xref: /freebsd/sys/netinet/in_pcb.c (revision ceaec73d406831b1251babb61675df0a1aa54a31)
1 /*-
2  * Copyright (c) 1982, 1986, 1991, 1993, 1995
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)in_pcb.c	8.4 (Berkeley) 5/24/95
30  * $FreeBSD$
31  */
32 
33 #include "opt_ipsec.h"
34 #include "opt_inet6.h"
35 #include "opt_mac.h"
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/mac.h>
40 #include <sys/malloc.h>
41 #include <sys/mbuf.h>
42 #include <sys/domain.h>
43 #include <sys/protosw.h>
44 #include <sys/socket.h>
45 #include <sys/socketvar.h>
46 #include <sys/proc.h>
47 #include <sys/jail.h>
48 #include <sys/kernel.h>
49 #include <sys/sysctl.h>
50 
51 #include <vm/uma.h>
52 
53 #include <net/if.h>
54 #include <net/if_types.h>
55 #include <net/route.h>
56 
57 #include <netinet/in.h>
58 #include <netinet/in_pcb.h>
59 #include <netinet/in_var.h>
60 #include <netinet/ip_var.h>
61 #include <netinet/tcp_var.h>
62 #include <netinet/udp.h>
63 #include <netinet/udp_var.h>
64 #ifdef INET6
65 #include <netinet/ip6.h>
66 #include <netinet6/ip6_var.h>
67 #endif /* INET6 */
68 
69 #ifdef IPSEC
70 #include <netinet6/ipsec.h>
71 #include <netkey/key.h>
72 #endif /* IPSEC */
73 
74 #ifdef FAST_IPSEC
75 #if defined(IPSEC) || defined(IPSEC_ESP)
76 #error "Bad idea: don't compile with both IPSEC and FAST_IPSEC!"
77 #endif
78 
79 #include <netipsec/ipsec.h>
80 #include <netipsec/key.h>
81 #endif /* FAST_IPSEC */
82 
83 /*
84  * These configure the range of local port addresses assigned to
85  * "unspecified" outgoing connections/packets/whatever.
86  */
87 int	ipport_lowfirstauto  = IPPORT_RESERVED - 1;	/* 1023 */
88 int	ipport_lowlastauto = IPPORT_RESERVEDSTART;	/* 600 */
89 int	ipport_firstauto = IPPORT_HIFIRSTAUTO;		/* 49152 */
90 int	ipport_lastauto  = IPPORT_HILASTAUTO;		/* 65535 */
91 int	ipport_hifirstauto = IPPORT_HIFIRSTAUTO;	/* 49152 */
92 int	ipport_hilastauto  = IPPORT_HILASTAUTO;		/* 65535 */
93 
94 /*
95  * Reserved ports accessible only to root. There are significant
96  * security considerations that must be accounted for when changing these,
97  * but the security benefits can be great. Please be careful.
98  */
99 int	ipport_reservedhigh = IPPORT_RESERVED - 1;	/* 1023 */
100 int	ipport_reservedlow = 0;
101 
102 /* Variables dealing with random ephemeral port allocation. */
103 int	ipport_randomized = 1;	/* user controlled via sysctl */
104 int	ipport_randomcps = 10;	/* user controlled via sysctl */
105 int	ipport_randomtime = 45;	/* user controlled via sysctl */
106 int	ipport_stoprandom = 0;	/* toggled by ipport_tick */
107 int	ipport_tcpallocs;
108 int	ipport_tcplastcount;
109 
110 #define RANGECHK(var, min, max) \
111 	if ((var) < (min)) { (var) = (min); } \
112 	else if ((var) > (max)) { (var) = (max); }
113 
114 static int
115 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS)
116 {
117 	int error;
118 
119 	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2, req);
120 	if (error == 0) {
121 		RANGECHK(ipport_lowfirstauto, 1, IPPORT_RESERVED - 1);
122 		RANGECHK(ipport_lowlastauto, 1, IPPORT_RESERVED - 1);
123 		RANGECHK(ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX);
124 		RANGECHK(ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX);
125 		RANGECHK(ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX);
126 		RANGECHK(ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX);
127 	}
128 	return (error);
129 }
130 
131 #undef RANGECHK
132 
133 SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, CTLFLAG_RW, 0, "IP Ports");
134 
135 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst, CTLTYPE_INT|CTLFLAG_RW,
136 	   &ipport_lowfirstauto, 0, &sysctl_net_ipport_check, "I", "");
137 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast, CTLTYPE_INT|CTLFLAG_RW,
138 	   &ipport_lowlastauto, 0, &sysctl_net_ipport_check, "I", "");
139 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first, CTLTYPE_INT|CTLFLAG_RW,
140 	   &ipport_firstauto, 0, &sysctl_net_ipport_check, "I", "");
141 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last, CTLTYPE_INT|CTLFLAG_RW,
142 	   &ipport_lastauto, 0, &sysctl_net_ipport_check, "I", "");
143 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst, CTLTYPE_INT|CTLFLAG_RW,
144 	   &ipport_hifirstauto, 0, &sysctl_net_ipport_check, "I", "");
145 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast, CTLTYPE_INT|CTLFLAG_RW,
146 	   &ipport_hilastauto, 0, &sysctl_net_ipport_check, "I", "");
147 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh,
148 	   CTLFLAG_RW|CTLFLAG_SECURE, &ipport_reservedhigh, 0, "");
149 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow,
150 	   CTLFLAG_RW|CTLFLAG_SECURE, &ipport_reservedlow, 0, "");
151 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized, CTLFLAG_RW,
152 	   &ipport_randomized, 0, "Enable random port allocation");
153 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomcps, CTLFLAG_RW,
154 	   &ipport_randomcps, 0, "Maximum number of random port "
155 	   "allocations before switching to a sequental one");
156 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomtime, CTLFLAG_RW,
157 	   &ipport_randomtime, 0, "Minimum time to keep sequental port "
158 	   "allocation before switching to a random one");
159 
160 /*
161  * in_pcb.c: manage the Protocol Control Blocks.
