xref: /freebsd/sys/netinet/in_pcb.c (revision ce3adf4362fcca6a43e500b2531f0038adbfbd21)
1 /*-
2  * Copyright (c) 1982, 1986, 1991, 1993, 1995
3  *	The Regents of the University of California.
4  * Copyright (c) 2007-2009 Robert N. M. Watson
5  * Copyright (c) 2010-2011 Juniper Networks, Inc.
6  * All rights reserved.
7  *
8  * Portions of this software were developed by Robert N. M. Watson under
9  * contract to Juniper Networks, Inc.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 4. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *	@(#)in_pcb.c	8.4 (Berkeley) 5/24/95
36  */
37 
38 #include <sys/cdefs.h>
39 __FBSDID("$FreeBSD$");
40 
41 #include "opt_ddb.h"
42 #include "opt_ipsec.h"
43 #include "opt_inet.h"
44 #include "opt_inet6.h"
45 #include "opt_pcbgroup.h"
46 
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/malloc.h>
50 #include <sys/mbuf.h>
51 #include <sys/callout.h>
52 #include <sys/domain.h>
53 #include <sys/protosw.h>
54 #include <sys/socket.h>
55 #include <sys/socketvar.h>
56 #include <sys/priv.h>
57 #include <sys/proc.h>
58 #include <sys/refcount.h>
59 #include <sys/jail.h>
60 #include <sys/kernel.h>
61 #include <sys/sysctl.h>
62 
63 #ifdef DDB
64 #include <ddb/ddb.h>
65 #endif
66 
67 #include <vm/uma.h>
68 
69 #include <net/if.h>
70 #include <net/if_types.h>
71 #include <net/route.h>
72 #include <net/vnet.h>
73 
74 #if defined(INET) || defined(INET6)
75 #include <netinet/in.h>
76 #include <netinet/in_pcb.h>
77 #include <netinet/ip_var.h>
78 #include <netinet/tcp_var.h>
79 #include <netinet/udp.h>
80 #include <netinet/udp_var.h>
81 #endif
82 #ifdef INET
83 #include <netinet/in_var.h>
84 #endif
85 #ifdef INET6
86 #include <netinet/ip6.h>
87 #include <netinet6/in6_pcb.h>
88 #include <netinet6/in6_var.h>
89 #include <netinet6/ip6_var.h>
90 #endif /* INET6 */
91 
92 
93 #ifdef IPSEC
94 #include <netipsec/ipsec.h>
95 #include <netipsec/key.h>
96 #endif /* IPSEC */
97 
98 #include <security/mac/mac_framework.h>
99 
100 static struct callout	ipport_tick_callout;
101 
102 /*
103  * These configure the range of local port addresses assigned to
104  * "unspecified" outgoing connections/packets/whatever.
105  */
106 VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1;	/* 1023 */
107 VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART;	/* 600 */
108 VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST;	/* 10000 */
109 VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST;	/* 65535 */
110 VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO;	/* 49152 */
111 VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO;	/* 65535 */
112 
113 /*
114  * Reserved ports accessible only to root. There are significant
115  * security considerations that must be accounted for when changing these,
116  * but the security benefits can be great. Please be careful.
117  */
118 VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1;	/* 1023 */
119 VNET_DEFINE(int, ipport_reservedlow);
120 
121 /* Variables dealing with random ephemeral port allocation. */
122 VNET_DEFINE(int, ipport_randomized) = 1;	/* user controlled via sysctl */
123 VNET_DEFINE(int, ipport_randomcps) = 10;	/* user controlled via sysctl */
124 VNET_DEFINE(int, ipport_randomtime) = 45;	/* user controlled via sysctl */
125 VNET_DEFINE(int, ipport_stoprandom);		/* toggled by ipport_tick */
126 VNET_DEFINE(int, ipport_tcpallocs);
127 static VNET_DEFINE(int, ipport_tcplastcount);
128 
129 #define	V_ipport_tcplastcount		VNET(ipport_tcplastcount)
130 
131 static void	in_pcbremlists(struct inpcb *inp);
132 #ifdef INET
133 static struct inpcb	*in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo,
134 			    struct in_addr faddr, u_int fport_arg,
135 			    struct in_addr laddr, u_int lport_arg,
136 			    int lookupflags, struct ifnet *ifp);
137 
138 #define RANGECHK(var, min, max) \
139 	if ((var) < (min)) { (var) = (min); } \
140 	else if ((var) > (max)) { (var) = (max); }
141 
142 static int
143 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS)
144 {
145 	int error;
146 
147 #ifdef VIMAGE
148 	error = vnet_sysctl_handle_int(oidp, arg1, arg2, req);
149 #else
150 	error = sysctl_handle_int(oidp, arg1, arg2, req);
151 #endif
152 	if (error == 0) {
153 		RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1);
154 		RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1);
155 		RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX);
156 		RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX);
157 		RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX);
158 		RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX);
159 	}
160 	return (error);
161 }
162 
163 #undef RANGECHK
164 
165 static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, CTLFLAG_RW, 0,
166     "IP Ports");
167 
168 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst,
169 	CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_lowfirstauto), 0,
170 	&sysctl_net_ipport_check, "I", "");
171 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast,
172 	CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_lowlastauto), 0,
173 	&sysctl_net_ipport_check, "I", "");
174 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, first,
175 	CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_firstauto), 0,
176 	&sysctl_net_ipport_check, "I", "");
177 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, last,
178 	CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_lastauto), 0,
179 	&sysctl_net_ipport_check, "I", "");
180 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst,
181 	CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_hifirstauto), 0,
182 	&sysctl_net_ipport_check, "I", "");
183 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, hilast,
184 	CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_hilastauto), 0,
185 	&sysctl_net_ipport_check, "I", "");
186 SYSCTL_VNET_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh,
187 	CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedhigh), 0, "");
188 SYSCTL_VNET_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow,
189 	CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, "");
190 SYSCTL_VNET_INT(_net_inet_ip_portrange, OID_AUTO, randomized, CTLFLAG_RW,
191 	&VNET_NAME(ipport_randomized), 0, "Enable random port allocation");
192 SYSCTL_VNET_INT(_net_inet_ip_portrange, OID_AUTO, randomcps, CTLFLAG_RW,
193 	&VNET_NAME(ipport_randomcps), 0, "Maximum number of random port "
194 	"allocations before switching to a sequental one");
195 SYSCTL_VNET_INT(_net_inet_ip_portrange, OID_AUTO, randomtime, CTLFLAG_RW,
196 	&VNET_NAME(ipport_randomtime), 0,
197 	"Minimum time to keep sequental port "
198 	"allocation before switching to a random one");
199 #endif /* INET */
200 
201 /*
202  * in_pcb.c: manage the Protocol Control Blocks.
203  *
204  * NOTE: It is assumed that most of these functions will be called with
205  * the pcbinfo lock held, and often, the inpcb lock held, as these utility
206  * functions often modify hash chains or addresses in pcbs.
207  */
208 
209 /*
210  * Initialize an inpcbinfo -- we should be able to reduce the number of
211  * arguments in time.
212  */
213 void
214 in_pcbinfo_init(struct inpcbinfo *pcbinfo, const char *name,
215     struct inpcbhead *listhead, int hash_nelements, int porthash_nelements,
216     char *inpcbzone_name, uma_init inpcbzone_init, uma_fini inpcbzone_fini,
217     uint32_t inpcbzone_flags, u_int hashfields)
218 {
219 
220 	INP_INFO_LOCK_INIT(pcbinfo, name);
221 	INP_HASH_LOCK_INIT(pcbinfo, "pcbinfohash");	/* XXXRW: argument? */
222 #ifdef VIMAGE
223 	pcbinfo->ipi_vnet = curvnet;
224 #endif
225 	pcbinfo->ipi_listhead = listhead;
226 	LIST_INIT(pcbinfo->ipi_listhead);
227 	pcbinfo->ipi_count = 0;
228 	pcbinfo->ipi_hashbase = hashinit(hash_nelements, M_PCB,
229 	    &pcbinfo->ipi_hashmask);
230 	pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB,
231 	    &pcbinfo->ipi_porthashmask);
232 #ifdef PCBGROUP
233 	in_pcbgroup_init(pcbinfo, hashfields, hash_nelements);
234 #endif
235 	pcbinfo->ipi_zone = uma_zcreate(inpcbzone_name, sizeof(struct inpcb),
236 	    NULL, NULL, inpcbzone_init, inpcbzone_fini, UMA_ALIGN_PTR,
237 	    inpcbzone_flags);
238 	uma_zone_set_max(pcbinfo->ipi_zone, maxsockets);
239 	uma_zone_set_warning(pcbinfo->ipi_zone,
240 	    "kern.ipc.maxsockets limit reached");
241 }
242 
243 /*
244  * Destroy an inpcbinfo.
245  */
246 void
247 in_pcbinfo_destroy(struct inpcbinfo *pcbinfo)
248 {
249 
250 	KASSERT(pcbinfo->ipi_count == 0,
251 	    ("%s: ipi_count = %u", __func__, pcbinfo->ipi_count));
252 
253 	hashdestroy(pcbinfo->ipi_hashbase, M_PCB, pcbinfo->ipi_hashmask);
254 	hashdestroy(pcbinfo->ipi_porthashbase, M_PCB,
255 	    pcbinfo->ipi_porthashmask);
256 #ifdef PCBGROUP
257 	in_pcbgroup_destroy(pcbinfo);
258 #endif
259 	uma_zdestroy(pcbinfo->ipi_zone);
260 	INP_HASH_LOCK_DESTROY(pcbinfo);
261 	INP_INFO_LOCK_DESTROY(pcbinfo);
262 }
263 
264 /*
265  * Allocate a PCB and associate it with the socket.
266  * On success return with the PCB locked.
