to calling
1384  * in_pcbfree().  However, with TCP the inpcb may significantly outlive the
1385  * socket, in which case in_pcbfree() is deferred.
1386  */
1387 void
1388 in_pcbdetach(struct inpcb *inp)
1389 {
1390 
1391 	KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__));
1392 
1393 #ifdef RATELIMIT
1394 	if (inp->inp_snd_tag != NULL)
1395 		in_pcbdetach_txrtlmt(inp);
1396 #endif
1397 	inp->inp_socket->so_pcb = NULL;
1398 	inp->inp_socket = NULL;
1399 }
1400 
1401 /*
1402  * in_pcbref() bumps the reference count on an inpcb in order to maintain
1403  * stability of an inpcb pointer despite the inpcb lock being released.  This
1404  * is used in TCP when the inpcbinfo lock needs to be acquired or upgraded,
1405  * but where the inpcb lock may already held, or when acquiring a reference
1406  * via a pcbgroup.
1407  *
1408  * in_pcbref() should be used only to provide brief memory stability, and
1409  * must always be followed by a call to INP_WLOCK() and in_pcbrele() to
1410  * garbage collect the inpcb if it has been in_pcbfree()'d from another
1411  * context.  Until in_pcbrele() has returned that the inpcb is still valid,
1412  * lock and rele are the *only* safe operations that may be performed on the
1413  * inpcb.
1414  *
1415  * While the inpcb will not be freed, releasing the inpcb lock means that the
1416  * connection's state may change, so the caller should be careful to
1417  * revalidate any cached state on reacquiring the lock.  Drop the reference
1418  * using in_pcbrele().
1419  */
1420 void
1421 in_pcbref(struct inpcb *inp)
1422 {
1423 
1424 	KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1425 
1426 	refcount_acquire(&inp->inp_refcount);
1427 }
1428 
1429 /*
1430  * Drop a refcount on an inpcb elevated using in_pcbref(); because a call to
1431  * in_pcbfree() may have been made between in_pcbref() and in_pcbrele(), we
1432  * return a flag indicating whether or not the inpcb remains valid.  If it is
1433  * valid, we return with the inpcb lock held.
1434  *
1435  * Notice that, unlike in_pcbref(), the inpcb lock must be held to drop a
1436  * reference on an inpcb.  Historically more work was done here (actually, in
1437  * in_pcbfree_internal()) but has been moved to in_pcbfree() to avoid the
1438  * need for the pcbinfo lock in in_pcbrele().  Deferring the free is entirely
1439  * about memory stability (and continued use of the write lock).
1440  */
1441 int
1442 in_pcbrele_rlocked(struct inpcb *inp)
1443 {
1444 	struct inpcbinfo *pcbinfo;
1445 
1446 	KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1447 
1448 	INP_RLOCK_ASSERT(inp);
1449 
1450 	if (refcount_release(&inp->inp_refcount) == 0) {
1451 		/*
1452 		 * If the inpcb has been freed, let the caller know, even if
1453 		 * this isn't the last reference.
1454 		 */
1455 		if (inp->inp_flags2 & INP_FREED) {
1456 			INP_RUNLOCK(inp);
1457 			return (1);
1458 		}
1459 		return (0);
1460 	}
1461 
1462 	KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1463 #ifdef TCPHPTS
1464 	if (inp->inp_in_hpts || inp->inp_in_input) {
1465 		struct tcp_hpts_entry *hpts;
1466 		/*
1467 		 * We should not be on the hpts at
1468 		 * this point in any form. we must
1469 		 * get the lock to be sure.
1470 		 */
1471 		hpts = tcp_hpts_lock(inp);
1472 		if (inp->inp_in_hpts)
1473 			panic("Hpts:%p inp:%p at free still on hpts",
1474 			      hpts, inp);
1475 		mtx_unlock(&hpts->p_mtx);
1476 		hpts = tcp_input_lock(inp);
1477 		if (inp->inp_in_input)
1478 			panic("Hpts:%p inp:%p at free still on input hpts",
1479 			      hpts, inp);
1480 		mtx_unlock(&hpts->p_mtx);
1481 	}
1482 #endif
1483 	INP_RUNLOCK(inp);
1484 	pcbinfo = inp->inp_pcbinfo;
1485 	uma_zfree(pcbinfo->ipi_zone, inp);
1486 	return (1);
1487 }
1488 
1489 int
1490 in_pcbrele_wlocked(struct inpcb *inp)
1491 {
1492 	struct inpcbinfo *pcbinfo;
1493 
1494 	KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1495 
1496 	INP_WLOCK_ASSERT(inp);
1497 
1498 	if (refcount_release(&inp->inp_refcount) == 0) {
1499 		/*
1500 		 * If the inpcb has been freed, let the caller know, even if
1501 		 * this isn't the last reference.
1502 		 */
1503 		if (inp->inp_flags2 & INP_FREED) {
1504 			INP_WUNLOCK(inp);
1505 			return (1);
1506 		}
1507 		return (0);
1508 	}
1509 
1510 	KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1511 #ifdef TCPHPTS
1512 	if (inp->inp_in_hpts || inp->inp_in_input) {
1513 		struct tcp_hpts_entry *hpts;
1514 		/*
1515 		 * We should not be on the hpts at
1516 		 * this point in any form. we must
1517 		 * get the lock to be sure.
1518 		 */
1519 		hpts = tcp_hpts_lock(inp);
1520 		if (inp->inp_in_hpts)
1521 			panic("Hpts:%p inp:%p at free still on hpts",
1522 			      hpts, inp);
1523 		mtx_unlock(&hpts->p_mtx);
1524 		hpts = tcp_input_lock(inp);
1525 		if (inp->inp_in_input)
1526 			panic("Hpts:%p inp:%p at free still on input hpts",
1527 			      hpts, inp);
1528 		mtx_unlock(&hpts->p_mtx);
1529 	}
1530 #endif
1531 	INP_WUNLOCK(inp);
1532 	pcbinfo = inp->inp_pcbinfo;
1533 	uma_zfree(pcbinfo->ipi_zone, inp);
1534 	return (1);
1535 }
1536 
1537 /*
1538  * Temporary wrapper.
1539  */
1540 int
1541 in_pcbrele(struct inpcb *inp)
1542 {
1543 
1544 	return (in_pcbrele_wlocked(inp));
1545 }
1546 
1547 void
1548 in_pcblist_rele_rlocked(epoch_context_t ctx)
1549 {
1550 	struct in_pcblist *il;
1551 	struct inpcb *inp;
1552 	struct inpcbinfo *pcbinfo;
1553 	int i, n;
1554 
1555 	il = __containerof(ctx, struct in_pcblist, il_epoch_ctx);
1556 	pcbinfo = il->il_pcbinfo;
1557 	n = il->il_count;
1558 	INP_INFO_WLOCK(pcbinfo);
1559 	for (i = 0; i < n; i++) {
1560 		inp = il->il_inp_list[i];
1561 		INP_RLOCK(inp);
1562 		if (!in_pcbrele_rlocked(inp))
1563 			INP_RUNLOCK(inp);
1564 	}
1565 	INP_INFO_WUNLOCK(pcbinfo);
1566 	free(il, M_TEMP);
1567 }
1568 
1569 static void
1570 inpcbport_free(epoch_context_t ctx)
1571 {
1572 	struct inpcbport *phd;
1573 
1574 	phd = __containerof(ctx, struct inpcbport, phd_epoch_ctx);
1575 	free(phd, M_PCB);
1576 }
1577 
1578 static void
1579 in_pcbfree_deferred(epoch_context_t ctx)
1580 {
1581 	struct inpcb *inp;
1582 	int released __unused;
1583 
1584 	inp = __containerof(ctx, struct inpcb, inp_epoch_ctx);
1585 
1586 	INP_WLOCK(inp);
1587 	CURVNET_SET(inp->inp_vnet);
1588 #ifdef INET
1589 	struct ip_moptions *imo = inp->inp_moptions;
1590 	inp->inp_moptions = NULL;
1591 #endif
1592 	/* XXXRW: Do as much as possible here. */
1593 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
1594 	if (inp->inp_sp != NULL)
1595 		ipsec_delete_pcbpolicy(inp);
1596 #endif
1597 #ifdef INET6
1598 	struct ip6_moptions *im6o = NULL;
1599 	if (inp->inp_vflag & INP_IPV6PROTO) {
1600 		ip6_freepcbopts(inp->in6p_outputopts);
1601 		im6o = inp->in6p_moptions;
1602 		inp->in6p_moptions = NULL;
1603 	}
1604 #endif
1605 	if (inp->inp_options)
1606 		(void)m_free(inp->inp_options);
1607 	inp->inp_vflag = 0;
1608 	crfree(inp->inp_cred);
1609 #ifdef MAC
1610 	mac_inpcb_destroy(inp);
1611 #endif
1612 	released = in_pcbrele_wlocked(inp);
1613 	MPASS(released);
1614 #ifdef INET6
1615 	ip6_freemoptions(im6o);
1616 #endif
1617 #ifdef INET
1618 	inp_freemoptions(imo);
1619 #endif
1620 	CURVNET_RESTORE();
1621 }
1622 
1623 /*
1624  * Unconditionally schedule an inpcb to be freed by decrementing its
1625  * reference count, which should occur only after the inpcb has been detached
1626  * from its socket.  If another thread holds a temporary reference (acquired
1627  * using in_pcbref()) then the free is deferred until that reference is
1628  * released using in_pcbrele(), but the inpcb is still unlocked.  Almost all
1629  * work, including removal from global lists, is done in this context, where
1630  * the pcbinfo lock is held.