162  *
163  * NOTE: It is assumed that most of these functions will be called at
164  * splnet(). XXX - There are, unfortunately, a few exceptions to this
165  * rule that should be fixed.
166  */
167 
168 /*
169  * Allocate a PCB and associate it with the socket.
170  */
171 int
172 in_pcballoc(so, pcbinfo, type)
173 	struct socket *so;
174 	struct inpcbinfo *pcbinfo;
175 	const char *type;
176 {
177 	register struct inpcb *inp;
178 	int error;
179 
180 	INP_INFO_WLOCK_ASSERT(pcbinfo);
181 	error = 0;
182 	inp = uma_zalloc(pcbinfo->ipi_zone, M_NOWAIT | M_ZERO);
183 	if (inp == NULL)
184 		return (ENOBUFS);
185 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
186 	inp->inp_pcbinfo = pcbinfo;
187 	inp->inp_socket = so;
188 #ifdef MAC
189 	error = mac_init_inpcb(inp, M_NOWAIT);
190 	if (error != 0)
191 		goto out;
192 	SOCK_LOCK(so);
193 	mac_create_inpcb_from_socket(so, inp);
194 	SOCK_UNLOCK(so);
195 #endif
196 #if defined(IPSEC) || defined(FAST_IPSEC)
197 #ifdef FAST_IPSEC
198 	error = ipsec_init_policy(so, &inp->inp_sp);
199 #else
200 	error = ipsec_init_pcbpolicy(so, &inp->inp_sp);
201 #endif
202 	if (error != 0)
203 		goto out;
204 #endif /*IPSEC*/
205 #if defined(INET6)
206 	if (INP_SOCKAF(so) == AF_INET6) {
207 		inp->inp_vflag |= INP_IPV6PROTO;
208 		if (ip6_v6only)
209 			inp->inp_flags |= IN6P_IPV6_V6ONLY;
210 	}
211 #endif
212 	LIST_INSERT_HEAD(pcbinfo->listhead, inp, inp_list);
213 	pcbinfo->ipi_count++;
214 	so->so_pcb = (caddr_t)inp;
215 	INP_LOCK_INIT(inp, "inp", type);
216 #ifdef INET6
217 	if (ip6_auto_flowlabel)
218 		inp->inp_flags |= IN6P_AUTOFLOWLABEL;
219 #endif
220 #if defined(IPSEC) || defined(FAST_IPSEC) || defined(MAC)
221 out:
222 	if (error != 0)
223 		uma_zfree(pcbinfo->ipi_zone, inp);
224 #endif
225 	return (error);
226 }
227 
228 int
229 in_pcbbind(inp, nam, cred)
230 	register struct inpcb *inp;
231 	struct sockaddr *nam;
232 	struct ucred *cred;
233 {
234 	int anonport, error;
235 
236 	INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo);
237 	INP_LOCK_ASSERT(inp);
238 
239 	if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY)
240 		return (EINVAL);
241 	anonport = inp->inp_lport == 0 && (nam == NULL ||
242 	    ((struct sockaddr_in *)nam)->sin_port == 0);
243 	error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr,
244 	    &inp->inp_lport, cred);
245 	if (error)
246 		return (error);
247 	if (in_pcbinshash(inp) != 0) {
248 		inp->inp_laddr.s_addr = INADDR_ANY;
249 		inp->inp_lport = 0;
250 		return (EAGAIN);
251 	}
252 	if (anonport)
253 		inp->inp_flags |= INP_ANONPORT;
254 	return (0);
255 }
256 
257 /*
258  * Set up a bind operation on a PCB, performing port allocation
259  * as required, but do not actually modify the PCB. Callers can
260  * either complete the bind by setting inp_laddr/inp_lport and
261  * calling in_pcbinshash(), or they can just use the resulting
262  * port and address to authorise the sending of a once-off packet.
263  *
264  * On error, the values of *laddrp and *lportp are not changed.
265  */
266 int
267 in_pcbbind_setup(inp, nam, laddrp, lportp, cred)
268 	struct inpcb *inp;
269 	struct sockaddr *nam;
270 	in_addr_t *laddrp;
271 	u_short *lportp;
272 	struct ucred *cred;
273 {
274 	struct socket *so = inp->inp_socket;
275 	unsigned short *lastport;
276 	struct sockaddr_in *sin;
277 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
278 	struct in_addr laddr;
279 	u_short lport = 0;
280 	int wild = 0, reuseport = (so->so_options & SO_REUSEPORT);
281 	int error, prison = 0;
282 	int dorandom;
283 
284 	INP_INFO_WLOCK_ASSERT(pcbinfo);
285 	INP_LOCK_ASSERT(inp);
286 
287 	if (TAILQ_EMPTY(&in_ifaddrhead)) /* XXX broken! */
288 		return (EADDRNOTAVAIL);
289 	laddr.s_addr = *laddrp;
290 	if (nam != NULL && laddr.s_addr != INADDR_ANY)
291 		return (EINVAL);
292 	if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) == 0)
293 		wild = 1;
294 	if (nam) {
295 		sin = (struct sockaddr_in *)nam;
296 		if (nam->sa_len != sizeof (*sin))
297 			return (EINVAL);
298 #ifdef notdef
299 		/*
300 		 * We should check the family, but old programs
301 		 * incorrectly fail to initialize it.
302 		 */
303 		if (sin->sin_family != AF_INET)
304 			return (EAFNOSUPPORT);
305 #endif
306 		if (sin->sin_addr.s_addr != INADDR_ANY)
307 			if (prison_ip(cred, 0, &sin->sin_addr.s_addr))
308 				return(EINVAL);
309 		if (sin->sin_port != *lportp) {
310 			/* Don't allow the port to change. */
311 			if (*lportp != 0)
312 				return (EINVAL);
313 			lport = sin->sin_port;
314 		}
315 		/* NB: lport is left as 0 if the port isn't being changed. */
316 		if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) {
317 			/*
318 			 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast;
319 			 * allow complete duplication of binding if
320 			 * SO_REUSEPORT is set, or if SO_REUSEADDR is set
321 			 * and a multicast address is bound on both
322 			 * new and duplicated sockets.