267  */
268 int
269 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo)
270 {
271 	struct inpcb *inp;
272 	int error;
273 
274 	INP_INFO_WLOCK_ASSERT(pcbinfo);
275 	error = 0;
276 	inp = uma_zalloc(pcbinfo->ipi_zone, M_NOWAIT);
277 	if (inp == NULL)
278 		return (ENOBUFS);
279 	bzero(inp, inp_zero_size);
280 	inp->inp_pcbinfo = pcbinfo;
281 	inp->inp_socket = so;
282 	inp->inp_cred = crhold(so->so_cred);
283 	inp->inp_inc.inc_fibnum = so->so_fibnum;
284 #ifdef MAC
285 	error = mac_inpcb_init(inp, M_NOWAIT);
286 	if (error != 0)
287 		goto out;
288 	mac_inpcb_create(so, inp);
289 #endif
290 #ifdef IPSEC
291 	error = ipsec_init_policy(so, &inp->inp_sp);
292 	if (error != 0) {
293 #ifdef MAC
294 		mac_inpcb_destroy(inp);
295 #endif
296 		goto out;
297 	}
298 #endif /*IPSEC*/
299 #ifdef INET6
300 	if (INP_SOCKAF(so) == AF_INET6) {
301 		inp->inp_vflag |= INP_IPV6PROTO;
302 		if (V_ip6_v6only)
303 			inp->inp_flags |= IN6P_IPV6_V6ONLY;
304 	}
305 #endif
306 	LIST_INSERT_HEAD(pcbinfo->ipi_listhead, inp, inp_list);
307 	pcbinfo->ipi_count++;
308 	so->so_pcb = (caddr_t)inp;
309 #ifdef INET6
310 	if (V_ip6_auto_flowlabel)
311 		inp->inp_flags |= IN6P_AUTOFLOWLABEL;
312 #endif
313 	INP_WLOCK(inp);
314 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
315 	refcount_init(&inp->inp_refcount, 1);	/* Reference from inpcbinfo */
316 #if defined(IPSEC) || defined(MAC)
317 out:
318 	if (error != 0) {
319 		crfree(inp->inp_cred);
320 		uma_zfree(pcbinfo->ipi_zone, inp);
321 	}
322 #endif
323 	return (error);
324 }
325 
326 #ifdef INET
327 int
328 in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
329 {
330 	int anonport, error;
331 
332 	INP_WLOCK_ASSERT(inp);
333 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
334 
335 	if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY)
336 		return (EINVAL);
337 	anonport = nam == NULL || ((struct sockaddr_in *)nam)->sin_port == 0;
338 	error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr,
339 	    &inp->inp_lport, cred);
340 	if (error)
341 		return (error);
342 	if (in_pcbinshash(inp) != 0) {
343 		inp->inp_laddr.s_addr = INADDR_ANY;
344 		inp->inp_lport = 0;
345 		return (EAGAIN);
346 	}
347 	if (anonport)
348 		inp->inp_flags |= INP_ANONPORT;
349 	return (0);
350 }
351 #endif
352 
353 #if defined(INET) || defined(INET6)
354 int
355 in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp,
356     struct ucred *cred, int lookupflags)
357 {
358 	struct inpcbinfo *pcbinfo;
359 	struct inpcb *tmpinp;
360 	unsigned short *lastport;
361 	int count, dorandom, error;
362 	u_short aux, first, last, lport;
363 #ifdef INET
364 	struct in_addr laddr;
365 #endif
366 
367 	pcbinfo = inp->inp_pcbinfo;
368 
369 	/*
370 	 * Because no actual state changes occur here, a global write lock on
371 	 * the pcbinfo isn't required.
372 	 */
373 	INP_LOCK_ASSERT(inp);
374 	INP_HASH_LOCK_ASSERT(pcbinfo);
375 
376 	if (inp->inp_flags & INP_HIGHPORT) {
377 		first = V_ipport_hifirstauto;	/* sysctl */
378 		last  = V_ipport_hilastauto;
379 		lastport = &pcbinfo->ipi_lasthi;
380 	} else if (inp->inp_flags & INP_LOWPORT) {
381 		error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT, 0);
382 		if (error)
383 			return (error);
384 		first = V_ipport_lowfirstauto;	/* 1023 */
385 		last  = V_ipport_lowlastauto;	/* 600 */
386 		lastport = &pcbinfo->ipi_lastlow;
387 	} else {
388 		first = V_ipport_firstauto;	/* sysctl */
389 		last  = V_ipport_lastauto;
390 		lastport = &pcbinfo->ipi_lastport;
391 	}
392 	/*
393 	 * For UDP, use random port allocation as long as the user
394 	 * allows it.  For TCP (and as of yet unknown) connections,
395 	 * use random port allocation only if the user allows it AND
396 	 * ipport_tick() allows it.
397 	 */
398 	if (V_ipport_randomized &&
399 		(!V_ipport_stoprandom || pcbinfo == &V_udbinfo))
400 		dorandom = 1;
401 	else
402 		dorandom = 0;
403 	/*
404 	 * It makes no sense to do random port allocation if
405 	 * we have the only port available.
406 	 */
407 	if (first == last)
408 		dorandom = 0;
409 	/* Make sure to not include UDP packets in the count. */
410 	if (pcbinfo != &V_udbinfo)
411 		V_ipport_tcpallocs++;
412 	/*
413 	 * Instead of having two loops further down counting up or down
414 	 * make sure that first is always <= last and go with only one
415 	 * code path implementing all logic.
416 	 */
417 	if (first > last) {
418 		aux = first;
419 		first = last;
420 		last = aux;
421 	}
422 
423 #ifdef INET
424 	/* Make the compiler happy. */
425 	laddr.s_addr = 0;
426 	if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) {
427 		KASSERT(laddrp != NULL, ("%s: laddrp NULL for v4 inp %p",
428 		    __func__, inp));
429 		laddr = *laddrp;
430 	}
431 #endif
432 	tmpinp = NULL;	/* Make compiler happy. */
433 	lport = *lportp;
434 
435 	if (dorandom)
436 		*lastport = first + (arc4random() % (last - first));
437 
438 	count = last - first;
439 
440 	do {
441 		if (count-- < 0)	/* completely used? */
442 			return (EADDRNOTAVAIL);
443 		++*lastport;
444 		if (*lastport < first || *lastport > last)
445 			*lastport = first;
446 		lport = htons(*lastport);
447 
448 #ifdef INET6
449 		if ((inp->inp_vflag & INP_IPV6) != 0)
450 			tmpinp = in6_pcblookup_local(pcbinfo,
451 			    &inp->in6p_laddr, lport, lookupflags, cred);
452 #endif
453 #if defined(INET) && defined(INET6)
454 		else
455 #endif
456 #ifdef INET
457 			tmpinp = in_pcblookup_local(pcbinfo, laddr,
458 			    lport, lookupflags, cred);
459 #endif
460 	} while (tmpinp != NULL);
461 
462 #ifdef INET
463 	if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4)
464 		laddrp->s_addr = laddr.s_addr;
465 #endif
466 	*lportp = lport;
467 
468 	return (0);
469 }
470 
471 /*
472  * Return cached socket options.
473  */
474 short
475 inp_so_options(const struct inpcb *inp)
476 {
477    short so_options;
478 
479    so_options = 0;
480 
481    if ((inp->inp_flags2 & INP_REUSEPORT) != 0)
482 	   so_options |= SO_REUSEPORT;
483    if ((inp->inp_flags2 & INP_REUSEADDR) != 0)
484 	   so_options |= SO_REUSEADDR;
485    return (so_options);
486 }
487 #endif /* INET || INET6 */
488 
489 #ifdef INET
490 /*
491  * Set up a bind operation on a PCB, performing port allocation
492  * as required, but do not actually modify the PCB. Callers can
493  * either complete the bind by setting inp_laddr/inp_lport and
494  * calling in_pcbinshash(), or they can just use the resulting
495  * port and address to authorise the sending of a once-off packet.
496  *
497  * On error, the values of *laddrp and *lportp are not changed.
498  */
499 int
500 in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp,
501     u_short *lportp, struct ucred *cred)
502 {
503 	struct socket *so = inp->inp_socket;
504 	struct sockaddr_in *sin;
505 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
506 	struct in_addr laddr;
507 	u_short lport = 0;
508 	int lookupflags = 0, reuseport = (so->so_options & SO_REUSEPORT);
509 	int error;
510 
511 	/*
512 	 * No state changes, so read locks are sufficient here.
513 	 */
514 	INP_LOCK_ASSERT(inp);
515 	INP_HASH_LOCK_ASSERT(pcbinfo);
516 
517 	if (TAILQ_EMPTY(&V_in_ifaddrhead)) /* XXX broken! */
518 		return (EADDRNOTAVAIL);
519 	laddr.s_addr = *laddrp;
520 	if (nam != NULL && laddr.s_addr != INADDR_ANY)
521 		return (EINVAL);
522 	if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) == 0)
523 		lookupflags = INPLOOKUP_WILDCARD;
524 	if (nam == NULL) {
525 		if ((error = prison_local_ip4(cred, &laddr)) != 0)
526 			return (error);
527 	} else {
528 		sin = (struct sockaddr_in *)nam;
529 		if (nam->sa_len != sizeof (*sin))
530 			return (EINVAL);
531 #ifdef notdef
532 		/*
533 		 * We should check the family, but old programs
534 		 * incorrectly fail to initialize it.
535 		 */
536 		if (sin->sin_family != AF_INET)
537 			return (EAFNOSUPPORT);
538 #endif
539 		error = prison_local_ip4(cred, &sin->sin_addr);
540 		if (error)
541 			return (error);
542 		if (sin->sin_port != *lportp) {
543 			/* Don't allow the port to change. */
544 			if (*lportp != 0)
545 				return (EINVAL);
546 			lport = sin->sin_port;
547 		}
548 		/* NB: lport is left as 0 if the port isn't being changed. */
549 		if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) {
550 			/*
551 			 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast;
552 			 * allow complete duplication of binding if
553 			 * SO_REUSEPORT is set, or if SO_REUSEADDR is set
554 			 * and a multicast address is bound on both
555 			 * new and duplicated sockets.
556 			 */
557 			if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) != 0)
558 				reuseport = SO_REUSEADDR|SO_REUSEPORT;
559 		} else if (sin->sin_addr.s_addr != INADDR_ANY) {
560 			sin->sin_port = 0;		/* yech... */
561 			bzero(&sin->sin_zero, sizeof(sin->sin_zero));
562 			/*
563 			 * Is the address a local IP address?
564 			 * If INP_BINDANY is set, then the socket may be bound
565 			 * to any endpoint address, local or not.
566 			 */
567 			if ((inp->inp_flags & INP_BINDANY) == 0 &&
568 			    ifa_ifwithaddr_check((struct sockaddr *)sin) == 0)
569 				return (EADDRNOTAVAIL);
570 		}
571 		laddr = sin->sin_addr;
572 		if (lport) {
573 			struct inpcb *t;
574 			struct tcptw *tw;
575 
576 			/* GROSS */
577 			if (ntohs(lport) <= V_ipport_reservedhigh &&
578 			    ntohs(lport) >= V_ipport_reservedlow &&
579 			    priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT,
580 			    0))
581 				return (EACCES);
582 			if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) &&
583 			    priv_check_cred(inp->inp_cred,
584 			    PRIV_NETINET_REUSEPORT, 0) != 0) {
585 				t = in_pcblookup_local(pcbinfo, sin->sin_addr,
586 				    lport, INPLOOKUP_WILDCARD, cred);
587 	/*
588 	 * XXX
589 	 * This entire block sorely needs a rewrite.
590 	 */
591 				if (t &&
592 				    ((t->inp_flags & INP_TIMEWAIT) == 0) &&
593 				    (so->so_type != SOCK_STREAM ||
594 				     ntohl(t->inp_faddr.s_addr) == INADDR_ANY) &&
595 				    (ntohl(sin->sin_addr.s_addr) != INADDR_ANY ||
596 				     ntohl(t->inp_laddr.s_addr) != INADDR_ANY ||
597 				     (t->inp_flags2 & INP_REUSEPORT) == 0) &&
598 				    (inp->inp_cred->cr_uid !=
599 				     t->inp_cred->cr_uid))
600 					return (EADDRINUSE);
601 			}
602 			t = in_pcblookup_local(pcbinfo, sin->sin_addr,
603 			    lport, lookupflags, cred);
604 			if (t && (t->inp_flags & INP_TIMEWAIT)) {
605 				/*
606 				 * XXXRW: If an incpb has had its timewait
607 				 * state recycled, we treat the address as
608 				 * being in use (for now).  This is better
609 				 * than a panic, but not desirable.