1631  */
1632 void
1633 in_pcbfree(struct inpcb *inp)
1634 {
1635 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1636 
1637 	KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1638 	KASSERT((inp->inp_flags2 & INP_FREED) == 0,
1639 	    ("%s: called twice for pcb %p", __func__, inp));
1640 	if (inp->inp_flags2 & INP_FREED) {
1641 		INP_WUNLOCK(inp);
1642 		return;
1643 	}
1644 
1645 #ifdef INVARIANTS
1646 	if (pcbinfo == &V_tcbinfo) {
1647 		INP_INFO_LOCK_ASSERT(pcbinfo);
1648 	} else {
1649 		INP_INFO_WLOCK_ASSERT(pcbinfo);
1650 	}
1651 #endif
1652 	INP_WLOCK_ASSERT(inp);
1653 	INP_LIST_WLOCK(pcbinfo);
1654 	in_pcbremlists(inp);
1655 	INP_LIST_WUNLOCK(pcbinfo);
1656 	RO_INVALIDATE_CACHE(&inp->inp_route);
1657 	/* mark as destruction in progress */
1658 	inp->inp_flags2 |= INP_FREED;
1659 	INP_WUNLOCK(inp);
1660 	epoch_call(net_epoch_preempt, &inp->inp_epoch_ctx, in_pcbfree_deferred);
1661 }
1662 
1663 /*
1664  * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and
1665  * port reservation, and preventing it from being returned by inpcb lookups.
1666  *
1667  * It is used by TCP to mark an inpcb as unused and avoid future packet
1668  * delivery or event notification when a socket remains open but TCP has
1669  * closed.  This might occur as a result of a shutdown()-initiated TCP close
1670  * or a RST on the wire, and allows the port binding to be reused while still
1671  * maintaining the invariant that so_pcb always points to a valid inpcb until
1672  * in_pcbdetach().
1673  *
1674  * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by
1675  * in_pcbnotifyall() and in_pcbpurgeif0()?
1676  */
1677 void
1678 in_pcbdrop(struct inpcb *inp)
1679 {
1680 
1681 	INP_WLOCK_ASSERT(inp);
1682 #ifdef INVARIANTS
1683 	if (inp->inp_socket != NULL && inp->inp_ppcb != NULL)
1684 		MPASS(inp->inp_refcount > 1);
1685 #endif
1686 
1687 	/*
1688 	 * XXXRW: Possibly we should protect the setting of INP_DROPPED with
1689 	 * the hash lock...?
1690 	 */
1691 	inp->inp_flags |= INP_DROPPED;
1692 	if (inp->inp_flags & INP_INHASHLIST) {
1693 		struct inpcbport *phd = inp->inp_phd;
1694 
1695 		INP_HASH_WLOCK(inp->inp_pcbinfo);
1696 		in_pcbremlbgrouphash(inp);
1697 		CK_LIST_REMOVE(inp, inp_hash);
1698 		CK_LIST_REMOVE(inp, inp_portlist);
1699 		if (CK_LIST_FIRST(&phd->phd_pcblist) == NULL) {
1700 			CK_LIST_REMOVE(phd, phd_hash);
1701 			epoch_call(net_epoch_preempt, &phd->phd_epoch_ctx, inpcbport_free);
1702 		}
1703 		INP_HASH_WUNLOCK(inp->inp_pcbinfo);
1704 		inp->inp_flags &= ~INP_INHASHLIST;
1705 #ifdef PCBGROUP
1706 		in_pcbgroup_remove(inp);
1707 #endif
1708 	}
1709 }
1710 
1711 #ifdef INET
1712 /*
1713  * Common routines to return the socket addresses associated with inpcbs.
1714  */
1715 struct sockaddr *
1716 in_sockaddr(in_port_t port, struct in_addr *addr_p)
1717 {
1718 	struct sockaddr_in *sin;
1719 
1720 	sin = malloc(sizeof *sin, M_SONAME,
1721 		M_WAITOK | M_ZERO);
1722 	sin->sin_family = AF_INET;
1723 	sin->sin_len = sizeof(*sin);
1724 	sin->sin_addr = *addr_p;
1725 	sin->sin_port = port;
1726 
1727 	return (struct sockaddr *)sin;
1728 }
1729 
1730 int
1731 in_getsockaddr(struct socket *so, struct sockaddr **nam)
1732 {
1733 	struct inpcb *inp;
1734 	struct in_addr addr;
1735 	in_port_t port;
1736 
1737 	inp = sotoinpcb(so);
1738 	KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL"));
1739 
1740 	INP_RLOCK(inp);
1741 	port = inp->inp_lport;
1742 	addr = inp->inp_laddr;
1743 	INP_RUNLOCK(inp);
1744 
1745 	*nam = in_sockaddr(port, &addr);
1746 	return 0;
1747 }
1748 
1749 int
1750 in_getpeeraddr(struct socket *so, struct sockaddr **nam)
1751 {
1752 	struct inpcb *inp;
1753 	struct in_addr addr;
1754 	in_port_t port;
1755 
1756 	inp = sotoinpcb(so);
1757 	KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL"));
1758 
1759 	INP_RLOCK(inp);
1760 	port = inp->inp_fport;
1761 	addr = inp->inp_faddr;
1762 	INP_RUNLOCK(inp);
1763 
1764 	*nam = in_sockaddr(port, &addr);
1765 	return 0;
1766 }
1767 
1768 void
1769 in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno,
1770     struct inpcb *(*notify)(struct inpcb *, int))
1771 {
1772 	struct inpcb *inp, *inp_temp;
1773 
1774 	INP_INFO_WLOCK(pcbinfo);
1775 	CK_LIST_FOREACH_SAFE(inp, pcbinfo->ipi_listhead, inp_list, inp_temp) {
1776 		INP_WLOCK(inp);
1777 #ifdef INET6
1778 		if ((inp->inp_vflag & INP_IPV4) == 0) {
1779 			INP_WUNLOCK(inp);
1780 			continue;
1781 		}
1782 #endif
1783 		if (inp->inp_faddr.s_addr != faddr.s_addr ||
1784 		    inp->inp_socket == NULL) {
1785 			INP_WUNLOCK(inp);
1786 			continue;
1787 		}
1788 		if ((*notify)(inp, errno))
1789 			INP_WUNLOCK(inp);
1790 	}
1791 	INP_INFO_WUNLOCK(pcbinfo);
1792 }
1793 
1794 void
1795 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp)
1796 {
1797 	struct inpcb *inp;
1798 	struct in_multi *inm;
1799 	struct in_mfilter *imf;
1800 	struct ip_moptions *imo;
1801 
1802 	INP_INFO_WLOCK(pcbinfo);
1803 	CK_LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) {
1804 		INP_WLOCK(inp);
1805 		imo = inp->inp_moptions;
1806 		if ((inp->inp_vflag & INP_IPV4) &&
1807 		    imo != NULL) {
1808 			/*
1809 			 * Unselect the outgoing interface if it is being
1810 			 * detached.
1811 			 */
1812 			if (imo->imo_multicast_ifp == ifp)
1813 				imo->imo_multicast_ifp = NULL;
1814 
1815 			/*
1816 			 * Drop multicast group membership if we joined
1817 			 * through the interface being detached.
1818 			 *
1819 			 * XXX This can all be deferred to an epoch_call
1820 			 */
1821 restart:
1822 			IP_MFILTER_FOREACH(imf, &imo->imo_head) {
1823 				if ((inm = imf->imf_inm) == NULL)
1824 					continue;
1825 				if (inm->inm_ifp != ifp)
1826 					continue;
1827 				ip_mfilter_remove(&imo->imo_head, imf);
1828 				IN_MULTI_LOCK_ASSERT();
1829 				in_leavegroup_locked(inm, NULL);
1830 				ip_mfilter_free(imf);
1831 				goto restart;
1832 			}
1833 		}
1834 		INP_WUNLOCK(inp);
1835 	}
1836 	INP_INFO_WUNLOCK(pcbinfo);
1837 }
1838 
1839 /*
1840  * Lookup a PCB based on the local address and port.  Caller must hold the
1841  * hash lock.  No inpcb locks or references are acquired.
1842  */
1843 #define INP_LOOKUP_MAPPED_PCB_COST	3
1844 struct inpcb *
1845 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr,
1846     u_short lport, int lookupflags, struct ucred *cred)
1847 {
1848 	struct inpcb *inp;
1849 #ifdef INET6
1850 	int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST;
1851 #else
1852 	int matchwild = 3;
1853 #endif
1854 	int wildcard;
1855 
1856 	KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0,
1857 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
1858 
1859 	INP_HASH_LOCK_ASSERT(pcbinfo);
1860 
1861 	if ((lookupflags & INPLOOKUP_WILDCARD) == 0) {
1862 		struct inpcbhead *head;
1863 		/*
1864 		 * Look for an unconnected (wildcard foreign addr) PCB that
1865 		 * matches the local address and port we're looking for.
1866 		 */
1867 		head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
1868 		    0, pcbinfo->ipi_hashmask)];
1869 		CK_LIST_FOREACH(inp, head, inp_hash) {
1870 #ifdef INET6
1871 			/* XXX inp locking */
1872 			if ((inp->inp_vflag & INP_IPV4) == 0)
1873 				continue;
1874 #endif
1875 			if (inp->inp_faddr.s_addr == INADDR_ANY &&
1876 			    inp->inp_laddr.s_addr == laddr.s_addr &&
1877 			    inp->inp_lport == lport) {
1878 				/*
1879 				 * Found?
1880 				 */
1881 				if (cred == NULL ||
1882 				    prison_equal_ip4(cred->cr_prison,
1883 					inp->inp_cred->cr_prison))
1884 					return (inp);
1885 			}
1886 		}
1887 		/*
1888 		 * Not found.
1889 		 */
1890 		return (NULL);
1891 	} else {
1892 		struct inpcbporthead *porthash;
1893 		struct inpcbport *phd;
1894 		struct inpcb *match = NULL;
1895 		/*
1896 		 * Best fit PCB lookup.
1897 		 *
1898 		 * First see if this local port is in use by looking on the
1899 		 * port hash list.
1900 		 */
1901 		porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport,
1902 		    pcbinfo->ipi_porthashmask)];
1903 		CK_LIST_FOREACH(phd, porthash, phd_hash) {
1904 			if (phd->phd_port == lport)
1905 				break;
1906 		}
1907 		if (phd != NULL) {
1908 			/*
1909 			 * Port is in use by one or more PCBs. Look for best
1910 			 * fit.