323 			 */
324 			if (so->so_options & SO_REUSEADDR)
325 				reuseport = SO_REUSEADDR|SO_REUSEPORT;
326 		} else if (sin->sin_addr.s_addr != INADDR_ANY) {
327 			sin->sin_port = 0;		/* yech... */
328 			bzero(&sin->sin_zero, sizeof(sin->sin_zero));
329 			if (ifa_ifwithaddr((struct sockaddr *)sin) == 0)
330 				return (EADDRNOTAVAIL);
331 		}
332 		laddr = sin->sin_addr;
333 		if (lport) {
334 			struct inpcb *t;
335 			/* GROSS */
336 			if (ntohs(lport) <= ipport_reservedhigh &&
337 			    ntohs(lport) >= ipport_reservedlow &&
338 			    suser_cred(cred, SUSER_ALLOWJAIL))
339 				return (EACCES);
340 			if (jailed(cred))
341 				prison = 1;
342 			if (so->so_cred->cr_uid != 0 &&
343 			    !IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) {
344 				t = in_pcblookup_local(inp->inp_pcbinfo,
345 				    sin->sin_addr, lport,
346 				    prison ? 0 :  INPLOOKUP_WILDCARD);
347 	/*
348 	 * XXX
349 	 * This entire block sorely needs a rewrite.
350 	 */
351 				if (t &&
352 				    ((t->inp_vflag & INP_TIMEWAIT) == 0) &&
353 				    (so->so_type != SOCK_STREAM ||
354 				     ntohl(t->inp_faddr.s_addr) == INADDR_ANY) &&
355 				    (ntohl(sin->sin_addr.s_addr) != INADDR_ANY ||
356 				     ntohl(t->inp_laddr.s_addr) != INADDR_ANY ||
357 				     (t->inp_socket->so_options &
358 					 SO_REUSEPORT) == 0) &&
359 				    (so->so_cred->cr_uid !=
360 				     t->inp_socket->so_cred->cr_uid))
361 					return (EADDRINUSE);
362 			}
363 			if (prison && prison_ip(cred, 0, &sin->sin_addr.s_addr))
364 				return (EADDRNOTAVAIL);
365 			t = in_pcblookup_local(pcbinfo, sin->sin_addr,
366 			    lport, prison ? 0 : wild);
367 			if (t && (t->inp_vflag & INP_TIMEWAIT)) {
368 				if ((reuseport & intotw(t)->tw_so_options) == 0)
369 					return (EADDRINUSE);
370 			} else
371 			if (t &&
372 			    (reuseport & t->inp_socket->so_options) == 0) {
373 #if defined(INET6)
374 				if (ntohl(sin->sin_addr.s_addr) !=
375 				    INADDR_ANY ||
376 				    ntohl(t->inp_laddr.s_addr) !=
377 				    INADDR_ANY ||
378 				    INP_SOCKAF(so) ==
379 				    INP_SOCKAF(t->inp_socket))
380 #endif /* defined(INET6) */
381 				return (EADDRINUSE);
382 			}
383 		}
384 	}
385 	if (*lportp != 0)
386 		lport = *lportp;
387 	if (lport == 0) {
388 		u_short first, last;
389 		int count;
390 
391 		if (laddr.s_addr != INADDR_ANY)
392 			if (prison_ip(cred, 0, &laddr.s_addr))
393 				return (EINVAL);
394 
395 		if (inp->inp_flags & INP_HIGHPORT) {
396 			first = ipport_hifirstauto;	/* sysctl */
397 			last  = ipport_hilastauto;
398 			lastport = &pcbinfo->lasthi;
399 		} else if (inp->inp_flags & INP_LOWPORT) {
400 			if ((error = suser_cred(cred, SUSER_ALLOWJAIL)) != 0)
401 				return error;
402 			first = ipport_lowfirstauto;	/* 1023 */
403 			last  = ipport_lowlastauto;	/* 600 */
404 			lastport = &pcbinfo->lastlow;
405 		} else {
406 			first = ipport_firstauto;	/* sysctl */
407 			last  = ipport_lastauto;
408 			lastport = &pcbinfo->lastport;
409 		}
410 		/*
411 		 * For UDP, use random port allocation as long as the user
412 		 * allows it.  For TCP (and as of yet unknown) connections,
413 		 * use random port allocation only if the user allows it AND
414 		 * ipport_tick() allows it.
415 		 */
416 		if (ipport_randomized &&
417 			(!ipport_stoprandom || pcbinfo == &udbinfo))
418 			dorandom = 1;
419 		else
420 			dorandom = 0;
421 		/*
422 		 * It makes no sense to do random port allocation if
423 		 * we have the only port available.
424 		 */
425 		if (first == last)
426 			dorandom = 0;
427 		/* Make sure to not include UDP packets in the count. */
428 		if (pcbinfo != &udbinfo)
429 			ipport_tcpallocs++;
430 		/*
431 		 * Simple check to ensure all ports are not used up causing
432 		 * a deadlock here.
433 		 *
434 		 * We split the two cases (up and down) so that the direction
435 		 * is not being tested on each round of the loop.