610 				 */
611 				tw = intotw(t);
612 				if (tw == NULL ||
613 				    (reuseport & tw->tw_so_options) == 0)
614 					return (EADDRINUSE);
615 			} else if (t && (reuseport & inp_so_options(t)) == 0) {
616 #ifdef INET6
617 				if (ntohl(sin->sin_addr.s_addr) !=
618 				    INADDR_ANY ||
619 				    ntohl(t->inp_laddr.s_addr) !=
620 				    INADDR_ANY ||
621 				    (inp->inp_vflag & INP_IPV6PROTO) == 0 ||
622 				    (t->inp_vflag & INP_IPV6PROTO) == 0)
623 #endif
624 				return (EADDRINUSE);
625 			}
626 		}
627 	}
628 	if (*lportp != 0)
629 		lport = *lportp;
630 	if (lport == 0) {
631 		error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags);
632 		if (error != 0)
633 			return (error);
634 
635 	}
636 	*laddrp = laddr.s_addr;
637 	*lportp = lport;
638 	return (0);
639 }
640 
641 /*
642  * Connect from a socket to a specified address.
643  * Both address and port must be specified in argument sin.
644  * If don't have a local address for this socket yet,
645  * then pick one.
646  */
647 int
648 in_pcbconnect_mbuf(struct inpcb *inp, struct sockaddr *nam,
649     struct ucred *cred, struct mbuf *m)
650 {
651 	u_short lport, fport;
652 	in_addr_t laddr, faddr;
653 	int anonport, error;
654 
655 	INP_WLOCK_ASSERT(inp);
656 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
657 
658 	lport = inp->inp_lport;
659 	laddr = inp->inp_laddr.s_addr;
660 	anonport = (lport == 0);
661 	error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport,
662 	    NULL, cred);
663 	if (error)
664 		return (error);
665 
666 	/* Do the initial binding of the local address if required. */
667 	if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) {
668 		inp->inp_lport = lport;
669 		inp->inp_laddr.s_addr = laddr;
670 		if (in_pcbinshash(inp) != 0) {
671 			inp->inp_laddr.s_addr = INADDR_ANY;
672 			inp->inp_lport = 0;
673 			return (EAGAIN);
674 		}
675 	}
676 
677 	/* Commit the remaining changes. */
678 	inp->inp_lport = lport;
679 	inp->inp_laddr.s_addr = laddr;
680 	inp->inp_faddr.s_addr = faddr;
681 	inp->inp_fport = fport;
682 	in_pcbrehash_mbuf(inp, m);
683 
684 	if (anonport)
685 		inp->inp_flags |= INP_ANONPORT;
686 	return (0);
687 }
688 
689 int
690 in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
691 {
692 
693 	return (in_pcbconnect_mbuf(inp, nam, cred, NULL));
694 }
695 
696 /*
697  * Do proper source address selection on an unbound socket in case
698  * of connect. Take jails into account as well.
699  */
700 static int
701 in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr,
702     struct ucred *cred)
703 {
704 	struct ifaddr *ifa;
705 	struct sockaddr *sa;
706 	struct sockaddr_in *sin;
707 	struct route sro;
708 	int error;
709 
710 	KASSERT(laddr != NULL, ("%s: laddr NULL", __func__));
711 
712 	/*
713 	 * Bypass source address selection and use the primary jail IP
714 	 * if requested.
715 	 */
716 	if (cred != NULL && !prison_saddrsel_ip4(cred, laddr))
717 		return (0);
718 
719 	error = 0;
720 	bzero(&sro, sizeof(sro));
721 
722 	sin = (struct sockaddr_in *)&sro.ro_dst;
723 	sin->sin_family = AF_INET;
724 	sin->sin_len = sizeof(struct sockaddr_in);
725 	sin->sin_addr.s_addr = faddr->s_addr;
726 
727 	/*
728 	 * If route is known our src addr is taken from the i/f,
729 	 * else punt.
730 	 *
731 	 * Find out route to destination.
732 	 */
733 	if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0)
734 		in_rtalloc_ign(&sro, 0, inp->inp_inc.inc_fibnum);
735 
736 	/*
737 	 * If we found a route, use the address corresponding to
738 	 * the outgoing interface.
739 	 *
740 	 * Otherwise assume faddr is reachable on a directly connected
741 	 * network and try to find a corresponding interface to take
742 	 * the source address from.
743 	 */
744 	if (sro.ro_rt == NULL || sro.ro_rt->rt_ifp == NULL) {
745 		struct in_ifaddr *ia;
746 		struct ifnet *ifp;
747 
748 		ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin));
749 		if (ia == NULL)
750 			ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0));
751 		if (ia == NULL) {
752 			error = ENETUNREACH;
753 			goto done;
754 		}
755 
756 		if (cred == NULL || !prison_flag(cred, PR_IP4)) {
757 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
758 			ifa_free(&ia->ia_ifa);
759 			goto done;
760 		}
761 
762 		ifp = ia->ia_ifp;
763 		ifa_free(&ia->ia_ifa);
764 		ia = NULL;
765 		IF_ADDR_RLOCK(ifp);
766 		TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
767 
768 			sa = ifa->ifa_addr;
769 			if (sa->sa_family != AF_INET)
770 				continue;
771 			sin = (struct sockaddr_in *)sa;
772 			if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
773 				ia = (struct in_ifaddr *)ifa;
774 				break;
775 			}
776 		}
777 		if (ia != NULL) {
778 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
779 			IF_ADDR_RUNLOCK(ifp);
780 			goto done;
781 		}
782 		IF_ADDR_RUNLOCK(ifp);
783 
784 		/* 3. As a last resort return the 'default' jail address. */
785 		error = prison_get_ip4(cred, laddr);
786 		goto done;
787 	}
788 
789 	/*
790 	 * If the outgoing interface on the route found is not
791 	 * a loopback interface, use the address from that interface.
792 	 * In case of jails do those three steps:
793 	 * 1. check if the interface address belongs to the jail. If so use it.
794 	 * 2. check if we have any address on the outgoing interface
795 	 *    belonging to this jail. If so use it.
796 	 * 3. as a last resort return the 'default' jail address.
797 	 */
798 	if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) {
799 		struct in_ifaddr *ia;
800 		struct ifnet *ifp;
801 
802 		/* If not jailed, use the default returned. */
803 		if (cred == NULL || !prison_flag(cred, PR_IP4)) {
804 			ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa;
805 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
806 			goto done;
807 		}
808 
809 		/* Jailed. */
810 		/* 1. Check if the iface address belongs to the jail. */
811 		sin = (struct sockaddr_in *)sro.ro_rt->rt_ifa->ifa_addr;
812 		if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
813 			ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa;
814 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
815 			goto done;
816 		}
817 
818 		/*
819 		 * 2. Check if we have any address on the outgoing interface
820 		 *    belonging to this jail.
821 		 */
822 		ia = NULL;
823 		ifp = sro.ro_rt->rt_ifp;
824 		IF_ADDR_RLOCK(ifp);
825 		TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
826 			sa = ifa->ifa_addr;
827 			if (sa->sa_family != AF_INET)
828 				continue;
829 			sin = (struct sockaddr_in *)sa;
830 			if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
831 				ia = (struct in_ifaddr *)ifa;
832 				break;
833 			}
834 		}
835 		if (ia != NULL) {
836 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
837 			IF_ADDR_RUNLOCK(ifp);
838 			goto done;
839 		}
840 		IF_ADDR_RUNLOCK(ifp);
841 
842 		/* 3. As a last resort return the 'default' jail address. */
843 		error = prison_get_ip4(cred, laddr);
844 		goto done;
845 	}
846 
847 	/*
848 	 * The outgoing interface is marked with 'loopback net', so a route
849 	 * to ourselves is here.
850 	 * Try to find the interface of the destination address and then
851 	 * take the address from there. That interface is not necessarily
852 	 * a loopback interface.
853 	 * In case of jails, check that it is an address of the jail
854 	 * and if we cannot find, fall back to the 'default' jail address.
855 	 */
856 	if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) {
857 		struct sockaddr_in sain;
858 		struct in_ifaddr *ia;
859 
860 		bzero(&sain, sizeof(struct sockaddr_in));
861 		sain.sin_family = AF_INET;
862 		sain.sin_len = sizeof(struct sockaddr_in);
863 		sain.sin_addr.s_addr = faddr->s_addr;
864 
865 		ia = ifatoia(ifa_ifwithdstaddr(sintosa(&sain)));
866 		if (ia == NULL)
867 			ia = ifatoia(ifa_ifwithnet(sintosa(&sain), 0));
868 		if (ia == NULL)
869 			ia = ifatoia(ifa_ifwithaddr(sintosa(&sain)));
870 
871 		if (cred == NULL || !prison_flag(cred, PR_IP4)) {
872 			if (ia == NULL) {
873 				error = ENETUNREACH;
874 				goto done;
875 			}
876 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
877 			ifa_free(&ia->ia_ifa);
878 			goto done;
879 		}
880 
881 		/* Jailed. */
882 		if (ia != NULL) {
883 			struct ifnet *ifp;
884 
885 			ifp = ia->ia_ifp;
886 			ifa_free(&ia->ia_ifa);
887 			ia = NULL;
888 			IF_ADDR_RLOCK(ifp);
889 			TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
890 
891 				sa = ifa->ifa_addr;
892 				if (sa->sa_family != AF_INET)
893 					continue;
894 				sin = (struct sockaddr_in *)sa;
895 				if (prison_check_ip4(cred,
896 				    &sin->sin_addr) == 0) {
897 					ia = (struct in_ifaddr *)ifa;
898 					break;
899 				}
900 			}
901 			if (ia != NULL) {
902 				laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
903 				IF_ADDR_RUNLOCK(ifp);
904 				goto done;
905 			}
906 			IF_ADDR_RUNLOCK(ifp);
907 		}
908 
909 		/* 3. As a last resort return the 'default' jail address. */
910 		error = prison_get_ip4(cred, laddr);
911 		goto done;
912 	}
913 
914 done:
915 	if (sro.ro_rt != NULL)
916 		RTFREE(sro.ro_rt);
917 	return (error);
918 }
919 
920 /*
921  * Set up for a connect from a socket to the specified address.
922  * On entry, *laddrp and *lportp should contain the current local
923  * address and port for the PCB; these are updated to the values
924  * that should be placed in inp_laddr and inp_lport to complete
925  * the connect.
926  *
927  * On success, *faddrp and *fportp will be set to the remote address
928  * and port. These are not updated in the error case.
929  *
930  * If the operation fails because the connection already exists,
931  * *oinpp will be set to the PCB of that connection so that the
932  * caller can decide to override it. In all other cases, *oinpp
933  * is set to NULL.
934  */
935 int
936 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam,
937     in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp,
938     struct inpcb **oinpp, struct ucred *cred)
939 {
940 	struct sockaddr_in *sin = (struct sockaddr_in *)nam;
941 	struct in_ifaddr *ia;
942 	struct inpcb *oinp;
943 	struct in_addr laddr, faddr;
944 	u_short lport, fport;
945 	int error;
946 
947 	/*
948 	 * Because a global state change doesn't actually occur here, a read
949 	 * lock is sufficient.