1911 			 */
1912 			CK_LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) {
1913 				wildcard = 0;
1914 				if (cred != NULL &&
1915 				    !prison_equal_ip4(inp->inp_cred->cr_prison,
1916 					cred->cr_prison))
1917 					continue;
1918 #ifdef INET6
1919 				/* XXX inp locking */
1920 				if ((inp->inp_vflag & INP_IPV4) == 0)
1921 					continue;
1922 				/*
1923 				 * We never select the PCB that has
1924 				 * INP_IPV6 flag and is bound to :: if
1925 				 * we have another PCB which is bound
1926 				 * to 0.0.0.0.  If a PCB has the
1927 				 * INP_IPV6 flag, then we set its cost
1928 				 * higher than IPv4 only PCBs.
1929 				 *
1930 				 * Note that the case only happens
1931 				 * when a socket is bound to ::, under
1932 				 * the condition that the use of the
1933 				 * mapped address is allowed.
1934 				 */
1935 				if ((inp->inp_vflag & INP_IPV6) != 0)
1936 					wildcard += INP_LOOKUP_MAPPED_PCB_COST;
1937 #endif
1938 				if (inp->inp_faddr.s_addr != INADDR_ANY)
1939 					wildcard++;
1940 				if (inp->inp_laddr.s_addr != INADDR_ANY) {
1941 					if (laddr.s_addr == INADDR_ANY)
1942 						wildcard++;
1943 					else if (inp->inp_laddr.s_addr != laddr.s_addr)
1944 						continue;
1945 				} else {
1946 					if (laddr.s_addr != INADDR_ANY)
1947 						wildcard++;
1948 				}
1949 				if (wildcard < matchwild) {
1950 					match = inp;
1951 					matchwild = wildcard;
1952 					if (matchwild == 0)
1953 						break;
1954 				}
1955 			}
1956 		}
1957 		return (match);
1958 	}
1959 }
1960 #undef INP_LOOKUP_MAPPED_PCB_COST
1961 
1962 static struct inpcb *
1963 in_pcblookup_lbgroup(const struct inpcbinfo *pcbinfo,
1964     const struct in_addr *laddr, uint16_t lport, const struct in_addr *faddr,
1965     uint16_t fport, int lookupflags)
1966 {
1967 	struct inpcb *local_wild;
1968 	const struct inpcblbgrouphead *hdr;
1969 	struct inpcblbgroup *grp;
1970 	uint32_t idx;
1971 
1972 	INP_HASH_LOCK_ASSERT(pcbinfo);
1973 
1974 	hdr = &pcbinfo->ipi_lbgrouphashbase[
1975 	    INP_PCBPORTHASH(lport, pcbinfo->ipi_lbgrouphashmask)];
1976 
1977 	/*
1978 	 * Order of socket selection:
1979 	 * 1. non-wild.
1980 	 * 2. wild (if lookupflags contains INPLOOKUP_WILDCARD).
1981 	 *
1982 	 * NOTE:
1983 	 * - Load balanced group does not contain jailed sockets
1984 	 * - Load balanced group does not contain IPv4 mapped INET6 wild sockets
1985 	 */
1986 	local_wild = NULL;
1987 	CK_LIST_FOREACH(grp, hdr, il_list) {
1988 #ifdef INET6
1989 		if (!(grp->il_vflag & INP_IPV4))
1990 			continue;
1991 #endif
1992 		if (grp->il_lport != lport)
1993 			continue;
1994 
1995 		idx = INP_PCBLBGROUP_PKTHASH(faddr->s_addr, lport, fport) %
1996 		    grp->il_inpcnt;
1997 		if (grp->il_laddr.s_addr == laddr->s_addr)
1998 			return (grp->il_inp[idx]);
1999 		if (grp->il_laddr.s_addr == INADDR_ANY &&
2000 		    (lookupflags & INPLOOKUP_WILDCARD) != 0)
2001 			local_wild = grp->il_inp[idx];
2002 	}
2003 	return (local_wild);
2004 }
2005 
2006 #ifdef PCBGROUP
2007 /*
2008  * Lookup PCB in hash list, using pcbgroup tables.
2009  */
2010 static struct inpcb *
2011 in_pcblookup_group(struct inpcbinfo *pcbinfo, struct inpcbgroup *pcbgroup,
2012     struct in_addr faddr, u_int fport_arg, struct in_addr laddr,
2013     u_int lport_arg, int lookupflags, struct ifnet *ifp)
2014 {
2015 	struct inpcbhead *head;
2016 	struct inpcb *inp, *tmpinp;
2017 	u_short fport = fport_arg, lport = lport_arg;
2018 	bool locked;
2019 
2020 	/*
2021 	 * First look for an exact match.
2022 	 */
2023 	tmpinp = NULL;
2024 	INP_GROUP_LOCK(pcbgroup);
2025 	head = &pcbgroup->ipg_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport,
2026 	    pcbgroup->ipg_hashmask)];
2027 	CK_LIST_FOREACH(inp, head, inp_pcbgrouphash) {
2028 #ifdef INET6
2029 		/* XXX inp locking */
2030 		if ((inp->inp_vflag & INP_IPV4) == 0)
2031 			continue;
2032 #endif
2033 		if (inp->inp_faddr.s_addr == faddr.s_addr &&
2034 		    inp->inp_laddr.s_addr == laddr.s_addr &&
2035 		    inp->inp_fport == fport &&
2036 		    inp->inp_lport == lport) {
2037 			/*
2038 			 * XXX We should be able to directly return
2039 			 * the inp here, without any checks.
2040 			 * Well unless both bound with SO_REUSEPORT?
2041 			 */
2042 			if (prison_flag(inp->inp_cred, PR_IP4))
2043 				goto found;
2044 			if (tmpinp == NULL)
2045 				tmpinp = inp;
2046 		}
2047 	}
2048 	if (tmpinp != NULL) {
2049 		inp = tmpinp;
2050 		goto found;
2051 	}
2052 
2053 #ifdef	RSS
2054 	/*
2055 	 * For incoming connections, we may wish to do a wildcard
2056 	 * match for an RSS-local socket.
2057 	 */
2058 	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
2059 		struct inpcb *local_wild = NULL, *local_exact = NULL;
2060 #ifdef INET6
2061 		struct inpcb *local_wild_mapped = NULL;
2062 #endif
2063 		struct inpcb *jail_wild = NULL;
2064 		struct inpcbhead *head;
2065 		int injail;
2066 
2067 		/*
2068 		 * Order of socket selection - we always prefer jails.
2069 		 *      1. jailed, non-wild.
2070 		 *      2. jailed, wild.
2071 		 *      3. non-jailed, non-wild.
2072 		 *      4. non-jailed, wild.
2073 		 */
2074 
2075 		head = &pcbgroup->ipg_hashbase[INP_PCBHASH(INADDR_ANY,
2076 		    lport, 0, pcbgroup->ipg_hashmask)];
2077 		CK_LIST_FOREACH(inp, head, inp_pcbgrouphash) {
2078 #ifdef INET6
2079 			/* XXX inp locking */
2080 			if ((inp->inp_vflag & INP_IPV4) == 0)
2081 				continue;
2082 #endif
2083 			if (inp->inp_faddr.s_addr != INADDR_ANY ||
2084 			    inp->inp_lport != lport)
2085 				continue;
2086 
2087 			injail = prison_flag(inp->inp_cred, PR_IP4);
2088 			if (injail) {
2089 				if (prison_check_ip4(inp->inp_cred,
2090 				    &laddr) != 0)
2091 					continue;
2092 			} else {
2093 				if (local_exact != NULL)
2094 					continue;
2095 			}
2096 
2097 			if (inp->inp_laddr.s_addr == laddr.s_addr) {
2098 				if (injail)
2099 					goto found;
2100 				else
2101 					local_exact = inp;
2102 			} else if (inp->inp_laddr.s_addr == INADDR_ANY) {
2103 #ifdef INET6
2104 				/* XXX inp locking, NULL check */
2105 				if (inp->inp_vflag & INP_IPV6PROTO)
2106 					local_wild_mapped = inp;
2107 				else
2108 #endif
2109 					if (injail)
2110 						jail_wild = inp;
2111 					else
2112 						local_wild = inp;
2113 			}
2114 		} /* LIST_FOREACH */
2115 
2116 		inp = jail_wild;
2117 		if (inp == NULL)
2118 			inp = local_exact;
2119 		if (inp == NULL)
2120 			inp = local_wild;
2121 #ifdef INET6
2122 		if (inp == NULL)
2123 			inp = local_wild_mapped;
2124 #endif
2125 		if (inp != NULL)
2126 			goto found;
2127 	}
2128 #endif
2129 
2130 	/*
2131 	 * Then look for a wildcard match, if requested.
2132 	 */
2133 	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
2134 		struct inpcb *local_wild = NULL, *local_exact = NULL;
2135 #ifdef INET6
2136 		struct inpcb *local_wild_mapped = NULL;
2137 #endif
2138 		struct inpcb *jail_wild = NULL;
2139 		struct inpcbhead *head;
2140 		int injail;
2141 
2142 		/*
2143 		 * Order of socket selection - we always prefer jails.
2144 		 *      1. jailed, non-wild.
2145 		 *      2. jailed, wild.
2146 		 *      3. non-jailed, non-wild.
2147 		 *      4. non-jailed, wild.