436 		 */
437 		if (first > last) {
438 			/*
439 			 * counting down
440 			 */
441 			if (dorandom)
442 				*lastport = first -
443 					    (arc4random() % (first - last));
444 			count = first - last;
445 
446 			do {
447 				if (count-- < 0)	/* completely used? */
448 					return (EADDRNOTAVAIL);
449 				--*lastport;
450 				if (*lastport > first || *lastport < last)
451 					*lastport = first;
452 				lport = htons(*lastport);
453 			} while (in_pcblookup_local(pcbinfo, laddr, lport,
454 			    wild));
455 		} else {
456 			/*
457 			 * counting up
458 			 */
459 			if (dorandom)
460 				*lastport = first +
461 					    (arc4random() % (last - first));
462 			count = last - first;
463 
464 			do {
465 				if (count-- < 0)	/* completely used? */
466 					return (EADDRNOTAVAIL);
467 				++*lastport;
468 				if (*lastport < first || *lastport > last)
469 					*lastport = first;
470 				lport = htons(*lastport);
471 			} while (in_pcblookup_local(pcbinfo, laddr, lport,
472 			    wild));
473 		}
474 	}
475 	if (prison_ip(cred, 0, &laddr.s_addr))
476 		return (EINVAL);
477 	*laddrp = laddr.s_addr;
478 	*lportp = lport;
479 	return (0);
480 }
481 
482 /*
483  * Connect from a socket to a specified address.
484  * Both address and port must be specified in argument sin.
485  * If don't have a local address for this socket yet,
486  * then pick one.
487  */
488 int
489 in_pcbconnect(inp, nam, cred)
490 	register struct inpcb *inp;
491 	struct sockaddr *nam;
492 	struct ucred *cred;
493 {
494 	u_short lport, fport;
495 	in_addr_t laddr, faddr;
496 	int anonport, error;
497 
498 	INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo);
499 	INP_LOCK_ASSERT(inp);
500 
501 	lport = inp->inp_lport;
502 	laddr = inp->inp_laddr.s_addr;
503 	anonport = (lport == 0);
504 	error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport,
505 	    NULL, cred);
506 	if (error)
507 		return (error);
508 
509 	/* Do the initial binding of the local address if required. */
510 	if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) {
511 		inp->inp_lport = lport;
512 		inp->inp_laddr.s_addr = laddr;
513 		if (in_pcbinshash(inp) != 0) {
514 			inp->inp_laddr.s_addr = INADDR_ANY;
515 			inp->inp_lport = 0;
516 			return (EAGAIN);
517 		}
518 	}
519 
520 	/* Commit the remaining changes. */
521 	inp->inp_lport = lport;
522 	inp->inp_laddr.s_addr = laddr;
523 	inp->inp_faddr.s_addr = faddr;
524 	inp->inp_fport = fport;
525 	in_pcbrehash(inp);
526 #ifdef IPSEC
527 	if (inp->inp_socket->so_type == SOCK_STREAM)
528 		ipsec_pcbconn(inp->inp_sp);
529 #endif
530 	if (anonport)
531 		inp->inp_flags |= INP_ANONPORT;
532 	return (0);
533 }
534 
535 /*
536  * Set up for a connect from a socket to the specified address.
537  * On entry, *laddrp and *lportp should contain the current local
538  * address and port for the PCB; these are updated to the values
539  * that should be placed in inp_laddr and inp_lport to complete
540  * the connect.
541  *
542  * On success, *faddrp and *fportp will be set to the remote address
543  * and port. These are not updated in the error case.
544  *
545  * If the operation fails because the connection already exists,
546  * *oinpp will be set to the PCB of that connection so that the
547  * caller can decide to override it. In all other cases, *oinpp
548  * is set to NULL.
549  */
550 int
551 in_pcbconnect_setup(inp, nam, laddrp, lportp, faddrp, fportp, oinpp, cred)
552 	register struct inpcb *inp;
553 	struct sockaddr *nam;
554 	in_addr_t *laddrp;
555 	u_short *lportp;
556 	in_addr_t *faddrp;
557 	u_short *fportp;
558 	struct inpcb **oinpp;
559 	struct ucred *cred;
560 {
561 	struct sockaddr_in *sin = (struct sockaddr_in *)nam;
562 	struct in_ifaddr *ia;
563 	struct sockaddr_in sa;
564 	struct ucred *socred;
565 	struct inpcb *oinp;
566 	struct in_addr laddr, faddr;
567 	u_short lport, fport;
568 	int error;
569 
570 	INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo);
571 	INP_LOCK_ASSERT(inp);
572 
573 	if (oinpp != NULL)
574 		*oinpp = NULL;
575 	if (nam->sa_len != sizeof (*sin))
576 		return (EINVAL);
577 	if (sin->sin_family != AF_INET)
578 		return (EAFNOSUPPORT);
579 	if (sin->sin_port == 0)
580 		return (EADDRNOTAVAIL);
581 	laddr.s_addr = *laddrp;
582 	lport = *lportp;
583 	faddr = sin->sin_addr;
584 	fport = sin->sin_port;
585 	socred = inp->inp_socket->so_cred;
586 	if (laddr.s_addr == INADDR_ANY && jailed(socred)) {
587 		bzero(&sa, sizeof(sa));
588 		sa.sin_addr.s_addr = htonl(prison_getip(socred));
589 		sa.sin_len = sizeof(sa);
590 		sa.sin_family = AF_INET;
591 		error = in_pcbbind_setup(inp, (struct sockaddr *)&sa,
592 		    &laddr.s_addr, &lport, cred);
593 		if (error)
594 			return (error);
595 	}
596 	if (!TAILQ_EMPTY(&in_ifaddrhead)) {
597 		/*
598 		 * If the destination address is INADDR_ANY,
599 		 * use the primary local address.
600 		 * If the supplied address is INADDR_BROADCAST,
601 		 * and the primary interface supports broadcast,
602 		 * choose the broadcast address for that interface.