950 	 */
951 	INP_LOCK_ASSERT(inp);
952 	INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo);
953 
954 	if (oinpp != NULL)
955 		*oinpp = NULL;
956 	if (nam->sa_len != sizeof (*sin))
957 		return (EINVAL);
958 	if (sin->sin_family != AF_INET)
959 		return (EAFNOSUPPORT);
960 	if (sin->sin_port == 0)
961 		return (EADDRNOTAVAIL);
962 	laddr.s_addr = *laddrp;
963 	lport = *lportp;
964 	faddr = sin->sin_addr;
965 	fport = sin->sin_port;
966 
967 	if (!TAILQ_EMPTY(&V_in_ifaddrhead)) {
968 		/*
969 		 * If the destination address is INADDR_ANY,
970 		 * use the primary local address.
971 		 * If the supplied address is INADDR_BROADCAST,
972 		 * and the primary interface supports broadcast,
973 		 * choose the broadcast address for that interface.
974 		 */
975 		if (faddr.s_addr == INADDR_ANY) {
976 			IN_IFADDR_RLOCK();
977 			faddr =
978 			    IA_SIN(TAILQ_FIRST(&V_in_ifaddrhead))->sin_addr;
979 			IN_IFADDR_RUNLOCK();
980 			if (cred != NULL &&
981 			    (error = prison_get_ip4(cred, &faddr)) != 0)
982 				return (error);
983 		} else if (faddr.s_addr == (u_long)INADDR_BROADCAST) {
984 			IN_IFADDR_RLOCK();
985 			if (TAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags &
986 			    IFF_BROADCAST)
987 				faddr = satosin(&TAILQ_FIRST(
988 				    &V_in_ifaddrhead)->ia_broadaddr)->sin_addr;
989 			IN_IFADDR_RUNLOCK();
990 		}
991 	}
992 	if (laddr.s_addr == INADDR_ANY) {
993 		error = in_pcbladdr(inp, &faddr, &laddr, cred);
994 		/*
995 		 * If the destination address is multicast and an outgoing
996 		 * interface has been set as a multicast option, prefer the
997 		 * address of that interface as our source address.
998 		 */
999 		if (IN_MULTICAST(ntohl(faddr.s_addr)) &&
1000 		    inp->inp_moptions != NULL) {
1001 			struct ip_moptions *imo;
1002 			struct ifnet *ifp;
1003 
1004 			imo = inp->inp_moptions;
1005 			if (imo->imo_multicast_ifp != NULL) {
1006 				ifp = imo->imo_multicast_ifp;
1007 				IN_IFADDR_RLOCK();
1008 				TAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) {
1009 					if ((ia->ia_ifp == ifp) &&
1010 					    (cred == NULL ||
1011 					    prison_check_ip4(cred,
1012 					    &ia->ia_addr.sin_addr) == 0))
1013 						break;
1014 				}
1015 				if (ia == NULL)
1016 					error = EADDRNOTAVAIL;
1017 				else {
1018 					laddr = ia->ia_addr.sin_addr;
1019 					error = 0;
1020 				}
1021 				IN_IFADDR_RUNLOCK();
1022 			}
1023 		}
1024 		if (error)
1025 			return (error);
1026 	}
1027 	oinp = in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr, fport,
1028 	    laddr, lport, 0, NULL);
1029 	if (oinp != NULL) {
1030 		if (oinpp != NULL)
1031 			*oinpp = oinp;
1032 		return (EADDRINUSE);
1033 	}
1034 	if (lport == 0) {
1035 		error = in_pcbbind_setup(inp, NULL, &laddr.s_addr, &lport,
1036 		    cred);
1037 		if (error)
1038 			return (error);
1039 	}
1040 	*laddrp = laddr.s_addr;
1041 	*lportp = lport;
1042 	*faddrp = faddr.s_addr;
1043 	*fportp = fport;
1044 	return (0);
1045 }
1046 
1047 void
1048 in_pcbdisconnect(struct inpcb *inp)
1049 {
1050 
1051 	INP_WLOCK_ASSERT(inp);
1052 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
1053 
1054 	inp->inp_faddr.s_addr = INADDR_ANY;
1055 	inp->inp_fport = 0;
1056 	in_pcbrehash(inp);
1057 }
1058 #endif /* INET */
1059 
1060 /*
1061  * in_pcbdetach() is responsibe for disassociating a socket from an inpcb.
1062  * For most protocols, this will be invoked immediately prior to calling
1063  * in_pcbfree().  However, with TCP the inpcb may significantly outlive the
1064  * socket, in which case in_pcbfree() is deferred.
1065  */
1066 void
1067 in_pcbdetach(struct inpcb *inp)
1068 {
1069 
1070 	KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__));
1071 
1072 	inp->inp_socket->so_pcb = NULL;
1073 	inp->inp_socket = NULL;
1074 }
1075 
1076 /*
1077  * in_pcbref() bumps the reference count on an inpcb in order to maintain
1078  * stability of an inpcb pointer despite the inpcb lock being released.  This
1079  * is used in TCP when the inpcbinfo lock needs to be acquired or upgraded,
1080  * but where the inpcb lock may already held, or when acquiring a reference
1081  * via a pcbgroup.
1082  *
1083  * in_pcbref() should be used only to provide brief memory stability, and
1084  * must always be followed by a call to INP_WLOCK() and in_pcbrele() to
1085  * garbage collect the inpcb if it has been in_pcbfree()'d from another
1086  * context.  Until in_pcbrele() has returned that the inpcb is still valid,
1087  * lock and rele are the *only* safe operations that may be performed on the
1088  * inpcb.
1089  *
1090  * While the inpcb will not be freed, releasing the inpcb lock means that the
1091  * connection's state may change, so the caller should be careful to
1092  * revalidate any cached state on reacquiring the lock.  Drop the reference
1093  * using in_pcbrele().
1094  */
1095 void
1096 in_pcbref(struct inpcb *inp)
1097 {
1098 
1099 	KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1100 
1101 	refcount_acquire(&inp->inp_refcount);
1102 }
1103 
1104 /*
1105  * Drop a refcount on an inpcb elevated using in_pcbref(); because a call to
1106  * in_pcbfree() may have been made between in_pcbref() and in_pcbrele(), we
1107  * return a flag indicating whether or not the inpcb remains valid.  If it is
1108  * valid, we return with the inpcb lock held.
1109  *
1110  * Notice that, unlike in_pcbref(), the inpcb lock must be held to drop a
1111  * reference on an inpcb.  Historically more work was done here (actually, in
1112  * in_pcbfree_internal()) but has been moved to in_pcbfree() to avoid the
1113  * need for the pcbinfo lock in in_pcbrele().  Deferring the free is entirely
1114  * about memory stability (and continued use of the write lock).
1115  */
1116 int
1117 in_pcbrele_rlocked(struct inpcb *inp)
1118 {
1119 	struct inpcbinfo *pcbinfo;
1120 
1121 	KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1122 
1123 	INP_RLOCK_ASSERT(inp);
1124 
1125 	if (refcount_release(&inp->inp_refcount) == 0) {
1126 		/*
1127 		 * If the inpcb has been freed, let the caller know, even if
1128 		 * this isn't the last reference.
1129 		 */
1130 		if (inp->inp_flags2 & INP_FREED) {
1131 			INP_RUNLOCK(inp);
1132 			return (1);
1133 		}
1134 		return (0);
1135 	}
1136 
1137 	KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1138 
1139 	INP_RUNLOCK(inp);
1140 	pcbinfo = inp->inp_pcbinfo;
1141 	uma_zfree(pcbinfo->ipi_zone, inp);
1142 	return (1);
1143 }
1144 
1145 int
1146 in_pcbrele_wlocked(struct inpcb *inp)
1147 {
1148 	struct inpcbinfo *pcbinfo;
1149 
1150 	KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1151 
1152 	INP_WLOCK_ASSERT(inp);
1153 
1154 	if (refcount_release(&inp->inp_refcount) == 0)
1155 		return (0);
1156 
1157 	KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1158 
1159 	INP_WUNLOCK(inp);
1160 	pcbinfo = inp->inp_pcbinfo;
1161 	uma_zfree(pcbinfo->ipi_zone, inp);
1162 	return (1);
1163 }
1164 
1165 /*
1166  * Temporary wrapper.
1167  */
1168 int
1169 in_pcbrele(struct inpcb *inp)
1170 {
1171 
1172 	return (in_pcbrele_wlocked(inp));
1173 }
1174 
1175 /*
1176  * Unconditionally schedule an inpcb to be freed by decrementing its
1177  * reference count, which should occur only after the inpcb has been detached
1178  * from its socket.  If another thread holds a temporary reference (acquired
1179  * using in_pcbref()) then the free is deferred until that reference is
1180  * released using in_pcbrele(), but the inpcb is still unlocked.  Almost all
1181  * work, including removal from global lists, is done in this context, where
1182  * the pcbinfo lock is held.
1183  */
1184 void
1185 in_pcbfree(struct inpcb *inp)
1186 {
1187 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1188 
1189 	KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1190 
1191 	INP_INFO_WLOCK_ASSERT(pcbinfo);
1192 	INP_WLOCK_ASSERT(inp);
1193 
1194 	/* XXXRW: Do as much as possible here. */
1195 #ifdef IPSEC
1196 	if (inp->inp_sp != NULL)
1197 		ipsec_delete_pcbpolicy(inp);
1198 #endif
1199 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
1200 	in_pcbremlists(inp);
1201 #ifdef INET6
1202 	if (inp->inp_vflag & INP_IPV6PROTO) {
1203 		ip6_freepcbopts(inp->in6p_outputopts);
1204 		if (inp->in6p_moptions != NULL)
1205 			ip6_freemoptions(inp->in6p_moptions);
1206 	}
1207 #endif
1208 	if (inp->inp_options)
1209 		(void)m_free(inp->inp_options);
1210 #ifdef INET
1211 	if (inp->inp_moptions != NULL)
1212 		inp_freemoptions(inp->inp_moptions);
1213 #endif
1214 	inp->inp_vflag = 0;
1215 	inp->inp_flags2 |= INP_FREED;
1216 	crfree(inp->inp_cred);
1217 #ifdef MAC
1218 	mac_inpcb_destroy(inp);
1219 #endif
1220 	if (!in_pcbrele_wlocked(inp))
1221 		INP_WUNLOCK(inp);
1222 }
1223 
1224 /*
1225  * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and
1226  * port reservation, and preventing it from being returned by inpcb lookups.
1227  *
1228  * It is used by TCP to mark an inpcb as unused and avoid future packet
1229  * delivery or event notification when a socket remains open but TCP has
1230  * closed.  This might occur as a result of a shutdown()-initiated TCP close
1231  * or a RST on the wire, and allows the port binding to be reused while still
1232  * maintaining the invariant that so_pcb always points to a valid inpcb until
1233  * in_pcbdetach().
1234  *
1235  * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by
1236  * in_pcbnotifyall() and in_pcbpurgeif0()?
1237  */
1238 void
1239 in_pcbdrop(struct inpcb *inp)
1240 {
1241 
1242 	INP_WLOCK_ASSERT(inp);
1243 
1244 	/*
1245 	 * XXXRW: Possibly we should protect the setting of INP_DROPPED with
1246 	 * the hash lock...?