2148 		 */
2149 		head = &pcbinfo->ipi_wildbase[INP_PCBHASH(INADDR_ANY, lport,
2150 		    0, pcbinfo->ipi_wildmask)];
2151 		CK_LIST_FOREACH(inp, head, inp_pcbgroup_wild) {
2152 #ifdef INET6
2153 			/* XXX inp locking */
2154 			if ((inp->inp_vflag & INP_IPV4) == 0)
2155 				continue;
2156 #endif
2157 			if (inp->inp_faddr.s_addr != INADDR_ANY ||
2158 			    inp->inp_lport != lport)
2159 				continue;
2160 
2161 			injail = prison_flag(inp->inp_cred, PR_IP4);
2162 			if (injail) {
2163 				if (prison_check_ip4(inp->inp_cred,
2164 				    &laddr) != 0)
2165 					continue;
2166 			} else {
2167 				if (local_exact != NULL)
2168 					continue;
2169 			}
2170 
2171 			if (inp->inp_laddr.s_addr == laddr.s_addr) {
2172 				if (injail)
2173 					goto found;
2174 				else
2175 					local_exact = inp;
2176 			} else if (inp->inp_laddr.s_addr == INADDR_ANY) {
2177 #ifdef INET6
2178 				/* XXX inp locking, NULL check */
2179 				if (inp->inp_vflag & INP_IPV6PROTO)
2180 					local_wild_mapped = inp;
2181 				else
2182 #endif
2183 					if (injail)
2184 						jail_wild = inp;
2185 					else
2186 						local_wild = inp;
2187 			}
2188 		} /* LIST_FOREACH */
2189 		inp = jail_wild;
2190 		if (inp == NULL)
2191 			inp = local_exact;
2192 		if (inp == NULL)
2193 			inp = local_wild;
2194 #ifdef INET6
2195 		if (inp == NULL)
2196 			inp = local_wild_mapped;
2197 #endif
2198 		if (inp != NULL)
2199 			goto found;
2200 	} /* if (lookupflags & INPLOOKUP_WILDCARD) */
2201 	INP_GROUP_UNLOCK(pcbgroup);
2202 	return (NULL);
2203 
2204 found:
2205 	if (lookupflags & INPLOOKUP_WLOCKPCB)
2206 		locked = INP_TRY_WLOCK(inp);
2207 	else if (lookupflags & INPLOOKUP_RLOCKPCB)
2208 		locked = INP_TRY_RLOCK(inp);
2209 	else
2210 		panic("%s: locking bug", __func__);
2211 	if (__predict_false(locked && (inp->inp_flags2 & INP_FREED))) {
2212 		if (lookupflags & INPLOOKUP_WLOCKPCB)
2213 			INP_WUNLOCK(inp);
2214 		else
2215 			INP_RUNLOCK(inp);
2216 		return (NULL);
2217 	} else if (!locked)
2218 		in_pcbref(inp);
2219 	INP_GROUP_UNLOCK(pcbgroup);
2220 	if (!locked) {
2221 		if (lookupflags & INPLOOKUP_WLOCKPCB) {
2222 			INP_WLOCK(inp);
2223 			if (in_pcbrele_wlocked(inp))
2224 				return (NULL);
2225 		} else {
2226 			INP_RLOCK(inp);
2227 			if (in_pcbrele_rlocked(inp))
2228 				return (NULL);
2229 		}
2230 	}
2231 #ifdef INVARIANTS
2232 	if (lookupflags & INPLOOKUP_WLOCKPCB)
2233 		INP_WLOCK_ASSERT(inp);
2234 	else
2235 		INP_RLOCK_ASSERT(inp);
2236 #endif
2237 	return (inp);
2238 }
2239 #endif /* PCBGROUP */
2240 
2241 /*
2242  * Lookup PCB in hash list, using pcbinfo tables.  This variation assumes
2243  * that the caller has locked the hash list, and will not perform any further
2244  * locking or reference operations on either the hash list or the connection.
2245  */
2246 static struct inpcb *
2247 in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2248     u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags,
2249     struct ifnet *ifp)
2250 {
2251 	struct inpcbhead *head;
2252 	struct inpcb *inp, *tmpinp;
2253 	u_short fport = fport_arg, lport = lport_arg;
2254 
2255 	KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0,
2256 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
2257 	INP_HASH_LOCK_ASSERT(pcbinfo);
2258 
2259 	/*
2260 	 * First look for an exact match.
2261 	 */
2262 	tmpinp = NULL;
2263 	head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport,
2264 	    pcbinfo->ipi_hashmask)];
2265 	CK_LIST_FOREACH(inp, head, inp_hash) {
2266 #ifdef INET6
2267 		/* XXX inp locking */
2268 		if ((inp->inp_vflag & INP_IPV4) == 0)
2269 			continue;
2270 #endif
2271 		if (inp->inp_faddr.s_addr == faddr.s_addr &&
2272 		    inp->inp_laddr.s_addr == laddr.s_addr &&
2273 		    inp->inp_fport == fport &&
2274 		    inp->inp_lport == lport) {
2275 			/*
2276 			 * XXX We should be able to directly return
2277 			 * the inp here, without any checks.
2278 			 * Well unless both bound with SO_REUSEPORT?
2279 			 */
2280 			if (prison_flag(inp->inp_cred, PR_IP4))
2281 				return (inp);
2282 			if (tmpinp == NULL)
2283 				tmpinp = inp;
2284 		}
2285 	}
2286 	if (tmpinp != NULL)
2287 		return (tmpinp);
2288 
2289 	/*
2290 	 * Then look in lb group (for wildcard match).
2291 	 */
2292 	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
2293 		inp = in_pcblookup_lbgroup(pcbinfo, &laddr, lport, &faddr,
2294 		    fport, lookupflags);
2295 		if (inp != NULL)
2296 			return (inp);
2297 	}
2298 
2299 	/*
2300 	 * Then look for a wildcard match, if requested.
2301 	 */
2302 	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
2303 		struct inpcb *local_wild = NULL, *local_exact = NULL;
2304 #ifdef INET6
2305 		struct inpcb *local_wild_mapped = NULL;
2306 #endif
2307 		struct inpcb *jail_wild = NULL;
2308 		int injail;
2309 
2310 		/*
2311 		 * Order of socket selection - we always prefer jails.
2312 		 *      1. jailed, non-wild.
2313 		 *      2. jailed, wild.
2314 		 *      3. non-jailed, non-wild.
2315 		 *      4. non-jailed, wild.
2316 		 */
2317 
2318 		head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
2319 		    0, pcbinfo->ipi_hashmask)];
2320 		CK_LIST_FOREACH(inp, head, inp_hash) {
2321 #ifdef INET6
2322 			/* XXX inp locking */
2323 			if ((inp->inp_vflag & INP_IPV4) == 0)
2324 				continue;
2325 #endif
2326 			if (inp->inp_faddr.s_addr != INADDR_ANY ||
2327 			    inp->inp_lport != lport)
2328 				continue;
2329 
2330 			injail = prison_flag(inp->inp_cred, PR_IP4);
2331 			if (injail) {
2332 				if (prison_check_ip4(inp->inp_cred,
2333 				    &laddr) != 0)
2334 					continue;
2335 			} else {
2336 				if (local_exact != NULL)
2337 					continue;
2338 			}
2339 
2340 			if (inp->inp_laddr.s_addr == laddr.s_addr) {
2341 				if (injail)
2342 					return (inp);
2343 				else
2344 					local_exact = inp;
2345 			} else if (inp->inp_laddr.s_addr == INADDR_ANY) {
2346 #ifdef INET6
2347 				/* XXX inp locking, NULL check */
2348 				if (inp->inp_vflag & INP_IPV6PROTO)
2349 					local_wild_mapped = inp;
2350 				else
2351 #endif
2352 					if (injail)
2353 						jail_wild = inp;
2354 					else
2355 						local_wild = inp;
2356 			}
2357 		} /* LIST_FOREACH */
2358 		if (jail_wild != NULL)
2359 			return (jail_wild);
2360 		if (local_exact != NULL)
2361 			return (local_exact);
2362 		if (local_wild != NULL)
2363 			return (local_wild);
2364 #ifdef INET6
2365 		if (local_wild_mapped != NULL)
2366 			return (local_wild_mapped);
2367 #endif
2368 	} /* if ((lookupflags & INPLOOKUP_WILDCARD) != 0) */
2369 
2370 	return (NULL);
2371 }
2372 
2373 /*
2374  * Lookup PCB in hash list, using pcbinfo tables.  This variation locks the
2375  * hash list lock, and will return the inpcb locked (i.e., requires
2376  * INPLOOKUP_LOCKPCB).
2377  */
2378 static struct inpcb *
2379 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2380     u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
2381     struct ifnet *ifp)
2382 {
2383 	struct inpcb *inp;
2384 
2385 	inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport,
2386 	    (lookupflags & ~(INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)), ifp);
2387 	if (inp != NULL) {
2388 		if (lookupflags & INPLOOKUP_WLOCKPCB) {
2389 			INP_WLOCK(inp);
2390 			if (__predict_false(inp->inp_flags2 & INP_FREED)) {
2391 				INP_WUNLOCK(inp);
2392 				inp = NULL;
2393 			}
2394 		} else if (lookupflags & INPLOOKUP_RLOCKPCB) {
2395 			INP_RLOCK(inp);
2396 			if (__predict_false(inp->inp_flags2 & INP_FREED)) {
2397 				INP_RUNLOCK(inp);
2398 				inp = NULL;
2399 			}
2400 		} else
2401 			panic("%s: locking bug", __func__);
2402 #ifdef INVARIANTS
2403 		if (inp != NULL) {
2404 			if (lookupflags & INPLOOKUP_WLOCKPCB)
2405 				INP_WLOCK_ASSERT(inp);
2406 			else
2407 				INP_RLOCK_ASSERT(inp);
2408 		}
2409 #endif
2410 	}
2411 
2412 	return (inp);
2413 }
2414 
2415 /*
2416  * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf
2417  * from which a pre-calculated hash value may be extracted.
2418  *
2419  * Possibly more of this logic should be in in_pcbgroup.c.
2420  */
2421 struct inpcb *
2422 in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport,
2423     struct in_addr laddr, u_int lport, int lookupflags, struct ifnet *ifp)
2424 {
2425 #if defined(PCBGROUP) && !defined(RSS)
2426 	struct inpcbgroup *pcbgroup;
2427 #endif
2428 
2429 	KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0,
2430 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
2431 	KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
2432 	    ("%s: LOCKPCB not set", __func__));
2433 
2434 	/*
2435 	 * When not using RSS, use connection groups in preference to the
2436 	 * reservation table when looking up 4-tuples.  When using RSS, just
2437 	 * use the reservation table, due to the cost of the Toeplitz hash
2438 	 * in software.