603 		 */
604 		if (faddr.s_addr == INADDR_ANY)
605 			faddr = IA_SIN(TAILQ_FIRST(&in_ifaddrhead))->sin_addr;
606 		else if (faddr.s_addr == (u_long)INADDR_BROADCAST &&
607 		    (TAILQ_FIRST(&in_ifaddrhead)->ia_ifp->if_flags &
608 		    IFF_BROADCAST))
609 			faddr = satosin(&TAILQ_FIRST(
610 			    &in_ifaddrhead)->ia_broadaddr)->sin_addr;
611 	}
612 	if (laddr.s_addr == INADDR_ANY) {
613 		struct route sro;
614 
615 		bzero(&sro, sizeof(sro));
616 		ia = (struct in_ifaddr *)0;
617 		/*
618 		 * If route is known our src addr is taken from the i/f,
619 		 * else punt.
620 		 */
621 		if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0) {
622 			/* Find out route to destination */
623 			sro.ro_dst.sa_family = AF_INET;
624 			sro.ro_dst.sa_len = sizeof(struct sockaddr_in);
625 			((struct sockaddr_in *)&sro.ro_dst)->sin_addr = faddr;
626 			rtalloc_ign(&sro, RTF_CLONING);
627 		}
628 		/*
629 		 * If we found a route, use the address
630 		 * corresponding to the outgoing interface.
631 		 */
632 		if (sro.ro_rt) {
633 			ia = ifatoia(sro.ro_rt->rt_ifa);
634 			RTFREE(sro.ro_rt);
635 		}
636 		if (ia == 0) {
637 			bzero(&sa, sizeof(sa));
638 			sa.sin_addr = faddr;
639 			sa.sin_len = sizeof(sa);
640 			sa.sin_family = AF_INET;
641 
642 			ia = ifatoia(ifa_ifwithdstaddr(sintosa(&sa)));
643 			if (ia == 0)
644 				ia = ifatoia(ifa_ifwithnet(sintosa(&sa)));
645 			if (ia == 0)
646 				return (ENETUNREACH);
647 		}
648 		/*
649 		 * If the destination address is multicast and an outgoing
650 		 * interface has been set as a multicast option, use the
651 		 * address of that interface as our source address.
652 		 */
653 		if (IN_MULTICAST(ntohl(faddr.s_addr)) &&
654 		    inp->inp_moptions != NULL) {
655 			struct ip_moptions *imo;
656 			struct ifnet *ifp;
657 
658 			imo = inp->inp_moptions;
659 			if (imo->imo_multicast_ifp != NULL) {
660 				ifp = imo->imo_multicast_ifp;
661 				TAILQ_FOREACH(ia, &in_ifaddrhead, ia_link)
662 					if (ia->ia_ifp == ifp)
663 						break;
664 				if (ia == 0)
665 					return (EADDRNOTAVAIL);
666 			}
667 		}
668 		laddr = ia->ia_addr.sin_addr;
669 	}
670 
671 	oinp = in_pcblookup_hash(inp->inp_pcbinfo, faddr, fport, laddr, lport,
672 	    0, NULL);
673 	if (oinp != NULL) {
674 		if (oinpp != NULL)
675 			*oinpp = oinp;
676 		return (EADDRINUSE);
677 	}
678 	if (lport == 0) {
679 		error = in_pcbbind_setup(inp, NULL, &laddr.s_addr, &lport,
680 		    cred);
681 		if (error)
682 			return (error);
683 	}
684 	*laddrp = laddr.s_addr;
685 	*lportp = lport;
686 	*faddrp = faddr.s_addr;
687 	*fportp = fport;
688 	return (0);
689 }
690 
691 void
692 in_pcbdisconnect(inp)
693 	struct inpcb *inp;
694 {
695 	INP_LOCK_ASSERT(inp);
696 
697 	inp->inp_faddr.s_addr = INADDR_ANY;
698 	inp->inp_fport = 0;
699 	in_pcbrehash(inp);
700 #ifdef IPSEC
701 	ipsec_pcbdisconn(inp->inp_sp);
702 #endif
703 	if (inp->inp_socket->so_state & SS_NOFDREF)
704 		in_pcbdetach(inp);
705 }
706 
707 void
708 in_pcbdetach(inp)
709 	struct inpcb *inp;
710 {
711 	struct socket *so = inp->inp_socket;
712 	struct inpcbinfo *ipi = inp->inp_pcbinfo;
713 
714 	INP_LOCK_ASSERT(inp);
715 
716 #if defined(IPSEC) || defined(FAST_IPSEC)
717 	ipsec4_delete_pcbpolicy(inp);
718 #endif /*IPSEC*/
719 	inp->inp_gencnt = ++ipi->ipi_gencnt;
720 	in_pcbremlists(inp);
721 	if (so) {
722 		ACCEPT_LOCK();
723 		SOCK_LOCK(so);
724 		so->so_pcb = NULL;
725 		sotryfree(so);
726 	}
727 	if (inp->inp_options)
728 		(void)m_free(inp->inp_options);
729 	ip_freemoptions(inp->inp_moptions);
730 	inp->inp_vflag = 0;
731 	INP_LOCK_DESTROY(inp);
732 #ifdef MAC
733 	mac_destroy_inpcb(inp);
734 #endif
735 	uma_zfree(ipi->ipi_zone, inp);
736 }
737 
738 struct sockaddr *
739 in_sockaddr(port, addr_p)
740 	in_port_t port;
741 	struct in_addr *addr_p;
742 {
743 	struct sockaddr_in *sin;
744 
745 	MALLOC(sin, struct sockaddr_in *, sizeof *sin, M_SONAME,
746 		M_WAITOK | M_ZERO);
747 	sin->sin_family = AF_INET;
748 	sin->sin_len = sizeof(*sin);
749 	sin->sin_addr = *addr_p;
750 	sin->sin_port = port;
751 
752 	return (struct sockaddr *)sin;
753 }
754 
755 /*
756  * The wrapper function will pass down the pcbinfo for this function to lock.