1247 	 */
1248 	inp->inp_flags |= INP_DROPPED;
1249 	if (inp->inp_flags & INP_INHASHLIST) {
1250 		struct inpcbport *phd = inp->inp_phd;
1251 
1252 		INP_HASH_WLOCK(inp->inp_pcbinfo);
1253 		LIST_REMOVE(inp, inp_hash);
1254 		LIST_REMOVE(inp, inp_portlist);
1255 		if (LIST_FIRST(&phd->phd_pcblist) == NULL) {
1256 			LIST_REMOVE(phd, phd_hash);
1257 			free(phd, M_PCB);
1258 		}
1259 		INP_HASH_WUNLOCK(inp->inp_pcbinfo);
1260 		inp->inp_flags &= ~INP_INHASHLIST;
1261 #ifdef PCBGROUP
1262 		in_pcbgroup_remove(inp);
1263 #endif
1264 	}
1265 }
1266 
1267 #ifdef INET
1268 /*
1269  * Common routines to return the socket addresses associated with inpcbs.
1270  */
1271 struct sockaddr *
1272 in_sockaddr(in_port_t port, struct in_addr *addr_p)
1273 {
1274 	struct sockaddr_in *sin;
1275 
1276 	sin = malloc(sizeof *sin, M_SONAME,
1277 		M_WAITOK | M_ZERO);
1278 	sin->sin_family = AF_INET;
1279 	sin->sin_len = sizeof(*sin);
1280 	sin->sin_addr = *addr_p;
1281 	sin->sin_port = port;
1282 
1283 	return (struct sockaddr *)sin;
1284 }
1285 
1286 int
1287 in_getsockaddr(struct socket *so, struct sockaddr **nam)
1288 {
1289 	struct inpcb *inp;
1290 	struct in_addr addr;
1291 	in_port_t port;
1292 
1293 	inp = sotoinpcb(so);
1294 	KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL"));
1295 
1296 	INP_RLOCK(inp);
1297 	port = inp->inp_lport;
1298 	addr = inp->inp_laddr;
1299 	INP_RUNLOCK(inp);
1300 
1301 	*nam = in_sockaddr(port, &addr);
1302 	return 0;
1303 }
1304 
1305 int
1306 in_getpeeraddr(struct socket *so, struct sockaddr **nam)
1307 {
1308 	struct inpcb *inp;
1309 	struct in_addr addr;
1310 	in_port_t port;
1311 
1312 	inp = sotoinpcb(so);
1313 	KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL"));
1314 
1315 	INP_RLOCK(inp);
1316 	port = inp->inp_fport;
1317 	addr = inp->inp_faddr;
1318 	INP_RUNLOCK(inp);
1319 
1320 	*nam = in_sockaddr(port, &addr);
1321 	return 0;
1322 }
1323 
1324 void
1325 in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno,
1326     struct inpcb *(*notify)(struct inpcb *, int))
1327 {
1328 	struct inpcb *inp, *inp_temp;
1329 
1330 	INP_INFO_WLOCK(pcbinfo);
1331 	LIST_FOREACH_SAFE(inp, pcbinfo->ipi_listhead, inp_list, inp_temp) {
1332 		INP_WLOCK(inp);
1333 #ifdef INET6
1334 		if ((inp->inp_vflag & INP_IPV4) == 0) {
1335 			INP_WUNLOCK(inp);
1336 			continue;
1337 		}
1338 #endif
1339 		if (inp->inp_faddr.s_addr != faddr.s_addr ||
1340 		    inp->inp_socket == NULL) {
1341 			INP_WUNLOCK(inp);
1342 			continue;
1343 		}
1344 		if ((*notify)(inp, errno))
1345 			INP_WUNLOCK(inp);
1346 	}
1347 	INP_INFO_WUNLOCK(pcbinfo);
1348 }
1349 
1350 void
1351 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp)
1352 {
1353 	struct inpcb *inp;
1354 	struct ip_moptions *imo;
1355 	int i, gap;
1356 
1357 	INP_INFO_RLOCK(pcbinfo);
1358 	LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) {
1359 		INP_WLOCK(inp);
1360 		imo = inp->inp_moptions;
1361 		if ((inp->inp_vflag & INP_IPV4) &&
1362 		    imo != NULL) {
1363 			/*
1364 			 * Unselect the outgoing interface if it is being
1365 			 * detached.
1366 			 */
1367 			if (imo->imo_multicast_ifp == ifp)
1368 				imo->imo_multicast_ifp = NULL;
1369 
1370 			/*
1371 			 * Drop multicast group membership if we joined
1372 			 * through the interface being detached.
1373 			 */
1374 			for (i = 0, gap = 0; i < imo->imo_num_memberships;
1375 			    i++) {
1376 				if (imo->imo_membership[i]->inm_ifp == ifp) {
1377 					in_delmulti(imo->imo_membership[i]);
1378 					gap++;
1379 				} else if (gap != 0)
1380 					imo->imo_membership[i - gap] =
1381 					    imo->imo_membership[i];
1382 			}
1383 			imo->imo_num_memberships -= gap;
1384 		}
1385 		INP_WUNLOCK(inp);
1386 	}
1387 	INP_INFO_RUNLOCK(pcbinfo);
1388 }
1389 
1390 /*
1391  * Lookup a PCB based on the local address and port.  Caller must hold the
1392  * hash lock.  No inpcb locks or references are acquired.
1393  */
1394 #define INP_LOOKUP_MAPPED_PCB_COST	3
1395 struct inpcb *
1396 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr,
1397     u_short lport, int lookupflags, struct ucred *cred)
1398 {
1399 	struct inpcb *inp;
1400 #ifdef INET6
1401 	int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST;
1402 #else
1403 	int matchwild = 3;
1404 #endif
1405 	int wildcard;
1406 
1407 	KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0,
1408 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
1409 
1410 	INP_HASH_LOCK_ASSERT(pcbinfo);
1411 
1412 	if ((lookupflags & INPLOOKUP_WILDCARD) == 0) {
1413 		struct inpcbhead *head;
1414 		/*
1415 		 * Look for an unconnected (wildcard foreign addr) PCB that
1416 		 * matches the local address and port we're looking for.
1417 		 */
1418 		head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
1419 		    0, pcbinfo->ipi_hashmask)];
1420 		LIST_FOREACH(inp, head, inp_hash) {
1421 #ifdef INET6
1422 			/* XXX inp locking */
1423 			if ((inp->inp_vflag & INP_IPV4) == 0)
1424 				continue;
1425 #endif
1426 			if (inp->inp_faddr.s_addr == INADDR_ANY &&
1427 			    inp->inp_laddr.s_addr == laddr.s_addr &&
1428 			    inp->inp_lport == lport) {
1429 				/*
1430 				 * Found?
1431 				 */
1432 				if (cred == NULL ||
1433 				    prison_equal_ip4(cred->cr_prison,
1434 					inp->inp_cred->cr_prison))
1435 					return (inp);
1436 			}
1437 		}
1438 		/*
1439 		 * Not found.
1440 		 */
1441 		return (NULL);
1442 	} else {
1443 		struct inpcbporthead *porthash;
1444 		struct inpcbport *phd;
1445 		struct inpcb *match = NULL;
1446 		/*
1447 		 * Best fit PCB lookup.
1448 		 *
1449 		 * First see if this local port is in use by looking on the
1450 		 * port hash list.
1451 		 */
1452 		porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport,
1453 		    pcbinfo->ipi_porthashmask)];
1454 		LIST_FOREACH(phd, porthash, phd_hash) {
1455 			if (phd->phd_port == lport)
1456 				break;
1457 		}
1458 		if (phd != NULL) {
1459 			/*
1460 			 * Port is in use by one or more PCBs. Look for best
1461 			 * fit.
1462 			 */
1463 			LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) {
1464 				wildcard = 0;
1465 				if (cred != NULL &&
1466 				    !prison_equal_ip4(inp->inp_cred->cr_prison,
1467 					cred->cr_prison))
1468 					continue;
1469 #ifdef INET6
1470 				/* XXX inp locking */
1471 				if ((inp->inp_vflag & INP_IPV4) == 0)
1472 					continue;
1473 				/*
1474 				 * We never select the PCB that has
1475 				 * INP_IPV6 flag and is bound to :: if
1476 				 * we have another PCB which is bound
1477 				 * to 0.0.0.0.  If a PCB has the
1478 				 * INP_IPV6 flag, then we set its cost
1479 				 * higher than IPv4 only PCBs.
1480 				 *
1481 				 * Note that the case only happens
1482 				 * when a socket is bound to ::, under
1483 				 * the condition that the use of the
1484 				 * mapped address is allowed.
1485 				 */
1486 				if ((inp->inp_vflag & INP_IPV6) != 0)
1487 					wildcard += INP_LOOKUP_MAPPED_PCB_COST;
1488 #endif
1489 				if (inp->inp_faddr.s_addr != INADDR_ANY)
1490 					wildcard++;
1491 				if (inp->inp_laddr.s_addr != INADDR_ANY) {
1492 					if (laddr.s_addr == INADDR_ANY)
1493 						wildcard++;
1494 					else if (inp->inp_laddr.s_addr != laddr.s_addr)
1495 						continue;
1496 				} else {
1497 					if (laddr.s_addr != INADDR_ANY)
1498 						wildcard++;
1499 				}
1500 				if (wildcard < matchwild) {
1501 					match = inp;
1502 					matchwild = wildcard;
1503 					if (matchwild == 0)
1504 						break;
1505 				}
1506 			}
1507 		}
1508 		return (match);
1509 	}
1510 }
1511 #undef INP_LOOKUP_MAPPED_PCB_COST
1512 
1513 #ifdef PCBGROUP
1514 /*
1515  * Lookup PCB in hash list, using pcbgroup tables.
1516  */
1517 static struct inpcb *
1518 in_pcblookup_group(struct inpcbinfo *pcbinfo, struct inpcbgroup *pcbgroup,
1519     struct in_addr faddr, u_int fport_arg, struct in_addr laddr,
1520     u_int lport_arg, int lookupflags, struct ifnet *ifp)
1521 {
1522 	struct inpcbhead *head;
1523 	struct inpcb *inp, *tmpinp;
1524 	u_short fport = fport_arg, lport = lport_arg;
1525 
1526 	/*
1527 	 * First look for an exact match.
1528 	 */
1529 	tmpinp = NULL;
1530 	INP_GROUP_LOCK(pcbgroup);
1531 	head = &pcbgroup->ipg_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport,
1532 	    pcbgroup->ipg_hashmask)];
1533 	LIST_FOREACH(inp, head, inp_pcbgrouphash) {
1534 #ifdef INET6
1535 		/* XXX inp locking */
1536 		if ((inp->inp_vflag & INP_IPV4) == 0)
1537 			continue;
1538 #endif
1539 		if (inp->inp_faddr.s_addr == faddr.s_addr &&
1540 		    inp->inp_laddr.s_addr == laddr.s_addr &&
1541 		    inp->inp_fport == fport &&
1542 		    inp->inp_lport == lport) {
1543 			/*
1544 			 * XXX We should be able to directly return
1545 			 * the inp here, without any checks.
1546 			 * Well unless both bound with SO_REUSEPORT?
1547 			 */
1548 			if (prison_flag(inp->inp_cred, PR_IP4))
1549 				goto found;
1550 			if (tmpinp == NULL)
1551 				tmpinp = inp;
1552 		}
1553 	}
1554 	if (tmpinp != NULL) {
1555 		inp = tmpinp;
1556 		goto found;
1557 	}
1558 
1559 	/*
1560 	 * Then look for a wildcard match, if requested.