2439 	 *
2440 	 * XXXRW: This policy belongs in the pcbgroup code, as in principle
2441 	 * we could be doing RSS with a non-Toeplitz hash that is affordable
2442 	 * in software.
2443 	 */
2444 #if defined(PCBGROUP) && !defined(RSS)
2445 	if (in_pcbgroup_enabled(pcbinfo)) {
2446 		pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr,
2447 		    fport);
2448 		return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport,
2449 		    laddr, lport, lookupflags, ifp));
2450 	}
2451 #endif
2452 	return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport,
2453 	    lookupflags, ifp));
2454 }
2455 
2456 struct inpcb *
2457 in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2458     u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
2459     struct ifnet *ifp, struct mbuf *m)
2460 {
2461 #ifdef PCBGROUP
2462 	struct inpcbgroup *pcbgroup;
2463 #endif
2464 
2465 	KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0,
2466 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
2467 	KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
2468 	    ("%s: LOCKPCB not set", __func__));
2469 
2470 #ifdef PCBGROUP
2471 	/*
2472 	 * If we can use a hardware-generated hash to look up the connection
2473 	 * group, use that connection group to find the inpcb.  Otherwise
2474 	 * fall back on a software hash -- or the reservation table if we're
2475 	 * using RSS.
2476 	 *
2477 	 * XXXRW: As above, that policy belongs in the pcbgroup code.
2478 	 */
2479 	if (in_pcbgroup_enabled(pcbinfo) &&
2480 	    !(M_HASHTYPE_TEST(m, M_HASHTYPE_NONE))) {
2481 		pcbgroup = in_pcbgroup_byhash(pcbinfo, M_HASHTYPE_GET(m),
2482 		    m->m_pkthdr.flowid);
2483 		if (pcbgroup != NULL)
2484 			return (in_pcblookup_group(pcbinfo, pcbgroup, faddr,
2485 			    fport, laddr, lport, lookupflags, ifp));
2486 #ifndef RSS
2487 		pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr,
2488 		    fport);
2489 		return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport,
2490 		    laddr, lport, lookupflags, ifp));
2491 #endif
2492 	}
2493 #endif
2494 	return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport,
2495 	    lookupflags, ifp));
2496 }
2497 #endif /* INET */
2498 
2499 /*
2500  * Insert PCB onto various hash lists.
2501  */
2502 static int
2503 in_pcbinshash_internal(struct inpcb *inp, int do_pcbgroup_update)
2504 {
2505 	struct inpcbhead *pcbhash;
2506 	struct inpcbporthead *pcbporthash;
2507 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2508 	struct inpcbport *phd;
2509 	u_int32_t hashkey_faddr;
2510 	int so_options;
2511 
2512 	INP_WLOCK_ASSERT(inp);
2513 	INP_HASH_WLOCK_ASSERT(pcbinfo);
2514 
2515 	KASSERT((inp->inp_flags & INP_INHASHLIST) == 0,
2516 	    ("in_pcbinshash: INP_INHASHLIST"));
2517 
2518 #ifdef INET6
2519 	if (inp->inp_vflag & INP_IPV6)
2520 		hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr);
2521 	else
2522 #endif
2523 	hashkey_faddr = inp->inp_faddr.s_addr;
2524 
2525 	pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
2526 		 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
2527 
2528 	pcbporthash = &pcbinfo->ipi_porthashbase[
2529 	    INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)];
2530 
2531 	/*
2532 	 * Add entry to load balance group.
2533 	 * Only do this if SO_REUSEPORT_LB is set.
2534 	 */
2535 	so_options = inp_so_options(inp);
2536 	if (so_options & SO_REUSEPORT_LB) {
2537 		int ret = in_pcbinslbgrouphash(inp);
2538 		if (ret) {
2539 			/* pcb lb group malloc fail (ret=ENOBUFS). */
2540 			return (ret);
2541 		}
2542 	}
2543 
2544 	/*
2545 	 * Go through port list and look for a head for this lport.
2546 	 */
2547 	CK_LIST_FOREACH(phd, pcbporthash, phd_hash) {
2548 		if (phd->phd_port == inp->inp_lport)
2549 			break;
2550 	}
2551 	/*
2552 	 * If none exists, malloc one and tack it on.
2553 	 */
2554 	if (phd == NULL) {
2555 		phd = malloc(sizeof(struct inpcbport), M_PCB, M_NOWAIT);
2556 		if (phd == NULL) {
2557 			return (ENOBUFS); /* XXX */
2558 		}
2559 		bzero(&phd->phd_epoch_ctx, sizeof(struct epoch_context));
2560 		phd->phd_port = inp->inp_lport;
2561 		CK_LIST_INIT(&phd->phd_pcblist);
2562 		CK_LIST_INSERT_HEAD(pcbporthash, phd, phd_hash);
2563 	}
2564 	inp->inp_phd = phd;
2565 	CK_LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist);
2566 	CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash);
2567 	inp->inp_flags |= INP_INHASHLIST;
2568 #ifdef PCBGROUP
2569 	if (do_pcbgroup_update)
2570 		in_pcbgroup_update(inp);
2571 #endif
2572 	return (0);
2573 }
2574 
2575 /*
2576  * For now, there are two public interfaces to insert an inpcb into the hash
2577  * lists -- one that does update pcbgroups, and one that doesn't.  The latter
2578  * is used only in the TCP syncache, where in_pcbinshash is called before the
2579  * full 4-tuple is set for the inpcb, and we don't want to install in the
2580  * pcbgroup until later.
2581  *
2582  * XXXRW: This seems like a misfeature.  in_pcbinshash should always update
2583  * connection groups, and partially initialised inpcbs should not be exposed
2584  * to either reservation hash tables or pcbgroups.
2585  */
2586 int
2587 in_pcbinshash(struct inpcb *inp)
2588 {
2589 
2590 	return (in_pcbinshash_internal(inp, 1));
2591 }
2592 
2593 int
2594 in_pcbinshash_nopcbgroup(struct inpcb *inp)
2595 {
2596 
2597 	return (in_pcbinshash_internal(inp, 0));
2598 }
2599 
2600 /*
2601  * Move PCB to the proper hash bucket when { faddr, fport } have  been
2602  * changed. NOTE: This does not handle the case of the lport changing (the
2603  * hashed port list would have to be updated as well), so the lport must
2604  * not change after in_pcbinshash() has been called.
2605  */
2606 void
2607 in_pcbrehash_mbuf(struct inpcb *inp, struct mbuf *m)
2608 {
2609 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2610 	struct inpcbhead *head;
2611 	u_int32_t hashkey_faddr;
2612 
2613 	INP_WLOCK_ASSERT(inp);
2614 	INP_HASH_WLOCK_ASSERT(pcbinfo);
2615 
2616 	KASSERT(inp->inp_flags & INP_INHASHLIST,
2617 	    ("in_pcbrehash: !INP_INHASHLIST"));
2618 
2619 #ifdef INET6
2620 	if (inp->inp_vflag & INP_IPV6)
2621 		hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr);
2622 	else
2623 #endif
2624 	hashkey_faddr = inp->inp_faddr.s_addr;
2625 
2626 	head = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
2627 		inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
2628 
2629 	CK_LIST_REMOVE(inp, inp_hash);
2630 	CK_LIST_INSERT_HEAD(head, inp, inp_hash);
2631 
2632 #ifdef PCBGROUP
2633 	if (m != NULL)
2634 		in_pcbgroup_update_mbuf(inp, m);
2635 	else
2636 		in_pcbgroup_update(inp);
2637 #endif
2638 }
2639 
2640 void
2641 in_pcbrehash(struct inpcb *inp)
2642 {
2643 
2644 	in_pcbrehash_mbuf(inp, NULL);
2645 }
2646 
2647 /*
2648  * Remove PCB from various lists.
2649  */
2650 static void
2651 in_pcbremlists(struct inpcb *inp)
2652 {
2653 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2654 
2655 #ifdef INVARIANTS
2656 	if (pcbinfo == &V_tcbinfo) {
2657 		NET_EPOCH_ASSERT();
2658 	} else {
2659 		INP_INFO_WLOCK_ASSERT(pcbinfo);
2660 	}
2661 #endif
2662 
2663 	INP_WLOCK_ASSERT(inp);
2664 	INP_LIST_WLOCK_ASSERT(pcbinfo);
2665 
2666 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
2667 	if (inp->inp_flags & INP_INHASHLIST) {
2668 		struct inpcbport *phd = inp->inp_phd;
2669 
2670 		INP_HASH_WLOCK(pcbinfo);
2671 
2672 		/* XXX: Only do if SO_REUSEPORT_LB set? */
2673 		in_pcbremlbgrouphash(inp);
2674 
2675 		CK_LIST_REMOVE(inp, inp_hash);
2676 		CK_LIST_REMOVE(inp, inp_portlist);
2677 		if (CK_LIST_FIRST(&phd->phd_pcblist) == NULL) {
2678 			CK_LIST_REMOVE(phd, phd_hash);
2679 			epoch_call(net_epoch_preempt, &phd->phd_epoch_ctx, inpcbport_free);
2680 		}
2681 		INP_HASH_WUNLOCK(pcbinfo);
2682 		inp->inp_flags &= ~INP_INHASHLIST;
2683 	}
2684 	CK_LIST_REMOVE(inp, inp_list);
2685 	pcbinfo->ipi_count--;
2686 #ifdef PCBGROUP
2687 	in_pcbgroup_remove(inp);
2688 #endif
2689 }
2690 
2691 /*
2692  * Check for alternatives when higher level complains
2693  * about service problems.  For now, invalidate cached
2694  * routing information.  If the route was created dynamically
2695  * (by a redirect), time to try a default gateway again.