757  * The socket must have a valid
758  * (i.e., non-nil) PCB, but it should be impossible to get an invalid one
759  * except through a kernel programming error, so it is acceptable to panic
760  * (or in this case trap) if the PCB is invalid.  (Actually, we don't trap
761  * because there actually /is/ a programming error somewhere... XXX)
762  */
763 int
764 in_setsockaddr(so, nam, pcbinfo)
765 	struct socket *so;
766 	struct sockaddr **nam;
767 	struct inpcbinfo *pcbinfo;
768 {
769 	int s;
770 	register struct inpcb *inp;
771 	struct in_addr addr;
772 	in_port_t port;
773 
774 	s = splnet();
775 	INP_INFO_RLOCK(pcbinfo);
776 	inp = sotoinpcb(so);
777 	if (!inp) {
778 		INP_INFO_RUNLOCK(pcbinfo);
779 		splx(s);
780 		return ECONNRESET;
781 	}
782 	INP_LOCK(inp);
783 	port = inp->inp_lport;
784 	addr = inp->inp_laddr;
785 	INP_UNLOCK(inp);
786 	INP_INFO_RUNLOCK(pcbinfo);
787 	splx(s);
788 
789 	*nam = in_sockaddr(port, &addr);
790 	return 0;
791 }
792 
793 /*
794  * The wrapper function will pass down the pcbinfo for this function to lock.
795  */
796 int
797 in_setpeeraddr(so, nam, pcbinfo)
798 	struct socket *so;
799 	struct sockaddr **nam;
800 	struct inpcbinfo *pcbinfo;
801 {
802 	int s;
803 	register struct inpcb *inp;
804 	struct in_addr addr;
805 	in_port_t port;
806 
807 	s = splnet();
808 	INP_INFO_RLOCK(pcbinfo);
809 	inp = sotoinpcb(so);
810 	if (!inp) {
811 		INP_INFO_RUNLOCK(pcbinfo);
812 		splx(s);
813 		return ECONNRESET;
814 	}
815 	INP_LOCK(inp);
816 	port = inp->inp_fport;
817 	addr = inp->inp_faddr;
818 	INP_UNLOCK(inp);
819 	INP_INFO_RUNLOCK(pcbinfo);
820 	splx(s);
821 
822 	*nam = in_sockaddr(port, &addr);
823 	return 0;
824 }
825 
826 void
827 in_pcbnotifyall(pcbinfo, faddr, errno, notify)
828 	struct inpcbinfo *pcbinfo;
829 	struct in_addr faddr;
830 	int errno;
831 	struct inpcb *(*notify)(struct inpcb *, int);
832 {
833 	struct inpcb *inp, *ninp;
834 	struct inpcbhead *head;
835 	int s;
836 
837 	s = splnet();
838 	INP_INFO_WLOCK(pcbinfo);
839 	head = pcbinfo->listhead;
840 	for (inp = LIST_FIRST(head); inp != NULL; inp = ninp) {
841 		INP_LOCK(inp);
842 		ninp = LIST_NEXT(inp, inp_list);
843 #ifdef INET6
844 		if ((inp->inp_vflag & INP_IPV4) == 0) {
845 			INP_UNLOCK(inp);
846 			continue;
847 		}
848 #endif
849 		if (inp->inp_faddr.s_addr != faddr.s_addr ||
850 		    inp->inp_socket == NULL) {
851 			INP_UNLOCK(inp);
852 			continue;
853 		}
854 		if ((*notify)(inp, errno))
855 			INP_UNLOCK(inp);
856 	}
857 	INP_INFO_WUNLOCK(pcbinfo);
858 	splx(s);
859 }
860 
861 void
862 in_pcbpurgeif0(pcbinfo, ifp)
863 	struct inpcbinfo *pcbinfo;
864 	struct ifnet *ifp;
865 {
866 	struct inpcb *inp;
867 	struct ip_moptions *imo;
868 	int i, gap;
869 
870 	/* why no splnet here? XXX */
871 	INP_INFO_RLOCK(pcbinfo);
872 	LIST_FOREACH(inp, pcbinfo->listhead, inp_list) {
873 		INP_LOCK(inp);
874 		imo = inp->inp_moptions;
875 		if ((inp->inp_vflag & INP_IPV4) &&
876 		    imo != NULL) {
877 			/*
878 			 * Unselect the outgoing interface if it is being
879 			 * detached.
880 			 */
881 			if (imo->imo_multicast_ifp == ifp)
882 				imo->imo_multicast_ifp = NULL;
883 
884 			/*
885 			 * Drop multicast group membership if we joined
886 			 * through the interface being detached.
887 			 */
888 			for (i = 0, gap = 0; i < imo->imo_num_memberships;
889 			    i++) {
890 				if (imo->imo_membership[i]->inm_ifp == ifp) {
891 					in_delmulti(imo->imo_membership[i]);
892 					gap++;
893 				} else if (gap != 0)
894 					imo->imo_membership[i - gap] =
895 					    imo->imo_membership[i];
896 			}
897 			imo->imo_num_memberships -= gap;
898 		}
899 		INP_UNLOCK(inp);
900 	}
901 	INP_INFO_RUNLOCK(pcbinfo);
902 }
903 
904 /*
905  * Lookup a PCB based on the local address and port.
906  */
907 struct inpcb *
908 in_pcblookup_local(pcbinfo, laddr, lport_arg, wild_okay)
909 	struct inpcbinfo *pcbinfo;
910 	struct in_addr laddr;
911 	u_int lport_arg;
912 	int wild_okay;
913 {
914 	register struct inpcb *inp;
915 	int matchwild = 3, wildcard;
916 	u_short lport = lport_arg;
917 
918 	INP_INFO_WLOCK_ASSERT(pcbinfo);
919 
920 	if (!wild_okay) {
921 		struct inpcbhead *head;
922 		/*
923 		 * Look for an unconnected (wildcard foreign addr) PCB that
924 		 * matches the local address and port we're looking for.