1561 	 */
1562 	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
1563 		struct inpcb *local_wild = NULL, *local_exact = NULL;
1564 #ifdef INET6
1565 		struct inpcb *local_wild_mapped = NULL;
1566 #endif
1567 		struct inpcb *jail_wild = NULL;
1568 		struct inpcbhead *head;
1569 		int injail;
1570 
1571 		/*
1572 		 * Order of socket selection - we always prefer jails.
1573 		 *      1. jailed, non-wild.
1574 		 *      2. jailed, wild.
1575 		 *      3. non-jailed, non-wild.
1576 		 *      4. non-jailed, wild.
1577 		 */
1578 		head = &pcbinfo->ipi_wildbase[INP_PCBHASH(INADDR_ANY, lport,
1579 		    0, pcbinfo->ipi_wildmask)];
1580 		LIST_FOREACH(inp, head, inp_pcbgroup_wild) {
1581 #ifdef INET6
1582 			/* XXX inp locking */
1583 			if ((inp->inp_vflag & INP_IPV4) == 0)
1584 				continue;
1585 #endif
1586 			if (inp->inp_faddr.s_addr != INADDR_ANY ||
1587 			    inp->inp_lport != lport)
1588 				continue;
1589 
1590 			/* XXX inp locking */
1591 			if (ifp && ifp->if_type == IFT_FAITH &&
1592 			    (inp->inp_flags & INP_FAITH) == 0)
1593 				continue;
1594 
1595 			injail = prison_flag(inp->inp_cred, PR_IP4);
1596 			if (injail) {
1597 				if (prison_check_ip4(inp->inp_cred,
1598 				    &laddr) != 0)
1599 					continue;
1600 			} else {
1601 				if (local_exact != NULL)
1602 					continue;
1603 			}
1604 
1605 			if (inp->inp_laddr.s_addr == laddr.s_addr) {
1606 				if (injail)
1607 					goto found;
1608 				else
1609 					local_exact = inp;
1610 			} else if (inp->inp_laddr.s_addr == INADDR_ANY) {
1611 #ifdef INET6
1612 				/* XXX inp locking, NULL check */
1613 				if (inp->inp_vflag & INP_IPV6PROTO)
1614 					local_wild_mapped = inp;
1615 				else
1616 #endif
1617 					if (injail)
1618 						jail_wild = inp;
1619 					else
1620 						local_wild = inp;
1621 			}
1622 		} /* LIST_FOREACH */
1623 		inp = jail_wild;
1624 		if (inp == NULL)
1625 			inp = local_exact;
1626 		if (inp == NULL)
1627 			inp = local_wild;
1628 #ifdef INET6
1629 		if (inp == NULL)
1630 			inp = local_wild_mapped;
1631 #endif
1632 		if (inp != NULL)
1633 			goto found;
1634 	} /* if (lookupflags & INPLOOKUP_WILDCARD) */
1635 	INP_GROUP_UNLOCK(pcbgroup);
1636 	return (NULL);
1637 
1638 found:
1639 	in_pcbref(inp);
1640 	INP_GROUP_UNLOCK(pcbgroup);
1641 	if (lookupflags & INPLOOKUP_WLOCKPCB) {
1642 		INP_WLOCK(inp);
1643 		if (in_pcbrele_wlocked(inp))
1644 			return (NULL);
1645 	} else if (lookupflags & INPLOOKUP_RLOCKPCB) {
1646 		INP_RLOCK(inp);
1647 		if (in_pcbrele_rlocked(inp))
1648 			return (NULL);
1649 	} else
1650 		panic("%s: locking bug", __func__);
1651 	return (inp);
1652 }
1653 #endif /* PCBGROUP */
1654 
1655 /*
1656  * Lookup PCB in hash list, using pcbinfo tables.  This variation assumes
1657  * that the caller has locked the hash list, and will not perform any further
1658  * locking or reference operations on either the hash list or the connection.
1659  */
1660 static struct inpcb *
1661 in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr,
1662     u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags,
1663     struct ifnet *ifp)
1664 {
1665 	struct inpcbhead *head;
1666 	struct inpcb *inp, *tmpinp;
1667 	u_short fport = fport_arg, lport = lport_arg;
1668 
1669 	KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0,
1670 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
1671 
1672 	INP_HASH_LOCK_ASSERT(pcbinfo);
1673 
1674 	/*
1675 	 * First look for an exact match.
1676 	 */
1677 	tmpinp = NULL;
1678 	head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport,
1679 	    pcbinfo->ipi_hashmask)];
1680 	LIST_FOREACH(inp, head, inp_hash) {
1681 #ifdef INET6
1682 		/* XXX inp locking */
1683 		if ((inp->inp_vflag & INP_IPV4) == 0)
1684 			continue;
1685 #endif
1686 		if (inp->inp_faddr.s_addr == faddr.s_addr &&
1687 		    inp->inp_laddr.s_addr == laddr.s_addr &&
1688 		    inp->inp_fport == fport &&
1689 		    inp->inp_lport == lport) {
1690 			/*
1691 			 * XXX We should be able to directly return
1692 			 * the inp here, without any checks.
1693 			 * Well unless both bound with SO_REUSEPORT?
1694 			 */
1695 			if (prison_flag(inp->inp_cred, PR_IP4))
1696 				return (inp);
1697 			if (tmpinp == NULL)
1698 				tmpinp = inp;
1699 		}
1700 	}
1701 	if (tmpinp != NULL)
1702 		return (tmpinp);
1703 
1704 	/*
1705 	 * Then look for a wildcard match, if requested.
1706 	 */
1707 	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
1708 		struct inpcb *local_wild = NULL, *local_exact = NULL;
1709 #ifdef INET6
1710 		struct inpcb *local_wild_mapped = NULL;
1711 #endif
1712 		struct inpcb *jail_wild = NULL;
1713 		int injail;
1714 
1715 		/*
1716 		 * Order of socket selection - we always prefer jails.
1717 		 *      1. jailed, non-wild.
1718 		 *      2. jailed, wild.
1719 		 *      3. non-jailed, non-wild.
1720 		 *      4. non-jailed, wild.
1721 		 */
1722 
1723 		head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
1724 		    0, pcbinfo->ipi_hashmask)];
1725 		LIST_FOREACH(inp, head, inp_hash) {
1726 #ifdef INET6
1727 			/* XXX inp locking */
1728 			if ((inp->inp_vflag & INP_IPV4) == 0)
1729 				continue;
1730 #endif
1731 			if (inp->inp_faddr.s_addr != INADDR_ANY ||
1732 			    inp->inp_lport != lport)
1733 				continue;
1734 
1735 			/* XXX inp locking */
1736 			if (ifp && ifp->if_type == IFT_FAITH &&
1737 			    (inp->inp_flags & INP_FAITH) == 0)
1738 				continue;
1739 
1740 			injail = prison_flag(inp->inp_cred, PR_IP4);
1741 			if (injail) {
1742 				if (prison_check_ip4(inp->inp_cred,
1743 				    &laddr) != 0)
1744 					continue;
1745 			} else {
1746 				if (local_exact != NULL)
1747 					continue;
1748 			}
1749 
1750 			if (inp->inp_laddr.s_addr == laddr.s_addr) {
1751 				if (injail)
1752 					return (inp);
1753 				else
1754 					local_exact = inp;
1755 			} else if (inp->inp_laddr.s_addr == INADDR_ANY) {
1756 #ifdef INET6
1757 				/* XXX inp locking, NULL check */
1758 				if (inp->inp_vflag & INP_IPV6PROTO)
1759 					local_wild_mapped = inp;
1760 				else
1761 #endif
1762 					if (injail)
1763 						jail_wild = inp;
1764 					else
1765 						local_wild = inp;
1766 			}
1767 		} /* LIST_FOREACH */
1768 		if (jail_wild != NULL)
1769 			return (jail_wild);
1770 		if (local_exact != NULL)
1771 			return (local_exact);
1772 		if (local_wild != NULL)
1773 			return (local_wild);
1774 #ifdef INET6
1775 		if (local_wild_mapped != NULL)
1776 			return (local_wild_mapped);
1777 #endif
1778 	} /* if ((lookupflags & INPLOOKUP_WILDCARD) != 0) */
1779 
1780 	return (NULL);
1781 }
1782 
1783 /*
1784  * Lookup PCB in hash list, using pcbinfo tables.  This variation locks the
1785  * hash list lock, and will return the inpcb locked (i.e., requires
1786  * INPLOOKUP_LOCKPCB).
1787  */
1788 static struct inpcb *
1789 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr,
1790     u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
1791     struct ifnet *ifp)
1792 {
1793 	struct inpcb *inp;
1794 
1795 	INP_HASH_RLOCK(pcbinfo);
1796 	inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport,
1797 	    (lookupflags & ~(INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)), ifp);
1798 	if (inp != NULL) {
1799 		in_pcbref(inp);
1800 		INP_HASH_RUNLOCK(pcbinfo);
1801 		if (lookupflags & INPLOOKUP_WLOCKPCB) {
1802 			INP_WLOCK(inp);
1803 			if (in_pcbrele_wlocked(inp))
1804 				return (NULL);
1805 		} else if (lookupflags & INPLOOKUP_RLOCKPCB) {
1806 			INP_RLOCK(inp);
1807 			if (in_pcbrele_rlocked(inp))
1808 				return (NULL);
1809 		} else
1810 			panic("%s: locking bug", __func__);
1811 	} else
1812 		INP_HASH_RUNLOCK(pcbinfo);
1813 	return (inp);
1814 }
1815 
1816 /*
1817  * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf
1818  * from which a pre-calculated hash value may be extracted.
1819  *
1820  * Possibly more of this logic should be in in_pcbgroup.c.
1821  */
1822 struct inpcb *
1823 in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport,
1824     struct in_addr laddr, u_int lport, int lookupflags, struct ifnet *ifp)
1825 {
1826 #if defined(PCBGROUP)
1827 	struct inpcbgroup *pcbgroup;
1828 #endif
1829 
1830 	KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0,
1831 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
1832 	KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
1833 	    ("%s: LOCKPCB not set", __func__));
1834 
1835 #if defined(PCBGROUP)
1836 	if (in_pcbgroup_enabled(pcbinfo)) {
1837 		pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr,
1838 		    fport);
1839 		return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport,
1840 		    laddr, lport, lookupflags, ifp));
1841 	}
1842 #endif
1843 	return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport,
1844 	    lookupflags, ifp));
1845 }
1846 
1847 struct inpcb *
1848 in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr,
1849     u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
1850     struct ifnet *ifp, struct mbuf *m)
1851 {
1852 #ifdef PCBGROUP
1853 	struct inpcbgroup *pcbgroup;
1854 #endif
1855 
1856 	KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0,
1857 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
1858 	KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
1859 	    ("%s: LOCKPCB not set", __func__));
1860 
1861 #ifdef PCBGROUP
1862 	if (in_pcbgroup_enabled(pcbinfo)) {
1863 		pcbgroup = in_pcbgroup_byhash(pcbinfo, M_HASHTYPE_GET(m),
1864 		    m->m_pkthdr.flowid);
1865 		if (pcbgroup != NULL)
1866 			return (in_pcblookup_group(pcbinfo, pcbgroup, faddr,
1867 			    fport, laddr, lport, lookupflags, ifp));
1868 		pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr,
1869 		    fport);
1870 		return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport,
1871 		    laddr, lport, lookupflags, ifp));
1872 	}
1873 #endif
1874 	return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport,
1875 	    lookupflags, ifp));
1876 }
1877 #endif /* INET */
1878 
1879 /*
1880  * Insert PCB onto various hash lists.