2696  */
2697 void
2698 in_losing(struct inpcb *inp)
2699 {
2700 
2701 	RO_INVALIDATE_CACHE(&inp->inp_route);
2702 	return;
2703 }
2704 
2705 /*
2706  * A set label operation has occurred at the socket layer, propagate the
2707  * label change into the in_pcb for the socket.
2708  */
2709 void
2710 in_pcbsosetlabel(struct socket *so)
2711 {
2712 #ifdef MAC
2713 	struct inpcb *inp;
2714 
2715 	inp = sotoinpcb(so);
2716 	KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL"));
2717 
2718 	INP_WLOCK(inp);
2719 	SOCK_LOCK(so);
2720 	mac_inpcb_sosetlabel(so, inp);
2721 	SOCK_UNLOCK(so);
2722 	INP_WUNLOCK(inp);
2723 #endif
2724 }
2725 
2726 /*
2727  * ipport_tick runs once per second, determining if random port allocation
2728  * should be continued.  If more than ipport_randomcps ports have been
2729  * allocated in the last second, then we return to sequential port
2730  * allocation. We return to random allocation only once we drop below
2731  * ipport_randomcps for at least ipport_randomtime seconds.
2732  */
2733 static void
2734 ipport_tick(void *xtp)
2735 {
2736 	VNET_ITERATOR_DECL(vnet_iter);
2737 
2738 	VNET_LIST_RLOCK_NOSLEEP();
2739 	VNET_FOREACH(vnet_iter) {
2740 		CURVNET_SET(vnet_iter);	/* XXX appease INVARIANTS here */
2741 		if (V_ipport_tcpallocs <=
2742 		    V_ipport_tcplastcount + V_ipport_randomcps) {
2743 			if (V_ipport_stoprandom > 0)
2744 				V_ipport_stoprandom--;
2745 		} else
2746 			V_ipport_stoprandom = V_ipport_randomtime;
2747 		V_ipport_tcplastcount = V_ipport_tcpallocs;
2748 		CURVNET_RESTORE();
2749 	}
2750 	VNET_LIST_RUNLOCK_NOSLEEP();
2751 	callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL);
2752 }
2753 
2754 static void
2755 ip_fini(void *xtp)
2756 {
2757 
2758 	callout_stop(&ipport_tick_callout);
2759 }
2760 
2761 /*
2762  * The ipport_callout should start running at about the time we attach the
2763  * inet or inet6 domains.
2764  */
2765 static void
2766 ipport_tick_init(const void *unused __unused)
2767 {
2768 
2769 	/* Start ipport_tick. */
2770 	callout_init(&ipport_tick_callout, 1);
2771 	callout_reset(&ipport_tick_callout, 1, ipport_tick, NULL);
2772 	EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL,
2773 		SHUTDOWN_PRI_DEFAULT);
2774 }
2775 SYSINIT(ipport_tick_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_MIDDLE,
2776     ipport_tick_init, NULL);
2777 
2778 void
2779 inp_wlock(struct inpcb *inp)
2780 {
2781 
2782 	INP_WLOCK(inp);
2783 }
2784 
2785 void
2786 inp_wunlock(struct inpcb *inp)
2787 {
2788 
2789 	INP_WUNLOCK(inp);
2790 }
2791 
2792 void
2793 inp_rlock(struct inpcb *inp)
2794 {
2795 
2796 	INP_RLOCK(inp);
2797 }
2798 
2799 void
2800 inp_runlock(struct inpcb *inp)
2801 {
2802 
2803 	INP_RUNLOCK(inp);
2804 }
2805 
2806 #ifdef INVARIANT_SUPPORT
2807 void
2808 inp_lock_assert(struct inpcb *inp)
2809 {
2810 
2811 	INP_WLOCK_ASSERT(inp);
2812 }
2813 
2814 void
2815 inp_unlock_assert(struct inpcb *inp)
2816 {
2817 
2818 	INP_UNLOCK_ASSERT(inp);
2819 }
2820 #endif
2821 
2822 void
2823 inp_apply_all(void (*func)(struct inpcb *, void *), void *arg)
2824 {
2825 	struct inpcb *inp;
2826 
2827 	INP_INFO_WLOCK(&V_tcbinfo);
2828 	CK_LIST_FOREACH(inp, V_tcbinfo.ipi_listhead, inp_list) {
2829 		INP_WLOCK(inp);
2830 		func(inp, arg);
2831 		INP_WUNLOCK(inp);
2832 	}
2833 	INP_INFO_WUNLOCK(&V_tcbinfo);
2834 }
2835 
2836 struct socket *
2837 inp_inpcbtosocket(struct inpcb *inp)
2838 {
2839 
2840 	INP_WLOCK_ASSERT(inp);
2841 	return (inp->inp_socket);
2842 }
2843 
2844 struct tcpcb *
2845 inp_inpcbtotcpcb(struct inpcb *inp)
2846 {
2847 
2848 	INP_WLOCK_ASSERT(inp);
2849 	return ((struct tcpcb *)inp->inp_ppcb);
2850 }
2851 
2852 int
2853 inp_ip_tos_get(const struct inpcb *inp)
2854 {
2855 
2856 	return (inp->inp_ip_tos);
2857 }
2858 
2859 void
2860 inp_ip_tos_set(struct inpcb *inp, int val)
2861 {
2862 
2863 	inp->inp_ip_tos = val;
2864 }
2865 
2866 void
2867 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp,
2868     uint32_t *faddr, uint16_t *fp)
2869 {
2870 
2871 	INP_LOCK_ASSERT(inp);
2872 	*laddr = inp->inp_laddr.s_addr;
2873 	*faddr = inp->inp_faddr.s_addr;
2874 	*lp = inp->inp_lport;
2875 	*fp = inp->inp_fport;
2876 }
2877 
2878 struct inpcb *
2879 so_sotoinpcb(struct socket *so)
2880 {
2881 
2882 	return (sotoinpcb(so));
2883 }
2884 
2885 struct tcpcb *
2886 so_sototcpcb(struct socket *so)
2887 {
2888 
2889 	return (sototcpcb(so));
2890 }
2891 
2892 /*
2893  * Create an external-format (``xinpcb'') structure using the information in
2894  * the kernel-format in_pcb structure pointed to by inp.  This is done to
2895  * reduce the spew of irrelevant information over this interface, to isolate
2896  * user code from changes in the kernel structure, and potentially to provide
2897  * information-hiding if we decide that some of this information should be
2898  * hidden from users.
2899  */
2900 void
2901 in_pcbtoxinpcb(const struct inpcb *inp, struct xinpcb *xi)
2902 {
2903 
2904 	bzero(xi, sizeof(*xi));
2905 	xi->xi_len = sizeof(struct xinpcb);
2906 	if (inp->inp_socket)
2907 		sotoxsocket(inp->inp_socket, &xi->xi_socket);
2908 	bcopy(&inp->inp_inc, &xi->inp_inc, sizeof(struct in_conninfo));
2909 	xi->inp_gencnt = inp->inp_gencnt;
2910 	xi->inp_ppcb = (uintptr_t)inp->inp_ppcb;
2911 	xi->inp_flow = inp->inp_flow;
2912 	xi->inp_flowid = inp->inp_flowid;
2913 	xi->inp_flowtype = inp->inp_flowtype;
2914 	xi->inp_flags = inp->inp_flags;
2915 	xi->inp_flags2 = inp->inp_flags2;
2916 	xi->inp_rss_listen_bucket = inp->inp_rss_listen_bucket;
2917 	xi->in6p_cksum = inp->in6p_cksum;
2918 	xi->in6p_hops = inp->in6p_hops;
2919 	xi->inp_ip_tos = inp->inp_ip_tos;
2920 	xi->inp_vflag = inp->inp_vflag;
2921 	xi->inp_ip_ttl = inp->inp_ip_ttl;
2922 	xi->inp_ip_p = inp->inp_ip_p;
2923 	xi->inp_ip_minttl = inp->inp_ip_minttl;
2924 }
2925 
2926 #ifdef DDB
2927 static void
2928 db_print_indent(int indent)
2929 {
2930 	int i;
2931 
2932 	for (i = 0; i < indent; i++)
2933 		db_printf(" ");
2934 }
2935 
2936 static void
2937 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent)
2938 {
2939 	char faddr_str[48], laddr_str[48];
2940 
2941 	db_print_indent(indent);
2942 	db_printf("%s at %p\n", name, inc);
2943 
2944 	indent += 2;
2945 
2946 #ifdef INET6
2947 	if (inc->inc_flags & INC_ISIPV6) {
2948 		/* IPv6. */
2949 		ip6_sprintf(laddr_str, &inc->inc6_laddr);
2950 		ip6_sprintf(faddr_str, &inc->inc6_faddr);
2951 	} else
2952 #endif
2953 	{
2954 		/* IPv4. */
2955 		inet_ntoa_r(inc->inc_laddr, laddr_str);
2956 		inet_ntoa_r(inc->inc_faddr, faddr_str);
2957 	}
2958 	db_print_indent(indent);
2959 	db_printf("inc_laddr %s   inc_lport %u\n", laddr_str,
2960 	    ntohs(inc->inc_lport));
2961 	db_print_indent(indent);
2962 	db_printf("inc_faddr %s   inc_fport %u\n", faddr_str,
2963 	    ntohs(inc->inc_fport));
2964 }
2965 
2966 static void
2967 db_print_inpflags(int inp_flags)
2968 {
2969 	int comma;
2970 
2971 	comma = 0;
2972 	if (inp_flags & INP_RECVOPTS) {
2973 		db_printf("%sINP_RECVOPTS", comma ? ", " : "");
2974 		comma = 1;
2975 	}
2976 	if (inp_flags & INP_RECVRETOPTS) {
2977 		db_printf("%sINP_RECVRETOPTS", comma ? ", " : "");
2978 		comma = 1;
2979 	}
2980 	if (inp_flags & INP_RECVDSTADDR) {
2981 		db_printf("%sINP_RECVDSTADDR", comma ? ", " : "");
2982 		comma = 1;
2983 	}
2984 	if (inp_flags & INP_ORIGDSTADDR) {