925 		 */
926 		head = &pcbinfo->hashbase[INP_PCBHASH(INADDR_ANY, lport, 0, pcbinfo->hashmask)];
927 		LIST_FOREACH(inp, head, inp_hash) {
928 #ifdef INET6
929 			if ((inp->inp_vflag & INP_IPV4) == 0)
930 				continue;
931 #endif
932 			if (inp->inp_faddr.s_addr == INADDR_ANY &&
933 			    inp->inp_laddr.s_addr == laddr.s_addr &&
934 			    inp->inp_lport == lport) {
935 				/*
936 				 * Found.
937 				 */
938 				return (inp);
939 			}
940 		}
941 		/*
942 		 * Not found.
943 		 */
944 		return (NULL);
945 	} else {
946 		struct inpcbporthead *porthash;
947 		struct inpcbport *phd;
948 		struct inpcb *match = NULL;
949 		/*
950 		 * Best fit PCB lookup.
951 		 *
952 		 * First see if this local port is in use by looking on the
953 		 * port hash list.
954 		 */
955 		retrylookup:
956 		porthash = &pcbinfo->porthashbase[INP_PCBPORTHASH(lport,
957 		    pcbinfo->porthashmask)];
958 		LIST_FOREACH(phd, porthash, phd_hash) {
959 			if (phd->phd_port == lport)
960 				break;
961 		}
962 		if (phd != NULL) {
963 			/*
964 			 * Port is in use by one or more PCBs. Look for best
965 			 * fit.
966 			 */
967 			LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) {
968 				wildcard = 0;
969 #ifdef INET6
970 				if ((inp->inp_vflag & INP_IPV4) == 0)
971 					continue;
972 #endif
973 				/*
974 				 * Clean out old time_wait sockets if they
975 				 * are clogging up needed local ports.
976 				 */
977 				if ((inp->inp_vflag & INP_TIMEWAIT) != 0) {
978 					if (tcp_twrecycleable((struct tcptw *)inp->inp_ppcb)) {
979 						INP_LOCK(inp);
980 						tcp_twclose((struct tcptw *)inp->inp_ppcb, 0);
981 						match = NULL;
982 						goto retrylookup;
983 					}
984 				}
985 				if (inp->inp_faddr.s_addr != INADDR_ANY)
986 					wildcard++;
987 				if (inp->inp_laddr.s_addr != INADDR_ANY) {
988 					if (laddr.s_addr == INADDR_ANY)
989 						wildcard++;
990 					else if (inp->inp_laddr.s_addr != laddr.s_addr)
991 						continue;
992 				} else {
993 					if (laddr.s_addr != INADDR_ANY)
994 						wildcard++;
995 				}
996 				if (wildcard < matchwild) {
997 					match = inp;
998 					matchwild = wildcard;
999 					if (matchwild == 0) {
1000 						break;
1001 					}
1002 				}
1003 			}
1004 		}
1005 		return (match);
1006 	}
1007 }
1008 
1009 /*
1010  * Lookup PCB in hash list.
1011  */
1012 struct inpcb *
1013 in_pcblookup_hash(pcbinfo, faddr, fport_arg, laddr, lport_arg, wildcard,
1014 		  ifp)
1015 	struct inpcbinfo *pcbinfo;
1016 	struct in_addr faddr, laddr;
1017 	u_int fport_arg, lport_arg;
1018 	int wildcard;
1019 	struct ifnet *ifp;
1020 {
1021 	struct inpcbhead *head;
1022 	register struct inpcb *inp;
1023 	u_short fport = fport_arg, lport = lport_arg;
1024 
1025 	INP_INFO_RLOCK_ASSERT(pcbinfo);
1026 	/*
1027 	 * First look for an exact match.
1028 	 */
1029 	head = &pcbinfo->hashbase[INP_PCBHASH(faddr.s_addr, lport, fport, pcbinfo->hashmask)];
1030 	LIST_FOREACH(inp, head, inp_hash) {
1031 #ifdef INET6
1032 		if ((inp->inp_vflag & INP_IPV4) == 0)
1033 			continue;
1034 #endif
1035 		if (inp->inp_faddr.s_addr == faddr.s_addr &&
1036 		    inp->inp_laddr.s_addr == laddr.s_addr &&
1037 		    inp->inp_fport == fport &&
1038 		    inp->inp_lport == lport) {
1039 			/*
1040 			 * Found.
1041 			 */
1042 			return (inp);
1043 		}
1044 	}
1045 	if (wildcard) {
1046 		struct inpcb *local_wild = NULL;
1047 #if defined(INET6)
1048 		struct inpcb *local_wild_mapped = NULL;
1049 #endif /* defined(INET6) */
1050 
1051 		head = &pcbinfo->hashbase[INP_PCBHASH(INADDR_ANY, lport, 0, pcbinfo->hashmask)];
1052 		LIST_FOREACH(inp, head, inp_hash) {
1053 #ifdef INET6
1054 			if ((inp->inp_vflag & INP_IPV4) == 0)
1055 				continue;
1056 #endif
1057 			if (inp->inp_faddr.s_addr == INADDR_ANY &&
1058 			    inp->inp_lport == lport) {
1059 				if (ifp && ifp->if_type == IFT_FAITH &&
1060 				    (inp->inp_flags & INP_FAITH) == 0)
1061 					continue;
1062 				if (inp->inp_laddr.s_addr == laddr.s_addr)
1063 					return (inp);
1064 				else if (inp->inp_laddr.s_addr == INADDR_ANY) {
1065 #if defined(INET6)
1066 					if (INP_CHECK_SOCKAF(inp->inp_socket,
1067 							     AF_INET6))
1068 						local_wild_mapped = inp;
1069 					else
1070 #endif /* defined(INET6) */
1071 					local_wild = inp;
1072 				}
1073 			}
1074 		}
1075 #if defined(INET6)
1076 		if (local_wild == NULL)
1077 			return (local_wild_mapped);
1078 #endif /* defined(INET6) */
1079 		return (local_wild);
1080 	}
1081 
1082 	/*
1083 	 * Not found.
1084 	 */
1085 	return (NULL);
1086 }
1087 
1088 /*
1089  * Insert PCB onto various hash lists.