1881  */
1882 static int
1883 in_pcbinshash_internal(struct inpcb *inp, int do_pcbgroup_update)
1884 {
1885 	struct inpcbhead *pcbhash;
1886 	struct inpcbporthead *pcbporthash;
1887 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1888 	struct inpcbport *phd;
1889 	u_int32_t hashkey_faddr;
1890 
1891 	INP_WLOCK_ASSERT(inp);
1892 	INP_HASH_WLOCK_ASSERT(pcbinfo);
1893 
1894 	KASSERT((inp->inp_flags & INP_INHASHLIST) == 0,
1895 	    ("in_pcbinshash: INP_INHASHLIST"));
1896 
1897 #ifdef INET6
1898 	if (inp->inp_vflag & INP_IPV6)
1899 		hashkey_faddr = inp->in6p_faddr.s6_addr32[3] /* XXX */;
1900 	else
1901 #endif
1902 	hashkey_faddr = inp->inp_faddr.s_addr;
1903 
1904 	pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
1905 		 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
1906 
1907 	pcbporthash = &pcbinfo->ipi_porthashbase[
1908 	    INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)];
1909 
1910 	/*
1911 	 * Go through port list and look for a head for this lport.
1912 	 */
1913 	LIST_FOREACH(phd, pcbporthash, phd_hash) {
1914 		if (phd->phd_port == inp->inp_lport)
1915 			break;
1916 	}
1917 	/*
1918 	 * If none exists, malloc one and tack it on.
1919 	 */
1920 	if (phd == NULL) {
1921 		phd = malloc(sizeof(struct inpcbport), M_PCB, M_NOWAIT);
1922 		if (phd == NULL) {
1923 			return (ENOBUFS); /* XXX */
1924 		}
1925 		phd->phd_port = inp->inp_lport;
1926 		LIST_INIT(&phd->phd_pcblist);
1927 		LIST_INSERT_HEAD(pcbporthash, phd, phd_hash);
1928 	}
1929 	inp->inp_phd = phd;
1930 	LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist);
1931 	LIST_INSERT_HEAD(pcbhash, inp, inp_hash);
1932 	inp->inp_flags |= INP_INHASHLIST;
1933 #ifdef PCBGROUP
1934 	if (do_pcbgroup_update)
1935 		in_pcbgroup_update(inp);
1936 #endif
1937 	return (0);
1938 }
1939 
1940 /*
1941  * For now, there are two public interfaces to insert an inpcb into the hash
1942  * lists -- one that does update pcbgroups, and one that doesn't.  The latter
1943  * is used only in the TCP syncache, where in_pcbinshash is called before the
1944  * full 4-tuple is set for the inpcb, and we don't want to install in the
1945  * pcbgroup until later.
1946  *
1947  * XXXRW: This seems like a misfeature.  in_pcbinshash should always update
1948  * connection groups, and partially initialised inpcbs should not be exposed
1949  * to either reservation hash tables or pcbgroups.
1950  */
1951 int
1952 in_pcbinshash(struct inpcb *inp)
1953 {
1954 
1955 	return (in_pcbinshash_internal(inp, 1));
1956 }
1957 
1958 int
1959 in_pcbinshash_nopcbgroup(struct inpcb *inp)
1960 {
1961 
1962 	return (in_pcbinshash_internal(inp, 0));
1963 }
1964 
1965 /*
1966  * Move PCB to the proper hash bucket when { faddr, fport } have  been
1967  * changed. NOTE: This does not handle the case of the lport changing (the
1968  * hashed port list would have to be updated as well), so the lport must
1969  * not change after in_pcbinshash() has been called.
1970  */
1971 void
1972 in_pcbrehash_mbuf(struct inpcb *inp, struct mbuf *m)
1973 {
1974 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1975 	struct inpcbhead *head;
1976 	u_int32_t hashkey_faddr;
1977 
1978 	INP_WLOCK_ASSERT(inp);
1979 	INP_HASH_WLOCK_ASSERT(pcbinfo);
1980 
1981 	KASSERT(inp->inp_flags & INP_INHASHLIST,
1982 	    ("in_pcbrehash: !INP_INHASHLIST"));
1983 
1984 #ifdef INET6
1985 	if (inp->inp_vflag & INP_IPV6)
1986 		hashkey_faddr = inp->in6p_faddr.s6_addr32[3] /* XXX */;
1987 	else
1988 #endif
1989 	hashkey_faddr = inp->inp_faddr.s_addr;
1990 
1991 	head = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
1992 		inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
1993 
1994 	LIST_REMOVE(inp, inp_hash);
1995 	LIST_INSERT_HEAD(head, inp, inp_hash);
1996 
1997 #ifdef PCBGROUP
1998 	if (m != NULL)
1999 		in_pcbgroup_update_mbuf(inp, m);
2000 	else
2001 		in_pcbgroup_update(inp);
2002 #endif
2003 }
2004 
2005 void
2006 in_pcbrehash(struct inpcb *inp)
2007 {
2008 
2009 	in_pcbrehash_mbuf(inp, NULL);
2010 }
2011 
2012 /*
2013  * Remove PCB from various lists.
2014  */
2015 static void
2016 in_pcbremlists(struct inpcb *inp)
2017 {
2018 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2019 
2020 	INP_INFO_WLOCK_ASSERT(pcbinfo);
2021 	INP_WLOCK_ASSERT(inp);
2022 
2023 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
2024 	if (inp->inp_flags & INP_INHASHLIST) {
2025 		struct inpcbport *phd = inp->inp_phd;
2026 
2027 		INP_HASH_WLOCK(pcbinfo);
2028 		LIST_REMOVE(inp, inp_hash);
2029 		LIST_REMOVE(inp, inp_portlist);
2030 		if (LIST_FIRST(&phd->phd_pcblist) == NULL) {
2031 			LIST_REMOVE(phd, phd_hash);
2032 			free(phd, M_PCB);
2033 		}
2034 		INP_HASH_WUNLOCK(pcbinfo);
2035 		inp->inp_flags &= ~INP_INHASHLIST;
2036 	}
2037 	LIST_REMOVE(inp, inp_list);
2038 	pcbinfo->ipi_count--;
2039 #ifdef PCBGROUP
2040 	in_pcbgroup_remove(inp);
2041 #endif
2042 }
2043 
2044 /*
2045  * A set label operation has occurred at the socket layer, propagate the
2046  * label change into the in_pcb for the socket.
2047  */
2048 void
2049 in_pcbsosetlabel(struct socket *so)
2050 {
2051 #ifdef MAC
2052 	struct inpcb *inp;
2053 
2054 	inp = sotoinpcb(so);
2055 	KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL"));
2056 
2057 	INP_WLOCK(inp);
2058 	SOCK_LOCK(so);
2059 	mac_inpcb_sosetlabel(so, inp);
2060 	SOCK_UNLOCK(so);
2061 	INP_WUNLOCK(inp);
2062 #endif
2063 }
2064 
2065 /*
2066  * ipport_tick runs once per second, determining if random port allocation
2067  * should be continued.  If more than ipport_randomcps ports have been
2068  * allocated in the last second, then we return to sequential port
2069  * allocation. We return to random allocation only once we drop below
2070  * ipport_randomcps for at least ipport_randomtime seconds.
2071  */
2072 static void
2073 ipport_tick(void *xtp)
2074 {
2075 	VNET_ITERATOR_DECL(vnet_iter);
2076 
2077 	VNET_LIST_RLOCK_NOSLEEP();
2078 	VNET_FOREACH(vnet_iter) {
2079 		CURVNET_SET(vnet_iter);	/* XXX appease INVARIANTS here */
2080 		if (V_ipport_tcpallocs <=
2081 		    V_ipport_tcplastcount + V_ipport_randomcps) {
2082 			if (V_ipport_stoprandom > 0)
2083 				V_ipport_stoprandom--;
2084 		} else
2085 			V_ipport_stoprandom = V_ipport_randomtime;
2086 		V_ipport_tcplastcount = V_ipport_tcpallocs;
2087 		CURVNET_RESTORE();
2088 	}
2089 	VNET_LIST_RUNLOCK_NOSLEEP();
2090 	callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL);
2091 }
2092 
2093 static void
2094 ip_fini(void *xtp)
2095 {
2096 
2097 	callout_stop(&ipport_tick_callout);
2098 }
2099 
2100 /*
2101  * The ipport_callout should start running at about the time we attach the
2102  * inet or inet6 domains.