2985 		db_printf("%sINP_ORIGDSTADDR", comma ? ", " : "");
2986 		comma = 1;
2987 	}
2988 	if (inp_flags & INP_HDRINCL) {
2989 		db_printf("%sINP_HDRINCL", comma ? ", " : "");
2990 		comma = 1;
2991 	}
2992 	if (inp_flags & INP_HIGHPORT) {
2993 		db_printf("%sINP_HIGHPORT", comma ? ", " : "");
2994 		comma = 1;
2995 	}
2996 	if (inp_flags & INP_LOWPORT) {
2997 		db_printf("%sINP_LOWPORT", comma ? ", " : "");
2998 		comma = 1;
2999 	}
3000 	if (inp_flags & INP_ANONPORT) {
3001 		db_printf("%sINP_ANONPORT", comma ? ", " : "");
3002 		comma = 1;
3003 	}
3004 	if (inp_flags & INP_RECVIF) {
3005 		db_printf("%sINP_RECVIF", comma ? ", " : "");
3006 		comma = 1;
3007 	}
3008 	if (inp_flags & INP_MTUDISC) {
3009 		db_printf("%sINP_MTUDISC", comma ? ", " : "");
3010 		comma = 1;
3011 	}
3012 	if (inp_flags & INP_RECVTTL) {
3013 		db_printf("%sINP_RECVTTL", comma ? ", " : "");
3014 		comma = 1;
3015 	}
3016 	if (inp_flags & INP_DONTFRAG) {
3017 		db_printf("%sINP_DONTFRAG", comma ? ", " : "");
3018 		comma = 1;
3019 	}
3020 	if (inp_flags & INP_RECVTOS) {
3021 		db_printf("%sINP_RECVTOS", comma ? ", " : "");
3022 		comma = 1;
3023 	}
3024 	if (inp_flags & IN6P_IPV6_V6ONLY) {
3025 		db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : "");
3026 		comma = 1;
3027 	}
3028 	if (inp_flags & IN6P_PKTINFO) {
3029 		db_printf("%sIN6P_PKTINFO", comma ? ", " : "");
3030 		comma = 1;
3031 	}
3032 	if (inp_flags & IN6P_HOPLIMIT) {
3033 		db_printf("%sIN6P_HOPLIMIT", comma ? ", " : "");
3034 		comma = 1;
3035 	}
3036 	if (inp_flags & IN6P_HOPOPTS) {
3037 		db_printf("%sIN6P_HOPOPTS", comma ? ", " : "");
3038 		comma = 1;
3039 	}
3040 	if (inp_flags & IN6P_DSTOPTS) {
3041 		db_printf("%sIN6P_DSTOPTS", comma ? ", " : "");
3042 		comma = 1;
3043 	}
3044 	if (inp_flags & IN6P_RTHDR) {
3045 		db_printf("%sIN6P_RTHDR", comma ? ", " : "");
3046 		comma = 1;
3047 	}
3048 	if (inp_flags & IN6P_RTHDRDSTOPTS) {
3049 		db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : "");
3050 		comma = 1;
3051 	}
3052 	if (inp_flags & IN6P_TCLASS) {
3053 		db_printf("%sIN6P_TCLASS", comma ? ", " : "");
3054 		comma = 1;
3055 	}
3056 	if (inp_flags & IN6P_AUTOFLOWLABEL) {
3057 		db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : "");
3058 		comma = 1;
3059 	}
3060 	if (inp_flags & INP_TIMEWAIT) {
3061 		db_printf("%sINP_TIMEWAIT", comma ? ", " : "");
3062 		comma  = 1;
3063 	}
3064 	if (inp_flags & INP_ONESBCAST) {
3065 		db_printf("%sINP_ONESBCAST", comma ? ", " : "");
3066 		comma  = 1;
3067 	}
3068 	if (inp_flags & INP_DROPPED) {
3069 		db_printf("%sINP_DROPPED", comma ? ", " : "");
3070 		comma  = 1;
3071 	}
3072 	if (inp_flags & INP_SOCKREF) {
3073 		db_printf("%sINP_SOCKREF", comma ? ", " : "");
3074 		comma  = 1;
3075 	}
3076 	if (inp_flags & IN6P_RFC2292) {
3077 		db_printf("%sIN6P_RFC2292", comma ? ", " : "");
3078 		comma = 1;
3079 	}
3080 	if (inp_flags & IN6P_MTU) {
3081 		db_printf("IN6P_MTU%s", comma ? ", " : "");
3082 		comma = 1;
3083 	}
3084 }
3085 
3086 static void
3087 db_print_inpvflag(u_char inp_vflag)
3088 {
3089 	int comma;
3090 
3091 	comma = 0;
3092 	if (inp_vflag & INP_IPV4) {
3093 		db_printf("%sINP_IPV4", comma ? ", " : "");
3094 		comma  = 1;
3095 	}
3096 	if (inp_vflag & INP_IPV6) {
3097 		db_printf("%sINP_IPV6", comma ? ", " : "");
3098 		comma  = 1;
3099 	}
3100 	if (inp_vflag & INP_IPV6PROTO) {
3101 		db_printf("%sINP_IPV6PROTO", comma ? ", " : "");
3102 		comma  = 1;
3103 	}
3104 }
3105 
3106 static void
3107 db_print_inpcb(struct inpcb *inp, const char *name, int indent)
3108 {
3109 
3110 	db_print_indent(indent);
3111 	db_printf("%s at %p\n", name, inp);
3112 
3113 	indent += 2;
3114 
3115 	db_print_indent(indent);
3116 	db_printf("inp_flow: 0x%x\n", inp->inp_flow);
3117 
3118 	db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent);
3119 
3120 	db_print_indent(indent);
3121 	db_printf("inp_ppcb: %p   inp_pcbinfo: %p   inp_socket: %p\n",
3122 	    inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket);
3123 
3124 	db_print_indent(indent);
3125 	db_printf("inp_label: %p   inp_flags: 0x%x (",
3126 	   inp->inp_label, inp->inp_flags);
3127 	db_print_inpflags(inp->inp_flags);
3128 	db_printf(")\n");
3129 
3130 	db_print_indent(indent);
3131 	db_printf("inp_sp: %p   inp_vflag: 0x%x (", inp->inp_sp,
3132 	    inp->inp_vflag);
3133 	db_print_inpvflag(inp->inp_vflag);
3134 	db_printf(")\n");
3135 
3136 	db_print_indent(indent);
3137 	db_printf("inp_ip_ttl: %d   inp_ip_p: %d   inp_ip_minttl: %d\n",
3138 	    inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl);
3139 
3140 	db_print_indent(indent);
3141 #ifdef INET6
3142 	if (inp->inp_vflag & INP_IPV6) {
3143 		db_printf("in6p_options: %p   in6p_outputopts: %p   "
3144 		    "in6p_moptions: %p\n", inp->in6p_options,
3145 		    inp->in6p_outputopts, inp->in6p_moptions);
3146 		db_printf("in6p_icmp6filt: %p   in6p_cksum %d   "
3147 		    "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum,
3148 		    inp->in6p_hops);
3149 	} else
3150 #endif
3151 	{
3152 		db_printf("inp_ip_tos: %d   inp_ip_options: %p   "
3153 		    "inp_ip_moptions: %p\n", inp->inp_ip_tos,
3154 		    inp->inp_options, inp->inp_moptions);
3155 	}
3156 
3157 	db_print_indent(indent);
3158 	db_printf("inp_phd: %p   inp_gencnt: %ju\n", inp->inp_phd,
3159 	    (uintmax_t)inp->inp_gencnt);
3160 }
3161 
3162 DB_SHOW_COMMAND(inpcb, db_show_inpcb)
3163 {
3164 	struct inpcb *inp;
3165 
3166 	if (!have_addr) {
3167 		db_printf("usage: show inpcb <addr>\n");
3168 		return;
3169 	}
3170 	inp = (struct inpcb *)addr;
3171 
3172 	db_print_inpcb(inp, "inpcb", 0);
3173 }
3174 #endif /* DDB */
3175 
3176 #ifdef RATELIMIT
3177 /*
3178  * Modify TX rate limit based on the existing "inp->inp_snd_tag",
3179  * if any.
3180  */
3181 int
3182 in_pcbmodify_txrtlmt(struct inpcb *inp, uint32_t max_pacing_rate)
3183 {
3184 	union if_snd_tag_modify_params params = {
3185 		.rate_limit.max_rate = max_pacing_rate,
3186 		.rate_limit.flags = M_NOWAIT,
3187 	};
3188 	struct m_snd_tag *mst;
3189 	struct ifnet *ifp;
3190 	int error;
3191 
3192 	mst = inp->inp_snd_tag;
3193 	if (mst == NULL)
3194 		return (EINVAL);
3195 
3196 	ifp = mst->ifp;
3197 	if (ifp == NULL)
3198 		return (EINVAL);
3199 
3200 	if (ifp->if_snd_tag_modify == NULL) {
3201 		error = EOPNOTSUPP;
3202 	} else {
3203 		error = ifp->if_snd_tag_modify(mst, &params);
3204 	}
3205 	return (error);
3206 }
3207 
3208 /*
3209  * Query existing TX rate limit based on the existing
3210  * "inp->inp_snd_tag", if any.
3211  */
3212 int
3213 in_pcbquery_txrtlmt(struct inpcb *inp, uint32_t *p_max_pacing_rate)
3214 {
3215 	union if_snd_tag_query_params params = { };
3216 	struct m_snd_tag *mst;
3217 	struct ifnet *ifp;
3218 	int error;
3219 
3220 	mst = inp->inp_snd_tag;
3221 	if (mst == NULL)
3222 		return (EINVAL);
3223 
3224 	ifp = mst->ifp;
3225 	if (ifp == NULL)
3226 		return (EINVAL);
3227 
3228 	if (ifp->if_snd_tag_query == NULL) {
3229 		error = EOPNOTSUPP;
3230 	} else {
3231 		error = ifp->if_snd_tag_query(mst, &params);
3232 		if (error == 0 &&  p_max_pacing_rate != NULL)
3233 			*p_max_pacing_rate = params.rate_limit.max_rate;
3234 	}
3235 	return (error);
3236 }
3237 
3238 /*
3239  * Query existing TX queue level based on the existing
3240  * "inp->inp_snd_tag", if any.