1090  */
1091 int
1092 in_pcbinshash(inp)
1093 	struct inpcb *inp;
1094 {
1095 	struct inpcbhead *pcbhash;
1096 	struct inpcbporthead *pcbporthash;
1097 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1098 	struct inpcbport *phd;
1099 	u_int32_t hashkey_faddr;
1100 
1101 	INP_INFO_WLOCK_ASSERT(pcbinfo);
1102 #ifdef INET6
1103 	if (inp->inp_vflag & INP_IPV6)
1104 		hashkey_faddr = inp->in6p_faddr.s6_addr32[3] /* XXX */;
1105 	else
1106 #endif /* INET6 */
1107 	hashkey_faddr = inp->inp_faddr.s_addr;
1108 
1109 	pcbhash = &pcbinfo->hashbase[INP_PCBHASH(hashkey_faddr,
1110 		 inp->inp_lport, inp->inp_fport, pcbinfo->hashmask)];
1111 
1112 	pcbporthash = &pcbinfo->porthashbase[INP_PCBPORTHASH(inp->inp_lport,
1113 	    pcbinfo->porthashmask)];
1114 
1115 	/*
1116 	 * Go through port list and look for a head for this lport.
1117 	 */
1118 	LIST_FOREACH(phd, pcbporthash, phd_hash) {
1119 		if (phd->phd_port == inp->inp_lport)
1120 			break;
1121 	}
1122 	/*
1123 	 * If none exists, malloc one and tack it on.
1124 	 */
1125 	if (phd == NULL) {
1126 		MALLOC(phd, struct inpcbport *, sizeof(struct inpcbport), M_PCB, M_NOWAIT);
1127 		if (phd == NULL) {
1128 			return (ENOBUFS); /* XXX */
1129 		}
1130 		phd->phd_port = inp->inp_lport;
1131 		LIST_INIT(&phd->phd_pcblist);
1132 		LIST_INSERT_HEAD(pcbporthash, phd, phd_hash);
1133 	}
1134 	inp->inp_phd = phd;
1135 	LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist);
1136 	LIST_INSERT_HEAD(pcbhash, inp, inp_hash);
1137 	return (0);
1138 }
1139 
1140 /*
1141  * Move PCB to the proper hash bucket when { faddr, fport } have  been
1142  * changed. NOTE: This does not handle the case of the lport changing (the
1143  * hashed port list would have to be updated as well), so the lport must
1144  * not change after in_pcbinshash() has been called.
1145  */
1146 void
1147 in_pcbrehash(inp)
1148 	struct inpcb *inp;
1149 {
1150 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1151 	struct inpcbhead *head;
1152 	u_int32_t hashkey_faddr;
1153 
1154 	INP_INFO_WLOCK_ASSERT(pcbinfo);
1155 	INP_LOCK_ASSERT(inp);
1156 #ifdef INET6
1157 	if (inp->inp_vflag & INP_IPV6)
1158 		hashkey_faddr = inp->in6p_faddr.s6_addr32[3] /* XXX */;
1159 	else
1160 #endif /* INET6 */
1161 	hashkey_faddr = inp->inp_faddr.s_addr;
1162 
1163 	head = &pcbinfo->hashbase[INP_PCBHASH(hashkey_faddr,
1164 		inp->inp_lport, inp->inp_fport, pcbinfo->hashmask)];
1165 
1166 	LIST_REMOVE(inp, inp_hash);
1167 	LIST_INSERT_HEAD(head, inp, inp_hash);
1168 }
1169 
1170 /*
1171  * Remove PCB from various lists.
1172  */
1173 void
1174 in_pcbremlists(inp)
1175 	struct inpcb *inp;
1176 {
1177 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1178 
1179 	INP_INFO_WLOCK_ASSERT(pcbinfo);
1180 	INP_LOCK_ASSERT(inp);
1181 
1182 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
1183 	if (inp->inp_lport) {
1184 		struct inpcbport *phd = inp->inp_phd;
1185 
1186 		LIST_REMOVE(inp, inp_hash);
1187 		LIST_REMOVE(inp, inp_portlist);
1188 		if (LIST_FIRST(&phd->phd_pcblist) == NULL) {
1189 			LIST_REMOVE(phd, phd_hash);
1190 			free(phd, M_PCB);
1191 		}
1192 	}
1193 	LIST_REMOVE(inp, inp_list);
1194 	pcbinfo->ipi_count--;
1195 }
1196 
1197 /*
1198  * A set label operation has occurred at the socket layer, propagate the
1199  * label change into the in_pcb for the socket.
1200  */
1201 void
1202 in_pcbsosetlabel(so)
1203 	struct socket *so;
1204 {
1205 #ifdef MAC
1206 	struct inpcb *inp;
1207 
1208 	inp = (struct inpcb *)so->so_pcb;
1209 	INP_LOCK(inp);
1210 	SOCK_LOCK(so);
1211 	mac_inpcb_sosetlabel(so, inp);
1212 	SOCK_UNLOCK(so);
1213 	INP_UNLOCK(inp);
1214 #endif
1215 }
1216 
1217 /*
1218  * ipport_tick runs once per second, determining if random port
1219  * allocation should be continued.  If more than ipport_randomcps
1220  * ports have been allocated in the last second, then we return to
1221  * sequential port allocation. We return to random allocation only
1222  * once we drop below ipport_randomcps for at least ipport_randomtime
1223  * seconds.
1224  */
1225 
1226 void
1227 ipport_tick(xtp)
1228 	void *xtp;
1229 {
1230 	if (ipport_tcpallocs > ipport_tcplastcount + ipport_randomcps) {
1231 		ipport_stoprandom = ipport_randomtime;
1232 	} else {
1233 		if (ipport_stoprandom > 0)
1234 			ipport_stoprandom--;
1235 	}
1236 	ipport_tcplastcount = ipport_tcpallocs;
1237 	callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL);
1238 }
1239