2103  */
2104 static void
2105 ipport_tick_init(const void *unused __unused)
2106 {
2107 
2108 	/* Start ipport_tick. */
2109 	callout_init(&ipport_tick_callout, CALLOUT_MPSAFE);
2110 	callout_reset(&ipport_tick_callout, 1, ipport_tick, NULL);
2111 	EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL,
2112 		SHUTDOWN_PRI_DEFAULT);
2113 }
2114 SYSINIT(ipport_tick_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_MIDDLE,
2115     ipport_tick_init, NULL);
2116 
2117 void
2118 inp_wlock(struct inpcb *inp)
2119 {
2120 
2121 	INP_WLOCK(inp);
2122 }
2123 
2124 void
2125 inp_wunlock(struct inpcb *inp)
2126 {
2127 
2128 	INP_WUNLOCK(inp);
2129 }
2130 
2131 void
2132 inp_rlock(struct inpcb *inp)
2133 {
2134 
2135 	INP_RLOCK(inp);
2136 }
2137 
2138 void
2139 inp_runlock(struct inpcb *inp)
2140 {
2141 
2142 	INP_RUNLOCK(inp);
2143 }
2144 
2145 #ifdef INVARIANTS
2146 void
2147 inp_lock_assert(struct inpcb *inp)
2148 {
2149 
2150 	INP_WLOCK_ASSERT(inp);
2151 }
2152 
2153 void
2154 inp_unlock_assert(struct inpcb *inp)
2155 {
2156 
2157 	INP_UNLOCK_ASSERT(inp);
2158 }
2159 #endif
2160 
2161 void
2162 inp_apply_all(void (*func)(struct inpcb *, void *), void *arg)
2163 {
2164 	struct inpcb *inp;
2165 
2166 	INP_INFO_RLOCK(&V_tcbinfo);
2167 	LIST_FOREACH(inp, V_tcbinfo.ipi_listhead, inp_list) {
2168 		INP_WLOCK(inp);
2169 		func(inp, arg);
2170 		INP_WUNLOCK(inp);
2171 	}
2172 	INP_INFO_RUNLOCK(&V_tcbinfo);
2173 }
2174 
2175 struct socket *
2176 inp_inpcbtosocket(struct inpcb *inp)
2177 {
2178 
2179 	INP_WLOCK_ASSERT(inp);
2180 	return (inp->inp_socket);
2181 }
2182 
2183 struct tcpcb *
2184 inp_inpcbtotcpcb(struct inpcb *inp)
2185 {
2186 
2187 	INP_WLOCK_ASSERT(inp);
2188 	return ((struct tcpcb *)inp->inp_ppcb);
2189 }
2190 
2191 int
2192 inp_ip_tos_get(const struct inpcb *inp)
2193 {
2194 
2195 	return (inp->inp_ip_tos);
2196 }
2197 
2198 void
2199 inp_ip_tos_set(struct inpcb *inp, int val)
2200 {
2201 
2202 	inp->inp_ip_tos = val;
2203 }
2204 
2205 void
2206 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp,
2207     uint32_t *faddr, uint16_t *fp)
2208 {
2209 
2210 	INP_LOCK_ASSERT(inp);
2211 	*laddr = inp->inp_laddr.s_addr;
2212 	*faddr = inp->inp_faddr.s_addr;
2213 	*lp = inp->inp_lport;
2214 	*fp = inp->inp_fport;
2215 }
2216 
2217 struct inpcb *
2218 so_sotoinpcb(struct socket *so)
2219 {
2220 
2221 	return (sotoinpcb(so));
2222 }
2223 
2224 struct tcpcb *
2225 so_sototcpcb(struct socket *so)
2226 {
2227 
2228 	return (sototcpcb(so));
2229 }
2230 
2231 #ifdef DDB
2232 static void
2233 db_print_indent(int indent)
2234 {
2235 	int i;
2236 
2237 	for (i = 0; i < indent; i++)
2238 		db_printf(" ");
2239 }
2240 
2241 static void
2242 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent)
2243 {
2244 	char faddr_str[48], laddr_str[48];
2245 
2246 	db_print_indent(indent);
2247 	db_printf("%s at %p\n", name, inc);
2248 
2249 	indent += 2;
2250 
2251 #ifdef INET6
2252 	if (inc->inc_flags & INC_ISIPV6) {
2253 		/* IPv6. */
2254 		ip6_sprintf(laddr_str, &inc->inc6_laddr);
2255 		ip6_sprintf(faddr_str, &inc->inc6_faddr);
2256 	} else
2257 #endif
2258 	{
2259 		/* IPv4. */
2260 		inet_ntoa_r(inc->inc_laddr, laddr_str);
2261 		inet_ntoa_r(inc->inc_faddr, faddr_str);
2262 	}
2263 	db_print_indent(indent);
2264 	db_printf("inc_laddr %s   inc_lport %u\n", laddr_str,
2265 	    ntohs(inc->inc_lport));
2266 	db_print_indent(indent);
2267 	db_printf("inc_faddr %s   inc_fport %u\n", faddr_str,
2268 	    ntohs(inc->inc_fport));
2269 }
2270 
2271 static void
2272 db_print_inpflags(int inp_flags)
2273 {
2274 	int comma;
2275 
2276 	comma = 0;
2277 	if (inp_flags & INP_RECVOPTS) {
2278 		db_printf("%sINP_RECVOPTS", comma ? ", " : "");
2279 		comma = 1;
2280 	}
2281 	if (inp_flags & INP_RECVRETOPTS) {
2282 		db_printf("%sINP_RECVRETOPTS", comma ? ", " : "");
2283 		comma = 1;
2284 	}
2285 	if (inp_flags & INP_RECVDSTADDR) {
2286 		db_printf("%sINP_RECVDSTADDR", comma ? ", " : "");
2287 		comma = 1;
2288 	}
2289 	if (inp_flags & INP_HDRINCL) {
2290 		db_printf("%sINP_HDRINCL", comma ? ", " : "");
2291 		comma = 1;
2292 	}
2293 	if (inp_flags & INP_HIGHPORT) {
2294 		db_printf("%sINP_HIGHPORT", comma ? ", " : "");
2295 		comma = 1;
2296 	}
2297 	if (inp_flags & INP_LOWPORT) {
2298 		db_printf("%sINP_LOWPORT", comma ? ", " : "");
2299 		comma = 1;
2300 	}
2301 	if (inp_flags & INP_ANONPORT) {
2302 		db_printf("%sINP_ANONPORT", comma ? ", " : "");
2303 		comma = 1;
2304 	}
2305 	if (inp_flags & INP_RECVIF) {
2306 		db_printf("%sINP_RECVIF", comma ? ", " : "");
2307 		comma = 1;
2308 	}
2309 	if (inp_flags & INP_MTUDISC) {
2310 		db_printf("%sINP_MTUDISC", comma ? ", " : "");
2311 		comma = 1;
2312 	}
2313 	if (inp_flags & INP_FAITH) {
2314 		db_printf("%sINP_FAITH", comma ? ", " : "");
2315 		comma = 1;
2316 	}
2317 	if (inp_flags & INP_RECVTTL) {
2318 		db_printf("%sINP_RECVTTL", comma ? ", " : "");
2319 		comma = 1;
2320 	}
2321 	if (inp_flags & INP_DONTFRAG) {
2322 		db_printf("%sINP_DONTFRAG", comma ? ", " : "");
2323 		comma = 1;
2324 	}
2325 	if (inp_flags & INP_RECVTOS) {
2326 		db_printf("%sINP_RECVTOS", comma ? ", " : "");
2327 		comma = 1;
2328 	}
2329 	if (inp_flags & IN6P_IPV6_V6ONLY) {
2330 		db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : "");
2331 		comma = 1;
2332 	}
2333 	if (inp_flags & IN6P_PKTINFO) {
2334 		db_printf("%sIN6P_PKTINFO", comma ? ", " : "");
2335 		comma = 1;
2336 	}
2337 	if (inp_flags & IN6P_HOPLIMIT) {
2338 		db_printf("%sIN6P_HOPLIMIT", comma ? ", " : "");
2339 		comma = 1;
2340 	}
2341 	if (inp_flags & IN6P_HOPOPTS) {
2342 		db_printf("%sIN6P_HOPOPTS", comma ? ", " : "");
2343 		comma = 1;
2344 	}
2345 	if (inp_flags & IN6P_DSTOPTS) {
2346 		db_printf("%sIN6P_DSTOPTS", comma ? ", " : "");
2347 		comma = 1;
2348 	}
2349 	if (inp_flags & IN6P_RTHDR) {
2350 		db_printf("%sIN6P_RTHDR", comma ? ", " : "");
2351 		comma = 1;
2352 	}
2353 	if (inp_flags & IN6P_RTHDRDSTOPTS) {
2354 		db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : "");
2355 		comma = 1;
2356 	}
2357 	if (inp_flags & IN6P_TCLASS) {
2358 		db_printf("%sIN6P_TCLASS", comma ? ", " : "");
2359 		comma = 1;
2360 	}
2361 	if (inp_flags & IN6P_AUTOFLOWLABEL) {
2362 		db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : "");
2363 		comma = 1;
2364 	}
2365 	if (inp_flags & INP_TIMEWAIT) {
2366 		db_printf("%sINP_TIMEWAIT", comma ? ", " : "");
2367 		comma  = 1;
2368 	}
2369 	if (inp_flags & INP_ONESBCAST) {
2370 		db_printf("%sINP_ONESBCAST", comma ? ", " : "");
2371 		comma  = 1;
2372 	}
2373 	if (inp_flags & INP_DROPPED) {
2374 		db_printf("%sINP_DROPPED", comma ? ", " : "");
2375 		comma  = 1;
2376 	}
2377 	if (inp_flags & INP_SOCKREF) {
2378 		db_printf("%sINP_SOCKREF", comma ? ", " : "");
2379 		comma  = 1;
2380 	}
2381 	if (inp_flags & IN6P_RFC2292) {
2382 		db_printf("%sIN6P_RFC2292", comma ? ", " : "");
2383 		comma = 1;
2384 	}
2385 	if (inp_flags & IN6P_MTU) {
2386 		db_printf("IN6P_MTU%s", comma ? ", " : "");
2387 		comma = 1;
2388 	}
2389 }
2390 
2391 static void
2392 db_print_inpvflag(u_char inp_vflag)
2393 {
2394 	int comma;
2395 
2396 	comma = 0;
2397 	if (inp_vflag & INP_IPV4) {
2398 		db_printf("%sINP_IPV4", comma ? ", " : "");
2399 		comma  = 1;
2400 	}
2401 	if (inp_vflag & INP_IPV6) {
2402 		db_printf("%sINP_IPV6", comma ? ", " : "");
2403 		comma  = 1;
2404 	}
2405 	if (inp_vflag & INP_IPV6PROTO) {
2406 		db_printf("%sINP_IPV6PROTO", comma ? ", " : "");
2407 		comma  = 1;
2408 	}
2409 }
2410 
2411 static void
2412 db_print_inpcb(struct inpcb *inp, const char *name, int indent)
2413 {
2414 
2415 	db_print_indent(indent);
2416 	db_printf("%s at %p\n", name, inp);
2417 
2418 	indent += 2;
2419 
2420 	db_print_indent(indent);
2421 	db_printf("inp_flow: 0x%x\n", inp->inp_flow);
2422 
2423 	db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent);
2424 
2425 	db_print_indent(indent);
2426 	db_printf("inp_ppcb: %p   inp_pcbinfo: %p   inp_socket: %p\n",
2427 	    inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket);
2428 
2429 	db_print_indent(indent);
2430 	db_printf("inp_label: %p   inp_flags: 0x%x (",
2431 	   inp->inp_label, inp->inp_flags);
2432 	db_print_inpflags(inp->inp_flags);
2433 	db_printf(")\n");
2434 
2435 	db_print_indent(indent);
2436 	db_printf("inp_sp: %p   inp_vflag: 0x%x (", inp->inp_sp,
2437 	    inp->inp_vflag);
2438 	db_print_inpvflag(inp->inp_vflag);
2439 	db_printf(")\n");
2440 
2441 	db_print_indent(indent);
2442 	db_printf("inp_ip_ttl: %d   inp_ip_p: %d   inp_ip_minttl: %d\n",
2443 	    inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl);
2444 
2445 	db_print_indent(indent);
2446 #ifdef INET6
2447 	if (inp->inp_vflag & INP_IPV6) {
2448 		db_printf("in6p_options: %p   in6p_outputopts: %p   "
2449 		    "in6p_moptions: %p\n", inp->in6p_options,
2450 		    inp->in6p_outputopts, inp->in6p_moptions);
2451 		db_printf("in6p_icmp6filt: %p   in6p_cksum %d   "
2452 		    "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum,
2453 		    inp->in6p_hops);
2454 	} else
2455 #endif
2456 	{
2457 		db_printf("inp_ip_tos: %d   inp_ip_options: %p   "
2458 		    "inp_ip_moptions: %p\n", inp->inp_ip_tos,
2459 		    inp->inp_options, inp->inp_moptions);
2460 	}
2461 
2462 	db_print_indent(indent);
2463 	db_printf("inp_phd: %p   inp_gencnt: %ju\n", inp->inp_phd,
2464 	    (uintmax_t)inp->inp_gencnt);
2465 }
2466 
2467 DB_SHOW_COMMAND(inpcb, db_show_inpcb)
2468 {
2469 	struct inpcb *inp;
2470 
2471 	if (!have_addr) {
2472 		db_printf("usage: show inpcb <addr>\n");
2473 		return;
2474 	}
2475 	inp = (struct inpcb *)addr;
2476 
2477 	db_print_inpcb(inp, "inpcb", 0);
2478 }
2479 #endif /* DDB */
2480