3241  */
3242 int
3243 in_pcbquery_txrlevel(struct inpcb *inp, uint32_t *p_txqueue_level)
3244 {
3245 	union if_snd_tag_query_params params = { };
3246 	struct m_snd_tag *mst;
3247 	struct ifnet *ifp;
3248 	int error;
3249 
3250 	mst = inp->inp_snd_tag;
3251 	if (mst == NULL)
3252 		return (EINVAL);
3253 
3254 	ifp = mst->ifp;
3255 	if (ifp == NULL)
3256 		return (EINVAL);
3257 
3258 	if (ifp->if_snd_tag_query == NULL)
3259 		return (EOPNOTSUPP);
3260 
3261 	error = ifp->if_snd_tag_query(mst, &params);
3262 	if (error == 0 &&  p_txqueue_level != NULL)
3263 		*p_txqueue_level = params.rate_limit.queue_level;
3264 	return (error);
3265 }
3266 
3267 /*
3268  * Allocate a new TX rate limit send tag from the network interface
3269  * given by the "ifp" argument and save it in "inp->inp_snd_tag":
3270  */
3271 int
3272 in_pcbattach_txrtlmt(struct inpcb *inp, struct ifnet *ifp,
3273     uint32_t flowtype, uint32_t flowid, uint32_t max_pacing_rate, struct m_snd_tag **st)
3274 
3275 {
3276 	union if_snd_tag_alloc_params params = {
3277 		.rate_limit.hdr.type = (max_pacing_rate == -1U) ?
3278 		    IF_SND_TAG_TYPE_UNLIMITED : IF_SND_TAG_TYPE_RATE_LIMIT,
3279 		.rate_limit.hdr.flowid = flowid,
3280 		.rate_limit.hdr.flowtype = flowtype,
3281 		.rate_limit.max_rate = max_pacing_rate,
3282 		.rate_limit.flags = M_NOWAIT,
3283 	};
3284 	int error;
3285 
3286 	INP_WLOCK_ASSERT(inp);
3287 
3288 	if (*st != NULL)
3289 		return (EINVAL);
3290 
3291 	if (ifp->if_snd_tag_alloc == NULL) {
3292 		error = EOPNOTSUPP;
3293 	} else {
3294 		error = ifp->if_snd_tag_alloc(ifp, &params, &inp->inp_snd_tag);
3295 
3296 #ifdef INET
3297 		if (error == 0) {
3298 			counter_u64_add(rate_limit_set_ok, 1);
3299 			counter_u64_add(rate_limit_active, 1);
3300 		} else
3301 			counter_u64_add(rate_limit_alloc_fail, 1);
3302 #endif
3303 	}
3304 	return (error);
3305 }
3306 
3307 void
3308 in_pcbdetach_tag(struct ifnet *ifp, struct m_snd_tag *mst)
3309 {
3310 	if (ifp == NULL)
3311 		return;
3312 
3313 	/*
3314 	 * If the device was detached while we still had reference(s)
3315 	 * on the ifp, we assume if_snd_tag_free() was replaced with
3316 	 * stubs.
3317 	 */
3318 	ifp->if_snd_tag_free(mst);
3319 
3320 	/* release reference count on network interface */
3321 	if_rele(ifp);
3322 #ifdef INET
3323 	counter_u64_add(rate_limit_active, -1);
3324 #endif
3325 }
3326 
3327 /*
3328  * Free an existing TX rate limit tag based on the "inp->inp_snd_tag",
3329  * if any:
3330  */
3331 void
3332 in_pcbdetach_txrtlmt(struct inpcb *inp)
3333 {
3334 	struct m_snd_tag *mst;
3335 
3336 	INP_WLOCK_ASSERT(inp);
3337 
3338 	mst = inp->inp_snd_tag;
3339 	inp->inp_snd_tag = NULL;
3340 
3341 	if (mst == NULL)
3342 		return;
3343 
3344 	m_snd_tag_rele(mst);
3345 }
3346 
3347 int
3348 in_pcboutput_txrtlmt_locked(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb, uint32_t max_pacing_rate)
3349 {
3350 	int error;
3351 
3352 	/*
3353 	 * If the existing send tag is for the wrong interface due to
3354 	 * a route change, first drop the existing tag.  Set the
3355 	 * CHANGED flag so that we will keep trying to allocate a new
3356 	 * tag if we fail to allocate one this time.
3357 	 */
3358 	if (inp->inp_snd_tag != NULL && inp->inp_snd_tag->ifp != ifp) {
3359 		in_pcbdetach_txrtlmt(inp);
3360 		inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED;
3361 	}
3362 
3363 	/*
3364 	 * NOTE: When attaching to a network interface a reference is
3365 	 * made to ensure the network interface doesn't go away until
3366 	 * all ratelimit connections are gone. The network interface
3367 	 * pointers compared below represent valid network interfaces,
3368 	 * except when comparing towards NULL.
3369 	 */
3370 	if (max_pacing_rate == 0 && inp->inp_snd_tag == NULL) {
3371 		error = 0;
3372 	} else if (!(ifp->if_capenable & IFCAP_TXRTLMT)) {
3373 		if (inp->inp_snd_tag != NULL)
3374 			in_pcbdetach_txrtlmt(inp);
3375 		error = 0;
3376 	} else if (inp->inp_snd_tag == NULL) {
3377 		/*
3378 		 * In order to utilize packet pacing with RSS, we need
3379 		 * to wait until there is a valid RSS hash before we
3380 		 * can proceed:
3381 		 */
3382 		if (M_HASHTYPE_GET(mb) == M_HASHTYPE_NONE) {
3383 			error = EAGAIN;
3384 		} else {
3385 			error = in_pcbattach_txrtlmt(inp, ifp, M_HASHTYPE_GET(mb),
3386 			    mb->m_pkthdr.flowid, max_pacing_rate, &inp->inp_snd_tag);
3387 		}
3388 	} else {
3389 		error = in_pcbmodify_txrtlmt(inp, max_pacing_rate);
3390 	}
3391 	if (error == 0 || error == EOPNOTSUPP)
3392 		inp->inp_flags2 &= ~INP_RATE_LIMIT_CHANGED;
3393 
3394 	return (error);
3395 }
3396 
3397 /*
3398  * This function should be called when the INP_RATE_LIMIT_CHANGED flag
3399  * is set in the fast path and will attach/detach/modify the TX rate
3400  * limit send tag based on the socket's so_max_pacing_rate value.
3401  */
3402 void
3403 in_pcboutput_txrtlmt(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb)
3404 {
3405 	struct socket *socket;
3406 	uint32_t max_pacing_rate;
3407 	bool did_upgrade;
3408 	int error;
3409 
3410 	if (inp == NULL)
3411 		return;
3412 
3413 	socket = inp->inp_socket;
3414 	if (socket == NULL)
3415 		return;
3416 
3417 	if (!INP_WLOCKED(inp)) {
3418 		/*
3419 		 * NOTE: If the write locking fails, we need to bail
3420 		 * out and use the non-ratelimited ring for the
3421 		 * transmit until there is a new chance to get the
3422 		 * write lock.
3423 		 */
3424 		if (!INP_TRY_UPGRADE(inp))
3425 			return;
3426 		did_upgrade = 1;
3427 	} else {
3428 		did_upgrade = 0;
3429 	}
3430 
3431 	/*
3432 	 * NOTE: The so_max_pacing_rate value is read unlocked,
3433 	 * because atomic updates are not required since the variable
3434 	 * is checked at every mbuf we send. It is assumed that the
3435 	 * variable read itself will be atomic.
3436 	 */
3437 	max_pacing_rate = socket->so_max_pacing_rate;
3438 
3439 	error = in_pcboutput_txrtlmt_locked(inp, ifp, mb, max_pacing_rate);
3440 
3441 	if (did_upgrade)
3442 		INP_DOWNGRADE(inp);
3443 }
3444 
3445 /*
3446  * Track route changes for TX rate limiting.
3447  */
3448 void
3449 in_pcboutput_eagain(struct inpcb *inp)
3450 {
3451 	bool did_upgrade;
3452 
3453 	if (inp == NULL)
3454 		return;
3455 
3456 	if (inp->inp_snd_tag == NULL)
3457 		return;
3458 
3459 	if (!INP_WLOCKED(inp)) {
3460 		/*
3461 		 * NOTE: If the write locking fails, we need to bail
3462 		 * out and use the non-ratelimited ring for the
3463 		 * transmit until there is a new chance to get the
3464 		 * write lock.
3465 		 */
3466 		if (!INP_TRY_UPGRADE(inp))
3467 			return;
3468 		did_upgrade = 1;
3469 	} else {
3470 		did_upgrade = 0;
3471 	}
3472 
3473 	/* detach rate limiting */
3474 	in_pcbdetach_txrtlmt(inp);
3475 
3476 	/* make sure new mbuf send tag allocation is made */
3477 	inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED;
3478 
3479 	if (did_upgrade)
3480 		INP_DOWNGRADE(inp);
3481 }
3482 
3483 #ifdef INET
3484 static void
3485 rl_init(void *st)
3486 {
3487 	rate_limit_active = counter_u64_alloc(M_WAITOK);
3488 	rate_limit_alloc_fail = counter_u64_alloc(M_WAITOK);
3489 	rate_limit_set_ok = counter_u64_alloc(M_WAITOK);
3490 }
3491 
3492 SYSINIT(rl, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, rl_init, NULL);
3493 #endif
3494 #endif /* RATELIMIT */
3495